1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
|
Network Working Group D. Burdett
Request for Comments: 2801 Commerce One
Category: Informational April 2000
Internet Open Trading Protocol - IOTP
Version 1.0
Status of this Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2000). All Rights Reserved.
Abstract
The Internet Open Trading Protocol (IOTP) provides an interoperable
framework for Internet commerce. It is payment system independent and
encapsulates payment systems such as SET, Secure Channel
Credit/Debit, Mondex, CyberCoin, GeldKarte, etc. IOTP is able to
handle cases where such merchant roles as the shopping site, the
Payment Handler, the Delivery Handler of goods or services, and the
provider of customer support are performed by different parties or by
one party.
Table of Contents
1. Background .....................................................7
1.1 Commerce on the Internet, a Different Model .................7
1.2 Benefits of IOTP ............................................9
1.3 Baseline IOTP ..............................................10
1.4 Objectives of Document .....................................10
1.5 Scope of Document ..........................................11
1.6 Document Structure .........................................11
1.7 Intended Readership ........................................13
1.7.1 Reading Guidelines ...................................13
2. Introduction ..................................................14
2.1 Trading Roles ..............................................16
2.2 Trading Exchanges ..........................................18
2.2.1 Offer Exchange .......................................19
2.2.2 Payment Exchange .....................................21
2.2.3 Delivery Exchange ....................................24
2.2.4 Authentication Exchange ..............................26
2.3 Scope of Baseline IOTP .....................................28
Burdett Informational [Page 1]
^L
RFC 2801 IOTP/1.0 April 2000
3. Protocol Structure ............................................31
3.1 Overview ...................................................32
3.1.1 IOTP Message Structure ...............................32
3.1.2 IOTP Transactions ....................................34
3.2 IOTP Message ...............................................35
3.2.1 XML Document Prolog ..................................37
3.3 Transaction Reference Block ................................37
3.3.1 Transaction Id Component .............................38
3.3.2 Message Id Component .................................39
3.3.3 Related To Component .................................41
3.4 ID Attributes ..............................................42
3.4.1 IOTP Message ID Attribute Definition .................43
3.4.2 Block and Component ID Attribute Definitions .........44
3.4.3 Example of use of ID Attributes ......................46
3.5 Element References .........................................46
3.6 Extending IOTP .............................................48
3.6.1 Extra XML Elements ...................................49
3.6.2 Opaque Embedded Data .................................50
3.7 Packaged Content Element ...................................50
3.7.1 Packaging HTML .......................................52
3.7.2 Packaging XML ........................................53
3.8 Identifying Languages ......................................54
3.9 Secure and Insecure Net Locations ..........................54
3.10 Cancelled Transactions .....................................55
3.10.1 Cancelling Transactions ..............................55
3.10.2 Handling Cancelled Transactions ......................56
4. IOTP Error Handling ...........................................56
4.1 Technical Errors ...........................................57
4.2 Business Errors ............................................57
4.3 Error Depth ................................................58
4.3.1 Transport Level ......................................58
4.3.2 Message Level ........................................58
4.3.3 Block Level ..........................................59
4.4 Idempotency, Processing Sequence, and Message Flow .........61
4.5 Server Role Processing Sequence ............................62
4.5.1 Initiating Transactions ..............................62
4.5.2 Processing Input Messages ............................63
4.5.3 Cancelling a Transaction .............................70
4.5.4 Retransmitting Messages ..............................70
4.6 Client Role Processing Sequence ............................71
4.6.1 Initiating Transactions ..............................71
4.6.2 Processing Input Messages ............................72
4.6.3 Cancelling a Transaction .............................74
4.6.4 Retransmitting Messages ..............................74
5. Security Considerations .......................................74
5.1 Determining whether to use digital signatures ..............74
5.2 Symmetric and Asymmetric Cryptography ......................76
5.3 Data Privacy ...............................................77
Burdett Informational [Page 2]
^L
RFC 2801 IOTP/1.0 April 2000
5.4 Payment Protocol Security ..................................77
6. Digital Signatures and IOTP ...................................77
6.1 How IOTP uses Digital Signatures ...........................77
6.1.1 IOTP Signature Example ...............................80
6.1.2 OriginatorInfo and RecipientInfo Elements ............82
6.1.3 Using signatures to Prove Actions Complete
Successfully .........................................83
6.2 Checking a Signature is Correctly Calculated ...............84
6.3 Checking a Payment or Delivery can occur ...................85
6.3.1 Check Request Block sent Correct Organisation ........86
6.3.2 Check Correct Components present in Request Block ....91
6.3.3 Check an Action is Authorised ........................91
7. Trading Components ............................................93
7.1 Protocol Options Component .................................96
7.2 Authentication Request Component ...........................97
7.3 Authentication Response Component ..........................98
7.4 Trading Role Information Request Component .................99
7.5 Order Component ...........................................100
7.5.1 Order Description Content ...........................101
7.5.2 OkFrom and OkTo Timestamps ..........................101
7.6 Organisation Component ....................................102
7.6.1 Organisation IDs ....................................104
7.6.2 Trading Role Element ................................105
7.6.3 Contact Information Element .........................108
7.6.4 Person Name Element .................................109
7.6.5 Postal Address Element ..............................110
7.7 Brand List Component ......................................111
7.7.1 Brand Element .......................................113
7.7.2 Protocol Brand Element ..............................115
7.7.3 Protocol Amount Element .............................116
7.7.4 Currency Amount Element .............................117
7.7.5 Pay Protocol Element ................................118
7.8 Brand Selection Component .................................120
7.8.1 Brand Selection Brand Info Element ..................122
7.8.2 Brand Selection Protocol Amount Info Element ........122
7.8.3 Brand Selection Currency Amount Info Element ........123
7.9 Payment Component .........................................123
7.10 Payment Scheme Component ..................................125
7.11 Payment Receipt Component .................................126
7.12 Payment Note Component ....................................128
7.13 Delivery Component ........................................129
7.13.1 Delivery Data Element ...............................130
7.14 Consumer Delivery Data Component ..........................132
7.15 Delivery Note Component ...................................133
7.16 Status Component ..........................................134
7.16.1 Offer Completion Codes ..............................137
7.16.2 Payment Completion Codes ............................138
7.16.3 Delivery Completion Codes ...........................140
Burdett Informational [Page 3]
^L
RFC 2801 IOTP/1.0 April 2000
7.16.4 Authentication Completion Codes .....................142
7.16.5 Undefined Completion Codes ..........................144
7.16.6 Transaction Inquiry Completion Codes ................144
7.17 Trading Role Data Component ...............................144
7.17.1 Who Receives a Trading Role Data Component ..........145
7.18 Inquiry Type Component ....................................146
7.19 Signature Component .......................................147
7.19.1 IOTP usage of signature elements and attributes .....148
7.19.2 Offer Response Signature Component ..................150
7.19.3 Payment Receipt Signature Component .................151
7.19.4 Delivery Response Signature Component ...............152
7.19.5 Authentication Request Signature Component ..........152
7.19.6 Authentication Response Signature Component .........153
7.19.7 Inquiry Request Signature Component .................153
7.19.8 Inquiry Response Signature Component ................153
7.19.9 Ping Request Signature Component ....................153
7.19.10 Ping Response Signature Component...................154
7.20 Certificate Component .....................................154
7.20.1 IOTP usage of signature elements and attributes .....154
7.21 Error Component ...........................................154
7.21.1 Error Processing Guidelines .........................157
7.21.2 Error Codes .........................................158
7.21.3 Error Location Element ..............................162
8. Trading Blocks ...............................................163
8.1 Trading Protocol Options Block ............................166
8.2 TPO Selection Block .......................................167
8.3 Offer Response Block ......................................168
8.4 Authentication Request Block ..............................169
8.5 Authentication Response Block .............................170
8.6 Authentication Status Block ...............................171
8.7 Payment Request Block .....................................171
8.8 Payment Exchange Block ....................................173
8.9 Payment Response Block ....................................173
8.10 Delivery Request Block ....................................175
8.11 Delivery Response Block ...................................176
8.12 Inquiry Request Trading Block .............................177
8.13 Inquiry Response Trading Block ............................177
8.14 Ping Request Block ........................................179
8.15 Ping Response Block .......................................179
8.16 Signature Block ...........................................181
8.16.1 Signature Block with Offer Response .................182
8.16.2 Signature Block with Payment Request ................182
8.16.3 Signature Block with Payment Response ...............182
8.16.4 Signature Block with Delivery Request ...............182
8.16.5 Signature Block with Delivery Response ..............182
8.17 Error Block ...............................................183
8.18 Cancel Block ..............................................184
9. Internet Open Trading Protocol Transactions ..................184
Burdett Informational [Page 4]
^L
RFC 2801 IOTP/1.0 April 2000
9.1 Authentication and Payment Related IOTP Transactions ......185
9.1.1 Authentication Document Exchange ....................188
9.1.2 Offer Document Exchange .............................194
9.1.3 Payment Document Exchange ...........................203
9.1.4 Delivery Document Exchange ..........................209
9.1.5 Payment and Delivery Document Exchange ..............212
9.1.6 Baseline Authentication IOTP Transaction ............216
9.1.7 Baseline Deposit IOTP Transaction ...................218
9.1.8 Baseline Purchase IOTP Transaction ..................220
9.1.9 Baseline Refund IOTP Transaction ....................222
9.1.10 Baseline Withdrawal IOTP Transaction ................224
9.1.11 Baseline Value Exchange IOTP Transaction ............226
9.1.12 Valid Combinations of Document Exchanges ............230
9.1.13 Combining Authentication Transactions with other
Transactions ........................................234
9.2 Infrastructure Transactions ...............................235
9.2.1 Baseline Transaction Status Inquiry IOTP Transaction 235
9.2.2 Baseline Ping IOTP Transaction ......................241
10. Retrieving Logos .............................................244
10.1 Logo Size .................................................245
10.2 Logo Color Depth ..........................................245
10.3 Logo Net Location Examples ................................246
11. Brands .......................................................246
11.1 Brand Definitions and Brand Selection .....................246
11.1.1 Definition of Payment Instrument ....................247
11.1.2 Definition of Brand .................................247
11.1.3 Definition of Dual Brand ............................248
11.1.4 Definition of Promotional Brand .....................248
11.1.5 Identifying Promotional Brands ......................249
11.2 Brand List Examples .......................................251
11.2.1 Simple Credit Card Based Example ....................252
11.2.2 Credit Card Brand List Including Promotional Brands..253
11.2.3 Brand Selection Example .............................254
11.2.4 Complex Electronic Cash Based Brand List ............255
12. IANA Considerations ..........................................257
12.1 Codes Controlled by IANA ..................................257
12.2 Codes not controlled by IANA ..............................263
13. Internet Open Trading Protocol Data Type Definition ..........263
14. Glossary .....................................................277
15. References ...................................................284
16. Author's Address .............................................287
17. Full Copyright Statement .....................................290
Burdett Informational [Page 5]
^L
RFC 2801 IOTP/1.0 April 2000
Table of Figures
Figure 1 IOTP Trading Roles 16
Figure 2 Offer Exchange 19
Figure 3 Payment Exchange 22
Figure 4 Delivery Exchange 25
Figure 5 Authentication Exchange 27
Figure 6 IOTP Message Structure 33
Figure 7 An IOTP Transaction 34
Figure 8 Example use of ID attributes 46
Figure 9 Element References 48
Figure 10 Signature Digests 79
Figure 11 Example use of Signatures for Baseline Purchase 81
Figure 12 Checking a Payment Handler can carry out a Payment 87
Figure 13 Checking a Delivery Handler can carry out a Delivery 90
Figure 14 Trading Components 94
Figure 15 Brand List Element Relationships 113
Figure 16 Trading Blocks 164
Figure 17 Payment and Authentication Message Flow Combinations 187
Figure 18 Authentication Document Exchange 190
Figure 19 Brand Dependent Offer Document Exchange 196
Figure 20 Brand Independent Offer Exchange 198
Figure 21 Payment Document Exchange 204
Figure 22 Delivery Document Exchange 210
Figure 23 Payment and Delivery Document Exchange 214
Figure 24 Baseline Authentication IOTP Transaction 217
Figure 25 Baseline Deposit IOTP Transaction 219
Figure 26 Baseline Purchase IOTP Transaction 221
Figure 27 Baseline Refund IOTP Transaction 223
Figure 28 Baseline Withdrawal IOTP Transaction 225
Figure 29 Baseline Value Exchange IOTP Transaction 228
Figure 30 Baseline Value Exchange Signatures 230
Figure 31 Valid Combinations of Document Exchanges 231
Figure 32 Baseline Transaction Status Inquiry 238
Figure 33 Baseline Ping Messages 242
Burdett Informational [Page 6]
^L
RFC 2801 IOTP/1.0 April 2000
1. Background
The Internet Open Trading Protocol (IOTP) provides an interoperable
framework for Internet commerce. It is payment system independent and
encapsulates payment systems such as SET, Mondex, CyberCash,
DigiCash, GeldKarte, etc. IOTP is able to handle cases where such
merchant roles as the shopping site, the Payment Handler, the
Delivery Handler of goods or services, and the provider of customer
support are performed by different parties or by one party.
The developers of IOTP seek to provide a virtual capability that
safely replicates the real world, the paper based, traditional,
understood, accepted methods of trading, buying, selling, value
exchanging that has existed for many hundreds of years. The
negotiation of who will be the parties to the trade, how it will be
conducted, the presentment of an offer, the method of payment, the
provision of a payment receipt, the delivery of goods and the receipt
of goods. These are events that are taken for granted in the course
of real world trade. IOTP has been produced to provide the same for
the virtual world, and to prepare and provide for the introduction of
new models of trading made possible by the expanding presence of the
virtual world.
The other fundamental ideal of the IOTP effort is to produce a
definition of these trading events in such a way that no matter where
produced, two unfamiliar parties using electronic commerce
capabilities to buy and sell that conform to the IOTP specifications
will be able to complete the business safely and successfully.
In summary, IOTP supports:
o Familiar trading models
o New trading models
o Global interoperability
The remainder of this section provides background to why IOTP was
developed. The specification itself starts in the next chapter.
1.1 Commerce on the Internet, a Different Model
The growth of the Internet and the advent of electronic commerce are
bringing about enormous changes around the world in society, politics
and government, and in business. The ways in which trading partners
communicate, conduct commerce, are governed have been enriched and
changed forever.
Burdett Informational [Page 7]
^L
RFC 2801 IOTP/1.0 April 2000
One of the very fundamental changes about which IOTP is concerned is
taking place in the way consumers and merchants trade.
Characteristics of trading that have changed markedly include:
o Presence: Face-to-face transactions become the exception, not the
rule. Already with the rise of mail order and telephone order
placement this change has been felt in western commerce.
Electronic commerce over the Internet will further expand the
scope and volume of transactions conducted without ever seeing the
people who are a part of the enterprise with whom one does
business.
o Authentication: An important part of personal presence is the
ability of the parties to use familiar objects and dialogue to
confirm they are who they claim to be. The seller displays one or
several well known financial logos that declaim his ability to
accept widely used credit and debit instruments in the payment
part of a purchase. The buyer brings government or financial
institution identification that assures the seller she will be
paid. People use intangibles such as personal appearance and
conduct, location of the store, apparent quality and familiarity
with brands of merchandise, and a good clear look in the eye to
reinforce formal means of authentication.
o Payment Instruments: Despite the enormous size of bank card
financial payments associations and their members, most of the
world's trade still takes place using the coin of the realm or
barter. The present infrastructure of the payments business cannot
economically support low value transactions and could not survive
under the consequent volumes of transactions if it did accept low
value transactions.
o Transaction Values: New meaning for low value transactions arises
in the Internet where sellers may wish to offer for example, pages
of information for fractions of currency that do not exist in the
real world.
o Delivery: New modes of delivery must be accommodated such as
direct electronic delivery. The means by which receipt is
confirmed and the execution of payment change dramatically where
the goods or services have extremely low delivery cost but may in
fact have very high value. Or, maybe the value is not high, but
once delivery occurs the value is irretrievably delivered so
payment must be final and non-refundable but delivery nonetheless
must still be confirmed before payment. Incremental delivery such
as listening or viewing time or playing time are other models that
operate somewhat differently in the virtual world.
Burdett Informational [Page 8]
^L
RFC 2801 IOTP/1.0 April 2000
1.2 Benefits of IOTP
ELECTRONIC COMMERCE SOFTWARE VENDORS
Electronic Commerce Software Vendors will be able to develop e-
commerce products which are more attractive as they will inter-
operate with any other vendors' software. However, since IOTP focuses
on how these solutions communicate, there is still plenty of
opportunity for product differentiation.
PAYMENT BRANDS
IOTP provides a standard framework for encapsulating payment
protocols. This means that it is easier for payment products to be
incorporated into IOTP solutions. As a result the payment brands will
be more widely distributed and available on a wider variety of
platforms.
MERCHANTS
There are several benefits for Merchants:
o they will be able to offer a wider variety of payment brands,
o they can be more certain that the customer will have the software
needed to complete the purchase
o through receiving payment and delivery receipts from their
customers, they will be able to provide customer care knowing that
they are dealing with the individual or organisation with which
they originally traded
o new merchants will be able to enter this new (Internet) market-
place with new products and services, using the new trading
opportunities which IOTP presents
BANKS AND FINANCIAL INSTITUTIONS
There are also several benefits for Banks and Financial Institutions:
o they will be able to provide IOTP support for merchants
o they will find new opportunities for IOTP related services:
- providing customer care for merchants
- fees from processing new payments and deposits
Burdett Informational [Page 9]
^L
RFC 2801 IOTP/1.0 April 2000
o they have an opportunity to build relationships with new types of
merchants
CUSTOMERS
For Customers there are several benefits:
o they will have a larger selection of merchants with whom they can
trade
o there is a more consistent interface when making the purchase
o there are ways in which they can get their problems fixed through
the merchant (rather than the bank!)
o there is a record of their transaction which can be used, for
example, to feed into accounting systems or, potentially, to
present to the tax authorities
1.3 Baseline IOTP
This specification is Baseline IOTP. It is a Baseline in that it
contains ways of doing trades on the Internet which are the most
common, for example purchases and refunds.
The group that has worked on the IOTP see an extended version being
developed over time but feel a need to focus on a limited function
but completely usable specification in order that implementers can
develop solutions that work now.
During this period it is anticipated that there will be no changes to
the scope of this specification with the only changes made being
limited to corrections where problems are found. Software solutions
have been developed based on earlier versions of this specification
(for example version 0.9 published in early 1998 and earlier
revisions of version 1.0 published during 1999) which prove that the
IOTP works.
1.4 Objectives of Document
The objectives of this document are to provide a specification of
version 1.0 of the Internet Open Trading Protocols which can be used
to design and implement systems which support electronic trading on
the Internet using the Internet Open Trading Protocols.
Burdett Informational [Page 10]
^L
RFC 2801 IOTP/1.0 April 2000
The purpose of the document is:
o to allow potential developers of products based on the protocol to
develop software/hardware solutions which use the protocol
o to allow the financial services industry to understand a
developing electronic commerce trading protocol that encapsulates
(without modification) any of the current or developing payment
schemes now being used or considered by their merchant customer
base
1.5 Scope of Document
The protocol describes the content, format and sequences of messages
that pass among the participants in an electronic trade - consumers,
merchants and banks or other financial institutions, and customer
care providers. These are required to support the electronic
commerce transactions outlined in the objectives above.
