1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
|
Network Working Group SNMPv2 Working Group
Request for Comments: 1904 J. Case
Obsoletes: 1444 SNMP Research, Inc.
Category: Standards Track K. McCloghrie
Cisco Systems, Inc.
M. Rose
Dover Beach Consulting, Inc.
S. Waldbusser
International Network Services
January 1996
Conformance Statements for Version 2 of the
Simple Network Management Protocol (SNMPv2)
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Table of Contents
1. Introduction ................................................ 2
1.1 A Note on Terminology ...................................... 3
2. Definitions ................................................. 3
2.1 The OBJECT-GROUP macro ..................................... 3
2.2 The NOTIFICATION-GROUP macro ............................... 4
2.3 The MODULE-COMPLIANCE macro ................................ 5
2.4 The AGENT-CAPABILITIES macro ............................... 7
3. Mapping of the OBJECT-GROUP macro ........................... 9
3.1 Mapping of the OBJECTS clause .............................. 10
3.2 Mapping of the STATUS clause ............................... 10
3.3 Mapping of the DESCRIPTION clause .......................... 10
3.4 Mapping of the REFERENCE clause ............................ 10
3.5 Mapping of the OBJECT-GROUP value .......................... 10
3.6 Usage Example .............................................. 11
4. Mapping of the NOTIFICATION-GROUP macro ..................... 11
4.1 Mapping of the NOTIFICATIONS clause ........................ 11
4.2 Mapping of the STATUS clause ............................... 11
4.3 Mapping of the DESCRIPTION clause .......................... 12
4.4 Mapping of the REFERENCE clause ............................ 12
4.5 Mapping of the NOTIFICATION-GROUP value .................... 12
4.6 Usage Example .............................................. 12
5. Mapping of the MODULE-COMPLIANCE macro ...................... 12
5.1 Mapping of the STATUS clause ............................... 13
SNMPv2 Working Group Standards Track [Page 1]
^L
RFC 1904 Conformance Statements for SNMPv2 January 1996
5.2 Mapping of the DESCRIPTION clause .......................... 13
5.3 Mapping of the REFERENCE clause ............................ 13
5.4 Mapping of the MODULE clause ............................... 13
5.4.1 Mapping of the MANDATORY-GROUPS clause ................... 13
5.4.2 Mapping of the GROUP clause .............................. 14
5.4.3 Mapping of the OBJECT clause ............................. 14
5.4.3.1 Mapping of the SYNTAX clause ........................... 14
5.4.3.2 Mapping of the WRITE-SYNTAX clause ..................... 15
5.4.3.3 Mapping of the MIN-ACCESS clause ....................... 15
5.4.4 Mapping of the DESCRIPTION clause ........................ 15
5.5 Mapping of the MODULE-COMPLIANCE value ..................... 15
5.6 Usage Example .............................................. 16
6. Mapping of the AGENT-CAPABILITIES macro ..................... 16
6.1 Mapping of the PRODUCT-RELEASE clause ...................... 17
6.2 Mapping of the STATUS clause ............................... 17
6.3 Mapping of the DESCRIPTION clause .......................... 17
6.4 Mapping of the REFERENCE clause ............................ 17
6.5 Mapping of the SUPPORTS clause ............................. 18
6.5.1 Mapping of the INCLUDES clause ........................... 18
6.5.2 Mapping of the VARIATION clause .......................... 18
6.5.2.1 Mapping of the SYNTAX clause ........................... 18
6.5.2.2 Mapping of the WRITE-SYNTAX clause ..................... 18
6.5.2.3 Mapping of the ACCESS clause ........................... 19
6.5.2.4 Mapping of the CREATION-REQUIRES clause ................ 19
6.5.2.5 Mapping of the DEFVAL clause ........................... 20
6.5.2.6 Mapping of the DESCRIPTION clause ...................... 20
6.6 Mapping of the AGENT-CAPABILITIES value .................... 20
6.7 Usage Example .............................................. 20
7. Extending an Information Module ............................. 22
7.1 Conformance Groups ......................................... 22
7.2 Compliance Definitions ..................................... 22
7.3 Capabilities Definitions ................................... 22
8. Security Considerations ..................................... 23
9. Editor's Address ............................................ 23
10. Acknowledgements ........................................... 23
11. References ................................................. 24
1. Introduction
A management system contains: several (potentially many) nodes, each
with a processing entity, termed an agent, which has access to
management instrumentation; at least one management station; and, a
management protocol, used to convey management information between
the agents and management stations. Operations of the protocol are
carried out under an administrative framework which defines
authentication, authorization, access control, and privacy policies.
SNMPv2 Working Group Standards Track [Page 2]
^L
RFC 1904 Conformance Statements for SNMPv2 January 1996
Management stations execute management applications which monitor and
control managed elements. Managed elements are devices such as
hosts, routers, terminal servers, etc., which are monitored and
controlled via access to their management information.
