1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
|
Network Working Group M. Suzuki
Request for Comments: 2383 NTT
Category: Informational August 1998
ST2+ over ATM
Protocol Specification - UNI 3.1 Version
Status of this Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (1998). All Rights Reserved.
Abstract
This document specifies an ATM-based protocol for communication
between ST2+ agents. The ST2+ over ATM protocol supports the matching
of one hop in an ST2+ tree-structure stream with one ATM connection.
In this document, ATM is a subnet technology for the ST2+ stream.
The ST2+ over ATM protocol is designed to achieve resource-
reservation communications across ATM and non-ATM networks, to extend
the UNI 3.1/4.0 signaling functions, and to reduce the UNI 4.0 LIJ
signaling limitations.
The specifications of the ST2+ over ATM protocol consist of a
revision of RFC 1819 ST2+ and specifications of protocol interaction
between ST2+ and ATM on the user plane, management plane, and control
plane which correspond to the three planes of the B-ISDN protocol
reference model.
1. Introduction
1.1 Purpose of Document
The purpose of this document is to specify an ATM-based protocol for
communication between ST2+ agents.
The ST2+ over ATM protocol is designed to support the matching of one
hop in an ST2+ tree-structure stream with one ATM connection; it is
not designed to support an entire ST2+ tree-structure stream with a
point-to-multipoint ATM connection only.
Suzuki Informational [Page 1]
^L
RFC 2383 ST2+ over ATM August 1998
Therefore, in this document, ATM is only a subnet technology for the
ST2+ stream. This specification is designed to enable resource-
reservation communications across ATM and non-ATM networks.
1.2 Features of ST2+ over ATM Protocol
o Enables resource-reservation communications across ATM and non-ATM
networks.
ATM native API supports resource-reservation communications only
within an ATM network; it cannot support interworking with non-ATM
networks. This is because
- ATM native API cannot connect terminals without an ATM interface.
- ATM native API does not support IP addressing and SAP (port)
addressing systems.
o Extends UNI 3.1/4.0 signaling functions.
ST2+ SCMP supports MTU-size negotiation at all hops in an ST2+
tree-structure stream. UNI 3.1/4.0 supports only max CPCS_SDU
(i.e., MTU) negotiation with the called party of a point-to-point
call or with the first leaf of a point-to-multipoint call.
o Reduces UNI 4.0 LIJ signaling limitations.
The ST2+ over ATM protocol supports UNI 4.0 LIJ Call Identifier
notification from the root to the leaf by using an ST2+ SCMP
extension. LIJ Call Identifier discovery at the leaf is one of the
major unsolved problems of UNI 4.0, and the ST2+ over ATM protocol
provides a solution.
Note: The UNI 3.1 version of the ST2+ over ATM protocol does not
support the above feature. It will be supported by the UNI 3.1/4.0
version.
1.3 Goals and Non-goals of ST2+ over ATM Protocol
The ST2+ over ATM protocol is designed to achieve the following
goals.
o Specify protocol interaction between ST2+ [4] and ATM on the ATM
Forum Private UNI 3.1/4.0 (Sb point) [10, 11].
Note: The UNI 3.1 version of the ST2+ over ATM protocol does not
support UNI 4.0. It will be supported by the UNI 3.1/4.0 version.
Suzuki Informational [Page 2]
^L
RFC 2383 ST2+ over ATM August 1998
o Support ST2+ stream across ATM and non-ATM networks.
o Define one VC on the UNI corresponding to one ST2+ hop; this VC is
not shared with other ST2+ hops, and also this ST2+ hop is not
divided into multiple VCs.
o Support both SVC and PVC.
o Not require any ATM specification changes.
o Coexist with RFC 1483 [16] IPv4 encapsulation.
o Coexist with RFC 1577 [17] ATMarp.
o Coexist with RFC 1755 [18] ATM signaling for IPv4.
o Coexist with NHRP [19].
Because ST2+ is independent of both routing and IP address resolution
protocols, the ST2+ over ATM protocol does not specify the following
protocols.
o IP-ATM address resolution protocol
o Routing protocol
Because the ST2+ over ATM protocol is specified for the UNI, it is
independent of:
o NNI protocol
o Router/switch architecture
Suzuki Informational [Page 3]
^L
RFC 2383 ST2+ over ATM August 1998
2. Protocol Architecture
The ST2+ over ATM protocol specifies the interaction between ST2+ and
ATM on the user, management, and control planes, which correspond to
the three planes in ITU-T Recommendation I.321 B-ISDN Protocol
Reference Model [14].
2.1 User Plane Architecture
The user plane specifies the rules for encapsulating the ST2+ Data
PDU into the AAL5 [15] PDU. An user plane protocol stack is shown in
Fig. 2.1.
+---------------------------------+
| RFC 1819 ST2+ |
| (ST2+ Data) |
+---------------------------------+ Point of ST2+ over ATM
|/////////////////////////////////| <--- protocol specification of
+---------------------------------+ user plane
| |
| |
| I.363.5 |
| |
| AAL5 |
| |
| |
+---------------------------------+
| I.361 ATM |
+---------------------------------+
| PHY |
+----------------+----------------+
| UNI
+--------||-------
Fig. 2.1: User plane protocol stack.
Suzuki Informational [Page 4]
^L
RFC 2383 ST2+ over ATM August 1998
An example of interworking from an ATM network to an IEEE 802.X LAN
is shown in Fig. 2.2.
ST2+ ST2+ ST2+
Origin ATM Cloud Intermediate Agent Target
+---------+ +---------+
| AP |--------------------------------------------->| AP |
+---------+ +-------------------+ +---------+
|ST2+ Data|------------------>| RFC 1819 ST2+ Data|----->|ST2+ Data|
+---------+ +---------+---------+ +---------+
|I.363 AAL|------------------>|I.363 AAL| SNAP |----->| SNAP |
+---------+ +---------+ +---------+---------+ +---------+
|I.361 ATM|--->|I.361 ATM|--->|I.361 ATM| LLC |----->| LLC |
+---------+ +---------+ +---------+---------+ +---------+
| | | | | |IEEE802.X| |IEEE802.X|
| PHY |--->| PHY |--->| PHY | & 802.1p|----->| & 802.1p|
+---------+ +---------+ +---------+---------+ +---------+
Fig. 2.2: Example of interworking from
an ATM network to an IEEE 802.X LAN.
The ATM cell supports priority indication using the CLP field;
indication is also supported by the ST2+ Data PDU by using the Pri
field. It may be feasible to map these fields to each other. The
ST2+ over ATM protocol specifies an optional function that maps the
Pri field in the ST header to the CLP field in the ATM cell.
However, implementors should note that current ATM standardization
tends not to support tagging.
Suzuki Informational [Page 5]
^L
RFC 2383 ST2+ over ATM August 1998
2.2 Management Plane Architecture
The management plane specifies the Null FlowSpec, the Controlled-Load
Service [5] FlowSpec, and the Guaranteed Service [6] FlowSpec mapping
rules [8] for UNI 3.1 traffic management. A management plane
protocol stack is shown in Fig. 2.3.
+---------------------------------+
| Null FlowSpec |
|Controlled-Load Service FlowSpec |
| Guaranteed Service FlowSpec |
+---------------------------------+ Point of ST2+ over ATM
|/////////////////////////////////| <--- protocol specification of
+---------------------------------+ management plane
| |
| UNI 3.1 |
| |
| |
| Traffic Management |
| |
| |
| VBR/UBR |
| |
+---------------------------------+
Fig. 2.3: Management plane protocol stack.
Note: The UNI 3.1 version of the ST2+ over ATM protocol does not
support Guaranteed Services. It will be supported by the UNI 3.1/4.0
version.
The ST2+ over ATM protocol specifies the ST FlowSpec format for the
Integrated Services. Basically, FlowSpec parameter negotiation,
except for the MTU, is not supported. This is because, in the ST2+
environment, negotiated FlowSpec parameters are not always unique to
each target. The current ATM standard does not support heterogeneous
QoS to receivers.
The ST2+ over ATM protocol supports FlowSpec changes by using the
CHANGE message (RFC 1819, Section 4.6.5) if the I-bit in the CHANGE
message is set to one and if the CHANGE message affects all targets
in the stream. This is because the UNI 3.1 does not support QoS
changes. The ST2+ over ATM protocol supports FlowSpec changes by
releasing old ATM connections and establishing new ones.
The ST2+ over ATM protocol does not support stream preemption (RFC
1819, Section 6.3). This is because the Integrated Services FlowSpec
does not support the concept of precedence.
Suzuki Informational [Page 6]
^L
RFC 2383 ST2+ over ATM August 1998
It does not support the ST2+ FlowSpec (RFC 1819, Section 9.2). ST2+
FlowSpec specifies useful services, but requires a datalink layer to
support heterogeneous QoS to receivers. The current ATM standard
does not support heterogeneous QoS to receivers.
2.3 Control Plane Architecture
The control plane specifies the rules for encapsulating the ST2+ SCMP
PDU into the AAL5 [15] PDU, the relationship between ST2+ SCMP and
PVC management for ST2+ data, and the protocol interaction between
ST2+ SCMP and UNI 3.1 signaling [10]. A control plane protocol stack
is shown in Fig. 2.4.
+---------------------------------+
| RFC 1819 ST2+ |
| (ST2+ SCMP) |
+---------------------------------+ Point of ST2+ over ATM
|/////////////////////////////////| <--- protocol specification of
+------------+---+----------------+ control plane
| IEEE 802 | |UNI3.1 Signaling|
| SNAP | +----------------+
+------------+ | Q.2130 SSCF |
| ISO 8802-2 | +----------------+
| LLC Type1 | | Q.2110 SSCOP |
+------------+ +----------------+
| I.363.5 AAL5 |
+---------------------------------+
| I.361 ATM |
+---------------------------------+
| PHY |
+----------------+----------------+
| UNI
+--------||-------
Fig. 2.4: Control plane protocol stack.
The ST2+ over ATM protocol does not cover a VC (SVC/PVC) that
transfers ST2+ SCMP. VCs for IPv4 transfer may be used for ST2+ SCMP
transfer, and implementations may provide particular VCs for ST2+
SCMP transfer. Selection of these VCs depends on the implementation.