The protocol is designed to be applicable to any electronic payment
scheme since it targets the complete purchase process where the
movement of electronic value from the payer to the payee is only one,
but important, step of many that may be involved to complete the
trade.
Payment Scheme which IOTP could support include MasterCard Credit,
Visa Credit, Mondex Cash, Visa Cash, GeldKarte, eCash, CyberCoin,
Millicent, Proton, etc.
Each payment scheme contains some message flows which are specific to
that scheme. These scheme-specific parts of the protocol are
contained in a set of payment scheme supplements to this
specification.
The document does not prescribe the software and processes that will
need to be implemented by each participant. It does describe the
framework necessary for trading to take place.
This document also does not address any legal or regulatory issues
surrounding the implementation of the protocol or the information
systems which use them.
1.6 Document Structure
The document consists of the following sections:
o Section 1 - Background: This section gives a brief background on
electronic commerce and the benefits IOTP offers.
Burdett Informational [Page 11]
^L
RFC 2801 IOTP/1.0 April 2000
o Section 2 - Introduction: This section describes the various
Trading Exchanges and shows how these trading exchanges are used
to construct the IOTP Transactions. This section also explains
various Trading Roles that would participate in electronic trade.
o Section 3 - Protocol Structure: This section summarises how
various IOTP transactions are constructed using the Trading Blocks
and Trading Components that are the fundamental building blocks
for IOTP transactions. All IOTP transaction messages are well
formed XML documents.
o Section 4 - IOTP Error Handling: This section describes how to
process exceptions and errors during the protocol message exchange
and trading exchange processing. This section provides a generic
overview of the exception handling. This section should be read
carefully.
o Section 5 - Security Considerations: This section considers from
an IETF perspective, how IOTP addresses security. It includes: how
to determine whether to use digital signatures with IOTP, how IOTP
address data privacy, and how security built into payment
protocols relate to IOTP security.
o Section 6 - Digital Signatures and IOTP: This section provides an
overview of how IOTP uses digital signatures; how to check a
signature is correctly calculated and how the various Trading
Roles that participate in trade should check signatures when
required.
o Section 7 - Trading Components: This section defines the XML
elements required by Trading Components.
o Section 8 - Trading Blocks: This section describes how Trading
Blocks are constructed from Trading Components.
o Section 9 - Internet Open Trading Protocol Transactions: This
section describes all the IOTP Baseline transactions. It refers to
Trading Blocks and Trading Components and Signatures. This section
doesn't directly link error handling during the protocol
exchanges, the reader is advised to understand Error Handling as
defined in section before reading this section.
o Section 10 - Retrieving Logos: This section describes how IOTP
specific logos can be retrieved.
Burdett Informational [Page 12]
^L
RFC 2801 IOTP/1.0 April 2000
o Section 11 - Brands: This section provides: an overview of Brand
Definitions and Brand Selection which describe how a Consumer can
select a Brand from a list provided by the Merchant; as well as
some examples of Brand Lists.
o Section 12 - IANA Considerations: This section describes how new
values for codes used by IOTP are co-ordinated.
o Section 13 - Internet Open Trading Protocol Data Type Definition:
This section contains the XML Data Type Definitions for IOTP.
o Section 14 - Glossary. This describes all the major terminology
used by IOTP.
o Section 15 - A list of the other documents referenced by the IOTP
specification.
o Section 16 - The Author's Address
o Section 17 - Full Copyright Statement
1.7 Intended Readership
Software and hardware developers; development analysts; business and
technical planners; industry analysts; merchants; bank and other
payment handlers; owners, custodians, and users of payment protocols.
1.7.1 Reading Guidelines
This IOTP specification is structured primarily in a sequence
targeted at people who want to understand the principles of IOTP.
However from practical implementation experience by implementers of
earlier of versions of the protocol new readers who plan to implement
IOTP may prefer to read the document in a different sequence as
described below.
Review the transport independent parts of the specification. This
covers:
o Section 14 - Glossary
o Section 1 - Background
o Section 2 - Introduction
o Section 3 - Protocol Structure
o Section 4 - IOTP Error Handling
Burdett Informational [Page 13]
^L
RFC 2801 IOTP/1.0 April 2000
o Section 5 - Security Considerations
o Section 9 - Internet Open Trading Protocol Transactions
o Section 11 - Brands
o Section 12 - IANA Considerations
o Section 10 - Retrieving Logos
Review the detailed XML definitions:
o Section 8 - Trading Blocks
o Section 7 - Trading Components
o Section 6 - Digital Signatures and IOTP
2. Introduction
The Internet Open Trading Protocols (IOTP) define a number of
different types of IOTP Transactions:
o Purchase. This supports a purchase involving an offer, a payment
and optionally a delivery
o Refund. This supports the refund of a payment as a result of,
typically, an earlier purchase
o Value Exchange. This involves two payments which result in the
exchange of value from one combination of currency and payment
method to another
o Authentication. This supports one organisation or individual to
check that another organisation or individual are who they appear
to be.
o Withdrawal. This supports the withdrawal of electronic cash from a
financial institution
o Deposit. This supports the deposit of electronic cash at a
financial institution
o Inquiry. This supports inquiries on the status of an IOTP
transaction which is either in progress or is complete
Burdett Informational [Page 14]
^L
RFC 2801 IOTP/1.0 April 2000
o Ping. This supports a simple query which enables one IOTP aware
application to determine whether another IOTP application running
elsewhere is working or not.
These IOTP Transactions are "Baseline" transactions since they have
been identified as a minimum useful set of transactions. Later
versions of IOTP may include additional types of transactions.
Each of the IOTP Transactions above involve:
o a number of organisations playing a Trading Role, and
o a set of Trading Exchanges. Each Trading Exchange involves the
exchange of data, between Trading Roles, in the form of a set of
Trading Components.
Trading Roles, Trading Exchanges and Trading Components are described
below.
Burdett Informational [Page 15]
^L
RFC 2801 IOTP/1.0 April 2000
2.1 Trading Roles
The Trading Roles identify the different parts which organisations
can take in a trade. The five Trading Roles used within IOTP are
illustrated in the diagram below.
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
Merchant Customer Care Provider resolves ----------
---------------------------------------------->| Merchant |
| Consumer disputes and problems |Cust.Care.|
| | Provider |
| ----------
|
Payment Handler accepts or makes ----------
| ------------------------------------------>| Payment |
| | Payment for Merchant | Handler |
| | ----------
v v
---------- Consumer makes purchases or obtains ----------
| Consumer |<--------------------------------------->| Merchant |
---------- refund from Merchant ----------
^
| Delivery Handler supplies goods or ----------
|---------------------------------------------->|Deliverer |
services for Merchant | Handler |
----------
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 1 IOTP Trading Roles
Burdett Informational [Page 16]
^L
RFC 2801 IOTP/1.0 April 2000
The roles are:
o Consumer. The person or organisation which is to receive and pay
for the goods or services
o Merchant. The person or organisation from whom the purchase is
being made and who is legally responsible for providing the goods
or services and receives the benefit of the payment made
o Payment Handler. The entity that physically receives the payment
from the Consumer on behalf of the Merchant
o Delivery Handler. The entity that physically delivers the goods or
services to the Consumer on behalf of the Merchant.
o Merchant Customer Care Provider. The entity that is involved with
customer dispute negotiation and resolution on behalf of the
Merchant
Roles may be carried out by the same organisation or different
organisations. For example:
o in the simplest case one physical organisation (e.g., a merchant)
could handle the purchase, accept the payment, deliver the goods
and provide merchant customer care
o at the other extreme, a merchant could handle the purchase but
instruct the consumer to pay a bank or financial institution,
request that delivery be made by an overnight courier firm and to
contact an organisation which provides 24x7 service if problems
arise.
Note that in this specification, unless stated to the contrary, when
the words Consumer, Merchant, Payment Handler, Delivery Handler or
Customer Care Provider are used, they refer to the Trading Role
rather than an actual organisation.
An individual organisation may take multiple roles. For example a
company which is selling goods and services on the Internet could
take the role of Merchant when selling goods or services and the role
of Consumer when the company is buying goods or services itself.
As roles occur in different places there is a need for the
organisations involved in the trade to exchange data, i.e. to carry
out Trading Exchanges, so that the trade can be completed.
Burdett Informational [Page 17]
^L
RFC 2801 IOTP/1.0 April 2000
2.2 Trading Exchanges
The Internet Open Trading Protocols identify four Trading Exchanges
which involve the exchange of data between the Trading Roles. The
Trading Exchanges are:
o Offer. The Offer Exchange results in the Merchant providing the
Consumer with the reason why the trade is taking place. It is
called an Offer since the Consumer must accept the Offer if a
trade is to continue
o Payment. The Payment Exchange results in a payment of some kind
between the Consumer and the Payment Handler. This may occur in
either direction
o Delivery. The Delivery Exchange transmits either the on-line
goods, or delivery information about physical goods from the
Delivery Handler to the Consumer, and
o Authentication. The Authentication Exchange can be used by any
Trading Role to authenticate another Trading Role to check that
they are who they appear to be.
IOTP Transactions are composed of various combinations of these
Trading Exchanges. For example, an IOTP Purchase transaction
includes Offer, Payment, and Delivery Trading Exchanges. As another
example, an IOTP Value Exchange transaction is composed of an Offer
Trading Exchange and two Payment Trading Exchanges.
Trading Exchanges consist of Trading Components that are transmitted
between the various Trading Roles. Where possible, the number of
round-trip delays in an IOTP Transaction is minimised by packing the
Components from several Trading Exchanges into combination IOTP
Messages. For example, the IOTP Purchase transaction combines a
Delivery Organisation Component with an Offer Response Component in
order to avoid an extra Consumer request and response.
Each of the IOTP Trading Exchanges is described in more detail below.
For clarity of description, these describe the Trading Exchanges as
though they were standalone operations. For performance reasons, the
Trading Exchanges are intermingled in the actual IOTP Transaction
definitions.
Burdett Informational [Page 18]
^L
RFC 2801 IOTP/1.0 April 2000
2.2.1 Offer Exchange
The goal of the Offer Exchange is for the Merchant to provide the
Consumer with information about the trade so that the Consumer can
decide whether to continue with the trade. This is illustrated in the
figure below.
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
Consumer
| Merchant
STEP | |
1. Consumer decides to trade and sends information about the
transaction (requests an offer) to the Merchant e.g.,
using HTML.
C --> M Data: Information on what is being purchased (Offer Request)
- outside scope of IOTP
2. Merchant checks the information provided by the Consumer,
creates an Offer optionally signs it and sends it to the
Consumer.
C <-- M OFFER RESPONSE. Components: Status; Organisation(s)
(Consumer, DelivTo, Merchant, Payment Handler, Customer
Care); Order; Payment; Delivery; TradingRoleData (optional)
Offer Response Signature (optional) that signs other
components
3. Consumer checks the information from the Merchant and
decides whether to continue.
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 2 Offer Exchange
An Offer Exchange uses the following Trading Components that are
passed between the Consumer and the Merchant:
o the Status component is used to indicate to other parties that a
valid Offer Response has been generated
o the Organisation Component contains information which describes
the Organisations which are taking a role in the trade:
- the consumer provides information, about who the consumer is
and, if goods or services are being delivered, where the goods
or services are to be delivered to
Burdett Informational [Page 19]
^L
RFC 2801 IOTP/1.0 April 2000
- the merchant augments this information by providing information
about the merchant, the Payment Handler, the customer care
provider and, if goods or services are being delivered, the
Delivery Handler
o the Order Component contains descriptions of the goods or services
which will result from the trade if the consumer agrees to the
offer. This information is sent by the Merchant to the consumer
who should verify it
o the Payment Component generated by the Merchant, contains details
of how much to pay, the currency and the payment direction, for
example the consumer could be asking for a refund. Note that there
may be more than one payment in a trade
o the Delivery Component, also generated by the Merchant, is used if
goods or services are being delivered. This contains information
about how delivery will occur, for example by post or using e-mail
o the Trading Role Data component contains data the Merchant wants
to forward to another Trading Role such as a Payment Handler or
Delivery Handler
o the "Offer Response" Signature Component, if present, digitally
signs all of the above components to ensure their integrity.
The exact content of the information provided by the Merchant to the
Consumer will vary depending on the type of IOTP Transaction. For
example:
o low value purchases may not need a signature
o the amount to be paid may vary depending on the payment brand and
payment protocol used
o some offers may not involve the delivery of any goods
o a value exchange will involve two payments
o a merchant may not offer customer care.
Information provided by the consumer to the merchant is provided
using a variety of methods, for example, it could be provided:
o using [HTML] pages as part of the "shopping experience" of the
consumer.
Burdett Informational [Page 20]
^L
RFC 2801 IOTP/1.0 April 2000
o Using the Open Profiling Standard [OPS] which has recently been
proposed,
o in the form of Organisation Components associated with an
authentication of a Consumer by a Merchant
o as Order Components in a later version of IOTP.
2.2.2 Payment Exchange
The goal of the Payment Exchange is for a payment to be made from the
Consumer to a Payment Handler or vice versa using a payment brand and
payment protocol selected by the Consumer. A secondary goal is to
optionally provide the Consumer with a digitally signed Payment
Receipt which can be used to link the payment to the reason for the
payment as described in the Offer Exchange.
Payment Exchanges can work in a variety of ways. The most general
case where the trade is dependent on the payment brand and protocol
used is illustrated in the diagram below. Simpler payment exchanges
are possible.
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
Consumer Pay Handler
| Merchant |
STEP | | |
1. Consumer decides to trade and sends information
about the transaction (requests an offer) to the
Merchant e.g., using HTML.
C --> M Information on what is being paid for (outside
scope of IOTP
2. Merchant decides which payment brand, payment
protocols and currencies/amounts to offer,
places then in a Brand List Component and sends
them to the Consumer
C <-- M Components: Brand List
3. Consumer selects the payment brand, protocol and
currency/amount to use, creates a Brand Selection
component and sends it to the Merchant
C --> M Component: Brand List Selection
Burdett Informational [Page 21]
^L
RFC 2801 IOTP/1.0 April 2000
4. Merchant checks Brand Selection, creates a Payment
Amount information, optionally signs it to
authorise payment and sends it to the Consumer
C <-- M Component: Payment; Organisation(s) (Merchant and
Payment Handler); Optional Offer Response Signature
that signs other components
5. Consumer checks the Payment Amount information and
if OK requests that the payment starts by sending
information to the Payment Handler
C --------> P PAYMENT REQUEST. Components: Status, Payment;
Organisations (Merchant and Payment Handler);
Trading Role Data (optional); Optional Offer
Response Signature that signs other components;
Pay Scheme Data
6. Payment Handler checks information including
optional signature and if OK starts exchanging Pay
Scheme Data components for selected payment brand
and payment protocol
C <-------> P PAYMENT EXCHANGE. Component: Pay Scheme Data
7. Eventually payment protocol messages finish so
Payment Handler sends Pay Receipt and optional
signature to the Consumer as proof of payment
C <-------> P PAYMENT RESPONSE. Components: Status, Pay Receipt;
Payment Note; Trading Role Data (optional);
Optional Offer Response Signature; Optional
Payment Receipt Signature that binds the payment
to the Offer
8. Consumer checks Payment Receipt is OK
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 3 Payment Exchange
A Payment Exchange uses the following Trading Components that are
passed between the Consumer, the Merchant and the Payment Handler:
o The Brand List Component contains a list of payment brands (for
example, MasterCard, Visa, Mondex, GeldKarte), payment protocols
(for example SET Version 1.0, Secure Channel Credit Debit (SCCD -
the name used for a credit or debit card payment where
Burdett Informational [Page 22]
^L
RFC 2801 IOTP/1.0 April 2000
unauthorised access to account information is prevented through
use of secure channel transport mechanisms such as SSL/TLS) as
well as currencies/amounts that apply. The Merchant sends the
Brand List to the Consumer. The consumer compares the payment
brands, protocols and currencies/amounts on offer with those that
the Consumer supports and makes a selection.
o The Brand Selection Component contains the Consumer's selection.
Payment brand, protocol, currency/amount and possibly protocol-
specific information is sent back to the Merchant. This
information may be used to change information in the Offer
Exchange. For example, a merchant could choose to offer a discount
to encourage the use of a store card.
o the Status component is used to indicate to the Payment Handler
that an earlier exchange (e.g., an Offer Exchange) has
successfully completed and by the Payment Handler to indicate the
completion status of the Payment Exchange.
o The Organisation Components are generated by the Merchant. They
contain details of the Merchant and Payment Handler Roles:
- the Merchant role is required so that the Payment Handler can
identify which Merchant initiated the payment. Typically, the
result of the Payment Handler accepting (or making) a payment
on behalf of the Merchant will be a credit or debit transaction
to the Merchant's account held by the Payment Handler. These
transactions are outside the scope of this version of IOTP
- the Payment Handler role is required so that the Payment
Handler can check that it is the correct Payment Handler to be
used for the payment
o The Payment Component contains details of how much to pay, the
currency and the payment direction
o The "Offer Response" Signature Component, if present, digitally
signs all of the above components to ensure their integrity. Note
that the Brand List and Brand Selection Components are not signed
until the payment information is created (step 4 in the diagram)
o the Trading Role Data component contains from other roles (e.g., a
Merchant) that needs to be forwarded to the Payment Handler
o The Payment Scheme Component contains messages from the payment
protocol used in the Trade. For example they could be SET
messages, Mondex messages, GeldKarte Messages or one of the other
payment methods supported by IOTP. The content of the Payment
Burdett Informational [Page 23]
^L
RFC 2801 IOTP/1.0 April 2000
Scheme Component is defined in the supplements that describe how
IOTP works with various payment protocols.
o The Payment Receipt Component contains a record of the payment.
The content depends upon the payment protocol used.
o The "Payment Receipt" Signature Component provides proof of
payment by digitally signing both the Payment Receipt Component
and the Offer Response Signature. The signature on the offer
digitally signs the Order, Organisation and Delivery Components
contained in the Offer. This signature effectively binds the
payment to the offer.
The example of a Payment Exchange above is the most general case.
Simpler cases are also possible. For example, if the amount paid is
not dependent on the payment brand and protocol selected then the
payment information generated by step 3 can be sent to the Consumer
at the same time as the Brand List Component generated by step 1.
These and other variations are described in the Baseline Purchase
IOTP Transaction (see section 9.1.8).
2.2.3 Delivery Exchange
The goal of the Delivery Exchange is to cause purchased goods to be
delivered to the consumer either online or via physical delivery. A
second goal is to provide a "delivery note" to the consumer,
providing details about the delivery, such as shipping tracking
number. The result of the delivery may also be signed so that it can
be used for customer care in the case of problems with physical
delivery. The message flow is illustrated in the diagram below.
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
CONSUMER DELIVERY
| HANDLER
| Merchant |
STEP | | |
1. Consumer decides to trade and sends information
about what to deliver and who is to take delivery,
to the Merchant e.g., using HTML.
