1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
|
Network Working Group T. Boutell, et. al.
Request for Comments: 2083 Boutell.Com, Inc.
Category: Informational March 1997
PNG (Portable Network Graphics) Specification
Version 1.0
Status of this Memo
This memo provides information for the Internet community. This memo
does not specify an Internet standard of any kind. Distribution of
this memo is unlimited.
IESG Note:
The IESG takes no position on the validity of any Intellectual
Property Rights statements contained in this document.
Abstract
This document describes PNG (Portable Network Graphics), an
extensible file format for the lossless, portable, well-compressed
storage of raster images. PNG provides a patent-free replacement for
GIF and can also replace many common uses of TIFF. Indexed-color,
grayscale, and truecolor images are supported, plus an optional alpha
channel. Sample depths range from 1 to 16 bits.
PNG is designed to work well in online viewing applications, such as
the World Wide Web, so it is fully streamable with a progressive
display option. PNG is robust, providing both full file integrity
checking and simple detection of common transmission errors. Also,
PNG can store gamma and chromaticity data for improved color matching
on heterogeneous platforms.
This specification defines the Internet Media Type image/png.
Table of Contents
1. Introduction .................................................. 4
2. Data Representation ........................................... 5
2.1. Integers and byte order .................................. 5
2.2. Color values ............................................. 6
2.3. Image layout ............................................. 6
2.4. Alpha channel ............................................ 7
2.5. Filtering ................................................ 8
2.6. Interlaced data order .................................... 8
2.7. Gamma correction ......................................... 10
Boutell, et. al. Informational [Page 1]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
2.8. Text strings ............................................. 10
3. File Structure ................................................ 11
3.1. PNG file signature ....................................... 11
3.2. Chunk layout ............................................. 11
3.3. Chunk naming conventions ................................. 12
3.4. CRC algorithm ............................................ 15
4. Chunk Specifications .......................................... 15
4.1. Critical chunks .......................................... 15
4.1.1. IHDR Image header .................................. 15
4.1.2. PLTE Palette ....................................... 17
4.1.3. IDAT Image data .................................... 18
4.1.4. IEND Image trailer ................................. 19
4.2. Ancillary chunks ......................................... 19
4.2.1. bKGD Background color .............................. 19
4.2.2. cHRM Primary chromaticities and white point ........ 20
4.2.3. gAMA Image gamma ................................... 21
4.2.4. hIST Image histogram ............................... 21
4.2.5. pHYs Physical pixel dimensions ..................... 22
4.2.6. sBIT Significant bits .............................. 22
4.2.7. tEXt Textual data .................................. 24
4.2.8. tIME Image last-modification time .................. 25
4.2.9. tRNS Transparency .................................. 26
4.2.10. zTXt Compressed textual data ...................... 27
4.3. Summary of standard chunks ............................... 28
4.4. Additional chunk types ................................... 29
5. Deflate/Inflate Compression ................................... 29
6. Filter Algorithms ............................................. 31
6.1. Filter types ............................................. 31
6.2. Filter type 0: None ...................................... 32
6.3. Filter type 1: Sub ....................................... 33
6.4. Filter type 2: Up ........................................ 33
6.5. Filter type 3: Average ................................... 34
6.6. Filter type 4: Paeth...................................... 35
7. Chunk Ordering Rules .......................................... 36
7.1. Behavior of PNG editors .................................. 37
7.2. Ordering of ancillary chunks ............................. 38
7.3. Ordering of critical chunks .............................. 38
8. Miscellaneous Topics .......................................... 39
8.1. File name extension ...................................... 39
8.2. Internet media type ...................................... 39
8.3. Macintosh file layout .................................... 39
8.4. Multiple-image extension ................................. 39
8.5. Security considerations .................................. 40
9. Recommendations for Encoders .................................. 41
9.1. Sample depth scaling ..................................... 41
9.2. Encoder gamma handling ................................... 42
9.3. Encoder color handling ................................... 45
9.4. Alpha channel creation ................................... 47
Boutell, et. al. Informational [Page 2]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
9.5. Suggested palettes ....................................... 48
9.6. Filter selection ......................................... 49
9.7. Text chunk processing .................................... 49
9.8. Use of private chunks .................................... 50
9.9. Private type and method codes ............................ 51
10. Recommendations for Decoders ................................. 51
10.1. Error checking .......................................... 52
10.2. Pixel dimensions ........................................ 52
10.3. Truecolor image handling ................................ 52
10.4. Sample depth rescaling .................................. 53
10.5. Decoder gamma handling .................................. 54
10.6. Decoder color handling .................................. 56
10.7. Background color ........................................ 57
10.8. Alpha channel processing ................................ 58
10.9. Progressive display ..................................... 62
10.10. Suggested-palette and histogram usage .................. 63
10.11. Text chunk processing .................................. 64
11. Glossary ..................................................... 65
12. Appendix: Rationale .......................................... 69
12.1. Why a new file format? .................................. 69
12.2. Why these features? ..................................... 70
12.3. Why not these features? ................................. 70
12.4. Why not use format X? ................................... 72
12.5. Byte order .............................................. 73
12.6. Interlacing ............................................. 73
12.7. Why gamma? .............................................. 73
12.8. Non-premultiplied alpha ................................. 75
12.9. Filtering ............................................... 75
12.10. Text strings ........................................... 76
12.11. PNG file signature ..................................... 77
12.12. Chunk layout ........................................... 77
12.13. Chunk naming conventions ............................... 78
12.14. Palette histograms ..................................... 80
13. Appendix: Gamma Tutorial ..................................... 81
14. Appendix: Color Tutorial ..................................... 89
15. Appendix: Sample CRC Code .................................... 94
16. Appendix: Online Resources ................................... 96
17. Appendix: Revision History ................................... 96
18. References ................................................... 97
19. Credits ......................................................100
Boutell, et. al. Informational [Page 3]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
1. Introduction
The PNG format provides a portable, legally unencumbered, well-
compressed, well-specified standard for lossless bitmapped image
files.
Although the initial motivation for developing PNG was to replace
GIF, the design provides some useful new features not available in
GIF, with minimal cost to developers.
GIF features retained in PNG include:
* Indexed-color images of up to 256 colors.
* Streamability: files can be read and written serially, thus
allowing the file format to be used as a communications
protocol for on-the-fly generation and display of images.
* Progressive display: a suitably prepared image file can be
displayed as it is received over a communications link,
yielding a low-resolution image very quickly followed by
gradual improvement of detail.
* Transparency: portions of the image can be marked as
transparent, creating the effect of a non-rectangular image.
* Ancillary information: textual comments and other data can be
stored within the image file.
* Complete hardware and platform independence.
* Effective, 100% lossless compression.
Important new features of PNG, not available in GIF, include:
* Truecolor images of up to 48 bits per pixel.
* Grayscale images of up to 16 bits per pixel.
* Full alpha channel (general transparency masks).
* Image gamma information, which supports automatic display of
images with correct brightness/contrast regardless of the
machines used to originate and display the image.
* Reliable, straightforward detection of file corruption.
* Faster initial presentation in progressive display mode.
PNG is designed to be:
* Simple and portable: developers should be able to implement PNG
easily.
* Legally unencumbered: to the best knowledge of the PNG authors,
no algorithms under legal challenge are used. (Some
considerable effort has been spent to verify this.)
* Well compressed: both indexed-color and truecolor images are
compressed as effectively as in any other widely used lossless
format, and in most cases more effectively.
Boutell, et. al. Informational [Page 4]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
* Interchangeable: any standard-conforming PNG decoder must read
all conforming PNG files.
* Flexible: the format allows for future extensions and private
add-ons, without compromising interchangeability of basic PNG.
* Robust: the design supports full file integrity checking as
well as simple, quick detection of common transmission errors.
The main part of this specification gives the definition of the file
format and recommendations for encoder and decoder behavior. An
appendix gives the rationale for many design decisions. Although the
rationale is not part of the formal specification, reading it can
help implementors understand the design. Cross-references in the
main text point to relevant parts of the rationale. Additional
appendixes, also not part of the formal specification, provide
tutorials on gamma and color theory as well as other supporting
material.
In this specification, the word "must" indicates a mandatory
requirement, while "should" indicates recommended behavior.
See Rationale: Why a new file format? (Section 12.1), Why these
features? (Section 12.2), Why not these features? (Section 12.3), Why
not use format X? (Section 12.4).
Pronunciation
PNG is pronounced "ping".
2. Data Representation
This chapter discusses basic data representations used in PNG files,
as well as the expected representation of the image data.
2.1. Integers and byte order
All integers that require more than one byte must be in network
byte order: the most significant byte comes first, then the less
significant bytes in descending order of significance (MSB LSB for
two-byte integers, B3 B2 B1 B0 for four-byte integers). The
highest bit (value 128) of a byte is numbered bit 7; the lowest
bit (value 1) is numbered bit 0. Values are unsigned unless
otherwise noted. Values explicitly noted as signed are represented
in two's complement notation.
See Rationale: Byte order (Section 12.5).
Boutell, et. al. Informational [Page 5]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
2.2. Color values
Colors can be represented by either grayscale or RGB (red, green,
blue) sample data. Grayscale data represents luminance; RGB data
represents calibrated color information (if the cHRM chunk is
present) or uncalibrated device-dependent color (if cHRM is
absent). All color values range from zero (representing black) to
most intense at the maximum value for the sample depth. Note that
the maximum value at a given sample depth is (2^sampledepth)-1,
not 2^sampledepth.
Sample values are not necessarily linear; the gAMA chunk specifies
the gamma characteristic of the source device, and viewers are
strongly encouraged to compensate properly. See Gamma correction
(Section 2.7).
Source data with a precision not directly supported in PNG (for
example, 5 bit/sample truecolor) must be scaled up to the next
higher supported bit depth. This scaling is reversible with no
loss of data, and it reduces the number of cases that decoders
have to cope with. See Recommendations for Encoders: Sample depth
scaling (Section 9.1) and Recommendations for Decoders: Sample
depth rescaling (Section 10.4).
2.3. Image layout
Conceptually, a PNG image is a rectangular pixel array, with
pixels appearing left-to-right within each scanline, and scanlines
appearing top-to-bottom. (For progressive display purposes, the
data may actually be transmitted in a different order; see
Interlaced data order, Section 2.6.) The size of each pixel is
determined by the bit depth, which is the number of bits per
sample in the image data.
Three types of pixel are supported:
* An indexed-color pixel is represented by a single sample
that is an index into a supplied palette. The image bit
depth determines the maximum number of palette entries, but
not the color precision within the palette.
* A grayscale pixel is represented by a single sample that is
a grayscale level, where zero is black and the largest value
for the bit depth is white.
* A truecolor pixel is represented by three samples: red (zero
= black, max = red) appears first, then green (zero = black,
max = green), then blue (zero = black, max = blue). The bit
depth specifies the size of each sample, not the total pixel
size.
Boutell, et. al. Informational [Page 6]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
Optionally, grayscale and truecolor pixels can also include an
alpha sample, as described in the next section.
Pixels are always packed into scanlines with no wasted bits
between pixels. Pixels smaller than a byte never cross byte
boundaries; they are packed into bytes with the leftmost pixel in
the high-order bits of a byte, the rightmost in the low-order
bits. Permitted bit depths and pixel types are restricted so that
in all cases the packing is simple and efficient.
PNG permits multi-sample pixels only with 8- and 16-bit samples,
so multiple samples of a single pixel are never packed into one
byte. 16-bit samples are stored in network byte order (MSB
first).
Scanlines always begin on byte boundaries. When pixels have fewer
than 8 bits and the scanline width is not evenly divisible by the
number of pixels per byte, the low-order bits in the last byte of
each scanline are wasted. The contents of these wasted bits are
unspecified.
An additional "filter type" byte is added to the beginning of
every scanline (see Filtering, Section 2.5). The filter type byte
is not considered part of the image data, but it is included in
the datastream sent to the compression step.
2.4. Alpha channel
An alpha channel, representing transparency information on a per-
pixel basis, can be included in grayscale and truecolor PNG
images.
An alpha value of zero represents full transparency, and a value
of (2^bitdepth)-1 represents a fully opaque pixel. Intermediate
values indicate partially transparent pixels that can be combined
with a background image to yield a composite image. (Thus, alpha
is really the degree of opacity of the pixel. But most people
refer to alpha as providing transparency information, not opacity
information, and we continue that custom here.)
Alpha channels can be included with images that have either 8 or
16 bits per sample, but not with images that have fewer than 8
bits per sample. Alpha samples are represented with the same bit
depth used for the image samples. The alpha sample for each pixel
is stored immediately following the grayscale or RGB samples of
the pixel.
Boutell, et. al. Informational [Page 7]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
The color values stored for a pixel are not affected by the alpha
value assigned to the pixel. This rule is sometimes called
"unassociated" or "non-premultiplied" alpha. (Another common
technique is to store sample values premultiplied by the alpha
fraction; in effect, such an image is already composited against a
black background. PNG does not use premultiplied alpha.)
Transparency control is also possible without the storage cost of
a full alpha channel. In an indexed-color image, an alpha value
can be defined for each palette entry. In grayscale and truecolor
images, a single pixel value can be identified as being
"transparent". These techniques are controlled by the tRNS
ancillary chunk type.
If no alpha channel nor tRNS chunk is present, all pixels in the
image are to be treated as fully opaque.
Viewers can support transparency control partially, or not at all.
See Rationale: Non-premultiplied alpha (Section 12.8),
Recommendations for Encoders: Alpha channel creation (Section
9.4), and Recommendations for Decoders: Alpha channel processing
(Section 10.8).
2.5. Filtering
PNG allows the image data to be filtered before it is compressed.
Filtering can improve the compressibility of the data. The filter
step itself does not reduce the size of the data. All PNG filters
are strictly lossless.
PNG defines several different filter algorithms, including "None"
which indicates no filtering. The filter algorithm is specified
for each scanline by a filter type byte that precedes the filtered
scanline in the precompression datastream. An intelligent encoder
can switch filters from one scanline to the next. The method for
choosing which filter to employ is up to the encoder.
See Filter Algorithms (Chapter 6) and Rationale: Filtering
(Section 12.9).
2.6. Interlaced data order
A PNG image can be stored in interlaced order to allow progressive
display. The purpose of this feature is to allow images to "fade
in" when they are being displayed on-the-fly. Interlacing
slightly expands the file size on average, but it gives the user a
meaningful display much more rapidly. Note that decoders are
Boutell, et. al. Informational [Page 8]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
required to be able to read interlaced images, whether or not they
actually perform progressive display.
With interlace method 0, pixels are stored sequentially from left
to right, and scanlines sequentially from top to bottom (no
interlacing).
Interlace method 1, known as Adam7 after its author, Adam M.
Costello, consists of seven distinct passes over the image. Each
pass transmits a subset of the pixels in the image. The pass in
which each pixel is transmitted is defined by replicating the
following 8-by-8 pattern over the entire image, starting at the
upper left corner:
1 6 4 6 2 6 4 6
7 7 7 7 7 7 7 7
5 6 5 6 5 6 5 6
7 7 7 7 7 7 7 7
3 6 4 6 3 6 4 6
7 7 7 7 7 7 7 7
5 6 5 6 5 6 5 6
7 7 7 7 7 7 7 7
Within each pass, the selected pixels are transmitted left to
right within a scanline, and selected scanlines sequentially from
top to bottom. For example, pass 2 contains pixels 4, 12, 20,
etc. of scanlines 0, 8, 16, etc. (numbering from 0,0 at the upper
left corner). The last pass contains the entirety of scanlines 1,
3, 5, etc.
The data within each pass is laid out as though it were a complete
image of the appropriate dimensions. For example, if the complete
image is 16 by 16 pixels, then pass 3 will contain two scanlines,
each containing four pixels. When pixels have fewer than 8 bits,
each such scanline is padded as needed to fill an integral number
of bytes (see Image layout, Section 2.3). Filtering is done on
this reduced image in the usual way, and a filter type byte is
transmitted before each of its scanlines (see Filter Algorithms,
Chapter 6). Notice that the transmission order is defined so that
all the scanlines transmitted in a pass will have the same number
of pixels; this is necessary for proper application of some of the
filters.
Caution: If the image contains fewer than five columns or fewer
than five rows, some passes will be entirely empty. Encoders and
decoders must handle this case correctly. In particular, filter
type bytes are only associated with nonempty scanlines; no filter
type bytes are present in an empty pass.
Boutell, et. al. Informational [Page 9]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
See Rationale: Interlacing (Section 12.6) and Recommendations for
Decoders: Progressive display (Section 10.9).
2.7. Gamma correction
PNG images can specify, via the gAMA chunk, the gamma
characteristic of the image with respect to the original scene.
Display programs are strongly encouraged to use this information,
plus information about the display device they are using and room
lighting, to present the image to the viewer in a way that
reproduces what the image's original author saw as closely as
possible. See Gamma Tutorial (Chapter 13) if you aren't already
familiar with gamma issues.
Gamma correction is not applied to the alpha channel, if any.
Alpha samples always represent a linear fraction of full opacity.
For high-precision applications, the exact chromaticity of the RGB
data in a PNG image can be specified via the cHRM chunk, allowing
more accurate color matching than gamma correction alone will
provide. See Color Tutorial (Chapter 14) if you aren't already
familiar with color representation issues.
See Rationale: Why gamma? (Section 12.7), Recommendations for
Encoders: Encoder gamma handling (Section 9.2), and
Recommendations for Decoders: Decoder gamma handling (Section
10.5).
2.8. Text strings
A PNG file can store text associated with the image, such as an
image description or copyright notice. Keywords are used to
indicate what each text string represents.
ISO 8859-1 (Latin-1) is the character set recommended for use in
text strings [ISO-8859]. This character set is a superset of 7-
bit ASCII.
Character codes not defined in Latin-1 should not be used, because
they have no platform-independent meaning. If a non-Latin-1 code
does appear in a PNG text string, its interpretation will vary
across platforms and decoders. Some systems might not even be
able to display all the characters in Latin-1, but most modern
systems can.
Provision is also made for the storage of compressed text.
See Rationale: Text strings (Section 12.10).
Boutell, et. al. Informational [Page 10]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
3. File Structure
A PNG file consists of a PNG signature followed by a series of
chunks. This chapter defines the signature and the basic properties
of chunks. Individual chunk types are discussed in the next chapter.
3.1. PNG file signature
The first eight bytes of a PNG file always contain the following
(decimal) values:
137 80 78 71 13 10 26 10
This signature indicates that the remainder of the file contains a
single PNG image, consisting of a series of chunks beginning with
an IHDR chunk and ending with an IEND chunk.
See Rationale: PNG file signature (Section 12.11).
3.2. Chunk layout
Each chunk consists of four parts:
Length
A 4-byte unsigned integer giving the number of bytes in the
chunk's data field. The length counts only the data field, not
itself, the chunk type code, or the CRC. Zero is a valid
length. Although encoders and decoders should treat the length
as unsigned, its value must not exceed (2^31)-1 bytes.
Chunk Type
A 4-byte chunk type code. For convenience in description and
in examining PNG files, type codes are restricted to consist of
uppercase and lowercase ASCII letters (A-Z and a-z, or 65-90
and 97-122 decimal). However, encoders and decoders must treat
the codes as fixed binary values, not character strings. For
example, it would not be correct to represent the type code
IDAT by the EBCDIC equivalents of those letters. Additional
naming conventions for chunk types are discussed in the next
section.
Chunk Data
The data bytes appropriate to the chunk type, if any. This
field can be of zero length.
Boutell, et. al. Informational [Page 11]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
CRC
A 4-byte CRC (Cyclic Redundancy Check) calculated on the
preceding bytes in the chunk, including the chunk type code and
chunk data fields, but not including the length field. The CRC
is always present, even for chunks containing no data. See CRC
algorithm (Section 3.4).
The chunk data length can be any number of bytes up to the
maximum; therefore, implementors cannot assume that chunks are
aligned on any boundaries larger than bytes.
Chunks can appear in any order, subject to the restrictions placed
on each chunk type. (One notable restriction is that IHDR must
appear first and IEND must appear last; thus the IEND chunk serves
as an end-of-file marker.) Multiple chunks of the same type can
appear, but only if specifically permitted for that type.
See Rationale: Chunk layout (Section 12.12).
3.3. Chunk naming conventions
Chunk type codes are assigned so that a decoder can determine some
properties of a chunk even when it does not recognize the type
code. These rules are intended to allow safe, flexible extension
of the PNG format, by allowing a decoder to decide what to do when
it encounters an unknown chunk. The naming rules are not normally
of interest when the decoder does recognize the chunk's type.
Four bits of the type code, namely bit 5 (value 32) of each byte,
are used to convey chunk properties. This choice means that a
human can read off the assigned properties according to whether
each letter of the type code is uppercase (bit 5 is 0) or
lowercase (bit 5 is 1). However, decoders should test the
properties of an unknown chunk by numerically testing the
specified bits; testing whether a character is uppercase or
lowercase is inefficient, and even incorrect if a locale-specific
case definition is used.
It is worth noting that the property bits are an inherent part of
the chunk name, and hence are fixed for any chunk type. Thus,
TEXT and Text would be unrelated chunk type codes, not the same
chunk with different properties. Decoders must recognize type
codes by a simple four-byte literal comparison; it is incorrect to
perform case conversion on type codes.
