1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
|
Network Working Group L. Berc
Request for Comments: 2435 Digital Equipment Corporation
Obsoletes: 2035 W. Fenner
Category: Standards Track Xerox PARC
R. Frederick
Xerox PARC
S. McCanne
Lawrence Berkeley Laboratory
P. Stewart
Xerox PARC
October 1998
RTP Payload Format for JPEG-compressed Video
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (1998). All Rights Reserved.
Abstract
This memo describes the RTP payload format for JPEG video streams.
The packet format is optimized for real-time video streams where
codec parameters change rarely from frame to frame.
This document is a product of the Audio-Video Transport working group
within the Internet Engineering Task Force. Comments are solicited
and should be addressed to the working group's mailing list at rem-
conf@es.net and/or the author(s).
Changes from RFC 2035
Most of this memo is identical to RFC 2035. The changes made to the
protocol are summarized in Appendix D.
Berc, et. al. Standards Track [Page 1]
^L
RFC 2435 RTP Payload Format for JPEG October 1998
Key Words
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [9].
1. Introduction
The Joint Photographic Experts Group (JPEG) standard [1,2,3] defines
a family of compression algorithms for continuous-tone, still images.
This still image compression standard can be applied to video by
compressing each frame of video as an independent still image and
transmitting them in series. Video coded in this fashion is often
called Motion-JPEG.
We first give an overview of JPEG and then describe the specific
subset of JPEG that is supported in RTP and the mechanism by which
JPEG frames are carried as RTP payloads.
The JPEG standard defines four modes of operation: the sequential DCT
mode, the progressive DCT mode, the lossless mode, and the
hierarchical mode. Depending on the mode, the image is represented
in one or more passes. Each pass (called a frame in the JPEG
standard) is further broken down into one or more scans. Within each
scan, there are one to four components, which represent the three
components of a color signal (e.g., "red, green, and blue", or a
luminance signal and two chrominance signals). These components can
be encoded as separate scans or interleaved into a single scan.
Each frame and scan is preceded with a header containing optional
definitions for compression parameters like quantization tables and
Huffman coding tables. The headers and optional parameters are
identified with "markers" and comprise a marker segment; each scan
appears as an entropy-coded bit stream within two marker segments.
Markers are aligned to byte boundaries and (in general) cannot appear
in the entropy-coded segment, allowing scan boundaries to be
determined without parsing the bit stream.
Compressed data is represented in one of three formats: the
interchange format, the abbreviated format, or the table-
specification format. The interchange format contains definitions
for all the tables used by the entropy-coded segments, while the
abbreviated format might omit some assuming they were defined out-
of-band or by a "previous" image.
The JPEG standard does not define the meaning or format of the
components that comprise the image. Attributes like the color space
and pixel aspect ratio must be specified out-of-band with respect to
Berc, et. al. Standards Track [Page 2]
^L
RFC 2435 RTP Payload Format for JPEG October 1998
the JPEG bit stream. The JPEG File Interchange Format (JFIF) [4] is
a de-facto standard that provides this extra information using an
application marker segment (APP0). Note that a JFIF file is simply a
JPEG interchange format image along with the APP0 segment. In the
case of video, additional parameters must be defined out-of-band
(e.g., frame rate, interlaced vs. non-interlaced, etc.).
While the JPEG standard provides a rich set of algorithms for
flexible compression, cost-effective hardware implementations of the
full standard have not appeared. Instead, most hardware JPEG video
codecs implement only a subset of the sequential DCT mode of
operation. Typically, marker segments are interpreted in software
(which "re-programs" the hardware) and the hardware is presented with
a single, interleaved entropy-coded scan represented in the YUV color
space.
The scan contains an ordered sequence of Minimum Coded Units, or
MCUs, which are the smallest group of image data coded in a JPEG bit
stream. Each MCU defines the image data for a small rectangular
block of the output image.
Restart markers in the JPEG data denote a point where the decoder
should reset its state. As defined by JPEG, restart markers are the
only type of marker that may appear embedded in the entropy-coded
segment, and they may only appear on an MCU boundary. A "restart
interval" is defined to be a block of data containing a restart
marker followed by some fixed number of MCUs. An exception is made
for the first restart interval in each frame, which omits the initial
restart marker and just begins with the MCU data. When these markers
are used, each frame is composed of some fixed number of back-to-back
restart intervals.
2. JPEG Over RTP
To maximize interoperability among hardware-based codecs, we assume
the sequential DCT operating mode [1,Annex F] and restrict the set of
predefined RTP/JPEG "type codes" (defined below) to single-scan,
interleaved images. While this is more restrictive than even
baseline JPEG, many hardware implementation fall short of the
baseline specification (e.g., most hardware cannot decode non-
interleaved scans).
In practice, most of the table-specification data rarely changes from
frame to frame within a single video stream. Therefore RTP/JPEG data
is represented in abbreviated format, with all of the tables omitted
from the bit stream where possible. Each frame begins immediately
with the (single) entropy-coded scan. The information that would
otherwise be in both the frame and scan headers is represented
Berc, et. al. Standards Track [Page 3]
^L
RFC 2435 RTP Payload Format for JPEG October 1998
entirely within the RTP/JPEG header (defined below) that lies between
the RTP header and the JPEG payload.
