1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
|
Network Working Group D. Harrington
Request for Comments: 2261 Cabletron Systems, Inc.
Category: Standards Track R. Presuhn
BMC Software, Inc.
B. Wijnen
IBM T. J. Watson Research
January 1998
An Architecture for Describing
SNMP Management Frameworks
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (1997). All Rights Reserved.
Abstract
This document describes an architecture for describing SNMP
Management Frameworks. The architecture is designed to be modular to
allow the evolution of the SNMP protocol standards over time. The
major portions of the architecture are an SNMP engine containing a
Message Processing Subsystem, a Security Subsystem and an Access
Control Subsystem, and possibly multiple SNMP applications which
provide specific functional processing of management data.
Table of Contents
1. Introduction ................................................ 3
1.1. Overview .................................................. 3
1.2. SNMP ...................................................... 4
1.3. Goals of this Architecture ................................ 5
1.4. Security Requirements of this Architecture ................ 6
1.5. Design Decisions .......................................... 7
2. Documentation Overview ...................................... 8
2.1. Document Roadmap .......................................... 10
2.2. Applicability Statement ................................... 10
2.3. Coexistence and Transition ................................ 10
2.4. Transport Mappings ........................................ 11
Harrington, et. al. Standards Track [Page 1]
^L
RFC 2261 SNMPv3 Architecture January 1998
2.5. Message Processing ........................................ 11
2.6. Security .................................................. 11
2.7. Access Control ............................................ 11
2.8. Protocol Operations ....................................... 12
2.9. Applications .............................................. 12
2.10. Structure of Management Information ...................... 12
2.11. Textual Conventions ...................................... 13
2.12. Conformance Statements ................................... 13
2.13. Management Information Base Modules ...................... 13
2.13.1. SNMP Instrumentation MIBs .............................. 13
2.14. SNMP Framework Documents ................................. 13
3. Elements of the Architecture ................................ 14
3.1. The Naming of Entities .................................... 14
3.1.1. SNMP engine ............................................. 15
3.1.1.1. snmpEngineID .......................................... 16
3.1.1.2. Dispatcher ............................................ 16
3.1.1.3. Message Processing Subsystem .......................... 16
3.1.1.3.1. Message Processing Model ............................ 17
3.1.1.4. Security Subsystem .................................... 17
3.1.1.4.1. Security Model ...................................... 17
3.1.1.4.2. Security Protocol ................................... 18
3.1.2. Access Control Subsystem ................................ 18
3.1.2.1. Access Control Model .................................. 18
3.1.3. Applications ............................................ 18
3.1.3.1. SNMP Manager .......................................... 19
3.1.3.2. SNMP Agent ............................................ 20
3.2. The Naming of Identities .................................. 21
3.2.1. Principal ............................................... 21
3.2.2. securityName ............................................ 21
3.2.3. Model-dependent security ID ............................. 22
3.3. The Naming of Management Information ...................... 22
3.3.1. An SNMP Context ......................................... 23
3.3.2. contextEngineID ......................................... 24
3.3.3. contextName ............................................. 24
3.3.4. scopedPDU ............................................... 25
3.4. Other Constructs .......................................... 25
3.4.1. maxSizeResponseScopedPDU ................................ 25
3.4.2. Local Configuration Datastore ........................... 25
3.4.3. securityLevel ........................................... 25
4. Abstract Service Interfaces ................................. 26
4.1. Dispatcher Primitives ..................................... 26
4.1.1. Generate Outgoing Request or Notification ............... 26
4.1.2. Process Incoming Request or Notification PDU ............ 26
4.1.3. Generate Outgoing Response .............................. 27
4.1.4. Process Incoming Response PDU ........................... 27
4.1.5. Registering Responsibility for Handling SNMP PDUs ....... 28
4.2. Message Processing Subsystem Primitives ................... 28
4.2.1. Prepare Outgoing SNMP Request or Notification Message ... 28
Harrington, et. al. Standards Track [Page 2]
^L
RFC 2261 SNMPv3 Architecture January 1998
4.2.2. Prepare an Outgoing SNMP Response Message ............... 29
4.2.3. Prepare Data Elements from an Incoming SNMP Message ..... 29
4.3. Access Control Subsystem Primitives ....................... 30
4.4. Security Subsystem Primitives ............................. 30
4.4.1. Generate a Request or Notification Message .............. 30
4.4.2. Process Incoming Message ................................ 31
4.4.3. Generate a Response Message ............................. 31
4.5. Common Primitives ......................................... 32
4.5.1. Release State Reference Information ..................... 32
4.6. Scenario Diagrams ......................................... 32
4.6.1. Command Generator or Notification Originator ............ 32
4.6.2. Scenario Diagram for a Command Responder Application .... 33
5. Managed Object Definitions for SNMP Management Frameworks ... 35
6. Intellectual Property ....................................... 44
7. Acknowledgements ............................................ 45
8. Security Considerations ..................................... 46
9. References .................................................. 46
10. Editors' Addresses ......................................... 48
A. Guidelines for Model Designers .............................. 49
A.1. Security Model Design Requirements ........................ 49
A.1.1. Threats ................................................. 49
A.1.2. Security Processing ..................................... 50
A.1.3. Validate the security-stamp in a received message ....... 51
A.1.4. Security MIBs ........................................... 51
A.1.5. Cached Security Data .................................... 51
A.2. Message Processing Model Design Requirements .............. 52
A.2.1. Receiving an SNMP Message from the Network .............. 52
A.2.2. Sending an SNMP Message to the Network .................. 52
A.3. Application Design Requirements ........................... 53
A.3.1. Applications that Initiate Messages ..................... 53
A.3.2. Applications that Receive Responses ..................... 54
A.3.3. Applications that Receive Asynchronous Messages ......... 54
A.3.4. Applications that Send Responses ........................ 54
A.4. Access Control Model Design Requirements .................. 55
B. Full Copyright Statement .................................... 56
1. Introduction
1.1. Overview
This document defines a vocabulary for describing SNMP Management
Frameworks, and an architecture for describing the major portions of
SNMP Management Frameworks.
Harrington, et. al. Standards Track [Page 3]
^L
RFC 2261 SNMPv3 Architecture January 1998
This document does not provide a general introduction to SNMP. Other
documents and books can provide a much better introduction to SNMP.
Nor does this document provide a history of SNMP. That also can be
found in books and other documents.
Section 1 describes the purpose, goals, and design decisions of this
architecture.
Section 2 describes various types of documents which define SNMP
Frameworks, and how they fit into this architecture. It also provides
a minimal road map to the documents which have previously defined
SNMP frameworks.
Section 3 details the vocabulary of this architecture and its pieces.
This section is important for understanding the remaining sections,
and for understanding documents which are written to fit within this
architecture.
Section 4 describes the primitives used for the abstract service
interfaces between the various subsystems, models and applications
within this architecture.
Section 5 defines a collection of managed objects used to instrument
SNMP entities within this architecture.
Sections 6, 7, 8, and 9 are administrative in nature.
Appendix A contains guidelines for designers of Models which are
expected to fit within this architecture.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
1.2. SNMP
An SNMP management system contains:
- several (potentially many) nodes, each with an SNMP entity
containing command responder and notification originator
applications, which have access to management instrumentation
(traditionally called agents);
- at least one SNMP entity containing command generator and/or
notification receiver applications (traditionally called a
manager) and,
Harrington, et. al. Standards Track [Page 4]
^L
RFC 2261 SNMPv3 Architecture January 1998
- a management protocol, used to convey management information
between the SNMP entities.
SNMP entities executing command generator and notification receiver
applications monitor and control managed elements. Managed elements
are devices such as hosts, routers, terminal servers, etc., which are
monitored and controlled via access to their management information.
It is the purpose of this document to define an architecture which
can evolve to realize effective management in a variety of
configurations and environments. The architecture has been designed
to meet the needs of implementations of:
- minimal SNMP entities with command responder and/or
notification originator applications (traditionally called SNMP
agents),
- SNMP entities with proxy forwarder applications (traditionally
called SNMP proxy agents),
- command line driven SNMP entities with command generator and/or
notification receiver applications (traditionally called SNMP
command line managers),
- SNMP entities with command generator and/or notification
receiver, plus command responder and/or notification originator
applications (traditionally called SNMP mid-level managers or
dual-role entities),
- SNMP entities with command generator and/or notification
receiver and possibly other types of applications for managing
a potentially very large number of managed nodes (traditionally
called (network) management stations).
1.3. Goals of this Architecture
This architecture was driven by the following goals:
- Use existing materials as much as possible. It is heavily based
on previous work, informally known as SNMPv2u and SNMPv2*.
- Address the need for secure SET support, which is considered
the most important deficiency in SNMPv1 and SNMPv2c.
- Make it possible to move portions of the architecture forward
in the standards track, even if consensus has not been reached
on all pieces.
Harrington, et. al. Standards Track [Page 5]
^L
RFC 2261 SNMPv3 Architecture January 1998
- Define an architecture that allows for longevity of the SNMP
Frameworks that have been and will be defined.
- Keep SNMP as simple as possible.
- Make it relatively inexpensive to deploy a minimal conforming
implementation.
- Make it possible to upgrade portions of SNMP as new approaches
become available, without disrupting an entire SNMP framework.
- Make it possible to support features required in large
networks, but make the expense of supporting a feature directly
related to the support of the feature.
1.4. Security Requirements of this Architecture
Several of the classical threats to network protocols are applicable
to the management problem and therefore would be applicable to any
Security Model used in an SNMP Management Framework. Other threats
are not applicable to the management problem. This section discusses
principal threats, secondary threats, and threats which are of lesser
importance.
The principal threats against which any Security Model used within
this architecture SHOULD provide protection are:
Modification of Information
The modification threat is the danger that some unauthorized SNMP
entity may alter in-transit SNMP messages generated on behalf of
an authorized principal in such a way as to effect unauthorized
management operations, including falsifying the value of an
object.
Masquerade
The masquerade threat is the danger that management operations not
authorized for some principal may be attempted by assuming the
identity of another principal that has the appropriate
authorizations.
Message Stream Modification
The SNMP protocol is typically based upon a connectionless
transport service which may operate over any subnetwork service.
The re-ordering, delay or replay of messages can and does occur
through the natural operation of many such subnetwork services.
The message stream modification threat is the danger that messages
Harrington, et. al. Standards Track [Page 6]
^L
RFC 2261 SNMPv3 Architecture January 1998
may be maliciously re-ordered, delayed or replayed to an extent
which is greater than can occur through the natural operation of a
subnetwork service, in order to effect unauthorized management
operations.