Boutell, et. al. Informational [Page 12]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
The semantics of the property bits are:
Ancillary bit: bit 5 of first byte
0 (uppercase) = critical, 1 (lowercase) = ancillary.
Chunks that are not strictly necessary in order to meaningfully
display the contents of the file are known as "ancillary"
chunks. A decoder encountering an unknown chunk in which the
ancillary bit is 1 can safely ignore the chunk and proceed to
display the image. The time chunk (tIME) is an example of an
ancillary chunk.
Chunks that are necessary for successful display of the file's
contents are called "critical" chunks. A decoder encountering
an unknown chunk in which the ancillary bit is 0 must indicate
to the user that the image contains information it cannot
safely interpret. The image header chunk (IHDR) is an example
of a critical chunk.
Private bit: bit 5 of second byte
0 (uppercase) = public, 1 (lowercase) = private.
A public chunk is one that is part of the PNG specification or
is registered in the list of PNG special-purpose public chunk
types. Applications can also define private (unregistered)
chunks for their own purposes. The names of private chunks
must have a lowercase second letter, while public chunks will
always be assigned names with uppercase second letters. Note
that decoders do not need to test the private-chunk property
bit, since it has no functional significance; it is simply an
administrative convenience to ensure that public and private
chunk names will not conflict. See Additional chunk types
(Section 4.4) and Recommendations for Encoders: Use of private
chunks (Section 9.8).
Reserved bit: bit 5 of third byte
Must be 0 (uppercase) in files conforming to this version of
PNG.
The significance of the case of the third letter of the chunk
name is reserved for possible future expansion. At the present
time all chunk names must have uppercase third letters.
(Decoders should not complain about a lowercase third letter,
however, as some future version of the PNG specification could
define a meaning for this bit. It is sufficient to treat a
chunk with a lowercase third letter in the same way as any
other unknown chunk type.)
Boutell, et. al. Informational [Page 13]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
Safe-to-copy bit: bit 5 of fourth byte
0 (uppercase) = unsafe to copy, 1 (lowercase) = safe to copy.
This property bit is not of interest to pure decoders, but it
is needed by PNG editors (programs that modify PNG files).
This bit defines the proper handling of unrecognized chunks in
a file that is being modified.
If a chunk's safe-to-copy bit is 1, the chunk may be copied to
a modified PNG file whether or not the software recognizes the
chunk type, and regardless of the extent of the file
modifications.
If a chunk's safe-to-copy bit is 0, it indicates that the chunk
depends on the image data. If the program has made any changes
to critical chunks, including addition, modification, deletion,
or reordering of critical chunks, then unrecognized unsafe
chunks must not be copied to the output PNG file. (Of course,
if the program does recognize the chunk, it can choose to
output an appropriately modified version.)
A PNG editor is always allowed to copy all unrecognized chunks
if it has only added, deleted, modified, or reordered ancillary
chunks. This implies that it is not permissible for ancillary
chunks to depend on other ancillary chunks.
PNG editors that do not recognize a critical chunk must report
an error and refuse to process that PNG file at all. The
safe/unsafe mechanism is intended for use with ancillary
chunks. The safe-to-copy bit will always be 0 for critical
chunks.
Rules for PNG editors are discussed further in Chunk Ordering
Rules (Chapter 7).
For example, the hypothetical chunk type name "bLOb" has the
property bits:
bLOb <-- 32 bit chunk type code represented in text form
||||
|||+- Safe-to-copy bit is 1 (lower case letter; bit 5 is 1)
||+-- Reserved bit is 0 (upper case letter; bit 5 is 0)
|+--- Private bit is 0 (upper case letter; bit 5 is 0)
+---- Ancillary bit is 1 (lower case letter; bit 5 is 1)
Therefore, this name represents an ancillary, public, safe-to-copy
chunk.
Boutell, et. al. Informational [Page 14]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
See Rationale: Chunk naming conventions (Section 12.13).
3.4. CRC algorithm
Chunk CRCs are calculated using standard CRC methods with pre and
post conditioning, as defined by ISO 3309 [ISO-3309] or ITU-T V.42
[ITU-V42]. The CRC polynomial employed is
x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1
The 32-bit CRC register is initialized to all 1's, and then the
data from each byte is processed from the least significant bit
(1) to the most significant bit (128). After all the data bytes
are processed, the CRC register is inverted (its ones complement
is taken). This value is transmitted (stored in the file) MSB
first. For the purpose of separating into bytes and ordering, the
least significant bit of the 32-bit CRC is defined to be the
coefficient of the x^31 term.
Practical calculation of the CRC always employs a precalculated
table to greatly accelerate the computation. See Sample CRC Code
(Chapter 15).
4. Chunk Specifications
This chapter defines the standard types of PNG chunks.
4.1. Critical chunks
All implementations must understand and successfully render the
standard critical chunks. A valid PNG image must contain an IHDR
chunk, one or more IDAT chunks, and an IEND chunk.
4.1.1. IHDR Image header
The IHDR chunk must appear FIRST. It contains:
Width: 4 bytes
Height: 4 bytes
Bit depth: 1 byte
Color type: 1 byte
Compression method: 1 byte
Filter method: 1 byte
Interlace method: 1 byte
Boutell, et. al. Informational [Page 15]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
Width and height give the image dimensions in pixels. They are
4-byte integers. Zero is an invalid value. The maximum for each
is (2^31)-1 in order to accommodate languages that have
difficulty with unsigned 4-byte values.
Bit depth is a single-byte integer giving the number of bits
per sample or per palette index (not per pixel). Valid values
are 1, 2, 4, 8, and 16, although not all values are allowed for
all color types.
Color type is a single-byte integer that describes the
interpretation of the image data. Color type codes represent
sums of the following values: 1 (palette used), 2 (color used),
and 4 (alpha channel used). Valid values are 0, 2, 3, 4, and 6.
Bit depth restrictions for each color type are imposed to
simplify implementations and to prohibit combinations that do
not compress well. Decoders must support all legal
combinations of bit depth and color type. The allowed
combinations are:
Color Allowed Interpretation
Type Bit Depths
0 1,2,4,8,16 Each pixel is a grayscale sample.
2 8,16 Each pixel is an R,G,B triple.
3 1,2,4,8 Each pixel is a palette index;
a PLTE chunk must appear.
4 8,16 Each pixel is a grayscale sample,
followed by an alpha sample.
6 8,16 Each pixel is an R,G,B triple,
followed by an alpha sample.
The sample depth is the same as the bit depth except in the
case of color type 3, in which the sample depth is always 8
bits.
Compression method is a single-byte integer that indicates the
method used to compress the image data. At present, only
compression method 0 (deflate/inflate compression with a 32K
sliding window) is defined. All standard PNG images must be
compressed with this scheme. The compression method field is
provided for possible future expansion or proprietary variants.
Decoders must check this byte and report an error if it holds
Boutell, et. al. Informational [Page 16]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
an unrecognized code. See Deflate/Inflate Compression (Chapter
5) for details.
Filter method is a single-byte integer that indicates the
preprocessing method applied to the image data before
compression. At present, only filter method 0 (adaptive
filtering with five basic filter types) is defined. As with
the compression method field, decoders must check this byte and
report an error if it holds an unrecognized code. See Filter
Algorithms (Chapter 6) for details.
Interlace method is a single-byte integer that indicates the
transmission order of the image data. Two values are currently
defined: 0 (no interlace) or 1 (Adam7 interlace). See
Interlaced data order (Section 2.6) for details.
4.1.2. PLTE Palette
The PLTE chunk contains from 1 to 256 palette entries, each a
three-byte series of the form:
Red: 1 byte (0 = black, 255 = red)
Green: 1 byte (0 = black, 255 = green)
Blue: 1 byte (0 = black, 255 = blue)
The number of entries is determined from the chunk length. A
chunk length not divisible by 3 is an error.
This chunk must appear for color type 3, and can appear for
color types 2 and 6; it must not appear for color types 0 and
4. If this chunk does appear, it must precede the first IDAT
chunk. There must not be more than one PLTE chunk.
For color type 3 (indexed color), the PLTE chunk is required.
The first entry in PLTE is referenced by pixel value 0, the
second by pixel value 1, etc. The number of palette entries
must not exceed the range that can be represented in the image
bit depth (for example, 2^4 = 16 for a bit depth of 4). It is
permissible to have fewer entries than the bit depth would
allow. In that case, any out-of-range pixel value found in the
image data is an error.
For color types 2 and 6 (truecolor and truecolor with alpha),
the PLTE chunk is optional. If present, it provides a
suggested set of from 1 to 256 colors to which the truecolor
image can be quantized if the viewer cannot display truecolor
directly. If PLTE is not present, such a viewer will need to
select colors on its own, but it is often preferable for this
Boutell, et. al. Informational [Page 17]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
to be done once by the encoder. (See Recommendations for
Encoders: Suggested palettes, Section 9.5.)
Note that the palette uses 8 bits (1 byte) per sample
regardless of the image bit depth specification. In
particular, the palette is 8 bits deep even when it is a
suggested quantization of a 16-bit truecolor image.
There is no requirement that the palette entries all be used by
the image, nor that they all be different.
4.1.3. IDAT Image data
The IDAT chunk contains the actual image data. To create this
data:
* Begin with image scanlines represented as described in
Image layout (Section 2.3); the layout and total size of
this raw data are determined by the fields of IHDR.
* Filter the image data according to the filtering method
specified by the IHDR chunk. (Note that with filter
method 0, the only one currently defined, this implies
prepending a filter type byte to each scanline.)
* Compress the filtered data using the compression method
specified by the IHDR chunk.
The IDAT chunk contains the output datastream of the
compression algorithm.
To read the image data, reverse this process.
There can be multiple IDAT chunks; if so, they must appear
consecutively with no other intervening chunks. The compressed
datastream is then the concatenation of the contents of all the
IDAT chunks. The encoder can divide the compressed datastream
into IDAT chunks however it wishes. (Multiple IDAT chunks are
allowed so that encoders can work in a fixed amount of memory;
typically the chunk size will correspond to the encoder's
buffer size.) It is important to emphasize that IDAT chunk
boundaries have no semantic significance and can occur at any
point in the compressed datastream. A PNG file in which each
IDAT chunk contains only one data byte is legal, though
remarkably wasteful of space. (For that matter, zero-length
IDAT chunks are legal, though even more wasteful.)
See Filter Algorithms (Chapter 6) and Deflate/Inflate
Compression (Chapter 5) for details.
Boutell, et. al. Informational [Page 18]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
4.1.4. IEND Image trailer
The IEND chunk must appear LAST. It marks the end of the PNG
datastream. The chunk's data field is empty.
4.2. Ancillary chunks
All ancillary chunks are optional, in the sense that encoders need
not write them and decoders can ignore them. However, encoders
are encouraged to write the standard ancillary chunks when the
information is available, and decoders are encouraged to interpret
these chunks when appropriate and feasible.
The standard ancillary chunks are listed in alphabetical order.
This is not necessarily the order in which they would appear in a
file.
4.2.1. bKGD Background color
The bKGD chunk specifies a default background color to present
the image against. Note that viewers are not bound to honor
this chunk; a viewer can choose to use a different background.
For color type 3 (indexed color), the bKGD chunk contains:
Palette index: 1 byte
The value is the palette index of the color to be used as
background.
For color types 0 and 4 (grayscale, with or without alpha),
bKGD contains:
Gray: 2 bytes, range 0 .. (2^bitdepth)-1
(For consistency, 2 bytes are used regardless of the image bit
depth.) The value is the gray level to be used as background.
For color types 2 and 6 (truecolor, with or without alpha),
bKGD contains:
Red: 2 bytes, range 0 .. (2^bitdepth)-1
Green: 2 bytes, range 0 .. (2^bitdepth)-1
Blue: 2 bytes, range 0 .. (2^bitdepth)-1
(For consistency, 2 bytes per sample are used regardless of the
image bit depth.) This is the RGB color to be used as
background.
Boutell, et. al. Informational [Page 19]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
When present, the bKGD chunk must precede the first IDAT chunk,
and must follow the PLTE chunk, if any.
See Recommendations for Decoders: Background color (Section
10.7).
4.2.2. cHRM Primary chromaticities and white point
Applications that need device-independent specification of
colors in a PNG file can use the cHRM chunk to specify the 1931
CIE x,y chromaticities of the red, green, and blue primaries
used in the image, and the referenced white point. See Color
Tutorial (Chapter 14) for more information.
The cHRM chunk contains:
White Point x: 4 bytes
White Point y: 4 bytes
Red x: 4 bytes
Red y: 4 bytes
Green x: 4 bytes
Green y: 4 bytes
Blue x: 4 bytes
Blue y: 4 bytes
Each value is encoded as a 4-byte unsigned integer,
representing the x or y value times 100000. For example, a
value of 0.3127 would be stored as the integer 31270.
cHRM is allowed in all PNG files, although it is of little
value for grayscale images.
If the encoder does not know the chromaticity values, it should
not write a cHRM chunk; the absence of a cHRM chunk indicates
that the image's primary colors are device-dependent.
If the cHRM chunk appears, it must precede the first IDAT
chunk, and it must also precede the PLTE chunk if present.
See Recommendations for Encoders: Encoder color handling
(Section 9.3), and Recommendations for Decoders: Decoder color
handling (Section 10.6).
Boutell, et. al. Informational [Page 20]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
4.2.3. gAMA Image gamma
The gAMA chunk specifies the gamma of the camera (or simulated
camera) that produced the image, and thus the gamma of the
image with respect to the original scene. More precisely, the
gAMA chunk encodes the file_gamma value, as defined in Gamma
Tutorial (Chapter 13).
The gAMA chunk contains:
Image gamma: 4 bytes
The value is encoded as a 4-byte unsigned integer, representing
gamma times 100000. For example, a gamma of 0.45 would be
stored as the integer 45000.
If the encoder does not know the image's gamma value, it should
not write a gAMA chunk; the absence of a gAMA chunk indicates
that the gamma is unknown.
If the gAMA chunk appears, it must precede the first IDAT
chunk, and it must also precede the PLTE chunk if present.
See Gamma correction (Section 2.7), Recommendations for
Encoders: Encoder gamma handling (Section 9.2), and
Recommendations for Decoders: Decoder gamma handling (Section
10.5).
4.2.4. hIST Image histogram
The hIST chunk gives the approximate usage frequency of each
color in the color palette. A histogram chunk can appear only
when a palette chunk appears. If a viewer is unable to provide
all the colors listed in the palette, the histogram may help it
decide how to choose a subset of the colors for display.
The hIST chunk contains a series of 2-byte (16 bit) unsigned
integers. There must be exactly one entry for each entry in
the PLTE chunk. Each entry is proportional to the fraction of
pixels in the image that have that palette index; the exact
scale factor is chosen by the encoder.
Histogram entries are approximate, with the exception that a
zero entry specifies that the corresponding palette entry is
not used at all in the image. It is required that a histogram
entry be nonzero if there are any pixels of that color.
Boutell, et. al. Informational [Page 21]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
When the palette is a suggested quantization of a truecolor
image, the histogram is necessarily approximate, since a
decoder may map pixels to palette entries differently than the
encoder did. In this situation, zero entries should not
appear.
The hIST chunk, if it appears, must follow the PLTE chunk, and
must precede the first IDAT chunk.
See Rationale: Palette histograms (Section 12.14), and
Recommendations for Decoders: Suggested-palette and histogram
usage (Section 10.10).
4.2.5. pHYs Physical pixel dimensions
The pHYs chunk specifies the intended pixel size or aspect
ratio for display of the image. It contains:
Pixels per unit, X axis: 4 bytes (unsigned integer)
Pixels per unit, Y axis: 4 bytes (unsigned integer)
Unit specifier: 1 byte
The following values are legal for the unit specifier:
0: unit is unknown
1: unit is the meter
When the unit specifier is 0, the pHYs chunk defines pixel
aspect ratio only; the actual size of the pixels remains
unspecified.
Conversion note: one inch is equal to exactly 0.0254 meters.
If this ancillary chunk is not present, pixels are assumed to
be square, and the physical size of each pixel is unknown.
If present, this chunk must precede the first IDAT chunk.
See Recommendations for Decoders: Pixel dimensions (Section
10.2).
4.2.6. sBIT Significant bits
To simplify decoders, PNG specifies that only certain sample
depths can be used, and further specifies that sample values
should be scaled to the full range of possible values at the
sample depth. However, the sBIT chunk is provided in order to
store the original number of significant bits. This allows
Boutell, et. al. Informational [Page 22]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
decoders to recover the original data losslessly even if the
data had a sample depth not directly supported by PNG. We
recommend that an encoder emit an sBIT chunk if it has
converted the data from a lower sample depth.
For color type 0 (grayscale), the sBIT chunk contains a single
byte, indicating the number of bits that were significant in
the source data.
For color type 2 (truecolor), the sBIT chunk contains three
bytes, indicating the number of bits that were significant in
the source data for the red, green, and blue channels,
respectively.
For color type 3 (indexed color), the sBIT chunk contains three
bytes, indicating the number of bits that were significant in
the source data for the red, green, and blue components of the
palette entries, respectively.
For color type 4 (grayscale with alpha channel), the sBIT chunk
contains two bytes, indicating the number of bits that were
significant in the source grayscale data and the source alpha
data, respectively.
For color type 6 (truecolor with alpha channel), the sBIT chunk
contains four bytes, indicating the number of bits that were
significant in the source data for the red, green, blue and
alpha channels, respectively.
Each depth specified in sBIT must be greater than zero and less
than or equal to the sample depth (which is 8 for indexed-color
images, and the bit depth given in IHDR for other color types).
A decoder need not pay attention to sBIT: the stored image is a
valid PNG file of the sample depth indicated by IHDR. However,
if the decoder wishes to recover the original data at its
original precision, this can be done by right-shifting the
stored samples (the stored palette entries, for an indexed-
color image). The encoder must scale the data in such a way
that the high-order bits match the original data.
If the sBIT chunk appears, it must precede the first IDAT
chunk, and it must also precede the PLTE chunk if present.
See Recommendations for Encoders: Sample depth scaling (Section
9.1) and Recommendations for Decoders: Sample depth rescaling
(Section 10.4).
Boutell, et. al. Informational [Page 23]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
4.2.7. tEXt Textual data
Textual information that the encoder wishes to record with the
image can be stored in tEXt chunks. Each tEXt chunk contains a
keyword and a text string, in the format:
Keyword: 1-79 bytes (character string)
Null separator: 1 byte
Text: n bytes (character string)
The keyword and text string are separated by a zero byte (null
character). Neither the keyword nor the text string can
contain a null character. Note that the text string is not
null-terminated (the length of the chunk is sufficient
information to locate the ending). The keyword must be at
least one character and less than 80 characters long. The text
string can be of any length from zero bytes up to the maximum
permissible chunk size less the length of the keyword and
separator.
Any number of tEXt chunks can appear, and more than one with
the same keyword is permissible.
The keyword indicates the type of information represented by
the text string. The following keywords are predefined and
should be used where appropriate:
Title Short (one line) title or caption for image
Author Name of image's creator
Description Description of image (possibly long)
Copyright Copyright notice
Creation Time Time of original image creation
Software Software used to create the image
Disclaimer Legal disclaimer
Warning Warning of nature of content
Source Device used to create the image
Comment Miscellaneous comment; conversion from
GIF comment
For the Creation Time keyword, the date format defined in
section 5.2.14 of RFC 1123 is suggested, but not required
[RFC-1123]. Decoders should allow for free-format text
associated with this or any other keyword.
Other keywords may be invented for other purposes. Keywords of
general interest can be registered with the maintainers of the
PNG specification. However, it is also permitted to use
private unregistered keywords. (Private keywords should be
Boutell, et. al. Informational [Page 24]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
reasonably self-explanatory, in order to minimize the chance
that the same keyword will be used for incompatible purposes by
different people.)
Both keyword and text are interpreted according to the ISO
8859-1 (Latin-1) character set [ISO-8859]. The text string can
contain any Latin-1 character. Newlines in the text string
should be represented by a single linefeed character (decimal
10); use of other control characters in the text is
discouraged.
Keywords must contain only printable Latin-1 characters and
spaces; that is, only character codes 32-126 and 161-255
decimal are allowed. To reduce the chances for human
misreading of a keyword, leading and trailing spaces are
forbidden, as are consecutive spaces. Note also that the non-
breaking space (code 160) is not permitted in keywords, since
it is visually indistinguishable from an ordinary space.
Keywords must be spelled exactly as registered, so that
decoders can use simple literal comparisons when looking for
particular keywords. In particular, keywords are considered
case-sensitive.
See Recommendations for Encoders: Text chunk processing
(Section 9.7) and Recommendations for Decoders: Text chunk
processing (Section 10.11).
4.2.8. tIME Image last-modification time
The tIME chunk gives the time of the last image modification
(not the time of initial image creation). It contains:
Year: 2 bytes (complete; for example, 1995, not 95)
Month: 1 byte (1-12)
Day: 1 byte (1-31)
Hour: 1 byte (0-23)
Minute: 1 byte (0-59)
Second: 1 byte (0-60) (yes, 60, for leap seconds; not 61,
a common error)
Universal Time (UTC, also called GMT) should be specified
rather than local time.
Boutell, et. al. Informational [Page 25]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
The tIME chunk is intended for use as an automatically-applied
time stamp that is updated whenever the image data is changed.
It is recommended that tIME not be changed by PNG editors that
do not change the image data. See also the Creation Time tEXt
keyword, which can be used for a user-supplied time.