C --> M Information on what is being delivered (outside
scope of IOTP)
2. Merchant checks the information provided by the
Consumer, adds information about how the delivery
will occur, information about the Organisations
involved in the delivery and optionally sings it
and sends it to the Consumer
Burdett Informational [Page 24]
^L
RFC 2801 IOTP/1.0 April 2000
C <-- M Components: Delivery; Organisations (Delivery
Handler, Deliver To); Order, Optional Offer
Response Signature
3. Consumer checks delivery information is OK,
obtains authorisation for the delivery, for
example by making a payment, and sends the
delivery information to the Delivery Handler
C --------> D DELIVERY REQUEST. Components: Status; Delivery,
Organisations: (Merchant, Delivery Handler,
DelivTo); Order, Trading Role Data (optional);
Optional Offer Response Signature, Optional
Payment Receipt Signature (from Payment Exchange)
4. Delivery Handler checks information and
authorisation. Starts or schedules delivery and
creates and then sends a delivery not tot the
Consumer which can optionally be signed.
C <-------- D DELIVERY RESPONSE. Components: Status; Delivery
Note, Trading Role Data (optional); Optional
Delivery Response Signature
5. Consumer checks delivery note is OK and accepts or
waits for delivery as described in the the Delivery
Note.
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 4 Delivery Exchange
A Delivery Exchange uses the following Trading Components that are
passed between the Consumer, the Merchant and the Delivery Handler:
o the Status component is used to indicate to the Delivery Handler
that an earlier exchange (e.g., an Offer Exchange or Payment
Exchange) has successfully completed and by the Delivery Handler
to indicate the completion status of the Delivery Exchange.
o The Organisation Component(s) contain details of the Deliver To,
Delivery Handler and Merchant Roles:
- the Deliver To role indicates where the goods or services are
to be delivered to
Burdett Informational [Page 25]
^L
RFC 2801 IOTP/1.0 April 2000
- the Delivery Handler role is required so that the Delivery
Handler can check that she is the correct Delivery Handler to
do the delivery
- the Merchant role is required so that the Delivery Handler can
identify which Merchant initiated the delivery
o The Order Component, contains information about the goods or
services to be delivered
o The Delivery Component contains information about how delivery
will occur, for example by post or using e-mail.
o The "Offer Response" Signature Component, if present, digitally
signs all of the above components to ensure their integrity.
o The "Payment Receipt" Signature Component provides proof of
payment by digitally signing the Payment Receipt Component and the
Offer Signature. This is used by the Delivery Handler to check
that delivery is authorised
o The Delivery Note Component contains customer care information
related to a physical delivery, or alternatively the actual
"electronic goods". The Consumer's software does not interpret
information about a physical delivery but should have the ability
to display the information, both at the time of the delivery and
later if the Consumer selects the Trade to which this delivery
relates from a transaction list
o The "Delivery Response" Signature Component, if present, provides
proof of the results of the Delivery by digitally signing the
Delivery Note and any Offer Response or Payment Response
signatures that the Delivery Handler received.
2.2.4 Authentication Exchange
The goal of the Authentication Exchange is to allow one Organisation,
for example a financial institution, to be able to check that another
Organisation, for example a consumer, is who they appear to be.
An Authentication Exchange involves:
o an Authenticator - the Organisation which is requesting the
authentication, and
o an Authenticatee - the Organisation being authenticated.
Burdett Informational [Page 26]
^L
RFC 2801 IOTP/1.0 April 2000
This is illustrated in the diagram below.
+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
Organisation 1
(Authenticatee)
| Organisation 2
| (Authenticator)
STEP | |
1. First Organisation, e.g., a Consumer, takes an action (for
example by pressing a button on an HTML page) which
requires that the Organisation is authenticated
1 --> 2 Need for Authentication (outside scope of IOTP)
2. The second Organisation generates an Authentication
Request - including challenge data, and a list of the
algorithms that may be used for the authentication -
and/or a request for the Organisation information then
sends it to the first Organisation
1 <-- 2 AUTHENTICATION REQUEST. Components: Authentication
Request, Trading Role Information Request
3. The first Organisation optionally checks any signature
associated with the Authentication Request then uses the
specified authentication algorithm to generate an
Authentication Response which is sent back to the second
Organisation together with details of any Organisation
information requested
1 --> 2 AUTHENTICATION RESPONSE. Component: Authentication
Response, Organisation(s)
4. The Authentication Response is checked against the
challenge data to check that the first Organisation is
who they appear to be and the result recorded in a Status
Component which is then sent back to the first
Organisation.
1 <-- 2 AUTHENTICATION STATUS. Component: Status
5. The first Organisation then optionally checks the results
indicated by the Status and any associated signature and
takes the appropriate action or stops.
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 5 Authentication Exchange
Burdett Informational [Page 27]
^L
RFC 2801 IOTP/1.0 April 2000
An Authentication Exchange uses the following Trading Components that
are passed between the two Organisations:
o the Authentication Request Component that requests an
Authentication and indicates the authentication algorithm and
optional challenge data to be used.
o A Trading Role Information Request Component that requests
information about an Organisation, for example a ship to address.
o The Authentication Response Component which contains the challenge
response generated by the recipient of the Authentication Request
Component.
o Organisation Components that contain the result of the Trading
Role Information Request
o the Status Component which contains the results of the second
party's verification of the Authentication Response.
2.3 Scope of Baseline IOTP
This specification describes the IOTP Transactions which make up
Baseline IOTP. As described in the preface, IOTP will evolve over
time. This section defines the initial conformance criteria for
implementations that claim to "support IOTP."
The main determinant on the scope of an IOTP implementation is the
roles which the solution is designed to support. The roles within
IOTP are described in more detail in section 2.1 Trading Roles. To
summarise the roles are: Merchant, Consumer, Payment Handler,
Delivery Handler and Customer Care Provider.
Payment Handlers who can be of three types:
o those who accept a payment as part of a purchase or make a payment
as part of a refund,
o those who accept value as part of a deposit transaction, or
o those that issue value a withdrawal transaction
The following table defines, for each role, the IOTP Transactions and
Trading Blocks which must be supported for that role.
Burdett Informational [Page 28]
^L
RFC 2801 IOTP/1.0 April 2000
Merchants
ECash ECash
Store Value Value Consumer Payment Delivery
Issuer Acquirer Handler Handler
TRANSACTIONS
Purchase Must Must
Merchants
ECash ECash
Store Value Value Consumer Payment Delivery
Issuer Acquirer Handler Handler
Refund Must b)
Depends
Authentication May Must May b)
Depends
Value Exchange May Must
Withdrawal Must b)
Depends
Deposit Must b)
Depends
Inquiry Must Must Must May Must Must
Ping Must Must Must May Must Must
TRADING BLOCKS
TPO Must Must Must Must
TPO Selection Must Must Must Must
Auth-Request a) a) a)
Depends Depends Depends
Auth-Reply a) a) a)
Depends Depends Depends
Offer Response Must Must Must Must
Burdett Informational [Page 29]
^L
RFC 2801 IOTP/1.0 April 2000
Payment Must Must
Request
Payment Must Must
Exchange
Payment Must Must
Response
Delivery Must Must
Request
Delivery Must Must
Response
Merchants
ECash ECash
Store Value Value Consumer Payment Delivery
Issuer Acquirer Handler Handler
Inquiry Must Must Must Must Must Must
Request
Inquiry Must Must Must Must Must Must
Response
Ping Request Must Must Must Must Must Must
Ping Response Must Must Must Must Must Must
Signature Must Must Must Limited Must Must
Error Must Must Must Must Must Must
In the above table:
o "Must" means that a Trading Role must support the Transaction or
Trading Block.
o "May" means that an implementation may support the Transaction or
Trading Block at the option of the developer.
o "Depends" means implementation of the Transaction or Trading Block
depends on one of the following conditions:
- if Baseline Authentication IOTP Transaction is supported;
Burdett Informational [Page 30]
^L
RFC 2801 IOTP/1.0 April 2000
- if required by a Payment Method as defined in its IOTP
Supplement document.
o "Limited" means the Trading Block must be understood and its
content manipulated but not in every respect. Specifically, on the
Signature Block, Consumers do not have to be able to validate
digital signatures.
An IOTP solution must support all the IOTP Transactions and Trading
Blocks required by at least one role (column) as described in the
above table for that solution to be described as "supporting IOTP".
3. Protocol Structure
The previous section provided an introduction which explained:
o Trading Roles which are the different roles which Organisations
can take in a trade: Consumer, Merchant, Payment Handler, Delivery
Handler and Customer Care Provider, and
o Trading Exchanges where each Trading Exchange involves the
exchange of data, between Trading Roles, in the form of a set of
Trading Components.
This section describes:
o how Trading Components are constructed into Trading Blocks and the
IOTP Messages which are physically sent in the form of [XML]
documents between the different Trading Roles,
o how IOTP Messages are exchanged between Trading Roles to create an
IOTP Transaction
o the XML definitions of an IOTP Message including a Transaction
Reference Block - an XML element which identifies an IOTP
Transaction and the IOTP Message within it
o the definitions of the XML ID Attributes which are used to
identify IOTP Messages, Trading Blocks and Trading Components and
how these are referred to using Element References from other XML
elements
o how extra XML Elements and new user defined values for existing
IOTP codes can be used when Extending IOTP,
o how IOTP uses the Packaged Content Element to embed data such as
payment protocol messages or detailed order definitions within an
IOTP Message
Burdett Informational [Page 31]
^L
RFC 2801 IOTP/1.0 April 2000
o how IOTP Identifies Languages so that different languages can be
used within IOTP Messages
o how IOTP handles both Secure and Insecure Net Locations when
sending messages
o how an IOTP Transaction can be cancelled.
3.1 Overview
3.1.1 IOTP Message Structure
The structure of an IOTP Message and its relationship with Trading
Blocks and Trading Components is illustrated in the diagram below.
Burdett Informational [Page 32]
^L
RFC 2801 IOTP/1.0 April 2000
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
IOTP MESSAGE <---------- IOTP Message - an XML Document which is
| transported between the Trading Roles
|-Trans Ref Block <----- Trans Ref Block - contains information which
| | describes the IOTP Transaction and the IOTP
| | Message.
| |-Trans Id Comp. <--- Transaction Id Component - uniquely
| | identifies the IOTP Transaction. The Trans Id
| | Components are the same across all IOTP
| | messages that comprise a single IOTP
| | transaction.
| |-Msg Id Comp. <----- Message Id Component - identifies and
| describes an IOTP Message within an IOTP
| Transaction
|-Signature Block <----- Signature Block (optional) - contains one or
| | more Signature Components and their
| | associated Certificates
| |-Signature Comp. <-- Signature Component - contains digital
| | signatures. Signatures may sign digests of
| | the Trans Ref Block and any Trading Component
| | in any IOTP Message in the same IOTP
| | transaction.
| |-Certificate Comp. < Certificate Component (Optional) Used to check
| the signature.
|-Trading Block <------- Trading Block - an XML Element within an IOTP
| |-Trading Comp. Message that contains a predefined set of
| |-Trading Comp. Trading Components
| |-Trading Comp.
| |-Trading Comp. <--- Trading Components - XML Elements within a
| Trading Block that contain a predefined set
|-Trading Block of XML elements and attributes containing
| |-Trading Comp. information required to support a Trading
| |-Trading Comp. Exchange
| |-Trading Comp.
| |-Trading Comp.
| |-Trading Comp.
*-*-*-*-*-*--*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 6 IOTP Message Structure
The diagram also introduces the concept of a Transaction Reference
Block. This block contains, amongst other things, a globally unique
identifier for the IOTP Transaction. Also each block and component is
given an ID Attribute (see section 3.4) which is unique within an
IOTP Transaction. Therefore the combination of the ID attribute and
Burdett Informational [Page 33]
^L
RFC 2801 IOTP/1.0 April 2000
the globally unique identifier in the Transaction Reference Block is
sufficient to uniquely identify any Trading Block or Trading
Component.
3.1.2 IOTP Transactions
A predefined set of IOTP Messages exchanged between the Trading Roles
constitute an IOTP Transaction. This is illustrated in the diagram
below.
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
CONSUMER MERCHANT
Generate first
IOTP Message
--- |
| | v
Process incoming | I | -------------
IOTP Message & <------------- | | ------------ | IOTP Message |
generate next IOTP | | -------------
Message | N |
| | |
v | |
------------- | T | Process incoming
| IOTP Message | -------------- | | -----------> IOTP Message &
------------- | | generate next
| E | IOTP Message
| | |
| | v
Process incoming | R | -------------
IOTP Message <------------- | | ------------ | IOTP Message |
generate last IOTP | | -------------
Message & stop | N |
| | |
v | |
------------- | E | Process last
| IOTP Message | -------------- | | -------------> incoming IOTP
------------- | | Message & stop
| | T | |
v | | v
STOP --- STOP
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-
Figure 7 An IOTP Transaction
Burdett Informational [Page 34]
^L
RFC 2801 IOTP/1.0 April 2000
In the above diagram the Internet is shown as the transport
mechanism. This is not necessarily the case. IOTP Messages can be
transported using a variety of transport mechanisms.
The IOTP Transactions (see section 9) in this version of IOTP are
specifically:
o Purchase. This supports a purchase involving an offer, a payment
and optionally a delivery
o Refund. This supports the refund of a payment as a result of,
typically, an earlier purchase
o Value Exchange. This involves two payments which result in the
exchange of value from one combination of currency and payment
method to another
o Authentication. This supports the remote authentication of one
Trading Role by another Trading Role using a variety of
authentication algorithms, and the provision of an Organisation
Information about the Trading Role that is being authenticated for
use in, for example, the creation of an offer
o Withdrawal. This supports the withdrawal of electronic cash from a
financial institution
o Deposit. This supports the deposit of electronic cash at a
financial institution
o Inquiry This supports inquiries on the status of an IOTP
transaction which is either in progress or is complete
o Ping This supports a simple query which enables one IOTP aware
application to determine whether another IOTP application running
elsewhere is working or not.
3.2 IOTP Message
As described earlier, IOTP Messages are [XML] documents which are
physically sent between the different Trading Roles that are taking
part in a trade.
The XML definition of an IOTP Message is as follows.
<!ELEMENT IotpMessage
( TransRefBlk,
SigBlk?,
ErrorBlk?,
Burdett Informational [Page 35]
^L
RFC 2801 IOTP/1.0 April 2000
( AuthReqBlk |
AuthRespBlk |
AuthStatusBlk |
CancelBlk |
DeliveryReqBlk |
DeliveryRespBlk |
InquiryReqBlk |
InquiryRespBlk |
OfferRespBlk |
PayExchBlk |
PayReqBlk |
PayRespBlk |
PingReqBlk |
PingRespBlk |
TpoBlk |
TpoSelectionBlk
)*
) >
<!ATTLIST IotpMessage
xmlns CDATA
'iotp:ietf.org/iotp-v1.0'
Content:
TransRefBlk This contains information which describes an IOTP
Message within an IOTP Transaction (see section
3.3 immediately below)
AuthReqBlk, These are the Trading Blocks.
AuthRespBlk,
DeliveryReqBlk, The Trading Blocks present within an IOTP Message,
DeliveryRespBlk and the content of a Trading Block itself is
ErrorBlk dependent on the type of IOTP Transaction being
InquiryReqBlk, carried out - see the definition of each
InquiryRespBlk, transaction in section 9 Internet Open Trading
OfferRespBlk, Protocol Transactions.
PayExchBlk,
PayReqBlk, Full definitions of each Trading Block are
PayRespBlk, described in section 8.
PingReqBlk,
PingRespBlk,
SigBlk,
TpoBlk,
TpoSelectionBlk
Attributes:
xmlns The [XML Namespace] definition for IOTP messages.
Burdett Informational [Page 36]
^L
RFC 2801 IOTP/1.0 April 2000
3.2.1 XML Document Prolog
The IOTP Message is the root element of the XML document. It
therefore needs to be preceded by an appropriate XML Document Prolog.
For example:
<?XML Version='1.0'?>
<!DOCTYPE IotpMessage >
<IotpMessage>
...
</IotpMessage>
3.3 Transaction Reference Block
A Transaction Reference Block contains information which identifies
the IOTP Transaction and IOTP Message. The Transaction Reference
Block contains:
o a Transaction Id Component which globally uniquely identifies the
IOTP Transaction. The Transaction Id Components are the same
across all IOTP messages that comprise a single IOTP transaction,
o a Message Id Component which provides control information about
the IOTP Message as well as uniquely identifying the IOTP Message
within an IOTP Transaction, and
o zero or more Related To Components which link this IOTP
Transaction to either other IOTP Transactions or other events
using the identifiers of those events.
The definition of a Transaction Reference Block is as follows:
<!ELEMENT TransRefBlk (TransId, MsgId, RelatedTo*) >
<!ATTLIST TransRefBlk
ID ID #REQUIRED >
Attributes:
ID An identifier which uniquely identifies the
Transaction Reference Block within the IOTP
Transaction (see section 3.4 ID Attributes).
Content:
TransId See 3.3.1 Transaction Id Component immediately
below.
MsgId See 3.3.2 Message Id Component immediately below.
Burdett Informational [Page 37]
^L
RFC 2801 IOTP/1.0 April 2000
RelatedTo See 3.3.3 Related To Component immediately below.
3.3.1 Transaction Id Component
This contains information which globally uniquely identifies the IOTP
Transaction. Its definition is as follows:
<!ELEMENT TransId EMPTY >
<!ATTLIST TransId
ID ID #REQUIRED
Version NMTOKEN #FIXED '1.0'
IotpTransId CDATA #REQUIRED
IotpTransType CDATA #REQUIRED
TransTimeStamp CDATA #REQUIRED >
Attributes:
ID An identifier which uniquely identifies the
Transaction Id Component within the IOTP
Transaction.
Version This identifies the version of IOTP, and therefore
the structure of the IOTP Messages, which the IOTP
Transaction is using.
IotpTransId Contains data which uniquely identifies the IOTP
Transaction. It must conform to the rules for
Message Ids in [RFC 822].
IotpTransTyp This is the type of IOTP Transaction being carried
out. For Baseline IOTP it identifies a "standard"
IOTP Transaction and implies the sequence and
content of the IOTP Messages exchanged between the
Trading Roles. The valid values for Baseline IOTP
are:
o BaselineAuthentication
o BaselineDeposit
o BaselinePurchase
o BaselineRefund
o BaselineWithdrawal
o BaselineValueExchange
o BaselineInquiry
o BaselinePing
Values of IotpTransType are managed under the
procedure described in section 12 IANA
Considerations which also allows user defined
values of IotpTransType to be defined.
Burdett Informational [Page 38]
^L
RFC 2801 IOTP/1.0 April 2000
In later versions of IOTP, this list will be
extended to support different types of standard
IOTP Transaction. It is also likely to support the
type Dynamic which indicates that the sequence of
steps within the transaction are non-standard.
TransTimeStamp Where the system initiating the IOTP Transaction
has an internal clock, it is set to the time at
which the IOTP Transaction started in [UTC]
format.
The main purpose of this attribute is to provide
an alternative way of identifying a transaction by
specifying the time at which it started.
Some systems, for example, hand held devices may
not be able to generate a time stamp. In this
case this attribute should contain the value "NA"
for Not Available.
3.3.2 Message Id Component
The Message Id Component provides control information about the IOTP
Message as well as uniquely identifying the IOTP Message within an
IOTP Transaction. Its definition is as follows.