Implementors should note that when ST2+ data and SCMP belong to a
stream, the routing directions on the ST2+ layer must be the same.
Implementors should also note that ST2+ and IPv4 directions for
routing to the same IP destination address are not always the same.
Suzuki Informational [Page 7]
^L
RFC 2383 ST2+ over ATM August 1998
The ST2+ over ATM protocol supports both SVC and PVC for ST2+ Data
PDU transfer. If SVC is used, the ST2+ and ATM layers establish a
connection sequentially by using respectively ST2+ SCMP and UNI 3.1
signaling. An example of ST2+ SCMP and UNI 3.1 signaling message
flows for establishing and releasing of ST2+ data connections is
shown in Fig. 2.5, where (S) means an ST2+ entity and (Q) means a UNI
3.1 signaling entity.
ATM SW ATM SW
+------------+ UNI +----+ NNI +----+ UNI +------------+
____|Intermediate|--||--| \/ |______| \/ |--||--|Intermediate|____
| (Upstream) | | /\ | | /\ | |(Downstream)|
+------------+ +----+ +----+ +------------+
SCMP
------->(S)<------------------------------------------>(S)<-------
\ UNI Sig. UNI Sig. /
CONNECT | (Q)<--------->(Q)<-------->(Q)<--------->(Q) |
-------->| |
ACK <----|--------------------CONNECT------------------>| CONNECT
|<---------------------ACK---------------------|-------->
| |<--- ACK
| | ACCEPT
| |<--------
|<-------------------ACCEPT--------------------|---> ACK
|----------------------ACK-------------------->|
| |
|->|----SETUP--->| | | |
| |<-CALL PROC--|----------->|----SETUP--->|->|
| | | |<----CONN----|<-|
ACCEPT | |<----CONN----|<-----------|--CONN ACK-->|->|
<--------|<-|--CONN ACK-->| | | |
ACK ---->| |
| |
-------\ |--------------------------------------------\ |-------\
>| ST2+ Data >| >
-------/ |--------------------------------------------/ |-------/
| |
DISCONN | |
-------->| |
ACK <----|-------------------DISCONNECT---------------->|
|<---------------------ACK---------------------|
| |
|->|---RELEASE-->| | | |
|<-|<--REL COMP--|----------->|---RELEASE-->|->| DISCONN
| | | |<--REL COMP--|<-|-------->
| |<--- ACK
Fig. 2.5: Example of ST2+ SCMP and UNI 3.1 signaling message flows.
Suzuki Informational [Page 8]
^L
RFC 2383 ST2+ over ATM August 1998
UNI 3.1/4.0 specifies PVC, point-to-point SVC, and point-to-
multipoint SVC as VC styles. However, in actual ATM network
environments, especially public ATM WANs, only PVC and bi-directional
point-to-point SVC may be supported. To support the diverse VC
styles, the ST2+ over ATM protocol supports the following VC styles
for ST2+ Data PDU transfer.
o PVC
o Reuse of reverse channel of bi-directional point-to-point SVC that
is used by existing stream.
o Point-to-point SVC initiated from upstream side.
o Point-to-multipoint SVC initiated from upstream side.
o Point-to-point SVC initiated from downstream side.
o Point-to-multipoint SVC initiated from downstream side (LIJ).
Note: The UNI 3.1 version of the ST2+ over ATM protocol does not
support LIJ. LIJ will be supported by the UNI 3.1/4.0 version.
The second style is needed in environments supporting bi-directional
point-to-point SVC only. The selection of PVC and SVC styles in the
ST2+ agent is based on preconfigured implementation-dependent rules.
SVC supports both upstream and downstream call initiation styles.
Implementors should note that this is independent of the sender-
oriented and receiver-oriented ST2+ stream-building process (RFC
1819, Section 4.1.1). This is because the ST2+ over ATM protocol
specifies the process for establishing ST2+ data hops on the UNI, and
because the ST2+ stream building process belongs to another layer.
The SVC initiation side should be determined based on the operational
and billing policies between ST2+ agents; this is basically
independent of the sender-oriented and receiver-oriented ST2+
stream-building process.
Suzuki Informational [Page 9]
^L
RFC 2383 ST2+ over ATM August 1998
An example of ST2+ SCMP interworking is shown in Fig. 2.6.
_____
/ \
(Origin )
\ /
A ~~|~~ A
| = | UNI Signaling
| | |
| +-+-+ V
| | X | ATM SW
| +-+-+ A
SCMP | | | NNI Signaling
| +-+-+ V
| | X | ATM SW
| +-+-+ A
| | |
| = | UNI Signaling
V | V
+-----+------+ IEEE 802.X & 802.1p
| |<---------------------+
|Intermediate|--------------------+ |
| |<-----------------+ | |
+------------+ L2 Signaling| | |
A | A | | |
| = | UNI Signaling | | | SCMP
| | | | | |
| +-+-+ V | | |
| | X | ATM SW V | |
| +-+-+ A +---+-|-+
SCMP | | | NNI Signaling | \ /| |
| +-+-+ V | X | |LAN SW
| | X | ATM SW | / \| |
| +-+-+ A +---+-|-+
| | | A | |
| = | UNI Signaling | | |
V __|__ V V_|_V
/ \ / \
(Target ) (Target )
\ / \ /
~~~~~ ~~~~~
Fig. 2.6: Example of ST2+ SCMP interworking.
Suzuki Informational [Page 10]
^L
RFC 2383 ST2+ over ATM August 1998
3. Revision of RFC 1819 ST2+
To specify the ST2+ over ATM protocol, the functions in RFC 1819 ST2+
must be extended to support ATM. However, it is difficult for the
current ATM standard to support part of the specifications in RFC
1819 ST2+. This section specifies the extended, restricted,
unsupported, and modified functions in RFC 1819 ST2+. Errata for RFC
1819 appears in Appendix A.
3.1 Extended Functions of RFC 1819 ST2+
3.1.1 ST FlowSpec for Controlled-Load Service
The ST2+ over ATM protocol specifies the ST FlowSpec format for the
Integrated Services. Basically, FlowSpec parameter negotiation,
except for the MTU, is not supported. The ST2+ intermediate agent
and the target decide whether to accept or refuse the FlowSpec
parameters, except for the MTU. Therefore, each of the FlowSpec
parameter values other than MTU is the same at each target in the
stream.
The format of the ST FlowSpec for the Controlled-Load Service is
shown in Fig. 3.1.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PCode = 1 | PBytes = 36 | ST FS Ver = 8 | 0(unused) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ver=0 | 0(reserved) | Overall Length = 7 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SVC Number |0| 0(reserved) | SVC Length = 6 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Param Num = 127| Flags = 0 | Param Length = 5 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Token Bucket Rate [r] (32-bit IEEE floating point number) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Token Bucket Size [b] (32-bit IEEE floating point number) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Peak Data Rate [p] (32-bit IEEE floating point number) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Minimum Policed Unit [m] |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Maximum Packet Size [M] |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Fig. 3.1: Format of ST FlowSpec for Controlled-Load Service.
Suzuki Informational [Page 11]
^L
RFC 2383 ST2+ over ATM August 1998
The PCode field identifies common SCMP elements. The PCode value
for the ST2+ FlowSpec is 1.
The PBytes field for the Controlled-Load Service is 36 bytes.
The ST FS Ver (ST FlowSpec Version) field identifies the ST
FlowSpec version. The ST FlowSpec version number for the
Integrated Services is 8.
The Ver (Message Format Version) field identifies the Integrated
Services FlowSpec message format version. The current version is
zero.
The Overall Length field for the Controlled-Load Service is 7
words.
The SVC Number (Service ID Number) field identifies the Integrated
Services. If the Integrated Services FlowSpec appears in the
CONNECT or CHANGE message, the value of the SVC Number field is 1.
If it appears in the ACCEPT, NOTIFY, or STATUS-RESPONSE message,
the value of the SVC Number field is 5.
The SVC Length (Service-specific Data Length) field for the
Controlled-Load Service is 6 words.
The Param Num (Parameter Number) field is 127.
The Flags (Per-parameter Flags) field is zero.
The Param Length (Length of Per-parameter Data) field is 5 words.
Definitions of the Token Bucket Rate [r], the Token Bucket Size
[b], the Peak Data Rate [p], the Minimum Policed Unit [m], and the
Maximum Packet Size [M] fields are given in [5]. See section 5 of
[5] for details.
The ST2+ agent, that creates the FlowSpec element in the SCMP
message, must assign valid values to all fields. The other agents
must not modify any values in the element.
The MaxMsgSize field in the CONNECT message is assigned by the origin
or the intermediate agent acting as origin, and updated by each agent
based on the MTU value of the datalink layer.
The negotiated value of MaxMsgSize is set back to the origin or the
intermediate agent acting as origin using the [M] field and the
MaxMsgSize field in the ACCEPT message that corresponds to the
CONNECT message.
Suzuki Informational [Page 12]
^L
RFC 2383 ST2+ over ATM August 1998
In the original definition of the Controlled-Load Service, the value
of the [m] field must be less than or equal to the value of the [M]
field. However, in the ST FlowSpec for the Controlled-Load Service,
if the value of the [m] field is more than that of the [M] field, the
value of the [m] field is regarded as the same value as the [M]
field, and must not generate an error. This is because there is a
possibility that the value of the [M] field in the ACCEPT message may
be decreased by negotiation.
In the ST2+ SCMP messages, the value of the [M] field must be equal
to or less than 65,535. In the ACCEPT message that responds to
CONNECT, or the NOTIFY message that contains the FlowSpec field, the
value of the [M] field must be equal to the MaxMsgSize field in the
message. If these values are not the same, FlowSpec is regarded as
an error.
If the ST2+ agent receives the CONNECT message that contains
unacceptable FlowSpec, the agent must generate a REFUSE message.
3.1.2 ST FlowSpec for Guaranteed Service
Note: The UNI 3.1 version of the ST2+ over ATM protocol does not
support Guaranteed Services. It will be supported by the UNI 3.1/4.0
version.
