1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
|
Network Working Group D. Levi
Request for Comments: 2273 SNMP Research, Inc.
Obsoletes: 2263 P. Meyer
Category: Standards Track Secure Computing Corporation
B. Stewart
Cisco Systems
January 1998
SNMPv3 Applications
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (1998). All Rights Reserved.
IANA Note
Due to a clerical error in the assignment of the snmpModules in this
memo, this RFC provides the corrected number assignments for this
protocol. This memo obsoletes RFC 2263.
Abstract
This memo describes five types of SNMP applications which make use of
an SNMP engine as described in [RFC2271]. The types of application
described are Command Generators, Command Responders, Notification
Originators, Notification Receivers, and Proxy Forwarders.
This memo also defines MIB modules for specifying targets of
management operations, for notification filtering, and for proxy
forwarding.
Table of Contents
1 Overview ..................................................... 2
1.1 Command Generator Applications ............................. 3
1.2 Command Responder Applications ............................. 3
1.3 Notification Originator Applications ....................... 3
1.4 Notification Receiver Applications ......................... 3
1.5 Proxy Forwarder Applications ............................... 3
2 Management Targets ........................................... 5
Levi, et. al. Standards Track [Page 1]
^L
RFC 2273 SNMPv3 Applications January 1998
3 Elements Of Procedure ........................................ 6
3.1 Command Generator Applications ............................. 6
3.2 Command Responder Applications ............................. 8
3.3 Notification Originator Applications ....................... 13
3.4 Notification Receiver Applications ......................... 16
3.5 Proxy Forwarder Applications ............................... 18
3.5.1 Request Forwarding ....................................... 19
3.5.1.1 Processing an Incoming Request ......................... 19
3.5.1.2 Processing an Incoming Response ........................ 22
3.5.1.3 Processing an Incoming Report Indication ............... 23
3.5.2 Notification Forwarding .................................. 24
4 The Structure of the MIB Modules ............................. 27
4.1 The Management Target MIB Module ........................... 27
4.1.1 Tag Lists ................................................ 28
4.1.2 Definitions .............................................. 28
4.2 The Notification MIB Module ................................ 41
4.2.1 Definitions .............................................. 42
4.3 The Proxy MIB Module ....................................... 53
4.3.1 Definitions .............................................. 53
5 Identification of Management Targets in Notification
Originators ............................................... 59
6 Notification Filtering ....................................... 60
7 Management Target Translation in Proxy Forwarder
Applications .............................................. 61
7.1 Management Target Translation for Request Forwarding ....... 61
7.2 Management Target Translation for Notification Forwarding
........................................................... 62
8 Intellectual Property ........................................ 63
9 Acknowledgments .............................................. 64
10 Security Considerations ..................................... 65
11 References .................................................. 65
12 Editors' Address ............................................ 67
A. Trap Configuration Example .................................. 68
B. Full Copyright Statement .................................... 70
1. Overview
This document describes five types of SNMP applications:
- Applications which initiate SNMP Get, GetNext, GetBulk, and/or
Set requests, called 'command generators.'
- Applications which respond to SNMP Get, GetNext, GetBulk,
and/or Set requests, called 'command responders.'
- Applications which generate notifications, called
'notification originators.'
Levi, et. al. Standards Track [Page 2]
^L
RFC 2273 SNMPv3 Applications January 1998
- Applications which receive notifications, called 'notification
receivers.'
- Applications which forward SNMP Get, GetNext, GetBulk, and/or
Set requests or notifications, called 'proxy forwarder.'
Note that there are no restrictions on which types of applications
may be associated with a particular SNMP engine. For example, a
single SNMP engine may, in fact, be associated with both command
generator and command responder applications.
1.1. Command Generator Applications
A command generator application initiates SNMP Get, GetNext, GetBulk,
and/or Set requests, as well as processing the response to a request
which it generated.
1.2. Command Responder Applications
A command responder application receives SNMP Get, GetNext, GetBulk,
and/or Set requests destined for the local system as indicated by the
fact that the contextEngineID in the received request is equal to
that of the local engine through which the request was received. The
command responder application will perform the appropriate protocol
operation, using access control, and will generate a response message
to be sent to the request's originator.
1.3. Notification Originator Applications
A notification originator application conceptually monitors a system
for particular events or conditions, and generates Trap and/or Inform
messages based on these events or conditions. A notification
originator must have a mechanism for determining where to send
messages, and what SNMP version and security parameters to use when
sending messages. A mechanism and MIB module for this purpose is
provided in this document.
1.4. Notification Receiver Applications
A notification receiver application listens for notification
messages, and generates response messages when a message containing
an Inform PDU is received.
1.5. Proxy Forwarder Applications
A proxy forwarder application forwards SNMP messages. Note that
implementation of a proxy forwarder application is optional. The
sections describing proxy (4.5, 5.3, and 8) may be skipped for
Levi, et. al. Standards Track [Page 3]
^L
RFC 2273 SNMPv3 Applications January 1998
implementations that do not include a proxy forwarder application.
The term "proxy" has historically been used very loosely, with
multiple different meanings. These different meanings include (among
others):
(1) the forwarding of SNMP requests to other SNMP entities without
regard for what managed object types are being accessed; for
example, in order to forward an SNMP request from one transport
domain to another, or to translate SNMP requests of one version
into SNMP requests of another version;
(2) the translation of SNMP requests into operations of some non-SNMP
management protocol; and
(3) support for aggregated managed objects where the value of one
managed object instance depends upon the values of multiple other
(remote) items of management information.
Each of these scenarios can be advantageous; for example, support for
aggregation of management information can significantly reduce the
bandwidth requirements of large-scale management activities.
However, using a single term to cover multiple different scenarios
causes confusion.
To avoid such confusion, this document uses the term "proxy" with a
much more tightly defined meaning. The term "proxy" is used in this
document to refer to a proxy forwarder application which forwards
either SNMP requests, notifications, and responses without regard for
what managed objects are contained within requests or notifications.
This definition is most closely related to the first definition
above. Note, however, that in the SNMP architecture [RFC2271], a
proxy forwarder is actually an application, and need not be
associated with what is traditionally thought of as an SNMP agent.
Specifically, the distinction between a traditional SNMP agent and a
proxy forwarder application is simple:
- a proxy forwarder application forwards requests and/or
notifications to other SNMP engines according to the context,
and irrespective of the specific managed object types being
accessed, and forwards the response to such previously
forwarded messages back to the SNMP engine from which the
original message was received;
- in contrast, the command responder application that is part of
what is traditionally thought of as an SNMP agent, and which
processes SNMP requests according to the (names of the)
Levi, et. al. Standards Track [Page 4]
^L
RFC 2273 SNMPv3 Applications January 1998
individual managed object types and instances being accessed,
is NOT a proxy forwarder application from the perspective of
this document.
Thus, when a proxy forwarder application forwards a request or
notification for a particular contextEngineID / contextName pair, not
only is the information on how to forward the request specifically
associated with that context, but the proxy forwarder application has
no need of a detailed definition of a MIB view (since the proxy
forwarder application forwards the request irrespective of the
managed object types).
In contrast, a command responder application must have the detailed
definition of the MIB view, and even if it needs to issue requests to
other entities, via SNMP or otherwise, that need is dependent on the
individual managed object instances being accessed (i.e., not only on
the context).
Note that it is a design goal of a proxy forwarder application to act
as an intermediary between the endpoints of a transaction. In
particular, when forwarding Inform requests, the associated response
is forwarded when it is received from the target to which the Inform
request was forwarded, rather than generating a response immediately
when an Inform request is received.
2. Management Targets
Some types of applications (notification generators and proxy
forwarders in particular) require a mechanism for determining where
and how to send generated messages. This document provides a
mechanism and MIB module for this purpose. The set of information
that describes where and how to send a message is called a
'Management Target', and consists of two kinds of information:
- Destination information, consisting of a transport domain and
a transport address. This is also termed a transport
endpoint.
- SNMP parameters, consisting of message processing model,
security model, security level, and security name information.
The SNMP-TARGET-MIB module described later in this document contains
one table for each of these types of information. There can be a
many-to-many relationship in the MIB between these two types of
information. That is, there may be multiple transport endpoints
associated with a particular set of SNMP parameters, or a particular
transport endpoint may be associated with several sets of SNMP
parameters.
Levi, et. al. Standards Track [Page 5]
^L
RFC 2273 SNMPv3 Applications January 1998
3. Elements Of Procedure
The following sections describe the procedures followed by each type
of application when generating messages for transmission or when
processing received messages. Applications communicate with the
Dispatcher using the abstract service interfaces defined in [RFC2271].
3.1. Command Generator Applications
A command generator initiates an SNMP request by calling the
Dispatcher using the following abstract service interface:
statusInformation = -- sendPduHandle if success
-- errorIndication if failure
sendPdu(
IN transportDomain -- transport domain to be used
IN transportAddress -- destination network address
IN messageProcessingModel -- typically, SNMP version
IN securityModel -- Security Model to use
IN securityName -- on behalf of this principal
IN securityLevel -- Level of Security requested
IN contextEngineID -- data from/at this entity
IN contextName -- data from/in this context
IN pduVersion -- the version of the PDU
IN PDU -- SNMP Protocol Data Unit
IN expectResponse -- TRUE or FALSE
)
Where:
- The transportDomain is that of the destination of the message.
- The transportAddress is that of the destination of the
message.
- The messageProcessingModel indicates which Message Processing
Model the application wishes to use.
- The securityModel is the security model that the application
wishes to use.
- The securityName is the security model independent name for
the principal on whose behalf the application wishes the
message is to be generated.
- The securityLevel is the security level that the application
wishes to use.
Levi, et. al. Standards Track [Page 6]
^L
RFC 2273 SNMPv3 Applications January 1998
- The contextEngineID is provided by the command generator if it
wishes to explicitly specify the location of the management
information it is requesting.
- The contextName is provided by the command generator if it
wishes to explicitly specify the local context name for the
management information it is requesting.
- The pduVersion indicates the version of the PDU to be sent.
- The PDU is a value constructed by the command generator
containing the management operation that the command generator
wishes to perform.
- The expectResponse argument indicates that a response is
expected.
The result of the sendPdu interface indicates whether the PDU was
successfully sent. If it was successfully sent, the returned value
will be a sendPduHandle. The command generator should store the
sendPduHandle so that it can correlate a response to the original
request.
The Dispatcher is responsible for delivering the response to a
particular request to the correct command generator application. The
abstract service interface used is:
processResponsePdu( -- process Response PDU
IN messageProcessingModel -- typically, SNMP version
IN securityModel -- Security Model in use
IN securityName -- on behalf of this principal
IN securityLevel -- Level of Security
IN contextEngineID -- data from/at this SNMP entity
IN contextName -- data from/in this context
IN pduVersion -- the version of the PDU
IN PDU -- SNMP Protocol Data Unit
IN statusInformation -- success or errorIndication
IN sendPduHandle -- handle from sendPDU
)
Where:
- The messageProcessingModel is the value from the received
response.
- The securityModel is the value from the received response.
- The securityName is the value from the received response.
Levi, et. al. Standards Track [Page 7]
^L
RFC 2273 SNMPv3 Applications January 1998
- The securityLevel is the value from the received response.
- The contextEngineID is the value from the received response.
- The contextName is the value from the received response.
- The pduVersion indicates the version of the PDU in the
received response.
- The PDU is the value from the received response.
- The statusInformation indicates success or failure in
receiving the response.
- The sendPduHandle is the value returned by the sendPdu call
which generated the original request to which this is a
response.
The procedure when a command generator receives a message is as
follows:
(1) If the received values of messageProcessingModel, securityModel,
securityName, contextEngineID, contextName, and pduVersion are not
all equal to the values used in the original request, the response
is discarded.
(2) The operation type, request-id, error-status, error-index, and
variable-bindings are extracted from the PDU and saved. If the
request-id is not equal to the value used in the original request,
the response is discarded.
(3) At this point, it is up to the application to take an appropriate
action. The specific action is implementation dependent. If the
statusInformation indicates that the request failed, an appropriate
action might be to attempt to transmit the request again, or to
notify the person operating the application that a failure
occurred.
3.2. Command Responder Applications
Before a command responder application can process messages, it must
first associate itself with an SNMP engine. The abstract service
interface used for this purpose is:
Levi, et. al. Standards Track [Page 8]
^L
RFC 2273 SNMPv3 Applications January 1998
statusInformation = -- success or errorIndication
registerContextEngineID(
IN contextEngineID -- take responsibility for this one
IN pduType -- the pduType(s) to be registered
)
Where:
- The statusInformation indicates success or failure of the
registration attempt.
- The contextEngineID is equal to the snmpEngineID of the SNMP
engine with which the command responder is registering.
- The pduType indicates a Get, GetNext, GetBulk, or Set pdu.