Disclosure
The disclosure threat is the danger of eavesdropping on the
exchanges between SNMP engines. Protecting against this threat
may be required as a matter of local policy.
There are at least two threats against which a Security Model within
this architecture need not protect.
Denial of Service
A Security Model need not attempt to address the broad range of
attacks by which service on behalf of authorized users is denied.
Indeed, such denial-of-service attacks are in many cases
indistinguishable from the type of network failures with which any
viable management protocol must cope as a matter of course.
Traffic Analysis
A Security Model need not attempt to address traffic analysis
attacks. Many traffic patterns are predictable - entities may be
managed on a regular basis by a relatively small number of
management stations - and therefore there is no significant
advantage afforded by protecting against traffic analysis.
1.5. Design Decisions
Various design decisions were made in support of the goals of the
architecture and the security requirements:
- Architecture
An architecture should be defined which identifies the
conceptual boundaries between the documents. Subsystems should
be defined which describe the abstract services provided by
specific portions of an SNMP framework. Abstract service
interfaces, as described by service primitives, define the
abstract boundaries between documents, and the abstract
services that are provided by the conceptual subsystems of an
SNMP framework.
- Self-contained Documents
Elements of procedure plus the MIB objects which are needed for
processing for a specific portion of an SNMP framework should
be defined in the same document, and as much as possible,
should not be referenced in other documents. This allows pieces
to be designed and documented as independent and self-contained
Harrington, et. al. Standards Track [Page 7]
^L
RFC 2261 SNMPv3 Architecture January 1998
parts, which is consistent with the general SNMP MIB module
approach. As portions of SNMP change over time, the documents
describing other portions of SNMP are not directly impacted.
This modularity allows, for example, Security Models,
authentication and privacy mechanisms, and message formats to
be upgraded and supplemented as the need arises. The self-
contained documents can move along the standards track on
different time-lines.
- Threats
The Security Models in the Security Subsystem SHOULD protect
against the principal threats: modification of information,
masquerade, message stream modification and disclosure. They
do not need to protect against denial of service and traffic
analysis.
- Remote Configuration
The Security and Access Control Subsystems add a whole new set
of SNMP configuration parameters. The Security Subsystem also
requires frequent changes of secrets at the various SNMP
entities. To make this deployable in a large operational
environment, these SNMP parameters must be able to be remotely
configured.
- Controlled Complexity
It is recognized that producers of simple managed devices want
to keep the resources used by SNMP to a minimum. At the same
time, there is a need for more complex configurations which can
spend more resources for SNMP and thus provide more
functionality. The design tries to keep the competing
requirements of these two environments in balance and allows
the more complex environments to logically extend the simple
environment.
2. Documentation Overview
The following figure shows the set of documents that fit within the
SNMP Architecture.
Harrington, et. al. Standards Track [Page 8]
^L
RFC 2261 SNMPv3 Architecture January 1998
+------------------------- Document Set ----------------------------+
| |
| +------------+ +-----------------+ +----------------+ |
| | Document * | | Applicability * | | Coexistence * | |
| | Roadmap | | Statement | | & Transition | |
| +------------+ +-----------------+ +----------------+ |
| |
| +---------------------------------------------------------------+ |
| | Message Handling | |
| | +----------------+ +-----------------+ +-----------------+ | |
| | | Transport | | Message | | Security | | |
| | | Mappings | | Processing and | | | | |
| | | | | Dispatcher | | | | |
| | +----------------+ +-----------------+ +-----------------+ | |
| +---------------------------------------------------------------+ |
| |
| +---------------------------------------------------------------+ |
| | PDU Handling | |
| | +----------------+ +-----------------+ +-----------------+ | |
| | | Protocol | | Applications | | Access | | |
| | | Operations | | | | Control | | |
| | +----------------+ +-----------------+ +-----------------+ | |
| +---------------------------------------------------------------+ |
| |
| +---------------------------------------------------------------+ |
| | Information Model | |
| | +--------------+ +--------------+ +---------------+ | |
| | | Structure of | | Textual | | Conformance | | |
| | | Management | | Conventions | | Statements | | |
| | | Information | | | | | | |
| | +--------------+ +--------------+ +---------------+ | |
| +---------------------------------------------------------------+ |
| |
| +---------------------------------------------------------------+ |
| | MIBs | |
| | +-------------+ +-------------+ +----------+ +----------+ | |
| | | Standard v1 | | Standard v1 | | Historic | | Draft v2 | | |
| | | RFC1157 | | RFC1212 | | RFC14XX | | RFC19XX | | |
| | | format | | format | | format | | format | | |
| | +-------------+ +-------------+ +----------+ +----------+ | |
| +---------------------------------------------------------------+ |
| |
+-------------------------------------------------------------------+
Note: RFC14XX means RFCs 1442, 1443, and 1444. RFC19XX means RFCs
1902, 1903, and 1904.
Harrington, et. al. Standards Track [Page 9]
^L
RFC 2261 SNMPv3 Architecture January 1998
Those marked with an asterisk (*) are expected to be written in the
future. Each of these documents may be replaced or supplemented.
This Architecture document specifically describes how new documents
fit into the set of documents in the area of Message and PDU
handling.
2.1. Document Roadmap
One or more documents may be written to describe how sets of
documents taken together form specific Frameworks. The configuration
of document sets might change over time, so the "road map" should be
maintained in a document separate from the standards documents
themselves.
2.2. Applicability Statement
SNMP is used in networks that vary widely in size and complexity, by
organizations that vary widely in their requirements of management.
Some models will be designed to address specific problems of
management, such as message security.
One or more documents may be written to describe the environments to
which certain versions of SNMP or models within SNMP would be
appropriately applied, and those to which a given model might be
inappropriately applied.
2.3. Coexistence and Transition
The purpose of an evolutionary architecture is to permit new models
to replace or supplement existing models. The interactions between
models could result in incompatibilities, security "holes", and other
undesirable effects.
The purpose of Coexistence documents is to detail recognized
anomalies and to describe required and recommended behaviors for
resolving the interactions between models within the architecture.
Coexistence documents may be prepared separately from model
definition documents, to describe and resolve interaction anomalies
between a model definition and one or more other model definitions.
Additionally, recommendations for transitions between models may also
be described, either in a coexistence document or in a separate
document.
Harrington, et. al. Standards Track [Page 10]
^L
RFC 2261 SNMPv3 Architecture January 1998
2.4. Transport Mappings
SNMP messages are sent over various transports. It is the purpose of
Transport Mapping documents to define how the mapping between SNMP
and the transport is done.
2.5. Message Processing
A Message Processing Model document defines a message format, which
is typically identified by a version field in an SNMP message header.
The document may also define a MIB module for use in message
processing and for instrumentation of version-specific interactions.
An SNMP engine includes one or more Message Processing Models, and
thus may support sending and receiving multiple versions of SNMP
messages.
2.6. Security
Some environments require secure protocol interactions. Security is
normally applied at two different stages:
- in the transmission/receipt of messages, and
- in the processing of the contents of messages.
For purposes of this document, "security" refers to message-level
security; "access control" refers to the security applied to protocol
operations.
Authentication, encryption, and timeliness checking are common
functions of message level security.
A security document describes a Security Model, the threats against
which the model protects, the goals of the Security Model, the
protocols which it uses to meet those goals, and it may define a MIB
module to describe the data used during processing, and to allow the
remote configuration of message-level security parameters, such as
passwords.
An SNMP engine may support multiple Security Models concurrently.
2.7. Access Control
During processing, it may be required to control access to managed
objects for operations.
Harrington, et. al. Standards Track [Page 11]
^L
RFC 2261 SNMPv3 Architecture January 1998
An Access Control Model defines mechanisms to determine whether
access to a managed object should be allowed. An Access Control
Model may define a MIB module used during processing and to allow the
remote configuration of access control policies.
2.8. Protocol Operations
SNMP messages encapsulate an SNMP Protocol Data Unit (PDU). It is the
purpose of a Protocol Operations document to define the operations of
the protocol with respect to the processing of the PDUs.
An application document defines which Protocol Operations documents
are supported by the application.
2.9. Applications
An SNMP entity normally includes a number of applications.
Applications use the services of an SNMP engine to accomplish
specific tasks. They coordinate the processing of management
information operations, and may use SNMP messages to communicate with
other SNMP entities.
Applications documents describe the purpose of an application, the
services required of the associated SNMP engine, and the protocol
operations and informational model that the application uses to
perform management operations.
An application document defines which set of documents are used to
specifically define the structure of management information, textual
conventions, conformance requirements, and operations supported by
the application.
2.10. Structure of Management Information
Management information is viewed as a collection of managed objects,
residing in a virtual information store, termed the Management
Information Base (MIB). Collections of related objects are defined in
MIB modules.
It is the purpose of a Structure of Management Information document
to establish the syntax for defining objects, modules, and other
elements of managed information.
Harrington, et. al. Standards Track [Page 12]
^L
RFC 2261 SNMPv3 Architecture January 1998
2.11. Textual Conventions
When designing a MIB module, it is often useful to define new types
similar to those defined in the SMI, but with more precise semantics,
or which have special semantics associated with them. These newly
defined types are termed textual conventions, and may defined in
separate documents, or within a MIB module.
2.12. Conformance Statements
It may be useful to define the acceptable lower-bounds of
implementation, along with the actual level of implementation
achieved. It is the purpose of Conformance Statements to define the
notation used for these purposes.
2.13. Management Information Base Modules
MIB documents describe collections of managed objects which
instrument some aspect of a managed node.
2.13.1. SNMP Instrumentation MIBs
An SNMP MIB document may define a collection of managed objects which
instrument the SNMP protocol itself. In addition, MIB modules may be
defined within the documents which describe portions of the SNMP
architecture, such as the documents for Message processing Models,
Security Models, etc. for the purpose of instrumenting those Models,
and for the purpose of allowing remote configuration of the Model.
2.14. SNMP Framework Documents
This architecture is designed to allow an orderly evolution of
portions of SNMP Frameworks.
Throughout the rest of this document, the term "subsystem" refers to
an abstract and incomplete specification of a portion of a Framework,
that is further refined by a model specification.
A "model" describes a specific design of a subsystem, defining
additional constraints and rules for conformance to the model. A
model is sufficiently detailed to make it possible to implement the
specification.
An "implementation" is an instantiation of a subsystem, conforming to
one or more specific models.