3.1.3 VC-type common SCMP element
The ST2+ over ATM protocol specifies an additional common SCMP
element that designates the VC type used to support the diverse VC
styles. The CONNECT and CHANGE messages that establish a hop with a
VC must contain a VC-type common SCMP element. This element is valid
between neighboring ST2+ agents, but must not propagate beyond the
previous-hop or next-hop ST2+ agent.
Suzuki Informational [Page 13]
^L
RFC 2383 ST2+ over ATM August 1998
The format of the VC-type common SCMP element is shown in Fig. 3.2.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PCode = 8 | PBytes = 20 | VCType |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PVCIdentifer |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0(unused) | UniqueID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| OriginIPAddress |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LIJCallIdentifer |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Fig. 3.2: Format of VC-type common SCMP element.
The PCode field identifies the common SCMP elements. The PCode
value for the VC type is 8.
The PBytes field for the VC type is 20 bytes.
The VCType field identifies the VC type. The correspondence
between the value in this field and the meaning is as follows:
0: ST2+ data stream uses a PVC.
1: ST2+ data stream uses the reverse channel of the bi-
directional point-to-point SVC used by the existing stream.
2: ST2+ data stream is established by a point-to-point SVC
initiated from the upstream side.
3: ST2+ data stream is established by a point-to-multipoint SVC
initiated from the upstream side.
4: ST2+ data stream is established by a point-to-point SVC
initiated from the downstream side.
5: ST2+ data stream is established by a point-to-multipoint SVC
initiated from the downstream side.
Note: The UNI 3.1 version of the ST2+ over ATM protocol does not
support VCType 5. It will be supported by the UNI 3.1/4.0
version.
Suzuki Informational [Page 14]
^L
RFC 2383 ST2+ over ATM August 1998
The PVCIdentifer field identifies the PVC identifier uniquely
assigned between neighboring ST2+ agents. This field is valid only
when the VCType field is zero.
The UniqueID and OriginIPAddress fields identify the reverse
channel of the bi-directional point-to-point SVC that is used by
this SID. These fields are valid only when the VCType field is 1.
The LIJCallIdentifer field identifies the LIJ Call Identifier for
point-to-multipoint SVC. This field is valid only when the VCType
field is 5.
3.1.4 Reason Code
The extension of the Reason Code (RFC 1819, Section 10.5.3) to the
ST2+ over ATM protocol is shown below.
57 CantChange Partial changes not supported.
58 NoRecover Stream recovery not supported.
3.2 Restricted Functions of RFC 1819 ST2+
3.2.1 FlowSpec changes
In the following case, the ST2+ over ATM protocol supports stream
FlowSpec changes by using the CHANGE message.
o The I-bit is set to 1 and the G-bit is set to 1.
In the following case, the CHANGE fails and a REFUSE message, with
the E and N-bits set to 1 and the ReasonCode set to CantChange, is
propagated upstream.
o The I and/or G-bits are set to zero.
3.3 Unsupported Functions of RFC 1819 ST2+
3.3.1 ST2+ FlowSpec
The ST2+ over ATM protocol does not support the ST2+ FlowSpec (RFC
1819, Section 9.2). The ST2+ FlowSpec specifies useful services, but
requires the datalink layer to support heterogeneous QoS to
receivers. The current ATM standard does not support heterogeneous
QoS to receivers.
Suzuki Informational [Page 15]
^L
RFC 2383 ST2+ over ATM August 1998
3.3.2 Stream preemption
The ST2+ over ATM protocol does not support stream preemption (RFC
1819, Section 6.3). This is because the Integrated Services FlowSpec
does not support the concept of precedence.
3.3.3 HELLO message
Implementations may not support the HELLO message (RFC 1819, Section
10.4.7) and thus ST2+ agent failure detection using the HELLO message
(RFC 1819, Section 6.1.2). This is because ATM has an adequate
failure detection mechanism, and the HELLO message is not sufficient
for detecting link failure in the ST2+ over ATM protocol, because the
ST2+ data and the ST2+ SCMP are forwarded through another VC.
3.3.4 Stream recovery
Implementors must select the NoRecover option of the CONNECT message
(RFC 1819, Section 4.4.1) with the S-bit set to 1. This is because
the descriptions of the stream recovery process in RFC 1819 (Sections
5.3.2, 6.2, and 6.2.1) are unclear and incomplete. It is thus
possible that if a link failure occurs and several ST2+ agents detect
it simultaneously, the recovery process may encounter problems.
The ST2+ over ATM protocol does not support stream recovery. If
recovery is needed, the application should support it. A CONNECT
message in which the NoRecover option is not selected will fail; a
REFUSE message in which the N-bit is set to 1 and the ReaseonCode is
set to NoRecover is then propagated upstream.
3.3.5 Subnet Resources Sharing
The ST2+ over ATM protocol does not support subnet resources sharing
(RFC 1819, Section 7.1.4). This is because ATM does not support the
concept of the MAC layer.
3.3.6 IP encapsulation of ST
The ST2+ over ATM protocol does not support IP encapsulation of ST
(RFC 1819, Section 8.7), because there is no need to implement IP
encapsulation in this protocol.
3.3.7 IP Multicasting
The ST2+ over ATM protocol does not support IP multicasting (RFC
1819, Section 8.8), because this protocol does not support IP
encapsulation of ST.
Suzuki Informational [Page 16]
^L
RFC 2383 ST2+ over ATM August 1998
3.4 Modified Functions of RFC 1819 ST2+
The ST2+ receiver-oriented stream creation procedure has some fatal
problems: the value of the LnkReferecnce field in the CONNECT message
that is a response to a JOIN message is not valid, ST2+ agent cannot
update the LnkReference field in the JOIN-REJECT message, and ST2+
agent cannot deliver the JOIN-REJECT message to the target because
the JOIN-REJECT message does not contain a TargetList field. To
solve these problems, the ST2+ over ATM protocol modifies the ST2+
protocol processing rules.
3.4.1 Modifications of Message Processing Rules
Modifications of the CONNECT, JOIN, and JOIN-REJECT message
processing rules in the ST2+ over ATM protocol are described in the
following.
o The target that creates a JOIN message assigns the same value as in
the Reference field to the LnkReference field.
o The agent that creates a CONNECT message as a response to a JOIN
message assigns the same value as in the LnkReference field in the
JOIN message to the LnkReference field. In other cases, the value
of the LnkReference field in a CONNECT message is zero.
o The agent that creates a JOIN-REJECT message assigns the same value
as in the LnkReference field in the JOIN message to the
LnkReference field.
o An intermediate agent must not modify the value of the LnkReference
field in the CONNECT, JOIN, or JOIN-REJECT message. Note that this
rule differs from the LnkReference field processing rule in the
ACCEPT and REFUSE messages.
Suzuki Informational [Page 17]
^L
RFC 2383 ST2+ over ATM August 1998
3.4.2 Modified JOIN-REJECT Control Message
The modified JOIN-REJECT control message in the ST2+ over ATM
protocol is shown in Fig. 3.3
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| OpCode = 9 | 0 | TotalBytes |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reference | LnkReference |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SenderIPAddress |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Checksum | ReasonCode |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| GeneratorIPAddress |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: TargetList :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Fig. 3.3: JOIN-REJECT Control Message.
The TargetList is assigned the same TargetList in the JOIN message as
the one that corresponds to the JOIN-REJECT message.
4. Protocol Specification of the User Plane
This section specifies the AAL5 PDU encapusulation for the ST2+ Data
PDU.
4.1 Service Primitives Provided by User Plane
4.1.1 Overview of interactions
The ST2+ data layer entity on the user plane of the ST2+ over ATM
protocol provides the following services to the upper layer.
o st2p_unitdata.req
o st2p_unitdata.ind
4.1.1.1 St2p_unitdata.req
The st2p_unitdata.req primitive sends a request for an ST2+ Data PDU
transfer to the ST2+ data layer entity. The semantics of the
primitive are as follows:
Suzuki Informational [Page 18]
^L
RFC 2383 ST2+ over ATM August 1998
st2p_unitdata.req (
pri,
sid,
data
)
The pri parameter specifies priority of ST2+ Data PDU. The sid
parameter specifies SID of ST2+ Data PDU. The data parameter
specifies ST2+ data to be transferred.
4.1.1.2 St2p_unitdata.ind
The st2p_unitdata.ind primitive indicates an ST2+ Data PDU delivery
from the ST2+ data layer entity. The semantics of the primitive are
as follows:
st2p_unitdata.ind (
pri [optional],
sid,
data,
status [optional]
)
The pri parameter indicates priority of ST2+ Data PDU, if AAL5 is
used for encapsulating the ST2+ Data PDU. The sid parameter
indicates SID of ST2+ Data PDU. The data parameter indicates
delivered ST2+ data. The status is an optional parameter that
indicates whether the delivered ST2+ data is corrupt or not.
4.2 Service Primitives Provided by AAL5
4.2.1 Requirements for AAL5
The requirements for the AAL5 layer on the ST2+ over ATM user plane
are as follows:
o The SSCS must be null.
o Implementations must use message-mode service.
Note: Selection of the corrupted SDU delivery option on the
receiver side depends on the implementation, so the receiver may or
may not be able to select this option.
4.2.2 Overview of Interactions
The AAL5 layer entity on the ST2+ over ATM user plane provides the
following services to the ST2+ data layer.
Suzuki Informational [Page 19]
^L
RFC 2383 ST2+ over ATM August 1998
o AAL5_UNITDATA.req
o AAL5_UNITDATA.ind
4.2.2.1 AAL5_UNITDATA.req
The AAL5_UNITDATA.req primitive sends a request for an AAL5 data
(AAL5 CPCS_SDU) transfer from the ST2+ data layer entity to the AAL5
layer entity. The semantics of the primitive are as follows:
AAL5_UNITDATA.req (
DATA,
CPCS_LP,
CPCS_UU
)
The DATA parameter specifies the AAL5 data to be transferred. The
CPCS_LP parameter specifies the value of the CLP field in the ATM
cell. The CPCS_UU parameter specifies the user-to-user data to be
transferred.