Note that if another command responder application is already
registered with an SNMP engine, any further attempts to register with
the same contextEngineID and pduType will be denied. This implies
that separate command responder applications could register
separately for the various pdu types. However, in practice this is
undesirable, and only a single command responder application should
be registered with an SNMP engine at any given time.
A command responder application can disassociate with an SNMP engine
using the following abstract service interface:
unregisterContextEngineID(
IN contextEngineID -- give up responsibility for this one
IN pduType -- the pduType(s) to be unregistered
)
Where:
- The contextEngineID is equal to the snmpEngineID of the SNMP
engine with which the command responder is cancelling the
registration.
- The pduType indicates a Get, GetNext, GetBulk, or Set pdu.
Once the command responder has registered with the SNMP engine, it
waits to receive SNMP messages. The abstract service interface used
for receiving messages is:
processPdu( -- process Request/Notification PDU
IN messageProcessingModel -- typically, SNMP version
IN securityModel -- Security Model in use
IN securityName -- on behalf of this principal
Levi, et. al. Standards Track [Page 9]
^L
RFC 2273 SNMPv3 Applications January 1998
IN securityLevel -- Level of Security
IN contextEngineID -- data from/at this SNMP entity
IN contextName -- data from/in this context
IN pduVersion -- the version of the PDU
IN PDU -- SNMP Protocol Data Unit
IN maxSizeResponseScopedPDU -- maximum size of the Response PDU
IN stateReference -- reference to state information
) -- needed when sending a response
Where:
- The messageProcessingModel indicates which Message Processing
Model received and processed the message.
- The securityModel is the value from the received message.
- The securityName is the value from the received message.
- The securityLevel is the value from the received message.
- The contextEngineID is the value from the received message.
- The contextName is the value from the received message.
- The pduVersion indicates the version of the PDU in the
received message.
- The PDU is the value from the received message.
- The maxSizeResponseScopedPDU is the maximum allowable size of
a ScopedPDU containing a Response PDU (based on the maximum
message size that the originator of the message can accept).
- The stateReference is a value which references cached
information about each received request message. This value
must be returned to the Dispatcher in order to generate a
response.
The procedure when a message is received is as follows.
(1) The operation type is determined from the ASN.1 tag value
associated with the PDU parameter. The operation type should
always be one of the types previously registered by the
application.
(2) The request-id is extracted from the PDU and saved.
Levi, et. al. Standards Track [Page 10]
^L
RFC 2273 SNMPv3 Applications January 1998
(3) If the SNMPv2 operation type is GetBulk, the non-repeaters and
max-repetitions values are extracted from the PDU and saved.
(4) The variable-bindings are extracted from the PDU and saved.
(5) The management operation represented by the SNMPv2 operation type
is performed with respect to the relevant MIB view within the
context named by the contextName, according to the procedures set
forth in [RFC1905]. The relevant MIB view is determined by the
securityLevel, securityModel, contextName, securityName, and SNMPv2
operation type. To determine whether a particular object instance
is within the relevant MIB view, the following abstract service
interface is called:
statusInformation = -- success or errorIndication
isAccessAllowed(
IN securityModel -- Security Model in use
IN securityName -- principal who wants to access
IN securityLevel -- Level of Security
IN viewType -- read, write, or notify view
IN contextName -- context containing variableName
IN variableName -- OID for the managed object
)
Where:
- The securityModel is the value from the received message.
- The securityName is the value from the received message.
- The securityLevel is the value from the received message.
- The viewType indicates whether the PDU type is a read or write
operation.
- The contextName is the value from the received message.
- The variableName is the object instance of the variable for
which access rights are to be checked.
Normally, the result of the management operation will be a new PDU
value, and processing will continue in step (6) below. However, at
any time during the processing of the management operation:
- If the isAccessAllowed ASI returns a noSuchView,
noAccessEntry, or noGroupName error, processing of the
management operation is halted, a PDU value is contructed
using the values from the originally received PDU, but
Levi, et. al. Standards Track [Page 11]
^L
RFC 2273 SNMPv3 Applications January 1998
replacing the error_status with an authorizationError code,
and error_index value of 0, and control is passed to step (6)
below.
- If the isAccessAllowed ASI returns an otherError, processing
of the management operation is halted, a different PDU value
is contructed using the values from the originally received
PDU, but replacing the error_status with a genError code, and
control is passed to step (6) below.
- If the isAccessAllowed ASI returns a noSuchContext error,
processing of the management operation is halted, no result
PDU is generated, the snmpUnknownContexts counter is
incremented, and control is passed to step (6) below.
- If the context named by the contextName parameter is
unavailable, processing of the management operation is halted,
no result PDU is generated, the snmpUnavailableContexts
counter is incremented, and control is passed to step (6)
below.
(6) The Dispatcher is called to generate a response or report message.
The abstract service interface is:
returnResponsePdu(
IN messageProcessingModel -- typically, SNMP version
IN securityModel -- Security Model in use
IN securityName -- on behalf of this principal
IN securityLevel -- same as on incoming request
IN contextEngineID -- data from/at this SNMP entity
IN contextName -- data from/in this context
IN pduVersion -- the version of the PDU
IN PDU -- SNMP Protocol Data Unit
IN maxSizeResponseScopedPDU -- maximum size of the Response PDU
IN stateReference -- reference to state information
-- as presented with the request
IN statusInformation -- success or errorIndication
) -- error counter OID/value if error
Where:
- The messageProcessingModel is the value from the processPdu
call.
- The securityModel is the value from the processPdu call.
- The securityName is the value from the processPdu call.
Levi, et. al. Standards Track [Page 12]
^L
RFC 2273 SNMPv3 Applications January 1998
- The securityLevel is the value from the processPdu call.
- The contextEngineID is the value from the processPdu call.
- The contextName is the value from the processPdu call.
- The pduVersion indicates the version of the PDU to be
returned. If no result PDU was generated, the pduVersion is
an undefined value.
- The PDU is the result generated in step (5) above. If no
result PDU was generated, the PDU is an undefined value.
- The maxSizeResponseScopedPDU is a local value indicating the
maximum size of a ScopedPDU that the application can accept.
- The stateReference is the value from the processPdu call.
- The statusInformation either contains an indication that no
error occurred and that a response should be generated, or
contains an indication that an error occurred along with the
OID and counter value of the appropriate error counter object.
Note that a command responder application should always call the
returnResponsePdu abstract service interface, even in the event of an
error such as a resource allocation error. In the event of such an
error, the PDU value passed to returnResponsePdu should contain
appropriate values for errorStatus and errorIndex.
3.3. Notification Originator Applications
A notification originator application generates SNMP notification
messages. A notification message may, for example, contain an
SNMPv2-Trap PDU or an Inform PDU. However, a particular
implementation is not required to be capable of generating both types
of messages.
Notification originator applications require a mechanism for
identifying the management targets to which notifications should be
sent. The particular mechanism used is implementation dependent.
However, if an implementation makes the configuration of management
targets SNMP manageable, it MUST use the SNMP-TARGET-MIB module
described in this document.
When a notification originator wishes to generate a notification, it
must first determine in which context the information to be conveyed
in the notification exists, i.e., it must determine the
contextEngineID and contextName. It must then determine the set of
Levi, et. al. Standards Track [Page 13]
^L
RFC 2273 SNMPv3 Applications January 1998
management targets to which the notification should be sent. The
application must also determine, for each management target, whether
the notification message should contain an SNMPv2-Trap PDU or Inform
PDU, and if it is to contain an Inform PDU, the number of retries and
retransmission algorithm.
The mechanism by which a notification originator determines this
information is implementation dependent. Once the application has
determined this information, the following procedure is performed for
each management target:
(1) Any appropriate filtering mechanisms are applied to determine
whether the notification should be sent to the management target.
If such filtering mechanisms determine that the notification should
not be sent, processing continues with the next management target.
Otherwise,
(2) The appropriate set of variable-bindings is retrieved from local
MIB instrumentation within the relevant MIB view. The relevant MIB
view is determined by the securityLevel, securityModel,
contextName, and securityName of the management target. To
determine whether a particular object instance is within the
relevant MIB view, the isAccessAllowed abstract service interface
is used, in the same manner as described in the preceding section.
If the statusInformation returned by isAccessAllowed does not
indicate accessAllowed, the notification is not sent to the
management target.
(3) A PDU is constructed using a locally unique request-id value, an
operation type of SNMPv2-Trap or Inform, an error-status and
error-index value of 0, and the variable-bindings supplied
previously in step (2).
(4) If the notification contains an SNMPv2-Trap PDU, the Dispatcher is
called using the following abstract service interface:
statusInformation = -- sendPduHandle if success
-- errorIndication if failure
sendPdu(
IN transportDomain -- transport domain to be used
IN transportAddress -- destination network address
IN messageProcessingModel -- typically, SNMP version
IN securityModel -- Security Model to use
IN securityName -- on behalf of this principal
IN securityLevel -- Level of Security requested
IN contextEngineID -- data from/at this entity
IN contextName -- data from/in this context
IN pduVersion -- the version of the PDU
Levi, et. al. Standards Track [Page 14]
^L
RFC 2273 SNMPv3 Applications January 1998
IN PDU -- SNMP Protocol Data Unit
IN expectResponse -- TRUE or FALSE
)
Where:
- The transportDomain is that of the management target.
- The transportAddress is that of the management target.
- The messageProcessingModel is that of the management target.
- The securityModel is that of the management target.
- The securityName is that of the management target.
- The securityLevel is that of the management target.
- The contextEngineID is the value originally determined for the
notification.
- The contextName is the value originally determined for the
notification.
- The pduVersion is the version of the PDU to be sent.
- The PDU is the value constructed in step (3) above.
- The expectResponse argument indicates that no response is
expected.
Otherwise,
(5) If the notification contains an Inform PDU, then:
a) The Dispatcher is called using the sendPdu abstract service
interface as described in step (4) above, except that the
expectResponse argument indicates that a response is expected.
b) The application caches information about the management
target.
c) If a response is received within an appropriate time interval
from the transport endpoint of the management target, the
notification is considered acknowledged and the cached
information is deleted. Otherwise,
Levi, et. al. Standards Track [Page 15]
^L
RFC 2273 SNMPv3 Applications January 1998
d) If a response is not received within an appropriate time
period, or if a report indication is received, information
about the management target is retrieved from the cache, and
steps a) through d) are repeated. The number of times these
steps are repeated is equal to the previously determined retry
count. If this retry count is exceeded, the acknowledgement
of the notification is considered to have failed, and
processing of the notification for this management target is
halted.
Responses to Inform PDU notifications will be received via the
processResponsePDU abstract service interface.
3.4. Notification Receiver Applications
Notification receiver applications receive SNMP Notification messages
from the Dispatcher. Before any messages can be received, the
notification receiver must register with the Dispatcher using the
registerContextEngineID abstract service interface. The parameters
used are:
- The contextEngineID is an undefined 'wildcard' value.
Notifications are delivered to a registered notification
receiver regardless of the contextEngineID contained in the
notification message.
- The pduType indicates the type of notifications that the
application wishes to receive (for example, SNMPv2-Trap PDUs
or Inform PDUs).
Once the notification receiver has registered with the Dispatcher,
messages are received using the processPdu abstract service
interface. Parameters are:
- The messageProcessingModel indicates which Message Processing
Model received and processed the message.
- The securityModel is the value from the received message.
- The securityName is the value from the received message.
- The securityLevel is the value from the received message.
- The contextEngineID is the value from the received message.
- The contextName is the value from the received message.
Levi, et. al. Standards Track [Page 16]
^L
RFC 2273 SNMPv3 Applications January 1998
- The pduVersion indicates the version of the PDU in the
received message.
- The PDU is the value from the received message.
- The maxSizeResponseScopedPDU is the maximum allowable size of
a ScopedPDU containing a Response PDU (based on the maximum
message size that the originator of the message can accept).
- If the message contains an SNMPv2-Trap PDU, the stateReference
is undefined and unused. Otherwise, the stateReference is a
value which references cached information about the
notification. This value must be returned to the Dispatcher
in order to generate a response.
When an SNMPv2-Trap PDU is delivered to a notification receiver
application, it first extracts the SNMP operation type, request-id,
error-status, error-index, and variable-bindings from the PDU. After
this, processing depends on the particular implementation.
When an Inform PDU is received, the notification receiver application
follows the following procedure:
(1) The SNMPv2 operation type, request-id, error-status, error-index,
and variable-bindings are extracted from the PDU.
(2) A Response PDU is constructed using the extracted request-id and
variable-bindings, and with error-status and error-index both set
to 0.
(3) The Dispatcher is called to generate a response message using the
returnResponsePdu abstract service interface. Parameters are:
- The messageProcessingModel is the value from the processPdu
call.
- The securityModel is the value from the processPdu call.
- The securityName is the value from the processPdu call.
- The securityLevel is the value from the processPdu call.