SNMP version 1 (SNMPv1), is the original Internet-standard Network
Management Framework, as described in RFCs 1155, 1157, and 1212.
Harrington, et. al. Standards Track [Page 13]
^L
RFC 2261 SNMPv3 Architecture January 1998
SNMP version 2 (SNMPv2), is the SNMPv2 Framework as derived from the
SNMPv1 Framework. It is described in RFCs 1902-1907. SNMPv2 has no
message definition.
The Community-based SNMP version 2 (SNMPv2c), is an experimental SNMP
Framework which supplements the SNMPv2 Framework, as described in
RFC1901. It adds the SNMPv2c message format, which is similar to the
SNMPv1 message format.
SNMP version 3 (SNMPv3), is an extensible SNMP Framework which
supplements the SNMPv2 Framework, by supporting the following:
- a new SNMP message format,
- Security for Messages, and
- Access Control.
Other SNMP Frameworks, i.e., other configurations of implemented
subsystems, are expected to also be consistent with this
architecture.
3. Elements of the Architecture
This section describes the various elements of the architecture and
how they are named. There are three kinds of naming:
1) the naming of entities,
2) the naming of identities, and
3) the naming of management information.
This architecture also defines some names for other constructs that
are used in the documentation.
3.1. The Naming of Entities
An SNMP entity is an implementation of this architecture. Each such
SNMP entity consists of an SNMP engine and one or more associated
applications.
The following figure shows details about an SNMP entity and the
components within it.
Harrington, et. al. Standards Track [Page 14]
^L
RFC 2261 SNMPv3 Architecture January 1998
+-------------------------------------------------------------------+
| SNMP entity |
| |
| +-------------------------------------------------------------+ |
| | SNMP engine (identified by snmpEngineID) | |
| | | |
| | +------------+ +------------+ +-----------+ +-----------+ | |
| | | | | | | | | | | |
| | | Dispatcher | | Message | | Security | | Access | | |
| | | | | Processing | | Subsystem | | Control | | |
| | | | | Subsystem | | | | Subsystem | | |
| | | | | | | | | | | |
| | +------------+ +------------+ +-----------+ +-----------+ | |
| | | |
| +-------------------------------------------------------------+ |
| |
| +-------------------------------------------------------------+ |
| | Application(s) | |
| | | |
| | +-------------+ +--------------+ +--------------+ | |
| | | Command | | Notification | | Proxy | | |
| | | Generator | | Receiver | | Forwarder | | |
| | +-------------+ +--------------+ +--------------+ | |
| | | |
| | +-------------+ +--------------+ +--------------+ | |
| | | Command | | Notification | | Other | | |
| | | Responder | | Originator | | | | |
| | +-------------+ +--------------+ +--------------+ | |
| | | |
| +-------------------------------------------------------------+ |
| |
+-------------------------------------------------------------------+
3.1.1. SNMP engine
An SNMP engine provides services for sending and receiving messages,
authenticating and encrypting messages, and controlling access to
managed objects. There is a one-to-one association between an SNMP
engine and the SNMP entity which contains it.
The engine contains:
1) a Dispatcher,
2) a Message Processing Subsystem,
Harrington, et. al. Standards Track [Page 15]
^L
RFC 2261 SNMPv3 Architecture January 1998
3) a Security Subsystem, and
4) an Access Control Subsystem.
3.1.1.1. snmpEngineID
Within an administrative domain, an snmpEngineID is the unique and
unambiguous identifier of an SNMP engine. Since there is a one-to-one
association between SNMP engines and SNMP entities, it also uniquely
and unambiguously identifies the SNMP entity.
3.1.1.2. Dispatcher
There is only one Dispatcher in an SNMP engine. It allows for
concurrent support of multiple versions of SNMP messages in the SNMP
engine. It does so by:
- sending and receiving SNMP messages to/from the network,
- determining the version of an SNMP message and interacting with
the corresponding Message Processing Model,
- providing an abstract interface to SNMP applications for
delivery of a PDU to an application.
- providing an abstract interface for SNMP applications that
allows them to send a PDU to a remote SNMP entity.
3.1.1.3. Message Processing Subsystem
The Message Processing Subsystem is responsible for preparing
messages for sending, and extracting data from received messages.
The Message Processing Subsystem potentially contains multiple
Message Processing Models as shown in the next figure.
* One or more Message Processing Models may be present.
Harrington, et. al. Standards Track [Page 16]
^L
RFC 2261 SNMPv3 Architecture January 1998
+------------------------------------------------------------------+
| |
| Message Processing Subsystem |
| |
| +------------+ +------------+ +------------+ +------------+ |
| | * | | * | | * | | * | |
| | SNMPv3 | | SNMPv1 | | SNMPv2c | | Other | |
| | Message | | Message | | Message | | Message | |
| | Processing | | Processing | | Processing | | Processing | |
| | Model | | Model | | Model | | Model | |
| | | | | | | | | |
| +------------+ +------------+ +------------+ +------------+ |
| |
+------------------------------------------------------------------+
3.1.1.3.1. Message Processing Model
Each Message Processing Model defines the format of a particular
version of an SNMP message and coordinates the preparation and
extraction of each such version-specific message format.
3.1.1.4. Security Subsystem
The Security Subsystem provides security services such as the
authentication and privacy of messages and potentially contains
multiple Security Models as shown in the following figure
* One or more Security Models may be present.
+------------------------------------------------------------------+
| |
| Security Subsystem |
| |
| +----------------+ +-----------------+ +-------------------+ |
| | * | | * | | * | |
| | User-Based | | Other | | Other | |
| | Security | | Security | | Security | |
| | Model | | Model | | Model | |
| | | | | | | |
| +----------------+ +-----------------+ +-------------------+ |
| |
+------------------------------------------------------------------+
3.1.1.4.1. Security Model
A Security Model defines the threats against which it protects, the
goals of its services, and the security protocols used to provide
security services such as authentication and privacy.
Harrington, et. al. Standards Track [Page 17]
^L
RFC 2261 SNMPv3 Architecture January 1998
3.1.1.4.2. Security Protocol
A Security Protocol defines the mechanisms, procedures, and MIB data
used to provide a security service such as authentication or privacy.
3.1.2. Access Control Subsystem
The Access Control Subsystem provides authorization services by means
of one or more Access Control Models.
+------------------------------------------------------------------+
| |
| Access Control Subsystem |
| |
| +---------------+ +-----------------+ +------------------+ |
| | * | | * | | * | |
| | View-Based | | Other | | Other | |
| | Access | | Access | | Access | |
| | Control | | Control | | Control | |
| | Model | | Model | | Model | |
| | | | | | | |
| +---------------+ +-----------------+ +------------------+ |
| |
+------------------------------------------------------------------+
3.1.2.1. Access Control Model
An Access Control Model defines a particular access decision function
in order to support decisions regarding access rights.
3.1.3. Applications
There are several types of applications, including:
- command generators, which monitor and manipulate management
data,
- command responders, which provide access to management data,
- notification originators, which initiate asynchronous messages,
- notification receivers, which process asynchronous messages,
and
- proxy forwarders, which forward messages between entities.
These applications make use of the services provided by the SNMP
engine.
Harrington, et. al. Standards Track [Page 18]
^L
RFC 2261 SNMPv3 Architecture January 1998
3.1.3.1. SNMP Manager
An SNMP entity containing one or more command generator and/or
notification receiver applications (along with their associated SNMP
engine) has traditionally been called an SNMP manager. * One or more
models may be present.
(traditional SNMP manager)
+-------------------------------------------------------------------+
| +--------------+ +--------------+ +--------------+ SNMP entity |
| | NOTIFICATION | | NOTIFICATION | | COMMAND | |
| | ORIGINATOR | | RECEIVER | | GENERATOR | |
| | applications | | applications | | applications | |
| +--------------+ +--------------+ +--------------+ |
| ^ ^ ^ |
| | | | |
| v v v |
| +-------+--------+-----------------+ |
| ^ |
| | +---------------------+ +----------------+ |
| | | Message Processing | | Security | |
| Dispatcher v | Subsystem | | Subsystem | |
| +-------------------+ | +------------+ | | | |
| | PDU Dispatcher | | +->| v1MP * |<--->| +------------+ | |
| | | | | +------------+ | | | Other | | |
| | | | | +------------+ | | | Security | | |
| | | | +->| v2cMP * |<--->| | Model | | |
| | Message | | | +------------+ | | +------------+ | |
| | Dispatcher <--------->+ | | | |
| | | | | +------------+ | | +------------+ | |
| | | | +->| v3MP * |<--->| | User-based | | |
| | Transport | | | +------------+ | | | Security | | |
| | Mapping | | | +------------+ | | | Model | | |
| | (e.g RFC1906) | | +->| otherMP * |<--->| +------------+ | |
| +-------------------+ | +------------+ | | | |
| ^ +---------------------+ +----------------+ |
| | |
| v |
+-------------------------------------------------------------------+
+-----+ +-----+ +-------+
| UDP | | IPX | . . . | other |
+-----+ +-----+ +-------+
^ ^ ^
| | |
v v v
+------------------------------+
| Network |
+------------------------------+
Harrington, et. al. Standards Track [Page 19]
^L
RFC 2261 SNMPv3 Architecture January 1998
3.1.3.2. SNMP Agent
An SNMP entity containing one or more command responder and/or
notification originator applications (along with their associated
SNMP engine) has traditionally been called an SNMP agent.