4.2.9. tRNS Transparency
The tRNS chunk specifies that the image uses simple
transparency: either alpha values associated with palette
entries (for indexed-color images) or a single transparent
color (for grayscale and truecolor images). Although simple
transparency is not as elegant as the full alpha channel, it
requires less storage space and is sufficient for many common
cases.
For color type 3 (indexed color), the tRNS chunk contains a
series of one-byte alpha values, corresponding to entries in
the PLTE chunk:
Alpha for palette index 0: 1 byte
Alpha for palette index 1: 1 byte
... etc ...
Each entry indicates that pixels of the corresponding palette
index must be treated as having the specified alpha value.
Alpha values have the same interpretation as in an 8-bit full
alpha channel: 0 is fully transparent, 255 is fully opaque,
regardless of image bit depth. The tRNS chunk must not contain
more alpha values than there are palette entries, but tRNS can
contain fewer values than there are palette entries. In this
case, the alpha value for all remaining palette entries is
assumed to be 255. In the common case in which only palette
index 0 need be made transparent, only a one-byte tRNS chunk is
needed.
For color type 0 (grayscale), the tRNS chunk contains a single
gray level value, stored in the format:
Gray: 2 bytes, range 0 .. (2^bitdepth)-1
(For consistency, 2 bytes are used regardless of the image bit
depth.) Pixels of the specified gray level are to be treated as
transparent (equivalent to alpha value 0); all other pixels are
to be treated as fully opaque (alpha value (2^bitdepth)-1).
Boutell, et. al. Informational [Page 26]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
For color type 2 (truecolor), the tRNS chunk contains a single
RGB color value, stored in the format:
Red: 2 bytes, range 0 .. (2^bitdepth)-1
Green: 2 bytes, range 0 .. (2^bitdepth)-1
Blue: 2 bytes, range 0 .. (2^bitdepth)-1
(For consistency, 2 bytes per sample are used regardless of the
image bit depth.) Pixels of the specified color value are to be
treated as transparent (equivalent to alpha value 0); all other
pixels are to be treated as fully opaque (alpha value
(2^bitdepth)-1).
tRNS is prohibited for color types 4 and 6, since a full alpha
channel is already present in those cases.
Note: when dealing with 16-bit grayscale or truecolor data, it
is important to compare both bytes of the sample values to
determine whether a pixel is transparent. Although decoders
may drop the low-order byte of the samples for display, this
must not occur until after the data has been tested for
transparency. For example, if the grayscale level 0x0001 is
specified to be transparent, it would be incorrect to compare
only the high-order byte and decide that 0x0002 is also
transparent.
When present, the tRNS chunk must precede the first IDAT chunk,
and must follow the PLTE chunk, if any.
4.2.10. zTXt Compressed textual data
The zTXt chunk contains textual data, just as tEXt does;
however, zTXt takes advantage of compression. zTXt and tEXt
chunks are semantically equivalent, but zTXt is recommended for
storing large blocks of text.
A zTXt chunk contains:
Keyword: 1-79 bytes (character string)
Null separator: 1 byte
Compression method: 1 byte
Compressed text: n bytes
The keyword and null separator are exactly the same as in the
tEXt chunk. Note that the keyword is not compressed. The
compression method byte identifies the compression method used
in this zTXt chunk. The only value presently defined for it is
0 (deflate/inflate compression). The compression method byte is
Boutell, et. al. Informational [Page 27]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
followed by a compressed datastream that makes up the remainder
of the chunk. For compression method 0, this datastream
adheres to the zlib datastream format (see Deflate/Inflate
Compression, Chapter 5). Decompression of this datastream
yields Latin-1 text that is identical to the text that would be
stored in an equivalent tEXt chunk.
Any number of zTXt and tEXt chunks can appear in the same file.
See the preceding definition of the tEXt chunk for the
predefined keywords and the recommended format of the text.
See Recommendations for Encoders: Text chunk processing
(Section 9.7), and Recommendations for Decoders: Text chunk
processing (Section 10.11).
4.3. Summary of standard chunks
This table summarizes some properties of the standard chunk types.
Critical chunks (must appear in this order, except PLTE
is optional):
Name Multiple Ordering constraints
OK?
IHDR No Must be first
PLTE No Before IDAT
IDAT Yes Multiple IDATs must be consecutive
IEND No Must be last
Ancillary chunks (need not appear in this order):
Name Multiple Ordering constraints
OK?
cHRM No Before PLTE and IDAT
gAMA No Before PLTE and IDAT
sBIT No Before PLTE and IDAT
bKGD No After PLTE; before IDAT
hIST No After PLTE; before IDAT
tRNS No After PLTE; before IDAT
pHYs No Before IDAT
tIME No None
tEXt Yes None
zTXt Yes None
Boutell, et. al. Informational [Page 28]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
Standard keywords for tEXt and zTXt chunks:
Title Short (one line) title or caption for image
Author Name of image's creator
Description Description of image (possibly long)
Copyright Copyright notice
Creation Time Time of original image creation
Software Software used to create the image
Disclaimer Legal disclaimer
Warning Warning of nature of content
Source Device used to create the image
Comment Miscellaneous comment; conversion from
GIF comment
4.4. Additional chunk types
Additional public PNG chunk types are defined in the document "PNG
Special-Purpose Public Chunks" [PNG-EXTENSIONS]. Chunks described
there are expected to be less widely supported than those defined
in this specification. However, application authors are
encouraged to use those chunk types whenever appropriate for their
applications. Additional chunk types can be proposed for
inclusion in that list by contacting the PNG specification
maintainers at png-info@uunet.uu.net or at png-group@w3.org.
New public chunks will only be registered if they are of use to
others and do not violate the design philosophy of PNG. Chunk
registration is not automatic, although it is the intent of the
authors that it be straightforward when a new chunk of potentially
wide application is needed. Note that the creation of new
critical chunk types is discouraged unless absolutely necessary.
Applications can also use private chunk types to carry data that
is not of interest to other applications. See Recommendations for
Encoders: Use of private chunks (Section 9.8).
Decoders must be prepared to encounter unrecognized public or
private chunk type codes. Unrecognized chunk types must be
handled as described in Chunk naming conventions (Section 3.3).
5. Deflate/Inflate Compression
PNG compression method 0 (the only compression method presently
defined for PNG) specifies deflate/inflate compression with a 32K
sliding window. Deflate compression is an LZ77 derivative used in
zip, gzip, pkzip and related programs. Extensive research has been
done supporting its patent-free status. Portable C implementations
are freely available.
Boutell, et. al. Informational [Page 29]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
Deflate-compressed datastreams within PNG are stored in the "zlib"
format, which has the structure:
Compression method/flags code: 1 byte
Additional flags/check bits: 1 byte
Compressed data blocks: n bytes
Check value: 4 bytes
Further details on this format are given in the zlib specification
[RFC-1950].
For PNG compression method 0, the zlib compression method/flags code
must specify method code 8 ("deflate" compression) and an LZ77 window
size of not more than 32K. Note that the zlib compression method
number is not the same as the PNG compression method number. The
additional flags must not specify a preset dictionary.
The compressed data within the zlib datastream is stored as a series
of blocks, each of which can represent raw (uncompressed) data,
LZ77-compressed data encoded with fixed Huffman codes, or LZ77-
compressed data encoded with custom Huffman codes. A marker bit in
the final block identifies it as the last block, allowing the decoder
to recognize the end of the compressed datastream. Further details
on the compression algorithm and the encoding are given in the
deflate specification [RFC-1951].
The check value stored at the end of the zlib datastream is
calculated on the uncompressed data represented by the datastream.
Note that the algorithm used is not the same as the CRC calculation
used for PNG chunk check values. The zlib check value is useful
mainly as a cross-check that the deflate and inflate algorithms are
implemented correctly. Verifying the chunk CRCs provides adequate
confidence that the PNG file has been transmitted undamaged.
In a PNG file, the concatenation of the contents of all the IDAT
chunks makes up a zlib datastream as specified above. This
datastream decompresses to filtered image data as described elsewhere
in this document.
It is important to emphasize that the boundaries between IDAT chunks
are arbitrary and can fall anywhere in the zlib datastream. There is
not necessarily any correlation between IDAT chunk boundaries and
deflate block boundaries or any other feature of the zlib data. For
example, it is entirely possible for the terminating zlib check value
to be split across IDAT chunks.
Boutell, et. al. Informational [Page 30]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
In the same vein, there is no required correlation between the
structure of the image data (i.e., scanline boundaries) and deflate
block boundaries or IDAT chunk boundaries. The complete image data
is represented by a single zlib datastream that is stored in some
number of IDAT chunks; a decoder that assumes any more than this is
incorrect. (Of course, some encoder implementations may emit files
in which some of these structures are indeed related. But decoders
cannot rely on this.)
PNG also uses zlib datastreams in zTXt chunks. In a zTXt chunk, the
remainder of the chunk following the compression method byte is a
zlib datastream as specified above. This datastream decompresses to
the user-readable text described by the chunk's keyword. Unlike the
image data, such datastreams are not split across chunks; each zTXt
chunk contains an independent zlib datastream.
Additional documentation and portable C code for deflate and inflate
are available from the Info-ZIP archives at
<URL:ftp://ftp.uu.net/pub/archiving/zip/>.
6. Filter Algorithms
This chapter describes the filter algorithms that can be applied
before compression. The purpose of these filters is to prepare the
image data for optimum compression.
6.1. Filter types
PNG filter method 0 defines five basic filter types:
Type Name
0 None
1 Sub
2 Up
3 Average
4 Paeth
(Note that filter method 0 in IHDR specifies exactly this set of
five filter types. If the set of filter types is ever extended, a
different filter method number will be assigned to the extended
set, so that decoders need not decompress the data to discover
that it contains unsupported filter types.)
The encoder can choose which of these filter algorithms to apply
on a scanline-by-scanline basis. In the image data sent to the
compression step, each scanline is preceded by a filter type byte
that specifies the filter algorithm used for that scanline.
Boutell, et. al. Informational [Page 31]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
Filtering algorithms are applied to bytes, not to pixels,
regardless of the bit depth or color type of the image. The
filtering algorithms work on the byte sequence formed by a
scanline that has been represented as described in Image layout
(Section 2.3). If the image includes an alpha channel, the alpha
data is filtered in the same way as the image data.
When the image is interlaced, each pass of the interlace pattern
is treated as an independent image for filtering purposes. The
filters work on the byte sequences formed by the pixels actually
transmitted during a pass, and the "previous scanline" is the one
previously transmitted in the same pass, not the one adjacent in
the complete image. Note that the subimage transmitted in any one
pass is always rectangular, but is of smaller width and/or height
than the complete image. Filtering is not applied when this
subimage is empty.
For all filters, the bytes "to the left of" the first pixel in a
scanline must be treated as being zero. For filters that refer to
the prior scanline, the entire prior scanline must be treated as
being zeroes for the first scanline of an image (or of a pass of
an interlaced image).
To reverse the effect of a filter, the decoder must use the
decoded values of the prior pixel on the same line, the pixel
immediately above the current pixel on the prior line, and the
pixel just to the left of the pixel above. This implies that at
least one scanline's worth of image data will have to be stored by
the decoder at all times. Even though some filter types do not
refer to the prior scanline, the decoder will always need to store
each scanline as it is decoded, since the next scanline might use
a filter that refers to it.
PNG imposes no restriction on which filter types can be applied to
an image. However, the filters are not equally effective on all
types of data. See Recommendations for Encoders: Filter selection
(Section 9.6).
See also Rationale: Filtering (Section 12.9).
6.2. Filter type 0: None
With the None filter, the scanline is transmitted unmodified; it
is only necessary to insert a filter type byte before the data.
Boutell, et. al. Informational [Page 32]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
6.3. Filter type 1: Sub
The Sub filter transmits the difference between each byte and the
value of the corresponding byte of the prior pixel.
To compute the Sub filter, apply the following formula to each
byte of the scanline:
Sub(x) = Raw(x) - Raw(x-bpp)
where x ranges from zero to the number of bytes representing the
scanline minus one, Raw(x) refers to the raw data byte at that
byte position in the scanline, and bpp is defined as the number of
bytes per complete pixel, rounding up to one. For example, for
color type 2 with a bit depth of 16, bpp is equal to 6 (three
samples, two bytes per sample); for color type 0 with a bit depth
of 2, bpp is equal to 1 (rounding up); for color type 4 with a bit
depth of 16, bpp is equal to 4 (two-byte grayscale sample, plus
two-byte alpha sample).
Note this computation is done for each byte, regardless of bit
depth. In a 16-bit image, each MSB is predicted from the
preceding MSB and each LSB from the preceding LSB, because of the
way that bpp is defined.
Unsigned arithmetic modulo 256 is used, so that both the inputs
and outputs fit into bytes. The sequence of Sub values is
transmitted as the filtered scanline.
For all x < 0, assume Raw(x) = 0.
To reverse the effect of the Sub filter after decompression,
output the following value:
Sub(x) + Raw(x-bpp)
(computed mod 256), where Raw refers to the bytes already decoded.
6.4. Filter type 2: Up
The Up filter is just like the Sub filter except that the pixel
immediately above the current pixel, rather than just to its left,
is used as the predictor.
To compute the Up filter, apply the following formula to each byte
of the scanline:
Up(x) = Raw(x) - Prior(x)
Boutell, et. al. Informational [Page 33]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
where x ranges from zero to the number of bytes representing the
scanline minus one, Raw(x) refers to the raw data byte at that
byte position in the scanline, and Prior(x) refers to the
unfiltered bytes of the prior scanline.
Note this is done for each byte, regardless of bit depth.
Unsigned arithmetic modulo 256 is used, so that both the inputs
and outputs fit into bytes. The sequence of Up values is
transmitted as the filtered scanline.
On the first scanline of an image (or of a pass of an interlaced
image), assume Prior(x) = 0 for all x.
To reverse the effect of the Up filter after decompression, output
the following value:
Up(x) + Prior(x)
(computed mod 256), where Prior refers to the decoded bytes of the
prior scanline.
6.5. Filter type 3: Average
The Average filter uses the average of the two neighboring pixels
(left and above) to predict the value of a pixel.
To compute the Average filter, apply the following formula to each
byte of the scanline:
Average(x) = Raw(x) - floor((Raw(x-bpp)+Prior(x))/2)
where x ranges from zero to the number of bytes representing the
scanline minus one, Raw(x) refers to the raw data byte at that
byte position in the scanline, Prior(x) refers to the unfiltered
bytes of the prior scanline, and bpp is defined as for the Sub
filter.
Note this is done for each byte, regardless of bit depth. The
sequence of Average values is transmitted as the filtered
scanline.
The subtraction of the predicted value from the raw byte must be
done modulo 256, so that both the inputs and outputs fit into
bytes. However, the sum Raw(x-bpp)+Prior(x) must be formed
without overflow (using at least nine-bit arithmetic). floor()
indicates that the result of the division is rounded to the next
lower integer if fractional; in other words, it is an integer
division or right shift operation.
Boutell, et. al. Informational [Page 34]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
For all x < 0, assume Raw(x) = 0. On the first scanline of an
image (or of a pass of an interlaced image), assume Prior(x) = 0
for all x.
To reverse the effect of the Average filter after decompression,
output the following value:
Average(x) + floor((Raw(x-bpp)+Prior(x))/2)
where the result is computed mod 256, but the prediction is
calculated in the same way as for encoding. Raw refers to the
bytes already decoded, and Prior refers to the decoded bytes of
the prior scanline.
6.6. Filter type 4: Paeth
The Paeth filter computes a simple linear function of the three
neighboring pixels (left, above, upper left), then chooses as
predictor the neighboring pixel closest to the computed value.
This technique is due to Alan W. Paeth [PAETH].
To compute the Paeth filter, apply the following formula to each
byte of the scanline:
Paeth(x) = Raw(x) - PaethPredictor(Raw(x-bpp), Prior(x),
Prior(x-bpp))
where x ranges from zero to the number of bytes representing the
scanline minus one, Raw(x) refers to the raw data byte at that
byte position in the scanline, Prior(x) refers to the unfiltered
bytes of the prior scanline, and bpp is defined as for the Sub
filter.
Note this is done for each byte, regardless of bit depth.
Unsigned arithmetic modulo 256 is used, so that both the inputs
and outputs fit into bytes. The sequence of Paeth values is
transmitted as the filtered scanline.
Boutell, et. al. Informational [Page 35]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
The PaethPredictor function is defined by the following
pseudocode:
function PaethPredictor (a, b, c)
begin
; a = left, b = above, c = upper left
p := a + b - c ; initial estimate
pa := abs(p - a) ; distances to a, b, c
pb := abs(p - b)
pc := abs(p - c)
; return nearest of a,b,c,
; breaking ties in order a,b,c.
if pa <= pb AND pa <= pc then return a
else if pb <= pc then return b
else return c
end
The calculations within the PaethPredictor function must be
performed exactly, without overflow. Arithmetic modulo 256 is to
be used only for the final step of subtracting the function result
from the target byte value.
Note that the order in which ties are broken is critical and must
not be altered. The tie break order is: pixel to the left, pixel
above, pixel to the upper left. (This order differs from that
given in Paeth's article.)
For all x < 0, assume Raw(x) = 0 and Prior(x) = 0. On the first
scanline of an image (or of a pass of an interlaced image), assume
Prior(x) = 0 for all x.
To reverse the effect of the Paeth filter after decompression,
output the following value:
Paeth(x) + PaethPredictor(Raw(x-bpp), Prior(x), Prior(x-bpp))
(computed mod 256), where Raw and Prior refer to bytes already
decoded. Exactly the same PaethPredictor function is used by both
encoder and decoder.
7. Chunk Ordering Rules
To allow new chunk types to be added to PNG, it is necessary to
establish rules about the ordering requirements for all chunk types.
Otherwise a PNG editing program cannot know what to do when it
encounters an unknown chunk.
Boutell, et. al. Informational [Page 36]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
We define a "PNG editor" as a program that modifies a PNG file and
wishes to preserve as much as possible of the ancillary information
in the file. Two examples of PNG editors are a program that adds or
modifies text chunks, and a program that adds a suggested palette to
a truecolor PNG file. Ordinary image editors are not PNG editors in
this sense, because they usually discard all unrecognized information
while reading in an image. (Note: we strongly encourage programs
handling PNG files to preserve ancillary information whenever
possible.)
As an example of possible problems, consider a hypothetical new
ancillary chunk type that is safe-to-copy and is required to appear
after PLTE if PLTE is present. If our program to add a suggested
PLTE does not recognize this new chunk, it may insert PLTE in the
wrong place, namely after the new chunk. We could prevent such
problems by requiring PNG editors to discard all unknown chunks, but
that is a very unattractive solution. Instead, PNG requires
ancillary chunks not to have ordering restrictions like this.
To prevent this type of problem while allowing for future extension,
we put some constraints on both the behavior of PNG editors and the
allowed ordering requirements for chunks.
7.1. Behavior of PNG editors
The rules for PNG editors are:
* When copying an unknown unsafe-to-copy ancillary chunk, a
PNG editor must not move the chunk relative to any critical
chunk. It can relocate the chunk freely relative to other
ancillary chunks that occur between the same pair of
critical chunks. (This is well defined since the editor
must not add, delete, modify, or reorder critical chunks if
it is preserving unknown unsafe-to-copy chunks.)
* When copying an unknown safe-to-copy ancillary chunk, a PNG
editor must not move the chunk from before IDAT to after
IDAT or vice versa. (This is well defined because IDAT is
always present.) Any other reordering is permitted.
* When copying a known ancillary chunk type, an editor need
only honor the specific chunk ordering rules that exist for
that chunk type. However, it can always choose to apply the
above general rules instead.
* PNG editors must give up on encountering an unknown critical
chunk type, because there is no way to be certain that a
valid file will result from modifying a file containing such
a chunk. (Note that simply discarding the chunk is not good
enough, because it might have unknown implications for the
interpretation of other chunks.)
Boutell, et. al. Informational [Page 37]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
These rules are expressed in terms of copying chunks from an input
file to an output file, but they apply in the obvious way if a PNG
file is modified in place.
See also Chunk naming conventions (Section 3.3).
7.2. Ordering of ancillary chunks
The ordering rules for an ancillary chunk type cannot be any
stricter than this:
* Unsafe-to-copy chunks can have ordering requirements
relative to critical chunks.
* Safe-to-copy chunks can have ordering requirements relative
to IDAT.
The actual ordering rules for any particular ancillary chunk type
may be weaker. See for example the ordering rules for the
standard ancillary chunk types (Summary of standard chunks,
Section 4.3).
Decoders must not assume more about the positioning of any
ancillary chunk than is specified by the chunk ordering rules. In
particular, it is never valid to assume that a specific ancillary
chunk type occurs with any particular positioning relative to
other ancillary chunks. (For example, it is unsafe to assume that
your private ancillary chunk occurs immediately before IEND. Even
if your application always writes it there, a PNG editor might
have inserted some other ancillary chunk after it. But you can
safely assume that your chunk will remain somewhere between IDAT
and IEND.)
7.3. Ordering of critical chunks
Critical chunks can have arbitrary ordering requirements, because
PNG editors are required to give up if they encounter unknown
critical chunks. For example, IHDR has the special ordering rule
that it must always appear first. A PNG editor, or indeed any
PNG-writing program, must know and follow the ordering rules for
any critical chunk type that it can emit.