4.2.2.2 AAL5_UNITDATA.ind
The AAL5_UNITDATA.ind indicates an AAL5 data (AAL5 CPCS_SDU) delivery
from the AAL5 layer entity to the ST2+ data layer entity. The
semantics of the primitive are as follows:
AAL5_UNITDATA.ind (
DATA,
CPCS_LP,
CPCS_UU,
STATUS [optional]
)
The DATA parameter indicates the delivered AAL5 data. The CPCS_LP
parameter indicates the value of the CLP field in the ATM cell. The
CPCS_UU parameter indicates the delivered user-to-user data. The
STATUS parameter indicates whether the delivered AAL5 data is corrupt
or not. The STATUS parameter is an optional parameter, and valid
only when the corrupted SDU delivery option is selected.
4.3 AAL5 Encapsulation for ST2+ Data PDU
4.3.1 Mapping from st2_unitdata.req to AAL5_UNITDATA.req
The ST2+ Data PDU is directly assigned to the DATA parameter in
AAL5_UNITDATA.req. That is, as shown in Fig. 4.1, the ST2+ Data PDU
is mapped to the payload of AAL5 CPCS_PDU.
Suzuki Informational [Page 20]
^L
RFC 2383 ST2+ over ATM August 1998
+-------+---------------------------+
| ST | ST2+ data | ST2+
| header| | Data PDU
+-------+---------------------------+
: :
: :
+---------------------------------------+--------+
| CPCS_PDU |PAD|CPCS_PDU| AAL5
| payload | |trailer | CPCS_PDU
+---------------------------------------+--------+
Fig. 4.1: Mapping of ST2+ data to AAL5 CPCS_PDU payload.
The value of CPCS_LP in AAL5_UNITDATA.req depends on the
implementation: 1 (low priority) or zero (high priority) may be
assigned permanently, or they may be assigned depending on the value
of pri in st2_unitdata.req.
The value of the CPCS_UU indication field in AAL5_UNITDATA.req is set
to zero.
4.3.2 Mapping from AAL5_UNITDATA.ind to st2p_unitdata.ind
The DATA parameter in AL5_UNITDATA.ind is directly assigned to the
ST2+ Data PDU. That is, the payload in AAL5 CPCS_PDU is mapped to
the ST2+ Data PDU.
If the value of STATUS in AAL5_UNITDATA.ind is valid, it is assigned
to the status in st2p_unitdata.ind.
4.3.3 Value of MTU
The value of MTU is Maximum CPCS_SDU size.
5. Protocol Specification of the Management Plane
The management plane specifies the Null FlowSpec, the Controlled-Load
Service FlowSpec, and the Guaranteed Service FlowSpec mapping rules
for UNI 3.1 traffic management.
5.1 Mapping of the Null FlowSpec
The Null FlowSpec is mapped to the UBR (VBR with the Best Effort
Indicator).
The value of the PCR (CLP=0+1) is shown in section 6.7.2.
Suzuki Informational [Page 21]
^L
RFC 2383 ST2+ over ATM August 1998
5.2 Mapping of the Controlled-Load Service FlowSpec
The Controlled-Load FlowSpec is mapped to the VBR whose PCR
(CLP=0+1), SCR (CLP=0+1), and MBS (CLP=0+1) are specified.
The value of the PCR (CLP=0+1) is shown in section 6.7.2.
Let scr be the calculated value of the SCR (CLP=0+1). Based on the
value of the [r] field in the Controlled-Load FlowSpec, it is given
by:
scr = ([r] / 48) * S,
where S is the coefficient of segmentation, and in an implementation,
it must be configurable to any value between 1.0 and 56.0. The
recommended default value is 1.2. The value of the SCR (CLP=0+1) is
a minimum integer equal to or more than the calculated value of the
scr.
Let mbs be the calculated value of the MBS (CLP=0+1). Based on the
value of the [b] field in the Controlled-Load FlowSpec, it is given
by:
mbs = ([b] / 48) * S.
The value of the MBS (CLP=0+1) is a minimum integer equal to or more
than the calculated value of the mbs.
The values of the [p] and [m] fields in the Controlled-Load FlowSpec
are ignored.
5.3 Mapping of the Guaranteed Service FlowSpec
Note: The UNI 3.1 version of the ST2+ over ATM protocol does not
support Guaranteed Services. It will be supported by the UNI 3.1/4.0
version.
6. Protocol Specification of the Control Plane
This section specifies the rules for encapsulating the ST2+ SCMP PDU
into the AAL5 PDU, the relationship between ST2+ SCMP and PVC
management for ST2+ data, and the protocol interaction between ST2+
SCMP and UNI 3.1 signaling.
6.1 AAL5 Encapsulation for ST2+ SCMP PDU
This subsection describes AAL5 PDU encapsulation for the ST2+ SCMP
PDU. ST2+ Data PDU compatible encapsulation, AAL5 encapsulation
based on RFC 1483, and on the RFC 1483 extension are specified.
Selection of which one to use depends on the implementation.
Suzuki Informational [Page 22]
^L
RFC 2383 ST2+ over ATM August 1998
The ST2+ over ATM protocol does not cover a VC (SVC/PVC) that
transfers ST2+ SCMP. VCs for IPv4 transfer may be used for ST2+ SCMP
transfer, and implementations may provide particular VCs for ST2+
SCMP transfer. Selection of these VCs depends on the implementation.
6.1.1 ST2+ Data PDU compatible encapsulation
The ST2+ Data PDU compatible encapsulation is shown in Fig. 6.1: the
ST2+ SCMP PDU is mapped to the payload of AAL5 CPCS_PDU.
Implementors should note that this encapsulation is not applicable
when the ST2+ SCMP PDU is multiplexed with other protocols.
+-------+---------------------------+
| ST | ST2+ SCMP | ST2+
| header| | SCMP PDU
+-------+---------------------------+
: :
: :
+---------------------------------------+--------+
| CPCS_PDU |PAD|CPCS_PDU| AAL5
| payload | |trailer | CPCS_PDU
+---------------------------------------+--------+
Fig. 6.1: ST2+ Data PDU conpatible encapsulation.
6.1.2 RFC 1483 base encapsulation
The RFC 1483 base encapsulation is shown in Fig. 6.2: the ST2+ SCMP
PDU with the RFC 1483 LLC encapsulation for routed protocol format is
mapped to the payload in AAL5 CPCS_PDU.
+------+----------------+
| ST | ST2+ SCMP | ST2+
|header| | SCMP PDU
+------+----------------+
: :
+---+---+---+-----------------------+
|LLC|OUI|PID| Information | IEEE 802 SNAP
| | | | | ISO 8802-2 LLC
+---+---+---+-----------------------+
: :
+---------------------------------------+--------+
| CPCS_PDU |PAD|CPCS_PDU| AAL5
| payload | |trailer | CPCS_PDU
+---------------------------------------+--------+
Fig. 6.2: RFC 1483 base encapsulation.
Suzuki Informational [Page 23]
^L
RFC 2383 ST2+ over ATM August 1998
The value of the LLC is 0xAA-AA-03, the value of the OUI is 0x00-00-
00, and the value of the PID is 0x08-00. The classification of the
IPv4 and the ST2+ SCMP is determined by the IP version number, which
is located in the first four bits of the IPv4 or ST headers.
6.1.3 RFC 1483 extension base encapsulation
The RFC 1483 extension base encapsulation is the same as for RFC 1483
base encapsulation, except that the value of the OUI is 0x00-00-5E
(IANA) and the value of the PID is 0xXX-XX (TBD).
The RFC 1483 base encapsulation for the SCMP is ideal, but requires
modifying the IPv4 processing in the driver software of the WS or PC.
Therefore, the RFC 1483 base encapsulation may be difficult to
implement. This encapsulation is designed to solve this problem.
6.2 Service Primitives Provided by Control Plane
RFC 1819 ST2+ does not specify SCMP state machines. And the ST2+
over ATM protocol does not correspond to SCMP state machines.
Therefore, the control plane specification assumes the following.
o The ST2+ agent has ST2+ SCMP layer entities that correspond to the
next hops and the previous hop in the stream.
o The SCMP layer entity terminates ACK, ERROR, and timeout processing
and provides reliable SCMP delivery.
o The origin consists of an upper layer entity, ST2+ SCMP layer
entities for next hops, and a routing machine that delivers SCMP
messages between these entities.
o The intermediate agent consists of ST2+ SCMP layer entities for a
previous hop and for next hops and a routing machine that delivers
SCMP messages between these entities.
o The target consists of an upper layer entity, an ST2+ SCMP layer
entity for a previous hop, and a routing machine that delivers SCMP
messages between these entities.
At least, the ST2+ SCMP layer entity for the next hop provides the
following services to the routing machine.
o connect.req
This primitive sends a request for a CONNECT message transfer to
the ST2+ SCMP layer entity.
Suzuki Informational [Page 24]
^L
RFC 2383 ST2+ over ATM August 1998
o change.req
This primitive sends a request for a CHANGE message transfer to the
ST2+ SCMP layer entity.
o accept.ind
This primitive indicates an ACCEPT message delivery from the ST2+
SCMP layer entity.
o disconnect.req
This primitive sends a request for a DISCONNECT message transfer to
the ST2+ SCMP layer entity.
o refuse.ind
This primitive indicates a REFUSE message delivery from the ST2+
SCMP layer entity, or indicates detection of an abnormal status
such as an illegal message or timeout in the ST2+ SCMP layer
entity.
At least, the ST2+ SCMP layer entity for the previous hop provides
the following services to the routing machine.
o connect.ind
This primitive indicates a CONNECT message delivery from the ST2+
SCMP layer entity.
o change.ind
This primitive indicates a CHANGE message delivery from the ST2+
SCMP layer entity.
o accept.req
This primitive sends a request for an ACCEPT message transfer to
the ST2+ SCMP layer entity.
o disconnect.ind
This primitive indicates a DISCONNECT message delivery from the
ST2+ SCMP layer entity, or indicates detection of an abnormal
status such as an illegal message or timeout in the ST2+ SCMP layer
entity.
o refuse.req
This primitive sends a request for a REFUSE message transfer to the
ST2+ SCMP layer entity.