+------------------------------+
| Network |
+------------------------------+
^ ^ ^
| | |
v v v
+-----+ +-----+ +-------+
| UDP | | IPX | . . . | other |
+-----+ +-----+ +-------+ (traditional SNMP agent)
+-------------------------------------------------------------------+
| ^ |
| | +---------------------+ +----------------+ |
| | | Message Processing | | Security | |
| Dispatcher v | Subsystem | | Subsystem | |
| +-------------------+ | +------------+ | | | |
| | Transport | | +->| v1MP * |<--->| +------------+ | |
| | Mapping | | | +------------+ | | | Other | | |
| | (e.g. RFC1906) | | | +------------+ | | | Security | | |
| | | | +->| v2cMP * |<--->| | Model | | |
| | Message | | | +------------+ | | +------------+ | |
| | Dispatcher <--------->| +------------+ | | +------------+ | |
| | | | +->| v3MP * |<--->| | User-based | | |
| | | | | +------------+ | | | Security | | |
| | PDU Dispatcher | | | +------------+ | | | Model | | |
| +-------------------+ | +->| otherMP * |<--->| +------------+ | |
| ^ | +------------+ | | | |
| | +---------------------+ +----------------+ |
| v |
| +-------+-------------------------+---------------+ |
| ^ ^ ^ |
| | | | |
| v v v |
| +-------------+ +---------+ +--------------+ +-------------+ |
| | COMMAND | | ACCESS | | NOTIFICATION | | PROXY * | |
| | RESPONDER |<->| CONTROL |<->| ORIGINATOR | | FORWARDER | |
| | application | | | | applications | | application | |
| +-------------+ +---------+ +--------------+ +-------------+ |
| ^ ^ |
| | | |
| v v |
| +----------------------------------------------+ |
| | MIB instrumentation | SNMP entity |
+-------------------------------------------------------------------+
Harrington, et. al. Standards Track [Page 20]
^L
RFC 2261 SNMPv3 Architecture January 1998
3.2. The Naming of Identities
principal
^
|
|
+----------------------------|-------------+
| SNMP engine v |
| +--------------+ |
| | | |
| +-----------------| securityName |---+ |
| | Security Model | | | |
| | +--------------+ | |
| | ^ | |
| | | | |
| | v | |
| | +------------------------------+ | |
| | | | | |
| | | Model | | |
| | | Dependent | | |
| | | Security ID | | |
| | | | | |
| | +------------------------------+ | |
| | ^ | |
| | | | |
| +-------------------------|----------+ |
| | |
| | |
+----------------------------|-------------+
|
v
network
3.2.1. Principal
A principal is the "who" on whose behalf services are provided or
processing takes place.
A principal can be, among other things, an individual acting in a
particular role; a set of individuals, with each acting in a
particular role; an application or a set of applications; and
combinations thereof.
3.2.2. securityName
A securityName is a human readable string representing a principal.
It has a model-independent format, and can be used outside a
particular Security Model.
Harrington, et. al. Standards Track [Page 21]
^L
RFC 2261 SNMPv3 Architecture January 1998
3.2.3. Model-dependent security ID
A model-dependent security ID is the model-specific representation of
a securityName within a particular Security Model.
Model-dependent security IDs may or may not be human readable, and
have a model-dependent syntax. Examples include community names, user
names, and parties.
The transformation of model-dependent security IDs into securityNames
and vice versa is the responsibility of the relevant Security Model.
3.3. The Naming of Management Information
Management information resides at an SNMP entity where a Command
Responder Application has local access to potentially multiple
contexts. This application uses a contextEngineID equal to the
snmpEngineID of its associated SNMP engine.
Harrington, et. al. Standards Track [Page 22]
^L
RFC 2261 SNMPv3 Architecture January 1998
+-----------------------------------------------------------------+
| SNMP entity (identified by snmpEngineID, example: abcd) |
| |
| +------------------------------------------------------------+ |
| | SNMP engine (identified by snmpEngineID) | |
| | | |
| | +-------------+ +------------+ +-----------+ +-----------+ | |
| | | | | | | | | | | |
| | | Dispatcher | | Message | | Security | | Access | | |
| | | | | Processing | | Subsystem | | Control | | |
| | | | | Subsystem | | | | Subsystem | | |
| | | | | | | | | | | |
| | +-------------+ +------------+ +-----------+ +-----------+ | |
| | | |
| +------------------------------------------------------------+ |
| |
| +------------------------------------------------------------+ |
| | Command Responder Application | |
| | (contextEngineID, example: abcd) | |
| | | |
| | example contextNames: | |
| | | |
| | "bridge1" "bridge2" "" (default) | |
| | --------- --------- ------------ | |
| | | | | | |
| +------|------------------|-------------------|--------------+ |
| | | | |
| +------|------------------|-------------------|--------------+ |
| | MIB | instrumentation | | | |
| | +---v------------+ +---v------------+ +----v-----------+ | |
| | | context | | context | | context | | |
| | | | | | | | | |
| | | +------------+ | | +------------+ | | +------------+ | | |
| | | | bridge MIB | | | | bridge MIB | | | | other MIB | | | |
| | | +------------+ | | +------------+ | | +------------+ | | |
| | | | | | | | | |
| | | | | | | +------------+ | | |
| | | | | | | | some MIB | | | |
| | | | | | | +------------+ | | |
| | | | | | | | | |
+-----------------------------------------------------------------+
3.3.1. An SNMP Context
An SNMP context, or just "context" for short, is a collection of
management information accessible by an SNMP entity. An item of
management information may exist in more than one context. An SNMP
entity potentially has access to many contexts.
Harrington, et. al. Standards Track [Page 23]
^L
RFC 2261 SNMPv3 Architecture January 1998
Typically, there are many instances of each managed object type
within a management domain. For simplicity, the method for
identifying instances specified by the MIB module does not allow each
instance to be distinguished amongst the set of all instances within
a management domain; rather, it allows each instance to be identified
only within some scope or "context", where there are multiple such
contexts within the management domain. Often, a context is a
physical device, or perhaps, a logical device, although a context can
also encompass multiple devices, or a subset of a single device, or
even a subset of multiple devices, but a context is always defined as
a subset of a single SNMP entity. Thus, in order to identify an
individual item of management information within the management
domain, its contextName and contextEngineID must be identified in
addition to its object type and its instance.
For example, the managed object type ifDescr [RFC1573], is defined as
the description of a network interface. To identify the description
of device-X's first network interface, four pieces of information are
needed: the snmpEngineID of the SNMP entity which provides access to
the management information at device-X, the contextName (device-X),
the managed object type (ifDescr), and the instance ("1").
Each context has (at least) one unique identification within the
management domain. The same item of management information can exist
in multiple contexts. An item of management information may have
multiple unique identifications. This occurs when an item of
management information exists in multiple contexts, and this also
occurs when a context has multiple unique identifications.
The combination of a contextEngineID and a contextName unambiguously
identifies a context within an administrative domain; note that there
may be multiple unique combinations of contextEngineID and
contextName that unambiguously identify the same context.
3.3.2. contextEngineID
Within an administrative domain, a contextEngineID uniquely
identifies an SNMP entity that may realize an instance of a context
with a particular contextName.
3.3.3. contextName
A contextName is used to name a context. Each contextName MUST be
unique within an SNMP entity.
Harrington, et. al. Standards Track [Page 24]
^L
RFC 2261 SNMPv3 Architecture January 1998
3.3.4. scopedPDU
A scopedPDU is a block of data containing a contextEngineID, a
contextName, and a PDU.
The PDU is an SNMP Protocol Data Unit containing information named in
the context which is unambiguously identified within an
administrative domain by the combination of the contextEngineID and
the contextName. See, for example, RFC1905 for more information about
SNMP PDUs.
3.4. Other Constructs
3.4.1. maxSizeResponseScopedPDU
The maxSizeResponseScopedPDU is the maximum size of a scopedPDU to be
included in a response message. Note that the size of a scopedPDU
does not include the size of the SNMP message header.
3.4.2. Local Configuration Datastore
The subsystems, models, and applications within an SNMP entity may
need to retain their own sets of configuration information.
Portions of the configuration information may be accessible as
managed objects.
The collection of these sets of information is referred to as an
entity's Local Configuration Datastore (LCD).
3.4.3. securityLevel
This architecture recognizes three levels of security:
- without authentication and without privacy (noAuthNoPriv)
- with authentication but without privacy (authNoPriv)
- with authentication and with privacy (authPriv)
These three values are ordered such that noAuthNoPriv is less than
authNoPriv and authNoPriv is less than authPriv.
Every message has an associated securityLevel. All Subsystems
(Message Processing, Security, Access Control) and applications are
required to either supply a value of securityLevel or to abide by the
supplied value of securityLevel while processing the message and its
contents.
Harrington, et. al. Standards Track [Page 25]
^L
RFC 2261 SNMPv3 Architecture January 1998
4. Abstract Service Interfaces
Abstract service interfaces have been defined to describe the
conceptual interfaces between the various subsystems within an SNMP
entity.
These abstract service interfaces are defined by a set of primitives
that define the services provided and the abstract data elements that
are to be passed when the services are invoked. This section lists
the primitives that have been defined for the various subsystems.
4.1. Dispatcher Primitives
The Dispatcher typically provides services to the SNMP applications
via its PDU Dispatcher. This section describes the primitives
provided by the PDU Dispatcher.
4.1.1. Generate Outgoing Request or Notification
The PDU Dispatcher provides the following primitive for an
application to send an SNMP Request or Notification to another SNMP
entity:
statusInformation = -- sendPduHandle if success
-- errorIndication if failure
sendPdu(
IN transportDomain -- transport domain to be used
IN transportAddress -- transport address to be used
IN messageProcessingModel -- typically, SNMP version
IN securityModel -- Security Model to use
IN securityName -- on behalf of this principal
IN securityLevel -- Level of Security requested
IN contextEngineID -- data from/at this entity
IN contextName -- data from/in this context
IN pduVersion -- the version of the PDU
IN PDU -- SNMP Protocol Data Unit
IN expectResponse -- TRUE or FALSE
)
4.1.2. Process Incoming Request or Notification PDU
The PDU Dispatcher provides the following primitive to pass an
incoming SNMP PDU to an application:
processPdu( -- process Request/Notification PDU
IN messageProcessingModel -- typically, SNMP version
IN securityModel -- Security Model in use
IN securityName -- on behalf of this principal
Harrington, et. al. Standards Track [Page 26]
^L
RFC 2261 SNMPv3 Architecture January 1998
IN securityLevel -- Level of Security
IN contextEngineID -- data from/at this SNMP entity
IN contextName -- data from/in this context
IN pduVersion -- the version of the PDU
IN PDU -- SNMP Protocol Data Unit
IN maxSizeResponseScopedPDU -- maximum size of the Response PDU
IN stateReference -- reference to state information
) -- needed when sending a response
4.1.3. Generate Outgoing Response
The PDU Dispatcher provides the following primitive for an
application to return an SNMP Response PDU to the PDU Dispatcher:
returnResponsePdu(
IN messageProcessingModel -- typically, SNMP version
IN securityModel -- Security Model in use
IN securityName -- on behalf of this principal
IN securityLevel -- same as on incoming request
IN contextEngineID -- data from/at this SNMP entity
IN contextName -- data from/in this context
IN pduVersion -- the version of the PDU
IN PDU -- SNMP Protocol Data Unit
IN maxSizeResponseScopedPDU -- maximum size of the Response PDU
IN stateReference -- reference to state information
-- as presented with the request
IN statusInformation -- success or errorIndication
) -- error counter OID/value if error
4.1.4. Process Incoming Response PDU
The PDU Dispatcher provides the following primitive to pass an
incoming SNMP Response PDU to an application:
processResponsePdu( -- process Response PDU
IN messageProcessingModel -- typically, SNMP version
IN securityModel -- Security Model in use
IN securityName -- on behalf of this principal
IN securityLevel -- Level of Security
IN contextEngineID -- data from/at this SNMP entity
IN contextName -- data from/in this context
IN pduVersion -- the version of the PDU
IN PDU -- SNMP Protocol Data Unit
IN statusInformation -- success or errorIndication
IN sendPduHandle -- handle from sendPdu
)
Harrington, et. al. Standards Track [Page 27]
^L
RFC 2261 SNMPv3 Architecture January 1998
4.1.5. Registering Responsibility for Handling SNMP PDUs
Applications can register/unregister responsibility for a specific
contextEngineID, for specific pduTypes, with the PDU Dispatcher
according to the following primitives. The list of particular
pduTypes that an application can register for is determined by the
Message Processing Model(s) supported by the SNMP entity that
contains the PDU Dispatcher.