Management information is viewed as a collection of managed objects,
residing in a virtual information store, termed the Management
Information Base (MIB). Collections of related objects are defined
in MIB modules. These modules are written using a subset of OSI's
Abstract Syntax Notation One (ASN.1) [1], termed the Structure of
Management Information (SMI) [2].
It may be useful to define the acceptable lower-bounds of
implementation, along with the actual level of implementation
achieved. It is the purpose of this document to define the notation
used for these purposes.
1.1. A Note on Terminology
For the purpose of exposition, the original Internet-standard Network
Management Framework, as described in RFCs 1155 (STD 16), 1157 (STD
15), and 1212 (STD 16), is termed the SNMP version 1 framework
(SNMPv1). The current framework is termed the SNMP version 2
framework (SNMPv2).
2. Definitions
SNMPv2-CONF DEFINITIONS ::= BEGIN
-- definitions for conformance groups
OBJECT-GROUP MACRO ::=
BEGIN
TYPE NOTATION ::=
ObjectsPart
"STATUS" Status
"DESCRIPTION" Text
ReferPart
VALUE NOTATION ::=
value(VALUE OBJECT IDENTIFIER)
ObjectsPart ::=
"OBJECTS" "{" Objects "}"
Objects ::=
Object
| Objects "," Object
Object ::=
SNMPv2 Working Group Standards Track [Page 3]
^L
RFC 1904 Conformance Statements for SNMPv2 January 1996
value(Name ObjectName)
Status ::=
"current"
| "deprecated"
| "obsolete"
ReferPart ::=
"REFERENCE" Text
| empty
-- uses the NVT ASCII character set
Text ::= """" string """"
END
-- more definitions for conformance groups
NOTIFICATION-GROUP MACRO ::=
BEGIN
TYPE NOTATION ::=
NotificationsPart
"STATUS" Status
"DESCRIPTION" Text
ReferPart
VALUE NOTATION ::=
value(VALUE OBJECT IDENTIFIER)
NotificationsPart ::=
"NOTIFICATIONS" "{" Notifications "}"
Notifications ::=
Notification
| Notifications "," Notification
Notification ::=
value(Name NotificationName)
Status ::=
"current"
| "deprecated"
| "obsolete"
ReferPart ::=
"REFERENCE" Text
| empty
-- uses the NVT ASCII character set
Text ::= """" string """"
SNMPv2 Working Group Standards Track [Page 4]
^L
RFC 1904 Conformance Statements for SNMPv2 January 1996
END
-- definitions for compliance statements
MODULE-COMPLIANCE MACRO ::=
BEGIN
TYPE NOTATION ::=
"STATUS" Status
"DESCRIPTION" Text
ReferPart
ModulePart
VALUE NOTATION ::=
value(VALUE OBJECT IDENTIFIER)
Status ::=
"current"
| "deprecated"
| "obsolete"
ReferPart ::=
"REFERENCE" Text
| empty
ModulePart ::=
Modules
| empty
Modules ::=
Module
| Modules Module
Module ::=
-- name of module --
"MODULE" ModuleName
MandatoryPart
CompliancePart
ModuleName ::=
modulereference ModuleIdentifier
-- must not be empty unless contained
-- in MIB Module
| empty
ModuleIdentifier ::=
value(ModuleID OBJECT IDENTIFIER)
| empty
MandatoryPart ::=
"MANDATORY-GROUPS" "{" Groups "}"
SNMPv2 Working Group Standards Track [Page 5]
^L
RFC 1904 Conformance Statements for SNMPv2 January 1996
| empty
Groups ::=
Group
| Groups "," Group
Group ::=
value(Group OBJECT IDENTIFIER)
CompliancePart ::=
Compliances
| empty
Compliances ::=
Compliance
| Compliances Compliance
Compliance ::=
ComplianceGroup
| Object
ComplianceGroup ::=
"GROUP" value(Name OBJECT IDENTIFIER)
"DESCRIPTION" Text
Object ::=
"OBJECT" value(Name ObjectName)
SyntaxPart
WriteSyntaxPart
AccessPart
"DESCRIPTION" Text
-- must be a refinement for object's SYNTAX clause
SyntaxPart ::=
"SYNTAX" type(SYNTAX)
| empty
-- must be a refinement for object's SYNTAX clause
WriteSyntaxPart ::=
"WRITE-SYNTAX" type(WriteSYNTAX)
| empty
AccessPart ::=
"MIN-ACCESS" Access
| empty
Access ::=
"not-accessible"
| "accessible-for-notify"
| "read-only"
| "read-write"
SNMPv2 Working Group Standards Track [Page 6]
^L
RFC 1904 Conformance Statements for SNMPv2 January 1996
| "read-create"
-- uses the NVT ASCII character set
Text ::= """" string """"
END
-- definitions for capabilities statements
AGENT-CAPABILITIES MACRO ::=
BEGIN
TYPE NOTATION ::=
"PRODUCT-RELEASE" Text
"STATUS" Status
"DESCRIPTION" Text
ReferPart
ModulePart
VALUE NOTATION ::=
value(VALUE OBJECT IDENTIFIER)
Status ::=
"current"
| "obsolete"
ReferPart ::=
"REFERENCE" Text
| empty
ModulePart ::=
Modules
| empty
Modules ::=
Module
| Modules Module
Module ::=
-- name of module --
"SUPPORTS" ModuleName
"INCLUDES" "{" Groups "}"
VariationPart
ModuleName ::=