- The contextEngineID is the value from the processPdu call.
- The contextName is the value from the processPdu call.
- The pduVersion indicates the version of the PDU to be
returned.
Levi, et. al. Standards Track [Page 17]
^L
RFC 2273 SNMPv3 Applications January 1998
- The PDU is the result generated in step (2) above.
- The maxSizeResponseScopedPDU is a local value indicating the
maximum size of a ScopedPDU that the application can accept.
- The stateReference is the value from the processPdu call.
- The statusInformation indicates that no error occurred and
that a response should be generated.
3.5. Proxy Forwarder Applications
A proxy forwarder application deals with forwarding SNMP messages.
There are four basic types of messages which a proxy forwarder
application may need to forward. These are grouped according to the
PDU type contained in a message, or according to whether a report
indication is contained in the message. The four basic types of
messages are:
- Those containing PDU types which were generated by a command
generator application (for example, Get, GetNext, GetBulk, and
Set PDU types). These deal with requesting or modifying
information located within a particular context.
- Those containing PDU types which were generated by a
notification originator application (for example, SNMPv2-Trap
and Inform PDU types). These deal with notifications
concerning information located within a particular context.
- Those containing a Response PDU type. Forwarding of Response
PDUs always occurs as a result of receiving a response to a
previously forwarded message.
- Those containing a report indication. Forwarding of report
indications always occurs as a result of receiving a report
indication for a previously forwarded message.
For the first type, the proxy forwarder's role is to deliver a
request for management information to an SNMP engine which is
"closer" or "downstream in the path" to the SNMP engine which has
access to that information, and to deliver the response containing
the information back to the SNMP engine from which the request was
received. The context information in a request is used to determine
which SNMP engine has access to the requested information, and this
is used to determine where and how to forward the request.
Levi, et. al. Standards Track [Page 18]
^L
RFC 2273 SNMPv3 Applications January 1998
For the second type, the proxy forwarder's role is to determine which
SNMP engines should receive notifications about management
information from a particular location. The context information in a
notification message determines the location to which the information
contained in the notification applies. This is used to determine
which SNMP engines should receive notification about this
information.
For the third type, the proxy forwarder's role is to determine which
previously forwarded request or notification (if any) the response
matches, and to forward the response back to the initiator of the
request or notification.
For the fourth type, the proxy forwarder's role is to determine which
previously forwarded request or notification (if any) the report
indication matches, and to forward the report indication back to the
initiator of the request or notification.
When forwarding messages, a proxy forwarder application must perform
a translation of incoming management target information into outgoing
management target information. How this translation is performed is
implementation specific. In many cases, this will be driven by a
preconfigured translation table. If a proxy forwarder application
makes the contents of this table SNMP manageable, it MUST use the
SNMP-PROXY-MIB module defined in this document.
3.5.1. Request Forwarding
There are two phases for request forwarding. First, the incoming
request needs to be passed through the proxy application. Then, the
resulting response needs to be passed back. These phases are
described in the following two sections.
3.5.1.1. Processing an Incoming Request
A proxy forwarder application that wishes to forward request messages
must first register with the Dispatcher using the
registerContextEngineID abstract service interface. The proxy
forwarder must register each contextEngineID for which it wishes to
forward messages, as well as for each pduType. Note that as the
configuration of a proxy forwarder is changed, the particular
contextEngineID values for which it is forwarding may change. The
proxy forwarder should call the registerContextEngineID and
unregisterContextEngineID abstract service interfaces as needed to
reflect its current configuration.
Levi, et. al. Standards Track [Page 19]
^L
RFC 2273 SNMPv3 Applications January 1998
A proxy forwarder application should never attempt to register a
value of contextEngineID which is equal to the snmpEngineID of the
SNMP engine to which the proxy forwarder is associated.
Once the proxy forwarder has registered for the appropriate
contextEngineId values, it can start processing messages. The
following procedure is used:
(1) A message is received using the processPdu abstract service
interface. The incoming management target information received
from the processPdu interface is translated into outgoing
management target information. Note that this translation may vary
for different values of contextEngineID and/or contextName. The
translation should result in a single management target.
(2) If appropriate outgoing management target information cannot be
found, the proxy forwarder increments the snmpProxyDrops counter
[RFC1907], and then calls the Dispatcher using the
returnResponsePdu abstract service interface. Parameters are:
- The messageProcessingModel is the value from the processPdu
call.
- The securityModel is the value from the processPdu call.
- The securityName is the value from the processPdu call.
- The securityLevel is the value from the processPdu call.
- The contextEngineID is the value from the processPdu call.
- The contextName is the value from the processPdu call.
- The pduVersion is the value from the processPdu call.
- The PDU is an undefined value.
- The maxSizeResponseScopedPDU is a local value indicating the
maximum size of a ScopedPDU that the application can accept.
- The stateReference is the value from the processPdu call.
- The statusInformation indicates that an error occurred and
includes the OID and value of the snmpProxyDrops object.
Processing of the message stops at this point. Otherwise,
Levi, et. al. Standards Track [Page 20]
^L
RFC 2273 SNMPv3 Applications January 1998
(3) A new PDU is constructed. A unique value of request-id should be
used in the new PDU (this value will enable a subsequent response
message to be correlated with this request). The remainder of the
new PDU is identical to the received PDU, unless the incoming SNMP
version is SNMPv2 or SNMPv3 and the outgoing SNMP version is
SNMPv1, in which case the proxy forwarder must apply the
translation rules as documented in [RFC1908].
(4) The proxy forwarder calls the Dispatcher to generate the forwarded
message, using the sendPdu abstract service interface. The
parameters are:
- The transportDomain is that of the outgoing management target.
- The transportAddress is that of the outgoing management
target.
- The messageProcessingModel is that of the outgoing management
target.
- The securityModel is that of the outgoing management target.
- The securityName is that of the outgoing management target.
- The securityLevel is that of the outgoing management target.
- The contextEngineID is the value originally received.
- The contextName is the value originally received.
- The pduVersion is the version of the PDU to be sent.
- The PDU is the value constructed in step (3) above.
- The expectResponse argument indicates that a response is
expected. If the sendPdu call is unsuccessful, the proxy
forwarder performs the steps described in (2) above.
Otherwise:
(5) The proxy forwarder caches the following information in order to
match an incoming response to the forwarded request:
- The sendPduHandle returned from the call to sendPdu,
- The request-id from the received PDU.
- the contextEngineID,
Levi, et. al. Standards Track [Page 21]
^L
RFC 2273 SNMPv3 Applications January 1998
- the contextName,
- the stateReference,
- the incoming management target information,
- the outgoing management information,
- any other information needed to match an incoming response to
the forwarded request.
If this information cannot be cached (possibly due to a lack of
resources), the proxy forwarder performs the steps described in (2)
above. Otherwise:
(6) Processing of the request stops until a response to the forwarded
request is received, or until an appropriate time interval has
expired. If this time interval expires before a response has been
received, the cached information about this request is removed.
3.5.1.2. Processing an Incoming Response
A proxy forwarder follows the following procedure when an incoming
response is received:
(1) The incoming response is received using the processResponsePdu
interface. The proxy forwarder uses the received parameters to
locate an entry in its cache of pending forwarded requests. This
is done by matching the received parameters with the cached values
of sendPduHandle, contextEngineID, contextName, outgoing management
target information, and the request-id contained in the received
PDU (the proxy forwarder must extract the request-id for this
purpose). If an appropriate cache entry cannot be found,
processing of the response is halted. Otherwise:
(2) The cache information is extracted, and removed from the cache.
(3) A new Response PDU is constructed, using the request-id value from
the original forwarded request (as extracted from the cache). All
other values are identical to those in the received Response PDU.
(4) If the incoming SNMP version is SNMPv1 and the outgoing SNMP
version is SNMPv2 or SNMPv3, the proxy forwarder must apply the
translation rules documented in [RFC1908].
(5) The proxy forwarder calls the Dispatcher using the
returnResponsePdu abstract service interface. Parameters are:
Levi, et. al. Standards Track [Page 22]
^L
RFC 2273 SNMPv3 Applications January 1998
- The messageProcessingModel indicates the Message Processing
Model by which the original incoming message was processed.
- The securityModel is that of the original incoming management
target extracted from the cache.
- The securityName is that of the original incoming management
target extracted from the cache.
- The securityLevel is that of the original incoming management
target extracted from the cache.
- The contextEngineID is the value extracted from the cache.
- The contextName is the value extracted from the cache.
- The pduVersion indicates the version of the PDU to be
returned.
- The PDU is the (possibly translated) Response PDU.
- The maxSizeResponseScopedPDU is a local value indicating the
maximum size of a ScopedPDU that the application can accept.
- The stateReference is the value extracted from the cache.
- The statusInformation indicates that no error occurred and
that a Response PDU message should be generated.
3.5.1.3. Processing an Incoming Report Indication
A proxy forwarder follows the following procedure when an incoming
report indication is received:
(1) The incoming report indication is received using the
processResponsePdu interface. The proxy forwarder uses the
received parameters to locate an entry in its cache of pending
forwarded requests. This is done by matching the received
parameters with the cached values of sendPduHandle. If an
appropriate cache entry cannot be found, processing of the report
indication is halted. Otherwise:
(2) The cache information is extracted, and removed from the cache.
(3) If the original incoming management target information indicates
SNMPv1, processing of the report indication is halted.
Levi, et. al. Standards Track [Page 23]
^L
RFC 2273 SNMPv3 Applications January 1998
(4) The proxy forwarder calls the Dispatcher using the
returnResponsePdu abstract service interface. Parameters are:
- The messageProcessingModel indicates the Message Processing
Model by which the original incoming message was processed.
- The securityModel is that of the original incoming management
target extracted from the cache.
- The securityName is that of the original incoming management
target extracted from the cache.
- The securityLevel is that of the original incoming management
target extracted from the cache.
- The contextEngineID is the value extracted from the cache.
- The contextName is the value extracted from the cache.
- The pduVersion indicates the version of the PDU to be
returned.
- The PDU is unused.
- The maxSizeResponseScopedPDU is a local value indicating the
maximum size of a ScopedPDU that the application can accept.
- The stateReference is the value extracted from the cache.
- The statusInformation contain the contextEngineID,
contextName, counter OID, and counter value received in the
report indication.
3.5.2. Notification Forwarding
A proxy forwarder receives notifications in the same manner as a
notification receiver application, using the processPdu abstract
service interface. The following procedure is used when a
notification is received:
(1) The incoming management target information received from the
processPdu interface is translated into outgoing management target
information. Note that this translation may vary for different
values of contextEngineId and/or contextName. The translation may
result in multiple management targets.
Levi, et. al. Standards Track [Page 24]
^L
RFC 2273 SNMPv3 Applications January 1998
(2) If appropriate outgoing management target information cannot be
found and the notification was a Trap, processing of the
notification is halted. If appropriate outgoing management target
information cannot be found and the notification was an Inform, the
proxy forwarder increments the snmpProxyDrops object, and calls the
Dispatcher using the returnResponsePdu abstract service interface.
The parameters are:
- The messageProcessingModel is the received value.
- The securityModel is the received value.
- The securityName is the received value.
- The securityLevel is the received value.
- The contextEngineID is the received value.
- The contextName is the received value.
- The pduVersion is the received value.
- The PDU is an undefined and unused value.
- The maxSizeResponseScopedPDU is a local value indicating the
maximum size of a ScopedPDU that the application can accept.
- The stateReference is the received value.
- The statusInformation indicates that an error occurred and
that a Report message should be generated.
Processing of the message stops at this point. Otherwise,
(3) The proxy forwarder generates a notification using the procedures
described in the preceding section on Notification Originators,
with the following exceptions:
- The contextEngineID and contextName values from the original
received notification are used.
- The outgoing management targets previously determined are
used.
- No filtering mechanisms are applied.
Levi, et. al. Standards Track [Page 25]
^L
RFC 2273 SNMPv3 Applications January 1998
- The variable-bindings from the original received notification
are used, rather than retrieving variable-bindings from local
MIB instrumentation. In particular, no access-control is
applied to these variable-bindings.
- If for any of the outgoing management targets, the incoming
SNMP version is SNMPv1 and the outgoing SNMP version is SNMPv2
or SNMPv3, the proxy forwarder must apply the translation
rules as documented in [RFC1908].
- If for any of the outgoing management targets, the incoming
SNMP version is SNMPv2 or SNMPv3, and the outgoing SNMP
version is SNMPv1, this outgoing management target is not used
when generating the forwarded notifications.
(4) If the original received notification contains an SNMPv2-Trap PDU,
processing of the notification is now completed. Otherwise, the
original received notification must contain an Inform PDU, and
processing continues.