Boutell, et. al. Informational [Page 38]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
8. Miscellaneous Topics
8.1. File name extension
On systems where file names customarily include an extension
signifying file type, the extension ".png" is recommended for PNG
files. Lower case ".png" is preferred if file names are case-
sensitive.
8.2. Internet media type
The Internet Assigned Numbers Authority (IANA) has registered
"image/png" as the Internet Media Type for PNG [RFC-2045, RFC-
2048]. For robustness, decoders may choose to also support the
interim media type "image/x-png" which was in use before
registration was complete.
8.3. Macintosh file layout
In the Apple Macintosh system, the following conventions are
recommended:
* The four-byte file type code for PNG files is "PNGf". (This
code has been registered with Apple for PNG files.) The
creator code will vary depending on the creating
application.
* The contents of the data fork must be a PNG file exactly as
described in the rest of this specification.
* The contents of the resource fork are unspecified. It may
be empty or may contain application-dependent resources.
* When transferring a Macintosh PNG file to a non-Macintosh
system, only the data fork should be transferred.
8.4. Multiple-image extension
PNG itself is strictly a single-image format. However, it may be
necessary to store multiple images within one file; for example,
this is needed to convert some GIF files. In the future, a
multiple-image format based on PNG may be defined. Such a format
will be considered a separate file format and will have a
different signature. PNG-supporting applications may or may not
choose to support the multiple-image format.
See Rationale: Why not these features? (Section 12.3).
Boutell, et. al. Informational [Page 39]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
8.5. Security considerations
A PNG file or datastream is composed of a collection of explicitly
typed "chunks". Chunks whose contents are defined by the
specification could actually contain anything, including malicious
code. But there is no known risk that such malicious code could
be executed on the recipient's computer as a result of decoding
the PNG image.
The possible security risks associated with future chunk types
cannot be specified at this time. Security issues will be
considered when evaluating chunks proposed for registration as
public chunks. There is no additional security risk associated
with unknown or unimplemented chunk types, because such chunks
will be ignored, or at most be copied into another PNG file.
The tEXt and zTXt chunks contain data that is meant to be
displayed as plain text. It is possible that if the decoder
displays such text without filtering out control characters,
especially the ESC (escape) character, certain systems or
terminals could behave in undesirable and insecure ways. We
recommend that decoders filter out control characters to avoid
this risk; see Recommendations for Decoders: Text chunk processing
(Section 10.11).
Because every chunk's length is available at its beginning, and
because every chunk has a CRC trailer, there is a very robust
defense against corrupted data and against fraudulent chunks that
attempt to overflow the decoder's buffers. Also, the PNG
signature bytes provide early detection of common file
transmission errors.
A decoder that fails to check CRCs could be subject to data
corruption. The only likely consequence of such corruption is
incorrectly displayed pixels within the image. Worse things might
happen if the CRC of the IHDR chunk is not checked and the width
or height fields are corrupted. See Recommendations for Decoders:
Error checking (Section 10.1).
A poorly written decoder might be subject to buffer overflow,
because chunks can be extremely large, up to (2^31)-1 bytes long.
But properly written decoders will handle large chunks without
difficulty.
Boutell, et. al. Informational [Page 40]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
9. Recommendations for Encoders
This chapter gives some recommendations for encoder behavior. The
only absolute requirement on a PNG encoder is that it produce files
that conform to the format specified in the preceding chapters.
However, best results will usually be achieved by following these
recommendations.
9.1. Sample depth scaling
When encoding input samples that have a sample depth that cannot
be directly represented in PNG, the encoder must scale the samples
up to a sample depth that is allowed by PNG. The most accurate
scaling method is the linear equation
output = ROUND(input * MAXOUTSAMPLE / MAXINSAMPLE)
where the input samples range from 0 to MAXINSAMPLE and the
outputs range from 0 to MAXOUTSAMPLE (which is (2^sampledepth)-1).
A close approximation to the linear scaling method can be achieved
by "left bit replication", which is shifting the valid bits to
begin in the most significant bit and repeating the most
significant bits into the open bits. This method is often faster
to compute than linear scaling. As an example, assume that 5-bit
samples are being scaled up to 8 bits. If the source sample value
is 27 (in the range from 0-31), then the original bits are:
4 3 2 1 0
---------
1 1 0 1 1
Left bit replication gives a value of 222:
7 6 5 4 3 2 1 0
----------------
1 1 0 1 1 1 1 0
|=======| |===|
| Leftmost Bits Repeated to Fill Open Bits
|
Original Bits
which matches the value computed by the linear equation. Left bit
replication usually gives the same value as linear scaling, and is
never off by more than one.
Boutell, et. al. Informational [Page 41]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
A distinctly less accurate approximation is obtained by simply
left-shifting the input value and filling the low order bits with
zeroes. This scheme cannot reproduce white exactly, since it does
not generate an all-ones maximum value; the net effect is to
darken the image slightly. This method is not recommended in
general, but it does have the effect of improving compression,
particularly when dealing with greater-than-eight-bit sample
depths. Since the relative error introduced by zero-fill scaling
is small at high sample depths, some encoders may choose to use
it. Zero-fill must not be used for alpha channel data, however,
since many decoders will special-case alpha values of all zeroes
and all ones. It is important to represent both those values
exactly in the scaled data.
When the encoder writes an sBIT chunk, it is required to do the
scaling in such a way that the high-order bits of the stored
samples match the original data. That is, if the sBIT chunk
specifies a sample depth of S, the high-order S bits of the stored
data must agree with the original S-bit data values. This allows
decoders to recover the original data by shifting right. The
added low-order bits are not constrained. Note that all the above
scaling methods meet this restriction.
When scaling up source data, it is recommended that the low-order
bits be filled consistently for all samples; that is, the same
source value should generate the same sample value at any pixel
position. This improves compression by reducing the number of
distinct sample values. However, this is not a requirement, and
some encoders may choose not to follow it. For example, an
encoder might instead dither the low-order bits, improving
displayed image quality at the price of increasing file size.
In some applications the original source data may have a range
that is not a power of 2. The linear scaling equation still works
for this case, although the shifting methods do not. It is
recommended that an sBIT chunk not be written for such images,
since sBIT suggests that the original data range was exactly
0..2^S-1.
9.2. Encoder gamma handling
See Gamma Tutorial (Chapter 13) if you aren't already familiar
with gamma issues.
Proper handling of gamma encoding and the gAMA chunk in an encoder
depends on the prior history of the sample values and on whether
these values have already been quantized to integers.
Boutell, et. al. Informational [Page 42]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
If the encoder has access to sample intensity values in floating-
point or high-precision integer form (perhaps from a computer
image renderer), then it is recommended that the encoder perform
its own gamma encoding before quantizing the data to integer
values for storage in the file. Applying gamma encoding at this
stage results in images with fewer banding artifacts at a given
sample depth, or allows smaller samples while retaining the same
visual quality.
A linear intensity level, expressed as a floating-point value in
the range 0 to 1, can be converted to a gamma-encoded sample value
by
sample = ROUND((intensity ^ encoder_gamma) * MAXSAMPLE)
The file_gamma value to be written in the PNG gAMA chunk is the
same as encoder_gamma in this equation, since we are assuming the
initial intensity value is linear (in effect, camera_gamma is
1.0).
If the image is being written to a file only, the encoder_gamma
value can be selected somewhat arbitrarily. Values of 0.45 or 0.5
are generally good choices because they are common in video
systems, and so most PNG decoders should do a good job displaying
such images.
Some image renderers may simultaneously write the image to a PNG
file and display it on-screen. The displayed pixels should be
gamma corrected for the display system and viewing conditions in
use, so that the user sees a proper representation of the intended
scene. An appropriate gamma correction value is
screen_gc = viewing_gamma / display_gamma
If the renderer wants to write the same gamma-corrected sample
values to the PNG file, avoiding a separate gamma-encoding step
for file output, then this screen_gc value should be written in
the gAMA chunk. This will allow a PNG decoder to reproduce what
the file's originator saw on screen during rendering (provided the
decoder properly supports arbitrary values in a gAMA chunk).
However, it is equally reasonable for a renderer to apply gamma
correction for screen display using a gamma appropriate to the
viewing conditions, and to separately gamma-encode the sample
values for file storage using a standard value of gamma such as
0.5. In fact, this is preferable, since some PNG decoders may not
accurately display images with unusual gAMA values.
Boutell, et. al. Informational [Page 43]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
Computer graphics renderers often do not perform gamma encoding,
instead making sample values directly proportional to scene light
intensity. If the PNG encoder receives sample values that have
already been quantized into linear-light integer values, there is
no point in doing gamma encoding on them; that would just result
in further loss of information. The encoder should just write the
sample values to the PNG file. This "linear" sample encoding is
equivalent to gamma encoding with a gamma of 1.0, so graphics
programs that produce linear samples should always emit a gAMA
chunk specifying a gamma of 1.0.
When the sample values come directly from a piece of hardware, the
correct gAMA value is determined by the gamma characteristic of
the hardware. In the case of video digitizers ("frame grabbers"),
gAMA should be 0.45 or 0.5 for NTSC (possibly less for PAL or
SECAM) since video camera transfer functions are standardized.
Image scanners are less predictable. Their output samples may be
linear (gamma 1.0) since CCD sensors themselves are linear, or the
scanner hardware may have already applied gamma correction
designed to compensate for dot gain in subsequent printing (gamma
of about 0.57), or the scanner may have corrected the samples for
display on a CRT (gamma of 0.4-0.5). You will need to refer to
the scanner's manual, or even scan a calibrated gray wedge, to
determine what a particular scanner does.
File format converters generally should not attempt to convert
supplied images to a different gamma. Store the data in the PNG
file without conversion, and record the source gamma if it is
known. Gamma alteration at file conversion time causes re-
quantization of the set of intensity levels that are represented,
introducing further roundoff error with little benefit. It's
almost always better to just copy the sample values intact from
the input to the output file.
In some cases, the supplied image may be in an image format (e.g.,
TIFF) that can describe the gamma characteristic of the image. In
such cases, a file format converter is strongly encouraged to
write a PNG gAMA chunk that corresponds to the known gamma of the
source image. Note that some file formats specify the gamma of
the display system, not the camera. If the input file's gamma
value is greater than 1.0, it is almost certainly a display system
gamma, and you should use its reciprocal for the PNG gAMA.
Boutell, et. al. Informational [Page 44]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
If the encoder or file format converter does not know how an image
was originally created, but does know that the image has been
displayed satisfactorily on a display with gamma display_gamma
under lighting conditions where a particular viewing_gamma is
appropriate, then the image can be marked as having the
file_gamma:
file_gamma = viewing_gamma / display_gamma
This will allow viewers of the PNG file to see the same image that
the person running the file format converter saw. Although this
may not be precisely the correct value of the image gamma, it's
better to write a gAMA chunk with an approximately right value
than to omit the chunk and force PNG decoders to guess at an
appropriate gamma.
On the other hand, if the image file is being converted as part of
a "bulk" conversion, with no one looking at each image, then it is
better to omit the gAMA chunk entirely. If the image gamma has to
be guessed at, leave it to the decoder to do the guessing.
Gamma does not apply to alpha samples; alpha is always represented
linearly.
See also Recommendations for Decoders: Decoder gamma handling
(Section 10.5).
9.3. Encoder color handling
See Color Tutorial (Chapter 14) if you aren't already familiar
with color issues.
If it is possible for the encoder to determine the chromaticities
of the source display primaries, or to make a strong guess based
on the origin of the image or the hardware running it, then the
encoder is strongly encouraged to output the cHRM chunk. If it
does so, the gAMA chunk should also be written; decoders can do
little with cHRM if gAMA is missing.
Boutell, et. al. Informational [Page 45]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
Video created with recent video equipment probably uses the CCIR
709 primaries and D65 white point [ITU-BT709], which are:
R G B White
x 0.640 0.300 0.150 0.3127
y 0.330 0.600 0.060 0.3290
An older but still very popular video standard is SMPTE-C [SMPTE-
170M]:
R G B White
x 0.630 0.310 0.155 0.3127
y 0.340 0.595 0.070 0.3290
The original NTSC color primaries have not been used in decades.
Although you may still find the NTSC numbers listed in standards
documents, you won't find any images that actually use them.
Scanners that produce PNG files as output should insert the filter
chromaticities into a cHRM chunk and the camera_gamma into a gAMA
chunk.
In the case of hand-drawn or digitally edited images, you have to
determine what monitor they were viewed on when being produced.
Many image editing programs allow you to specify what type of
monitor you are using. This is often because they are working in
some device-independent space internally. Such programs have
enough information to write valid cHRM and gAMA chunks, and should
do so automatically.
If the encoder is compiled as a portion of a computer image
renderer that performs full-spectral rendering, the monitor values
that were used to convert from the internal device-independent
color space to RGB should be written into the cHRM chunk. Any
colors that are outside the gamut of the chosen RGB device should
be clipped or otherwise constrained to be within the gamut; PNG
does not store out of gamut colors.
If the computer image renderer performs calculations directly in
device-dependent RGB space, a cHRM chunk should not be written
unless the scene description and rendering parameters have been
adjusted to look good on a particular monitor. In that case, the
data for that monitor (if known) should be used to construct a
cHRM chunk.
Boutell, et. al. Informational [Page 46]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
There are often cases where an image's exact origins are unknown,
particularly if it began life in some other format. A few image
formats store calibration information, which can be used to fill
in the cHRM chunk. For example, all PhotoCD images use the CCIR
709 primaries and D65 whitepoint, so these values can be written
into the cHRM chunk when converting a PhotoCD file. PhotoCD also
uses the SMPTE-170M transfer function, which is closely
approximated by a gAMA of 0.5. (PhotoCD can store colors outside
the RGB gamut, so the image data will require gamut mapping before
writing to PNG format.) TIFF 6.0 files can optionally store
calibration information, which if present should be used to
construct the cHRM chunk. GIF and most other formats do not store
any calibration information.
It is not recommended that file format converters attempt to
convert supplied images to a different RGB color space. Store the
data in the PNG file without conversion, and record the source
primary chromaticities if they are known. Color space
transformation at file conversion time is a bad idea because of
gamut mismatches and rounding errors. As with gamma conversions,
it's better to store the data losslessly and incur at most one
conversion when the image is finally displayed.
See also Recommendations for Decoders: Decoder color handling
(Section 10.6).
9.4. Alpha channel creation
The alpha channel can be regarded either as a mask that
temporarily hides transparent parts of the image, or as a means
for constructing a non-rectangular image. In the first case, the
color values of fully transparent pixels should be preserved for
future use. In the second case, the transparent pixels carry no
useful data and are simply there to fill out the rectangular image
area required by PNG. In this case, fully transparent pixels
should all be assigned the same color value for best compression.
Image authors should keep in mind the possibility that a decoder
will ignore transparency control. Hence, the colors assigned to
transparent pixels should be reasonable background colors whenever
feasible.
For applications that do not require a full alpha channel, or
cannot afford the price in compression efficiency, the tRNS
transparency chunk is also available.
Boutell, et. al. Informational [Page 47]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
If the image has a known background color, this color should be
written in the bKGD chunk. Even decoders that ignore transparency
may use the bKGD color to fill unused screen area.
If the original image has premultiplied (also called "associated")
alpha data, convert it to PNG's non-premultiplied format by
dividing each sample value by the corresponding alpha value, then
multiplying by the maximum value for the image bit depth, and
rounding to the nearest integer. In valid premultiplied data, the
sample values never exceed their corresponding alpha values, so
the result of the division should always be in the range 0 to 1.
If the alpha value is zero, output black (zeroes).
9.5. Suggested palettes
A PLTE chunk can appear in truecolor PNG files. In such files,
the chunk is not an essential part of the image data, but simply
represents a suggested palette that viewers may use to present the
image on indexed-color display hardware. A suggested palette is
of no interest to viewers running on truecolor hardware.
If an encoder chooses to provide a suggested palette, it is
recommended that a hIST chunk also be written to indicate the
relative importance of the palette entries. The histogram values
are most easily computed as "nearest neighbor" counts, that is,
the approximate usage of each palette entry if no dithering is
applied. (These counts will often be available for free as a
consequence of developing the suggested palette.)
For images of color type 2 (truecolor without alpha channel), it
is recommended that the palette and histogram be computed with
reference to the RGB data only, ignoring any transparent-color
specification. If the file uses transparency (has a tRNS chunk),
viewers can easily adapt the resulting palette for use with their
intended background color. They need only replace the palette
entry closest to the tRNS color with their background color (which
may or may not match the file's bKGD color, if any).
For images of color type 6 (truecolor with alpha channel), it is
recommended that a bKGD chunk appear and that the palette and
histogram be computed with reference to the image as it would
appear after compositing against the specified background color.
This definition is necessary to ensure that useful palette entries
are generated for pixels having fractional alpha values. The
resulting palette will probably only be useful to viewers that
present the image against the same background color. It is
recommended that PNG editors delete or recompute the palette if
they alter or remove the bKGD chunk in an image of color type 6.
Boutell, et. al. Informational [Page 48]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
If PLTE appears without bKGD in an image of color type 6, the
circumstances under which the palette was computed are
unspecified.
9.6. Filter selection
For images of color type 3 (indexed color), filter type 0 (None)
is usually the most effective. Note that color images with 256 or
fewer colors should almost always be stored in indexed color
format; truecolor format is likely to be much larger.
Filter type 0 is also recommended for images of bit depths less
than 8. For low-bit-depth grayscale images, it may be a net win
to expand the image to 8-bit representation and apply filtering,
but this is rare.
For truecolor and grayscale images, any of the five filters may
prove the most effective. If an encoder uses a fixed filter, the
Paeth filter is most likely to be the best.
For best compression of truecolor and grayscale images, we
recommend an adaptive filtering approach in which a filter is
chosen for each scanline. The following simple heuristic has
performed well in early tests: compute the output scanline using
all five filters, and select the filter that gives the smallest
sum of absolute values of outputs. (Consider the output bytes as
signed differences for this test.) This method usually
outperforms any single fixed filter choice. However, it is likely
that much better heuristics will be found as more experience is
gained with PNG.
Filtering according to these recommendations is effective on
interlaced as well as noninterlaced images.
9.7. Text chunk processing
A nonempty keyword must be provided for each text chunk. The
generic keyword "Comment" can be used if no better description of
the text is available. If a user-supplied keyword is used, be
sure to check that it meets the restrictions on keywords.
PNG text strings are expected to use the Latin-1 character set.
Encoders should avoid storing characters that are not defined in
Latin-1, and should provide character code remapping if the local
system's character set is not Latin-1.
Encoders should discourage the creation of single lines of text
longer than 79 characters, in order to facilitate easy reading.
Boutell, et. al. Informational [Page 49]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
It is recommended that text items less than 1K (1024 bytes) in
size should be output using uncompressed tEXt chunks. In
particular, it is recommended that the basic title and author
keywords should always be output using uncompressed tEXt chunks.
Lengthy disclaimers, on the other hand, are ideal candidates for
zTXt.
Placing large tEXt and zTXt chunks after the image data (after
IDAT) can speed up image display in some situations, since the
decoder won't have to read over the text to get to the image data.
But it is recommended that small text chunks, such as the image
title, appear before IDAT.
9.8. Use of private chunks
Applications can use PNG private chunks to carry information that
need not be understood by other applications. Such chunks must be
given names with lowercase second letters, to ensure that they can
never conflict with any future public chunk definition. Note,
however, that there is no guarantee that some other application
will not use the same private chunk name. If you use a private
chunk type, it is prudent to store additional identifying
information at the beginning of the chunk data.
Use an ancillary chunk type (lowercase first letter), not a
critical chunk type, for all private chunks that store information
that is not absolutely essential to view the image. Creation of
private critical chunks is discouraged because they render PNG
files unportable. Such chunks should not be used in publicly
available software or files. If private critical chunks are
essential for your application, it is recommended that one appear
near the start of the file, so that a standard decoder need not
read very far before discovering that it cannot handle the file.
If you want others outside your organization to understand a chunk
type that you invent, contact the maintainers of the PNG
specification to submit a proposed chunk name and definition for
addition to the list of special-purpose public chunks (see
Additional chunk types, Section 4.4). Note that a proposed public
chunk name (with uppercase second letter) must not be used in
publicly available software or files until registration has been
approved.
If an ancillary chunk contains textual information that might be
of interest to a human user, you should not create a special chunk
type for it. Instead use a tEXt chunk and define a suitable
keyword. That way, the information will be available to users not
using your software.
Boutell, et. al. Informational [Page 50]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
Keywords in tEXt chunks should be reasonably self-explanatory,
since the idea is to let other users figure out what the chunk
contains. If of general usefulness, new keywords can be
registered with the maintainers of the PNG specification. But it
is permissible to use keywords without registering them first.
9.9. Private type and method codes
This specification defines the meaning of only some of the
possible values of some fields. For example, only compression
method 0 and filter types 0 through 4 are defined. Numbers
greater than 127 must be used when inventing experimental or
private definitions of values for any of these fields. Numbers
below 128 are reserved for possible future public extensions of
this specification. Note that use of private type codes may
render a file unreadable by standard decoders. Such codes are
strongly discouraged except for experimental purposes, and should
not appear in publicly available software or files.
10. Recommendations for Decoders
This chapter gives some recommendations for decoder behavior. The
only absolute requirement on a PNG decoder is that it successfully
read any file conforming to the format specified in the preceding
chapters. However, best results will usually be achieved by
following these recommendations.