identifier ModuleIdentifier
ModuleIdentifier ::=
value(ModuleID OBJECT IDENTIFIER)
| empty
Groups ::=
SNMPv2 Working Group Standards Track [Page 7]
^L
RFC 1904 Conformance Statements for SNMPv2 January 1996
Group
| Groups "," Group
Group ::=
value(Name OBJECT IDENTIFIER)
VariationPart ::=
Variations
| empty
Variations ::=
Variation
| Variations Variation
Variation ::=
ObjectVariation
| NotificationVariation
NotificationVariation ::=
"VARIATION" value(Name NotificationName)
AccessPart
"DESCRIPTION" Text
ObjectVariation ::=
"VARIATION" value(Name ObjectName)
SyntaxPart
WriteSyntaxPart
AccessPart
CreationPart
DefValPart
"DESCRIPTION" Text
-- must be a refinement for object's SYNTAX clause
SyntaxPart ::=
"SYNTAX" type(SYNTAX)
| empty
-- must be a refinement for object's SYNTAX clause
WriteSyntaxPart ::=
"WRITE-SYNTAX" type(WriteSYNTAX)
| empty
AccessPart ::=
"ACCESS" Access
| empty
Access ::=
"not-implemented"
-- only "not-implemented" for notifications
| "accessible-for-notify"
SNMPv2 Working Group Standards Track [Page 8]
^L
RFC 1904 Conformance Statements for SNMPv2 January 1996
| "read-only"
| "read-write"
| "read-create"
-- following is for backward-compatibility only
| "write-only"
CreationPart ::=
"CREATION-REQUIRES" "{" Cells "}"
| empty
Cells ::=
Cell
| Cells "," Cell
Cell ::=
value(Cell ObjectName)
DefValPart ::=
"DEFVAL" "{" value(Defval ObjectSyntax) "}"
| empty
-- uses the NVT ASCII character set
Text ::= """" string """"
END
END
3. Mapping of the OBJECT-GROUP macro
For conformance purposes, it is useful to define a collection of
related managed objects. The OBJECT-GROUP macro is used to define
each such collection of related objects. It should be noted that the
expansion of the OBJECT-GROUP macro is something which conceptually
happens during implementation and not during run-time.
To "implement" an object, a SNMPv2 entity acting in an agent role
must return a reasonably accurate value for management protocol
retrieval operations; similarly, if the object is writable, then in
response to a management protocol set operation, a SNMPv2 entity must
accordingly be able to reasonably influence the underlying managed
entity. If a SNMPv2 entity acting in an agent role can not implement
an object, the management protocol provides for the SNMPv2 entity to
return an exception or error, e.g, noSuchObject [4]. Under no
circumstances shall a SNMPv2 entity return a value for objects which
it does not implement -- it must always return the appropriate
exception or error, as described in the protocol specification [4].
SNMPv2 Working Group Standards Track [Page 9]
^L
RFC 1904 Conformance Statements for SNMPv2 January 1996
3.1. Mapping of the OBJECTS clause
The OBJECTS clause, which must be present, is used to name each
object contained in the conformance group. Each of the named objects
must be defined in the same information module as the OBJECT-GROUP
macro appears, and must have a MAX-ACCESS clause value of
"accessible-for-notify", "read-only", "read-write", or "read-create".
It is required that every object defined in an information module
with a MAX-ACCESS clause other than "not-accessible" be contained in
at least one object group. This avoids the common error of adding a
new object to an information module and forgetting to add the new
object to a group.
3.2. Mapping of the STATUS clause
The STATUS clause, which must be present, indicates whether this
definition is current or historic.
The values "current", and "obsolete" are self-explanatory. The
"deprecated" value indicates that the definition is obsolete, but
that an implementor may wish to support the group to foster
interoperability with older implementations.
3.3. Mapping of the DESCRIPTION clause
The DESCRIPTION clause, which must be present, contains a textual
definition of that group, along with a description of any relations
to other groups. Note that generic compliance requirements should
not be stated in this clause. However, implementation relationships
between this group and other groups may be defined in this clause.
3.4. Mapping of the REFERENCE clause
The REFERENCE clause, which need not be present, contains a textual
cross-reference to a group defined in some other information module.
This is useful when de-osifying a MIB module produced by some other
organization.