(5) If the forwarded notifications included any Inform PDUs, processing
continues when the procedures described in the section for
Notification Originators determine that either:
- None of the generated notifications containing Inform PDUs
have been successfully acknowledged within the longest of the
time intervals, in which case processing of the original
notification is halted, or,
- At least one of the generated notifications containing Inform
PDUs is successfully acknowledged, in which case a response to
the original received notification containing an Inform PDU is
generated as described in the following steps.
(6) A Response PDU is constructed, using the values of request-id and
variable-bindings from the original received Inform PDU, and
error-status and error-index values of 0.
(7) The Dispatcher is called using the returnResponsePdu abstract
service interface. Parameters are:
- The messageProcessingModel is the originally received value.
- The securityModel is the originally received value.
- The securityName is the originally received value.
- The securityLevel is the originally received value.
Levi, et. al. Standards Track [Page 26]
^L
RFC 2273 SNMPv3 Applications January 1998
- The contextEngineID is the originally received value.
- The contextName is the originally received value.
- The pduVersion indicates the version of the PDU constructed in
step (6) above.
- The PDU is the value constructed in step (6) above.
- The maxSizeResponseScopedPDU is a local value indicating the
maximum size of a ScopedPDU that the application can accept.
- The stateReference is the originally received value.
- The statusInformation indicates that no error occurred and
that a Response PDU message should be generated.
4. The Structure of the MIB Modules
There are three separate MIB modules described in this document, the
management target MIB, the notification MIB, and the proxy MIB. The
following sections describe the structure of these three MIB modules.
The use of these MIBs by particular types of applications is
described later in this document:
- The use of the management target MIB and the notification MIB
in notification originator applications is described in
section 6.
- The use of the notification MIB for filtering notifications in
notification originator applications is described in section
7.
- The use of the management target MIB and the proxy MIB in
proxy forwarding applications is described in section 8.
4.1. The Management Target MIB Module
The SNMP-TARGET-MIB module contains objects for defining management
targets. It consists of two tables and conformance/compliance
statements.
The first table, the snmpTargetAddrTable, contains information about
transport domains and addresses. It also contains an object,
snmpTargetAddrTagList, which provides a mechanism for grouping
entries.
Levi, et. al. Standards Track [Page 27]
^L
RFC 2273 SNMPv3 Applications January 1998
The second table, the snmpTargetParamsTable, contains information
about SNMP version and security information to be used when sending
messages to particular transport domains and addresses.
4.1.1. Tag Lists
The snmpTargetAddrTagList object is used for grouping entries in the
snmpTargetAddrTable. The value of this object contains a list of tag
values which are used to select target addresses to be used for a
particular operation.
A tag value, which may also be used in MIB objects other than
snmpTargetAddrTagList, is an arbitrary string of octets, but may not
contain a delimiter character. Delimiter characters are defined to
be one of the following characters:
- An ASCII space character (0x20).
- An ASCII TAB character (0x09).
- An ASCII carriage return (CR) character (0x0D).
- An ASCII line feed (LF) character (0x0B).
In addition, a tag value may not have a zero length. Generally, a
particular MIB object may contain either
- a single tag value, in which case the value of the MIB object
may not contain a delimiter character, or:
- a MIB object may contain a list of tag values, separated by
single delimiter characters.
For a list of tag values, these constraints imply certain
restrictions on the value of a MIB object:
- There cannot be a leading or trailing delimiter character.
- There cannot be multiple adjacent delimiter charaters.
4.1.2. Definitions
SNMP-TARGET-MIB DEFINITIONS ::= BEGIN
IMPORTS
TEXTUAL-CONVENTION,
MODULE-IDENTITY,
OBJECT-TYPE,
Levi, et. al. Standards Track [Page 28]
^L
RFC 2273 SNMPv3 Applications January 1998
snmpModules,
Integer32
FROM SNMPv2-SMI
TDomain,
TAddress,
TimeInterval,
RowStatus,
StorageType,
TestAndIncr
FROM SNMPv2-TC
SnmpSecurityModel,
SnmpMessageProcessingModel,
SnmpSecurityLevel,
SnmpAdminString
FROM SNMP-FRAMEWORK-MIB
OBJECT-GROUP
FROM SNMPv2-CONF;
snmpTargetMIB MODULE-IDENTITY
LAST-UPDATED "9711210000Z"
ORGANIZATION "IETF SNMPv3 Working Group"
CONTACT-INFO
"WG-email: snmpv3@tis.com
Subscribe: majordomo@tis.com
In message body: subscribe snmpv3
Chair: Russ Mundy
Trusted Information Systems
Postal: 3060 Washington Rd
Glenwood MD 21738
USA
Email: mundy@tis.com
Phone: +1-301-854-6889
Co-editor: David B. Levi
SNMP Research, Inc.
Postal: 3001 Kimberlin Heights Road
Knoxville, TN 37920-9716
E-mail: levi@snmp.com
Phone: +1 423 573 1434
Co-editor: Paul Meyer
Secure Computing Corporation
Postal: 2675 Long Lake Road
Roseville, MN 55113
E-mail: paul_meyer@securecomputing.com
Levi, et. al. Standards Track [Page 29]
^L
RFC 2273 SNMPv3 Applications January 1998
Phone: +1 612 628 1592
Co-editor: Bob Stewart
Cisco Systems, Inc.
Postal: 170 West Tasman Drive
San Jose, CA 95134-1706
E-mail: bstewart@cisco.com
Phone: +1 603 654 6923"
DESCRIPTION
"This MIB module defines MIB objects which provide
mechanisms to remotely configure the parameters used
by an SNMP entity for the generation of SNMP messages."
REVISION "9707140000Z"
DESCRIPTION
"The initial revision."
::= { snmpModules 12 }
snmpTargetObjects OBJECT IDENTIFIER ::= { snmpTargetMIB 1 }
snmpTargetConformance OBJECT IDENTIFIER ::= { snmpTargetMIB 3 }
SnmpTagValue ::= TEXTUAL-CONVENTION
DISPLAY-HINT "255a"
STATUS current
DESCRIPTION
"An octet string containing a tag value.
Tag values are preferably in human-readable form.
To facilitate internationalization, this information
is represented using the ISO/IEC IS 10646-1 character
set, encoded as an octet string using the UTF-8
character encoding scheme described in RFC 2044.
Since additional code points are added by amendments
to the 10646 standard from time to time,
implementations must be prepared to encounter any code
point from 0x00000000 to 0x7fffffff.
The use of control codes should be avoided, and certain
control codes are not allowed as described below.
For code points not directly supported by user
interface hardware or software, an alternative means
of entry and display, such as hexadecimal, may be
provided.
For information encoded in 7-bit US-ASCII, the UTF-8
representation is identical to the US-ASCII encoding.
Levi, et. al. Standards Track [Page 30]
^L
RFC 2273 SNMPv3 Applications January 1998
Note that when this TC is used for an object that
is used or envisioned to be used as an index, then a
SIZE restriction must be specified so that the number
sub-identifiers for any object instance do not exceed
the limit of 128, as defined by [RFC1905].
An object of this type contains a single tag value
which is used to select a set of entries in a table.
A tag value is an arbitrary string of octets, but
may not contain a delimiter character. Delimiter
characters are defined to be one of the following:
- An ASCII space character (0x20).
- An ASCII TAB character (0x09).
- An ASCII carriage return (CR) character (0x0D).
- An ASCII line feed (LF) character (0x0B).
Delimiter characters are used to separate tag values
in a tag list. An object of this type may only
contain a single tag value, and so delimiter
characters are not allowed in a value of this type.
Some examples of valid tag values are:
- 'acme'
- 'router'
- 'host'
The use of a tag value to select table entries is
application and MIB specific."
SYNTAX OCTET STRING (SIZE (0..255))
SnmpTagList ::= TEXTUAL-CONVENTION
DISPLAY-HINT "255a"
STATUS current
DESCRIPTION
"An octet string containing a list of tag values.
Tag values are preferably in human-readable form.
To facilitate internationalization, this information
is represented using the ISO/IEC IS 10646-1 character
set, encoded as an octet string using the UTF-8
character encoding scheme described in RFC 2044.
Levi, et. al. Standards Track [Page 31]
^L
RFC 2273 SNMPv3 Applications January 1998
Since additional code points are added by amendments
to the 10646 standard from time to time,
implementations must be prepared to encounter any code
point from 0x00000000 to 0x7fffffff.
The use of control codes should be avoided, except as
described below.
For code points not directly supported by user
interface hardware or software, an alternative means
of entry and display, such as hexadecimal, may be
provided.
For information encoded in 7-bit US-ASCII, the UTF-8
representation is identical to the US-ASCII encoding.
An object of this type contains a list of tag values
which are used to select a set of entries in a table.
A tag value is an arbitrary string of octets, but
may not contain a delimiter character. Delimiter
characters are defined to be one of the following:
- An ASCII space character (0x20).
- An ASCII TAB character (0x09).
- An ASCII carriage return (CR) character (0x0D).
- An ASCII line feed (LF) character (0x0B).
Delimiter characters are used to separate tag values
in a tag list. Only a single delimiter character may
occur between two tag values. A tag value may not
have a zero length. These constraints imply certain
restrictions on the contents of this object:
- There cannot be a leading or trailing delimiter
character.
- There cannot be multiple adjacent delimiter
characters.
Some examples of valid tag lists are:
- An empty string
- 'acme router'
Levi, et. al. Standards Track [Page 32]
^L
RFC 2273 SNMPv3 Applications January 1998
- 'host managerStation'
Note that although a tag value may not have a length of
zero, an empty string is still valid. This indicates
an empty list (i.e. there are no tag values in the list).
The use of the tag list to select table entries is
application and MIB specific. Typically, an application
will provide one or more tag values, and any entry
which contains some combination of these tag values
will be selected."
SYNTAX OCTET STRING (SIZE (0..255))
--
--
-- The snmpTargetObjects group
--
--
snmpTargetSpinLock OBJECT-TYPE
SYNTAX TestAndIncr
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This object is used to facilitate modification of table
entries in the SNMP-TARGET-MIB module by multiple
managers. In particular, it is useful when modifying
the value of the snmpTargetAddrTagList object.
The procedure for modifying the snmpTargetAddrTagList
object is as follows:
1. Retrieve the value of snmpTargetSpinLock and
of snmpTargetAddrTagList.
2. Generate a new value for snmpTargetAddrTagList.
3. Set the value of snmpTargetSpinLock to the
retrieved value, and the value of
snmpTargetAddrTagList to the new value. If
the set fails for the snmpTargetSpinLock
object, go back to step 1."
::= { snmpTargetObjects 1 }
snmpTargetAddrTable OBJECT-TYPE
SYNTAX SEQUENCE OF SnmpTargetAddrEntry
MAX-ACCESS not-accessible
STATUS current
Levi, et. al. Standards Track [Page 33]
^L
RFC 2273 SNMPv3 Applications January 1998
DESCRIPTION
"A table of transport addresses to be used in the generation
of SNMP messages."
::= { snmpTargetObjects 2 }
snmpTargetAddrEntry OBJECT-TYPE
SYNTAX SnmpTargetAddrEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A transport address to be used in the generation
of SNMP operations.
Entries in the snmpTargetAddrTable are created and
deleted using the snmpTargetAddrRowStatus object."
INDEX { IMPLIED snmpTargetAddrName }
::= { snmpTargetAddrTable 1 }
SnmpTargetAddrEntry ::= SEQUENCE {
snmpTargetAddrName SnmpAdminString,
snmpTargetAddrTDomain TDomain,
snmpTargetAddrTAddress TAddress,
snmpTargetAddrTimeout TimeInterval,
snmpTargetAddrRetryCount Integer32,
snmpTargetAddrTagList SnmpTagList,
snmpTargetAddrParams SnmpAdminString,
snmpTargetAddrStorageType StorageType,
snmpTargetAddrRowStatus RowStatus
}
snmpTargetAddrName OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE(1..32))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The locally arbitrary, but unique identifier associated
with this snmpTargetAddrEntry."
::= { snmpTargetAddrEntry 1 }
snmpTargetAddrTDomain OBJECT-TYPE
SYNTAX TDomain
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object indicates the transport type of the address
contained in the snmpTargetAddrTAddress object."
::= { snmpTargetAddrEntry 2 }
Levi, et. al. Standards Track [Page 34]
^L
RFC 2273 SNMPv3 Applications January 1998
snmpTargetAddrTAddress OBJECT-TYPE
SYNTAX TAddress
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object contains a transport address. The format of
this address depends on the value of the
snmpTargetAddrTDomain object."
::= { snmpTargetAddrEntry 3 }
snmpTargetAddrTimeout OBJECT-TYPE
SYNTAX TimeInterval
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object should reflect the expected maximum round
trip time for communicating with the transport address
defined by this row. When a message is sent to this
address, and a response (if one is expected) is not
received within this time period, an implementation
may assume that the response will not be delivered.