<!ELEMENT MsgId EMPTY >
<!ATTLIST MsgId
ID ID #REQUIRED
RespIotpMsg NMTOKEN #IMPLIED
xml:lang NMTOKEN #REQUIRED
LangPrefList NMTOKENS #IMPLIED
CharSetPrefList NMTOKENS #IMPLIED
SenderTradingRoleRef NMTOKEN #IMPLIED
SoftwareId CDATA #REQUIRED
TimeStamp CDATA #IMPLIED >
Attributes:
ID An identifier which uniquely identifies the
IOTP Message within the IOTP Transaction (see
section 3.4 ID Attributes). Note that if an
IOTP Message is resent then the value of this
attribute remains the same.
RespIotpMsg This contains the ID attribute of the Message
Id Component of the IOTP Message to which this
IOTP Message is a response. In this way all
Burdett Informational [Page 39]
^L
RFC 2801 IOTP/1.0 April 2000
the IOTP Messages in an IOTP Transaction are
unambiguously linked together. This field is
required on every IOTP Message except the
first IOTP Message in an IOTP Transaction.
SenderTradingRoleRef The Element Reference (see section 3.5) of the
Trading Role which has generated the IOTP
message. It is used to identify the Net
Locations (see section 3.9) of the Trading
Role to which problems Technical Errors (see
section 4.1) with any of Trading Blocks should
be reported.
Xml:lang Defines the language used by attributes or
child elements within this component, unless
overridden by an xml:lang attribute on a child
element. See section 3.8 Identifying
Languages.
LangPrefList Optional list of Language codes that conform
to [XML] Language Identification. It is used
by the sender to indicate, in preference
sequence, the languages that the receiver of
the message ideally should use when generating
a response. There is no obligation on the
receiver to respond using one of the indicated
languages, but using one of the languages is
likely to provide an improved user experience.
CharSetPrefList Optional list of Character Set identifiers
that conform to [XML] Characters. It is used
by the sender to indicate, in preference
sequence, the character sets that the receiver
of the message ideally should use when
generating a response. There is no obligation
on the receiver to respond using one of the
character sets indicated, but using one of the
character sets is likely to provide an
improved user experience.
SoftwareId This contains information which identifies the
software which generated the IOTP Message. Its
purpose is to help resolve interoperability
problems that might occur as a result of
incompatibilities between messages produced by
different software. It is a single text string
in the language defined by xml:lang. It must
contain, as a minimum:
Burdett Informational [Page 40]
^L
RFC 2801 IOTP/1.0 April 2000
o the name of the software manufacturer
o the name of the software
o the version of the software, and
o the build of the software
TimeStamp Where the device sending the message has an
internal clock, it is set to the time at which
the IOTP Message was created in [UTC] format.
3.3.3 Related To Component
The Related To Component links IOTP Transactions to either other IOTP
Transactions or other events using the identifiers of those events.
Its definition is as follows.
<!ELEMENT RelatedTo (PackagedContent) >
<!ATTLIST RelatedTo
ID ID #REQUIRED
xml:lang NMTOKEN #REQUIRED
RelationshipType NMTOKEN #REQUIRED
Relation CDATA #REQUIRED
RelnKeyWords NMTOKENS #IMPLIED >
Attributes:
ID An identifier which uniquely identifies the
Related To Component within the IOTP Transaction.
xml:lang Defines the language used by attributes or child
elements within this component, unless overridden
by an xml:lang attribute on a child element. See
section 3.8 Identifying Languages.
RelationshipType Defines the type of the relationship. Valid values
are:
o IotpTransaction. in which case the Packaged
Content Element contains an IotpTransId of
another IOTP Transaction
o Reference in which case the Packaged Content
Element contains the reference of some other,
non-IOTP document.
Values of RelationshipType are controlled under
the procedures defined in section 12 IANA
Considerations which also allows user defined
values to be defined.
Burdett Informational [Page 41]
^L
RFC 2801 IOTP/1.0 April 2000
Relation The Relation attribute contains a phrase in the
language defined by xml:lang which describes the
nature of the relationship between the IOTP
transaction that contains this component and
another IOTP Transaction or other event. The exact
words to be used are left to the implementers of
the IOTP software.
The purpose of the attribute is to provide the
Trading Roles involved in an IOTP Transaction with
an explanation of the nature of the relationship
between the transactions.
Care should be taken that the words used to in the
Relation attribute indicate the "direction" of the
relationship correctly. For example: one
transaction might be a refund for another earlier
transaction. In this case the transaction which is
a refund should contain in the Relation attribute
words such as "refund for" rather than "refund to"
or just "refund".
RelnKeyWords This attribute contains keywords which could be
used to help identify similar relationships, for
example all refunds. It is anticipated that
recommended keywords will be developed through
examination of actual usage. In this version of
the specification there are no specific
recommendations and the keywords used are at the
discretion of implementers.
Content:
PackagedContent The Packaged Content (see section 3.7) contains
data which identifies the related transaction. Its
format varies depending on the value of the
RelationshipType.
3.4 ID Attributes
IOTP Messages, Blocks (i.e. Transaction Reference Blocks and Trading
Blocks), Trading Components (including the Transaction Id Component
and the Signature Component) and some of their child elements are
each given an XML "ID" attribute which is used to identify an
instance of these XML elements. These identifiers are used so that
one element can be referenced by another. All these attributes are
given the attribute name ID.
Burdett Informational [Page 42]
^L
RFC 2801 IOTP/1.0 April 2000
The values of each ID attribute are unique within an IOTP transaction
i.e. the set of IOTP Messages which have the same globally unique
Transaction ID Component. Also, once the ID attribute of an element
has been assigned a value it is never changed. This means that
whenever an element is copied, the value of the ID attribute remains
the same.
As a result it is possible to use these IDs to refer to and locate
the content of any IOTP Message, Block or Component from any other
IOTP Message, Block or Component in the same IOTP Transaction using
Element References (see section 3.5).
This section defines the rules for setting the values for the ID
attributes of IOTP Messages, Blocks and Components.
3.4.1 IOTP Message ID Attribute Definition
The ID attribute of the Message Id Component of an IOTP Message must
be unique within an IOTP Transaction. It's definition is as follows:
IotpMsgId_value ::= IotpMsgIdPrefix IotpMsgIdSuffix
IotpMsgIdPrefix ::= NameChar (NameChar)*
IotpMsgIdSuffix ::= Digit (Digit)*
IotpMsgIdPrefix Apart from messages which contain: an Inquiry
Request Trading Block, an Inquiry Response Trading
Block, a Ping Request Trading Block or a Ping
Response Trading Block; then the same prefix is
used for all messages sent by the Merchant or
Consumer role as follows:
o "M" - Merchant
o "C" - Consumer
For messages which contain an Inquiry Request
Trading Block or a Ping Request Trading Block, the
prefix is set to "I" for Inquiry.
For messages which contain an Inquiry Response
Trading Block or a Ping Response Trading Block,
the prefix is set to "Q".
The prefix for the other roles in a trade is
contained within the Organisation Component for
the role and are typically set by the Merchant.
The following is recommended as a guideline and
must not be relied upon:
Burdett Informational [Page 43]
^L
RFC 2801 IOTP/1.0 April 2000
o "P" - First (only) Payment Handler
o "R" - Second Payment Handler
o "D" - Delivery Handler
o "C" - Deliver To
As a guideline, prefixes should be limited to one
character.
NameChar has the same definition as the [XML]
definition of NameChar.
IotpMsgIdSuffix The suffix consists of one or more digits. The
suffix must be unique within a Trading Role within
an IOTP Transaction. The following is recommended
as a guideline and must not be relied upon:
o the first IOTP Message sent by a trading role
is given the suffix "1"
o the second and subsequent IOTP Messages sent
by the same trading role are incremented by one
for each message
o no leading zeroes are included in the suffix
Put more simply the Message Id Component of the
first IOTP Message sent by a Consumer would have
an ID attribute of, "C1", the second "C2", the
third "C3" etc.
Digit has the same definition as the [XML]
definition of Digit.
3.4.2 Block and Component ID Attribute Definitions
The ID Attribute of Blocks and Components must also be unique within
an IOTP Transaction. Their definition is as follows:
BlkOrCompId_value ::= IotpMsgId_value "." IdSuffix
IdSuffix ::= Digit (Digit)*
IotpMsgId_value The ID attribute of the Message ID Component of
the IOTP Message where the Block or Component is
first used.
In IOTP, Trading Components and Trading Blocks are
copied from one IOTP Message to another. The ID
attribute does not change when an existing Trading
Block or Component is copied to another IOTP
Message.
Burdett Informational [Page 44]
^L
RFC 2801 IOTP/1.0 April 2000
IdSuffix The suffix consists of one or more digits. The
suffix must be unique within the ID attribute of
the Message ID Component used to generate the ID
attribute. The following is recommended as a
guideline and must not be relied upon:
o the first Block or Component sent by a trading
role is given the suffix "1"
o the ID attributes of the second and subsequent
Blocks or Components are incremented by one for
each new Block or Component added to an IOTP
Message
o no leading zeroes are included in the suffix
Put more simply, the first new Block or Component
added to the second IOTP Message sent, for
example, by a consumer would have a an ID
attribute of "C2.1", the second "C2.2", the third
"C2.3" etc.
Digit has the same definition as the [XML]
definition of Digit.
Burdett Informational [Page 45]
^L
RFC 2801 IOTP/1.0 April 2000
3.4.3 Example of use of ID Attributes
The diagram below illustrates how ID attribute values are used.
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
1st IOTP MESSAGE 2nd IOTP MESSAGE
(e.g., from Merchant to (e.g., from Consumer to
Consumer Payment Handler)
IOTP MESSAGE IOTP MESSAGE *
|-Trans Ref Block. ID=M1.1 |-Trans Ref Block.ID=C1.1*
| |-Trans Id Comp. ID = M1.2 ------------>| |-Trans Id Comp.
| | Copy Element | | ID=M1.2
| |-Msg Id Comp. ID = M1 | |-Msg Id Comp. ID=C1 *
| |
|-Signature Block. ID=M1.8 |-Signature Block.ID=C1.5*
| |-Sig Comp. ID=M1.15 ------------------>| |-Comp. ID=M1.15
| Copy Element |
|-Trading Block. ID=M1.3 |-Trading Block.ID=C1.2 *
| |-Comp. ID=M1.4 -------------------------->|-Comp. ID=M1.4
| | Copy Element |
| |-Comp. ID=M1.5 -------------------------->|-Comp. ID=M1.5
| | Copy Element |
| |-Comp. ID=M1.6 |-Comp. ID=C1.3 *
| |-Comp. ID=M1.7 |-Comp. ID=C1.4 *
|
|-Trading Block. ID=M1.9
|-Comp. ID=M1.10 * = new elements
|-Comp. ID=M1.11
|-Comp. ID=M1.12
|-Comp. ID=M1.13
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-
Figure 8 Example use of ID attributes
3.5 Element References
A Trading Component or one of its child XML elements, may contain an
XML attribute that refers to another Block (i.e. a Transaction
Reference Block or a Trading Block) or Trading Component (including a
Transaction Id and Signature Component). These Element References are
used for many purposes, a few examples include:
o identifying an XML element whose Digest is included in a Signature
Component,
Burdett Informational [Page 46]
^L
RFC 2801 IOTP/1.0 April 2000
o referring to the Payment Handler Organisation Component which is
used when making a Payment
An Element Reference always contains the value of an ID attribute of
a Block or Component.
Identifying the IOTP Message, Trading Block or Trading Component
which is referred to by an Element Reference, involves finding the
XML element which:
o belongs to the same IOTP Transaction (i.e. the Transaction Id
Components of the IOTP Messages match), and
o where the value of the ID attribute of the element matches the
value of the Element Reference.
Note: The term "match" in this specification has the same definition
as the [XML] definition of match.
An example of "matching" an Element Reference is illustrated in the
example below.
Burdett Informational [Page 47]
^L
RFC 2801 IOTP/1.0 April 2000
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
1st IOTP MESSAGE 2nd IOTP MESSAGE
(e.g., from Merchant to (e.g., from Consumer to
Consumer Payment Handler)
IOTP MESSAGE IOTP MESSAGE
|-Trans Ref Block. ID=M1.1 Trans ID |-Trans RefBlock. ID=C1.1
| |-Trans Id Comp. ID = M1.2 <-Components-|->|-TransId Comp.ID=M1.2
| | must be | |
| |-Msg Id Comp. ID = M1 Identical | |-Msg Id Comp. ID=C1
| ^ |
|-Signature Block. ID=M1.8 | |-Signature Block.ID=C1.5
| |-Sig Comp. ID=M1.15 | | |-Comp. ID=M1.15
| AND |
|-Trading Block. ID=M1.3 | |-Trading Block. ID=C1.2
| |-Comp. ID=M1.4 | |-Comp. ID=M1.4
| | v |
| |-Comp. ID=M1.5 <-------- -ID Attribute |-Comp. ID=M1.5
| | and El Ref |
| |-Comp. ID=M1.6 values must |-Comp. ID=C1.3
| | match--------|--> El Ref=M1.5
| |-Comp. ID=M1.7 |-Comp. ID=C1.4
|
|-Trading Block. ID=M1.9
|-Comp. ID=M1.10
|-Comp. ID=M1.11
|-Comp. ID=M1.12
|-Comp. ID=M1.13
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-
Figure 9 Element References
Note: Element Reference attributes are defined as "NMTOKEN" rather
than "IDREF" (see [XML]). This is because an IDREF requires that the
XML element referred to is in the same XML Document. With IOTP this
is not necessarily the case.
3.6 Extending IOTP
Baseline IOTP defines a minimum protocol which systems supporting
IOTP must be able to accept. As new versions of IOTP are developed,
additional types of IOTP Transactions will be defined. In addition to
this, Baseline and future versions of IOTP will support user
extensions to IOTP through two mechanisms:
Burdett Informational [Page 48]
^L
RFC 2801 IOTP/1.0 April 2000
o extra XML elements, and
o new values for existing IOTP codes.
3.6.1 Extra XML Elements
The XML element and attribute names used within IOTP constitute an
[XML Namespace] as identified by the xmlns attribute on the
IotpMessage element. This allows IOTP to support the inclusion of
additional XML elements within IOTP messages through the use of [XML
Namespaces].
Using XML Namespaces, extra XML elements may be included at any level
within an IOTP message including:
o new Trading Blocks
o new Trading Components
o new XML elements within a Trading Component.
The following rules apply:
o any new XML element must be declared according to the rules for
[XML Namespaces]
o new XML elements which are either Trading Blocks or Trading
Components must contain an ID attributes with an attribute name of
ID.
In order to make sure that extra XML elements can be processed
properly, IOTP reserves the use of a special attribute,
IOTP:Critical, which takes the values True or False and may appear in
extra elements added to an IOTP message.
The purpose of this attribute is to allow an IOTP aware application
to determine if the IOTP transaction can safely continue.
Specifically:
o if an extra XML element has an "IOTP:Critical" attribute with a
value of "True" and an IOTP aware application does not know how to
process the element and its child elements, then the IOTP
transaction has a Technical Error (see section 4.1) and must fail.
o if an extra XML element has an "IOTP:Critical" attribute with a
value of "False" then the IOTP transaction may continue if the
IOTP aware application does not know how to process it. In this
case:
Burdett Informational [Page 49]
^L
RFC 2801 IOTP/1.0 April 2000
- any extra XML elements contained within an XML element defined
within the IOTP namespace, must be included with that element
whenever the IOTP XML element is used or copied by IOTP
- the content of the extra element must be ignored except that it
must be included when it is used in the creation of a digest as
part of the generation of a signature
o if an extra XML element has no "IOTP:Critical" attribute then it
must be treated as if it had an "IOTP:Critical" attribute with a
value of "True"
o if an XML element contains an "IOTP:Critical" attribute, then the
value of that attribute is assumed to apply to all the child
elements within that element
In order to ensure that documents containing "IOTP:Critical" are
valid, it is declared as part of the DTD for the extra element as:
IOTP:Critical (True | False ) 'True'
3.6.2 Opaque Embedded Data
If IOTP is to be extended using Opaque Embedded Data then a Packaged
Content Element (see section 3.7) should be used to encapsulate the
data.
3.7 Packaged Content Element
The Packaged Content element supports the concept of an embedded data
stream, transformed to both protect it against misinterpretation by
transporting systems and to ensure XML compatibility. Examples of its
use in IOTP include:
o to encapsulate payment scheme messages, such as SET messages,
o to encapsulate a description of an order, a payment note, or a
delivery note.
In general it is used to encapsulate one or more data streams.
This data stream has three standardised attributes that allow for
identification, decoding and interpretation of the contents. Its
definition is as follows.
Burdett Informational [Page 50]
^L
RFC 2801 IOTP/1.0 April 2000
<!ELEMENT PackagedContent (#PCDATA) >
<!ATTLIST PackagedContent
Name CDATA #IMPLIED
Content NMTOKEN "PCDATA"
Transform (NONE|BASE64) "NONE" >
Attributes:
Name Optional. Distinguishes between multiple
occurrences of Packaged Content Elements at the
same point in IOTP. For example:
<ABCD>
<PackagedContent Name='FirstPiece'>
snroasdfnas934k
</PackagedContent>
<PackagedContent Name='SecondPiece'>
dvdsjnl5poidsdsflkjnw45
</PackagedContent>
</ABCD>
The name attribute may be omitted, for example if
there is only one Packaged Content element.
Content This identifies what type of data is contained
within the Content of the Packaged Content
Element. The valid values for the Content
attribute are as follows:
o PCDATA. The content of the Packaged Content
Element can be treated as PCDATA with no
further processing.
o MIME. The content of the Packaged Content
Element is a complete MIME item. Processing
should include looking for MIME headers inside
the Packaged Content Element.
o MIME:mimetype. The content of the Packaged
Content Element is MIME content, with the
following header "Content-Type: mimetype".
Although it is possible to have MIME:mimetype
with the Transform attribute set to NONE, it is
far more likely to have Transform attribute set
to BASE64. Note that if Transform is NONE is
used, then the entire content must still
conform to PCDATA. Some characters will need to
be encoded either as the XML default entities,
or as numeric character entities.
Burdett Informational [Page 51]
^L
RFC 2801 IOTP/1.0 April 2000
o XML. The content of the Packaged Content
Element can be treated as an XML document.
Entities and CDATA sections, or Transform set
to BASE64, must be used to ensure that the
Packaged Content Element contents are
legitimate PCDATA.
Values of the Content attribute are controlled
under the procedures defined in section 12 IANA
Considerations which also allows user defined
values to be defined.
Transform This identifies the transformation that has been
done to the data before it was placed in the
content. Valid values are:
o NONE. The PCDATA content of the Packaged
Content Element is the correct representation
of the data. Note that entity expansion must
occur first (i.e. replacement of & and
	) before the data is examined. CDATA
sections may legitimately occur in a Packaged
Content Element where the Transform attribute
is set to NONE.
o BASE64. The PCDATA content of the Packaged
Content Element represents a BASE64 encoding of
the actual content.
Content:
PCDATA This is the actual data which has been embedded.
The format of the data and rules on how to decode
it are contained in the Content and the Transform
attributes
Note that any special details, especially custom attributes, must be
represented at a higher level.