3.5. Mapping of the OBJECT-GROUP value
The value of an invocation of the OBJECT-GROUP macro is the name of
the group, which is an OBJECT IDENTIFIER, an administratively
assigned name.
SNMPv2 Working Group Standards Track [Page 10]
^L
RFC 1904 Conformance Statements for SNMPv2 January 1996
3.6. Usage Example
The SNMP Group [3] is described:
snmpGroup OBJECT-GROUP
OBJECTS { snmpInPkts,
snmpInBadVersions,
snmpInASNParseErrs,
snmpBadOperations,
snmpSilentDrops,
snmpProxyDrops,
snmpEnableAuthenTraps }
STATUS current
DESCRIPTION
"A collection of objects providing basic instrumentation and
control of an SNMPv2 entity."
::= { snmpMIBGroups 8 }
According to this invocation, the conformance group named
{ snmpMIBGroups 8 }
contains 7 objects.
4. Mapping of the NOTIFICATION-GROUP macro
For conformance purposes, it is useful to define a collection of
notifications. The NOTIFICATION-GROUP macro serves this purpose. It
should be noted that the expansion of the NOTIFICATION-GROUP macro is
something which conceptually happens during implementation and not
during run-time.
4.1. Mapping of the NOTIFICATIONS clause
The NOTIFICATIONS clause, which must be present, is used to name each
notification contained in the conformance group. Each of the named
notifications must be defined in the same information module as the
NOTIFICATION-GROUP macro appears.
4.2. Mapping of the STATUS clause
The STATUS clause, which must be present, indicates whether this
definition is current or historic.
The values "current", and "obsolete" are self-explanatory. The
"deprecated" value indicates that the definition is obsolete, but
that an implementor may wish to support the group to foster
SNMPv2 Working Group Standards Track [Page 11]
^L
RFC 1904 Conformance Statements for SNMPv2 January 1996
interoperability with older implementations.
4.3. Mapping of the DESCRIPTION clause
The DESCRIPTION clause, which must be present, contains a textual
definition of the group, along with a description of any relations to
other groups. Note that generic compliance requirements should not
be stated in this clause. However, implementation relationships
between this group and other groups may be defined in this clause.
4.4. Mapping of the REFERENCE clause
The REFERENCE clause, which need not be present, contains a textual
cross-reference to a group defined in some other information module.
This is useful when de-osifying a MIB module produced by some other
organization.
4.5. Mapping of the NOTIFICATION-GROUP value
The value of an invocation of the NOTIFICATION-GROUP macro is the
name of the group, which is an OBJECT IDENTIFIER, an administratively
assigned name.
4.6. Usage Example
The SNMP Basic Notifications Group [3] is described:
snmpBasicNotificationsGroup NOTIFICATION-GROUP
NOTIFICATIONS { coldStart, authenticationFailure }
STATUS current
DESCRIPTION
"The two notifications which an SNMPv2 entity is required to
implement."
::= { snmpMIBGroups 7 }
According to this invocation, the conformance group named
{ snmpMIBGroups 1 }
contains 2 notifications.
5. Mapping of the MODULE-COMPLIANCE macro
The MODULE-COMPLIANCE macro is used to convey a minimum set of
requirements with respect to implementation of one or more MIB
modules. It should be noted that the expansion of the MODULE-
COMPLIANCE macro is something which conceptually happens during
implementation and not during run-time.
SNMPv2 Working Group Standards Track [Page 12]
^L
RFC 1904 Conformance Statements for SNMPv2 January 1996
A requirement on all "standard" MIB modules is that a corresponding
MODULE-COMPLIANCE specification is also defined, either in the same
information module or in a companion information module.
5.1. Mapping of the STATUS clause
The STATUS clause, which must be present, indicates whether this
definition is current or historic.
The values "current", and "obsolete" are self-explanatory. The
"deprecated" value indicates that the specification is obsolete, but
that an implementor may wish to support that object to foster
interoperability with older implementations.
5.2. Mapping of the DESCRIPTION clause
The DESCRIPTION clause, which must be present, contains a textual
definition of this compliance statement and should embody any
information which would otherwise be communicated in any ASN.1
commentary annotations associated with the statement.
5.3. Mapping of the REFERENCE clause
The REFERENCE clause, which need not be present, contains a textual
cross-reference to a compliance statement defined in some other
information module.
5.4. Mapping of the MODULE clause
The MODULE clause, which must be present, is repeatedly used to name
each MIB module for which compliance requirements are being
specified. Each MIB module is named by its module name, and
optionally, by its associated OBJECT IDENTIFIER as well. The module
name can be omitted when the MODULE-COMPLIANCE invocation occurs
inside a MIB module, to refer to the encompassing MIB module.