While parameters like Huffman tables and color space are likely to
remain fixed for the lifetime of the video stream, other parameters
should be allowed to vary, notably the quantization tables and image
size (e.g., to implement rate-adaptive transmission or allow a user
to adjust the "quality level" or resolution manually). Thus explicit
fields in the RTP/JPEG header are allocated to represent this
information. Since only a small set of quantization tables are
typically used, we encode the entire set of quantization tables in a
small integer field. Customized quantization tables are accommodated
by using a special range of values in this field, and then placing
the table before the beginning of the JPEG payload. The image width
and height are encoded explicitly.
Because JPEG frames are typically larger than the underlying
network's maximum packet size, frames must often be fragmented into
several packets. One approach is to allow the network layer below
RTP (e.g., IP) to perform the fragmentation. However, this precludes
rate-controlling the resulting packet stream or partial delivery in
the presence of loss, and frames may be larger than the maximum
network layer reassembly length (see [10] for more information). To
avoid these limitations, RTP/JPEG defines a simple fragmentation and
reassembly scheme at the RTP level.
3. RTP/JPEG Packet Format
The RTP timestamp is in units of 90000Hz. The same timestamp MUST
appear in each fragment of a given frame. The RTP marker bit MUST be
set in the last packet of a frame.
3.1. JPEG header
Each packet contains a special JPEG header which immediately follows
the RTP header. The first 8 bytes of this header, called the "main
JPEG header", are as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type-specific | Fragment Offset |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Q | Width | Height |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Berc, et. al. Standards Track [Page 4]
^L
RFC 2435 RTP Payload Format for JPEG October 1998
All fields in this header except for the Fragment Offset field MUST
remain the same in all packets that correspond to the same JPEG
frame.
A Restart Marker header and/or Quantization Table header may follow
this header, depending on the values of the Type and Q fields.
3.1.1. Type-specific: 8 bits
Interpretation depends on the value of the type field. If no
interpretation is specified, this field MUST be zeroed on
transmission and ignored on reception.
3.1.2. Fragment Offset: 24 bits
The Fragment Offset is the offset in bytes of the current packet in
the JPEG frame data. This value is encoded in network byte order
(most significant byte first). The Fragment Offset plus the length of
the payload data in the packet MUST NOT exceed 2^24 bytes.
3.1.3. Type: 8 bits
The type field specifies the information that would otherwise be
present in a JPEG abbreviated table-specification as well as the
additional JFIF-style parameters not defined by JPEG. Types 0-63 are
reserved as fixed, well-known mappings to be defined by this document
and future revisions of this document. Types 64-127 are the same as
types 0-63, except that restart markers are present in the JPEG data
and a Restart Marker header appears immediately following the main
JPEG header. Types 128-255 are free to be dynamically defined by a
session setup protocol (which is beyond the scope of this document).
3.1.4. Q: 8 bits
The Q field defines the quantization tables for this frame. Q values
0-127 indicate the quantization tables are computed using an
algorithm determined by the Type field (see below). Q values 128-255
indicate that a Quantization Table header appears after the main JPEG
header (and the Restart Marker header, if present) in the first
packet of the frame (fragment offset 0). This header can be used to
explicitly specify the quantization tables in-band.
3.1.5. Width: 8 bits
This field encodes the width of the image in 8-pixel multiples (e.g.,
a width of 40 denotes an image 320 pixels wide). The maximum width
is 2040 pixels.
Berc, et. al. Standards Track [Page 5]
^L
RFC 2435 RTP Payload Format for JPEG October 1998
3.1.6. Height: 8 bits
This field encodes the height of the image in 8-pixel multiples
(e.g., a height of 30 denotes an image 240 pixels tall). When
encoding interlaced video, this is the height of a video field, since
fields are individually JPEG encoded. The maximum height is 2040
pixels.
3.1.7. Restart Marker header
This header MUST be present immediately after the main JPEG header
when using types 64-127. It provides the additional information
required to properly decode a data stream containing restart markers.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Restart Interval |F|L| Restart Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Restart Interval field specifies the number of MCUs that appear
between restart markers. It is identical to the 16 bit value that
would appear in the DRI marker segment of a JFIF header. This value
MUST NOT be zero.
If the restart intervals in a frame are not guaranteed to be aligned
with packet boundaries, the F (first) and L (last) bits MUST be set
to 1 and the Restart Count MUST be set to 0x3FFF. This indicates
that a receiver MUST reassemble the entire frame before decoding it.
To support partial frame decoding, the frame is broken into "chunks"
each containing an integral number of restart intervals. The Restart
Count field contains the position of the first restart interval in
the current "chunk" so that receivers know which part of the frame
this data corresponds to. A Restart Interval value SHOULD be chosen
to allow a "chunk" to completely fit within a single packet. In this
case, both the F and L bits of the packet are set to 1. However, if
a chunk needs to be spread across multiple packets, the F bit will be
set to 1 in the first packet of the chunk (and only that one) and the
L bit will be set to 1 in the last packet of the chunk (and only that
one).