statusInformation = -- success or errorIndication
registerContextEngineID(
IN contextEngineID -- take responsibility for this one
IN pduType -- the pduType(s) to be registered
)
unregisterContextEngineID(
IN contextEngineID -- give up responsibility for this one
IN pduType -- the pduType(s) to be unregistered
)
Note that realizations of the registerContextEngineID and
unregisterContextEngineID abstract service interfaces may provide
implementation-specific ways for applications to register/deregister
responsiblity for all possible values of the contextEngineID or
pduType parameters.
4.2. Message Processing Subsystem Primitives
The Dispatcher interacts with a Message Processing Model to process a
specific version of an SNMP Message. This section describes the
primitives provided by the Message Processing Subsystem.
4.2.1. Prepare Outgoing SNMP Request or Notification Message
The Message Processing Subsystem provides this service primitive for
preparing an outgoing SNMP Request or Notification Message:
statusInformation = -- success or errorIndication
prepareOutgoingMessage(
IN transportDomain -- transport domain to be used
IN transportAddress -- transport address to be used
IN messageProcessingModel -- typically, SNMP version
IN securityModel -- Security Model to use
IN securityName -- on behalf of this principal
IN securityLevel -- Level of Security requested
IN contextEngineID -- data from/at this entity
IN contextName -- data from/in this context
IN pduVersion -- the version of the PDU
Harrington, et. al. Standards Track [Page 28]
^L
RFC 2261 SNMPv3 Architecture January 1998
IN PDU -- SNMP Protocol Data Unit
IN expectResponse -- TRUE or FALSE
IN sendPduHandle -- the handle for matching
-- incoming responses
OUT destTransportDomain -- destination transport domain
OUT destTransportAddress -- destination transport address
OUT outgoingMessage -- the message to send
OUT outgoingMessageLength -- its length
)
4.2.2. Prepare an Outgoing SNMP Response Message
The Message Processing Subsystem provides this service primitive for
preparing an outgoing SNMP Response Message:
result = -- SUCCESS or FAILURE
prepareResponseMessage(
IN messageProcessingModel -- typically, SNMP version
IN securityModel -- same as on incoming request
IN securityName -- same as on incoming request
IN securityLevel -- same as on incoming request
IN contextEngineID -- data from/at this SNMP entity
IN contextName -- data from/in this context
IN pduVersion -- the version of the PDU
IN PDU -- SNMP Protocol Data Unit
IN maxSizeResponseScopedPDU -- maximum size of the Response PDU
IN stateReference -- reference to state information
-- as presented with the request
IN statusInformation -- success or errorIndication
-- error counter OID/value if error
OUT destTransportDomain -- destination transport domain
OUT destTransportAddress -- destination transport address
OUT outgoingMessage -- the message to send
OUT outgoingMessageLength -- its length
)
4.2.3. Prepare Data Elements from an Incoming SNMP Message
The Message Processing Subsystem provides this service primitive for
preparing the abstract data elements from an incoming SNMP message:
result = -- SUCCESS or errorIndication
prepareDataElements(
IN transportDomain -- origin transport domain
IN transportAddress -- origin transport address
IN wholeMsg -- as received from the network
IN wholeMsgLength -- as received from the network
OUT messageProcessingModel -- typically, SNMP version
Harrington, et. al. Standards Track [Page 29]
^L
RFC 2261 SNMPv3 Architecture January 1998
OUT securityModel -- Security Model to use
OUT securityName -- on behalf of this principal
OUT securityLevel -- Level of Security requested
OUT contextEngineID -- data from/at this entity
OUT contextName -- data from/in this context
OUT pduVersion -- the version of the PDU
OUT PDU -- SNMP Protocol Data Unit
OUT pduType -- SNMP PDU type
OUT sendPduHandle -- handle for matched request
OUT maxSizeResponseScopedPDU -- maximum size of the Response PDU
OUT statusInformation -- success or errorIndication
-- error counter OID/value if error
OUT stateReference -- reference to state information
-- to be used for possible Response
)
4.3. Access Control Subsystem Primitives
Applications are the typical clients of the service(s) of the Access
Control Subsystem.
The following primitive is provided by the Access Control Subsystem
to check if access is allowed:
statusInformation = -- success or errorIndication
isAccessAllowed(
IN securityModel -- Security Model in use
IN securityName -- principal who wants to access
IN securityLevel -- Level of Security
IN viewType -- read, write, or notify view
IN contextName -- context containing variableName
IN variableName -- OID for the managed object
)
4.4. Security Subsystem Primitives
The Message Processing Subsystem is the typical client of the
services of the Security Subsystem.
4.4.1. Generate a Request or Notification Message
The Security Subsystem provides the following primitive to generate a
Request or Notification message:
statusInformation =
generateRequestMsg(
IN messageProcessingModel -- typically, SNMP version
IN globalData -- message header, admin data
Harrington, et. al. Standards Track [Page 30]
^L
RFC 2261 SNMPv3 Architecture January 1998
IN maxMessageSize -- of the sending SNMP entity
IN securityModel -- for the outgoing message
IN securityEngineID -- authoritative SNMP entity
IN securityName -- on behalf of this principal
IN securityLevel -- Level of Security requested
IN scopedPDU -- message (plaintext) payload
OUT securityParameters -- filled in by Security Module
OUT wholeMsg -- complete generated message
OUT wholeMsgLength -- length of the generated message
)
4.4.2. Process Incoming Message
The Security Subsystem provides the following primitive to process an
incoming message:
statusInformation = -- errorIndication or success
-- error counter OID/value if error
processIncomingMsg(
IN messageProcessingModel -- typically, SNMP version
IN maxMessageSize -- of the sending SNMP entity
IN securityParameters -- for the received message
IN securityModel -- for the received message
IN securityLevel -- Level of Security
IN wholeMsg -- as received on the wire
IN wholeMsgLength -- length as received on the wire
OUT securityEngineID -- identification of the principal
OUT securityName -- identification of the principal
OUT scopedPDU, -- message (plaintext) payload
OUT maxSizeResponseScopedPDU -- maximum size of the Response PDU
OUT securityStateReference -- reference to security state
) -- information, needed for response
4.4.3. Generate a Response Message
The Security Subsystem provides the following primitive to generate a
Response message:
statusInformation =
generateResponseMsg(
IN messageProcessingModel -- typically, SNMP version
IN globalData -- message header, admin data
IN maxMessageSize -- of the sending SNMP entity
IN securityModel -- for the outgoing message
IN securityEngineID -- authoritative SNMP entity
IN securityName -- on behalf of this principal
IN securityLevel -- for the outgoing message
IN scopedPDU -- message (plaintext) payload
Harrington, et. al. Standards Track [Page 31]
^L
RFC 2261 SNMPv3 Architecture January 1998
IN securityStateReference -- reference to security state
-- information from original request
OUT securityParameters -- filled in by Security Module
OUT wholeMsg -- complete generated message
OUT wholeMsgLength -- length of the generated message
)
4.5. Common Primitives
These primitive(s) are provided by multiple Subsystems.
4.5.1. Release State Reference Information
All Subsystems which pass stateReference information also provide a
primitive to release the memory that holds the referenced state
information:
stateRelease(
IN stateReference -- handle of reference to be released
)
4.6. Scenario Diagrams
4.6.1. Command Generator or Notification Originator
This diagram shows how a Command Generator or Notification Originator
application requests that a PDU be sent, and how the response is
returned (asynchronously) to that application.
Harrington, et. al. Standards Track [Page 32]
^L
RFC 2261 SNMPv3 Architecture January 1998
Command Dispatcher Message Security
Generator | Processing Model
| | Model |
| sendPdu | | |
|------------------->| | |
| | prepareOutgoingMessage | |
: |----------------------->| |
: | | generateRequestMsg |
: | |-------------------->|
: | | |
: | |<--------------------|
: | | |
: |<-----------------------| |
: | | |
: |------------------+ | |
: | Send SNMP | | |
: | Request Message | | |
: | to Network | | |
: | v | |
: : : : :
: : : : :
: : : : :
: | | | |
: | Receive SNMP | | |
: | Response Message | | |
: | from Network | | |
: |<-----------------+ | |
: | | |
: | prepareDataElements | |
: |----------------------->| |
: | | processIncomingMsg |
: | |-------------------->|
: | | |
: | |<--------------------|
: | | |
: |<-----------------------| |
| processResponsePdu | | |
|<-------------------| | |
| | | |
4.6.2. Scenario Diagram for a Command Responder Application
This diagram shows how a Command Responder or Notification Receiver
application registers for handling a pduType, how a PDU is dispatched
to the application after a SNMP message is received, and how the
Response is (asynchronously) send back to the network.