5.4.1. Mapping of the MANDATORY-GROUPS clause
The MANDATORY-GROUPS clause, which need not be present, names the one
or more object or notification groups within the correspondent MIB
module which are unconditionally mandatory for implementation. If a
SNMPv2 entity acting in an agent role claims compliance to the MIB
module, then it must implement each and every object and notification
within each conformance group listed. That is, if a SNMPv2 entity
returns a noSuchObject exception in response to a management protocol
get operation [4] for any object within any mandatory conformance
group for every MIB view, or if the SNMPv2 entity cannot generate
each notification listed in any conformance group under the
SNMPv2 Working Group Standards Track [Page 13]
^L
RFC 1904 Conformance Statements for SNMPv2 January 1996
appropriate circumstances, then that SNMPv2 entity is not a
conformant implementation of the MIB module.
5.4.2. Mapping of the GROUP clause
The GROUP clause, which need not be present, is repeatedly used to
name each object and notification group which is conditionally
mandatory or unconditionally optional for compliance to the MIB
module. A group named in a GROUP clause must be absent from the
correspondent MANDATORY-GROUPS clause.
Conditionally mandatory groups include those which are mandatory only
if a particular protocol is implemented, or only if another group is
implemented. A GROUP clause's DESCRIPTION specifies the conditions
under which the group is conditionally mandatory.
A group which is named in neither a MANDATORY-GROUPS clause nor a
GROUP clause, is unconditionally optional for compliance to the MIB
module.
5.4.3. Mapping of the OBJECT clause
The OBJECT clause, which need not be present, is repeatedly used to
name each MIB object for which compliance has a refined requirement
with respect to the MIB module definition. The MIB object must be
present in one of the conformance groups named in the correspondent
MANDATORY-GROUPS clause or GROUP clauses.
By definition, each object specified in an OBJECT clause follows a
MODULE clause which names the information module in which that object
is defined. Therefore, the use of an IMPORTS statement, to specify
from where such objects are imported, is redundant and is not
required in an information module.
5.4.3.1. Mapping of the SYNTAX clause
The SYNTAX clause, which need not be present, is used to provide a
refined SYNTAX for the object named in the correspondent OBJECT
clause. Note that if this clause and a WRITE-SYNTAX clause are both
present, then this clause only applies when instances of the object
named in the correspondent OBJECT clause are read.
Consult Section 9 of [2] for more information on refined syntax.
SNMPv2 Working Group Standards Track [Page 14]
^L
RFC 1904 Conformance Statements for SNMPv2 January 1996
5.4.3.2. Mapping of the WRITE-SYNTAX clause
The WRITE-SYNTAX clause, which need not be present, is used to
provide a refined SYNTAX for the object named in the correspondent
OBJECT clause when instances of that object are written.
Consult Section 9 of [2] for more information on refined syntax.
5.4.3.3. Mapping of the MIN-ACCESS clause
The MIN-ACCESS clause, which need not be present, is used to define
the minimal level of access for the object named in the correspondent
OBJECT clause. If this clause is absent, the minimal level of access
is the same as the maximal level specified in the correspondent
invocation of the OBJECT-TYPE macro. If present, this clause must
not specify a greater level of access than is specified in the
correspondent invocation of the OBJECT-TYPE macro.
The level of access for certain types of objects is fixed according
to their syntax definition. These types include: conceptual tables
and rows, auxiliary objects, and objects with the syntax of
Counter32, Counter64 (and possibly, certain types of textual
conventions). A MIN-ACCESS clause should not be present for such
objects.
An implementation is compliant if the level of access it provides is
greater or equal to the minimal level in the MODULE-COMPLIANCE macro
and less or equal to the maximal level in the OBJECT-TYPE macro.
5.4.4. Mapping of the DESCRIPTION clause
The DESCRIPTION clause must be present for each use of the GROUP or
OBJECT clause. For an OBJECT clause, it contains a textual
description of the refined compliance requirement. For a GROUP
clause, it contains a textual description of the conditions under
which the group is conditionally mandatory or unconditionally
optional.
5.5. Mapping of the MODULE-COMPLIANCE value
The value of an invocation of the MODULE-COMPLIANCE macro is an
OBJECT IDENTIFIER. As such, this value may be authoritatively used
when referring to the compliance statement embodied by that
invocation of the macro.
SNMPv2 Working Group Standards Track [Page 15]
^L
RFC 1904 Conformance Statements for SNMPv2 January 1996
5.6. Usage Example
The compliance statement contained in the (hypothetical) XYZv2-MIB
might be:
xyzMIBCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement for XYZv2 entities which implement
the XYZv2 MIB."
MODULE -- compliance to the containing MIB module
MANDATORY-GROUPS { xyzSystemGroup,
xyzStatsGroup, xyzTrapGroup,
xyzSetGroup,
xyzBasicNotificationsGroup }
GROUP xyzV1Group
DESCRIPTION
"The xyzV1 group is mandatory only for those
XYZv2 entities which also implement XYZv1."