6.3 Service Primitives Provided by UNI 3.1 Signaling
The UNI 3.1 signaling layer entity on the ST2+ over ATM control plane
provides the following services to the ST2+ SCMP layer entity. The
ST2+ over ATM protocol does not specify the UNI 3.1 signaling state
Suzuki Informational [Page 25]
^L
RFC 2383 ST2+ over ATM August 1998
machines. These are defined in [10, 12, 13].
o setup.req
This primitive sends a request for a SETUP message transfer from
the ST2+ SCMP layer entity to the UNI 3.1 signaling layer entity.
The ST2+ SCMP layer entity that sent this primitive receives an
acknowledgment. If the setup succeeds the acknowledgment is a
setup.conf primitive and if the setup fails it is a release.ind or
release.conf primitive.
o setup.conf
This primitive indicates a CONNECT message delivery from the UNI
3.1 signaling layer entity to the ST2+ SCMP layer entity.
o setup.ind
This primitive indicates a SETUP message delivery from the UNI 3.1
signaling layer entity to the ST2+ SCMP layer entity. The ST2+
SCMP layer entity that received this primitive sends an
acknowledgment. If the setup is accepted the acknowledgment is a
setup.resp primitive and if the setup is rejected it is a
release.resp primitive if the state of the UNI 3.1 signaling layer
entity is U6; otherwise it is a release.req primitive.
o setup.resp
This primitive sends a request for a CONNECT message transfer from
the ST2+ SCMP layer entity to the UNI 3.1 signaling layer entity.
The ST2+ SCMP layer entity that sent this primitive receives an
acknowledgment. If the setup is completed the acknowledgment is a
setup-complete.ind primitive and if the setup fails it is a
release.ind or release.conf primitive.
o setup-complete.ind
This primitive indicates a CONNECT ACKNOWLEDGE message delivery
from the UNI 3.1 signaling layer entity to the ST2+ SCMP layer
entity.
o release.req
This primitive sends a request for a RELEASE message transfer from
the ST2+ SCMP layer entity to the UNI 3.1 signaling layer entity.
The ST2+ SCMP layer entity that sent this primitive receives an
acknowledgment that is a release.conf primitive.
o release.conf
This primitive indicates a RELEASE COMPLETE message delivery, or
indicates a RELEASE message delivery when the status of the UNI 3.1
signaling layer entity is U11, or indicates detection of an
abnormal status such as an illegal message or timeout in the UNI
3.1 signaling layer entity, from the UNI 3.1 signaling layer entity
Suzuki Informational [Page 26]
^L
RFC 2383 ST2+ over ATM August 1998
to the ST2+ SCMP layer entity.
o release.ind
This primitive indicates a RELEASE message delivery from the UNI
3.1 signaling layer entity to the ST2+ SCMP layer entity when the
status of the UNI 3.1 signaling layer entity is other than U11.
The ST2+ SCMP layer entity that received this primitive sends an
acknowledgment that is a release.resp primitive. And this
primitive also indicates detection of an abnormal status such as an
illegal message or timeout in the UNI 3.1 signaling layer entity
and then a REFUSE message is transferred. In this case, the ST2+
SCMP layer entity that received this primitive receives a
release.conf primitive in succession.
o release.resp
This primitive sends a request for a RELEASE COMPLETE message
transfer from the ST2+ SCMP layer entity to the UNI 3.1 signaling
layer entity.
o add-party.req
This primitive sends a request for an ADD PARTY message transfer
from the ST2+ SCMP layer entity to the UNI 3.1 signaling layer
entity. The ST2+ SCMP layer entity that sent this primitive
receives an acknowledgment. If the setup is succeeds the
acknowledgment is an add-party.conf primitive and if the setup
fails it is a drop-party.conf primitive.
o add-party.conf
This primitive indicates an ADD PARTY ACKNOWLEDGE message delivery
from the UNI 3.1 signaling layer entity to the ST2+ SCMP layer
entity.
o drop-party.req
This primitive sends a request for a DROP PARTY message transfer
from the ST2+ SCMP layer entity to the UNI 3.1 signaling layer
entity. The ST2+ SCMP layer entity that sent this primitive
receives an acknowledgment that is a drop-party.conf primitive.
o drop-party.conf
This primitive indicates an ADD PARTY REJECT message delivery, or
indicates a DROP PARTY ACKNOWLEDGE message delivery, or indicates
detection of an abnormal status such as an illegal message or
timeout in the UNI 3.1 signaling layer entity, from the UNI 3.1
signaling layer entity to the ST2+ SCMP layer entity.
o drop-party.ind
This primitive indicates a DROP PARTY message delivery from the UNI
3.1 signaling layer entity to the ST2+ SCMP layer entity. The ST2+
Suzuki Informational [Page 27]
^L
RFC 2383 ST2+ over ATM August 1998
SCMP layer entity that sent this primitive receives an
acknowledgment that is a drop-party.resp primitive.
o drop-party.resp
This primitive sends a request for a DROP PARTY ACKNOWLEDGE message
transfer from the ST2+ SCMP layer entity to the UNI 3.1 signaling
layer entity.
6.4 VC Style Selection Criteria
The ST2+ over ATM protocol supports PVC, the reverse channel of bi-
directional SVC, point-to-point SVC, and point-to-multipoint SVC for
ST2+ Data PDU transfer. And SVC supports both upstream and
downstream call initiation styles.
A 32-bit PVC identifier that is unique between neighboring ST2+
agents is assigned to each PVC. And the reverse channel of the bi-
directional point-to-point SVC used by the existing stream is
identified by the SID of the stream that occupies the forward
channel.
When the ST2+ agent sets up a stream or changes QoS, the ST2+ agent
must select one VC style from these SVC and PVC styles as a hop that
is part of the stream. In the ST2+ over ATM protocol, VC style
selection criteria depend on the implementation.
This subsection describes examples of VC style selection criteria for
the ST2+ over ATM protocol as a reference for implementors. Note
that the following descriptions in this subsection are not part of
the ST2+ over ATM protocol specification.
6.4.1 Examples of PVC selection criteria
At least, the ST2+ agent may have to manage the following information
for each PVC that can be used by ST2+ Data PDU transfer.
o PVC identifier
o ATM interface identifier in the ST2+ agent
o VPI/VCI
o State of VC: e.g. enabled or disabled, occupied or vacant
o QoS of VC
o Nexthop IP address
Suzuki Informational [Page 28]
^L
RFC 2383 ST2+ over ATM August 1998
When a PVC is selected for a hop of a stream, at least confirmations,
that is the state of the PVC is vacant and the next hop IP address
and QoS are consistent with the requirements from the stream, may be
needed.
It is also feasible to introduce access lists to each PVC and to
consider the access lists in the selection process. Examples of an
access list are shown in the following.
o Permit or deny use by a stream whose the previous hop is specified.
o Permit or deny use by a stream whose the origin is specified.
o Permit or deny use by a stream whose the SID is specified.
o Permit or deny use by a stream whose the target is specified.
o Permit or deny use by a stream whose the target and SAP are
specified.
o Any combination of the above.
6.4.2 Examples of reverse channel of bi-directional SVC selection
criteria
At least, the ST2+ agent may have to manage the following information
for each reverse channel of bi-directional SVCs.
o SID of the stream that occupies the forward channel
o ATM interface identifier in the ST2+ agent
o VPI/VCI
o State of the reverse channel in the VC: e.g. enabled or disabled,
occupied or vacant
o QoS of VC
o Nexthop IP address
When a reverse channel of the bi-directional point-to-point SVC used
by the existing stream is selected for a hop of a stream, at least
confirmations, that is the state of the channel is vacant and the
next hop IP address and QoS are consistent with the requirements from
the stream, may be needed.
Suzuki Informational [Page 29]
^L
RFC 2383 ST2+ over ATM August 1998
It is also feasible to introduce selection rules to the ST2+ agent.
Examples of selection rule are shown in the following.
o Permit reuse of the reverse channel by a stream whose the origin is
one of targets in the stream that occupies the forward channel.
o Permit reuse of the reverse channel by a stream whose one of
targets is the origin in the stream that occupies the forward
channel.
o Permit reuse of the reverse channel by a stream whose the previous
hop is one of the next hops in the stream that occupies the forward
channel.
o Any combination of the avobe.
6.4.3 Examples of SVC selection criteria
When an SVC is used for a hop of a stream, at first, the ST2+ agent
must select point-to-point or point-to-multipoint SVC. Examples of
this selection rule are shown in the following.
o If the network supports only point-to-point SVC, select it.
o If the network supports point-to-multipoint SVC, select it.
If point-to-point SVC is selected, the ST2+ agent must select
upstream or downstream call initiation style. Examples of this
selection rule are shown in the following.
o A VC for a stream whose previous hop is specified is initiated from
upstream or downstream.
o A VC for a stream whose next hop is specified is initiated from
upstream or downstream.
o A VC for a stream whose origin is specified is initiated from
upstream or downstream.
o A VC for a stream whose SID is specified is initiated from upstream
or downstream.
o A VC for a stream whose target is specified is initiated from
upstream or downstream.
o A VC for a stream whose target and SAP are specified is initiated
from upstream or downstream.
Suzuki Informational [Page 30]
^L
RFC 2383 ST2+ over ATM August 1998
o Any combination of the above.
6.5 VC Management
This subsection specifies VC management in the ST2+ over ATM
protocol.
6.5.1 Outgoing call processing of SVC
When outgoing call processing of the first leaf of a point-to-
multipoint SVC or a point-to-point SVC is required inside the ST2+
SCMP layer entity, a setup.req primitive is sent to the UNI 3.1
signaling layer entity. If the UNI 3.1 signaling layer entity
responds with a setup.conf primitive, the call processing is assumed
to have succeeded. If the UNI 3.1 signaling layer entity responds
with anything other than this primitive, the processing rule is the
same as the SVC disconnect processing that is shown in section 6.5.4
and the outgoing call processing is assumed to have failed.
When outgoing call processing of a later leaf of a point-to-
multipoint SVC is required, an add-party.req primitive is sent to the
UNI 3.1 signaling layer entity. If the UNI 3.1 signaling layer
entity responds with an add-party.conf primitive, the call processing
is assumed to have succeeded. If the UNI 3.1 signaling layer entity
responds with anything other than this primitive, the processing rule
is the same as the SVC disconnect processing that is shown in section
6.5.4 and the outgoing call processing is assumed to have failed.