Harrington, et. al. Standards Track [Page 33]
^L
RFC 2261 SNMPv3 Architecture January 1998
Command Dispatcher Message Security
Responder | Processing Model
| | Model |
| | | |
| registerContextEngineID | | |
|------------------------>| | |
|<------------------------| | | |
| | Receive SNMP | | |
: | Message | | |
: | from Network | | |
: |<-------------+ | |
: | | |
: |prepareDataElements | |
: |------------------->| |
: | | processIncomingMsg |
: | |------------------->|
: | | |
: | |<-------------------|
: | | |
: |<-------------------| |
| processPdu | | |
|<------------------------| | |
| | | |
: : : :
: : : :
| returnResponsePdu | | |
|------------------------>| | |
: | prepareResponseMsg | |
: |------------------->| |
: | |generateResponseMsg |
: | |------------------->|
: | | |
: | |<-------------------|
: | | |
: |<-------------------| |
: | | |
: |--------------+ | |
: | Send SNMP | | |
: | Message | | |
: | to Network | | |
: | v | |
Harrington, et. al. Standards Track [Page 34]
^L
RFC 2261 SNMPv3 Architecture January 1998
5. Managed Object Definitions for SNMP Management Frameworks
SNMP-FRAMEWORK-MIB DEFINITIONS ::= BEGIN
IMPORTS
MODULE-IDENTITY, OBJECT-TYPE,
OBJECT-IDENTITY,
snmpModules FROM SNMPv2-SMI
TEXTUAL-CONVENTION FROM SNMPv2-TC
MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF;
snmpFrameworkMIB MODULE-IDENTITY
LAST-UPDATED "9711200000Z" -- 20 November 1997
ORGANIZATION "SNMPv3 Working Group"
CONTACT-INFO "WG-email: snmpv3@tis.com
Subscribe: majordomo@tis.com
In message body: subscribe snmpv3
Chair: Russ Mundy
Trusted Information Systems
postal: 3060 Washington Rd
Glenwood MD 21738
USA
email: mundy@tis.com
phone: +1 301-854-6889
Co-editor Dave Harrington
Cabletron Systems, Inc.
postal: Post Office Box 5005
Mail Stop: Durham
35 Industrial Way
Rochester, NH 03867-5005
USA
email: dbh@ctron.com
phone: +1 603-337-7357
Co-editor Randy Presuhn
BMC Software, Inc.
postal: 1190 Saratoga Avenue
Suite 130
San Jose, CA 95129
USA
email: rpresuhn@bmc.com
phone: +1 408-556-0720
Co-editor: Bert Wijnen
IBM T.J. Watson Research
postal: Schagen 33
Harrington, et. al. Standards Track [Page 35]
^L
RFC 2261 SNMPv3 Architecture January 1998
3461 GL Linschoten
Netherlands
email: wijnen@vnet.ibm.com
phone: +31 348-432-794
"
DESCRIPTION "The SNMP Management Architecture MIB"
::= { snmpModules 2 }
-- Textual Conventions used in the SNMP Management Architecture ***
SnmpEngineID ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION "An SNMP engine's administratively-unique identifier.
The value for this object may not be all zeros or
all 'ff'H or the empty (zero length) string.
The initial value for this object may be configured
via an operator console entry or via an algorithmic
function. In the latter case, the following
example algorithm is recommended.
In cases where there are multiple engines on the
same system, the use of this algorithm is NOT
appropriate, as it would result in all of those
engines ending up with the same ID value.
1) The very first bit is used to indicate how the
rest of the data is composed.
0 - as defined by enterprise using former methods
that existed before SNMPv3. See item 2 below.
1 - as defined by this architecture, see item 3
below.
Note that this allows existing uses of the
engineID (also known as AgentID [RFC1910]) to
co-exist with any new uses.
2) The snmpEngineID has a length of 12 octets.
The first four octets are set to the binary
equivalent of the agent's SNMP management
private enterprise number as assigned by the
Internet Assigned Numbers Authority (IANA).
For example, if Acme Networks has been assigned
{ enterprises 696 }, the first four octets would
Harrington, et. al. Standards Track [Page 36]
^L
RFC 2261 SNMPv3 Architecture January 1998
be assigned '000002b8'H.
The remaining eight octets are determined via
one or more enterprise-specific methods. Such
methods must be designed so as to maximize the
possibility that the value of this object will
be unique in the agent's administrative domain.
For example, it may be the IP address of the SNMP
entity, or the MAC address of one of the
interfaces, with each address suitably padded
with random octets. If multiple methods are
defined, then it is recommended that the first
octet indicate the method being used and the
remaining octets be a function of the method.
3) The length of the octet strings varies.
The first four octets are set to the binary
equivalent of the agent's SNMP management
private enterprise number as assigned by the
Internet Assigned Numbers Authority (IANA).
For example, if Acme Networks has been assigned
{ enterprises 696 }, the first four octets would
be assigned '000002b8'H.
The very first bit is set to 1. For example, the
above value for Acme Networks now changes to be
'800002b8'H.
The fifth octet indicates how the rest (6th and
following octets) are formatted. The values for
the fifth octet are:
0 - reserved, unused.
1 - IPv4 address (4 octets)
lowest non-special IP address
2 - IPv6 address (16 octets)
lowest non-special IP address
3 - MAC address (6 octets)
lowest IEEE MAC address, canonical
order
4 - Text, administratively assigned
Maximum remaining length 27
Harrington, et. al. Standards Track [Page 37]
^L
RFC 2261 SNMPv3 Architecture January 1998
5 - Octets, administratively assigned
Maximum remaining length 27
6-127 - reserved, unused
127-255 - as defined by the enterprise
Maximum remaining length 27
"
SYNTAX OCTET STRING (SIZE(1..32))
SnmpSecurityModel ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION "An identifier that uniquely identifies a
securityModel of the Security Subsystem within the
SNMP Management Architecture.
The values for securityModel are allocated as
follows:
- The zero value is reserved.
- Values between 1 and 255, inclusive, are reserved
for standards-track Security Models and are
managed by the Internet Assigned Numbers Authority
(IANA).
- Values greater than 255 are allocated to
enterprise-specific Security Models. An
enterprise-specific securityModel value is defined
to be:
enterpriseID * 256 + security model within
enterprise
For example, the fourth Security Model defined by
the enterprise whose enterpriseID is 1 would be
260.
This scheme for allocation of securityModel
values allows for a maximum of 255 standards-
based Security Models, and for a maximum of
255 Security Models per enterprise.
It is believed that the assignment of new
securityModel values will be rare in practice
because the larger the number of simultaneously
utilized Security Models, the larger the
chance that interoperability will suffer.
Consequently, it is believed that such a range
will be sufficient. In the unlikely event that
Harrington, et. al. Standards Track [Page 38]
^L
RFC 2261 SNMPv3 Architecture January 1998
the standards committee finds this number to be
insufficient over time, an enterprise number
can be allocated to obtain an additional 255
possible values.
Note that the most significant bit must be zero;
hence, there are 23 bits allocated for various
organizations to design and define non-standard
securityModels. This limits the ability to
define new proprietary implementations of Security
Models to the first 8,388,608 enterprises.
It is worthwhile to note that, in its encoded
form, the securityModel value will normally
require only a single byte since, in practice,
the leftmost bits will be zero for most messages
and sign extension is suppressed by the encoding
rules.
As of this writing, there are several values
of securityModel defined for use with SNMP or
reserved for use with supporting MIB objects.
They are as follows:
0 reserved for 'any'
1 reserved for SNMPv1
2 reserved for SNMPv2c
3 User-Based Security Model (USM)
"
SYNTAX INTEGER(0..2147483647)
SnmpMessageProcessingModel ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION "An identifier that uniquely identifies a Message
Processing Model of the Message Processing
Subsystem within a SNMP Management Architecture.
The values for messageProcessingModel are
allocated as follows:
- Values between 0 and 255, inclusive, are
reserved for standards-track Message Processing
Models and are managed by the Internet Assigned
Numbers Authority (IANA).
- Values greater than 255 are allocated to
enterprise-specific Message Processing Models.
An enterprise messageProcessingModel value is
defined to be:
Harrington, et. al. Standards Track [Page 39]
^L
RFC 2261 SNMPv3 Architecture January 1998
enterpriseID * 256 +
messageProcessingModel within enterprise
For example, the fourth Message Processing Model
defined by the enterprise whose enterpriseID
is 1 would be 260.
This scheme for allocation of securityModel
values allows for a maximum of 255 standards-
based Message Processing Models, and for a
maximum of 255 Message Processing Models per
enterprise.
It is believed that the assignment of new
messageProcessingModel values will be rare
in practice because the larger the number of
simultaneously utilized Message Processing Models,
the larger the chance that interoperability
will suffer. It is believed that such a range
will be sufficient. In the unlikely event that
the standards committee finds this number to be
insufficient over time, an enterprise number
can be allocated to obtain an additional 256
possible values.
Note that the most significant bit must be zero;
hence, there are 23 bits allocated for various
organizations to design and define non-standard
messageProcessingModels. This limits the ability
to define new proprietary implementations of
Message Processing Models to the first 8,388,608
enterprises.
It is worthwhile to note that, in its encoded
form, the securityModel value will normally
require only a single byte since, in practice,
the leftmost bits will be zero for most messages
and sign extension is suppressed by the encoding
rules.
As of this writing, there are several values of
messageProcessingModel defined for use with SNMP.
They are as follows:
0 reserved for SNMPv1
1 reserved for SNMPv2c
2 reserved for SNMPv2u and SNMPv2*
3 reserved for SNMPv3
Harrington, et. al. Standards Track [Page 40]
^L
RFC 2261 SNMPv3 Architecture January 1998
"
SYNTAX INTEGER(0..2147483647)
SnmpSecurityLevel ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION "A Level of Security at which SNMP messages can be
sent or with which operations are being processed;
in particular, one of:
noAuthNoPriv - without authentication and
without privacy,
authNoPriv - with authentication but
without privacy,
authPriv - with authentication and
with privacy.
These three values are ordered such that
noAuthNoPriv is less than authNoPriv and
authNoPriv is less than authPriv.
"
SYNTAX INTEGER { noAuthNoPriv(1),
authNoPriv(2),
authPriv(3)
}
SnmpAdminString ::= TEXTUAL-CONVENTION
DISPLAY-HINT "255a"
STATUS current
DESCRIPTION "An octet string containing administrative
information, preferably in human-readable form.
To facilitate internationalization, this
information is represented using the ISO/IEC
IS 10646-1 character set, encoded as an octet
string using the UTF-8 transformation format
described in [RFC2044].
Since additional code points are added by
amendments to the 10646 standard from time
to time, implementations must be prepared to
encounter any code point from 0x00000000 to
0x7fffffff.
The use of control codes should be avoided.
When it is necessary to represent a newline,
the control code sequence CR LF should be used.
Harrington, et. al. Standards Track [Page 41]
^L
RFC 2261 SNMPv3 Architecture January 1998
The use of leading or trailing white space should
be avoided.