3.1.8. Quantization Table header
This header MUST be present after the main JPEG header (and after the
Restart Marker header, if present) when using Q values 128-255. It
provides a way to specify the quantization tables associated with
this Q value in-band.
Berc, et. al. Standards Track [Page 6]
^L
RFC 2435 RTP Payload Format for JPEG October 1998
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MBZ | Precision | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Quantization Table Data |
| ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Length field is set to the length in bytes of the quantization
table data to follow. The Length field MAY be set to zero to
indicate that no quantization table data is included in this frame.
See section 4.2 for more information. If the Length field in a
received packet is larger than the remaining number of bytes, the
packet MUST be discarded.
When table data is included, the number of tables present depends on
the JPEG type field. For example, type 0 uses two tables (one for
the luminance component and one shared by the chrominance
components). Each table is an array of 64 values given in zig-zag
order, identical to the format used in a JFIF DQT marker segment.
For each quantization table present, a bit in the Precision field
specifies the size of the coefficients in that table. If the bit is
zero, the coefficients are 8 bits yielding a table length of 64
bytes. If the bit is one, the coefficients are 16 bits for a table
length of 128 bytes. For 16 bit tables, the coefficients are
presented in network byte order. The rightmost bit in the Precision
field (bit 15 in the diagram above) corresponds to the first table
and each additional table uses the next bit to the left. Bits beyond
those corresponding to the tables needed by the type in use MUST be
ignored.
For Q values from 128 to 254, the Q value to quantization table data
mapping MUST be static, i.e., the receivers are guaranteed that they
only need to read the table data once in order to correctly decode
frames sent with that Q value. A Q value of 255 denotes that the
quantization table mapping is dynamic and can change on every frame.
Decoders MUST NOT depend on any previous version of the tables, and
need to reload these tables on every frame. Packets MUST NOT contain
Q = 255 and Length = 0.
3.1.9. JPEG Payload
The data following the RTP/JPEG headers is an entropy-coded segment
consisting of a single scan. The scan header is not present and is
inferred from the RTP/JPEG header. The scan is terminated either
implicitly (i.e., the point at which the image is fully parsed), or
Berc, et. al. Standards Track [Page 7]
^L
RFC 2435 RTP Payload Format for JPEG October 1998
explicitly with an EOI marker. The scan may be padded to arbitrary
length with undefined bytes. (Some existing hardware codecs generate
extra lines at the bottom of a video frame and removal of these lines
would require a Huffman-decoding pass over the data.)
The type code determines whether restart markers are present. If a
type supports restart markers, the packet MUST contain a non-zero
Restart Interval value in a Restart Marker Header and restart markers
MUST appear on byte aligned boundaries beginning with an 0xFF between
MCUs at that interval. Additional 0xFF bytes MAY appear between
restart intervals. This can be used in the packetization process to
align data to something like a word boundary for more efficient
copying. Restart markers MUST NOT appear anywhere else in the JPEG
payload. Types which do not support restart makers MUST NOT contain
restart markers anywhere in the JPEG payload. All packets MUST
contain a "stuffed" 0x00 byte following any true 0xFF byte generated
by the entropy coder [1, Sec. B.1.1.5].
4. Discussion
4.1. The Type Field
The Type field defines the abbreviated table-specification and
additional JFIF-style parameters not defined by JPEG, since they are
not present in the body of the transmitted JPEG data.
Three ranges of the type field are currently defined. Types 0-63 are
reserved as fixed, well-known mappings to be defined by this document
and future revisions of this document. Types 64-127 are the same as
types 0-63, except that restart markers are present in the JPEG data
and a Restart Marker header appears immediately following the main
JPEG header. Types 128-255 are free to be dynamically defined by a
session setup protocol (which is beyond the scope of this document).
Of the first group of fixed mappings, types 0 and 1 are currently
defined, along with the corresponding types 64 and 65 that indicate
the presence of restart markers. They correspond to an abbreviated
table-specification indicating the "Baseline DCT sequential" mode,
8-bit samples, square pixels, three components in the YUV color
space, standard Huffman tables as defined in [1, Annex K.3], and a
single interleaved scan with a scan component selector indicating
components 1, 2, and 3 in that order. The Y, U, and V color planes
correspond to component numbers 1, 2, and 3, respectively. Component
1 (i.e., the luminance plane) uses Huffman table number 0 and
quantization table number 0 (defined below) and components 2 and 3
(i.e., the chrominance planes) use Huffman table number 1 and
quantization table number 1 (defined below).
Berc, et. al. Standards Track [Page 8]
^L
RFC 2435 RTP Payload Format for JPEG October 1998
Type numbers 2-5 are reserved and SHOULD NOT be used. Applications
based on previous versions of this document (RFC 2035) should be
updated to indicate the presence of restart markers with type 64 or
65 and the Restart Marker header.