6.5.2 Incoming call processing of SVC
When an incoming call processing of SVC is required inside the ST2+
SCMP layer entity, it sets a watchdog timer. The time interval of
the timer depends on the implementation.
The ST2+ SCMP layer entity waits for a setup.ind primitive indication
from the UNI 3.1 signaling layer entity. When this primitive is
indicated and the parameters in it are acceptable, the ST2+ SCMP
layer entity responds with a setup.resp primitive. If the parameters
are not acceptable, the ST2+ SCMP layer entity stops the timer, and
if the state of the UNI 3.1 signaling layer entity is U6, the entity
responds with a release.resp primitive, and if the state is other
than this, the entity responds with a release.req primitive, and then
waits for a release.conf primitive response and the incoming call
processing is assumed to have failed.
If the ST2+ SCMP layer entity responds with a setup.resp primitive,
then the entity waits for the next primitive indication, and when the
next primitive is indicated, the ST2+ SCMP layer entity stops the
Suzuki Informational [Page 31]
^L
RFC 2383 ST2+ over ATM August 1998
timer. If a setup-complete.ind primitive is indicated, the incoming
call processing is assumed to have succeeded. If the UNI 3.1
signaling layer entity responds with anything other than this
primitive or if the timer expires, the processing rule is the same as
the SVC disconnect processing that is shown in section 6.5.4 and the
incoming call processing is assumed to have failed.
6.5.3 VC release processing inside ST2+ SCMP layer
When a VC release is required inside an ST2+ SCMP layer entity, if
the previous hop or next hop is connected with a PVC, the PVC state
is set to vacant and the VC release processing is assumed to be
completed.
If the previous hop or next hop is connected with a point-to-point
SVC whose reverse channel is occupied, the state of the channel in
the VC is set to vacant, the SID information of the VC is updated,
and the VC release processing is assumed to be completed.
If the previous hop or next hop is connected with a point-to-point
SVC whose reverse channel is vacant, if the previous hop is connected
with a point-to-multipoint SVC, or if the next hop is connected with
a point-to-multipoint SVC and the number of leaves is 1, then the
ST2+ SCMP layer entity sends a release.req primitive to the UNI 3.1
signaling layer entity, then waits for a release.conf primitive
indication; when one is indicated, the VC release processing is
assumed to be completed.
If the next hop is connected with a point-to-multipoint SVC and the
number of leaves is other than 1, the ST2+ SCMP layer entity sends a
drop-party.req primitive to the UNI 3.1 signaling layer entity, then
waits for a drop-party.conf primitive indication; when one is
indicated, the VC release processing is assumed to be completed.
6.5.4 VC disconnect processing from UNI 3.1 signaling layer
If an ST2+ SCMP layer entity corresponds to a UNI 3.1 signaling layer
entity, and if the ST2+ SCMP layer entity is sent a release.ind
primitive from the UNI 3.1 signaling layer entity, whose cause is a
delivery of a RELEASE message, the ST2+ SCMP layer entity responds
with a release.resp primitive, and then the VC disconnect processing
is assumed to be completed. If the ST2+ SCMP layer entity is sent a
release.ind primitive, whose cause is other than the previous case,
the ST2+ SCMP layer entity waits for a release.conf primitive
response. When a release.conf primitive is indicated, the VC
disconnect processing is assumed to be completed.
Suzuki Informational [Page 32]
^L
RFC 2383 ST2+ over ATM August 1998
Note that if next hops from ST2+ SCMP layer entities are connected
with a point-to-multipoint SVC, the ST2+ SCMP layer entities to next
hops correspond to a UNI 3.1 signaling layer entity. In this case,
if the ST2+ SCMP layer entities are sent release.ind primitives from
the UNI 3.1 signaling layer entity, whose cause is the delivery of a
RELEASE message, one of the ST2+ SCMP layer entities responds with a
release.resp primitive, and then the VC disconnect processing in the
entities that are sent release.ind primitives are assumed to be
completed. If the ST2+ SCMP layer entities are sent release.ind
primitives, whose cause is other than the previous case, the ST2+
SCMP layer entities wait for release.conf primitives responses. When
release.conf primitives are indicated, the VC disconnect processing
in the entities that are indicated release.ind primitives are assumed
to be completed.
If the ST2+ SCMP layer entity is sent a drop-party.ind primitive from
the UNI 3.1 signaling layer entity, the ST2+ SCMP layer entity
responds with a drop-party.resp primitive, and then the VC disconnect
processing is assumed to be completed. If the ST2+ SCMP layer entity
is sent a drop-party.conf primitive, the VC disconnect processing is
assumed to be completed.
6.6 Additional SCMP Processing Rules
This subsection specifies the additional SCMP processing rules that
are defined in RFC 1819 ST2+ protocol specification. The following
additional rules are applied when the previous hop or next hop is
connected with an ATM connection in the ST2+ SCMP layer entity.
6.6.1 Additional connect.req processing rules
When a connect.req primitive is sent to the ST2+ SCMP layer entity
for the next hop, the entity confirms whether or not the VC for the
next hop exists.
If it does, the entity forwards a CONNECT message that does not
include a VC-type common SCMP element to the next hop.
If it does not, the entity selects a VC style. If the result is a
PVC or a reverse channel of a bi-directional point-to-point SVC used
by an existing stream, the VC state is set to occupied. The entity
forwards a CONNECT message with a VC-type common SCMP element that
reflects the result of the selection to the next hop.
6.6.2 Additional connect.ind processing rules
The ST2+ SCMP layer entity for the previous hop confirms whether or
not the CONNECT message includes a VC-type common SCMP element.
Suzuki Informational [Page 33]
^L
RFC 2383 ST2+ over ATM August 1998
If a VC-type common SCMP element is not included and the VC for the
next hop exists, a connect.ind primitive is sent to the routing
machine. If the VC for the next hop does not exist, a REFUSE message
is forwarded to the previous hop.
If a VC-type common SCMP element is included and a point-to-point
SVC, whose calling party is the upstream or downstream, or a point-
to-multipoint SVC is specified, a connect.ind primitive is sent to
the routing machine. If a PVC or a reverse channel of a bi-
directional point-to-point SVC used by an existing stream is
specified and the specified VC exists, the VC state is set to
occupied and a connect.ind primitive is sent to the routing machine.
Otherwise, a REFUSE message is forwarded to the previous hop.
6.6.3 Additional change.req processing rules
When a change.req primitive is sent to the ST2+ SCMP layer entity for
the next hop, the entity releases the VC whose process is shown in
section 6.5.3.
Then, the entity selects a VC style. If the result is a PVC or a
reverse channel of a bi-directional point-to-point SVC used by an
existing stream, the VC state is set to occupied. The entity
forwards a CHANGE message with a VC-type common SCMP element that
reflects the result of the selection to the next hop.
6.6.4 Additional change.ind processing rules
The ST2+ SCMP layer entity for the previous hop confirms whether the
CHANGE message includes a VC-type common SCMP element. If a VC-type
common SCMP element is not included, a REFUSE message is forwarded to
the previous hop.
If a VC-type common SCMP element is included, the entity releases the
VC whose process is shown in section 6.5.3. If the element specifies
a point-to-point SVC, whose calling party is the upstream or
downstream, or a point-to-multipoint SVC, a change.ind primitive is
sent to the routing machine. If a PVC or a reverse channel of a bi-
directional point-to-point SVC used by an existing stream is
specified and the specified VC exists, the VC state is set to
occupied and a change.ind primitive is sent to the routing machine.
Otherwise, a REFUSE message is forwarded to the previous hop.
6.6.5 Additional accept.req processing rules
When an accept.req primitive is sent to the ST2+ SCMP layer entity
for the previous hop, the entity confirms the state of the UNI 3.1
signaling layer entity. If the state of the entity is other than U0
Suzuki Informational [Page 34]
^L
RFC 2383 ST2+ over ATM August 1998
or U10, the accept.req primitive is queued and is processed after the
state changes to U0 or U10.
If the state of the entity is U0 or U10, the ST2+ SCMP layer entity
confirms whether or not the VC for the previous hop exists. If it
does, an ACCEPT message is forwarded to the previous hop.
If it does not and the CONNECT or CHANGE message that corresponds to
the accept.req primitive specified a point-to-point SVC whose calling
party is the upstream or a point-to-multipoint SVC, then the entity
processes an incoming call that is shown in section 6.5.2. If the
incoming call processing succeeds, an ACCEPT message is forwarded to
the previous hop. If the CONNECT or CHANGE message that corresponds
to the accept.req primitive specified a point-to-point SVC whose
calling party is downstream, the entity converts from the IP address
of the previous hop to the ATM address, and then the entity processes
an outgoing call that is shown in section 6.5.1. If the outgoing
call processing succeeds, an ACCEPT message is forwarded to the
previous hop. For cases other than those described above or if the
incoming or outgoing call processing fails, a REFUSE message is
forwarded to the previous hop and a disconnect.ind primitive is sent
to the routing machine.
6.6.6 Additional accept.ind processing rules
When an ACCEPT message is processed in the ST2+ SCMP layer entity for
the next hop, the entity confirms the state of the UNI 3.1 signaling
layer entity. If the state of the entity is other than U0 or U10,
the ACCEPT message is queued and is processed after the state changes
to U0 or U10.
If the state of the entity is U0 or U10, the ST2+ SCMP layer entity
confirms whether or not the VC for the next hop exists. If it does,
an accept.ind primitive is sent to the routing machine.
If it does not and the CONNECT or CHANGE message that corresponds to
the ACCEPT message specified a point-to-point SVC whose calling party
is the upstream or a point-to-multipoint SVC, then the entity
converts from the IP address of the next hop to the ATM address, and
then the entity processes an outgoing call that is shown in section
6.5.1. If the outgoing call processing succeeds, an accept.ind
primitive is sent to the routing machine. If the CONNECT or CHANGE
message that corresponds to the ACCEPT message specified a point-to-
point SVC whose calling party is downstream, the entity processes an
incoming call that is shown in section 6.5.2. If the incoming call
processing succeeds, an accept.ind primitive is sent to the routing
machine. For cases other than those described above or if the
incoming or outgoing call processing fails, a refuse.ind primitive is
Suzuki Informational [Page 35]
^L
RFC 2383 ST2+ over ATM August 1998
sent to the routing machine and a DISCONNECT message is forwarded to
the next hop.