10.1. Error checking
To ensure early detection of common file-transfer problems,
decoders should verify that all eight bytes of the PNG file
signature are correct. (See Rationale: PNG file signature,
Section 12.11.) A decoder can have additional confidence in the
file's integrity if the next eight bytes are an IHDR chunk header
with the correct chunk length.
Unknown chunk types must be handled as described in Chunk naming
conventions (Section 3.3). An unknown chunk type is not to be
treated as an error unless it is a critical chunk.
It is strongly recommended that decoders should verify the CRC on
each chunk.
In some situations it is desirable to check chunk headers (length
and type code) before reading the chunk data and CRC. The chunk
type can be checked for plausibility by seeing whether all four
bytes are ASCII letters (codes 65-90 and 97-122); note that this
need only be done for unrecognized type codes. If the total file
Boutell, et. al. Informational [Page 51]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
size is known (from file system information, HTTP protocol, etc),
the chunk length can be checked for plausibility as well.
If CRCs are not checked, dropped/added data bytes or an erroneous
chunk length can cause the decoder to get out of step and
misinterpret subsequent data as a chunk header. Verifying that
the chunk type contains letters is an inexpensive way of providing
early error detection in this situation.
For known-length chunks such as IHDR, decoders should treat an
unexpected chunk length as an error. Future extensions to this
specification will not add new fields to existing chunks; instead,
new chunk types will be added to carry new information.
Unexpected values in fields of known chunks (for example, an
unexpected compression method in the IHDR chunk) must be checked
for and treated as errors. However, it is recommended that
unexpected field values be treated as fatal errors only in
critical chunks. An unexpected value in an ancillary chunk can be
handled by ignoring the whole chunk as though it were an unknown
chunk type. (This recommendation assumes that the chunk's CRC has
been verified. In decoders that do not check CRCs, it is safer to
treat any unexpected value as indicating a corrupted file.)
10.2. Pixel dimensions
Non-square pixels can be represented (see the pHYs chunk), but
viewers are not required to account for them; a viewer can present
any PNG file as though its pixels are square.
Conversely, viewers running on display hardware with non-square
pixels are strongly encouraged to rescale images for proper
display.
10.3. Truecolor image handling
To achieve PNG's goal of universal interchangeability, decoders
are required to accept all types of PNG image: indexed-color,
truecolor, and grayscale. Viewers running on indexed-color
display hardware need to be able to reduce truecolor images to
indexed format for viewing. This process is usually called "color
quantization".
Boutell, et. al. Informational [Page 52]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
A simple, fast way of doing this is to reduce the image to a fixed
palette. Palettes with uniform color spacing ("color cubes") are
usually used to minimize the per-pixel computation. For
photograph-like images, dithering is recommended to avoid ugly
contours in what should be smooth gradients; however, dithering
introduces graininess that can be objectionable.
The quality of rendering can be improved substantially by using a
palette chosen specifically for the image, since a color cube
usually has numerous entries that are unused in any particular
image. This approach requires more work, first in choosing the
palette, and second in mapping individual pixels to the closest
available color. PNG allows the encoder to supply a suggested
palette in a PLTE chunk, but not all encoders will do so, and the
suggested palette may be unsuitable in any case (it may have too
many or too few colors). High-quality viewers will therefore need
to have a palette selection routine at hand. A large lookup table
is usually the most feasible way of mapping individual pixels to
palette entries with adequate speed.
Numerous implementations of color quantization are available. The
PNG reference implementation, libpng, includes code for the
purpose.
10.4. Sample depth rescaling
Decoders may wish to scale PNG data to a lesser sample depth (data
precision) for display. For example, 16-bit data will need to be
reduced to 8-bit depth for use on most present-day display
hardware. Reduction of 8-bit data to 5-bit depth is also common.
The most accurate scaling is achieved by the linear equation
output = ROUND(input * MAXOUTSAMPLE / MAXINSAMPLE)
where
MAXINSAMPLE = (2^sampledepth)-1
MAXOUTSAMPLE = (2^desired_sampledepth)-1
A slightly less accurate conversion is achieved by simply shifting
right by sampledepth-desired_sampledepth places. For example, to
reduce 16-bit samples to 8-bit, one need only discard the low-
order byte. In many situations the shift method is sufficiently
accurate for display purposes, and it is certainly much faster.
(But if gamma correction is being done, sample rescaling can be
merged into the gamma correction lookup table, as is illustrated
in Decoder gamma handling, Section 10.5.)
Boutell, et. al. Informational [Page 53]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
When an sBIT chunk is present, the original pre-PNG data can be
recovered by shifting right to the sample depth specified by sBIT.
Note that linear scaling will not necessarily reproduce the
original data, because the encoder is not required to have used
linear scaling to scale the data up. However, the encoder is
required to have used a method that preserves the high-order bits,
so shifting always works. This is the only case in which shifting
might be said to be more accurate than linear scaling.
When comparing pixel values to tRNS chunk values to detect
transparent pixels, it is necessary to do the comparison exactly.
Therefore, transparent pixel detection must be done before
reducing sample precision.
10.5. Decoder gamma handling
See Gamma Tutorial (Chapter 13) if you aren't already familiar
with gamma issues.
To produce correct tone reproduction, a good image display program
should take into account the gammas of the image file and the
display device, as well as the viewing_gamma appropriate to the
lighting conditions near the display. This can be done by
calculating
gbright = insample / MAXINSAMPLE
bright = gbright ^ (1.0 / file_gamma)
vbright = bright ^ viewing_gamma
gcvideo = vbright ^ (1.0 / display_gamma)
fbval = ROUND(gcvideo * MAXFBVAL)
where MAXINSAMPLE is the maximum sample value in the file (255 for
8-bit, 65535 for 16-bit, etc), MAXFBVAL is the maximum value of a
frame buffer sample (255 for 8-bit, 31 for 5-bit, etc), insample
is the value of the sample in the PNG file, and fbval is the value
to write into the frame buffer. The first line converts from
integer samples into a normalized 0 to 1 floating point value, the
second undoes the gamma encoding of the image file to produce a
linear intensity value, the third adjusts for the viewing
conditions, the fourth corrects for the display system's gamma
value, and the fifth converts to an integer frame buffer sample.
In practice, the second through fourth lines can be merged into
gcvideo = gbright^(viewing_gamma / (file_gamma*display_gamma))
so as to perform only one power calculation. For color images, the
entire calculation is performed separately for R, G, and B values.
Boutell, et. al. Informational [Page 54]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
It is not necessary to perform transcendental math for every
pixel. Instead, compute a lookup table that gives the correct
output value for every possible sample value. This requires only
256 calculations per image (for 8-bit accuracy), not one or three
calculations per pixel. For an indexed-color image, a one-time
correction of the palette is sufficient, unless the image uses
transparency and is being displayed against a nonuniform
background.
In some cases even the cost of computing a gamma lookup table may
be a concern. In these cases, viewers are encouraged to have
precomputed gamma correction tables for file_gamma values of 1.0
and 0.5 with some reasonable choice of viewing_gamma and
display_gamma, and to use the table closest to the gamma indicated
in the file. This will produce acceptable results for the majority
of real files.
When the incoming image has unknown gamma (no gAMA chunk), choose
a likely default file_gamma value, but allow the user to select a
new one if the result proves too dark or too light.
In practice, it is often difficult to determine what value of
display_gamma should be used. In systems with no built-in gamma
correction, the display_gamma is determined entirely by the CRT.
Assuming a CRT_gamma of 2.5 is recommended, unless you have
detailed calibration measurements of this particular CRT
available.
However, many modern frame buffers have lookup tables that are
used to perform gamma correction, and on these systems the
display_gamma value should be the gamma of the lookup table and
CRT combined. You may not be able to find out what the lookup
table contains from within an image viewer application, so you may
have to ask the user what the system's gamma value is.
Unfortunately, different manufacturers use different ways of
specifying what should go into the lookup table, so interpretation
of the system gamma value is system-dependent. Gamma Tutorial
(Chapter 13) gives some examples.
The response of real displays is actually more complex than can be
described by a single number (display_gamma). If actual
measurements of the monitor's light output as a function of
voltage input are available, the fourth and fifth lines of the
computation above can be replaced by a lookup in these
measurements, to find the actual frame buffer value that most
nearly gives the desired brightness.
Boutell, et. al. Informational [Page 55]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
The value of viewing_gamma depends on lighting conditions; see
Gamma Tutorial (Chapter 13) for more detail. Ideally, a viewer
would allow the user to specify viewing_gamma, either directly
numerically, or via selecting from "bright surround", "dim
surround", and "dark surround" conditions. Viewers that don't
want to do this should just assume a value for viewing_gamma of
1.0, since most computer displays live in brightly-lit rooms.
When viewing images that are digitized from video, or that are
destined to become video frames, the user might want to set the
viewing_gamma to about 1.25 regardless of the actual level of room
lighting. This value of viewing_gamma is "built into" NTSC video
practice, and displaying an image with that viewing_gamma allows
the user to see what a TV set would show under the current room
lighting conditions. (This is not the same thing as trying to
obtain the most accurate rendition of the content of the scene,
which would require adjusting viewing_gamma to correspond to the
room lighting level.) This is another reason viewers might want
to allow users to adjust viewing_gamma directly.
10.6. Decoder color handling
See Color Tutorial (Chapter 14) if you aren't already familiar
with color issues.
In many cases, decoders will treat image data in PNG files as
device-dependent RGB data and display it without modification
(except for appropriate gamma correction). This provides the
fastest display of PNG images. But unless the viewer uses exactly
the same display hardware as the original image author used, the
colors will not be exactly the same as the original author saw,
particularly for darker or near-neutral colors. The cHRM chunk
provides information that allows closer color matching than that
provided by gamma correction alone.
Decoders can use the cHRM data to transform the image data from
RGB to XYZ and thence into a perceptually linear color space such
as CIE LAB. They can then partition the colors to generate an
optimal palette, because the geometric distance between two colors
in CIE LAB is strongly related to how different those colors
appear (unlike, for example, RGB or XYZ spaces). The resulting
palette of colors, once transformed back into RGB color space,
could be used for display or written into a PLTE chunk.
Decoders that are part of image processing applications might also
transform image data into CIE LAB space for analysis.
Boutell, et. al. Informational [Page 56]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
In applications where color fidelity is critical, such as product
design, scientific visualization, medicine, architecture, or
advertising, decoders can transform the image data from source_RGB
to the display_RGB space of the monitor used to view the image.
This involves calculating the matrix to go from source_RGB to XYZ
and the matrix to go from XYZ to display_RGB, then combining them
to produce the overall transformation. The decoder is responsible
for implementing gamut mapping.
Decoders running on platforms that have a Color Management System
(CMS) can pass the image data, gAMA and cHRM values to the CMS for
display or further processing.
Decoders that provide color printing facilities can use the
facilities in Level 2 PostScript to specify image data in
calibrated RGB space or in a device-independent color space such
as XYZ. This will provide better color fidelity than a simple RGB
to CMYK conversion. The PostScript Language Reference manual
gives examples of this process [POSTSCRIPT]. Such decoders are
responsible for implementing gamut mapping between source_RGB
(specified in the cHRM chunk) and the target printer. The
PostScript interpreter is then responsible for producing the
required colors.
Decoders can use the cHRM data to calculate an accurate grayscale
representation of a color image. Conversion from RGB to gray is
simply a case of calculating the Y (luminance) component of XYZ,
which is a weighted sum of the R G and B values. The weights
depend on the monitor type, i.e., the values in the cHRM chunk.
Decoders may wish to do this for PNG files with no cHRM chunk. In
that case, a reasonable default would be the CCIR 709 primaries
[ITU-BT709]. Do not use the original NTSC primaries, unless you
really do have an image color-balanced for such a monitor. Few
monitors ever used the NTSC primaries, so such images are probably
nonexistent these days.
10.7. Background color
The background color given by bKGD will typically be used to fill
unused screen space around the image, as well as any transparent
pixels within the image. (Thus, bKGD is valid and useful even
when the image does not use transparency.) If no bKGD chunk is
present, the viewer will need to make its own decision about a
suitable background color.
Boutell, et. al. Informational [Page 57]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
Viewers that have a specific background against which to present
the image (such as Web browsers) should ignore the bKGD chunk, in
effect overriding bKGD with their preferred background color or
background image.
The background color given by bKGD is not to be considered
transparent, even if it happens to match the color given by tRNS
(or, in the case of an indexed-color image, refers to a palette
index that is marked as transparent by tRNS). Otherwise one would
have to imagine something "behind the background" to composite
against. The background color is either used as background or
ignored; it is not an intermediate layer between the PNG image and
some other background.
Indeed, it will be common that bKGD and tRNS specify the same
color, since then a decoder that does not implement transparency
processing will give the intended display, at least when no
partially-transparent pixels are present.
10.8. Alpha channel processing
In the most general case, the alpha channel can be used to
composite a foreground image against a background image; the PNG
file defines the foreground image and the transparency mask, but
not the background image. Decoders are not required to support
this most general case. It is expected that most will be able to
support compositing against a single background color, however.
The equation for computing a composited sample value is
output = alpha * foreground + (1-alpha) * background
where alpha and the input and output sample values are expressed
as fractions in the range 0 to 1. This computation should be
performed with linear (non-gamma-encoded) sample values. For
color images, the computation is done separately for R, G, and B
samples.
The following code illustrates the general case of compositing a
foreground image over a background image. It assumes that you
have the original pixel data available for the background image,
and that output is to a frame buffer for display. Other variants
are possible; see the comments below the code. The code allows
the sample depths and gamma values of foreground image, background
image, and frame buffer/CRT all to be different. Don't assume
they are the same without checking.
Boutell, et. al. Informational [Page 58]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
This code is standard C, with line numbers added for reference in
the comments below.
01 int foreground[4]; /* image pixel: R, G, B, A */
02 int background[3]; /* background pixel: R, G, B */
03 int fbpix[3]; /* frame buffer pixel */
04 int fg_maxsample; /* foreground max sample */
05 int bg_maxsample; /* background max sample */
06 int fb_maxsample; /* frame buffer max sample */
07 int ialpha;
08 float alpha, compalpha;
09 float gamfg, linfg, gambg, linbg, comppix, gcvideo;
/* Get max sample values in data and frame buffer */
10 fg_maxsample = (1 << fg_sample_depth) - 1;
11 bg_maxsample = (1 << bg_sample_depth) - 1;
12 fb_maxsample = (1 << frame_buffer_sample_depth) - 1;
/*
* Get integer version of alpha.
* Check for opaque and transparent special cases;
* no compositing needed if so.
*
* We show the whole gamma decode/correct process in
* floating point, but it would more likely be done
* with lookup tables.
*/
13 ialpha = foreground[3];
14 if (ialpha == 0) {
/*
* Foreground image is transparent here.
* If the background image is already in the frame
* buffer, there is nothing to do.
*/
15 ;
16 } else if (ialpha == fg_maxsample) {
/*
* Copy foreground pixel to frame buffer.
*/
17 for (i = 0; i < 3; i++) {
18 gamfg = (float) foreground[i] / fg_maxsample;
19 linfg = pow(gamfg, 1.0/fg_gamma);
20 comppix = linfg;
21 gcvideo = pow(comppix,viewing_gamma/display_gamma);
22 fbpix[i] = (int) (gcvideo * fb_maxsample + 0.5);
23 }
Boutell, et. al. Informational [Page 59]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
24 } else {
/*
* Compositing is necessary.
* Get floating-point alpha and its complement.
* Note: alpha is always linear; gamma does not
* affect it.
*/
25 alpha = (float) ialpha / fg_maxsample;
26 compalpha = 1.0 - alpha;
27 for (i = 0; i < 3; i++) {
/*
* Convert foreground and background to floating
* point, then linearize (undo gamma encoding).
*/
28 gamfg = (float) foreground[i] / fg_maxsample;
29 linfg = pow(gamfg, 1.0/fg_gamma);
30 gambg = (float) background[i] / bg_maxsample;
31 linbg = pow(gambg, 1.0/bg_gamma);
/*
* Composite.
*/
32 comppix = linfg * alpha + linbg * compalpha;
/*
* Gamma correct for display.
* Convert to integer frame buffer pixel.
*/
33 gcvideo = pow(comppix,viewing_gamma/display_gamma);
34 fbpix[i] = (int) (gcvideo * fb_maxsample + 0.5);
35 }
36 }
Variations:
* If output is to another PNG image file instead of a frame
buffer, lines 21, 22, 33, and 34 should be changed to be
something like
/*
* Gamma encode for storage in output file.
* Convert to integer sample value.
*/
gamout = pow(comppix, outfile_gamma);
outpix[i] = (int) (gamout * out_maxsample + 0.5);
Also, it becomes necessary to process background pixels when
alpha is zero, rather than just skipping pixels. Thus, line
15 will need to be replaced by copies of lines 17-23, but
processing background instead of foreground pixel values.
Boutell, et. al. Informational [Page 60]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
* If the sample depths of the output file, foreground file,
and background file are all the same, and the three gamma
values also match, then the no-compositing code in lines
14-23 reduces to nothing more than copying pixel values from
the input file to the output file if alpha is one, or
copying pixel values from background to output file if alpha
is zero. Since alpha is typically either zero or one for
the vast majority of pixels in an image, this is a great
savings. No gamma computations are needed for most pixels.
* When the sample depths and gamma values all match, it may
appear attractive to skip the gamma decoding and encoding
(lines 28-31, 33-34) and just perform line 32 using gamma-
encoded sample values. Although this doesn't hurt image
quality too badly, the time savings are small if alpha
values of zero and one are special-cased as recommended
here.
* If the original pixel values of the background image are no
longer available, only processed frame buffer pixels left by
display of the background image, then lines 30 and 31 need
to extract intensity from the frame buffer pixel values
using code like
/*
* Decode frame buffer value back into linear space.
*/
gcvideo = (float) fbpix[i] / fb_maxsample;
linbg = pow(gcvideo, display_gamma / viewing_gamma);
However, some roundoff error can result, so it is better to
have the original background pixels available if at all
possible.
* Note that lines 18-22 are performing exactly the same gamma
computation that is done when no alpha channel is present.
So, if you handle the no-alpha case with a lookup table, you
can use the same lookup table here. Lines 28-31 and 33-34
can also be done with (different) lookup tables.
* Of course, everything here can be done in integer
arithmetic. Just be careful to maintain sufficient
precision all the way through.
Note: in floating point, no overflow or underflow checks are
needed, because the input sample values are guaranteed to be
between 0 and 1, and compositing always yields a result that is in
between the input values (inclusive). With integer arithmetic,
some roundoff-error analysis might be needed to guarantee no
overflow or underflow.
Boutell, et. al. Informational [Page 61]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
When displaying a PNG image with full alpha channel, it is
important to be able to composite the image against some
background, even if it's only black. Ignoring the alpha channel
will cause PNG images that have been converted from an
associated-alpha representation to look wrong. (Of course, if the
alpha channel is a separate transparency mask, then ignoring alpha
is a useful option: it allows the hidden parts of the image to be
recovered.)
Even if the decoder author does not wish to implement true
compositing logic, it is simple to deal with images that contain
only zero and one alpha values. (This is implicitly true for
grayscale and truecolor PNG files that use a tRNS chunk; for
indexed-color PNG files, it is easy to check whether tRNS contains
any values other than 0 and 255.) In this simple case,
transparent pixels are replaced by the background color, while
others are unchanged. If a decoder contains only this much
transparency capability, it should deal with a full alpha channel
by treating all nonzero alpha values as fully opaque; that is, do
not replace partially transparent pixels by the background. This
approach will not yield very good results for images converted
from associated-alpha formats, but it's better than doing nothing.
10.9. Progressive display
When receiving images over slow transmission links, decoders can
improve perceived performance by displaying interlaced images
progressively. This means that as each pass is received, an
approximation to the complete image is displayed based on the data
received so far. One simple yet pleasing effect can be obtained
by expanding each received pixel to fill a rectangle covering the
yet-to-be-transmitted pixel positions below and to the right of
the received pixel. This process can be described by the
following pseudocode:
Starting_Row [1..7] = { 0, 0, 4, 0, 2, 0, 1 }
Starting_Col [1..7] = { 0, 4, 0, 2, 0, 1, 0 }
Row_Increment [1..7] = { 8, 8, 8, 4, 4, 2, 2 }
Col_Increment [1..7] = { 8, 8, 4, 4, 2, 2, 1 }
Block_Height [1..7] = { 8, 8, 4, 4, 2, 2, 1 }
Block_Width [1..7] = { 8, 4, 4, 2, 2, 1, 1 }
pass := 1
while pass <= 7
begin
row := Starting_Row[pass]
while row < height
Boutell, et. al. Informational [Page 62]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
begin
col := Starting_Col[pass]
while col < width
begin
visit (row, col,
min (Block_Height[pass], height - row),
min (Block_Width[pass], width - col))
col := col + Col_Increment[pass]
end
row := row + Row_Increment[pass]
end
pass := pass + 1
end
Here, the function "visit(row,column,height,width)" obtains the
next transmitted pixel and paints a rectangle of the specified
height and width, whose upper-left corner is at the specified row
and column, using the color indicated by the pixel. Note that row
and column are measured from 0,0 at the upper left corner.