The two RTP/JPEG types currently defined are described below:
horizontal vertical Quantization
types component samp. fact. samp. fact. table number
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | 1 (Y) | 2 | 1 | 0 |
| 0, 64 | 2 (U) | 1 | 1 | 1 |
| | 3 (V) | 1 | 1 | 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | 1 (Y) | 2 | 2 | 0 |
| 1, 65 | 2 (U) | 1 | 1 | 1 |
| | 3 (V) | 1 | 1 | 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
These sampling factors indicate that the chrominance components of
type 0 video is downsampled horizontally by 2 (often called 4:2:2)
while the chrominance components of type 1 video are downsampled both
horizontally and vertically by 2 (often called 4:2:0).
Types 0 and 1 can be used to carry both progressively scanned and
interlaced image data. This is encoded using the Type-specific field
in the main JPEG header. The following values are defined:
0 : Image is progressively scanned. On a computer monitor, it can
be displayed as-is at the specified width and height.
1 : Image is an odd field of an interlaced video signal. The
height specified in the main JPEG header is half of the height
of the entire displayed image. This field should be de-
interlaced with the even field following it such that lines
from each of the images alternate. Corresponding lines from
the even field should appear just above those same lines from
the odd field.
2 : Image is an even field of an interlaced video signal.
3 : Image is a single field from an interlaced video signal, but
it should be displayed full frame as if it were received as
both the odd & even fields of the frame. On a computer
monitor, each line in the image should be displayed twice,
doubling the height of the image.
Berc, et. al. Standards Track [Page 9]
^L
RFC 2435 RTP Payload Format for JPEG October 1998
Appendix B contains C source code for transforming the RTP/JPEG
header parameters into the JPEG frame and scan headers that are
absent from the data payload.
4.2. The Q Field
For JPEG types 0 and 1 (and their corresponding types 64 and 65), Q
values between 1 and 99 inclusive are defined as follows. Other
values less than 128 are reserved. Additional types are encouraged
to use this definition if applicable.
Both type 0 and type 1 JPEG require two quantization tables. These
tables are calculated as follows. For 1 <= Q <= 99, the Independent
JPEG Group's formula [5] is used to produce a scale factor S as:
S = 5000 / Q for 1 <= Q <= 50
= 200 - 2 * Q for 51 <= Q <= 99
This value is then used to scale Tables K.1 and K.2 from [1]
(saturating each value to 8 bits) to give quantization table numbers
0 and 1, respectively. C source code is provided in Appendix A to
compute these tables.
For Q values 128-255, dynamically defined quantization tables are
used. These tables may be specified either in-band or out of band by
something like a session setup protocol, but the Quantization Table
header MUST be present in the first packet of every frame. When the
tables are specified out of band, they may be omitted from the packet
by setting the Length field in this header to 0.
When the quantization tables are sent in-band, they need not be sent
with every frame. Like the out of band case, frames which do not
contain tables will have a Quantization Table header with a Length
field of 0. While this does decrease the overhead of including the
tables, new receivers will be unable to properly decode frames from
the time they start up until they receive the tables.
4.3. Fragmentation and Reassembly
Since JPEG frames can be large, they must often be fragmented.
Frames SHOULD be fragmented into packets in a manner avoiding
fragmentation at a lower level. If support for partial frame
decoding is desired, frames SHOULD be fragmented such that each
packet contains an integral number of restart intervals (see below).
Each packet that makes up a single frame MUST have the same
timestamp, and the RTP marker bit MUST be set on the last packet in a
frame. The fragment offset field of each packet is set to the byte
Berc, et. al. Standards Track [Page 10]
^L
RFC 2435 RTP Payload Format for JPEG October 1998
offset of its payload data within the original frame. Packets making
up a frame SHOULD be sent sequentially and the fragments they contain
MUST NOT overlap one another.
An entire frame can be identified as a sequence of packets beginning
with a packet having a zero fragment offset and ending with a packet
having the RTP marker bit set. Missing packets can be detected
either with RTP sequence numbers or with the fragment offset and
lengths of each packet. Reassembly could be carried out without the
offset field (i.e., using only the RTP marker bit and sequence
numbers), but an efficient single-copy implementation would not
otherwise be possible in the presence of misordered packets.
Moreover, if the last packet of the previous frame (containing the
marker bit) were dropped, then a receiver could not always detect
that the current frame is entirely intact.
4.4. Restart Markers
Restart markers indicate a point in the JPEG stream at which the
Huffman decoder and DC predictors are reset, allowing partial
decoding starting at that point. To fully take advantage of this,
however, a decoder must know which MCUs of a frame a particular
restart interval encodes. While the original JPEG specification does
provide a small sequence number field in the restart markers for this
purpose, it is not large enough to properly cope with the loss of an
entire packet's worth of data at a typical network MTU size. The
RTP/JPEG Restart Marker header contains the additional information
needed to accomplish this.
The size of restart intervals SHOULD be chosen to always allow an
integral number of restart intervals to fit within a single packet.
This will guarantee that packets can be decoded independently from
one another. If a restart interval ends up being larger than a
packet, the F and L bits in the Restart Marker header can be used to
fragment it, but the resulting set of packets must all be received by
a decoder for that restart interval to be decoded properly.