::= { xyzMIBCompliances 1 }
According to this invocation, to claim alignment with the compliance
statement named
{ xyzMIBCompliances 1 }
a system must implement the XYZv2-MIB's xyzSystemGroup,
xyzStatsGroup, xyzTrapGroup, and xyzSetGroup object conformance
groups, as well as the xyzBasicNotificationsGroup notifications
group. Furthermore, if the XYZv2 entity also implements XYZv1, then
it must also support the XYZv1Group group, if compliance is to be
claimed.
6. Mapping of the AGENT-CAPABILITIES macro
The AGENT-CAPABILITIES macro is used to convey a set of capabilities
present in a SNMPv2 entity acting in an agent role. It should be
noted that the expansion of the AGENT-CAPABILITIES macro is something
which conceptually happens during implementation and not during run-
time.
When a MIB module is written, it is divided into units of conformance
termed groups. If a SNMPv2 entity acting in an agent role claims to
implement a group, then it must implement each and every object
within that group. Of course, for whatever reason, a SNMPv2 entity
might implement only a subset of the groups within a MIB module. In
addition, the definition of some MIB objects leave some aspects of
SNMPv2 Working Group Standards Track [Page 16]
^L
RFC 1904 Conformance Statements for SNMPv2 January 1996
the definition to the discretion of an implementor.
Practical experience has demonstrated a need for concisely describing
the capabilities of an agent with respect to one or more MIB modules.
The AGENT-CAPABILITIES macro allows an agent implementor to describe
the precise level of support which an agent claims in regards to a
MIB group, and to bind that description to the value of an instance
of sysORID [3]. In particular, some objects may have restricted or
augmented syntax or access-levels.
If the AGENT-CAPABILITIES invocation is given to a management-station
implementor, then that implementor can build management applications
which optimize themselves when communicating with a particular agent.
For example, the management-station can maintain a database of these
invocations. When a management-station interacts with an agent, it
retrieves from the agent the values of all instances of sysORID [3].
Based on this, it consults the database to locate each entry matching
one of the retrieved values of sysORID. Using the located entries,
the management application can now optimize its behavior accordingly.
Note that the AGENT-CAPABILITIES macro specifies refinements or
variations with respect to OBJECT-TYPE and NOTIFICATION-TYPE macros
in MIB modules, NOT with respect to MODULE-COMPLIANCE macros in
compliance statements.
6.1. Mapping of the PRODUCT-RELEASE clause
The PRODUCT-RELEASE clause, which must be present, contains a textual
description of the product release which includes this set of
capabilities.
6.2. Mapping of the STATUS clause
The STATUS clause, which must be present, indicates whether this
definition is current ("current") or historic ("obsolete").
6.3. Mapping of the DESCRIPTION clause
The DESCRIPTION clause, which must be present, contains a textual
description of this set of capabilities.
6.4. Mapping of the REFERENCE clause
The REFERENCE clause, which need not be present, contains a textual
cross-reference to a capability statement defined in some other
information module.
SNMPv2 Working Group Standards Track [Page 17]
^L
RFC 1904 Conformance Statements for SNMPv2 January 1996
6.5. Mapping of the SUPPORTS clause
The SUPPORTS clause, which need not be present, is repeatedly used to
name each MIB module for which the agent claims a complete or partial
implementation. Each MIB module is named by its module name, and
optionally, by its associated OBJECT IDENTIFIER as well.
6.5.1. Mapping of the INCLUDES clause
The INCLUDES clause, which must be present for each use of the
SUPPORTS clause, is used to name each MIB group associated with the
SUPPORTS clause, which the agent claims to implement.
6.5.2. Mapping of the VARIATION clause
The VARIATION clause, which need not be present, is repeatedly used
to name each object or notification which the agent implements in
some variant or refined fashion with respect to the correspondent
invocation of the OBJECT-TYPE or NOTIFICATION-TYPE macro.
Note that the variation concept is meant for generic implementation
restrictions, e.g., if the variation for an object depends on the
values of other objects, then this should be noted in the appropriate
DESCRIPTION clause.
By definition, each object specified in a VARIATION clause follows a
SUPPORTS clause which names the information module in which that
object is defined. Therefore, the use of an IMPORTS statement, to
specify from where such objects are imported, is redundant and is not
required in an information module.
6.5.2.1. Mapping of the SYNTAX clause
The SYNTAX clause, which need not be present, is used to provide a
refined SYNTAX for the object named in the correspondent VARIATION
clause. Note that if this clause and a WRITE-SYNTAX clause are both
present, then this clause only applies when instances of the object
named in the correspondent VARIATION clause are read.
Consult Section 9 of [2] for more information on refined syntax.
6.5.2.2. Mapping of the WRITE-SYNTAX clause
The WRITE-SYNTAX clause, which need not be present, is used to
provide a refined SYNTAX for the object named in the correspondent
VARIATION clause when instances of that object are written.
Consult Section 9 of [2] for more information on refined syntax.