If the decoder is merging the received image with a background
image, it may be more convenient just to paint the received pixel
positions; that is, the "visit()" function sets only the pixel at
the specified row and column, not the whole rectangle. This
produces a "fade-in" effect as the new image gradually replaces
the old. An advantage of this approach is that proper alpha or
transparency processing can be done as each pixel is replaced.
Painting a rectangle as described above will overwrite
background-image pixels that may be needed later, if the pixels
eventually received for those positions turn out to be wholly or
partially transparent. Of course, this is only a problem if the
background image is not stored anywhere offscreen.
10.10. Suggested-palette and histogram usage
In truecolor PNG files, the encoder may have provided a suggested
PLTE chunk for use by viewers running on indexed-color hardware.
If the image has a tRNS chunk, the viewer will need to adapt the
suggested palette for use with its desired background color. To
do this, replace the palette entry closest to the tRNS color with
the desired background color; or just add a palette entry for the
background color, if the viewer can handle more colors than there
are PLTE entries.
Boutell, et. al. Informational [Page 63]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
For images of color type 6 (truecolor with alpha channel), any
suggested palette should have been designed for display of the
image against a uniform background of the color specified by bKGD.
Viewers should probably ignore the palette if they intend to use a
different background, or if the bKGD chunk is missing. Viewers
can use a suggested palette for display against a different
background than it was intended for, but the results may not be
very good.
If the viewer presents a transparent truecolor image against a
background that is more complex than a single color, it is
unlikely that the suggested palette will be optimal for the
composite image. In this case it is best to perform a truecolor
compositing step on the truecolor PNG image and background image,
then color-quantize the resulting image.
The histogram chunk is useful when the viewer cannot provide as
many colors as are used in the image's palette. If the viewer is
only short a few colors, it is usually adequate to drop the
least-used colors from the palette. To reduce the number of
colors substantially, it's best to choose entirely new
representative colors, rather than trying to use a subset of the
existing palette. This amounts to performing a new color
quantization step; however, the existing palette and histogram can
be used as the input data, thus avoiding a scan of the image data.
If no palette or histogram chunk is provided, a decoder can
develop its own, at the cost of an extra pass over the image data.
Alternatively, a default palette (probably a color cube) can be
used.
See also Recommendations for Encoders: Suggested palettes (Section
9.5).
10.11. Text chunk processing
If practical, decoders should have a way to display to the user
all tEXt and zTXt chunks found in the file. Even if the decoder
does not recognize a particular text keyword, the user might be
able to understand it.
PNG text is not supposed to contain any characters outside the ISO
8859-1 "Latin-1" character set (that is, no codes 0-31 or 127-
159), except for the newline character (decimal 10). But decoders
might encounter such characters anyway. Some of these characters
can be safely displayed (e.g., TAB, FF, and CR, decimal 9, 12, and
13, respectively), but others, especially the ESC character
(decimal 27), could pose a security hazard because unexpected
Boutell, et. al. Informational [Page 64]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
actions may be taken by display hardware or software. To prevent
such hazards, decoders should not attempt to directly display any
non-Latin-1 characters (except for newline and perhaps TAB, FF,
CR) encountered in a tEXt or zTXt chunk. Instead, ignore them or
display them in a visible notation such as "\nnn". See Security
considerations (Section 8.5).
Even though encoders are supposed to represent newlines as LF, it
is recommended that decoders not rely on this; it's best to
recognize all the common newline combinations (CR, LF, and CR-LF)
and display each as a single newline. TAB can be expanded to the
proper number of spaces needed to arrive at a column multiple of
8.
Decoders running on systems with non-Latin-1 character set
encoding should provide character code remapping so that Latin-1
characters are displayed correctly. Some systems may not provide
all the characters defined in Latin-1. Mapping unavailable
characters to a visible notation such as "\nnn" is a good
fallback. In particular, character codes 127-255 should be
displayed only if they are printable characters on the decoding
system. Some systems may interpret such codes as control
characters; for security, decoders running on such systems should
not display such characters literally.
Decoders should be prepared to display text chunks that contain
any number of printing characters between newline characters, even
though encoders are encouraged to avoid creating lines in excess
of 79 characters.
11. Glossary
a^b
Exponentiation; a raised to the power b. C programmers should be
careful not to misread this notation as exclusive-or. Note that
in gamma-related calculations, zero raised to any power is valid
and must give a zero result.
Alpha
A value representing a pixel's degree of transparency. The more
transparent a pixel, the less it hides the background against
which the image is presented. In PNG, alpha is really the degree
of opacity: zero alpha represents a completely transparent pixel,
maximum alpha represents a completely opaque pixel. But most
people refer to alpha as providing transparency information, not
opacity information, and we continue that custom here.
Boutell, et. al. Informational [Page 65]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
Ancillary chunk
A chunk that provides additional information. A decoder can still
produce a meaningful image, though not necessarily the best
possible image, without processing the chunk.
Bit depth
The number of bits per palette index (in indexed-color PNGs) or
per sample (in other color types). This is the same value that
appears in IHDR.
Byte
Eight bits; also called an octet.
Channel
The set of all samples of the same kind within an image; for
example, all the blue samples in a truecolor image. (The term
"component" is also used, but not in this specification.) A
sample is the intersection of a channel and a pixel.
Chromaticity
A pair of values x,y that precisely specify the hue, though not
the absolute brightness, of a perceived color.
Chunk
A section of a PNG file. Each chunk has a type indicated by its
chunk type name. Most types of chunks also include some data.
The format and meaning of the data within the chunk are determined
by the type name.
Composite
As a verb, to form an image by merging a foreground image and a
background image, using transparency information to determine
where the background should be visible. The foreground image is
said to be "composited against" the background.
CRC
Cyclic Redundancy Check. A CRC is a type of check value designed
to catch most transmission errors. A decoder calculates the CRC
for the received data and compares it to the CRC that the encoder
calculated, which is appended to the data. A mismatch indicates
that the data was corrupted in transit.
Critical chunk
A chunk that must be understood and processed by the decoder in
order to produce a meaningful image from a PNG file.
CRT
Cathode Ray Tube: a common type of computer display hardware.
Boutell, et. al. Informational [Page 66]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
Datastream
A sequence of bytes. This term is used rather than "file" to
describe a byte sequence that is only a portion of a file. We
also use it to emphasize that a PNG image might be generated and
consumed "on the fly", never appearing in a stored file at all.
Deflate
The name of the compression algorithm used in standard PNG files,
as well as in zip, gzip, pkzip, and other compression programs.
Deflate is a member of the LZ77 family of compression methods.
Filter
A transformation applied to image data in hopes of improving its
compressibility. PNG uses only lossless (reversible) filter
algorithms.
Frame buffer
The final digital storage area for the image shown by a computer
display. Software causes an image to appear onscreen by loading
it into the frame buffer.
Gamma
The brightness of mid-level tones in an image. More precisely, a
parameter that describes the shape of the transfer function for
one or more stages in an imaging pipeline. The transfer function
is given by the expression
output = input ^ gamma
where both input and output are scaled to the range 0 to 1.
Grayscale
An image representation in which each pixel is represented by a
single sample value representing overall luminance (on a scale
from black to white). PNG also permits an alpha sample to be
stored for each pixel of a grayscale image.
Indexed color
An image representation in which each pixel is represented by a
single sample that is an index into a palette or lookup table.
The selected palette entry defines the actual color of the pixel.
Lossless compression
Any method of data compression that guarantees the original data
can be reconstructed exactly, bit-for-bit.
Boutell, et. al. Informational [Page 67]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
Lossy compression
Any method of data compression that reconstructs the original data
approximately, rather than exactly.
LSB
Least Significant Byte of a multi-byte value.
Luminance
Perceived brightness, or grayscale level, of a color. Luminance
and chromaticity together fully define a perceived color.
LUT
Look Up Table. In general, a table used to transform data. In
frame buffer hardware, a LUT can be used to map indexed-color
pixels into a selected set of truecolor values, or to perform
gamma correction. In software, a LUT can be used as a fast way of
implementing any one-variable mathematical function.
MSB
Most Significant Byte of a multi-byte value.
Palette
The set of colors available in an indexed-color image. In PNG, a
palette is an array of colors defined by red, green, and blue
samples. (Alpha values can also be defined for palette entries,
via the tRNS chunk.)
Pixel
The information stored for a single grid point in the image. The
complete image is a rectangular array of pixels.
PNG editor
A program that modifies a PNG file and preserves ancillary
information, including chunks that it does not recognize. Such a
program must obey the rules given in Chunk Ordering Rules (Chapter
7).
Sample
A single number in the image data; for example, the red value of a
pixel. A pixel is composed of one or more samples. When
discussing physical data layout (in particular, in Image layout,
Section 2.3), we use "sample" to mean a number stored in the image
array. It would be more precise but much less readable to say
"sample or palette index" in that context. Elsewhere in the
specification, "sample" means a color value or alpha value. In
the indexed-color case, these are palette entries not palette
indexes.
Boutell, et. al. Informational [Page 68]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
Sample depth
The precision, in bits, of color values and alpha values. In
indexed-color PNGs the sample depth is always 8 by definition of
the PLTE chunk. In other color types it is the same as the bit
depth.
Scanline
One horizontal row of pixels within an image.
Truecolor
An image representation in which pixel colors are defined by
storing three samples for each pixel, representing red, green, and
blue intensities respectively. PNG also permits an alpha sample
to be stored for each pixel of a truecolor image.
White point
The chromaticity of a computer display's nominal white value.
zlib
A particular format for data that has been compressed using
deflate-style compression. Also the name of a library
implementing this method. PNG implementations need not use the
zlib library, but they must conform to its format for compressed
data.
12. Appendix: Rationale
(This appendix is not part of the formal PNG specification.)
This appendix gives the reasoning behind some of the design decisions
in PNG. Many of these decisions were the subject of considerable
debate. The authors freely admit that another group might have made
different decisions; however, we believe that our choices are
defensible and consistent.
12.1. Why a new file format?
Does the world really need yet another graphics format? We
believe so. GIF is no longer freely usable, but no other commonly
used format can directly replace it, as is discussed in more
detail below. We might have used an adaptation of an existing
format, for example GIF with an unpatented compression scheme.
But this would require new code anyway; it would not be all that
much easier to implement than a whole new file format. (PNG is
designed to be simple to implement, with the exception of the
compression engine, which would be needed in any case.) We feel
that this is an excellent opportunity to design a new format that
fixes some of the known limitations of GIF.
Boutell, et. al. Informational [Page 69]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
12.2. Why these features?
The features chosen for PNG are intended to address the needs of
applications that previously used the special strengths of GIF.
In particular, GIF is well adapted for online communications
because of its streamability and progressive display capability.
PNG shares those attributes.
We have also addressed some of the widely known shortcomings of
GIF. In particular, PNG supports truecolor images. We know of no
widely used image format that losslessly compresses truecolor
images as effectively as PNG does. We hope that PNG will make use
of truecolor images more practical and widespread.
Some form of transparency control is desirable for applications in
which images are displayed against a background or together with
other images. GIF provided a simple transparent-color
specification for this purpose. PNG supports a full alpha channel
as well as transparent-color specifications. This allows both
highly flexible transparency and compression efficiency.
Robustness against transmission errors has been an important
consideration. For example, images transferred across Internet
are often mistakenly processed as text, leading to file
corruption. PNG is designed so that such errors can be detected
quickly and reliably.
PNG has been expressly designed not to be completely dependent on
a single compression technique. Although deflate/inflate
compression is mentioned in this document, PNG would still exist
without it.
12.3. Why not these features?
Some features have been deliberately omitted from PNG. These
choices were made to simplify implementation of PNG, promote
portability and interchangeability, and make the format as simple
and foolproof as possible for users. In particular:
Boutell, et. al. Informational [Page 70]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
* There is no uncompressed variant of PNG. It is possible to
store uncompressed data by using only uncompressed deflate
blocks (a feature normally used to guarantee that deflate
does not make incompressible data much larger). However,
PNG software must support full deflate/inflate; any software
that does not is not compliant with the PNG standard. The
two most important features of PNG---portability and
compression---are absolute requirements for online
applications, and users demand them. Failure to support full
deflate/inflate compromises both of these objectives.
* There is no lossy compression in PNG. Existing formats such
as JFIF already handle lossy compression well. Furthermore,
available lossy compression methods (e.g., JPEG) are far
from foolproof --- a poor choice of quality level can ruin
an image. To avoid user confusion and unintentional loss of
information, we feel it is best to keep lossy and lossless
formats strictly separate. Also, lossy compression is
complex to implement. Adding JPEG support to a PNG decoder
might increase its size by an order of magnitude. This
would certainly cause some decoders to omit support for the
feature, which would destroy our goal of interchangeability.
* There is no support for CMYK or other unusual color spaces.
Again, this is in the name of promoting portability. CMYK,
in particular, is far too device-dependent to be useful as a
portable image representation.
* There is no standard chunk for thumbnail views of images.
In discussions with software vendors who use thumbnails in
their products, it has become clear that most would not use
a "standard" thumbnail chunk. For one thing, every vendor
has a different idea of what the dimensions and
characteristics of a thumbnail ought to be. Also, some
vendors keep thumbnails in separate files to accommodate
varied image formats; they are not going to stop doing that
simply because of a thumbnail chunk in one new format.
Proprietary chunks containing vendor-specific thumbnails
appear to be more practical than a common thumbnail format.
It is worth noting that private extensions to PNG could easily add
these features. We will not, however, include them as part of the
basic PNG standard.
Boutell, et. al. Informational [Page 71]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
PNG also does not support multiple images in one file. This
restriction is a reflection of the reality that many applications
do not need and will not support multiple images per file. In any
case, single images are a fundamentally different sort of object
from sequences of images. Rather than make false promises of
interchangeability, we have drawn a clear distinction between
single-image and multi-image formats. PNG is a single-image
format. (But see Multiple-image extension, Section 8.4.)
12.4. Why not use format X?
Numerous existing formats were considered before deciding to
develop PNG. None could meet the requirements we felt were
important for PNG.
GIF is no longer suitable as a universal standard because of legal
entanglements. Although just replacing GIF's compression method
would avoid that problem, GIF does not support truecolor images,
alpha channels, or gamma correction. The spec has more subtle
problems too. Only a small subset of the GIF89 spec is actually
portable across a variety of implementations, but there is no
codification of the most portable part of the spec.
TIFF is far too complex to meet our goals of simplicity and
interchangeability. Defining a TIFF subset would meet that
objection, but would frustrate users making the reasonable
assumption that a file saved as TIFF from their existing software
would load into a program supporting our flavor of TIFF.
Furthermore, TIFF is not designed for stream processing, has no
provision for progressive display, and does not currently provide
any good, legally unencumbered, lossless compression method.
IFF has also been suggested, but is not suitable in detail:
available image representations are too machine-specific or not
adequately compressed. The overall chunk structure of IFF is a
useful concept that PNG has liberally borrowed from, but we did
not attempt to be bit-for-bit compatible with IFF chunk structure.
Again this is due to detailed issues, notably the fact that IFF
FORMs are not designed to be serially writable.
Lossless JPEG is not suitable because it does not provide for the
storage of indexed-color images. Furthermore, its lossless
truecolor compression is often inferior to that of PNG.
Boutell, et. al. Informational [Page 72]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
12.5. Byte order
It has been asked why PNG uses network byte order. We have
selected one byte ordering and used it consistently. Which order
in particular is of little relevance, but network byte order has
the advantage that routines to convert to and from it are already
available on any platform that supports TCP/IP networking,
including all PC platforms. The functions are trivial and will be
included in the reference implementation.
12.6. Interlacing
PNG's two-dimensional interlacing scheme is more complex to
implement than GIF's line-wise interlacing. It also costs a
little more in file size. However, it yields an initial image
eight times faster than GIF (the first pass transmits only 1/64th
of the pixels, compared to 1/8th for GIF). Although this initial
image is coarse, it is useful in many situations. For example, if
the image is a World Wide Web imagemap that the user has seen
before, PNG's first pass is often enough to determine where to
click. The PNG scheme also looks better than GIF's, because
horizontal and vertical resolution never differ by more than a
factor of two; this avoids the odd "stretched" look seen when
interlaced GIFs are filled in by replicating scanlines.
Preliminary results show that small text in an interlaced PNG
image is typically readable about twice as fast as in an
equivalent GIF, i.e., after PNG's fifth pass or 25% of the image
data, instead of after GIF's third pass or 50%. This is again due
to PNG's more balanced increase in resolution.
12.7. Why gamma?
It might seem natural to standardize on storing sample values that
are linearly proportional to light intensity (that is, have gamma
of 1.0). But in fact, it is common for images to have a gamma of
less than 1. There are three good reasons for this:
* For reasons detailed in Gamma Tutorial (Chapter 13), all
video cameras apply a "gamma correction" function to the
intensity information. This causes the video signal to have
a gamma of about 0.5 relative to the light intensity in the
original scene. Thus, images obtained by frame-grabbing
video already have a gamma of about 0.5.
* The human eye has a nonlinear response to intensity, so
linear encoding of samples either wastes sample codes in
bright areas of the image, or provides too few sample codes
to avoid banding artifacts in dark areas of the image, or
both. At least 12 bits per sample are needed to avoid
Boutell, et. al. Informational [Page 73]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
visible artifacts in linear encoding with a 100:1 image
intensity range. An image gamma in the range 0.3 to 0.5
allocates sample values in a way that roughly corresponds to
the eye's response, so that 8 bits/sample are enough to
avoid artifacts caused by insufficient sample precision in
almost all images. This makes "gamma encoding" a much
better way of storing digital images than the simpler linear
encoding.
* Many images are created on PCs or workstations with no gamma
correction hardware and no software willing to provide gamma
correction either. In these cases, the images have had
their lighting and color chosen to look best on this
platform --- they can be thought of as having "manual" gamma
correction built in. To see what the image author intended,
it is necessary to treat such images as having a file_gamma
value in the range 0.4-0.6, depending on the room lighting
level that the author was working in.
In practice, image gamma values around 1.0 and around 0.5 are both
widely found. Older image standards such as GIF often do not
account for this fact. The JFIF standard specifies that images in
that format should use linear samples, but many JFIF images found
on the Internet actually have a gamma somewhere near 0.4 or 0.5.
The variety of images found and the variety of systems that people
display them on have led to widespread problems with images
appearing "too dark" or "too light".
PNG expects viewers to compensate for image gamma at the time that
the image is displayed. Another possible approach is to expect
encoders to convert all images to a uniform gamma at encoding
time. While that method would speed viewers slightly, it has
fundamental flaws:
* Gamma correction is inherently lossy due to quantization and
roundoff error. Requiring conversion at encoding time thus
causes irreversible loss. Since PNG is intended to be a
lossless storage format, this is undesirable; we should
store unmodified source data.
* The encoder might not know the source gamma value. If the
decoder does gamma correction at viewing time, it can adjust
the gamma (change the displayed brightness) in response to
feedback from a human user. The encoder has no such
recourse.
* Whatever "standard" gamma we settled on would be wrong for
some displays. Hence viewers would still need gamma
correction capability.
Boutell, et. al. Informational [Page 74]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
Since there will always be images with no gamma or an incorrect
recorded gamma, good viewers will need to incorporate gamma
adjustment code anyway. Gamma correction at viewing time is thus
the right way to go.
See Gamma Tutorial (Chapter 13) for more information.
12.8. Non-premultiplied alpha
PNG uses "unassociated" or "non-premultiplied" alpha so that
images with separate transparency masks can be stored losslessly.
Another common technique, "premultiplied alpha", stores pixel
values premultiplied by the alpha fraction; in effect, the image
is already composited against a black background. Any image data
hidden by the transparency mask is irretrievably lost by that
method, since multiplying by a zero alpha value always produces
zero.
Some image rendering techniques generate images with premultiplied
alpha (the alpha value actually represents how much of the pixel
is covered by the image). This representation can be converted to
PNG by dividing the sample values by alpha, except where alpha is
zero. The result will look good if displayed by a viewer that
handles alpha properly, but will not look very good if the viewer
ignores the alpha channel.
Although each form of alpha storage has its advantages, we did not
want to require all PNG viewers to handle both forms. We
standardized on non-premultiplied alpha as being the lossless and
more general case.
12.9. Filtering
PNG includes filtering capability because filtering can
significantly reduce the compressed size of truecolor and
grayscale images. Filtering is also sometimes of value on
indexed-color images, although this is less common.
The filter algorithms are defined to operate on bytes, rather than
pixels; this gains simplicity and speed with very little cost in
compression performance. Tests have shown that filtering is
usually ineffective for images with fewer than 8 bits per sample,
so providing pixelwise filtering for such images would be
pointless. For 16 bit/sample data, bytewise filtering is nearly
as effective as pixelwise filtering, because MSBs are predicted
from adjacent MSBs, and LSBs are predicted from adjacent LSBs.
Boutell, et. al. Informational [Page 75]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
The encoder is allowed to change filters for each new scanline.
This creates no additional complexity for decoders, since a
decoder is required to contain defiltering logic for every filter
type anyway. The only cost is an extra byte per scanline in the
pre-compression datastream. Our tests showed that when the same
filter is selected for all scanlines, this extra byte compresses
away to almost nothing, so there is little storage cost compared
to a fixed filter specified for the whole image. And the
potential benefits of adaptive filtering are too great to ignore.
Even with the simplistic filter-choice heuristics so far
discovered, adaptive filtering usually outperforms fixed filters.