3.7.1 Packaging HTML
The packaged content may contain HTML. In this case the following
conventions are followed:
o references to any documents, images or other things, such as
sounds or web pages, which can affect the recipient's
understanding of the data which is being packaged must refer to
other Packaged Elements contained within the same parent element,
e.g., an Order Description
Burdett Informational [Page 52]
^L
RFC 2801 IOTP/1.0 April 2000
o if more than one Packaged Content element is included within a
parent element in order to meet the previous requirement, then the
Name attribute of the top level Packaged Content from which
references to all other Packaged Elements can be determined,
should have a value of Main
o relative references to other documents, images, etc. from one
Packaged Content element to another are realised by setting the
value of the relative reference to the Name attribute of another
Packaged Content element at the same level and within the same
parent element
o no external references that require the reference to be resolved
immediately should be used. As this could make the HTML difficult
or impossible to display completely
o [MIME] is used to encapsulate the data inside each Packaged
Element. This means that the information in the MIME header used
to identify the type of data which has been encapsulated and
therefore how it should be displayed.
If the above conventions are not followed by, for example, including
external references which must be resolved, then the recipient of the
HTML should be informed.
Note: As an implementation guideline the values of the Name
Attributes allocated to Packaged Content elements should make it
possible to extract each Packaged Content into a directory and then
display the HTML directly
3.7.2 Packaging XML
Support for XML is recommended. When XML needs to be displayed, for
example to display the content of an Order Description to a Consumer,
then implementers should follow the latest recommendations of the
World Wide Web Consortium.
Note: At the time of writing this specification, standards are under
development that specify XML style sheets that show how XML documents
should be displayed. See:
o "Extensible Stylesheet Language (XSL) Specification" at
http://www.w3.org/TR/WD-xsl, and
o "Associating stylesheets with XML documents" at
http://www.w3.org/TR/xml-stylesheet.
Burdett Informational [Page 53]
^L
RFC 2801 IOTP/1.0 April 2000
Once these standards become W3C "Recommendations", then it is
anticipated that this specification will be amended if practical.
3.8 Identifying Languages
IOTP uses [XML] Language Identification to specify which languages
are used within the content and attributes of IOTP Messages.
The following principles have been used in order to determine which
XML elements contain an xml:lang Attributes:
o a mandatory xml:lang attribute is contained on every Trading
Component which contains attributes or content which may need to
be displayed or printed in a particular language
o an optional xml:lang attribute is included on child elements of
these Trading Components. In this case the value of xml:lang, if
present, overrides the value for the Trading Component.
xml:lang attributes which follow these principles are included in the
Trading Components and their child XML elements defined in section 7.
A sender of a message, typically a Consumer can indicate a preference
for a language, and a character set by specifying a list of preferred
languages/character sets in a Message Id Component (see section
3.3.2). Note that there is no obligation on the receiver of such a
message to respond using one of the listed languages/character sets
as they may not have the technology to be able to do it. It also
means that the ability to handle these lists is not a requirement for
conformance to this specification. However the ability to respond,
for example using one of the stated languages/character sets is
likely to provide a better user experience.
3.9 Secure and Insecure Net Locations
IOTP contains several "Net Locations" which identify places where,
typically, IOTP Messages may be sent. Net Locations come in two
types:
o "Secure" Net Locations which are net locations where privacy of
data is secured using, for example, encryption methods such as
[SSL/TLS], and
o "Insecure" Net Locations where privacy of data is not assured.
Note that either a Secure Net Location or an Insecure Net Location or
both must be present.
Burdett Informational [Page 54]
^L
RFC 2801 IOTP/1.0 April 2000
If only one of the two Net Locations is present, then the one present
must be used.
Where both types of net location are present then either may be used
depending on the preference of the sender of the message.
3.10 Cancelled Transactions
Any Trading Role involved in an IOTP transaction may cancel that
transaction at any time.
3.10.1 Cancelling Transactions
IOTP Transactions are cancelled by sending an IOTP message containing
just a Cancel Block with an appropriate Status Component to the other
Trading Role involved in the Trading Exchange.
Note: The Cancel Block can be sent asynchronously of any other IOTP
Message. Specifically it can be sent either before sending or after
receiving an IOTP Message from the other Trading Role
If an IOTP Transaction is cancelled during a Trading Exchange (i.e.
the interval between sending a "request" block and receiving the
matching "response" block) then the Cancel Block is sent to the same
location as the next IOTP Message in the Trading Exchange would have
been sent.
If a Consumer cancels a transaction after a Trading Exchange has
completed (i.e. the "response" block for the Trading Exchange has
been received), but before the IOTP Transaction has finished then the
Consumer sends a Cancel Block with an appropriate Status Component to
the net location identified by the SenderNetLocn or
SecureSenderNetLocn contained in the Protocol Options Component (see
section 7.1) contained in the TPO Block (see section 8.1) for the
transaction. This is normally the Merchant Trading Role.
A Consumer should not send a Cancel Block after the IOTP Transaction
has completed. Cancelling a complete transaction should be treated as
a technical error.
After cancelling the IOTP Transaction, the Consumer should go to the
net location specified by the CancelNetLocn attribute contained in
the Trading Role Element for the Organisation that was sent the
Cancel Block.
A non-Consumer Trading Role should only cancel a transaction:
o after a request block has been received and
Burdett Informational [Page 55]
^L
RFC 2801 IOTP/1.0 April 2000
o before the response block has been sent
If a non-Consumer Trading Role cancels a transaction at any other
time it should be treated by the recipient as an error.
3.10.2 Handling Cancelled Transactions
If a Cancel Block is received by a Consumer at a point in the IOTP
Transaction when cancellation is allowed, then the Consumer should
stop the transaction.
If a Cancel Block is received by a non-Consumer role, then the
Trading Role should anticipate that the Consumer may go to the
location specified by the CancelNetLocn attribute contained in the
Trading Role Element for the Trading Role.
4. IOTP Error Handling
IOTP is designed as a request/response protocol where each message is
composed of a number of Trading Blocks which contain a number of
Trading Components. There are several interrelated considerations in
handling errors, re-transmissions, duplicates, and the like. These
factors mean IOTP aware applications must manage message flows more
complex than the simple request/response model. Also a wide variety
of errors can occur in messages as well as at the transport level or
in Trading Blocks or Components.
This section describes at a high level how IOTP handles errors,
retries and idempotency. It covers:
o the different types of errors which can occur. This is divided
into:
- "technical errors" which are independent of the purpose of the
IOTP Message,
- "business errors" which indicate that there is a problem
specific to the process (e.g., payment or delivery) which is
being carried out, and
o the depth of the error which indicates whether the error is at the
transport, message or block/component level
o how the different trading roles should handle the different types
of messages which they may receive.
Burdett Informational [Page 56]
^L
RFC 2801 IOTP/1.0 April 2000
4.1 Technical Errors
Technical Errors are those which are independent of the meaning of
the message. This means, they can affect any attempt at IOTP
communication. Typically they are handled in a standard fashion with
a limited number of standard options for the user. Specifically these
are:
o retrying the transmission, or
o cancelling the transaction.
When communications are operating sufficiently well, a technical
error is indicated by an Error Component (see section 7.21) in an
Error Block (see section 8.17) sent by the party which detected the
error in an IOTP message to the party which sent the erroneous
message.
If communications are too poor, a message which was sent may not
reach its destination. In this case a time-out might occur.
The Error Codes associated with Technical Errors are recorded in the
Error Component which lists all the different technical errors which
can be set.
4.2 Business Errors
Business Errors may occur when the IOTP messages are "technically"
correct. They are connected with a particular process, for example,
an offer, payment, delivery or authentication, where each process has
a different set of possible business errors.
For example, "Insufficient funds" is a reasonable payment error but
makes no sense for a delivery while "Back ordered" is a reasonable
delivery error but not meaningful for a payment. Business errors are
indicated in the Status Component (see section 7.16) of a "response
block" of the appropriate type, for example a Payment Response Block
or a Delivery Response Block. This allows whatever additional
response related information is needed to accompany the error
indication.
Business errors must usually be presented to the user so that they
can decide what to do next. For example, if the error is insufficient
funds in a Brand Independent Offer (see section 9.1.2.2), the user
might wish to choose a different payment instrument/account of the
same brand or a different brand or payment system. Alternatively, if
Burdett Informational [Page 57]
^L
RFC 2801 IOTP/1.0 April 2000
the IOTP based implementation allows it and it makes sense for that
instrument, the user might want to put more funds into the
instrument/account and try again.
4.3 Error Depth
The three levels at which IOTP errors can occur are the transport
level, the message level, and the block level. Each is described
below.
4.3.1 Transport Level
This level of error indicates a fundamental problem in the transport
mechanism over which the IOTP communication is taking place.
All transport level errors are technical errors and are indicated by
either an explicit transport level error indication, such as a "No
route to destination" error from TCP/IP, or by a time out where no
response has been received to a request.
The only reasonable automatic action when faced with transport level
errors is to retry and, after some number of automatic retries, to
inform the user.
The explicit error indications that can be received are transport
dependent and the documentation for the appropriate IOTP Transport
supplement should be consulted for errors and appropriate actions.
Appropriate time outs to use are a function of both the transport
being used and of the payment system if the request encapsulates
payment information. The transport and payment system specific
documentation should be consulted for time out and automatic retry
parameters. Frequently there is no way to directly inform the other
party of transport level errors but they should generally be logged
and if automatic recovery is unsuccessful and there is a human user,
the user should be informed.
4.3.2 Message Level
This level of error indicates a fundamental technical problem with an
entire IOTP message. For example, the XML is not "Well Formed", or
the message is too large for the receiver to handle or there are
errors in the Transaction Reference Block (see section 3.3) so it is
not possible to figure out what transaction the message relates to.
All message level errors are technical errors and are indicated by
Error Components (see section 7.21) sent to the other party. The
Error Component includes a Severity attribute which indicates whether
Burdett Informational [Page 58]
^L
RFC 2801 IOTP/1.0 April 2000
the error is a Warning and may be ignored, a TransientError which
indicates that a retry may resolve the problem or a HardError in
which case the transaction must fail.
The Technical Errors (see section 7.21.2 Error Codes) that are
Message Level errors are:
o XML not well formed. The document is not well formed XML (see
[XML])
o XML not valid. The document is not valid XML (see [XML])
o block level technical errors (see section 4.3.3) on the
Transaction Reference Block (see section 3.3) and the Signature
Block only. Checks on these blocks should only be carried out if
the XML is valid
Note that checks on the Signature Block include checking, where
possible, that each Signature Component is correctly calculated. If
the Signature is incorrectly calculated then the data that should
have been covered by the signature can not be trusted and must be
treated as erroneous. A description of how to check a signature is
correctly calculated is contained in section 6.2.
4.3.3 Block Level
A Block level error indicates a problem with a block or one of its
components in an IOTP message (apart from Transaction Reference or
Signature Blocks). The message has been transported properly, the
overall message structure and the block/component(s) including the
Transaction Reference and Signature Blocks are meaningful but there
is some error related to one of the other blocks.
Block level errors can be either:
o technical errors, or
o business errors
Technical Errors are further divided into:
o Block Level Attribute and Element Checks, and
o Block and Component Consistency Checks
o Transient Technical Errors
Burdett Informational [Page 59]
^L
RFC 2801 IOTP/1.0 April 2000
If a technical error occurs related to a block or component, then an
Error Component is generated for return.
4.3.3.1 Block Level Attribute and Element Checks
Block Level Attribute and Element Checks occur only within the same
block. Checks which involve cross-checking against other blocks are
covered by Block and Component Consistency Checks.
The Block Level Attribute & Element checks are:
o checking that each attribute value within each element in a block
conforms to any rules contained within this IOTP specification
o checking that the content of each element conforms to any rules
contained within this IOTP specification
o if the previous checks are OK, then checking the consistency of
attribute values and element content against other attribute
values or element content within any other components in the same
block.
4.3.3.2 Block and Component Consistency Checks
Block and Component Consistency Checks consist of:
o checking that the combination of blocks and/or components present
in the IOTP Message are consistent with the rules contained within
this IOTP specification
o checking for consistency between attributes and element content
within the blocks within the same IOTP message.
o checking for consistency between attributes and elements in blocks
in this IOTP message and blocks received in earlier IOTP messages
for the same IOTP transaction
If the block passes the "Block Level Attribute and Element Checks"
and the "Block and Component Consistency Checks" then it is processed
either by the IOTP Aware application or perhaps by some "back-end"
system such as a payment server.
4.3.3.3 Transient Technical Errors
During the processing of the Block some temporary failure may occur
that can potentially be recovered by the other trading role re-
transmitting, at some slightly later time, the original message that
they sent. In this case the other role is informed of the Transient
Burdett Informational [Page 60]
^L
RFC 2801 IOTP/1.0 April 2000
Error by sending them an Error Component (see section 7.21) with the
Severity Attribute set to TransientError and the MinRetrySecs
attribute set to some value suitable for the Transport Mechanism
and/or payment protocol being used (see appropriate Transport and
payment protocol Supplements).
Note that transient technical errors can be generated by any of the
Trading Roles involved in transaction.
4.3.3.4 Block Level Business Errors
If a business error occurs in a process such as a Payment or a
Delivery, then the appropriate type of response block is returned
containing a Status Component (see section 7.16) with the
ProcessState attribute set to Failed and the CompletionCode
indicating the nature of the problem.
Some business errors may be "transient" in that the Consumer role may
be able to recover and complete the transaction in some other way.
For example if the Credit Card that a consumer provided had
insufficient funds for a purchase, then the Consumer may recover by
using a different credit card.
Recovery from "transient" business errors is dependent on the
CompletionCode. See the definition of the Status Component for what
is possible.
Note that no Error Component or Error Block is generated for business
errors.
4.4 Idempotency, Processing Sequence, and Message Flow
IOTP messages are actually a combination of blocks and components as
described in 3.1.1 IOTP Message Structure. Especially in future
extensions of IOTP, a rich variety of combinations of such blocks and
components can occur. It is important that the multiple
transmission/receipt of the "same" request for an action that will
change state does not result in that action occurring more than once.
This is called idempotency. For example, a customer paying for an
order would want to pay the full amount only once. Most network
transport mechanisms have some probability of delivering a message
more than once or not at all, perhaps requiring retransmission. On
the other hand, a request for status can reasonably be repeated and
should be processed fresh each time it is received.
Burdett Informational [Page 61]
^L
RFC 2801 IOTP/1.0 April 2000
Correct implementation of IOTP can be modelled by a particular
processing order as detailed below. Any other method that is
indistinguishable in the messages sent between the parties is equally
acceptable.
4.5 Server Role Processing Sequence
"Server roles" are any Trading Role which is not the Consumer role.
They are "Server roles" since they typically receive a request which
they must service and then produce a response. However server roles
can also initiate transactions. More specifically Server Roles must
be able to:
o Initiate a transaction (see section 4.5.1). These are divided
into:
- payment related transactions and
- infrastructure transactions
o Accept and process a message received from another role (see
section 4.5.2). This includes:
- identifying if the message belongs to a transaction that has
been received before
- handling duplicate messages
- generating Transient errors if the servers that process the
input message are too busy to handle it
- processing the message if it is error free, authorised and, if
appropriate, producing a response to send back to the other
role
o Cancel a current transaction if requested (see section 4.5.3)
o Re-transmit messages if a response was expected but has not been
received in a reasonable time (see section 4.5.4).
4.5.1 Initiating Transactions
Server Roles may initiate a variety of different types of
transaction. Specifically:
o an Inquiry Transaction (see section 9.2.1)
o a Ping Transaction (see section 9.2.2)
Burdett Informational [Page 62]
^L
RFC 2801 IOTP/1.0 April 2000
o an Authentication Transaction (see section 9.1.6)
o a Payment Related Transaction such as:
- a Deposit (see section 9.1.7)
- a Purchase (see section 9.1.8)
- a Refund (see section 9.1.9)
- a Withdrawal (see section 9.1.10)
- a Value Exchange (see section 9.1.11)
4.5.2 Processing Input Messages
Processing input messages involves the following:
o checking the structure and identity of the message
o checking for and handling duplicate messages
o processing non-duplicate original messages which includes:
- checking for errors, then if no errors are found
- processing the message to produce an output message if
appropriate
Each of these is discussed in more detail below.
4.5.2.1 Checking Structure and Message Identity
It is critical to check that the message is "well formed" XML and
that the transaction identifier (IotpTransId attribute on the TransId
Component) within the IOTP message can be successfully identified
since an IotpTransId will be needed to generate a response.
If the input message is not well formed then generate an Error
Component with a Severity of HardError and ErrorCode of
XmlNotWellFrmd.
If the message is well formed but the IotpTransId cannot be
identified then generate an ErrorComponent with:
o a Severity of HardError and an ErrorCode of AttMissing,
Burdett Informational [Page 63]
^L
RFC 2801 IOTP/1.0 April 2000
o a PackagedContent containing "IotpTransId" - the missing
attribute.
Insert the Error Component inside an Error Block with a new
TransactionId component with a new IotpTransId and return it to the
sender of the original message.
4.5.2.2 Checking/Handling Duplicate Messages
If the input message can be identified as potentially a valid input
message then check to see if an "identical" input message has been
received before. Identical means that all blocks, components,
elements, attribute values and element content in the input message
are the same.
Note: The recommended way of checking for identical messages is to
check for equal values of their [DOM-HASH]
If an identical message has been received before then check to see if
the processing of the previous message has completed.
If processing has not completed then generate an Error Component with
a Severity of Transient Error and an Error Code of MsgBeingProc to
indicate the message is being processed and send it back to the
sender of the Input Message requesting that the original message be
resent after an appropriate period of time.
Otherwise, if processing has completed and resulted in an output
message then retrieve the last message that was sent and send it
again.
If the message is not a duplicate then it should be processed.
4.5.2.3 Processing Non-Duplicate Message
Once it's been established that the message is not a duplicate, then
it can be processed. This involves:
o checking that a server is available to handle the message,
generating a Transient Error if it is not
o checking the Transaction is Not Already in error or cancelled
o validating the input message. This includes:
- checking for message level errors
- checking for block level errors
Burdett Informational [Page 64]
^L
RFC 2801 IOTP/1.0 April 2000
- checking any encapsulated data
o checking for errors in the sequence that blocks have been received
o generating error components for any errors that result
o if neither hard errors nor transient errors result, then
processing the message and generating an output message, if
required, for return to the sender of the Input Message
Note: This approach to handling of duplicate input messages means, if
absolutely "identical" messages are received then absolutely
"identical" messages are returned. This also applies to Inquiry and
Ping transactions when in reality the state of a transaction or the
processing ability of the servers may have changed. If up-to-date
status of transactions or servers is required, then an IOTP
transaction with a new value for the ID attribute of the MsgId
component must be used.
Each of the above steps is discussed below.
CHECKING A SERVER IS AVAILABLE
The process that is handling the input message should check that the
rest of the system is not so busy that a response in a reasonable
time cannot be produced.
If the server is too busy, then it should generate an Error Component
with a Severity of Transient Error and an Error Code of SystemBusy
and send it back to the sender of the Input Message requesting that
the original message be resent after an appropriate period of time.
Note: Some servers may occasionally become very busy due to
unexpected increases in workload. This approach allows short peaks in
workloads to be handled by delaying the input of messages by asking
the sender of the message to resubmit later.