6.6.7 Additional disconnect.req processing rules
At first, the ST2+ SCMP layer entity for the next hop forwards a
DISCONNECT message to the next hop.
And then, after the disconnect.req processing, if there are no more
targets that are connected downstream of the entity and the entity is
not waiting for an ACCEPT or REFUSE message response from targets,
the entity releases the VC whose process is shown in section 6.5.3.
6.6.8 Additional disconnect.ind processing rules
AT first, after the disconnect.ind processing, if there are no more
targets that are connected downstream of the ST2+ SCMP layer entity
for the previous hop and the entity is not waiting for an ACCEPT or
REFUSE message response from targets, the entity releases the VC
whose process is shown in section 6.5.3.
And then, the entity sends a disconnect.ind primitive to the routing
machine.
6.6.9 Additional refuse.req processing rules
At first, the ST2+ SCMP layer entity for the previous hop forwards a
REFUSE message to the previous hop.
And then, after the refuse.req processing, if there are no more
targets that are connected downstream of the entity and the entity is
not waiting for an ACCEPT or REFUSE message response from targets,
the entity releases the VC whose process is shown in section 6.5.3.
6.6.10 Additional refuse.ind processing rules
At first, after the refuse.ind processing, if there are no more
targets that are connected downstream of the ST2+ SCMP layer entity
for the next hop and the entity is not waiting for an ACCEPT or
REFUSE message response from targets, the entity releases the VC
whose process is shown in section 6.5.3.
And then, the entity sends a refuse.ind primitive to the routing
machine.
Suzuki Informational [Page 36]
^L
RFC 2383 ST2+ over ATM August 1998
6.6.11 SVC disconnect processing
When the ST2+ SCMP layer entity for the previous hop is sent a SVC
disconnect processing from the UNI 3.1 signaling layer entity and
then the SVC disconnect processing is completed, the entity forwards
a REFUSE message to the previous hop and sends a disconnect.ind
primitive to the routing machine.
When the ST2+ SCMP layer entity for the next hop is sent a SVC
disconnect processing from the UNI 3.1 signaling layer entity and
then the SVC disconnect processing is completed, the entity sends a
refuse.ind primitive to the routing machine and forwards a DISCONNECT
message to the previous hop.
6.7 UNI 3.1 Signaling Information Element Coding Rules
The ST2+ over ATM protocol does not specify the coding rules needed
for the following information elements in UNI 3.1 signaling. The
usages of these information elements are specified in [10].
o Protocol discriminator
o Call reference
o Message type
o Message length
o Call state
o Called party number
o Called party subaddress
o Calling party number
o Calling party subaddress
o Cause
o Connection identifier
o Broadband repeat indicator
o Restart indicator
o Broadband sending complete
Suzuki Informational [Page 37]
^L
RFC 2383 ST2+ over ATM August 1998
o Transit network selection
o Endpoint reference
o Endpoint state
6.7.1 ATM adaptation layer parameters coding
The SETUP and ADD PARTY messages in the ST2+ over ATM protocol must
include an ATM adaptation layer parameters information element. The
CONNECT message may or may not include this element. The coding
rules for the fields are as follows.
o The AAL Type is set to AAL5.
o The value of the Forward maximum CPCS size field is set to the same
as that of the MaxMsgSize field in the CONNECT SCMP message
corresponding to the SETUP or ADD PARTY message.
o If the VC is established as a point-to-point call, the value of the
Backward maximum CPCS size field is set the same as that of the
Forward maximum CPCS size field. If the VC is established as a
point-to-multipoint call, the value of the Backward maximum CPCS
size field is set to zero.
o The SSCS type is set to null.
6.7.2 ATM traffic descriptor coding
If the Null FlowSpec is specified in the ST2+ over ATM protocol, the
coding rules for the fields in the ATM traffic descriptor information
element in the SETUP message are as follows.
o The value of the Forward PCR (CLP=0+1) field depends on the
specification of the ATM network. The Forward PCR (CLP=0+1) field
in each ATM interface in an implementation must be configurable to
any value between zero and 16,777,215.
o If the VC is established as a point-to-point call, the value of the
Backward PCR (CLP=0+1) field is set the same as that of the Forward
PCR (CLP=0+1) field. If the VC is established as a point-to-
multipoint call, the value of the Backward PCR (CLP=0+1) field is
set to zero.
o The Best effort indication must be present.
If the Controlled-Load Service FlowSpec is specified, the coding
rules for the fields are as follows.
Suzuki Informational [Page 38]
^L
RFC 2383 ST2+ over ATM August 1998
o The value of the Forward PCR (CLP=0+1) field depends on the
specification of the ATM network. The Forward PCR (CLP=0+1) field
in each ATM interface in an implementation must be configurable to
any value between zero and 16,777,215.
o If the VC is established as a point-to-point call, the value of the
Backward PCR (CLP=0+1) field is set the same as that of the Forward
PCR (CLP=0+1) field. If the VC is established as a point-to-
multipoint call, the value of the Backward PCR (CLP=0+1) field is
set to zero.
o The method for calculating the Forward SCR (CLP=0+1) field is shown
in section 5.
o If the VC is established as a point-to-point call, the value of the
Backward SCR (CLP=0+1) field is set the same as that of the Forward
SCR (CLP=0+1) field. If the VC is established as a point-to-
multipoint call, this field must not be present.
o The method for calculating the Forward MBS (CLP=0+1) field is shown
in section 5.
o If the VC is established as a point-to-point call, the value of the
Backward MBS (CLP=0+1) field is set the same as that of the Forward
MBS (CLP=0+1) field. If the VC is established as a point-to-
multipoint call, this field must not be present.
o The Best effort indication, Tagging backward, and Tagging forward
fields must not be present.
6.7.3 Broadband bearer capability coding
If the Null FlowSpec is specified in the ST2+ over ATM protocol, the
coding rules for the fields in the Broadband bearer capability
information element in the SETUP message are as follows.
o The Bearer class depends on the specification of the ATM network.
The Bearer class in each ATM interface in an implementation must be
configurable as either BCOB-X or BCOB-C. BCOB-X is recommended as
the default configuration.
o The Traffic type and Timing requirements fields must not be
present.
o The Susceptibility to clipping field is set to not susceptible to
clipping.
Suzuki Informational [Page 39]
^L
RFC 2383 ST2+ over ATM August 1998
o If the VC is established as a point-to-point call, the User plane
connection configuration field is set to point-to-point, and if the
VC is established as a point-to-multipoint call, it is set to
point-to-multipoint.
If the Controlled-Load Service FlowSpec is specified, the coding
rules for the fields are as follows.
o The Bearer class depends on the specification of the ATM network.
The Bearer class in each ATM interface in an implementation must be
configurable as either BCOB-X or BCOB-C. BCOB-X is recommended as
the default configuration.
o If the Bearer class is BCOB-X, the Traffic type and Timing
requirements fields depend on the specification of the ATM network.
The Traffic type and Timing requirements fields in each ATM
interface in an implementation must be configurable as either no
indication or VBR and Not required, respectively. No indication is
recommended as the default configuration. If the Bearer class is
BCOB-C, the Traffic type and Timing requirements fields must not be
present.
o The Susceptibility to clipping field depends on the specification
of the ATM network. The Susceptibility to clipping field in each
ATM interface in an implementation must be configurable as either
not susceptible to clipping or susceptible to clipping. Not
susceptible to clipping is recommended as the default
configuration.
o If the VC is established as a point-to-point call, the User plane
connection configuration field is set to point-to-point, and if the
VC is established as a point-to-multipoint call, it is set to
point-to-multipoint.
6.7.4 Broadband high layer information coding
The SETUP and ADD PARTY messages in the ST2+ over ATM protocol must
include a Broadband high layer information information element. The
coding rules for the fields are as follows.
o The High layer information type is set to User specific.
o The first 6 bytes in the High layer information field are set to
the SID of the stream corresponding to the VC.
Suzuki Informational [Page 40]
^L
RFC 2383 ST2+ over ATM August 1998
6.7.5 Broadband low layer information coding
The SETUP and ADD PARTY messages in the ST2+ over ATM protocol must
include a Broadband low layer information information element. The
CONNECT message may or may not include this element. The coding
rules for the fields are as follows.
o The User information layer 3 protocol field is set to ISO/IEC TR
9577.
o The IPI field is set to IEEE 802.1 SNAP (0x80).
o The OUI field is set to IANA (0x00-00-5E).
o The PID field is set to ST2+ (TBD).
6.7.6 QoS parameter coding
If the Null FlowSpec is specified in the ST2+ over ATM protocol, the
coding rules for the fields in the QoS parameter in the SETUP message
are as follows.
o The QoS class forward and QoS class backward fields are set to QoS
class 0.
If the Controlled-Load Service FlowSpec is specified, the coding
rules for the fields are as follows.
o The QoS class forward and QoS class backward fields depend on the
specification of the ATM network. The QoS class forward and QoS
class backward fields in each ATM interface in an implementation
must be configurable as either QoS class 0 or QoS class 3. QoS
class 0 is recommended as the default configuration.
7. Security Considerations
The ST2+ over ATM protocol modifies RFC 1819 ST2+ protocol, but
basically these modifications are minimum extensions for ATM support
and bug fixes, so they do not weaken the security of the ST2+
protocol.
The ST2+ over ATM protocol specifies protocol interaction between
ST2+ and UNI 3.1, and this does not weaken the security of the UNI
3.1 protocol.
In an ST2+ agent that processes an incoming call of SVC, if the
incoming SETUP message contains the calling party number and if it is
verified and passed by the ATM network or it is provided by the
Suzuki Informational [Page 41]
^L
RFC 2383 ST2+ over ATM August 1998
network, then it is feasible to use the calling party number for part
of the calling party authentication to strengthen security.