Once a decoder has received either a single packet with both the F
and L bits set on or a contiguous sequence of packets (based on the
RTP sequence number) which begin with an F bit and end with an L bit,
it can begin decoding. The position of the MCU at the beginning of
the data can be determined by multiplying the Restart Count value by
the Restart Interval value. A packet (or group of packets as
identified by the F and L bits) may contain any number of consecutive
restart intervals.
To accommodate encoders which generate frames with restart markers in
them but cannot fragment the data in this manner, the Restart Count
Berc, et. al. Standards Track [Page 11]
^L
RFC 2435 RTP Payload Format for JPEG October 1998
field may be set to 0x3FFF with the F and L bits both set to 1. This
indicates to decoders that the entire frame must be reassembled
before decoding it.
5. Security Considerations
RTP packets using the payload format defined in this specification
are subject to the security considerations discussed in the RTP
specification [6], and any appropriate RTP profile (for example [7]).
This implies that confidentiality of the media streams is achieved by
encryption. Because the data compression used with this payload
format is applied end-to-end, encryption may be performed after
compression so there is no conflict between the two operations.
A potential denial-of-service threat exists for data encodings using
compression techniques that have non-uniform receiver-end
computational load. The attacker can inject pathological datagrams
into the stream which are complex to decode and cause the receiver to
be overloaded. However, this encoding does not exhibit any
significant non-uniformity.
Another potential denial-of-service threat exists around the
fragmentation mechanism presented here. Receivers should be prepared
to limit the total amount of data associated with assembling received
frames so as to avoid resource exhaustion.
As with any IP-based protocol, in some circumstances a receiver may
be overloaded simply by the receipt of too many packets, either
desired or undesired. Network-layer authentication may be used to
discard packets from undesired sources, but the processing cost of
the authentication itself may be too high. In a multicast
environment, pruning of specific sources will be implemented in a
future version of IGMP [8] and in multicast routing protocols to
allow a receiver to select which sources are allowed to reach it.
A security review of this payload format found no additional
considerations beyond those in the RTP specification.
Berc, et. al. Standards Track [Page 12]
^L
RFC 2435 RTP Payload Format for JPEG October 1998
6. Authors' Addresses
Lance M. Berc
Systems Research Center
Digital Equipment Corporation
130 Lytton Ave
Palo Alto CA 94301
Phone: +1 650 853 2100
EMail: berc@pa.dec.com
William C. Fenner
Xerox PARC
3333 Coyote Hill Road
Palo Alto, CA 94304
Phone: +1 650 812 4816
EMail: fenner@parc.xerox.com
Ron Frederick
Xerox PARC
3333 Coyote Hill Road
Palo Alto, CA 94304
Phone: +1 650 812 4459
EMail: frederick@parc.xerox.com
Steven McCanne
University of California at Berkeley
Electrical Engineering and Computer Science
633 Soda Hall
Berkeley, CA 94720
Phone: +1 510 642 0865
EMail: mccanne@cs.berkeley.edu
Paul Stewart
Xerox PARC
3333 Coyote Hill Road
Palo Alto, CA 94304
Phone: +1 650 812 4821
EMail: stewart@parc.xerox.com
Berc, et. al. Standards Track [Page 13]
^L
RFC 2435 RTP Payload Format for JPEG October 1998
7. References
[1] ISO DIS 10918-1. Digital Compression and Coding of Continuous-
tone Still Images (JPEG), CCITT Recommendation T.81.
[2] William B. Pennebaker, Joan L. Mitchell, JPEG: Still Image Data
Compression Standard, Van Nostrand Reinhold, 1993.
[3] Gregory K. Wallace, The JPEG Sill Picture Compression Standard,
Communications of the ACM, April 1991, Vol 34, No. 1, pp. 31-44.
[4] The JPEG File Interchange Format. Maintained by C-Cube
Microsystems, Inc., and available in
ftp://ftp.uu.net/graphics/jpeg/jfif.ps.gz.
[5] Tom Lane et. al., The Independent JPEG Group software JPEG
codec. Source code available in
ftp://ftp.uu.net/graphics/jpeg/jpegsrc.v6a.tar.gz.
[6] Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson,
"RTP: A Transport Protocol for Real-Time Applications", RFC
1889, January 1996.
[7] Schulzrinne, H., "RTP Profile for Audio and Video Conferences
with Minimal Control", RFC 1890, January 1996.
[8] Fenner, W., "Internet Group Management Protocol Version 2", RFC
2236, November 1997.
[9] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.
[10] Kent C., and J. Mogul, "Fragmentation Considered Harmful",
Proceedings of the ACM SIGCOMM '87 Workshop on Frontiers in
Computer Communications Technology, August 1987.
Berc, et. al. Standards Track [Page 14]
^L
RFC 2435 RTP Payload Format for JPEG October 1998
Appendix A
The following code can be used to create a quantization table from a
Q factor:
/*
* Table K.1 from JPEG spec.