CHECKING THE TRANSACTION IS NOT ALREADY IN ERROR OR CANCELLED
Check that:
o previous messages received or sent did not contain or result in
Hard Errors, and
o the Transaction has not been cancelled by either the Consumer or
the Server Trading Role
Burdett Informational [Page 65]
^L
RFC 2801 IOTP/1.0 April 2000
If it has then, ignore the message. A transaction with hard errors or
that has been cancelled, cannot be restarted.
CHECK FOR MESSAGE AND BLOCK LEVEL ERRORS
If the transaction is still OK then check for message level errors.
This involves:
o checking the XML is valid
o checking that the elements, attributes and content of the
Transaction Reference Block are without error and conform to this
specification
o checking the digital signature which involves:
- checking that the Signature value is correctly calculated, and
- the hash values in the digests are correctly calculated where
the source of the hash value is available.
Checking for block level errors involves:
o checking within each block (apart from the Transaction Reference
Block) that:
- the attributes, elements and element contents are valid
- the values of the attributes, elements and element contents are
consistent within the block
o checking that the combination of blocks are valid
o checking that the values of the attribute, elements and element
contents are consistent between the blocks in the input message
and blocks in earlier messages either sent or received. This
includes checking that the presence of a block is valid for a
particular transaction type
If the message contains any encapsulated data, then if possible check
the encapsulated data for errors using additional software to check
the data where appropriate.
4.5.2.4 Check for Errors in Block Sequence
Note: For reasons of brevity, the following explanations of how to
check for errors in Block sequence, the phrase "refers to an IOTP
transaction" is interpreted as "is contained in an IOTP Message where
Burdett Informational [Page 66]
^L
RFC 2801 IOTP/1.0 April 2000
the Trans Ref Block contains an IotpTransId that refers to". So, for
example, " If an Error or Cancel Block refers to an IOTP transaction
that is not recognised then ..." should be interpreted as " If an
Error or Cancel Block is contained in an IOTP Message where the Trans
Ref Block contains an IotpTransId that refers to an IOTP transaction
that is not recognised then ...
Errors in the sequence that blocks arrive depends on the block.
Blocks where checking for sequence is required are:
o Error and Cancel Blocks. If an Error or Cancel Block refers to an
IOTP transaction that is not recognised then it is a Hard Error.
Do not return an error if Error or Cancel Blocks have been
received for the IOTP Transaction before to avoid looping.
o Inquiry Request and Response Blocks. If an Inquiry Request or an
Inquiry Response Block refers to an IOTP transaction that is not
recognised then it is a Hard Error
o Authentication Request Block. If an Authentication Request Block
refers to an IOTP transaction that is recognised it is a Hard
Error
o Authentication Response Block. Check as follows:
- if an Authentication Response Block does not refer to an IOTP
transaction that is recognised it is a Hard Error, otherwise
- if the Authentication Response Block doesn't refer to an
Authentication Request that had been previously sent then it is
a Hard Error, otherwise
- if an Authentication Response for the same IOTP transaction has
been received before and the Authentication was successful then
it is a Hard Error.
o Authentication Status Block. Check as follows:
- if an Authentication Status Block does not refer to an IOTP
transaction that is recognised it is a Hard Error, otherwise
- if the Authentication Status Block doesn't refer to an
Authentication Response that had been previously sent then it
is a Hard Error, otherwise
- if an Authentication Status for the same IOTP transaction has
been received before then it is a Warning Error
Burdett Informational [Page 67]
^L
RFC 2801 IOTP/1.0 April 2000
o TPO Selection Block (Merchant only). Check as follows:
- if the TPO Selection Block doesn't refer to an IOTP Transaction
that is recognised then it is a Hard Error, otherwise
- if the TPO Selection Block refers to an IOTP Transaction where
a TPO Block and Offer Response (in one message) had previously
been sent then it is a Hard Error, otherwise
- if the TPO Selection Block does not refer to an IOTP
Transaction where a TPO Block only (i.e. without an Offer
Response) had previously been sent then it is a Hard Error,
otherwise
- if a TPO Selection Block for the same TPO Block has been
received before then it is a Hard Error
o Payment Request Block (Payment Handler only). Check as follows:
- if the Payment Request Block refers to an IOTP Transaction that
is not recognised then its OK, otherwise
- if the Payment Request Block refers to IOTP Transaction that
was not for a Payment then it is a Hard Error, otherwise
- if there was a previous payment that failed with a non-
recoverable Completion Code then it is a Hard Error, otherwise
- if a previous payment is still in progress then it is a Hard
Error
o Payment Exchange Block (Payment Handler only). Check as follows:
- if the Payment Exchange Block doesn't refer to an IOTP
Transaction that is recognised then it is a Hard Error,
otherwise
- if the Payment Exchange doesn't refer to an IOTP Transaction
where a Payment Exchange had previously been sent then it a
Hard Error
o Delivery Request (Delivery Handler Only). If the Delivery Request
Block refers to an IOTP Transaction that is recognised by the
Server then it is a Hard Error
Burdett Informational [Page 68]
^L
RFC 2801 IOTP/1.0 April 2000
If any Error Components have been generated then collect them into an
Error Block for sending to the sender of the Input message. Note that
Error Blocks should be sent back to the sender of the message and to
the ErrorLogNetLocn for the Trading Role of the sender if one is
specified.
Note: The above checking on the sequence of Authentication Responses
and Payment Requests supports the Consumer re-submitting a repeat
action request since the previous one failed, for example:
o because they did not know the correct response (e.g., a password)
on an authentication or,
o they were unable to pay as there were insufficient funds on a
credit card
PROCESS THE ERROR FREE INPUT MESSAGE
If the input message passes the previous checks then it can be
processed to produce an output message if required. Note that:
o Inquiry Requests on Ping Transactions should be ignored
o if the Input message contains an Error Block with a Transient
Error then wait for the required time then resend the previous
message, if a response to the earlier message has not been
received
o if the input message contains a Error Component with a HardError
or a Cancel Block then stop all further processing of the
transaction. This includes suppressing the sending of any messages
currently being generated or responding to any new non-duplicate
messages that are received
o processing of encapsulated messages (e.g., Payment Protocol
Messages) may result in additional transient errors
o a digital signature can only safely be generated once all the
blocks and components have been generated and it is known which
elements in the message need to be signed.
If an output message is generated then it should be saved so that it
can be resent as required if an identical input message is received
again. Note that output messages that contain transient errors are
not saved so that they can be processed afresh when the input message
is received again.
Burdett Informational [Page 69]
^L
RFC 2801 IOTP/1.0 April 2000
4.5.3 Cancelling a Transaction
This process is used to cancel a transaction running on an IOTP
server. It is initiated by some other process as a result of an
external request from another system or server that is being run by
the same Trading Role. The processing required is as follows:
o if the IotpTransId of the transaction to be cancelled is not
recognised, or complete then fail the request, otherwise
o if the IotpTransId refers to a Ping Transaction then fail the
request, otherwise
o determine which Document Exchange to cancel and generate a Cancel
Block and send it to the other party
Note: Cancelling a transaction on an IOTP server typically arises for
a business reason. For example a merchant may have attempted
authentication several times without success and as a result decides
to cancel the transaction. Therefore the process that decides to take
this action needs to send a message from the process/server that made
the business decision to the IOTP server with the instruction that
the IOTP transaction should be cancelled.
4.5.4 Retransmitting Messages
The server should periodically check for transactions where a message
is expected in return but none has been received after a time that is
dependent on factors such as:
o the Transport Mechanism being used;
o the time required to process encapsulated messages (e.g., Payment
messages) and
o whether or not human input is required.
If no message has been received the original message should be
resent. This should occur up to a maximum number of times dependent
on the reliability of the Transport Mechanism being used.
If no response is received after the required time then the
Transaction should be "timed out". In this case, set the process
state of the transaction to Failed, and a completion code of either:
o TimedOutRcvr if the transaction can potentially recovered later,
or
Burdett Informational [Page 70]
^L
RFC 2801 IOTP/1.0 April 2000
o TimedOutNoRcvr if the transaction is non-recoverable
4.6 Client Role Processing Sequence
The "Client role" in IOTP is the Consumer Trading Role.
Note: A company or Organisation that is a Merchant, for example, may
take on the Trading Role of a Consumer when making purchases or
downloading or withdrawing electronic cash.
More specifically the Consumer Role must be able to:
o Initiate a transaction (see section 4.6.1). These are divided
into:
- payment related transactions and
- infrastructure transactions
o Accept and process a message received from another role (see
section 4.6.2). This includes:
- identifying if the message belongs to a transaction that has
been received before
- handling duplicate messages
- generating Transient errors if the servers that process the
input message are too busy to handle it
- processing the message if it is error free and, if appropriate,
producing a response to send back to the other role
o Cancel a current transaction if requested, for example by the User
(see section 4.6.3)
o Re-transmit messages if a response was expected but has not been
received in a reasonable time (see section 4.6.4).
4.6.1 Initiating Transactions
The Consumer Role may initiate a number of different types of
transaction. Specifically:
o an Inquiry Transaction (see section 9.2.1)
o a Ping Transaction (see section 9.2.2)
Burdett Informational [Page 71]
^L
RFC 2801 IOTP/1.0 April 2000
o an Authentication Transaction (see section 9.1.6)
4.6.2 Processing Input Messages
Processing of Input Messages for a Consumer Role is the same as for
an IOTP Server (see section 4.5.2) except in the area of checking for
Errors in Block Sequence (for an IOTP Server see section 4.5.2.4).
This is described below
Note: The description of the processing for an IOTP Server includes
consideration of multi-threading of input messages and multi-tasking
of requests. For the Consumer Role - particularly if running on a
stand-alone system such as a PC - use of multi-threading is a
decision of the implementer of the consumer role IOTP solution.
4.6.2.1 Check for Errors in Block Sequence
The handling of the following blocks is the same as for an IOTP
Server (see section 4.5.2.4) except that the Consumer Role is
substituted for IOTP Server Role:
o Error and Cancel Blocks,
o Inquiry Request and Response Blocks,
o Authentication Request, Response and Status Blocks.
For the other blocks a Consumer role might receive, the potential
errors in the sequence that blocks arrive depends on the block.
Blocks where checking for sequence is required are:
o TPO Block. Check as follows:
- if the input message also contains an Authentication Request
block and an Offer Response Block then there is a Hard Error,
otherwise
- if the input message also contains an Authentication Request
block and Authentication Status block then there is Hard Error
otherwise,
- if the input message also contains an Authentication Request
block and the IOTP Transaction is recognised by the Consumer
role's system, then there is a Hard Error, otherwise
Burdett Informational [Page 72]
^L
RFC 2801 IOTP/1.0 April 2000
- if the input message also contains an Authentication Status
block and the IOTP Transaction is not recognised by the
Consumer role's system then there is a Hard Error, otherwise
- if input message also contains an Authentication Status Block
and the Authentication Status Block has not been sent after an
earlier Authentication Response message then there is a hard
error
- if input message also contains an Offer Response Block and the
IOTP Transaction is recognised by the Consumer role's system
then there is a Hard Error, otherwise
- if the TPO Block occurs on its own and the IOTP Transaction is
recognised by the Consumer role's system then there is a Hard
Error
o Offer Response Block. Check as follows:
- if the Offer Response Block is part of a Brand Independent
Offer Exchange (see section 9.1.2.2) then there is no sequence
checking as it is part of the first message received, otherwise
- if the Offer Response Block is not part of an IOTP Transaction
that is recognised by the Consumer role then there is a Hard
Error, otherwise
- if the Offer Response Block does not refer to an IOTP
transaction where a TPO Selection Block was the last message
sent then there is a Hard Error
o Payment Exchange Block. Check as follows:
- if the Payment Exchange Block doesn't refer to an IOTP
Transaction that is recognised by the Consumer role's system
then there is a Hard Error, otherwise
- if the Payment Exchange doesn't refer to an IOTP Transaction
where either a Payment Request or a Payment Exchange block was
most recently sent then there is a Hard Error
o Payment Response Block. Check as follows:
- if the Payment Response Block doesn't refer to an IOTP
Transaction that is recognised by the Consumer role's system
then there is a Hard Error, otherwise
Burdett Informational [Page 73]
^L
RFC 2801 IOTP/1.0 April 2000
- if the Payment Response doesn't refer to an IOTOP Transaction
where either a Payment Request or a Payment Exchange block was
most recently sent then there is a Hard Error
o Delivery Response Block. Check as follows:
- if the Delivery Response Block doesn't refer to an IOTP
Transaction that is recognised by the Consumer role's system
then there is a Hard Error, otherwise
- If the Delivery Response doesn't refer to an IOTP Transaction
where either a Payment Request or a Payment Exchange block was
most recently sent then there is a Hard Error
4.6.3 Cancelling a Transaction
This process cancels a current transaction on an Consumer role's
system as a result of an external request from the user, or another
system or server in the Consumer's role. The processing is the same
as for an IOTP Server (see section 4.5.3).
4.6.4 Retransmitting Messages
The process of retransmitting messages is the same as for an IOTP
Server (see section 4.5.4).
5. Security Considerations
This section considers, from an IETF perspective how IOTP addresses
security. The next section (see section 6. Digital Signatures and
IOTP) describes how IOTP uses Digital Signatures when these are
needed.
This section covers:
o determining whether to use digital signatures
o data privacy, and
o payment protocol security.
5.1 Determining whether to use digital signatures
The use of digital signatures within IOTP are entirely optional. IOTP
can work successfully entirely without the use of digital signatures.
Ultimately it is up to the Merchant, or other trading role, to decide
whether IOTP Messages will include signatures, and for the Consumer
Burdett Informational [Page 74]
^L
RFC 2801 IOTP/1.0 April 2000
to decide whether carrying out a transaction without signatures is an
acceptable risk. If Merchants discover that transactions without
signatures are not being accepted, then they will either:
o start using signatures,
o find a method of working which does not need signatures, or
o accept a lower volume and value of business.
A non-exhaustive list of the reasons why digital signatures might be
used follows:
o the Merchant (or other trading role) wants to demonstrate that
they can be trusted. If, for example, a merchant generates an
Offer Response Signature (see section 7.19.2) using a certificate
from a trusted third party, known to the Consumer, then the
Consumer can check the signature and certificate and so more
reasonably rely on the offer being from the actual Organisation
the Merchant claims to be. In this case signatures using
asymmetric cryptography are likely to be required
o the Merchant, or other Trading Role, want to generate a record of
the transaction that is fit for a particular purpose. For example,
with appropriate trust hierarchies, digital signatures could be
checked by the Consumer to determine:
- if it would be accepted by tax authorities as a valid record of
a transaction, or
- if some warranty, for example from a "Better Business Bureau"
orsimilar was being provided
o the Payment Handler, or Delivery Handler, needs to know that the
request is unaltered and authorised. For example, in IOTP, details
of how much to pay is sent to the Consumer in the Offer Response
and then forwarded to the Payment Handler in a Payment Request. If
the request is not signed, the Consumer could change the amount
due by, for example, removing a digit. If the Payment Handler has
no access to the original payment information in the Offer
Response, then, without signatures, the Payment Handler cannot be
sure that the data has not been altered. Similarly, if the payment
information is not digitally signed, the Payment Handler cannot be
sure who is the Merchant that is requesting the payment
o a Payment Handler or Delivery Handler wants to provide a non-
refutable record of the completion status of a Payment or
Delivery. If a Payment Response or Delivery Response is signed,
Burdett Informational [Page 75]
^L
RFC 2801 IOTP/1.0 April 2000
then the Consumer can later use the record of the Payment or
Delivery to prove that it occurred. This could be used, for
example, for customer care purposes.
A non-exhaustive list of the reasons why digital signatures might not
be used follows:
o trading roles are combined therefore changes to data made by the
consumer can be detected. One of the reasons for using signatures
is so that one trading role can determine if data has been changed
by the Consumer or some other party. However if the trading roles
have access to the necessary data, then it might be possible to
compare, for example, the payment information in the Payment
Request with the payment information in the Offer Response. Access
to the data necessary could be realised by, for example, the
Merchant and Payment Handler roles being carried out by the same
Organisation on the same system, or the Merchant and Payment
Handler roles being carried out on different systems but the
systems can communicate in some way. (Note this type of
communication is outside the current scope of IOTP)
o the processing cost of the cryptography is too high. For example,
if a payment is being made of only a few cents, the cost of
carrying out all the cryptography associated with generating and
checking digital signatures might make the whole transaction
uneconomic. Co-locating trading roles, could help avoid this
problem.
5.2 Symmetric and Asymmetric Cryptography
The advantage of using symmetric keys with IOTP is that no Public Key
Infrastructure need be set up and just the Merchant, Payment Handler
and Delivery Handler need to agree on the shared secrets to use.
However the disadvantage of symmetric cryptography is that the
Consumer cannot easily check the credentials of the Merchant, Payment
Handler, etc. that they are dealing with. This is likely to reduce,
somewhat, the trust that the Consumer will have carrying out the
transaction.
However it should be noted that even if asymmetric cryptography is
being used, the Consumer does not NEED to be provided with any
digital certificates as the integrity of the transaction is
determined by, for example, the Payment Handler checking the Offer
Response Signature copied to the Payment Request.
Note that symmetric, asymmetric or both types of cryptography may be
used in a single transaction.
Burdett Informational [Page 76]
^L
RFC 2801 IOTP/1.0 April 2000
5.3 Data Privacy
Privacy of information is provided by sending IOTP Messages between
the various Trading Roles using a secure channel such as [SSL/TLS].
Use of a secure channel within IOTP is optional.
5.4 Payment Protocol Security
IOTP is designed to be completely blind to the payment protocol being
used to effect a payment. From the security perspective, this means
that IOTP neither helps, nor hinders, the achievement of payment
security.
If it is necessary to consider payment security from an IOTP
perspective, then this should be included in the payment protocol
supplement which describes how IOTP supports that payment protocol.
However what IOTP is designed to do is to use digital signatures to
bind together the record, contained in a "response" message, of each
trading exchange in a transaction. For example IOTP can bind
together: an Offer, a Payment and a Delivery.
6. Digital Signatures and IOTP
IOTP can work successfully without using any digital signatures
although in an open networking environment it will be less secure -
see 5. Security Considerations for a description of the factors that
need to be considered.
However, this section describes how to use digital signatures in the
many situations when they will be needed. Topics covered are:
o an overview of how IOTP uses digital signatures
o how to check a signature is correctly calculated
o how Payment Handlers and Delivery Handlers check they can carry
out payments or deliveries on behalf of a Merchant.
6.1 How IOTP uses Digital Signatures
In general, signatures when used with IOTP:
o are always treated as IOTP Components (see section 7)
o contain digests of one or more IOTP Components or Trading Blocks,
possibly including other Signature Components, in any IOTP message
within the same IOTP Transaction
Burdett Informational [Page 77]
^L
RFC 2801 IOTP/1.0 April 2000
o identify:
- which Organisation signed (originated) the signature, and
- which Organisation(s) should process the signature in order to
check that the Action the Organisation should take can occur.
Digital certificates may be associated with digital signatures if
asymmetric cryptography is being used. However if symmetric
cryptography is being used, then the digital certificate will be
replaced by some identifier of the secret key to use.
Burdett Informational [Page 78]
^L
RFC 2801 IOTP/1.0 April 2000
The way in which Signatures Components digest one or more elements is
illustrated in the figure below.