References
[1] Borden, M., Crawley, E., Davie, B., and S. Batsell, "Integration
of Real-time Services in an IP-ATM Network Architecture", RFC
1821, August 1995.
[2] Jackowski, S., "Native ATM Support for ST2+", RFC 1946, May 1996.
[3] S. Damaskos and A. Gavras, "Connection Oriented Protocols over
ATM: A case study", Proc. SPIE, Vol. 2188, pp.226-278, February
1994.
[4] Delgrossi, L., and L. Berger, Ed., "Internet Stream Protocol
Version 2 (ST2) Protocol Specification - Version ST2+", RFC 1819,
August 1995.
[5] Wroclawski, J., "Specification of the Controlled-Load Network
Element Service", RFC 2211, September 1997.
[6] Shenker, S., Partridge, C., and R. Guerin, "Specification of
Guaranteed Quality of Service", RFC 2212, September 1997.
[7] Wroclawski, J., "The Use of RSVP with IETF Integrated Services",
RFC 2210, September 1997.
[8] Garrett, M., and M. Borden, "Interoperation of Controlled-Load
Service and Guaranteed Service with ATM", RFC 2381, August 1998.
[9] Ghanwani, A., Pace, J., and V. Srinivasan, "A Framework for
Providing Integrated Services Over Shared and Switched LAN
Technologies", Work in Progress.
[10] The ATM Forum, "ATM User-Network Interface Specification
Version 3.1", September 1994.
[11] The ATM Forum, "ATM User-Network Interface (UNI) Signaling
Specification Version 4.0", af-sig-0061.000, July 1996.
[12] ITU-T, "Broadband Integrated Services Digital Network (B-ISDN)-
Digital Subscriber Signaling System No. 2 (DSS 2)-User-Network
Interface (UNI) Layer 3 Specification for Basic Call/Connection
Control", ITU-T Recommendation Q.2931, September 1995.
Suzuki Informational [Page 42]
^L
RFC 2383 ST2+ over ATM August 1998
[13] ITU-T, "Broadband Integrated Services Digital Network (B-ISDN)-
Digital Subscriber Signaling System No. 2 (DSS 2)-User-Network
Interface Layer 3 Specification for Point-to-Multipoint
Call/Connection Control", ITU-T Recommendation Q.2971, October
1995.
[14] ITU-T, "B-ISDN Protocol Reference Model and its Application",
CCITT Recommendation I.321, April 1991.
[15] ITU-T, "B-ISDN ATM Adaptation Layer (AAL) type 5 specification",
Draft new ITU-T Recommendation I.363.5, September 1995.
[16] Heinanen, J., "Multiprotocol Encapsulation over ATM Adaptation
Layer 5", RFC 1483, July 1993.
[17] Laubach, M., "Classical IP and ARP over ATM", RFC 1577, January
1994.
[18] Perez, M., Liaw, F., Mankin, A., Hoffman, E., Grossman, D., and
A. Malis, "ATM Signaling Support for IP over ATM", RFC 1755,
February 1995.
[19] Luciani, J., Katz, D., Piscitello, D., and B. Cole, "NBMA Next
Hop Resolution Protocol (NHRP)", RFC 2332, April 1998.
Suzuki Informational [Page 43]
^L
RFC 2383 ST2+ over ATM August 1998
Acknowledgments
ATM is a huge technology and without the help of many colleagues at
NTT who are involved in ATM research and development, it would have
been impossible for me to complete this protocol specification. I
would like to thank Hideaki Arai and Naotaka Morita of the NTT
Network Strategy Planning Dept., Shin-ichi Kuribayashi, Jun Aramomi,
and Takumi Ohba of the NTT Network Service Systems Labs., and also
Hisao Uose and Yoshikazu Oda of the NTT Multimedia Networks Labs.
for their valuable comments and discussions.
And I would also like to especially thank Eric Crawley of Gigapacket
Networks, John Wroclawski of MIT, Steven Jackowski of Net Manage,
Louis Berger of FORE Systems, Steven Willis of Bay Networks, Greg
Burch of Qosnetics, and Denis Gallant, James Watt, and Joel Halpern
of Newbridge Networks for their valuable comments and suggestions.
Also this specification is based on various discussions during NTT
Multimedia Joint Project with NACSIS. I would like to thank
Professor Shoichiro Asano of the National Center for Science
Information Systems for his invaluable advice in this area.
Author's Address
Muneyoshi Suzuki
NTT Multimedia Networks Laboratories
3-9-11, Midori-cho
Musashino-shi, Tokyo 180-8585, Japan
Phone: +81-422-59-2119
Fax: +81-422-59-2829
EMail: suzuki@nal.ecl.net
Suzuki Informational [Page 44]
^L
RFC 2383 ST2+ over ATM August 1998
Appendix A. RFC 1819 ST2+ Errata
A.1 4.3 SCMP Reliability
The following sentence in the second paragraph:
< For some SCMP messages (CONNECT, CHANGE, JOIN, and STATUS) the
should be changed to
> For some SCMP messages (CONNECT, CHANGE, and JOIN) the
A.2 4.4.4 User Data
The following sentence:
< option can be included with ACCEPT, CHANGE, CONNECT, DISCONNECT, and
< REFUSE messages. The format of the UserData parameter is shown in
should be changed to
> option can be included with ACCEPT, CHANGE, CONNECT, DISCONNECT, NOTIFY,
> and REFUSE messages. The format of the UserData parameter is shown in
A.3 5.3.2 Other Cases
The following sentence:
< CONNECT with a REFUSE message with the affected targets specified in
< the TargetList and an appropriate ReasonCode (StreamExists).
should be changed to
> CONNECT with a REFUSE message with the affected targets specified in
> the TargetList and an appropriate ReasonCode (TargetExists).
A.4 5.5.1 Mismatched FlowSpecs
The following sentence:
< notifies the processing ST agent which should respond with ReasonCode
< (FlowSpecMismatch).
should be changed to
> notifies the processing ST agent which should respond with a REFUSE
> message with ReasonCode (FlowSpecMismatch).
Suzuki Informational [Page 45]
^L
RFC 2383 ST2+ over ATM August 1998
A.5 6.2.1 Problems in Stream Recovery
The following sentence:
< some time after a failure. As a result, the ST agent attempting the
< recovery may receive ERROR messages for the new CONNECTs that are
< ...
< failure, and will interpret the new CONNECT as resulting from a
< routing failure. It will respond with an ERROR message with the
< appropriate ReasonCode (StreamExists). Since the timeout that the ST
< ...
< remnants of the broken stream will soon be torn down by a DISCONNECT
< message. Therefore, the ST agent that receives the ERROR message with
< ReasonCode (StreamExists) should retransmit the CONNECT message after
should be changed to
> some time after a failure. As a result, the ST agent attempting the
> recovery may receive REFUSE messages for the new CONNECTs that are
> ...
> failure, and will interpret the new CONNECT as resulting from a
> routing failure. It will respond with a REFUSE message with the
> appropriate ReasonCode (TargetExists). Since the timeout that the ST
> ...
> remnants of the broken stream will soon be torn down by a DISCONNECT
> message. Therefore, the ST agent that receives the REFUSE message with
> ReasonCode (TargetExists) should retransmit the CONNECT message after
A.6 6.3 Stream Preemption}
The following sentence:
< (least important) to 256 (most important). This value is
should be changed to
> (least important) to 255 (most important). This value is
A.7 10.2 Control PDUs
The following sentence:
<o Reference is a transaction number. Each sender of a request control
< message assigns a Reference number to the message that is unique
< with respect to the stream.
should be changed to
Suzuki Informational [Page 46]
^L
RFC 2383 ST2+ over ATM August 1998
>o Reference is a transaction number. Each sender of a request control
> message assigns a Reference number to the message that is unique
> with respect to the stream for messages generated by each agent.
A.8 10.3.4 Origin
The following:
< +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
< | PCode = 5 | PBytes | NextPcol |OriginSAPBytes |
< +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
should be changed to
> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
> | PCode = 4 | PBytes | NextPcol |OriginSAPBytes |
> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
A.9 10.4.1 ACCEPT
The following sentence:
<o IPHops is the number of IP encapsulated hops traversed by the
< stream. This field is set to zero by the origin, and is incremented
< at each IP encapsulating agent.
should be changed to
>o IPHops is the number of IP encapsulated hops traversed by the
> stream.
A.10 10.4.2 ACK
The following:
< +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
< | OpCode = 2 | 0 | TotalBytes |
< +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
should be changed to
> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
> | OpCode = 2 | 0 | TotalBytes = 16 |
> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Suzuki Informational [Page 47]
^L
RFC 2383 ST2+ over ATM August 1998
A.11 10.4.3 CHANGE
The following sentence:
<o I (bit 7) is used to indicate that the LRM is permitted to interrupt
should be changed to
>o I (bit 9) is used to indicate that the LRM is permitted to interrupt
A.12 10.4.7 HELLO
The following:
< +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
< | OpCode = 7 |R| 0 | TotalBytes |
< +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
should be changed to
> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
> | OpCode = 7 |R| 0 | TotalBytes = 20 |
> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
A.13 10.4.9 JOIN-REJECT
The following sentence:
<o Reference contains a number assigned by the ST agent sending the
< REFUSE for use in the acknowledging ACK.
should be changed to
>o Reference contains a number assigned by the ST agent sending the
> JOIN-REJECT for use in the acknowledging ACK.
A.14 10.4.13 STATUS-RESPONSE
The following sentence:
< possibly Groups of the stream. It the full target list can not fit in
should be changed to
> possibly Groups of the stream. If the full target list can not fit in
Suzuki Informational [Page 48]
^L
RFC 2383 ST2+ over ATM August 1998
A.15 10.5.3 ReasonCode
The following:
< 32 PCodeUnknown Control PDU has a parameter with an invalid
< PCode.
should be removed because a common SCMP element with an unknown PCode
is equivalent to the UserData (RFC 1819, Section 10.3.8).
Suzuki Informational [Page 49]
^L
RFC 2383 ST2+ over ATM August 1998
Full Copyright Statement
Copyright (C) The Internet Society (1998). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Suzuki Informational [Page 50]
^L
|