SNMPv2 Working Group Standards Track [Page 18]
^L
RFC 1904 Conformance Statements for SNMPv2 January 1996
6.5.2.3. Mapping of the ACCESS clause
The ACCESS clause, which need not be present, is used to indicate the
agent provides less than the maximal level of access to the object or
notification named in the correspondent VARIATION clause.
The only value applicable to notifications is "not-implemented".
The value "not-implemented" indicates the agent does not implement
the object or notification, and in the ordering of possible values is
equivalent to "not-accessible".
The value "write-only" is provided solely for backward compatibility,
and shall not be used for newly-defined object types. In the
ordering of possible values, "write-only" is less than "not-
accessible".
6.5.2.4. Mapping of the CREATION-REQUIRES clause
The CREATION-REQUIRES clause, which need not be present, is used to
name the columnar objects of a conceptual row to which values must be
explicitly assigned, by a management protocol set operation, before
the agent will allow the instance of the status column of that row to
be set to `active'. (Consult the definition of RowStatus [5].)
If the conceptual row does not have a status column (i.e., the
objects corresponding to the conceptual table were defined using the
mechanisms in [6,7]), then the CREATION-REQUIRES clause, which need
not be present, is used to name the columnar objects of a conceptual
row to which values must be explicitly assigned, by a management
protocol set operation, before the agent will create new instances of
objects in that row.
This clause must not present unless the object named in the
correspondent VARIATION clause is a conceptual row, i.e., has a
syntax which resolves to a SEQUENCE containing columnar objects. The
objects named in the value of this clause usually will refer to
columnar objects in that row. However, objects unrelated to the
conceptual row may also be specified.
All objects which are named in the CREATION-REQUIRES clause for a
conceptual row, and which are columnar objects of that row, must have
an access level of "read-create".
SNMPv2 Working Group Standards Track [Page 19]
^L
RFC 1904 Conformance Statements for SNMPv2 January 1996
6.5.2.5. Mapping of the DEFVAL clause
The DEFVAL clause, which need not be present, is used to provide a
refined DEFVAL value for the object named in the correspondent
VARIATION clause. The semantics of this value are identical to those
of the OBJECT-TYPE macro's DEFVAL clause.
6.5.2.6. Mapping of the DESCRIPTION clause
The DESCRIPTION clause, which must be present for each use of the
VARIATION clause, contains a textual description of the variant or
refined implementation of the object or notification.
6.6. Mapping of the AGENT-CAPABILITIES value
The value of an invocation of the AGENT-CAPABILITIES macro is an
OBJECT IDENTIFIER, which names the value of sysORID [3] for which
this capabilities statement is valid.
6.7. Usage Example
Consider how a capabilities statement for an agent might be
described:
exampleAgent AGENT-CAPABILITIES
PRODUCT-RELEASE "ACME Agent release 1.1 for 4BSD"
STATUS current
DESCRIPTION "ACME agent for 4BSD"
SUPPORTS SNMPv2-MIB
INCLUDES { systemGroup, snmpGroup, snmpSetGroup,
snmpBasicNotificationsGroup }
VARIATION coldStart
DESCRIPTION "A coldStart trap is generated on all
reboots."
SUPPORTS IF-MIB
INCLUDES { ifGeneralGroup, ifPacketGroup }
VARIATION ifAdminStatus
SYNTAX INTEGER { up(1), down(2) }
DESCRIPTION "Unable to set test mode on 4BSD"
VARIATION ifOperStatus
SYNTAX INTEGER { up(1), down(2) }
DESCRIPTION "Information limited on 4BSD"
SNMPv2 Working Group Standards Track [Page 20]
^L
RFC 1904 Conformance Statements for SNMPv2 January 1996
SUPPORTS IP-MIB
INCLUDES { ipGroup, icmpGroup }
VARIATION ipDefaultTTL
SYNTAX INTEGER (255..255)
DESCRIPTION "Hard-wired on 4BSD"
VARIATION ipInAddrErrors
ACCESS not-implemented
DESCRIPTION "Information not available on 4BSD"
VARIATION ipNetToMediaEntry
CREATION-REQUIRES { ipNetToMediaPhysAddress }
DESCRIPTION "Address mappings on 4BSD require
both protocol and media addresses"
SUPPORTS TCP-MIB
INCLUDES { tcpGroup }
VARIATION tcpConnState
ACCESS read-only
DESCRIPTION "Unable to set this on 4BSD"
SUPPORTS UDP-MIB
INCLUDES { udpGroup }
SUPPORTS EVAL-MIB
INCLUDES { functionsGroup, expressionsGroup }
VARIATION exprEntry
CREATION-REQUIRES { evalString }
DESCRIPTION "Conceptual row creation supported"
::= { acmeAgents 1 }
According to this invocation, an agent with a sysORID value of
{ acmeAgents 1 }
supports six MIB modules.
From SNMPv2-MIB, five conformance groups are supported.
From IF-MIB, the ifGeneralGroup and ifPacketGroup groups are
supported. However, the objects ifAdminStatus and ifOperStatus have
a restricted syntax.