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
IOTP MESSAGE SIGNATURE COMPONENT
IOTP Message Signature Id = P1.3
|-Trans Ref Block digest TransRefBlk |-Manifest
| | ID=P1.1-----------------------------|->|-Digest of P1.1--
| |-Trans Id Comp digest TransIdComp | | |
| | ID = M1.2----------------------------|->|-Digest of M1.2--|
| |-Msg Id Comp. digest Signature | | |
| | ID = P1 -------------------|->|-Digest of M1.5--|
| | digest element | | |
|-Signatures Block | -----------------|->|-Digest of M1.7--|
| | ID=P1.2 | | digest element | | |
| |-Signature ID=P1.3 | | ---------------|->|-Digest of C1.4--|
| |-Signature ID=M1.5---- | | | | |
| |-Signature ID=P1.4 | | Points to | -RecipientInfo* |
| |-Certificate ID=M1.6<---|-|---------------|------CertRef=M1.6 |
| | | | Certs to use | Sig.ValueRef=P1.4 |
| | | | | | |
| | | | | | |
|-Trading Block. ID=P1.5 | | | v |
| |-Comp. ID=M1.7---------- | -Value* ID=P1.4: |
| | | JtvwpMdmSfMbhK<--
| |-Comp. ID=P1.6 | r1Ln3vovbMQttbBI
| | | J8pxLjoSRfe1o6k
| |-Comp. ID=C1.4------------ OGG7nTFzTi+/0<-
| |-Comp. ID=C1.5
Digital signature of Manifest element
using certificate identified by CertRef
Elements that are digested can be in any IOTP Message
within the same IOTP Transaction
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 10 Signature Digests
Burdett Informational [Page 79]
^L
RFC 2801 IOTP/1.0 April 2000
Note: The classic example of one signature signing another in IOTP,
is when an Offer is first signed by a Merchant creating an "Offer
Response" signature, which is then later signed by a Payment Handler
together with a record of the payment creating a "Payment Receipt"
signature. In this way, the payment in an IOTP Transaction is bound
to the Merchant's offer.
Note that one Manifest may be associated with multiple signature
"Value" elements where each Value element contains a digital
signature over the same Manifest, perhaps using the same (or
different) signature algorithm but using a different certificate or
shared secret key. Specifically it will allow the Merchant to agree
on different shared secrets keys with their Payment Handler and
Delivery Handler.
The detailed definitions of a Signature component are contained in
section 7.19.
The remainder of this section contains:
o an example of how IOTP uses signatures
o how the OriginatorInfo and RecipientInfo elements within a
Signature Component are used to identify the Organisations
associated with the signature
o how IOTP uses signatures to prove actions complete successfully
6.1.1 IOTP Signature Example
An example of how signatures are used is illustrated in the figure
below which shows how the various components and elements in a
Baseline Purchase relate to one another. Refer to this example in the
later description of how signatures are used to check a payment or
delivery can occur (see section 6.3).
Note: A Baseline Purchase transaction has been used for illustration
purposes. The usage of the elements and attributes is the same for
all types of IOTP Transactions.
Burdett Informational [Page 80]
^L
RFC 2801 IOTP/1.0 April 2000
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
TPO SELECTION BLOCK TPO BLOCK IOTPSIGNATURE BLOCK
| (Offer Response)
Brand Selection Organisation<--- |------Signature
Component Component | | Component
| | | -Manifest
|BrandList -Trading Role | |
| Ref Element | Originator |-Orig.
v (Merchant) ------------|--Info
Brand List Ref |
>Component |
| |-Protocol ------> Organisation Recipient |-Recipient
| | Amount Elem | Component <------------------|--Info
| | | | | Refs |
| |Pay|Protocol |Action -Trading Role |
| | | Ref |OrgRef Element |
| | v | (Payment Handler) |
| -PayProtocol-- |
| Elem ->Organisation Recipient |-Recipient
| | Component <--------------------Info
| | | Refs
| | -Trading Role
| | Element
| | (Delivery Handler
|
| OFFER RESPONSE BLOCK
| |
|BrandListRef |ActionOrgRef
| |
--Payment ---Delivery
Component Component
The Manifest element in the Signature Component contains digests of:
the Trans Ref Block (not shown); the Transaction ID Component (not
shown); Organisation Components (Merchant, Payment Handler, Delivery
Handler); the Brand List Component; the Order Component, the Payment
Component the Delivery Component and the Brand Selection Component (if a
Brand Dependent Purchase).
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 11 Example use of Signatures for Baseline Purchase
Burdett Informational [Page 81]
^L
RFC 2801 IOTP/1.0 April 2000
6.1.2 OriginatorInfo and RecipientInfo Elements
The OriginatorRef attribute of the OriginatorInfo element in the
Signature Component contains an Element Reference (see section 3.5)
that points to the Organisation Component of the Organisation which
generated the Signature. In this example its the Merchant.
Note that the value of the content of the Attribute element with a
Type attribute set to IOTP Signature Type must match the Trading Role
of the Organisation which signed it. If it does not, then it is an
error. Valid combinations are given in the table below.
IOTP Signature Type Valid Trading Role
OfferResponse Merchant
PaymentResponse PaymentHandler
DeliveryResponse DeliveryHandler
AuthenticationRequest any role
AuthenticationResponse any role
PingRequest any role
PingResponse any role
The RecipientRefs attribute of the RecipientInfo element in the
Signature Component contains Element References to the Organisation
Components of the Organisations that should use the signature to
verify that:
o they have a pre-existing relationship with the Organisation that
generated the signature,
o the data which is secured by the signature has not been changed,
o the data has been signed correctly, and
o the action they are required to undertake on behalf of the
Merchant is therefore authorised.
Note that if symmetric cryptography is being used then a separate
RecipientInfo and Value elements for each different set of shared
secret keys are likely within the Signature Component.
Burdett Informational [Page 82]
^L
RFC 2801 IOTP/1.0 April 2000
Alternatively if asymmetric cryptography is being used then the
RecpientRefs attribute of one RecipientInfo element may refer to
multiple Organisation Components if they are all using the same
certificates.
6.1.3 Using signatures to Prove Actions Complete Successfully
Proving an action completed successfully, is achieved by signing data
on Response messages. Specifically:
o on the Offer Response, when a Merchant is making an Offer to the
Consumer which can then be sent to either:
- a Payment Handler to prove that the Merchant authorises
Payment, or
- a Delivery Handler to prove that Merchant authorises Delivery,
provided other necessary authorisations are complete (see
below)
o on the Payment Response, when a Payment Handler is generating a
Payment Receipt which can be sent to either:
- a Delivery Handler, in a Delivery Request Block to authorise
Delivery together with the Offer Response signature, or
- another Payment Handler, in a second Payment Request, to
authorise the second payment in a Value Exchange IOTP
Transaction
o Delivery Response, when a Delivery Handler is generating a
Delivery Note. This can be used to prove after the event what the
Delivery Handler said they would do
o Authentication Response. One method of authenticating another
party to a trade is to send an Authentication Request specifying
that a Digital Signature should be used for authentication
o Transaction Status Inquiry. The Inquiry Response Block may be
digitally signed to attest to the authenticity of the response
o Ping. The Ping Response may be digitally signed so that checks can
be made that the signature can be understood.
This proof of an action may, in future versions of IOTP, also be used
to prove after the event that the IOTP transaction occurred. For
example to a Customer Care Provider.
Burdett Informational [Page 83]
^L
RFC 2801 IOTP/1.0 April 2000
6.2 Checking a Signature is Correctly Calculated
Checking a signature is correctly calculated is part of checking for
Message Level Errors (see section 4.3.2). It is included here so that
all signature and security related considerations are kept together.
Before a Trading Role can check a signature it must identify which of
the potentially multiple Signature elements should be checked. The
steps involved are as follows:
o check that a Signature Block is present and it contains one or
more Signature Components
o identify the Organisation Component which contains an OrgId
attribute for the Organisation which is carrying out the signature
check. If no or more than one Organisation Component is found then
it is an error
o use the ID attribute of the Organisation Component to find the
RecipientInfo element that contains a RecipientRefs attribute that
refers to that Organisation Component. Note there may be no
signatures to verify
o check the Signature Component that contains the identified
RecipientInfo element as follows:
- use the SignatureValueRef and the SignatureAlgorithmRef
attributes to identify, respectively: the Value element that
contains the signature to be checked and the Signature
Algorithm element that describes the signature algorithm to be
used to verify the Signature, then
- if the Signature Algorithm element indicates that asymmetric
cryptography is being used then use the SignatureCertRef to
identify the Certificate to be used by the signature algorithm
- if Signature Algorithm element indicates that symmetric
cryptography is being used then the content of the
RecipientInfo element is used to identify the correct shared
secret key to use
- use the specified signature algorithm to check that the Value
Element correctly signs the Manifest Element
- check that the Digest Elements in the Manifest Element are
correctly calculated where Components or Blocks referenced by
the Digest have been received by the Organisation checking the
signature.
Burdett Informational [Page 84]
^L
RFC 2801 IOTP/1.0 April 2000
6.3 Checking a Payment or Delivery can occur
This section describes the processes required for a Payment Handler
or Delivery Handler to check that a payment or delivery can occur.
This may include checking signatures if this is specified by the
Merchant.
In outline the steps are:
o check that the Payment Request or Delivery Request has been sent
to the correct Organisation
o check that correct IOTP components are present in the request, and
o check that the payment or delivery is authorised
For clarity and brevity the following terms or phrases are used in
this section:
o a "Request Block" is used to refer to either a Payment Request
Block (see section 8.7) or a Delivery Request Block (see section
8.10) unless specified to the contrary
o a "Response Block" is used to refer to either a Payment Response
Block (see section 8.9) or a Delivery Response Block (see section
8.11)
o an "Action" is used to refer to an action which occurs on receipt
of a Request Block. Actions can be either a Payment or a Delivery
o an "Action Organisation", is used to refer to the Payment Handler
or Delivery Handler that carries out an Action
o a "Signer of an Action", is used to refer to the Organisations
that sign data about an Action to authorise the Action, either in
whole or in part
o a "Verifier of an Action", is used to refer to the Organisations
that verify data to determine if they are authorised to carry out
the Action
o an ActionOrgRef attribute contains Element References which can be
used to identify the "Action Organisation" that should carry out
an Action
Burdett Informational [Page 85]
^L
RFC 2801 IOTP/1.0 April 2000
6.3.1 Check Request Block sent Correct Organisation
Checking the Request Block was sent to the correct Organisation
varies depending on whether the request refers to a Payment or a
Delivery.
6.3.1.1 Payment
In outline a Payment Handler checks if it can accept or make a
payment by identifying the Payment Component in the Payment Request
Block it has received, then using the ID of the Payment Component to
track through the Brand List and Brand Selection Components to
identify the Organisation selected by the Consumer and then checking
that this Organisation is itself.
Burdett Informational [Page 86]
^L
RFC 2801 IOTP/1.0 April 2000
The way data is accessed to do this is illustrated in the figure
below.
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
Start
|
v
Brand List<--------------------------+-----------Payment
Component BrandListRef | Component
| |
|-Brand<-------------------------- |
| Element BrandRef | |
| | Brand Selection
| |Protocol Component
| | AmountRefs | |
| v Protocol | |
|-Protocol Amount<---------------- |
| Element---------- AmountRef |
| | | |
| |Currency |Pay |
| | AmountRefs |Protocol |
| v |Ref |
|-Currency Amount | |
| Element<---------|----------------
| |
-PayProtocol<-----
Element---------------------->Organisation
Action Component
OrgRef |
-Trading Role
Element
(Payment Handler)
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 12 Checking a Payment Handler can carry out a Payment
The following describes the steps involved and the checks which need
to be made:
o Identify the Payment Component (see section 7.9) in the Payment
Request Block that was received.
o Identify the Brand List and Brand Selection Components for the
Payment Component. This involves:
Burdett Informational [Page 87]
^L
RFC 2801 IOTP/1.0 April 2000
- identifying the Brand List Component (see section 7.7) where
the value of its ID attribute matches the BrandListRef
attribute of the Payment Component. If no or more than one
Brand List Component is found there is an error.
- identifying the Brand Selection Component (see section 7.8)
where the value of its BrandListRef attribute matches the
BrandListRef of the Payment Component. If no or more than one
matching Brand Selection Component is found there is an error.
o Identify the Brand, Protocol Amount, Pay Protocol and Currency
Amount elements within the Brand List that have been selected by
the Consumer as follows:
- the Brand Element (see section 7.7.1) selected is the element
where the value of its Id attribute matches the value of the
BrandRef attribute in the Brand Selection. If no or more than
one matching Brand Element is found then there is an error.
- the Protocol Amount Element (see section 7.7.3) selected is the
element where the value of its Id attribute matches the value
of the ProtocolAmountRef attribute in the Brand Selection
Component. If no or more than one matching Protocol Amount
Element is found there is an error
- the Pay Protocol Element (see section 7.7.5) selected is the
element where the value of its Id attribute matches the value
of the PayProtocolRef attribute in the identified Protocol
Amount Element. If no or more than one matching Pay Protocol
Element is found there is an error
- the Currency Amount Element (see section 7.7.4) selected is the
element where the value of its Id attribute matches the value
of the CurrencyAmountRef attribute in the Brand Selection
Component. If no or more than one matching Currency Amount
element is found there is an error
o Check the consistency of the references in the Brand List and
Brand Selection Components:
- check that an Element Reference exists in the
ProtocolAmountRefs attribute of the identified Brand Element
that matches the Id attribute of the identified Protocol Amount
Element. If no or more than one matching Element Reference can
be found there is an error
Burdett Informational [Page 88]
^L
RFC 2801 IOTP/1.0 April 2000
- check that the CurrencyAmountRefs attribute of the identified
Protocol Amount element contains an element reference that
matches the Id attribute of the identified Currency Amount
element. If no or more than one matching Element Reference is
found there is an error.
- check the consistency of the elements in the Brand List.
Specifically, the selected Brand, Protocol Amount, Pay Protocol
and Currency Amount Elements are all child elements of the
identified Brand List Component. If they are not there is an
error.
o Check that the Payment Handler that received the Payment Request
Block is the Payment Handler selected by the Consumer. This
involves:
- identifying the Organisation Component for the Payment Handler.
This is the Organisation Component where its ID attribute
matches the ActionOrgRef attribute in the identified Pay
Protocol Element. If no or more than one matching Organisation
Component is found there is an error
- checking the Organisation Component has a Trading Role Element
with a Role attribute of PaymentHandler. If not there is an
error
- finally, if the identified Organisation Component is not the
same as the Organisation that received the Payment Request
Block, then there is an error.
Burdett Informational [Page 89]
^L
RFC 2801 IOTP/1.0 April 2000
6.3.1.2 Delivery
The way data is accessed by a Delivery Handler in order to check that
it may carry out a delivery is illustrated in the figure below.
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
Start
|
v
Delivery
Component
|
|ActionOrgRef
|
v
Organisation
Component
|
-Trading Role
Element
(Delivery Handler)
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 13 Checking a Delivery Handler can carry out a Delivery
The steps involved are as follows:
o Identify the Delivery Component in the Delivery Request Block. If
there is no or more than one matching Delivery Component there is
an error
o Use the ActionOrgRef attribute of the Delivery Component to
identify the Organisation Component of the Delivery Handler. If
there is no or more than one matching Organisation Component there
is an error
o If the Organisation Component for the Delivery Handler does not
have a Trading Role Element with a Role attribute of
DeliveryHandler there is an error
o Finally, if the Organisation that received the Delivery Request
Block does not identify the Organisation Component for the
Delivery Handler as itself, then there is an error.
Burdett Informational [Page 90]
^L
RFC 2801 IOTP/1.0 April 2000
6.3.2 Check Correct Components present in Request Block
Check that the correct components are present in the Payment Request
Block (see section 8.7) or in the Delivery Request Block (see section
8.10).
If components are missing, there is an error.
6.3.3 Check an Action is Authorised
The previous steps identified the Action Organisation and that all
the necessary components are present. This step checks that the
Action Organisation is authorised to carry out the Action.
In outline the Action Organisation will identifies the Merchant,
checks that it has a pre-existing agreement with the Merchant that
allows it carry out the Action and that any constraints implied by
that agreement are being followed, then, if signatures are required,
it checks that they sign the correct data.
The steps involved are as follows:
o Identify the Merchant. This is the Organisation Component with a
Trading Role Element which has a Role attribute with a value of
Merchant. If no or more than one Trading Role Element is found,
there is an error
o Check the Action Organisation's agreements with the Merchant
allows the Action to be carried out. To do this the Action
Organisation must check that:
- the Merchant is known and a pre-existing agreement exists for
the Action Organisation to be their agent for the payment or
delivery
- they are allowed to take part in the type of IOTP transaction
that is occurring. For example a Payment Handler may have
agreed to accept payments as part of a Baseline Purchase, but
not make payments as part of a Baseline Refund
- any constraints in their agreement with the Merchant are being
followed, for example, whether or not an Offer Response
signature is required
o Check the signatures are correct. If signatures are required then
they need to be checked. This involves:
Burdett Informational [Page 91]
^L
RFC 2801 IOTP/1.0 April 2000
- Identifying the correct signatures to check. This involves the
Action Organisation identifying the Signature Components that
contain references to the Action Organisation (see 6.3.1).
Depending on the IOTP Transaction being carried out (see
section 9) either one or two signatures may be identified
- checking that the Signature Components are correct. This
involves checking that Digest elements exist within the
Manifest Element that refer to the necessary Trading Components
(see section 6.3.3.1).
6.3.3.1 Check the Signatures Digests are correct
All Signature Components contained within IOTP Messages must include
Digest elements that refer to:
o the Transaction Id Component (see section 3.3.1) of the IOTP
message that contains the Signature Component. This binds the
globally unique IotpTransId to other components which make up the
IOTP Transaction
o the Transaction Reference Block (see section 3.3) of the first
IOTP Message that contained the signature. This binds the
IotpTransId with information about the IOTP Message contained
inside the Message Id Component (see section 3.3.2).
Check that each Signature Component contains Digest elements that
refer to the correct data required.
The Digest elements that need to be present depend on the Trading
Role of the Organisation which generated (signed) the signature:
o if the signer of the signature is a Merchant then:
- Digest elements must be present for all the components in the
Request Block apart from the Brand Selection Component which is
optional
o if the signer of the signature is a Payment Handler then Digest
elements must be present for:
- the Signature Component signed by the Merchant, and optionally
- one or more Signature Components signed by the previous Payment
Handler(s) in the Transaction.
Burdett Informational [Page 92]
^L
RFC 2801 IOTP/1.0 April 2000
7. Trading Components
This section describes the Trading Components used within IOTP.
Trading Components are the child XML elements which occur immediately
below a Trading Block as illustrated in the diagram below.
Burdett Informational [Page 93]
^L
RFC 2801 IOTP/1.0 April 2000
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
IOTP MESSAGE <----------- IOTP Message - an XML Document
| which is transported between the
| Trading Roles
|-Trans Ref Block <----- Trans Ref Block - contains
| | information which describes the
| | IOTP Transaction and the IOTP
Message.