For code points not directly supported by user
interface hardware or software, an alternative
means of entry and display, such as hexadecimal,
may be provided.
For information encoded in 7-bit US-ASCII,
the UTF-8 encoding is identical to the
US-ASCII encoding.
Note that when this TC is used for an object that
is used or envisioned to be used as an index, then
a SIZE restriction must be specified so that the
number of sub-identifiers for any object instance
does not exceed the limit of 128, as defined by
[RFC1905].
"
SYNTAX OCTET STRING (SIZE (0..255))
-- Administrative assignments ***************************************
snmpFrameworkAdmin
OBJECT IDENTIFIER ::= { snmpFrameworkMIB 1 }
snmpFrameworkMIBObjects
OBJECT IDENTIFIER ::= { snmpFrameworkMIB 2 }
snmpFrameworkMIBConformance
OBJECT IDENTIFIER ::= { snmpFrameworkMIB 3 }
-- the snmpEngine Group ********************************************
snmpEngine OBJECT IDENTIFIER ::= { snmpFrameworkMIBObjects 1 }
snmpEngineID OBJECT-TYPE
SYNTAX SnmpEngineID
MAX-ACCESS read-only
STATUS current
DESCRIPTION "An SNMP engine's administratively-unique identifier.
"
::= { snmpEngine 1 }
snmpEngineBoots OBJECT-TYPE
SYNTAX INTEGER (1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of times that the SNMP engine has
Harrington, et. al. Standards Track [Page 42]
^L
RFC 2261 SNMPv3 Architecture January 1998
(re-)initialized itself since its initial
configuration.
"
::= { snmpEngine 2 }
snmpEngineTime OBJECT-TYPE
SYNTAX INTEGER (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The number of seconds since the SNMP engine last
incremented the snmpEngineBoots object.
"
::= { snmpEngine 3 }
snmpEngineMaxMessageSize OBJECT-TYPE
SYNTAX INTEGER (484..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The maximum length in octets of an SNMP message
which this SNMP engine can send or receive and
process, determined as the minimum of the maximum
message size values supported among all of the
transports available to and supported by the engine.
"
::= { snmpEngine 4 }
-- Registration Points for Authentication and Privacy Protocols **
snmpAuthProtocols OBJECT-IDENTITY
STATUS current
DESCRIPTION "Registration point for standards-track
authentication protocols used in SNMP Management
Frameworks.
"
::= { snmpFrameworkAdmin 1 }
snmpPrivProtocols OBJECT-IDENTITY
STATUS current
DESCRIPTION "Registration point for standards-track privacy
protocols used in SNMP Management Frameworks.
"
::= { snmpFrameworkAdmin 2 }
-- Conformance information ******************************************
snmpFrameworkMIBCompliances
OBJECT IDENTIFIER ::= {snmpFrameworkMIBConformance 1}
Harrington, et. al. Standards Track [Page 43]
^L
RFC 2261 SNMPv3 Architecture January 1998
snmpFrameworkMIBGroups
OBJECT IDENTIFIER ::= {snmpFrameworkMIBConformance 2}
-- compliance statements
snmpFrameworkMIBCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION "The compliance statement for SNMP engines which
implement the SNMP Management Framework MIB.
"
MODULE -- this module
MANDATORY-GROUPS { snmpEngineGroup }
::= { snmpFrameworkMIBCompliances 1 }
-- units of conformance
snmpEngineGroup OBJECT-GROUP
OBJECTS {
snmpEngineID,
snmpEngineBoots,
snmpEngineTime,
snmpEngineMaxMessageSize
}
STATUS current
DESCRIPTION "A collection of objects for identifying and
determining the configuration and current timeliness
values of an SNMP engine.
"
::= { snmpFrameworkMIBGroups 1 }
END
6. Intellectual Property
The IETF takes no position regarding the validity or scope of any
intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; neither does it represent that it
has made any effort to identify any such rights. Information on the
IETF's procedures with respect to rights in standards-track and
standards-related documentation can be found in BCP-11. Copies of
claims of rights made available for publication and any assurances of
licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such
proprietary rights by implementors or users of this specification can
be obtained from the IETF Secretariat.
Harrington, et. al. Standards Track [Page 44]
^L
RFC 2261 SNMPv3 Architecture January 1998
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights which may cover technology that may be required to practice
this standard. Please address the information to the IETF Executive
Director.
7. Acknowledgements
This document is the result of the efforts of the SNMPv3 Working
Group. Some special thanks are in order to the following SNMPv3 WG
members:
Dave Battle (SNMP Research, Inc.)
Uri Blumenthal (IBM T.J. Watson Research Center)
Jeff Case (SNMP Research, Inc.)
John Curran (BBN)
T. Max Devlin (Hi-TECH Connections)
John Flick (Hewlett Packard)
David Harrington (Cabletron Systems Inc.)
N.C. Hien (IBM T.J. Watson Research Center)
Dave Levi (SNMP Research, Inc.)
Louis A Mamakos (UUNET Technologies Inc.)
Paul Meyer (Secure Computing Corporation)
Keith McCloghrie (Cisco Systems)
Russ Mundy (Trusted Information Systems, Inc.)
Bob Natale (ACE*COMM Corporation)
Mike O'Dell (UUNET Technologies Inc.)
Dave Perkins (DeskTalk)
Peter Polkinghorne (Brunel University)
Randy Presuhn (BMC Software, Inc.)
David Reid (SNMP Research, Inc.)
Shawn Routhier (Epilogue)
Juergen Schoenwaelder (TU Braunschweig)
Bob Stewart (Cisco Systems)
Bert Wijnen (IBM T.J. Watson Research Center)
The document is based on recommendations of the IETF Security and
Administrative Framework Evolution for SNMP Advisory Team. Members
of that Advisory Team were:
David Harrington (Cabletron Systems Inc.)
Jeff Johnson (Cisco Systems)
David Levi (SNMP Research Inc.)
John Linn (Openvision)
Russ Mundy (Trusted Information Systems) chair
Shawn Routhier (Epilogue)
Glenn Waters (Nortel)
Bert Wijnen (IBM T. J. Watson Research Center)
Harrington, et. al. Standards Track [Page 45]
^L
RFC 2261 SNMPv3 Architecture January 1998
As recommended by the Advisory Team and the SNMPv3 Working Group
Charter, the design incorporates as much as practical from previous
RFCs and drafts. As a result, special thanks are due to the authors
of previous designs known as SNMPv2u and SNMPv2*:
Jeff Case (SNMP Research, Inc.)
David Harrington (Cabletron Systems Inc.)
David Levi (SNMP Research, Inc.)
Keith McCloghrie (Cisco Systems)
Brian O'Keefe (Hewlett Packard)
Marshall T. Rose (Dover Beach Consulting)
Jon Saperia (BGS Systems Inc.)
Steve Waldbusser (International Network Services)
Glenn W. Waters (Bell-Northern Research Ltd.)
8. Security Considerations
This document describes how an implementation can include a Security
Model to protect management messages and an Access Control Model to
control access to management information.
The level of security provided is determined by the specific Security
Model implementation(s) and the specific Access Control Model
implementation(s) used.
Applications have access to data which is not secured. Applications
should take reasonable steps to protect the data from disclosure.
It is the responsibility of the purchaser of an implementation to
ensure that:
1) an implementation complies with the rules defined by this
architecture,
2) the Security and Access Control Models utilized satisfy the
security and access control needs of the organization,
3) the implementations of the Models and Applications comply with
the model and application specifications,
4) and the implementation protects configuration secrets from
inadvertent disclosure.
9. References
[RFC1155] Rose, M. and K. McCloghrie, "Structure and Identification
of Management Information for TCP/IP-based internets", STD 16, RFC
1155, May 1990.
Harrington, et. al. Standards Track [Page 46]
^L
RFC 2261 SNMPv3 Architecture January 1998
[RFC1157] Case, J., Fedor, M., Schoffstall, M. and J. Davin, "The
Simple Network Management Protocol", STD 15, RFC 1157, May 1990.
[RFC1212] Rose, M. and K. McCloghrie, "Concise MIB Definitions", STD
16, RFC 1212, March 1991.
[RFC1901] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
"Introduction to Community-based SNMPv2", RFC 1901, January 1996.
[RFC1902] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
"Structure of Management Information for Version 2 of the Simple
Network Management Protocol (SNMPv2)", RFC 1902, January 1996.
[RFC1905] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
"Protocol Operations for Version 2 of the Simple Network
Management Protocol (SNMPv2)", RFC 1905, January 1996.
[RFC1906] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
"Transport Mappings for Version 2 of the Simple Network Management
Protocol (SNMPv2)", RFC 1906, January 1996.
[RFC1907] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
"Management Information Base for Version 2 of the Simple Network
Management Protocol (SNMPv2)", RFC 1907 January 1996.
[RFC1908] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
"Coexistence between Version 1 and Version 2 of the Internet-
standard Network Management Framework", RFC 1908, January 1996.
[RFC1909] McCloghrie, K., Editor, "An Administrative Infrastructure
for SNMPv2", RFC 1909, February 1996.
[RFC1910] Waters, G., Editor, "User-based Security Model for SNMPv2",
RFC 1910, February 1996.
[RFC2028] Hovey, R. and S. Bradner, "The Organizations Involved in
the IETF Standards Process", BCP 11, RFC 2028, October 1996.
[RFC2044] Yergeau, F., "UTF-8, a transformation format of Unicode and
ISO 10646", RFC 2044, October 1996.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2262] Case, J., Harrington, D., Presuhn, R., and B. Wijnen,
"Message Processing and Dispatching for the Simple Network
Management Protocol (SNMP)", RFC 2262, January 1998.
Harrington, et. al. Standards Track [Page 47]
^L
RFC 2261 SNMPv3 Architecture January 1998
[RFC2264] Blumenthal, U., and B. Wijnen, "The User-Based
Security Model for Version 3 of the Simple Network Management
Protocol (SNMPv3)", RFC 2264, January 1998.
[RFC2265] Wijnen, B., Presuhn, R., and K. McCloghrie,
"View-based Access Control Model for the Simple Network Management
Protocol (SNMP)", RFC 2265, January 1998.
[RFC2263] Levi, D., Meyer, P., and B. Stewart, "SNMPv3
Applications", RFC 2263, January 1998.