In particular, an adaptive filter can change behavior for
successive passes of an interlaced image; a fixed filter cannot.
12.10. Text strings
Most graphics file formats include the ability to store some
textual information along with the image. But many applications
need more than that: they want to be able to store several
identifiable pieces of text. For example, a database using PNG
files to store medical X-rays would likely want to include
patient's name, doctor's name, etc. A simple way to do this in
PNG would be to invent new private chunks holding text. The
disadvantage of such an approach is that other applications would
have no idea what was in those chunks, and would simply ignore
them. Instead, we recommend that textual information be stored in
standard tEXt chunks with suitable keywords. Use of tEXt tells
any PNG viewer that the chunk contains text that might be of
interest to a human user. Thus, a person looking at the file with
another viewer will still be able to see the text, and even
understand what it is if the keywords are reasonably self-
explanatory. (To this end, we recommend spelled-out keywords, not
abbreviations that will be hard for a person to understand.
Saving a few bytes on a keyword is false economy.)
The ISO 8859-1 (Latin-1) character set was chosen as a compromise
between functionality and portability. Some platforms cannot
display anything more than 7-bit ASCII characters, while others
can handle characters beyond the Latin-1 set. We felt that
Latin-1 represents a widely useful and reasonably portable
character set. Latin-1 is a direct subset of character sets
commonly used on popular platforms such as Microsoft Windows and X
Windows. It can also be handled on Macintosh systems with a
simple remapping of characters.
There is presently no provision for text employing character sets
other than Latin-1. We recognize that the need for other character
sets will increase. However, PNG already requires that
Boutell, et. al. Informational [Page 76]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
programmers implement a number of new and unfamiliar features, and
text representation is not PNG's primary purpose. Since PNG
provides for the creation and public registration of new ancillary
chunks of general interest, we expect that text chunks for other
character sets, such as Unicode, eventually will be registered and
increase gradually in popularity.
12.11. PNG file signature
The first eight bytes of a PNG file always contain the following
values:
(decimal) 137 80 78 71 13 10 26 10
(hexadecimal) 89 50 4e 47 0d 0a 1a 0a
(ASCII C notation) \211 P N G \r \n \032 \n
This signature both identifies the file as a PNG file and provides
for immediate detection of common file-transfer problems. The
first two bytes distinguish PNG files on systems that expect the
first two bytes to identify the file type uniquely. The first
byte is chosen as a non-ASCII value to reduce the probability that
a text file may be misrecognized as a PNG file; also, it catches
bad file transfers that clear bit 7. Bytes two through four name
the format. The CR-LF sequence catches bad file transfers that
alter newline sequences. The control-Z character stops file
display under MS-DOS. The final line feed checks for the inverse
of the CR-LF translation problem.
A decoder may further verify that the next eight bytes contain an
IHDR chunk header with the correct chunk length; this will catch
bad transfers that drop or alter null (zero) bytes.
Note that there is no version number in the signature, nor indeed
anywhere in the file. This is intentional: the chunk mechanism
provides a better, more flexible way to handle format extensions,
as explained in Chunk naming conventions (Section 12.13).
12.12. Chunk layout
The chunk design allows decoders to skip unrecognized or
uninteresting chunks: it is simply necessary to skip the
appropriate number of bytes, as determined from the length field.
Limiting chunk length to (2^31)-1 bytes avoids possible problems
for implementations that cannot conveniently handle 4-byte
unsigned values. In practice, chunks will usually be much shorter
than that anyway.
Boutell, et. al. Informational [Page 77]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
A separate CRC is provided for each chunk in order to detect
badly-transferred images as quickly as possible. In particular,
critical data such as the image dimensions can be validated before
being used.
The chunk length is excluded from the CRC so that the CRC can be
calculated as the data is generated; this avoids a second pass
over the data in cases where the chunk length is not known in
advance. Excluding the length from the CRC does not create any
extra risk of failing to discover file corruption, since if the
length is wrong, the CRC check will fail: the CRC will be computed
on the wrong set of bytes and then be tested against the wrong
value from the file.
12.13. Chunk naming conventions
The chunk naming conventions allow safe, flexible extension of the
PNG format. This mechanism is much better than a format version
number, because it works on a feature-by-feature basis rather than
being an overall indicator. Decoders can process newer files if
and only if the files use no unknown critical features (as
indicated by finding unknown critical chunks). Unknown ancillary
chunks can be safely ignored. We decided against having an
overall format version number because experience has shown that
format version numbers hurt portability as much as they help.
Version numbers tend to be set unnecessarily high, leading to
older decoders rejecting files that they could have processed
(this was a serious problem for several years after the GIF89 spec
came out, for example). Furthermore, private extensions can be
made either critical or ancillary, and standard decoders should
react appropriately; overall version numbers are no help for
private extensions.
A hypothetical chunk for vector graphics would be a critical
chunk, since if ignored, important parts of the intended image
would be missing. A chunk carrying the Mandelbrot set coordinates
for a fractal image would be ancillary, since other applications
could display the image without understanding what the image
represents. In general, a chunk type should be made critical only
if it is impossible to display a reasonable representation of the
intended image without interpreting that chunk.
Boutell, et. al. Informational [Page 78]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
The public/private property bit ensures that any newly defined
public chunk type name cannot conflict with proprietary chunks
that could be in use somewhere. However, this does not protect
users of private chunk names from the possibility that someone
else may use the same chunk name for a different purpose. It is a
good idea to put additional identifying information at the start
of the data for any private chunk type.
When a PNG file is modified, certain ancillary chunks may need to
be changed to reflect changes in other chunks. For example, a
histogram chunk needs to be changed if the image data changes. If
the file editor does not recognize histogram chunks, copying them
blindly to a new output file is incorrect; such chunks should be
dropped. The safe/unsafe property bit allows ancillary chunks to
be marked appropriately.
Not all possible modification scenarios are covered by the
safe/unsafe semantics. In particular, chunks that are dependent
on the total file contents are not supported. (An example of such
a chunk is an index of IDAT chunk locations within the file:
adding a comment chunk would inadvertently break the index.)
Definition of such chunks is discouraged. If absolutely necessary
for a particular application, such chunks can be made critical
chunks, with consequent loss of portability to other applications.
In general, ancillary chunks can depend on critical chunks but not
on other ancillary chunks. It is expected that mutually dependent
information should be put into a single chunk.
In some situations it may be unavoidable to make one ancillary
chunk dependent on another. Although the chunk property bits are
insufficient to represent this case, a simple solution is
available: in the dependent chunk, record the CRC of the chunk
depended on. It can then be determined whether that chunk has
been changed by some other program.
The same technique can be useful for other purposes. For example,
if a program relies on the palette being in a particular order, it
can store a private chunk containing the CRC of the PLTE chunk.
If this value matches when the file is again read in, then it
provides high confidence that the palette has not been tampered
with. Note that it is not necessary to mark the private chunk
unsafe-to-copy when this technique is used; thus, such a private
chunk can survive other editing of the file.
Boutell, et. al. Informational [Page 79]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
12.14. Palette histograms
A viewer may not be able to provide as many colors as are listed
in the image's palette. (For example, some colors could be
reserved by a window system.) To produce the best results in this
situation, it is helpful to have information about the frequency
with which each palette index actually appears, in order to choose
the best palette for dithering or to drop the least-used colors.
Since images are often created once and viewed many times, it
makes sense to calculate this information in the encoder, although
it is not mandatory for the encoder to provide it.
Other image formats have usually addressed this problem by
specifying that the palette entries should appear in order of
frequency of use. That is an inferior solution, because it
doesn't give the viewer nearly as much information: the viewer
can't determine how much damage will be done by dropping the last
few colors. Nor does a sorted palette give enough information to
choose a target palette for dithering, in the case that the viewer
needs to reduce the number of colors substantially. A palette
histogram provides the information needed to choose such a target
palette without making a pass over the image data.
Boutell, et. al. Informational [Page 80]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
13. Appendix: Gamma Tutorial
(This appendix is not part of the formal PNG specification.)
It would be convenient for graphics programmers if all of the
components of an imaging system were linear. The voltage coming from
an electronic camera would be directly proportional to the intensity
(power) of light in the scene, the light emitted by a CRT would be
directly proportional to its input voltage, and so on. However,
real-world devices do not behave in this way. All CRT displays,
almost all photographic film, and many electronic cameras have
nonlinear signal-to-light-intensity or intensity-to-signal
characteristics.
Fortunately, all of these nonlinear devices have a transfer function
that is approximated fairly well by a single type of mathematical
function: a power function. This power function has the general
equation
output = input ^ gamma
where ^ denotes exponentiation, and "gamma" (often printed using the
Greek letter gamma, thus the name) is simply the exponent of the
power function.
By convention, "input" and "output" are both scaled to the range
0..1, with 0 representing black and 1 representing maximum white (or
red, etc). Normalized in this way, the power function is completely
described by a single number, the exponent "gamma".
So, given a particular device, we can measure its output as a
function of its input, fit a power function to this measured transfer
function, extract the exponent, and call it gamma. We often say
"this device has a gamma of 2.5" as a shorthand for "this device has
a power-law response with an exponent of 2.5". We can also talk
about the gamma of a mathematical transform, or of a lookup table in
a frame buffer, so long as the input and output of the thing are
related by the power-law expression above.
How do gammas combine?
Real imaging systems will have several components, and more than
one of these can be nonlinear. If all of the components have
transfer characteristics that are power functions, then the
transfer function of the entire system is also a power function.
The exponent (gamma) of the whole system's transfer function is
just the product of all of the individual exponents (gammas) of
the separate stages in the system.
Boutell, et. al. Informational [Page 81]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
Also, stages that are linear pose no problem, since a power
function with an exponent of 1.0 is really a linear function. So
a linear transfer function is just a special case of a power
function, with a gamma of 1.0.
Thus, as long as our imaging system contains only stages with
linear and power-law transfer functions, we can meaningfully talk
about the gamma of the entire system. This is indeed the case
with most real imaging systems.
What should overall gamma be?
If the overall gamma of an imaging system is 1.0, its output is
linearly proportional to its input. This means that the ratio
between the intensities of any two areas in the reproduced image
will be the same as it was in the original scene. It might seem
that this should always be the goal of an imaging system: to
accurately reproduce the tones of the original scene. Alas, that
is not the case.
When the reproduced image is to be viewed in "bright surround"
conditions, where other white objects nearby in the room have
about the same brightness as white in the image, then an overall
gamma of 1.0 does indeed give real-looking reproduction of a
natural scene. Photographic prints viewed under room light and
computer displays in bright room light are typical "bright
surround" viewing conditions.
However, sometimes images are intended to be viewed in "dark
surround" conditions, where the room is substantially black except
for the image. This is typical of the way movies and slides
(transparencies) are viewed by projection. Under these
circumstances, an accurate reproduction of the original scene
results in an image that human viewers judge as "flat" and lacking
in contrast. It turns out that the projected image needs to have
a gamma of about 1.5 relative to the original scene for viewers to
judge it "natural". Thus, slide film is designed to have a gamma
of about 1.5, not 1.0.
There is also an intermediate condition called "dim surround",
where the rest of the room is still visible to the viewer, but is
noticeably darker than the reproduced image itself. This is
typical of television viewing, at least in the evening, as well as
subdued-light computer work areas. In dim surround conditions,
the reproduced image needs to have a gamma of about 1.25 relative
to the original scene in order to look natural.
Boutell, et. al. Informational [Page 82]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
The requirement for boosted contrast (gamma) in dark surround
conditions is due to the way the human visual system works, and
applies equally well to computer monitors. Thus, a PNG viewer
trying to achieve the maximum realism for the images it displays
really needs to know what the room lighting conditions are, and
adjust the gamma of the displayed image accordingly.
If asking the user about room lighting conditions is inappropriate
or too difficult, just assume that the overall gamma
(viewing_gamma as defined below) should be 1.0 or 1.25. That's
all that most systems that implement gamma correction do.
What is a CRT's gamma?
All CRT displays have a power-law transfer characteristic with a
gamma of about 2.5. This is due to the physical processes
involved in controlling the electron beam in the electron gun, and
has nothing to do with the phosphor.
An exception to this rule is fancy "calibrated" CRTs that have
internal electronics to alter their transfer function. If you
have one of these, you probably should believe what the
manufacturer tells you its gamma is. But in all other cases,
assuming 2.5 is likely to be pretty accurate.
There are various images around that purport to measure gamma,
usually by comparing the intensity of an area containing
alternating white and black with a series of areas of continuous
gray of different intensity. These are usually not reliable.
Test images that use a "checkerboard" pattern of black and white
are the worst, because a single white pixel will be reproduced
considerably darker than a large area of white. An image that
uses alternating black and white horizontal lines (such as the
"gamma.png" test image at
ftp://ftp.uu.net/graphics/png/images/suite/gamma.png) is much
better, but even it may be inaccurate at high "picture" settings
on some CRTs.
If you have a good photometer, you can measure the actual light
output of a CRT as a function of input voltage and fit a power
function to the measurements. However, note that this procedure
is very sensitive to the CRT's black level adjustment, somewhat
sensitive to its picture adjustment, and also affected by ambient
light. Furthermore, CRTs spread some light from bright areas of
an image into nearby darker areas; a single bright spot against a
black background may be seen to have a "halo". Your measuring
technique will need to minimize the effects of this.
Boutell, et. al. Informational [Page 83]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
Because of the difficulty of measuring gamma, using either test
images or measuring equipment, you're usually better off just
assuming gamma is 2.5 rather than trying to measure it.
What is gamma correction?
A CRT has a gamma of 2.5, and we can't change that. To get an
overall gamma of 1.0 (or somewhere near that) for an imaging
system, we need to have at least one other component of the "image
pipeline" that is nonlinear. If, in fact, there is only one
nonlinear stage in addition to the CRT, then it's traditional to
say that the CRT has a certain gamma, and that the other nonlinear
stage provides "gamma correction" to compensate for the CRT.
However, exactly where the "correction" is done depends on
circumstance.
In all broadcast video systems, gamma correction is done in the
camera. This choice was made in the days when television
electronics were all analog, and a good gamma-correction circuit
was expensive to build. The original NTSC video standard required
cameras to have a transfer function with a gamma of 1/2.2, or
about 0.45. Recently, a more complex two-part transfer function
has been adopted [SMPTE-170M], but its behavior can be well
approximated by a power function with a gamma of 0.5. When the
resulting image is displayed on a CRT with a gamma of 2.5, the
image on screen ends up with a gamma of about 1.25 relative to the
original scene, which is appropriate for "dim surround" viewing.
These days, video signals are often digitized and stored in
computer frame buffers. This works fine, but remember that gamma
correction is "built into" the video signal, and so the digitized
video has a gamma of about 0.5 relative to the original scene.
Computer rendering programs often produce linear samples. To
display these correctly, intensity on the CRT needs to be directly
proportional to the sample values in the frame buffer. This can
be done with a special hardware lookup table between the frame
buffer and the CRT hardware. The lookup table (often called LUT)
is loaded with a mapping that implements a power function with a
gamma of 0.4, thus providing "gamma correction" for the CRT gamma.
Thus, gamma correction sometimes happens before the frame buffer,
sometimes after. As long as images created in a particular
environment are always displayed in that environment, everything
is fine. But when people try to exchange images, differences in
gamma correction conventions often result in images that seem far
too bright and washed out, or far too dark and contrasty.
Boutell, et. al. Informational [Page 84]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
Gamma-encoded samples are good
So, is it better to do gamma correction before or after the frame
buffer?
In an ideal world, sample values would be stored in floating
point, there would be lots of precision, and it wouldn't really
matter much. But in reality, we're always trying to store images
in as few bits as we can.
If we decide to use samples that are linearly proportional to
intensity, and do the gamma correction in the frame buffer LUT, it
turns out that we need to use at least 12 bits for each of red,
green, and blue to have enough precision in intensity. With any
less than that, we will sometimes see "contour bands" or "Mach
bands" in the darker areas of the image, where two adjacent sample
values are still far enough apart in intensity for the difference
to be visible.
However, through an interesting coincidence, the human eye's
subjective perception of brightness is related to the physical
stimulation of light intensity in a manner that is very much like
the power function used for gamma correction. If we apply gamma
correction to measured (or calculated) light intensity before
quantizing to an integer for storage in a frame buffer, we can get
away with using many fewer bits to store the image. In fact, 8
bits per color is almost always sufficient to avoid contouring
artifacts. This is because, since gamma correction is so closely
related to human perception, we are assigning our 256 available
sample codes to intensity values in a manner that approximates how
visible those intensity changes are to the eye. Compared to a
linear-sample image, we allocate fewer sample values to brighter
parts of the tonal range and more sample values to the darker
portions of the tonal range.
Thus, for the same apparent image quality, images using gamma-
encoded sample values need only about two-thirds as many bits of
storage as images using linear samples.
Boutell, et. al. Informational [Page 85]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
General gamma handling
When more than two nonlinear transfer functions are involved in
the image pipeline, the term "gamma correction" becomes too vague.
If we consider a pipeline that involves capturing (or calculating)
an image, storing it in an image file, reading the file, and
displaying the image on some sort of display screen, there are at
least 5 places in the pipeline that could have nonlinear transfer
functions. Let's give each a specific name for their
characteristic gamma:
camera_gamma
the characteristic of the image sensor
encoding_gamma
the gamma of any transformation performed by the software
writing the image file
decoding_gamma
the gamma of any transformation performed by the software
reading the image file
LUT_gamma
the gamma of the frame buffer LUT, if present
CRT_gamma
the gamma of the CRT, generally 2.5
In addition, let's add a few other names:
file_gamma
the gamma of the image in the file, relative to the original
scene. This is
file_gamma = camera_gamma * encoding_gamma
display_gamma
the gamma of the "display system" downstream of the frame
buffer. This is
display_gamma = LUT_gamma * CRT_gamma
viewing_gamma
the overall gamma that we want to obtain to produce pleasing
images --- generally 1.0 to 1.5.
Boutell, et. al. Informational [Page 86]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
The file_gamma value, as defined above, is what goes in the gAMA
chunk in a PNG file. If file_gamma is not 1.0, we know that gamma
correction has been done on the sample values in the file, and we
could call them "gamma corrected" samples. However, since there
can be so many different values of gamma in the image display
chain, and some of them are not known at the time the image is
written, the samples are not really being "corrected" for a
specific display condition. We are really using a power function
in the process of encoding an intensity range into a small integer
field, and so it is more correct to say "gamma encoded" samples
instead of "gamma corrected" samples.
When displaying an image file, the image decoding program is
responsible for making the overall gamma of the system equal to
the desired viewing_gamma, by selecting the decoding_gamma
appropriately. When displaying a PNG file, the gAMA chunk
provides the file_gamma value. The display_gamma may be known for
this machine, or it might be obtained from the system software, or
the user might have to be asked what it is. The correct
viewing_gamma depends on lighting conditions, and that will
generally have to come from the user.
Ultimately, you should have
file_gamma * decoding_gamma * display_gamma = viewing_gamma
Some specific examples
In digital video systems, camera_gamma is about 0.5 by declaration
of the various video standards documents. CRT_gamma is 2.5 as
usual, while encoding_gamma, decoding_gamma, and LUT_gamma are all
1.0. As a result, viewing_gamma ends up being about 1.25.
On frame buffers that have hardware gamma correction tables, and
that are calibrated to display linear samples correctly,
display_gamma is 1.0.
Many workstations and X terminals and PC displays lack gamma
correction lookup tables. Here, LUT_gamma is always 1.0, so
display_gamma is 2.5.
Boutell, et. al. Informational [Page 87]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
On the Macintosh, there is a LUT. By default, it is loaded with a
table whose gamma is about 0.72, giving a display_gamma (LUT and
CRT combined) of about 1.8. Some Macs have a "Gamma" control
panel that allows gamma to be changed to 1.0, 1.2, 1.4, 1.8, or
2.2. These settings load alternate LUTs that are designed to give
a display_gamma that is equal to the label on the selected button.
Thus, the "Gamma" control panel setting can be used directly as
display_gamma in decoder calculations.
On recent SGI systems, there is a hardware gamma-correction table
whose contents are controlled by the (privileged) "gamma" program.
The gamma of the table is actually the reciprocal of the number
that "gamma" prints, and it does not include the CRT gamma. To
obtain the display_gamma, you need to find the SGI system gamma
(either by looking in a file, or asking the user) and then
calculating
display_gamma = 2.5 / SGI_system_gamma
You will find SGI systems with the system gamma set to 1.0 and 2.2
(or higher), but the default when machines are shipped is 1.7.
A note about video gamma
The original NTSC video standards specified a simple power-law
camera transfer function with a gamma of 1/2.2 or 0.45. This is
not possible to implement exactly in analog hardware because the
function has infinite slope at x=0, so all cameras deviated to
some degree from this ideal. More recently, a new camera transfer
function that is physically realizable has been accepted as a
standard [SMPTE-170M]. It is
Vout = 4.5 * Vin if Vin < 0.018
Vout = 1.099 * (Vin^0.45) - 0.099 if Vin >= 0.018
where Vin and Vout are measured on a scale of 0 to 1. Although
the exponent remains 0.45, the multiplication and subtraction
change the shape of the transfer function, so it is no longer a
pure power function. If you want to perform extremely precise
calculations on video signals, you should use the expression above
(or its inverse, as required).