*/
static const int jpeg_luma_quantizer[64] = {
16, 11, 10, 16, 24, 40, 51, 61,
12, 12, 14, 19, 26, 58, 60, 55,
14, 13, 16, 24, 40, 57, 69, 56,
14, 17, 22, 29, 51, 87, 80, 62,
18, 22, 37, 56, 68, 109, 103, 77,
24, 35, 55, 64, 81, 104, 113, 92,
49, 64, 78, 87, 103, 121, 120, 101,
72, 92, 95, 98, 112, 100, 103, 99
};
/*
* Table K.2 from JPEG spec.
*/
static const int jpeg_chroma_quantizer[64] = {
17, 18, 24, 47, 99, 99, 99, 99,
18, 21, 26, 66, 99, 99, 99, 99,
24, 26, 56, 99, 99, 99, 99, 99,
47, 66, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99
};
/*
* Call MakeTables with the Q factor and two u_char[64] return arrays
*/
void
MakeTables(int q, u_char *lqt, u_char *cqt)
{
int i;
int factor = q;
if (q < 1) factor = 1;
if (q > 99) factor = 99;
if (q < 50)
q = 5000 / factor;
else
q = 200 - factor*2;
Berc, et. al. Standards Track [Page 15]
^L
RFC 2435 RTP Payload Format for JPEG October 1998
for (i=0; i < 64; i++) {
int lq = (jpeg_luma_quantizer[i] * q + 50) / 100;
int cq = (jpeg_chroma_quantizer[i] * q + 50) / 100;
/* Limit the quantizers to 1 <= q <= 255 */
if (lq < 1) lq = 1;
else if (lq > 255) lq = 255;
lqt[i] = lq;
if (cq < 1) cq = 1;
else if (cq > 255) cq = 255;
cqt[i] = cq;
}
}
Berc, et. al. Standards Track [Page 16]
^L
RFC 2435 RTP Payload Format for JPEG October 1998
Appendix B
The following routines can be used to create the JPEG marker segments
corresponding to the table-specification data that is absent from the
RTP/JPEG body.
u_char lum_dc_codelens[] = {
0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
};
u_char lum_dc_symbols[] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
};
u_char lum_ac_codelens[] = {
0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d,
};
u_char lum_ac_symbols[] = {
0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa,
};
u_char chm_dc_codelens[] = {
0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
};
u_char chm_dc_symbols[] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
Berc, et. al. Standards Track [Page 17]
^L
RFC 2435 RTP Payload Format for JPEG October 1998
};
u_char chm_ac_codelens[] = {
0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77,
};
u_char chm_ac_symbols[] = {
0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa,
};
u_char *
MakeQuantHeader(u_char *p, u_char *qt, int tableNo)
{
*p++ = 0xff;
*p++ = 0xdb; /* DQT */
*p++ = 0; /* length msb */
*p++ = 67; /* length lsb */
*p++ = tableNo;
memcpy(p, qt, 64);
return (p + 64);
}
u_char *
MakeHuffmanHeader(u_char *p, u_char *codelens, int ncodes,
u_char *symbols, int nsymbols, int tableNo,
int tableClass)
{
*p++ = 0xff;
Berc, et. al. Standards Track [Page 18]
^L
RFC 2435 RTP Payload Format for JPEG October 1998
*p++ = 0xc4; /* DHT */
*p++ = 0; /* length msb */
*p++ = 3 + ncodes + nsymbols; /* length lsb */
*p++ = (tableClass << 4) | tableNo;
memcpy(p, codelens, ncodes);
p += ncodes;
memcpy(p, symbols, nsymbols);
p += nsymbols;
return (p);
}
u_char *
MakeDRIHeader(u_char *p, u_short dri) {
*p++ = 0xff;
*p++ = 0xdd; /* DRI */
*p++ = 0x0; /* length msb */
*p++ = 4; /* length lsb */
*p++ = dri >> 8; /* dri msb */
*p++ = dri & 0xff; /* dri lsb */
return (p);
}
/*
* Arguments:
* type, width, height: as supplied in RTP/JPEG header
* lqt, cqt: quantization tables as either derived from
* the Q field using MakeTables() or as specified
* in section 4.2.
* dri: restart interval in MCUs, or 0 if no restarts.
*
* p: pointer to return area
*
* Return value:
* The length of the generated headers.
*
* Generate a frame and scan headers that can be prepended to the
* RTP/JPEG data payload to produce a JPEG compressed image in
* interchange format (except for possible trailing garbage and
* absence of an EOI marker to terminate the scan).