Note that the time interval that an application waits
for a response may actually be derived from the value
of this object. The method for deriving the actual time
interval is implementation dependent. One such method
is to derive the expected round trip time based on a
particular retransmission algorithm and on the number
of timeouts which have occurred. The type of message may
also be considered when deriving expected round trip
times for retransmissions. For example, if a message is
being sent with a securityLevel that indicates both
authentication and privacy, the derived value may be
increased to compensate for extra processing time spent
during authentication and encryption processing."
DEFVAL { 1500 }
::= { snmpTargetAddrEntry 4 }
snmpTargetAddrRetryCount OBJECT-TYPE
SYNTAX Integer32 (0..255)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object specifies a default number of retries to be
attempted when a response is not received for a generated
message. An application may provide its own retry count,
in which case the value of this object is ignored."
DEFVAL { 3 }
Levi, et. al. Standards Track [Page 35]
^L
RFC 2273 SNMPv3 Applications January 1998
::= { snmpTargetAddrEntry 5 }
snmpTargetAddrTagList OBJECT-TYPE
SYNTAX SnmpTagList
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object contains a list of tag values which are
used to select target addresses for a particular
operation."
::= { snmpTargetAddrEntry 6 }
snmpTargetAddrParams OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE(1..32))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The value of this object identifies an entry in the
snmpTargetParamsTable. The identified entry
contains SNMP parameters to be used when generating
messages to be sent to this transport address."
::= { snmpTargetAddrEntry 7 }
snmpTargetAddrStorageType OBJECT-TYPE
SYNTAX StorageType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The storage type for this conceptual row."
::= { snmpTargetAddrEntry 8 }
snmpTargetAddrRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The status of this conceptual row.
To create a row in this table, a manager must
set this object to either createAndGo(4) or
createAndWait(5).
Until instances of all corresponding columns are
appropriately configured, the value of the
corresponding instance of the snmpTargetAddrRowStatus
column is 'notReady'.
In particular, a newly created row cannot be made
Levi, et. al. Standards Track [Page 36]
^L
RFC 2273 SNMPv3 Applications January 1998
active until the corresponding snmpTargetAddrTDomain
and snmpTargetAddrTAddress have both been set.
The following objects may not be modified while the
value of this object is active(1):
- snmpTargetAddrTDomain
- snmpTargetAddrTAddress"
::= { snmpTargetAddrEntry 9 }
snmpTargetParamsTable OBJECT-TYPE
SYNTAX SEQUENCE OF SnmpTargetParamsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A table of SNMP target information to be used
in the generation of SNMP messages."
::= { snmpTargetObjects 3 }
snmpTargetParamsEntry OBJECT-TYPE
SYNTAX SnmpTargetParamsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A set of SNMP target information.
Entries in the snmpTargetParamsTable are created and
deleted using the snmpTargetParamsRowStatus object."
INDEX { IMPLIED snmpTargetParamsName }
::= { snmpTargetParamsTable 1 }
SnmpTargetParamsEntry ::= SEQUENCE {
snmpTargetParamsName SnmpAdminString,
snmpTargetParamsMPModel SnmpMessageProcessingModel,
snmpTargetParamsSecurityModel SnmpSecurityModel,
snmpTargetParamsSecurityName SnmpAdminString,
snmpTargetParamsSecurityLevel SnmpSecurityLevel,
snmpTargetParamsStorageType StorageType,
snmpTargetParamsRowStatus RowStatus
}
snmpTargetParamsName OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE(1..32))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The locally arbitrary, but unique identifier associated
with this snmpTargetParamsEntry."
::= { snmpTargetParamsEntry 1 }
Levi, et. al. Standards Track [Page 37]
^L
RFC 2273 SNMPv3 Applications January 1998
snmpTargetParamsMPModel OBJECT-TYPE
SYNTAX SnmpMessageProcessingModel
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The Message Processing Model to be used when generating
SNMP messages using this entry."
::= { snmpTargetParamsEntry 2 }
snmpTargetParamsSecurityModel OBJECT-TYPE
SYNTAX SnmpSecurityModel (0..254 | 256..2147483647)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The Security Model to be used when generating SNMP
messages using this entry."
::= { snmpTargetParamsEntry 3 }
snmpTargetParamsSecurityName OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The securityName which identifies the Principal on
whose behalf SNMP messages will be generated using
this entry."
::= { snmpTargetParamsEntry 4 }
snmpTargetParamsSecurityLevel OBJECT-TYPE
SYNTAX SnmpSecurityLevel
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The Level of Security to be used when generating
SNMP messages using this entry."
::= { snmpTargetParamsEntry 5 }
snmpTargetParamsStorageType OBJECT-TYPE
SYNTAX StorageType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The storage type for this conceptual row."
::= { snmpTargetParamsEntry 6 }
snmpTargetParamsRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
Levi, et. al. Standards Track [Page 38]
^L
RFC 2273 SNMPv3 Applications January 1998
STATUS current
DESCRIPTION
"The status of this conceptual row.
To create a row in this table, a manager must
set this object to either createAndGo(4) or
createAndWait(5).
Until instances of all corresponding columns are
appropriately configured, the value of the
corresponding instance of the snmpTargetParamsRowStatus
column is 'notReady'.
In particular, a newly created row cannot be made
active until the corresponding
snmpTargetParamsMPModel,
snmpTargetParamsSecurityModel,
snmpTargetParamsSecurityName,
and snmpTargetParamsSecurityLevel have all been set.
The following objects may not be modified while the
value of this object is active(1):
- snmpTargetParamsMPModel
- snmpTargetParamsSecurityModel
- snmpTargetParamsSecurityName
- snmpTargetParamsSecurityLevel"
::= { snmpTargetParamsEntry 7 }
snmpUnavailableContexts OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of packets received by the SNMP
engine which were dropped because the context
contained in the mesage was unavailable."
::= { snmpTargetObjects 4 }
snmpUnknownContexts OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total number of packets received by the SNMP
engine which were dropped because the context
contained in the mesage was unknown."
::= { snmpTargetObjects 5 }
Levi, et. al. Standards Track [Page 39]
^L
RFC 2273 SNMPv3 Applications January 1998
--
--
-- Conformance information
--
--
snmpTargetCompliances OBJECT IDENTIFIER ::=
{ snmpTargetConformance 1 }
snmpTargetGroups OBJECT IDENTIFIER ::=
{ snmpTargetConformance 2 }
--
--
-- Compliance statements
--
--
snmpTargetCommandResponderCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement for SNMP entities which include
a command responder application."
MODULE -- This Module
MANDATORY-GROUPS { snmpTargetCommandResponderGroup }
::= { snmpTargetCompliances 1 }
snmpTargetBasicGroup OBJECT-GROUP
OBJECTS {
snmpTargetSpinLock,
snmpTargetAddrTDomain,
snmpTargetAddrTAddress,
snmpTargetAddrTagList,
snmpTargetAddrParams,
snmpTargetAddrStorageType,
snmpTargetAddrRowStatus,
snmpTargetParamsMPModel,
snmpTargetParamsSecurityModel,
snmpTargetParamsSecurityName,
snmpTargetParamsSecurityLevel,
snmpTargetParamsStorageType,
snmpTargetParamsRowStatus
}
STATUS current
DESCRIPTION
"A collection of objects providing basic remote
configuration of management targets."
Levi, et. al. Standards Track [Page 40]
^L
RFC 2273 SNMPv3 Applications January 1998
::= { snmpTargetGroups 1 }
snmpTargetResponseGroup OBJECT-GROUP
OBJECTS {
snmpTargetAddrTimeout,
snmpTargetAddrRetryCount
}
STATUS current
DESCRIPTION
"A collection of objects providing remote configuration
of management targets for applications which generate
SNMP messages for which a response message would be
expected."
::= { snmpTargetGroups 2 }
snmpTargetCommandResponderGroup OBJECT-GROUP
OBJECTS {
snmpUnavailableContexts,
snmpUnknownContexts
}
STATUS current
DESCRIPTION
"A collection of objects required for command responder
applications, used for counting error conditions."
::= { snmpTargetGroups 3 }
END
4.2. The Notification MIB Module
The SNMP-NOTIFICATION-MIB module contains objects for the remote
configuration of the parameters used by an SNMP entity for the
generation of notifications. It consists of three tables and
conformance/compliance statements. The first table, the
snmpNotifyTable, contains entries which select which entries in the
snmpTargetAddrTable should be used for generating notifications, and
the type of notifications to be generated.
The second table sparsely augments the snmpTargetAddrTable with an
object which is used to associate a set of filters with a particular
management target.
The third table defines filters which are used to limit the number of
notifications which are generated using particular management
targets.
Levi, et. al. Standards Track [Page 41]
^L
RFC 2273 SNMPv3 Applications January 1998
4.2.1. Definitions
SNMP-NOTIFICATION-MIB DEFINITIONS ::= BEGIN
IMPORTS
MODULE-IDENTITY,
OBJECT-TYPE,
snmpModules
FROM SNMPv2-SMI
RowStatus,
StorageType
FROM SNMPv2-TC
SnmpAdminString
FROM SNMP-FRAMEWORK-MIB
SnmpTagValue,
snmpTargetParamsName
FROM SNMP-TARGET-MIB
MODULE-COMPLIANCE,
OBJECT-GROUP
FROM SNMPv2-CONF;
snmpNotificationMIB MODULE-IDENTITY
LAST-UPDATED "9711210000Z"
ORGANIZATION "IETF SNMPv3 Working Group"
CONTACT-INFO
"WG-email: snmpv3@tis.com
Subscribe: majordomo@tis.com
In message body: subscribe snmpv3
Chair: Russ Mundy
Trusted Information Systems
Postal: 3060 Washington Rd
Glenwood MD 21738
USA
Email: mundy@tis.com
Phone: +1-301-854-6889
Co-editor: David B. Levi
SNMP Research, Inc.
Postal: 3001 Kimberlin Heights Road
Knoxville, TN 37920-9716
E-mail: levi@snmp.com
Phone: +1 423 573 1434
Levi, et. al. Standards Track [Page 42]
^L
RFC 2273 SNMPv3 Applications January 1998
Co-editor: Paul Meyer
Secure Computing Corporation
Postal: 2675 Long Lake Road
Roseville, MN 55113
E-mail: paul_meyer@securecomputing.com
Phone: +1 612 628 1592
Co-editor: Bob Stewart
Cisco Systems, Inc.
Postal: 170 West Tasman Drive
San Jose, CA 95134-1706
E-mail: bstewart@cisco.com
Phone: +1 603 654 6923"
DESCRIPTION
"This MIB module defines MIB objects which provide
mechanisms to remotely configure the parameters
used by an SNMP entity for the generation of
notifications."
REVISION "9707140000Z"
DESCRIPTION
"The initial revision."
::= { snmpModules 13 }
snmpNotifyObjects OBJECT IDENTIFIER ::=
{ snmpNotificationMIB 1 }
snmpNotifyConformance OBJECT IDENTIFIER ::=
{ snmpNotificationMIB 3 }
--
--
-- The snmpNotifyObjects group
--
--
snmpNotifyTable OBJECT-TYPE
SYNTAX SEQUENCE OF SnmpNotifyEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table is used to select management targets which should
receive notifications, as well as the type of notification
which should be sent to each selected management target."
::= { snmpNotifyObjects 1 }
snmpNotifyEntry OBJECT-TYPE
SYNTAX SnmpNotifyEntry
MAX-ACCESS not-accessible
Levi, et. al. Standards Track [Page 43]
^L
RFC 2273 SNMPv3 Applications January 1998
STATUS current
DESCRIPTION
"An entry in this table selects a set of management targets
which should receive notifications, as well as the type of
notification which should be sent to each selected
management target.
Entries in the snmpNotifyTable are created and
deleted using the snmpNotifyRowStatus object."
INDEX { IMPLIED snmpNotifyName }
::= { snmpNotifyTable 1 }
SnmpNotifyEntry ::= SEQUENCE {
snmpNotifyName SnmpAdminString,
snmpNotifyTag SnmpTagValue,
snmpNotifyType INTEGER,
snmpNotifyStorageType StorageType,
snmpNotifyRowStatus RowStatus
}
snmpNotifyName OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE(1..32))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The locally arbitrary, but unique identifier associated
with this snmpNotifyEntry."
::= { snmpNotifyEntry 1 }
snmpNotifyTag OBJECT-TYPE
SYNTAX SnmpTagValue
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object contains a single tag value which is used
to select entries in the snmpTargetAddrTable. Any entry
in the snmpTargetAddrTable which contains a tag value
which is equal to the value of an instance of this
object is selected. If this object contains a value
of zero length, no entries are selected."
::= { snmpNotifyEntry 2 }
snmpNotifyType OBJECT-TYPE
SYNTAX INTEGER {
trap(1),
inform(2)
}
MAX-ACCESS read-create
Levi, et. al. Standards Track [Page 44]
^L
RFC 2273 SNMPv3 Applications January 1998
STATUS current
DESCRIPTION
"This object determines the type of notification to
be generated for entries in the snmpTargetAddrTable
selected by the corresponding instance of
snmpNotifyTag.