However, PNG does not provide a way to specify that an image uses
this exact transfer function; the gAMA chunk always assumes a pure
power-law function. If we plot the two-part transfer function
above along with the family of pure power functions, we find that
a power function with a gamma of about 0.5 to 0.52 (not 0.45) most
closely approximates the transfer function. Thus, when writing a
Boutell, et. al. Informational [Page 88]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
PNG file with data obtained from digitizing the output of a modern
video camera, the gAMA chunk should contain 0.5 or 0.52, not 0.45.
The remaining difference between the true transfer function and
the power function is insignificant for almost all purposes. (In
fact, the alignment errors in most cameras are likely to be larger
than the difference between these functions.) The designers of
PNG deemed the simplicity and flexibility of a power-law
definition of gAMA to be more important than being able to
describe the SMPTE-170M transfer curve exactly.
The PAL and SECAM video standards specify a power-law camera
transfer function with a gamma of 1/2.8 or 0.36 --- not the 1/2.2
of NTSC. However, this is too low in practice, so real cameras
are likely to have their gamma set close to NTSC practice. Just
guessing 0.45 or 0.5 is likely to give you viewable results, but
if you want precise values you'll probably have to measure the
particular camera.
Further reading
If you have access to the World Wide Web, read Charles Poynton's
excellent "Gamma FAQ" [GAMMA-FAQ] for more information about
gamma.
14. Appendix: Color Tutorial
(This appendix is not part of the formal PNG specification.)
About chromaticity
The cHRM chunk is used, together with the gAMA chunk, to convey
precise color information so that a PNG image can be displayed or
printed with better color fidelity than is possible without this
information. The preceding chapters state how this information is
encoded in a PNG image. This tutorial briefly outlines the
underlying color theory for those who might not be familiar with
it.
Note that displaying an image with incorrect gamma will produce
much larger color errors than failing to use the chromaticity
data. First be sure the monitor set-up and gamma correction are
right, then worry about chromaticity.
The problem
The color of an object depends not only on the precise spectrum of
light emitted or reflected from it, but also on the observer ---
their species, what else they can see at the same time, even what
Boutell, et. al. Informational [Page 89]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
they have recently looked at! Furthermore, two very different
spectra can produce exactly the same color sensation. Color is
not an objective property of real-world objects; it is a
subjective, biological sensation. However, by making some
simplifying assumptions (such as: we are talking about human
vision) it is possible to produce a mathematical model of color
and thereby obtain good color accuracy.
Device-dependent color
Display the same RGB data on three different monitors, side by
side, and you will get a noticeably different color balance on
each display. This is because each monitor emits a slightly
different shade and intensity of red, green, and blue light. RGB
is an example of a device-dependent color model --- the color you
get depends on the device. This also means that a particular
color --- represented as say RGB 87, 146, 116 on one monitor ---
might have to be specified as RGB 98, 123, 104 on another to
produce the same color.
Device-independent color
A full physical description of a color would require specifying
the exact spectral power distribution of the light source.
Fortunately, the human eye and brain are not so sensitive as to
require exact reproduction of a spectrum. Mathematical, device-
independent color models exist that describe fairly well how a
particular color will be seen by humans. The most important
device-independent color model, to which all others can be
related, was developed by the International Lighting Committee
(CIE, in French) and is called XYZ.
In XYZ, X is the sum of a weighted power distribution over the
whole visible spectrum. So are Y and Z, each with different
weights. Thus any arbitrary spectral power distribution is
condensed down to just three floating point numbers. The weights
were derived from color matching experiments done on human
subjects in the 1920s. CIE XYZ has been an International Standard
since 1931, and it has a number of useful properties:
* two colors with the same XYZ values will look the same to
humans
* two colors with different XYZ values will not look the same
* the Y value represents all the brightness information
(luminance)
* the XYZ color of any object can be objectively measured
Boutell, et. al. Informational [Page 90]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
Color models based on XYZ have been used for many years by people
who need accurate control of color --- lighting engineers for film
and TV, paint and dyestuffs manufacturers, and so on. They are
thus proven in industrial use. Accurate, device-independent color
started to spread from high-end, specialized areas into the
mainstream during the late 1980s and early 1990s, and PNG takes
notice of that trend.
Calibrated, device-dependent color
Traditionally, image file formats have used uncalibrated, device-
dependent color. If the precise details of the original display
device are known, it becomes possible to convert the device-
dependent colors of a particular image to device-independent ones.
Making simplifying assumptions, such as working with CRTs (which
are much easier than printers), all we need to know are the XYZ
values of each primary color and the CRT_gamma.
So why does PNG not store images in XYZ instead of RGB? Well, two
reasons. First, storing images in XYZ would require more bits of
precision, which would make the files bigger. Second, all
programs would have to convert the image data before viewing it.
Whether calibrated or not, all variants of RGB are close enough
that undemanding viewers can get by with simply displaying the
data without color correction. By storing calibrated RGB, PNG
retains compatibility with existing programs that expect RGB data,
yet provides enough information for conversion to XYZ in
applications that need precise colors. Thus, we get the best of
both worlds.
What are chromaticity and luminance?
Chromaticity is an objective measurement of the color of an
object, leaving aside the brightness information. Chromaticity
uses two parameters x and y, which are readily calculated from
XYZ:
x = X / (X + Y + Z)
y = Y / (X + Y + Z)
XYZ colors having the same chromaticity values will appear to have
the same hue but can vary in absolute brightness. Notice that x,y
are dimensionless ratios, so they have the same values no matter
what units we've used for X,Y,Z.
Boutell, et. al. Informational [Page 91]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
The Y value of an XYZ color is directly proportional to its
absolute brightness and is called the luminance of the color. We
can describe a color either by XYZ coordinates or by chromaticity
x,y plus luminance Y. The XYZ form has the advantage that it is
linearly related to (linear, gamma=1.0) RGB color spaces.
How are computer monitor colors described?
The "white point" of a monitor is the chromaticity x,y of the
monitor's nominal white, that is, the color produced when
R=G=B=maximum.
It's customary to specify monitor colors by giving the
chromaticities of the individual phosphors R, G, and B, plus the
white point. The white point allows one to infer the relative
brightnesses of the three phosphors, which isn't determined by
their chromaticities alone.
Note that the absolute brightness of the monitor is not specified.
For computer graphics work, we generally don't care very much
about absolute brightness levels. Instead of dealing with
absolute XYZ values (in which X,Y,Z are expressed in physical
units of radiated power, such as candelas per square meter), it is
convenient to work in "relative XYZ" units, where the monitor's
nominal white is taken to have a luminance (Y) of 1.0. Given this
assumption, it's simple to compute XYZ coordinates for the
monitor's white, red, green, and blue from their chromaticity
values.
Why does cHRM use x,y rather than XYZ? Simply because that is how
manufacturers print the information in their spec sheets!
Usually, the first thing a program will do is convert the cHRM
chromaticities into relative XYZ space.
What can I do with it?
If a PNG file has the gAMA and cHRM chunks, the source_RGB values
can be converted to XYZ. This lets you:
* do accurate grayscale conversion (just use the Y component)
* convert to RGB for your own monitor (to see the original
colors)
* print the image in Level 2 PostScript with better color
fidelity than a simple RGB to CMYK conversion could provide
* calculate an optimal color palette
* pass the image data to a color management system
* etc.
Boutell, et. al. Informational [Page 92]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
How do I convert from source_RGB to XYZ?
Make a few simplifying assumptions first, like the monitor really
is jet black with no input and the guns don't interfere with one
another. Then, given that you know the CIE XYZ values for each of
red, green, and blue for a particular monitor, you put them into a
matrix m:
Xr Xg Xb
m = Yr Yg Yb
Zr Zg Zb
Here we assume we are working with linear RGB floating point data
in the range 0..1. If the gamma is not 1.0, make it so on the
floating point data. Then convert source_RGB to XYZ by matrix
multiplication:
X R
Y = m G
Z B
In other words, X = Xr*R + Xg*G + Xb*B, and similarly for Y and Z.
You can go the other way too:
R X
G = im Y
B Z
where im is the inverse of the matrix m.
What is a gamut?
The gamut of a device is the subset of visible colors which that
device can display. (It has nothing to do with gamma.) The gamut
of an RGB device can be visualized as a polyhedron in XYZ space;
the vertices correspond to the device's black, blue, red, green,
magenta, cyan, yellow and white.
Different devices have different gamuts, in other words one device
will be able to display certain colors (usually highly saturated
ones) that another device cannot. The gamut of a particular RGB
device can be determined from its R, G, and B chromaticities and
white point (the same values given in the cHRM chunk). The gamut
of a color printer is more complex and can only be determined by
measurement. However, printer gamuts are typically smaller than
monitor gamuts, meaning that there can be many colors in a
displayable image that cannot physically be printed.
Boutell, et. al. Informational [Page 93]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
Converting image data from one device to another generally results
in gamut mismatches --- colors that cannot be represented exactly
on the destination device. The process of making the colors fit,
which can range from a simple clip to elaborate nonlinear scaling
transformations, is termed gamut mapping. The aim is to produce a
reasonable visual representation of the original image.
Further reading
References [COLOR-1] through [COLOR-5] provide more detail about
color theory.
15. Appendix: Sample CRC Code
The following sample code represents a practical implementation of
the CRC (Cyclic Redundancy Check) employed in PNG chunks. (See also
ISO 3309 [ISO-3309] or ITU-T V.42 [ITU-V42] for a formal
specification.)
The sample code is in the ANSI C programming language. Non C users
may find it easier to read with these hints:
&
Bitwise AND operator.
^
Bitwise exclusive-OR operator. (Caution: elsewhere in this
document, ^ represents exponentiation.)
>>
Bitwise right shift operator. When applied to an unsigned
quantity, as here, right shift inserts zeroes at the left.
!
Logical NOT operator.
++
"n++" increments the variable n.
0xNNN
0x introduces a hexadecimal (base 16) constant. Suffix L
indicates a long value (at least 32 bits).
/* Table of CRCs of all 8-bit messages. */
unsigned long crc_table[256];
/* Flag: has the table been computed? Initially false. */
int crc_table_computed = 0;
Boutell, et. al. Informational [Page 94]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
/* Make the table for a fast CRC. */
void make_crc_table(void)
{
unsigned long c;
int n, k;
for (n = 0; n < 256; n++) {
c = (unsigned long) n;
for (k = 0; k < 8; k++) {
if (c & 1)
c = 0xedb88320L ^ (c >> 1);
else
c = c >> 1;
}
crc_table[n] = c;
}
crc_table_computed = 1;
}
/* Update a running CRC with the bytes buf[0..len-1]--the CRC
should be initialized to all 1's, and the transmitted value
is the 1's complement of the final running CRC (see the
crc() routine below)). */
unsigned long update_crc(unsigned long crc, unsigned char *buf,
int len)
{
unsigned long c = crc;
int n;
if (!crc_table_computed)
make_crc_table();
for (n = 0; n < len; n++) {
c = crc_table[(c ^ buf[n]) & 0xff] ^ (c >> 8);
}
return c;
}
/* Return the CRC of the bytes buf[0..len-1]. */
unsigned long crc(unsigned char *buf, int len)
{
return update_crc(0xffffffffL, buf, len) ^ 0xffffffffL;
}
Boutell, et. al. Informational [Page 95]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
16. Appendix: Online Resources
(This appendix is not part of the formal PNG specification.)
This appendix gives the locations of some Internet resources for PNG
software developers. By the nature of the Internet, the list is
incomplete and subject to change.
Archive sites
The latest released versions of this document and related
information can always be found at the PNG FTP archive site,
ftp://ftp.uu.net/graphics/png/. The PNG specification is
available in several formats, including HTML, plain text, and
PostScript.
Reference implementation and test images
A reference implementation in portable C is available from the PNG
FTP archive site, ftp://ftp.uu.net/graphics/png/src/. The
reference implementation is freely usable in all applications,
including commercial applications.
Test images are available from
ftp://ftp.uu.net/graphics/png/images/.
Electronic mail
The maintainers of the PNG specification can be contacted by e-
mail at png-info@uunet.uu.net or at png-group@w3.org.
PNG home page
There is a World Wide Web home page for PNG at
http://quest.jpl.nasa.gov/PNG/. This page is a central location
for current information about PNG and PNG-related tools.
17. Appendix: Revision History
(This appendix is not part of the formal PNG specification.)
The PNG format has been frozen since the Ninth Draft of March 7,
1995, and all future changes are intended to be backwards compatible.
The revisions since the Ninth Draft are simply clarifications,
improvements in presentation, and additions of supporting material.
On 1 October 1996, the PNG specification was approved as a W3C (World
Wide Web Consortium) Recommendation.
Boutell, et. al. Informational [Page 96]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
Changes since the Tenth Draft of 5 May, 1995
* Clarified meaning of a suggested-palette PLTE chunk in a
truecolor image that uses transparency
* Clarified exact semantics of sBIT and allowed sample depth
scaling procedures
* Clarified status of spaces in tEXt chunk keywords
* Distinguished private and public extension values in type
and method fields
* Added a "Creation Time" tEXt keyword
* Macintosh representation of PNG specified
* Added discussion of security issues
* Added more extensive discussion of gamma and chromaticity
handling, including tutorial appendixes
* Clarified terminology, notably sample depth vs. bit depth
* Added a glossary
* Editing and reformatting
18. References
[COLOR-1]
Hall, Roy, Illumination and Color in Computer Generated Imagery.
Springer-Verlag, New York, 1989. ISBN 0-387-96774-5.
[COLOR-2]
Kasson, J., and W. Plouffe, "An Analysis of Selected Computer
Interchange Color Spaces", ACM Transactions on Graphics, vol 11 no
4 (1992), pp 373-405.
[COLOR-3]
Lilley, C., F. Lin, W.T. Hewitt, and T.L.J. Howard, Colour in
Computer Graphics. CVCP, Sheffield, 1993. ISBN 1-85889-022-5.
Also available from
<URL:http://info.mcc.ac.uk/CGU/ITTI/Col/colour_announce.html>
[COLOR-4]
Stone, M.C., W.B. Cowan, and J.C. Beatty, "Color gamut mapping and
the printing of digital images", ACM Transactions on Graphics, vol
7 no 3 (1988), pp 249-292.
[COLOR-5]
Travis, David, Effective Color Displays --- Theory and Practice.
Academic Press, London, 1991. ISBN 0-12-697690-2.
[GAMMA-FAQ]
Poynton, C., "Gamma FAQ".
<URL:http://www.inforamp.net/%7Epoynton/Poynton-colour.html>
Boutell, et. al. Informational [Page 97]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
[ISO-3309]
International Organization for Standardization, "Information
Processing Systems --- Data Communication High-Level Data Link
Control Procedure --- Frame Structure", IS 3309, October 1984, 3rd
Edition.
[ISO-8859]
International Organization for Standardization, "Information
Processing --- 8-bit Single-Byte Coded Graphic Character Sets ---
Part 1: Latin Alphabet No. 1", IS 8859-1, 1987.
Also see sample files at
ftp://ftp.uu.net/graphics/png/documents/iso_8859-1.*
[ITU-BT709]
International Telecommunications Union, "Basic Parameter Values
for the HDTV Standard for the Studio and for International
Programme Exchange", ITU-R Recommendation BT.709 (formerly CCIR
Rec. 709), 1990.
[ITU-V42]
International Telecommunications Union, "Error-correcting
Procedures for DCEs Using Asynchronous-to-Synchronous Conversion",
ITU-T Recommendation V.42, 1994, Rev. 1.
[PAETH]
Paeth, A.W., "Image File Compression Made Easy", in Graphics Gems
II, James Arvo, editor. Academic Press, San Diego, 1991. ISBN
0-12-064480-0.
[POSTSCRIPT]
Adobe Systems Incorporated, PostScript Language Reference Manual,
2nd edition. Addison-Wesley, Reading, 1990. ISBN 0-201-18127-4.
[PNG-EXTENSIONS]
PNG Group, "PNG Special-Purpose Public Chunks". Available in
several formats from
ftp://ftp.uu.net/graphics/png/documents/pngextensions.*
[RFC-1123]
Braden, R., Editor, "Requirements for Internet Hosts ---
Application and Support", STD 3, RFC 1123, USC/Information
Sciences Institute, October 1989.
<URL:ftp://ds.internic.net/rfc/rfc1123.txt>
Boutell, et. al. Informational [Page 98]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
[RFC-2045]
Freed, N., and N. Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message Bodies",
RFC 2045, Innosoft, First Virtual, November 1996.
<URL:ftp://ds.internic.net/rfc/rfc2045.txt>
[RFC-2048]
Freed, N., Klensin, J., and J. Postel, "Multipurpose Internet Mail
Extensions (MIME) Part Four: Registration Procedures", RFC 2048,
Innosoft, MCI, USC/Information Sciences Institute, November 1996.
<URL:ftp://ds.internic.net/rfc/rfc2048.txt>
[RFC-1950]
Deutsch, P. and J-L. Gailly, "ZLIB Compressed Data Format
Specification version 3.3", RFC 1950, Aladdin Enterprises, May
1996.
<URL:ftp://ds.internic.net/rfc/rfc1950.txt>
[RFC-1951]
Deutsch, P., "DEFLATE Compressed Data Format Specification version
1.3", RFC 1951, Aladdin Enterprises, May 1996.
<URL:ftp://ds.internic.net/rfc/rfc1951.txt>
[SMPTE-170M]
Society of Motion Picture and Television Engineers, "Television
--- Composite Analog Video Signal --- NTSC for Studio
Applications", SMPTE-170M, 1994.
Boutell, et. al. Informational [Page 99]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
19. Credits
Editor
Thomas Boutell, boutell@boutell.com
Contributing Editor
Tom Lane, tgl@sss.pgh.pa.us
Authors
Authors' names are presented in alphabetical order.
* Mark Adler, madler@alumni.caltech.edu
* Thomas Boutell, boutell@boutell.com
* Christian Brunschen, cb@df.lth.se
* Adam M. Costello, amc@cs.berkeley.edu
* Lee Daniel Crocker, lee@piclab.com
* Andreas Dilger, adilger@enel.ucalgary.ca
* Oliver Fromme, fromme@rz.tu-clausthal.de
* Jean-loup Gailly, gzip@prep.ai.mit.edu
* Chris Herborth, chrish@qnx.com
* Alex Jakulin, Aleks.Jakulin@snet.fri.uni-lj.si
* Neal Kettler, kettler@cs.colostate.edu
* Tom Lane, tgl@sss.pgh.pa.us
* Alexander Lehmann, alex@hal.rhein-main.de
* Chris Lilley, chris@w3.org
* Dave Martindale, davem@cs.ubc.ca
* Owen Mortensen, 104707.650@compuserve.com
* Keith S. Pickens, ksp@swri.edu
* Robert P. Poole, lionboy@primenet.com
* Glenn Randers-Pehrson, glennrp@arl.mil or
randeg@alumni.rpi.edu
* Greg Roelofs, newt@pobox.com
* Willem van Schaik, willem@gintic.gov.sg
* Guy Schalnat
* Paul Schmidt, pschmidt@photodex.com
* Tim Wegner, 71320.675@compuserve.com
* Jeremy Wohl, jeremyw@anders.com
The authors wish to acknowledge the contributions of the Portable
Network Graphics mailing list, the readers of comp.graphics, and
the members of the World Wide Web Consortium (W3C).
Boutell, et. al. Informational [Page 100]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
The Adam7 interlacing scheme is not patented and it is not the
intention of the originator of that scheme to patent it. The
scheme may be freely used by all PNG implementations. The name
"Adam7" may be freely used to describe interlace method 1 of the
PNG specification.
Trademarks
GIF is a service mark of CompuServe Incorporated. IBM PC is a
trademark of International Business Machines Corporation.
Macintosh is a trademark of Apple Computer, Inc. Microsoft and
MS-DOS are trademarks of Microsoft Corporation. PhotoCD is a
trademark of Eastman Kodak Company. PostScript and TIFF are
trademarks of Adobe Systems Incorporated. SGI is a trademark of
Silicon Graphics, Inc. X Window System is a trademark of the
Massachusetts Institute of Technology.
COPYRIGHT NOTICE
Copyright (c) 1996 by: Massachusetts Institute of Technology (MIT)
This W3C specification is being provided by the copyright holders
under the following license. By obtaining, using and/or copying this
specification, you agree that you have read, understood, and will
comply with the following terms and conditions:
Permission to use, copy, and distribute this specification for any
purpose and without fee or royalty is hereby granted, provided that
the full text of this NOTICE appears on ALL copies of the
specification or portions thereof, including modifications, that you
make.
THIS SPECIFICATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE OR THAT THE USE OF THE SPECIFICATION WILL NOT
INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER
RIGHTS. COPYRIGHT HOLDERS WILL BEAR NO LIABILITY FOR ANY USE OF THIS
SPECIFICATION.
Boutell, et. al. Informational [Page 101]
^L
RFC 2083 PNG: Portable Network Graphics March 1997
The name and trademarks of copyright holders may NOT be used in
advertising or publicity pertaining to the specification without
specific, written prior permission. Title to copyright in this
specification and any associated documentation will at all times
remain with copyright holders.
Security Considerations
Security issues are discussed in Security considerations (Section
8.5).
Author's Address
Thomas Boutell
PO Box 20837
Seattle, WA 98102
Phone: (206) 329-4969
EMail: boutell@boutell.com
Boutell, et. al. Informational [Page 102]
^L
|