*/
int MakeHeaders(u_char *p, int type, int w, int h, u_char *lqt,
u_char *cqt, u_short dri)
{
u_char *start = p;
/* convert from blocks to pixels */
w <<= 3;
h <<= 3;
Berc, et. al. Standards Track [Page 19]
^L
RFC 2435 RTP Payload Format for JPEG October 1998
*p++ = 0xff;
*p++ = 0xd8; /* SOI */
p = MakeQuantHeader(p, lqt, 0);
p = MakeQuantHeader(p, cqt, 1);
if (dri != 0)
p = MakeDRIHeader(p, dri);
*p++ = 0xff;
*p++ = 0xc0; /* SOF */
*p++ = 0; /* length msb */
*p++ = 17; /* length lsb */
*p++ = 8; /* 8-bit precision */
*p++ = h >> 8; /* height msb */
*p++ = h; /* height lsb */
*p++ = w >> 8; /* width msb */
*p++ = w; /* wudth lsb */
*p++ = 3; /* number of components */
*p++ = 0; /* comp 0 */
if (type == 0)
*p++ = 0x21; /* hsamp = 2, vsamp = 1 */
else
*p++ = 0x22; /* hsamp = 2, vsamp = 2 */
*p++ = 0; /* quant table 0 */
*p++ = 1; /* comp 1 */
*p++ = 0x11; /* hsamp = 1, vsamp = 1 */
*p++ = 1; /* quant table 1 */
*p++ = 2; /* comp 2 */
*p++ = 0x11; /* hsamp = 1, vsamp = 1 */
*p++ = 1; /* quant table 1 */
p = MakeHuffmanHeader(p, lum_dc_codelens,
sizeof(lum_dc_codelens),
lum_dc_symbols,
sizeof(lum_dc_symbols), 0, 0);
p = MakeHuffmanHeader(p, lum_ac_codelens,
sizeof(lum_ac_codelens),
lum_ac_symbols,
sizeof(lum_ac_symbols), 0, 1);
p = MakeHuffmanHeader(p, chm_dc_codelens,
sizeof(chm_dc_codelens),
chm_dc_symbols,
sizeof(chm_dc_symbols), 1, 0);
p = MakeHuffmanHeader(p, chm_ac_codelens,
sizeof(chm_ac_codelens),
chm_ac_symbols,
sizeof(chm_ac_symbols), 1, 1);
Berc, et. al. Standards Track [Page 20]
^L
RFC 2435 RTP Payload Format for JPEG October 1998
*p++ = 0xff;
*p++ = 0xda; /* SOS */
*p++ = 0; /* length msb */
*p++ = 12; /* length lsb */
*p++ = 3; /* 3 components */
*p++ = 0; /* comp 0 */
*p++ = 0; /* huffman table 0 */
*p++ = 1; /* comp 1 */
*p++ = 0x11; /* huffman table 1 */
*p++ = 2; /* comp 2 */
*p++ = 0x11; /* huffman table 1 */
*p++ = 0; /* first DCT coeff */
*p++ = 63; /* last DCT coeff */
*p++ = 0; /* sucessive approx. */
return (p - start);
};
Berc, et. al. Standards Track [Page 21]
^L
RFC 2435 RTP Payload Format for JPEG October 1998
Appendix C
The following routine is used to illustrate the RTP/JPEG packet
fragmentation and header creation.
For clarity and brevity, the structure definitions are only valid for
32-bit big-endian (most significant octet first) architectures. Bit
fields are assumed to be packed tightly in big-endian bit order, with
no additional padding. Modifications would be required to construct a
portable implementation.
/*
* RTP data header from RFC1889
*/
typedef struct {
unsigned int version:2; /* protocol version */
unsigned int p:1; /* padding flag */
unsigned int x:1; /* header extension flag */
unsigned int cc:4; /* CSRC count */
unsigned int m:1; /* marker bit */
unsigned int pt:7; /* payload type */
u_int16 seq; /* sequence number */
u_int32 ts; /* timestamp */
u_int32 ssrc; /* synchronization source */
u_int32 csrc[1]; /* optional CSRC list */
} rtp_hdr_t;
#define RTP_HDR_SZ 12
/* The following definition is from RFC1890 */
#define RTP_PT_JPEG 26
struct jpeghdr {
unsigned int tspec:8; /* type-specific field */
unsigned int off:24; /* fragment byte offset */
u_int8 type; /* id of jpeg decoder params */
u_int8 q; /* quantization factor (or table id) */
u_int8 width; /* frame width in 8 pixel blocks */
u_int8 height; /* frame height in 8 pixel blocks */
};
struct jpeghdr_rst {
u_int16 dri;
unsigned int f:1;
unsigned int l:1;
unsigned int count:14;
};
Berc, et. al. Standards Track [Page 22]
^L
RFC 2435 RTP Payload Format for JPEG October 1998
struct jpeghdr_qtable {
u_int8 mbz;
u_int8 precision;
u_int16 length;
};
#define RTP_JPEG_RESTART 0x40
/* Procedure SendFrame:
*
* Arguments:
* start_seq: The sequence number for the first packet of the current
* frame.
* ts: RTP timestamp for the current frame
* ssrc: RTP SSRC value
* jpeg_data: Huffman encoded JPEG scan data
* len: Length of the JPEG scan data
* type: The value the RTP/JPEG type field should be set to
* typespec: The value the RTP/JPEG type-specific field should be set
* to
* width: The width in pixels of the JPEG image
* height: The height in pixels of the JPEG image
* dri: The number of MCUs between restart markers (or 0 if there
* are no restart markers in the data
* q: The Q factor of the data, to be specified using the Independent
* JPEG group's algorithm if 1 <= q <= 99, specified explicitly
* with lqt and cqt if q >= 128, or undefined otherwise.