If the value of this object is trap(1), then any
messages generated for selected rows will contain
SNMPv2-Trap PDUs.
If the value of this object is inform(2), then any
messages generated for selected rows will contain
Inform PDUs.
Note that if an SNMP entity only supports
generation of traps (and not informs), then this
object may be read-only."
DEFVAL { trap }
::= { snmpNotifyEntry 3 }
snmpNotifyStorageType OBJECT-TYPE
SYNTAX StorageType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The storage type for this conceptual row."
::= { snmpNotifyEntry 4 }
snmpNotifyRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The status of this conceptual row.
To create a row in this table, a manager must
set this object to either createAndGo(4) or
createAndWait(5).
Until instances of all corresponding columns are
appropriately configured, the value of the
corresponding instance of the snmpNotifyRowStatus
column is 'notReady'.
In particular, a newly created row cannot be made
active until the corresponding snmpNotifyTag has
been set."
Levi, et. al. Standards Track [Page 45]
^L
RFC 2273 SNMPv3 Applications January 1998
::= { snmpNotifyEntry 5 }
snmpNotifyFilterProfileTable OBJECT-TYPE
SYNTAX SEQUENCE OF SnmpNotifyFilterProfileEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table is used to associate a notification filter
profile with a particular set of target parameters."
::= { snmpNotifyObjects 2 }
snmpNotifyFilterProfileEntry OBJECT-TYPE
SYNTAX SnmpNotifyFilterProfileEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry in this table indicates the name of the filter
profile to be used when generating notifications using
the corresponding entry in the snmpTargetParamsTable.
Entries in the snmpNotifyFilterProfileTable are created
and deleted using the snmpNotifyFilterProfileRowStatus
object."
INDEX { IMPLIED snmpTargetParamsName }
::= { snmpNotifyFilterProfileTable 1 }
SnmpNotifyFilterProfileEntry ::= SEQUENCE {
snmpNotifyFilterProfileName SnmpAdminString,
snmpNotifyFilterProfileStorType StorageType,
snmpNotifyFilterProfileRowStatus RowStatus
}
snmpNotifyFilterProfileName OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE(1..32))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The name of the filter profile to be used when generating
notifications using the corresponding entry in the
snmpTargetAddrTable."
::= { snmpNotifyFilterProfileEntry 1 }
snmpNotifyFilterProfileStorType OBJECT-TYPE
SYNTAX StorageType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The storage type of this conceptual row."
Levi, et. al. Standards Track [Page 46]
^L
RFC 2273 SNMPv3 Applications January 1998
::= { snmpNotifyFilterProfileEntry 2 }
snmpNotifyFilterProfileRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The status of this conceptual row.
To create a row in this table, a manager must
set this object to either createAndGo(4) or
createAndWait(5)."
::= { snmpNotifyFilterProfileEntry 3 }
snmpNotifyFilterTable OBJECT-TYPE
SYNTAX SEQUENCE OF SnmpNotifyFilterEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The table of filter profiles. Filter profiles are used
to determine whether particular management targets should
receive particular notifications.
When a notification is generated, it must be compared
with the filters associated with each management target
which is configured to receive notifications. If the
notification is matched by a filter, it is not sent to
the management target with which the filter is
associated."
::= { snmpNotifyObjects 3 }
snmpNotifyFilterEntry OBJECT-TYPE
SYNTAX SnmpNotifyFilterEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An element of a filter profile.
Entries in the snmpNotifyFilterTable are created and
deleted using the snmpNotifyFilterRowStatus object."
INDEX { snmpNotifyFilterProfileName,
IMPLIED snmpNotifyFilterSubtree }
::= { snmpNotifyFilterTable 1 }
SnmpNotifyFilterEntry ::= SEQUENCE {
snmpNotifyFilterSubtree OBJECT IDENTIFIER,
snmpNotifyFilterMask OCTET STRING,
snmpNotifyFilterType INTEGER,
Levi, et. al. Standards Track [Page 47]
^L
RFC 2273 SNMPv3 Applications January 1998
snmpNotifyFilterStorageType StorageType,
snmpNotifyFilterRowStatus RowStatus
}
snmpNotifyFilterSubtree OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The MIB subtree which, when combined with the corresponding
instance of snmpNotifyFilterMask, defines a family of
subtrees which are included in or excluded from the
filter profile."
::= { snmpNotifyFilterEntry 1 }
snmpNotifyFilterMask OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..16))
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The bit mask which, in combination with the corresponding
instance of snmpNotifyFilterSubtree, defines a family of
subtrees which are included in or excluded from the
filter profile.
Each bit of this bit mask corresponds to a
sub-identifier of snmpNotifyFilterSubtree, with the
most significant bit of the i-th octet of this octet
string value (extended if necessary, see below)
corresponding to the (8*i - 7)-th sub-identifier, and
the least significant bit of the i-th octet of this
octet string corresponding to the (8*i)-th
sub-identifier, where i is in the range 1 through 16.
Each bit of this bit mask specifies whether or not
the corresponding sub-identifiers must match when
determining if an OBJECT IDENTIFIER matches this
family of filter subtrees; a '1' indicates that an
exact match must occur; a '0' indicates 'wild card',
i.e., any sub-identifier value matches.
Thus, the OBJECT IDENTIFIER X of an object instance
is contained in a family of filter subtrees if, for
each sub-identifier of the value of
snmpNotifyFilterSubtree, either:
the i-th bit of snmpNotifyFilterMask is 0, or
Levi, et. al. Standards Track [Page 48]
^L
RFC 2273 SNMPv3 Applications January 1998
the i-th sub-identifier of X is equal to the i-th
sub-identifier of the value of
snmpNotifyFilterSubtree.
If the value of this bit mask is M bits long and
there are more than M sub-identifiers in the
corresponding instance of snmpNotifyFilterSubtree,
then the bit mask is extended with 1's to be the
required length.
Note that when the value of this object is the
zero-length string, this extension rule results in
a mask of all-1's being used (i.e., no 'wild card'),
and the family of filter subtrees is the one
subtree uniquely identified by the corresponding
instance of snmpNotifyFilterSubtree."
DEFVAL { ''H }
::= { snmpNotifyFilterEntry 2 }
snmpNotifyFilterType OBJECT-TYPE
SYNTAX INTEGER {
included(1),
excluded(2)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object indicates whether the family of filter subtrees
defined by this entry are included in or excluded from a
filter."
DEFVAL { included }
::= { snmpNotifyFilterEntry 3 }
snmpNotifyFilterStorageType OBJECT-TYPE
SYNTAX StorageType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The storage type of this conceptual row."
::= { snmpNotifyFilterEntry 4 }
snmpNotifyFilterRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The status of this conceptual row.
Levi, et. al. Standards Track [Page 49]
^L
RFC 2273 SNMPv3 Applications January 1998
To create a row in this table, a manager must
set this object to either createAndGo(4) or
createAndWait(5)."
::= { snmpNotifyFilterEntry 5 }
--
--
-- Conformance information
--
--
snmpNotifyCompliances OBJECT IDENTIFIER ::=
{ snmpNotifyConformance 1 }
snmpNotifyGroups OBJECT IDENTIFIER ::=
{ snmpNotifyConformance 2 }
--
--
-- Compliance statements
--
--
snmpNotifyBasicCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement for minimal SNMP entities which
implement only SNMP Traps and read-create operations on
only the snmpTargetAddrTable."
MODULE SNMP-TARGET-MIB
MANDATORY-GROUPS { snmpTargetBasicGroup }
OBJECT snmpTargetParamsMPModel
MIN-ACCESS read-only
DESCRIPTION
"Create/delete/modify access is not required."
OBJECT snmpTargetParamsSecurityModel
MIN-ACCESS read-only
DESCRIPTION
"Create/delete/modify access is not required."
OBJECT snmpTargetParamsSecurityName
MIN-ACCESS read-only
DESCRIPTION
"Create/delete/modify access is not required."
OBJECT snmpTargetParamsSecurityLevel
MIN-ACCESS read-only
Levi, et. al. Standards Track [Page 50]
^L
RFC 2273 SNMPv3 Applications January 1998
DESCRIPTION
"Create/delete/modify access is not required."
OBJECT snmpTargetParamsStorageType
SYNTAX INTEGER {
readOnly(5)
}
MIN-ACCESS read-only
DESCRIPTION
"Create/delete/modify access is not required.
Support of the values other(1), volatile(2),
nonVolatile(3), and permanent(4) is not required."
OBJECT snmpTargetParamsRowStatus
SYNTAX INTEGER {
active(1)
}
MIN-ACCESS read-only
DESCRIPTION
"Create/delete/modify access to the
snmpTargetParamsTable is not required.
Support of the values notInService(2), notReady(3),
createAndGo(4), createAndWait(5), and destroy(6) is
not required."
MODULE -- This Module
MANDATORY-GROUPS { snmpNotifyGroup }
OBJECT snmpNotifyTag
MIN-ACCESS read-only
DESCRIPTION
"Create/delete/modify access is not required."
OBJECT snmpNotifyType
SYNTAX INTEGER {
trap(1)
}
MIN-ACCESS read-only
DESCRIPTION
"Create/delete/modify access is not required.
Support of the value notify(2) is not required."
OBJECT snmpNotifyStorageType
SYNTAX INTEGER {
readOnly(5)
}
MIN-ACCESS read-only
DESCRIPTION
Levi, et. al. Standards Track [Page 51]
^L
RFC 2273 SNMPv3 Applications January 1998
"Create/delete/modify access is not required.
Support of the values other(1), volatile(2),
nonVolatile(3), and permanent(4) is not required."
OBJECT snmpNotifyRowStatus
SYNTAX INTEGER {
active(1)
}
MIN-ACCESS read-only
DESCRIPTION
"Create/delete/modify access to the
snmpNotifyTable is not required.
Support of the values notInService(2), notReady(3),
createAndGo(4), createAndWait(5), and destroy(6) is
not required."
::= { snmpNotifyCompliances 1 }
snmpNotifyBasicFiltersCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement for SNMP entities which implement
SNMP Traps with filtering, and read-create operations on
all related tables."
MODULE SNMP-TARGET-MIB
MANDATORY-GROUPS { snmpTargetBasicGroup }
MODULE -- This Module
MANDATORY-GROUPS { snmpNotifyGroup,
snmpNotifyFilterGroup }
::= { snmpNotifyCompliances 2 }
snmpNotifyFullCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement for SNMP entities which either
implement only SNMP Informs, or both SNMP Traps and SNMP
Informs, plus filtering and read-create operations on
all related tables."
MODULE SNMP-TARGET-MIB
MANDATORY-GROUPS { snmpTargetBasicGroup,
snmpTargetResponseGroup }
MODULE -- This Module
MANDATORY-GROUPS { snmpNotifyGroup,
snmpNotifyFilterGroup }
::= { snmpNotifyCompliances 3 }
snmpNotifyGroup OBJECT-GROUP
OBJECTS {
Levi, et. al. Standards Track [Page 52]
^L
RFC 2273 SNMPv3 Applications January 1998
snmpNotifyTag,
snmpNotifyType,
snmpNotifyStorageType,
snmpNotifyRowStatus
}
STATUS current
DESCRIPTION
"A collection of objects for selecting which management
targets are used for generating notifications, and the
type of notification to be generated for each selected
management target."
::= { snmpNotifyGroups 1 }
snmpNotifyFilterGroup OBJECT-GROUP
OBJECTS {
snmpNotifyFilterProfileName,
snmpNotifyFilterProfileStorType,
snmpNotifyFilterProfileRowStatus,
snmpNotifyFilterMask,
snmpNotifyFilterType,
snmpNotifyFilterStorageType,
snmpNotifyFilterRowStatus
}
STATUS current
DESCRIPTION
"A collection of objects providing remote configuration
of notification filters."
::= { snmpNotifyGroups 2 }
END
4.3. The Proxy MIB Module
The SNMP-PROXY-MIB module, which defines MIB objects that provide
mechanisms to remotely configure the parameters used by an SNMP
entity for proxy forwarding operations, contains a single table.
This table, snmpProxyTable, is used to define translations between
management targets for use when forwarding messages.