SNMPv2 Working Group Standards Track [Page 21]
^L
RFC 1904 Conformance Statements for SNMPv2 January 1996
From IP-MIB, all objects in the ipGroup and icmpGroup are supported
except ipInAddrErrors, while ipDefaultTTL has a restricted range, and
when creating a new instance in the ipNetToMediaTable, the set-
request must create an instance of atPhysAddress.
From TCP-MIB, the tcpGroup is supported except that tcpConnState is
available only for reading.
From UDP-MIB, the udpGroup is fully supported.
From the EVAL-MIB, all the objects contained in the functionsGroup
and expressionsGroup conformance groups are supported, without
variation. In addition, creation of new instances in the expr table
is supported.
7. Extending an Information Module
As experience is gained with a published information module, it may
be desirable to revise that information module.
Section 10 of [2] defines the rules for extending an information
module. The remainder of this section defines how conformance
groups, compliance statements, and capabilities statements may be
extended.
7.1. Conformance Groups
If any non-editorial change is made to any clause of an object group
then the OBJECT IDENTIFIER value associated with that object group
must also be changed, along with its associated descriptor.
7.2. Compliance Definitions
If any non-editorial change is made to any clause of a compliance
definition, then the OBJECT IDENTIFIER value associated with that
compliance definition must also be changed, along with its associated
descriptor.
7.3. Capabilities Definitions
If any non-editorial change is made to any clause of a capabilities
definition, then the OBJECT IDENTIFIER value associated with that
capabilities definition must also be changed, along with its
associated descriptor.
SNMPv2 Working Group Standards Track [Page 22]
^L
RFC 1904 Conformance Statements for SNMPv2 January 1996
8. Security Considerations
Security issues are not discussed in this memo.
9. Editor's Address
Keith McCloghrie
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
US
Phone: +1 408 526 5260
EMail: kzm@cisco.com
10. Acknowledgements
This document is the result of significant work by the four major
contributors:
Jeffrey D. Case (SNMP Research, case@snmp.com)
Keith McCloghrie (Cisco Systems, kzm@cisco.com)
Marshall T. Rose (Dover Beach Consulting, mrose@dbc.mtview.ca.us)
Steven Waldbusser (International Network Services, stevew@uni.ins.com)
In addition, the contributions of the SNMPv2 Working Group are
acknowledged. In particular, a special thanks is extended for the
contributions of:
Alexander I. Alten (Novell)
Dave Arneson (Cabletron)
Uri Blumenthal (IBM)
Doug Book (Chipcom)
Kim Curran (Bell-Northern Research)
Jim Galvin (Trusted Information Systems)
Maria Greene (Ascom Timeplex)
Iain Hanson (Digital)
Dave Harrington (Cabletron)
Nguyen Hien (IBM)
Jeff Johnson (Cisco Systems)
Michael Kornegay (Object Quest)
Deirdre Kostick (AT&T Bell Labs)
David Levi (SNMP Research)
Daniel Mahoney (Cabletron)
Bob Natale (ACE*COMM)
Brian O'Keefe (Hewlett Packard)
Andrew Pearson (SNMP Research)
Dave Perkins (Peer Networks)
SNMPv2 Working Group Standards Track [Page 23]
^L
RFC 1904 Conformance Statements for SNMPv2 January 1996
Randy Presuhn (Peer Networks)
Aleksey Romanov (Quality Quorum)
Shawn Routhier (Epilogue)
Jon Saperia (BGS Systems)
Bob Stewart (Cisco Systems, bstewart@cisco.com), chair
Kaj Tesink (Bellcore)
Glenn Waters (Bell-Northern Research)
Bert Wijnen (IBM)
11. References
[1] Information processing systems - Open Systems Interconnection -
Specification of Abstract Syntax Notation One (ASN.1),
International Organization for Standardization. International
Standard 8824, (December, 1987).
[2] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
S. Waldbusser, "Structure of Management Information for Version 2
of the Simple Network Management Protocol (SNMPv2)", RFC 1902,
January 1996.
[3] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
S. Waldbusser, "Management Information Base for Version 2 of the
Simple Network Management Protocol (SNMPv2)", RFC 1907,
January 1996.
[4] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
S. Waldbusser, "Protocol Operations for Version 2 of the Simple
Network Management Protocol (SNMPv2)", RFC 1905, January 1996.
[5] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
S. Waldbusser, "Textual Conventions for Version 2 of the Simple
Network Management Protocol (SNMPv2)", RFC 1903, January 1996.
[6] Rose, M., and K. McCloghrie, "Structure and Identification of
Management Information for TCP/IP-based internets", STD 16, RFC
1155, May 1990.
[7] Rose, M., and K. McCloghrie, "Concise MIB Definitions", STD 16,
RFC 1212, March 1991.
SNMPv2 Working Group Standards Track [Page 24]
^L
|