10. Editors' Addresses
Bert Wijnen
IBM T.J. Watson Research
Schagen 33
3461 GL Linschoten
Netherlands
Phone: +31 348-432-794
EMail: wijnen@vnet.ibm.com
Dave Harrington
Cabletron Systems, Inc
Post Office Box 5005
Mail Stop: Durham
35 Industrial Way
Rochester, NH 03867-5005
USA
Phone: +1 603-337-7357
EMail: dbh@ctron.com
Randy Presuhn
BMC Software, Inc.
1190 Saratoga Avenue
Suite 130
San Jose, CA 95129
USA
Phone: +1 408-556-0720
EMail: rpresuhn@bmc.com
Harrington, et. al. Standards Track [Page 48]
^L
RFC 2261 SNMPv3 Architecture January 1998
APPENDIX A
A. Guidelines for Model Designers
This appendix describes guidelines for designers of models which are
expected to fit into the architecture defined in this document.
SNMPv1 and SNMPv2c are two SNMP frameworks which use communities to
provide trivial authentication and access control. SNMPv1 and SNMPv2c
Frameworks can coexist with Frameworks designed according to this
architecture, and modified versions of SNMPv1 and SNMPv2c Frameworks
could be designed to meet the requirements of this architecture, but
this document does not provide guidelines for that coexistence.
Within any subsystem model, there should be no reference to any
specific model of another subsystem, or to data defined by a specific
model of another subsystem.
Transfer of data between the subsystems is deliberately described as
a fixed set of abstract data elements and primitive functions which
can be overloaded to satisfy the needs of multiple model definitions.
Documents which define models to be used within this architecture
SHOULD use the standard primitives between subsystems, possibly
defining specific mechanisms for converting the abstract data
elements into model-usable formats. This constraint exists to allow
subsystem and model documents to be written recognizing common
borders of the subsystem and model. Vendors are not constrained to
recognize these borders in their implementations.
The architecture defines certain standard services to be provided
between subsystems, and the architecture defines abstract service
interfaces to request these services.
Each model definition for a subsystem SHOULD support the standard
service interfaces, but whether, or how, or how well, it performs the
service is dependent on the model definition.
A.1. Security Model Design Requirements
A.1.1. Threats
A document describing a Security Model MUST describe how the model
protects against the threats described under "Security Requirements
of this Architecture", section 1.4.
Harrington, et. al. Standards Track [Page 49]
^L
RFC 2261 SNMPv3 Architecture January 1998
A.1.2. Security Processing
Received messages MUST be validated by a Model of the Security
Subsystem. Validation includes authentication and privacy processing
if needed, but it is explicitly allowed to send messages which do not
require authentication or privacy.
A received message contains a specified securityLevel to be used
during processing. All messages requiring privacy MUST also require
authentication.
A Security Model specifies rules by which authentication and privacy
are to be done. A model may define mechanisms to provide additional
security features, but the model definition is constrained to using
(possibly a subset of) the abstract data elements defined in this
document for transferring data between subsystems.
Each Security Model may allow multiple security protocols to be used
concurrently within an implementation of the model. Each Security
Model defines how to determine which protocol to use, given the
securityLevel and the security parameters relevant to the message.
Each Security Model, with its associated protocol(s) defines how the
sending/receiving entities are identified, and how secrets are
configured.
Authentication and Privacy protocols supported by Security Models are
uniquely identified using Object Identifiers. IETF standard protocols
for authentication or privacy should have an identifier defined
within the snmpAuthProtocols or the snmpPrivProtocols subtrees.
Enterprise specific protocol identifiers should be defined within the
enterprise subtree.
For privacy, the Security Model defines what portion of the message
is encrypted.
The persistent data used for security should be SNMP-manageable, but
the Security Model defines whether an instantiation of the MIB is a
conformance requirement.
Security Models are replaceable within the Security Subsystem.
Multiple Security Model implementations may exist concurrently within
an SNMP engine. The number of Security Models defined by the SNMP
community should remain small to promote interoperability.
Harrington, et. al. Standards Track [Page 50]
^L
RFC 2261 SNMPv3 Architecture January 1998
A.1.3. Validate the security-stamp in a received message
A Message Processing Model requests that a Security Model:
- verifies that the message has not been altered,
- authenticates the identification of the principal for whom the
message was generated.
- decrypts the message if it was encrypted.
Additional requirements may be defined by the model, and additional
services may be provided by the model, but the model is constrained
to use the following primitives for transferring data between
subsystems. Implementations are not so constrained.
A Message Processing Model uses the processMsg primitive as described
in section 4.5.
A.1.4. Security MIBs
Each Security Model defines the MIB module(s) required for security
processing, including any MIB module(s) required for the security
protocol(s) supported. The MIB module(s) SHOULD be defined
concurrently with the procedures which use the MIB module(s). The
MIB module(s) are subject to normal access control rules.
The mapping between the model-dependent security ID and the
securityName MUST be able to be determined using SNMP, if the model-
dependent MIB is instantiated and if access control policy allows
access.
A.1.5. Cached Security Data
For each message received, the Security Model caches the state
information such that a Response message can be generated using the
same security information, even if the Local Configuration Datastore
is altered between the time of the incoming request and the outgoing
response.
A Message Processing Model has the responsibility for explicitly
releasing the cached data if such data is no longer needed. To enable
this, an abstract securityStateReference data element is passed from
the Security Model to the Message Processing Model.
The cached security data may be implicitly released via the
generation of a response, or explicitly released by using the
stateRelease primitive, as described in section 4.1.
Harrington, et. al. Standards Track [Page 51]
^L
RFC 2261 SNMPv3 Architecture January 1998
A.2. Message Processing Model Design Requirements
An SNMP engine contains a Message Processing Subsystem which may
contain multiple Message Processing Models.
The Message Processing Model MUST always (conceptually) pass the
complete PDU, i.e., it never forwards less than the complete list of
varBinds.
A.2.1. Receiving an SNMP Message from the Network
Upon receipt of a message from the network, the Dispatcher in the
SNMP engine determines the version of the SNMP message and interacts
with the corresponding Message Processing Model to determine the
abstract data elements.
A Message Processing Model specifies the SNMP Message format it
supports and describes how to determine the values of the abstract
data elements (like msgID, msgMaxSize, msgFlags,
msgSecurityParameters, securityModel, securityLevel etc). A Message
Processing Model interacts with a Security Model to provide security
processing for the message using the processMsg primitive, as
described in section 4.5.
A.2.2. Sending an SNMP Message to the Network
The Dispatcher in the SNMP engine interacts with a Message Processing
Model to prepare an outgoing message. For that it uses the following
primitives:
- for requests and notifications: prepareOutgoingMessage, as
described in section 4.4
- for response messages: prepareResponseMessage, as described in
section 4.4
A Message Processing Model, when preparing an Outgoing SNMP Message,
interacts with a Security Model to secure the message. For that it
uses the following primitives:
- for requests and notifications: generateRequestMsg, as
described in section 4.5.
- for response messages: generateResponseMsg as described in
section 4.5.
Harrington, et. al. Standards Track [Page 52]
^L
RFC 2261 SNMPv3 Architecture January 1998
Once the SNMP message is prepared by a Message Processing Model,
the Dispatcher sends the message to the desired address using the
appropriate transport.
A.3. Application Design Requirements
Within an application, there may be an explicit binding to a specific
SNMP message version, i.e., a specific Message Processing Model, and
to a specific Access Control Model, but there should be no reference
to any data defined by a specific Message Processing Model or Access
Control Model.
Within an application, there should be no reference to any specific
Security Model, or any data defined by a specific Security Model.
An application determines whether explicit or implicit access control
should be applied to the operation, and, if access control is needed,
which Access Control Model should be used.
An application has the responsibility to define any MIB module(s)
used to provide application-specific services.
Applications interact with the SNMP engine to initiate messages,
receive responses, receive asynchronous messages, and send responses.
A.3.1. Applications that Initiate Messages
Applications may request that the SNMP engine send messages
containing SNMP commands or notifications using the sendPdu primitive
as described in section 4.2.
If it is desired that a message be sent to multiple targets, it is
the responsibility of the application to provide the iteration.
The SNMP engine assumes necessary access control has been applied to
the PDU, and provides no access control services.
The SNMP engine looks at the "expectResponse" parameter, and if a
response is expected, then the appropriate information is cached such
that a later response can be associated to this message, and can then
be returned to the application. A sendPduHandle is returned to the
application so it can later correspond the response with this message
as well.
Harrington, et. al. Standards Track [Page 53]
^L
RFC 2261 SNMPv3 Architecture January 1998
A.3.2. Applications that Receive Responses
The SNMP engine matches the incoming response messages to outstanding
messages sent by this SNMP engine, and forwards the response to the
associated application using the processResponsePdu primitive, as
described in section 4.2.
A.3.3. Applications that Receive Asynchronous Messages
When an SNMP engine receives a message that is not the response to a
request from this SNMP engine, it must determine to which application
the message should be given.
An Application that wishes to receive asynchronous messages registers
itself with the engine using the primitive registerContextEngineID as
described in section 4.2.
An Application that wishes to stop receiving asynchronous messages
should unregister itself with the SNMP engine using the primitive
unregisterContextEngineID as described in section 4.2.
Only one registration per combination of PDU type and contextEngineID
is permitted at the same time. Duplicate registrations are ignored.
An errorIndication will be returned to the application that attempts
to duplicate a registration.
All asynchronously received messages containing a registered
combination of PDU type and contextEngineID are sent to the
application which registered to support that combination.
The engine forwards the PDU to the registered application, using the
processPdu primitive, as described in section 4.2.
A.3.4. Applications that Send Responses
Request operations require responses. An application sends a
response via the returnResponsePdu primitive, as described in section
4.2.
The contextEngineID, contextName, securityModel, securityName,
securityLevel, and stateReference parameters are from the initial
processPdu primitive. The PDU and statusInformation are the results
of processing.
Harrington, et. al. Standards Track [Page 54]
^L
RFC 2261 SNMPv3 Architecture January 1998
A.4. Access Control Model Design Requirements
An Access Control Model determines whether the specified securityName
is allowed to perform the requested operation on a specified managed
object. The Access Control Model specifies the rules by which access
control is determined.
The persistent data used for access control should be manageable
using SNMP, but the Access Control Model defines whether an
instantiation of the MIB is a conformance requirement.
The Access Control Model must provide the primitive isAccessAllowed.
Harrington, et. al. Standards Track [Page 55]
^L
RFC 2261 SNMPv3 Architecture January 1998
B. Full Copyright Statement
Copyright (C) The Internet Society (1997). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Harrington, et. al. Standards Track [Page 56]
^L
|