4.3.1. Definitions
SNMP-PROXY-MIB DEFINITIONS ::= BEGIN
IMPORTS
MODULE-IDENTITY,
OBJECT-TYPE,
snmpModules
FROM SNMPv2-SMI
Levi, et. al. Standards Track [Page 53]
^L
RFC 2273 SNMPv3 Applications January 1998
RowStatus,
StorageType
FROM SNMPv2-TC
SnmpEngineID,
SnmpAdminString
FROM SNMP-FRAMEWORK-MIB
SnmpTagValue,
FROM SNMP-TARGET-MIB
MODULE-COMPLIANCE,
OBJECT-GROUP
FROM SNMPv2-CONF;
snmpProxyMIB MODULE-IDENTITY
LAST-UPDATED "9711210000Z"
ORGANIZATION "IETF SNMPv3 Working Group"
CONTACT-INFO
"WG-email: snmpv3@tis.com
Subscribe: majordomo@tis.com
In message body: subscribe snmpv3
Chair: Russ Mundy
Trusted Information Systems
Postal: 3060 Washington Rd
Glenwood MD 21738
USA
Email: mundy@tis.com
Phone: +1-301-854-6889
Co-editor: David B. Levi
SNMP Research, Inc.
Postal: 3001 Kimberlin Heights Road
Knoxville, TN 37920-9716
E-mail: levi@snmp.com
Phone: +1 423 573 1434
Co-editor: Paul Meyer
Secure Computing Corporation
Postal: 2675 Long Lake Road
Roseville, MN 55113
E-mail: paul_meyer@securecomputing.com
Phone: +1 612 628 1592
Co-editor: Bob Stewart
Cisco Systems, Inc.
Postal: 170 West Tasman Drive
Levi, et. al. Standards Track [Page 54]
^L
RFC 2273 SNMPv3 Applications January 1998
San Jose, CA 95134-1706
E-mail: bstewart@cisco.com
Phone: +1 603 654 6923"
DESCRIPTION
"This MIB module defines MIB objects which provide
mechanisms to remotely configure the parameters
used by a proxy forwarding application."
REVISION "9707140000Z"
DESCRIPTION
"The initial revision."
::= { snmpModules 14 }
snmpProxyObjects OBJECT IDENTIFIER ::= { snmpProxyMIB 1 }
snmpProxyConformance OBJECT IDENTIFIER ::= { snmpProxyMIB 3 }
--
--
-- The snmpProxyObjects group
--
--
snmpProxyTable OBJECT-TYPE
SYNTAX SEQUENCE OF SnmpProxyEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The table of translation parameters used by proxy forwarder
applications for forwarding SNMP messages."
::= { snmpProxyObjects 2 }
snmpProxyEntry OBJECT-TYPE
SYNTAX SnmpProxyEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A set of translation parameters used by a proxy forwarder
application for forwarding SNMP messages.
Entries in the snmpProxyTable are created and deleted
using the snmpProxyRowStatus object."
INDEX { IMPLIED snmpProxyName }
::= { snmpProxyTable 1 }
SnmpProxyEntry ::= SEQUENCE {
snmpProxyName SnmpAdminString,
snmpProxyType INTEGER,
snmpProxyContextEngineID SnmpEngineID,
snmpProxyContextName SnmpAdminString,
Levi, et. al. Standards Track [Page 55]
^L
RFC 2273 SNMPv3 Applications January 1998
snmpProxyTargetParamsIn SnmpAdminString,
snmpProxySingleTargetOut SnmpAdminString,
snmpProxyMultipleTargetOut SnmpTagValue,
snmpProxyStorageType StorageType,
snmpProxyRowStatus RowStatus
}
snmpProxyName OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE(1..32))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The locally arbitrary, but unique identifier associated
with this snmpProxyEntry."
::= { snmpProxyEntry 1 }
snmpProxyType OBJECT-TYPE
SYNTAX INTEGER {
read(1),
write(2),
trap(3),
inform(4)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The type of message that may be forwarded using
the translation parameters defined by this entry."
::= { snmpProxyEntry 2 }
snmpProxyContextEngineID OBJECT-TYPE
SYNTAX SnmpEngineID
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The contextEngineID contained in messages that
may be forwarded using the translation parameters
defined by this entry."
::= { snmpProxyEntry 3 }
snmpProxyContextName OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The contextName contained in messages that may be
forwarded using the translation parameters defined
by this entry.
Levi, et. al. Standards Track [Page 56]
^L
RFC 2273 SNMPv3 Applications January 1998
This object is optional, and if not supported, the
contextName contained in a message is ignored when
selecting an entry in the snmpProxyTable."
::= { snmpProxyEntry 4 }
snmpProxyTargetParamsIn OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object selects an entry in the snmpTargetParamsTable.
The selected entry is used to determine which row of the
snmpProxyTable to use for forwarding received messages."
::= { snmpProxyEntry 5 }
snmpProxySingleTargetOut OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object selects a management target defined in the
snmpTargetAddrTable (in the SNMP-TARGET-MIB). The
selected target is defined by an entry in the
snmpTargetAddrTable whose index value (snmpTargetAddrName)
is equal to this object.
This object is only used when selection of a single
target is required (i.e. when forwarding an incoming
read or write request)."
::= { snmpProxyEntry 6 }
snmpProxyMultipleTargetOut OBJECT-TYPE
SYNTAX SnmpTagValue
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"This object selects a set of management targets defined
in the snmpTargetAddrTable (in the SNMP-TARGET-MIB).
This object is only used when selection of multiple
targets is required (i.e. when forwarding an incoming
notification)."
::= { snmpProxyEntry 7 }
snmpProxyStorageType OBJECT-TYPE
SYNTAX StorageType
MAX-ACCESS read-create
STATUS current
Levi, et. al. Standards Track [Page 57]
^L
RFC 2273 SNMPv3 Applications January 1998
DESCRIPTION
"The storage type of this conceptual row."
::= { snmpProxyEntry 8 }
snmpProxyRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The status of this conceptual row.
To create a row in this table, a manager must
set this object to either createAndGo(4) or
createAndWait(5).
The following objects may not be modified while the
value of this object is active(1):
- snmpProxyType
- snmpProxyContextEngineID
- snmpProxyContextName
- snmpProxyTargetParamsIn
- snmpProxySingleTargetOut
- snmpProxyMultipleTargetOut"
::= { snmpProxyEntry 9 }
--
--
-- Conformance information
--
--
snmpProxyCompliances OBJECT IDENTIFIER ::=
{ snmpProxyConformance 1 }
snmpProxyGroups OBJECT IDENTIFIER ::=
{ snmpProxyConformance 2 }
--
--
-- Compliance statements
--
--
snmpProxyCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement for SNMP entities which include
a proxy forwarding application."
Levi, et. al. Standards Track [Page 58]
^L
RFC 2273 SNMPv3 Applications January 1998
MODULE SNMP-TARGET-MIB
MANDATORY-GROUPS { snmpTargetBasicGroup,
snmpTargetResponseGroup }
MODULE -- This Module
MANDATORY-GROUPS { snmpProxyGroup }
::= { snmpProxyCompliances 1 }
snmpProxyGroup OBJECT-GROUP
OBJECTS {
snmpProxyType,
snmpProxyContextEngineID,
snmpProxyContextName,
snmpProxyTargetParamsIn,
snmpProxySingleTargetOut,
snmpProxyMultipleTargetOut,
snmpProxyStorageType,
snmpProxyRowStatus
}
STATUS current
DESCRIPTION
"A collection of objects providing remote configuration of
management target translation parameters for use by
proxy forwarder applications."
::= { snmpProxyGroups 3 }
END
5. Identification of Management Targets in Notification Originators
This section describes the mechanisms used by a notification
originator application when using the MIB module described in this
document to determine the set of management targets to be used when
generating a notification.
A notification originator uses the snmpNotifyTable to find the
management targets to be used for generating notifications. Each
active entry in this table identifies zero or more entries in the
snmpTargetAddrTable. Any entry in the snmpTargetAddrTable whose
snmpTargetAddrTagList object contains a tag value which is equal to a
value of snmpNotifyTag is selected by the snmpNotifyEntry which
contains that instance of snmpNotifyTag. Note that a particular
snmpTargetAddrEntry may be selected by multiple entries in the
snmpNotifyTable, resulting in multiple notifications being generated
using that snmpTargetAddrEntry.
Levi, et. al. Standards Track [Page 59]
^L
RFC 2273 SNMPv3 Applications January 1998
Each snmpTargetAddrEntry contains a pointer to the
snmpTargetParamsTable (snmpTargetAddrParams). This pointer selects a
set of SNMP parameters to be used for generating notifications. If
the selected entry in the snmpTargetParamsTable does not exist, the
management target is not used to generate notifications.
The decision as to whether a notification should contain an SNMPv2-
Trap or Inform PDU is determined by the value of the snmpNotifyType
object. If the value of this object is trap(1), the notification
should contain an SNMPv2-Trap PDU. If the value of this object is
inform(2), then the notification should contain an Inform PDU, and
the timeout time and number of retries for the Inform are the value
of snmpTargetAddrTimeout and snmpTargetAddrRetryCount. Note that the
exception to these rules is when the snmpTargetParamsMPModel object
indicates SNMPv1. In this case, the notification is sent as a Trap
if the value of snmpNotifyTargetType is either trap(1) or inform(2).
6. Notification Filtering
This section describes the mechanisms used by a notification
originator application when using the MIB module described in this
document to filter generation of notifications.
A notification originator uses the snmpNotifyFilterTable to filter
notifications. A notification filter profile may be associated with
a particular entry in the snmpTargetParamsTable. The associated
filter profile is identified by an entry in the
snmpNotifyFilterProfileTable whose index is equal to the index of the
entry in the snmpTargetParamsTable. If no such entry exists in the
snmpNotifyFilterProfileTable, no filtering is performed for that
management target.
If such an entry does exist, the value of snmpNotifyFilterProfileName
of the entry is compared with the corresponding portion of the index
of all active entries in the snmpNotifyFilterTable. All such entries
for which this comparison results in an exact match are used for
filtering a notification generated using the associated
snmpTargetParamsEntry. If no such entries exist, no filtering is
performed, and a notification may be sent to the management target.
Otherwise, if matching entries do exist, a notification may be sent
if the NOTIFICATION-TYPE OBJECT IDENTIFIER of the notification (this
is the value of the element of the variable bindings whose name is
snmpTrapOID.0, i.e., the second variable binding), and all of the
object instances to be included in the variable-bindings of the
notification, are not specifically excluded by the matching entries.
Levi, et. al. Standards Track [Page 60]
^L
RFC 2273 SNMPv3 Applications January 1998
Each set of snmpNotifyFilterTable entries is divided into two
collections of filter subtrees: the included filter subtrees, and
the excluded filter subtrees. The snmpNotifyFilterType object
defines the collection to which each matching entry belongs.
To determine whether a particular notification name or object
instance is excluded by the set of matching entries, compare the
notification name's or object instance's OBJECT IDENTIFIER with each
of the matching entries. If none match, then the notification name
or object instance is considered excluded, and the notification
should not be sent to this management target. If one or more match,
then the notification name or object instance is included or
excluded, according to the value of snmpNotifyFilterType in the entry
whose value of snmpNotifyFilterSubtree has the most sub-identifiers.
If multiple entries match and have the same number of sub-
identifiers, then the lexicographically greatest instance of
snmpNotifyFilterType among those which match determines the inclusion
or exclusion.
A notification name's or object instance's OBJECT IDENTIFIER X
matches an entry in the snmpNotifyFilterTable when the number of
sub-identifiers in X is at least as many as in the value of
snmpNotifyFilterSubtree for the entry, and each sub-identifier in the
value of snmpNotifyFilterSubtree matches its corresponding sub-
identifier in X. Two sub-identifiers match either if the
corresponding bit of snmpNotifyFilterMask is zero (the 'wild card'
value), or if the two sub-identifiers are equal.
7. Management Target Translation in Proxy Forwarder Applications
This section describes the mechanisms used by a proxy forwarder
application when using the MIB module described in this document to
translate incoming management target information into outgoing
management target information for the purpose of forwarding messages.
There are actually two mechanisms a proxy forwarder may use, one for
forwarding request messages, and one for forwarding notification
messages.
7.1. Management Target Translation for Request Forwarding
When forwarding request messages, the proxy forwarder will select a
single entry in the snmpProxyTable. To select this entry, it will
perform the following comparisons:
- The snmpProxyType must be read(1) if the request is a Get,
GetNext, or GetBulk request. The snmpProxyType must be
write(2) if the request is a Set request.
Levi, et. al. Standards Track [Page 61]
^L
RFC 2273 SNMPv3 Applications January 1998
- The contextEngineId must equal the snmpProxyContextEngineID
object.
- If the snmpProxyContextName object is supported, it must equal
the contextName.
- The snmpProxyTargetParamsIn object identifies an entry in the
snmpTargetParamsTable. The messageProcessingModel,
securityLevel, security model, and securityName must match the
values of snmpTargetParamsMPModel,
snmpTargetParamsSecurityModel, snmpTargetParamsSecurityName,
and snmpTargetParamsSecurityLevel of the identified entry in
the snmpTargetParamsTable.