* lqt: The quantization table for the luminance channel if q >= 128
* cqt: The quantization table for the chrominance channels if
* q >= 128
*
* Return value:
* the sequence number to be sent for the first packet of the next
* frame.
*
* The following are assumed to be defined:
*
* PACKET_SIZE - The size of the outgoing packet
* send_packet(u_int8 *data, int len) - Sends the packet to the network
*/
u_int16 SendFrame(u_int16 start_seq, u_int32 ts, u_int32 ssrc,
u_int8 *jpeg_data, int len, u_int8 type,
u_int8 typespec, int width, int height, int dri,
u_int8 q, u_int8 *lqt, u_int8 *cqt) {
rtp_hdr_t rtphdr;
struct jpeghdr jpghdr;
struct jpeghdr_rst rsthdr;
Berc, et. al. Standards Track [Page 23]
^L
RFC 2435 RTP Payload Format for JPEG October 1998
struct jpeghdr_qtable qtblhdr;
u_int8 packet_buf[PACKET_SIZE];
u_int8 *ptr;
int bytes_left = len;
int seq = start_seq;
int pkt_len, data_len;
/* Initialize RTP header
*/
rtphdr.version = 2;
rtphdr.p = 0;
rtphdr.x = 0;
rtphdr.cc = 0;
rtphdr.m = 0;
rtphdr.pt = RTP_PT_JPEG;
rtphdr.seq = start_seq;
rtphdr.ts = ts;
rtphdr.ssrc = ssrc;
/* Initialize JPEG header
*/
jpghdr.tspec = typespec;
jpghdr.off = 0;
jpghdr.type = type | ((dri != 0) ? RTP_JPEG_RESTART : 0);
jpghdr.q = q;
jpghdr.width = width / 8;
jpghdr.height = height / 8;
/* Initialize DRI header
*/
if (dri != 0) {
rsthdr.dri = dri;
rsthdr.f = 1; /* This code does not align RIs */
rsthdr.l = 1;
rsthdr.count = 0x3fff;
}
/* Initialize quantization table header
*/
if (q >= 128) {
qtblhdr.mbz = 0;
qtblhdr.precision = 0; /* This code uses 8 bit tables only */
qtblhdr.length = 128; /* 2 64-byte tables */
}
while (bytes_left > 0) {
ptr = packet_buf + RTP_HDR_SZ;
memcpy(ptr, &jpghdr, sizeof(jpghdr));
Berc, et. al. Standards Track [Page 24]
^L
RFC 2435 RTP Payload Format for JPEG October 1998
ptr += sizeof(jpghdr);
if (dri != 0) {
memcpy(ptr, &rsthdr, sizeof(rsthdr));
ptr += sizeof(rsthdr);
}
if (q >= 128 && jpghdr.off == 0) {
memcpy(ptr, &qtblhdr, sizeof(qtblhdr));
ptr += sizeof(qtblhdr);
memcpy(ptr, lqt, 64);
ptr += 64;
memcpy(ptr, cqt, 64);
ptr += 64;
}
data_len = PACKET_SIZE - (ptr - packet_buf);
if (data_len >= bytes_left) {
data_len = bytes_left;
rtphdr.m = 1;
}
memcpy(packet_buf, &rtphdr, RTP_HDR_SZ);
memcpy(ptr, jpeg_data + jpghdr.off, data_len);
send_packet(packet_buf, (ptr - packet_buf) + data_len);
jpghdr.off += data_len;
bytes_left -= data_len;
rtphdr.seq++;
}
return rtphdr.seq;
}
Berc, et. al. Standards Track [Page 25]
^L
RFC 2435 RTP Payload Format for JPEG October 1998
Appendix D
This section outlines the changes between this document and its
precdecessor, RFC 2035. The changes to the protocol were made with
an eye towards causing as few interoperability problems between
implementations based on the older text and newer implementations,
and indeed, many of the obsolete conventions can still be
unambiguously decoded by a newer implementation. However, use of the
older conventions in newer implementations is strongly discouraged.
o Types 0 and 1 have been augmented to allow for the encoding of
interlaced video images, using 2 bits of the type-specific
field. See section 4.1 for details.
o There has been discussion in the working group arguing for more
flexibility in specifying the JPEG quantization tables. This
memo allows table coefficients to be specified explicitly
through the use of an optional Quantization Table header,
discussed in sections 3.1.8 and 4.2.
o In RFC 2035, the encoding of restart marker information in the
Type field made it difficult to add new types. Additionally, the
type- specific field was used for the restart count, making it
unavailable for other type-specific purposes. This memo moves
the restart marker indication to a particular bit in the Type
field, and adds an optional header to hold the additional
information required, leaving the type-specific field free for
its intended purpose. The handling of partial frame decoding
was also made more robust against packet loss. See sections
3.1.7 and 4.4 for details.
Berc, et. al. Standards Track [Page 26]
^L
RFC 2435 RTP Payload Format for JPEG October 1998
Full Copyright Statement
Copyright (C) The Internet Society (1998). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Berc, et. al. Standards Track [Page 27]
^L
|