There may be multiple entries in the snmpProxyTable for which these
comparisons succeed. The entry whose snmpProxyName has the
lexicographically smallest value and for which the comparisons
succeed will be selected by the proxy forwarder.
The outgoing management target information is identified by the value
of the snmpProxySingleTargetOut object of the selected entry. This
object identifies an entry in the snmpTargetAddrTable. The
identified entry in the snmpTargetAddrTable also contains a reference
to the snmpTargetParamsTable (snmpTargetAddrParams). If either the
identified entry in the snmpTargetAddrTable does not exist, or the
identified entry in the snmpTargetParamsTable does not exist, then
this snmpProxyEntry does not identify valid forwarding information,
and the proxy forwarder should attempt to identify another row.
If there is no entry in the snmpProxyTable for which all of the
conditions above may be met, then there is no appropriate forwarding
information, and the proxy forwarder should take appropriate actions.
Otherwise, The snmpTargetAddrTDomain, snmpTargetAddrTAddress,
snmpTargetAddrTimeout, and snmpTargetRetryCount of the identified
snmpTargetAddrEntry, and the snmpTargetParamsMPModel,
snmpTargetParamsSecurityModel, snmpTargetParamsSecurityName, and
snmpTargetParamsSecurityLevel of the identified snmpTargetParamsEntry
are used as the destination management target.
7.2. Management Target Translation for Notification Forwarding
When forwarding notification messages, the proxy forwarder will
select multiple entries in the snmpProxyTable. To select these
entries, it will perform the following comparisons:
Levi, et. al. Standards Track [Page 62]
^L
RFC 2273 SNMPv3 Applications January 1998
- The snmpProxyType must be trap(3) if the notification is a
Trap. The snmpProxyType must be inform(4) if the request is
an Inform.
- The contextEngineId must equal the snmpProxyContextEngineID
object.
- If the snmpProxyContextName object is supported, it must equal
the contextName.
- The snmpProxyTargetParamsIn object identifies an entry in the
snmpTargetParamsTable. The messageProcessingModel,
securityLevel, security model, and securityName must match the
values of snmpTargetParamsMPModel,
snmpTargetParamsSecurityModel, snmpTargetParamsSecurityName,
and snmpTargetParamsSecurityLevel of the identified entry in
the snmpTargetParamsTable.
All entries for which these conditions are met are selected. The
snmpProxyMultipleTargetOut object of each such entry is used to
select a set of entries in the snmpTargetAddrTable. Any
snmpTargetAddrEntry whose snmpTargetAddrTagList object contains a tag
value equal to the value of snmpProxyMultipleTargetOut, and whose
snmpTargetAddrParams object references an existing entry in the
snmpTargetParamsTable, is selected as a destination for the forwarded
notification.
8. Intellectual Property
The IETF takes no position regarding the validity or scope of any
intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; neither does it represent that it
has made any effort to identify any such rights. Information on the
IETF's procedures with respect to rights in standards-track and
standards-related documentation can be found in BCP-11. Copies of
claims of rights made available for publication and any assurances of
licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such
proprietary rights by implementors or users of this specification can
be obtained from the IETF Secretariat.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights which may cover technology that may be required to practice
this standard. Please address the information to the IETF Executive
Director.
Levi, et. al. Standards Track [Page 63]
^L
RFC 2273 SNMPv3 Applications January 1998
9. Acknowledgments
This document is the result of the efforts of the SNMPv3 Working
Group. Some special thanks are in order to the following SNMPv3 WG
members:
Dave Battle (SNMP Research, Inc.)
Uri Blumenthal (IBM T.J. Watson Research Center)
Jeff Case (SNMP Research, Inc.)
John Curran (BBN)
T. Max Devlin (Hi-TECH Connections)
John Flick (Hewlett Packard)
David Harrington (Cabletron Systems Inc.)
N.C. Hien (IBM T.J. Watson Research Center)
Dave Levi (SNMP Research, Inc.)
Louis A Mamakos (UUNET Technologies Inc.)
Paul Meyer (Secure Computing Corporation)
Keith McCloghrie (Cisco Systems)
Russ Mundy (Trusted Information Systems, Inc.)
Bob Natale (ACE*COMM Corporation)
Mike O'Dell (UUNET Technologies Inc.)
Dave Perkins (DeskTalk)
Peter Polkinghorne (Brunel University)
Randy Presuhn (BMC Software, Inc.)
David Reid (SNMP Research, Inc.)
Shawn Routhier (Epilogue)
Juergen Schoenwaelder (TU Braunschweig)
Bob Stewart (Cisco Systems)
Bert Wijnen (IBM T.J. Watson Research Center)
The document is based on recommendations of the IETF Security and
Administrative Framework Evolution for SNMP Advisory Team. Members of
that Advisory Team were:
David Harrington (Cabletron Systems Inc.)
Jeff Johnson (Cisco Systems)
David Levi (SNMP Research Inc.)
John Linn (Openvision)
Russ Mundy (Trusted Information Systems) chair
Shawn Routhier (Epilogue)
Glenn Waters (Nortel)
Bert Wijnen (IBM T. J. Watson Research Center)
As recommended by the Advisory Team and the SNMPv3 Working Group
Charter, the design incorporates as much as practical from previous
RFCs and drafts. As a result, special thanks are due to the authors
of previous designs known as SNMPv2u and SNMPv2*:
Levi, et. al. Standards Track [Page 64]
^L
RFC 2273 SNMPv3 Applications January 1998
Jeff Case (SNMP Research, Inc.)
David Harrington (Cabletron Systems Inc.)
David Levi (SNMP Research, Inc.)
Keith McCloghrie (Cisco Systems)
Brian O'Keefe (Hewlett Packard)
Marshall T. Rose (Dover Beach Consulting)
Jon Saperia (BGS Systems Inc.)
Steve Waldbusser (International Network Services)
Glenn W. Waters (Bell-Northern Research Ltd.)
10. Security Considerations
The SNMP applications described in this document typically have
direct access to MIB instrumentation. Thus, it is very important
that these applications be strict in their application of access
control as described in this document.
In addition, there may be some types of notification generator
applications which, rather than accessing MIB instrumentation using
access control, will obtain MIB information through other means (such
as from a command line). The implementors and users of such
applications must be responsible for not divulging MIB information
that normally would be inaccessible due to access control.
11. References
[RFC1157]
Case, J., Fedor, M., Schoffstall, M. and J. Davin, "Simple Network
Management Protocol", RFC 1157, May 1990.
[RFC1213]
McCloghrie, K. and M. Rose, Editors, "Management Information Base
for Network Management of TCP/IP-based internets: MIB-II", STD 17,
RFC 1213, March 1991.
[RFC1902]
Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Structure of
Management Information for Version 2 of the Simple Network
Management Protocol (SNMPv2)", RFC 1902, January 1996.
[RFC1903]
Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Textual
Conventions for Version 2 of the Simple Network Management Protocol
(SNMPv2)", RFC 1903, January 1996.
Levi, et. al. Standards Track [Page 65]
^L
RFC 2273 SNMPv3 Applications January 1998
[RFC1905]
SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and S.
Waldbusser, "Protocol Operations for Version 2 of the Simple
Network Management Protocol (SNMPv2)", RFC 1905, January 1996.
[RFC1907]
SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and S.
Waldbusser, "Management Information Base for Version 2 of the
Simple Network Management Protocol (SNMPv2)", RFC 1907, January
1996.
[RFC1908]
SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and S.
Waldbusser, "Coexistence between Version 1 and Version 2 of the
Internet-standard Network Management Framework", RFC 1908, January
1996.
[RFC2271]
Harrington, D., and B. Wijnen, "An Architecture for Describing SNMP
Management Frameworks", RFC 2271, January 1998.
[RFC2272]
Case, J., Harrington, D., and B. Wijnen, "Message Processing and
Dispatching for the Simple Network Management Protocol (SNMP)", RFC
2272, January 1998.
[RFC2275]
Wijnen, B., Presuhn, R., and K. McCloghrie, "View-based Access
Control Model for the Simple Network Management Protocol (SNMP)",
RFC 2275, January 1998.
Levi, et. al. Standards Track [Page 66]
^L
RFC 2273 SNMPv3 Applications January 1998
12. Editors' Addresses
David B. Levi
SNMP Research, Inc.
3001 Kimberlin Heights Road
Knoxville, TN 37920-9716
U.S.A.
Phone: +1 423 573 1434
EMail: levi@snmp.com
Paul Meyer
Secure Computing Corporation
2675 Long Lake Road
Roseville, MN 55113
U.S.A.
Phone: +1 612 628 1592
EMail: paul_meyer@securecomputing.com
Bob Stewart
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
U.S.A.
Phone: +1 603 654 6923
EMail: bstewart@cisco.com
Levi, et. al. Standards Track [Page 67]
^L
RFC 2273 SNMPv3 Applications January 1998
APPENDIX A - Trap Configuration Example
This section describes an example configuration for a Notification
Generator application which implements the snmpNotifyBasicCompliance
level. The example configuration specifies that the Notification
Generator should send notifications to 3 separate managers, using
authentication and no privacy for the first 2 managers, and using
both authentication and privacy for the third manager.
The configuration consists of three rows in the snmpTargetAddrTable,
and two rows in the snmpTargetTable.
snmpTargetAddrName SnmpAdminString,
snmpTargetAddrTDomain TDomain,
snmpTargetAddrTAddress TAddress,
snmpTargetAddrTimeout TimeInterval,
snmpTargetAddrRetryCount Integer32,
snmpTargetAddrTagList SnmpAdminString,
snmpTargetAddrParams SnmpAdminString,
snmpTargetAddrStorageType StorageType,
snmpTargetAddrRowStatus RowStatus
* snmpTargetAddrName = "addr1"
snmpTargetAddrTDomain = snmpUDPDomain
snmpTargetAddrTAddress = 128.1.2.3:162
snmpTargetAddrTagList = "group1"
snmpTargetAddrParams = "AuthNoPriv joe"
snmpTargetAddrStorageType = readOnly(5)
snmpTargetAddrRowStatus = active(1)
* snmpTargetAddrName = "addr2"
snmpTargetAddrTDomain = snmpUDPDomain
snmpTargetAddrTAddress = 128.2.4.6:162
snmpTargetAddrTagList = "group1"
snmpTargetAddrParams = "AuthNoPriv-joe"
snmpTargetAddrStorageType = readOnly(5)
snmpTargetAddrRowStatus = active(1)
* snmpTargetAddrName = "addr3"
snmpTargetAddrTDomain = snmpUDPDomain
snmpTargetAddrTAddress = 128.1.2.3:162
snmpTargetAddrTagList = "group2"
snmpTargetAddrParams = "AuthPriv-bob"
snmpTargetAddrStorageType = readOnly(5)
snmpTargetAddrRowStatus = active(1)
* snmpTargetParamsName = "AuthNoPriv-joe"
snmpTargetParamsMPModel = 3
Levi, et. al. Standards Track [Page 68]
^L
RFC 2273 SNMPv3 Applications January 1998
snmpTargetParamsSecurityModel = 3 (USM)
snmpTargetParamsSecurityName = "joe"
snmpTargetParamsSecurityLevel = authNoPriv(2)
snmpTargetParamsStorageType = readOnly(5)
snmpTargetParamsRowStatus = active(1)
* snmpTargetParamsName = "AuthPriv-bob"
snmpTargetParamsMPModel = 3
snmpTargetParamsSecurityModel = 3 (USM)
snmpTargetParamsSecurityName = "bob"
snmpTargetParamsSecurityLevel = authPriv(3)
snmpTargetParamsStorageType = readOnly(5)
snmpTargetParamsRowStatus = active(1)
* snmpNotifyName = "group1"
snmpNotifyTag = "group1"
snmpNotifyType = trap(1)
snmpNotifyStorageType = readOnly(5)
snmpNotifyRowStatus = active(1)
* snmpNotifyName = "group2"
snmpNotifyTag = "group2"
snmpNotifyType = trap(1)
snmpNotifyStorageType = readOnly(5)
snmpNotifyRowStatus = active(1)
These entries define two groups of management targets. The first
group contains two management targets:
first target second target
------------ -------------
messageProcessingModel SNMPv3 SNMPv3
securityModel 3 (USM) 3 (USM)
securityName "joe" "joe"
securityLevel authNoPriv(2) authNoPriv(2)
transportDomain snmpUDPDomain snmpUDPDomain
transportAddress 128.1.2.3:162 128.2.4.6:162
And the second group contains a single management target:
messageProcessingModel SNMPv3
securityLevel authPriv(3)
securityModel 3 (USM)
securityName "bob"
transportDomain snmpUDPDomain
transportAddress 128.1.5.9:162
Levi, et. al. Standards Track [Page 69]
^L
RFC 2273 SNMPv3 Applications January 1998
B. Full Copyright Statement
Copyright (C) The Internet Society (1998). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Levi, et. al. Standards Track [Page 70]
^L
|