--------> | |-Trans Id Comp. <--- Transaction Id Component -
| | | uniquely identifies the IOTP
| | | Transaction. The Trans Id
| | | Components are the same across
| | | all IOTP messages that comprise
| | | a single IOTP transaction.
| | |-Msg Id Comp. <----- Message Id Component -
| | identifies and describes an IOTP
| | Message within an IOTP
| | Transaction
| |-Signature Block <----- Signature Block (optional) -
| | | contains one or more Signature
| | | Components and their associated
| | | Certificates
| ---> | |-Signature Comp. <-- Signature Component - contains
| | | | digital signatures. Signatures
| | | | may sign digests of the Trans Ref
| | | | Block and any Trading Component
| | | | in any IOTP Message in the same
| | | | IOTP Transaction.
| | | |-Certificate Comp. <- Certificate Component. Used to
| | | check the signature.
Trading |-Trading Block <-------- Trading Block - an XML Element
Components | |-Trading Comp. within an IOTP Message that
| | | |-Trading Comp. contains a predefined set of
| ---> | |-Trading Comp. Trading Components
| | |-Trading Comp.
| | |-Trading Comp. <----- Trading Components - XML
| | Elements within a Trading Block
| |-Trading Block that contain a predefined set of
--------> | |-Trading Comp. XML elements and attributes
| |-Trading Comp. containing information required
| |-Trading Comp. to support a Trading Exchange
| |-Trading Comp.
| |-Trading Comp.
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 14 Trading Components
Burdett Informational [Page 94]
^L
RFC 2801 IOTP/1.0 April 2000
The Trading Components described in this section are listed below in
approximately the sequence they are likely to be used:
o Protocol Options Component
o Authentication Request Component
o Authentication Response Component
o Trading Role Information Request Component
o Order Component
o Organisation Component
o Brand List Component
o Brand Selection Component
o Payment Component
o Payment Scheme Component
o Payment Receipt Component
o Delivery Component
o Delivery Data Component
o Delivery Note Component
o Signature Component
o Certificate Component
o Error Component
Note that the following components are listed in other sections of
this specification:
o Transaction Id Component (see section 3.3.1)
o Message Id Component (see section 3.3.2)
Burdett Informational [Page 95]
^L
RFC 2801 IOTP/1.0 April 2000
7.1 Protocol Options Component
Protocol options are options which apply to the IOTP Transaction as a
whole. Essentially it provides a short description of the entire
transaction and the net location which the Consumer role should
branch to if the IOTP Transaction is successful.
The definition of a Protocol Options Component is as follows.
<!ELEMENT ProtocolOptions EMPTY >
<!ATTLIST ProtocolOptions
ID ID #REQUIRED
xml:lang NMTOKEN #REQUIRED
ShortDesc CDATA #REQUIRED
SenderNetLocn CDATA #IMPLIED
SecureSenderNetLocn CDATA #IMPLIED
SuccessNetLocn CDATA #REQUIRED >
Attributes:
ID An identifier which uniquely identifies the
Protocol Options Component within the IOTP
Transaction.
Xml:lang Defines the language used by attributes or child
elements within this component, unless
overridden by an xml:lang attribute on a child
element. See section 3.8 Identifying Languages.
ShortDesc This contains a short description of the IOTP
Transaction in the language defined by xml:lang.
Its purpose is to provide an explanation of what
type of IOTP Transaction is being conducted by
the parties involved.
It is used to facilitate selecting an individual
transaction from a list of similar transactions,
for example from a database of IOTP transactions
which has been stored by a Consumer, Merchant,
etc.
SenderNetLocn This contains the non secured net location of
the sender of the TPO Block in which the
Protocol Options Component is contained.
It is the net location to which the recipient of
the TPO block should send a TPO Selection Block
if required.
Burdett Informational [Page 96]
^L
RFC 2801 IOTP/1.0 April 2000
The content of this attribute is dependent on
the Transport Mechanism see the Transport
Mechanism Supplement.
SecureSenderNetLocn This contains the secured net location of the
sender of the TPO Block in which the Protocol
Options Component is contained.
The content of this attribute is dependent on
the Transport Mechanism see the Transport
Mechanism Supplement.
SuccessNetLocn This contains the net location that should be
displayed after the IOTP Transaction has
successfully completed.
The content of this attribute is dependent on
the Transport Mechanism see the Transport
Mechanism Supplement.
Either SenderNetLocn, SecureSenderNetLocn or both must be present.
7.2 Authentication Request Component
This Trading Component contains parameter data that is used in an
Authentication of one Trading Role by another. Its definition is as
follows.
<!ELEMENT AuthReq (Algorithm, PackagedContent*)>
<!ATTLIST AuthReq
ID ID #REQUIRED
AuthenticationId CDATA #REQUIRED
ContentSoftwareId CDATA #IMPLIED >
If required the Algorithm may use the challenge data, contained in
the Packaged Content elements within the Authentication Request
Component in its calculation. The format of the Packaged Contents are
Algorithm dependent.
Attributes:
ID An identifier which uniquely identifies the
Authentication Request Component within the IOTP
Transaction.
AuthenticationId An identifier specified by the Authenticator
which, if returned by the Organisation that
receives the Authentication Request, will enable
Burdett Informational [Page 97]
^L
RFC 2801 IOTP/1.0 April 2000
the Authenticator to identify which Authentication
is being referred to.
ContentSoftwareId See section 14.Glossary
Content:
PackagedContent This contains the challenge data as one or more
Packaged Content (see section 3.7) that is to be
responded to using the Algorithm defined by the
Algorithm element.
Algorithm This contains information which describes the
Algorithm (see 7.19 Signature Components) that
must be used to generate the Authentication
Response.
The Algorithms that may be used are identified by
the Name attribute of the Algorithm element. For
valid values see section 12. IANA Considerations.
7.3 Authentication Response Component
The Authentication Response Component contains the results of an
authentication request. It uses the Algorithm contained in the
Authentication Request Component (see section 7.2) selected from the
Authentication Request Block (see section 8.4).
Depending on the Algorithm selected, the results of applying the
algorithm will either be contained in a Signature Component that
signs both the Authentication Response and potentially other data, or
in the Packaged Content elements within the Authentication Response
Component. Its definition is as follows.
<!ELEMENT AuthResp (PackagedContent*) >
<!ATTLIST AuthResp
ID ID #REQUIRED
AuthenticationId CDATA #REQUIRED
SelectedAlgorithmRef NMTOKEN #REQUIRED
ContentSoftwareId CDATA #IMPLIED >
Attributes:
ID An identifier which uniquely identifies the
Authentication Response Component within the
IOTP Transaction.
Burdett Informational [Page 98]
^L
RFC 2801 IOTP/1.0 April 2000
AuthenticationId The Authentication identifier specified by the
Authenticator that was included in the
Authentication Request Component(see section
7.2). This will enable the Authenticator to
identify the Authentication that is being
referred to.
SelectedAlgorithmRef An Element Reference that identifies the
Algorithm element used to generate the
Authentication Response.
ContentSoftwareId See section 14.Glossary.
Content:
PackagedContent This may contain the response generated as a
result of applying the Algorithm selected from the
Authentication Request Component see section 7.2.
For example, for a payment specific scheme, it may
contain scheme-specific data. Refer to the scheme-
specific supplemental documentation for
definitions of its content.
7.4 Trading Role Information Request Component
This Trading Component contains a list of Trading Roles (see section
2.1) about which information is being requested. The result of a
Trading Role Request is a set of Organisation Components (see section
7.6) that describe each of the Trading Roles requested.
Example usage includes:
o a Merchant requesting that a Consumer provides Organisation
Components for the Consumer and DelivTo Trading Roles
o a Consumer requesting from a Merchant, information about the
Payment Handlers and Delivery Handlers that the Merchant uses.
Its definition is as follows.
<!ELEMENT TradingRoleInfoReq EMPTY>
<!ATTLIST TradingRoleInfoReq
ID ID #REQUIRED
TradingRoleList NMTOKENS #REQUIRED >
Burdett Informational [Page 99]
^L
RFC 2801 IOTP/1.0 April 2000
Attributes:
ID An identifier which uniquely identifies the
Trading Role Information Request Component within
the IOTP Transaction.
TradingRoleList Contains a list of one or more Trading Roles (see
the TradingRole attribute of the Trading Role
Element - section 7.6.2) for which information is
being requested.
7.5 Order Component
An Order Component contains information about an order. Its
definition is as follows.
<!ELEMENT Order (PackagedContent*) >
<!ATTLIST Order
ID ID #REQUIRED
xml:lang NMTOKEN #REQUIRED
OrderIdentifier CDATA #REQUIRED
ShortDesc CDATA #REQUIRED
OkFrom CDATA #REQUIRED
OkTo CDATA #REQUIRED
ApplicableLaw CDATA #REQUIRED
ContentSoftwareId CDATA #IMPLIED >
Attributes:
ID An identifier which uniquely identifies the Order
Component within the IOTP Transaction.
xml:lang Defines the language used by attributes or child
elements within this component, unless overridden
by an xml:lang attribute on a child element. See
section 3.8 Identifying Languages.
OrderIdentifier This is a code, reference number or other
identifier which the creator of the Order may use
to identify the order. It must be unique within an
IOTP Transaction. If it is used in this way, then
it may remove the need to specify any content for
the Order element as the reference can be used to
look up the necessary information in a database.
ShortDesc A short description of the order in the language
defined by xml:lang. It is used to facilitate
selecting an individual order from a list of
Burdett Informational [Page 100]
^L
RFC 2801 IOTP/1.0 April 2000
orders, for example from a database of orders
which has been stored by a Consumer, Merchant,
etc.
OkFrom The date and time in [UTC] format after which the
offer made by the Merchant lapses.
OkTo The date and time in [UTC] format before which a
Value Acquirer may accept the offer made by the
Merchant is not valid.
ApplicableLaw A phrase in the language defined by xml:lang which
describes the state or country of jurisdiction
which will apply in resolving problems or
disputes.
ContentSoftwareId See section 14.Glossary.
Content:
PackagedContent An optional description of the order information
as one or more Packaged Contents (see section
3.7).
7.5.1 Order Description Content
The Packaged Content element will normally be required, however it
may be omitted where sufficient information about the purchase can be
provided in the ShortDesc attribute. If the full Order Description
requires it several Packaged Content elements may be used.
Although the amount and currency are likely to appear in the Packaged
Content of the Order Description it is the amount and currency
contained in the payment related trading components (Brand List,
Brand Selection and Payment) that is authoritative. This means it is
important that the amount actually being paid (as contained in the
payment related trading components) is prominently displayed to the
Consumer.
For interoperability, implementations must support Plain Text, HTML
and XML as a minimum so that it can be easily displayed.
7.5.2 OkFrom and OkTo Timestamps
Note that:
o the OkFrom date may be later than the OkFrom date on the Payment
Component (see section 7.9) associated with this order, and
Burdett Informational [Page 101]
^L
RFC 2801 IOTP/1.0 April 2000
o similarly, the OkTo date may be earlier that the OkTo date on the
Payment Component (see section 7.9).
Note: Disclaimer. The following information provided in this note
does not represent formal advice of any of the authors of this
specification. Readers of this specification must form their own
views and seek their own legal counsel on the usefulness and
applicability of this information.
The merchant in the context of Internet commerce with anonymous
consumers initially frames the terms of the offer on the web page,
and in order to obtain the goods or services, the consumer must
accept them.
If there is to be a time-limited offer, it is recommended that
merchants communicate this to the consumer and state in the order
description in a manner which is clear to the consumer that:
o the offer is time limited
o the OkFrom and OkTo timestamps specify the validity of the offer
o the clock, e.g., the merchant's clock, that will be used to
determine the validity of the offer
Also note that although the OkFrom and OkTo dates are likely to
appear in the Packaged Content of the Order Description it is the
dates contained in the Order Component that is authoritative. This
means it is important that the OkFrom and OkTo dates actually being
used is prominently displayed to the Consumer.
7.6 Organisation Component
The Organisation Component provides information about an individual
or an Organisation. This can be used for a variety of purposes. For
example:
o to describe the merchant who is selling the goods,
o to identify who made a purchase,
o to identify who will take delivery of goods,
o to provide a customer care contact,
o to describe who will be the Payment Handler.
Burdett Informational [Page 102]
^L
RFC 2801 IOTP/1.0 April 2000
Note that the Organisation Components which must be present in an
IOTP Message are dependent on the particular transaction being
carried out. Refer to section 9. Internet Open Trading Protocol
Transactions, for more details.
Its definition is as follows.
<!ELEMENT Org (TradingRole+, ContactInfo?,
PersonName?, PostalAddress?)>
<!ATTLIST Org
ID ID #REQUIRED
xml:lang NMTOKEN #REQUIRED
OrgId CDATA #REQUIRED
LegalName CDATA #IMPLIED
ShortDesc CDATA #IMPLIED
LogoNetLocn CDATA #IMPLIED >
Attributes:
ID An identifier which uniquely identifies the
Organisation Component within the IOTP
Transaction.
xml:lang Defines the language used by attributes or child
elements within this component, unless overridden
by an xml:lang attribute on a child element. See
section 3.8 Identifying Languages.
OrgId A code which identifies the Organisation described
by the Organisation Component. See 7.6.1
Organisation IDs, below.
LegalName For Organisations which are companies this is
their legal name in the language defined by
xml:lang. It is required for Organisations who
have a Trading Role other than Consumer or
DelivTo.
ShortDesc A short description of the Organisation in the
language defined by xml:lang. It is typically the
name by which the Organisation is commonly known.
For example, if the legal name was "Blue Meadows
Financial Services Inc.". Then its short name
would likely be "Blue Meadows".
It is used to facilitate selecting an individual
Organisation from a list of Organisations, for
example from a database of Organisations involved
Burdett Informational [Page 103]
^L
RFC 2801 IOTP/1.0 April 2000
in IOTP Transactions which has been stored by a
consumer.
LogoNetLocn The net location which can be used to download the
logo for the Organisation.
See section 10 Retrieving Logos.
The content of this attribute must conform to
[RFC1738].
Content:
TradingRole See 7.6.2 Trading Role Element below.
ContactInfo See 7.6.3 Contact Information Element below.
PersonName See 7.6.4 Person Name below.
PostalAddress See 7.6.5 Postal Address below.
7.6.1 Organisation IDs
Organisation IDs are used by one IOTP Trading Role to identify
another. In order to avoid confusion, this means that these IDs must
be globally unique.
In principle this is achieved in the following way:
o the Organisation Id for all trading roles, apart from the Consumer
Trading Role, uses a domain name as their globally unique
identifier,
o the Organisation Id for a Consumer Trading Role is allocated by
one of the other Trading Roles in an IOTP Transaction and is made
unique by concatenating it with that other roles' Organisation Id,
o once a Consumer is allocated an Organisation Id within an IOTP
Transaction the same Organisation Id is used by all the other
trading roles in that IOTP transaction to identify that Consumer.
Specifically, the content of the Organisation ID is defined as
follows:
OrgId ::= NonConsumerOrgId | ConsumerOrgId
NonConsumerOrgId ::= DomainName
ConsumerOrgId ::= ConsumerOrgIdPrefix (namechar)+ "/" NonConsumerOrgId
ConsumerOrgIdPrefix ::= "Consumer:"
Burdett Informational [Page 104]
^L
RFC 2801 IOTP/1.0 April 2000
ConsumerOrgId The Organisation ID for a Consumer consists of:
o a standard prefix to identify that the
Organisation Id is for a consumer, followed by
o one or more characters which conform to the
definition of an XML "namechar". See [XML]
specifications, followed by
o the NonConsumerOrgId for the Organisation
which allocated the ConsumerOrgId. It is
normally the Merchant role.
Use of upper and lower case is not significant.
NonConsumerOrgId If the Role is not Consumer then this contains the
Canonical Name for the non-consumer Organisation
being described by the Organisation Component. See
[DNS] optionally followed by additional
characters, if required, to make the
NonConsumerOrgId unique.
Note that a NonConsumerOrgId may not start with
the ConsumerOrgIdPrefix.
Use of upper and lower case is not significant.
Examples of Organisation Ids follow:
o newjerseybooks.com - a merchant Organisation id
o westernbank.co.uk - a Payment Handler Organisation id
o consumer:1000247ABH/newjerseybooks.com - a consumer Organisation
id allocated by a merchant
7.6.2 Trading Role Element
This identifies the Trading Role of an individual or Organisation in
the IOTP Transaction. Note, an Organisation may have more than one
Trading Role and several roles may be present in one Organisation
element. Its definition is as follows:
<!ELEMENT TradingRole EMPTY >
<!ATTLIST TradingRole
ID ID #REQUIRED
TradingRole NMTOKEN #REQUIRED
IotpMsgIdPrefix NMTOKEN #REQUIRED
CancelNetLocn CDATA #IMPLIED
ErrorNetLocn CDATA #IMPLIED
Burdett Informational [Page 105]
^L
RFC 2801 IOTP/1.0 April 2000
ErrorLogNetLocn CDATA #IMPLIED >
Attributes:
ID An identifier which uniquely identifies the
Trading Role Element within the IOTP Transaction.
TradingRole The trading role of the Organisation. Valid values
are:
o Consumer. The person or Organisation that is
acting in the role of a consumer in the IOTP
Transaction.
o Merchant. The person or Organisation that is
acting in the role of merchant in the IOTP
Transaction.
o PaymentHandler. The financial institution or
other Organisation which is a Payment Handler
for the IOTP Transaction
o DeliveryHandler. The person or Organisation
that is the delivering the goods or services
for the IOTP Transaction
o DelivTo. The person or Organisation that is
receiving the delivery of goods or services in
the IOTP Transaction
o CustCare. The Organisation and/or individual
who will provide customer care for an IOTP
Transaction.
Values of TradingRole are controlled under the
procedures defined in section 12 IANA
Considerations which also allows user defined
values to be defined.
IotpMsgIdPrefix Contains the prefix which must be used for all
IOTP Messages sent by the Trading Role in this
IOTP Transaction. The values to be used are
defined in 3.4.1 IOTP Message ID Attribute
Definition.
CancelNetLocn This contains the net location of where the
Consumer should go to if the Consumer cancels the
transaction for some reason. It can be used by the
Trading Role to provide a response which is more
tailored to the circumstances of a particular
transaction.
Burdett Informational [Page 106]
^L
RFC 2801 IOTP/1.0 April 2000
This attribute:
o must not be present when TradingRole is set to
Consumer role or DelivTo,
o must be present when TradingRole is set to
Merchant, PaymentHandler or DeliveryHandler.
The content of this attribute is dependent on the
Transport Mechanism see the Transport Mechanism
Supplement.
ErrorNetLocn This contains the net location that should be
displayed by the Consumer after the Consumer has
either received or generated an Error Block
containing an Error Component with the Severity
attribute set to either:
o HardError,
o Warning but the Consumer decides to not
continue with the transaction
o TransientError and the transaction has
subsequently timed out.
See section 7.21.1 Error Processing Guidelines for
more details.
This attribute:
o must not be present when TradingRole is set to
Consumer or DelivTo,
o must be present when TradingRole is set to
Merchant, PaymentHandler or DeliveryHandler.
The content of this attribute is dependent on the
Transport Mechanism see the Transport Mechanism
Supplement.
ErrorLogNetLocn Optional. This contains the net location that
Consumers should send IOTP Messages that contain
Error Blocks with an Error Component with the
Severity attribute set to either:
o HardError,
o Warning but the Consumer decides to not
continue with the transaction
o TransientError and the transaction has
subsequently timed out.
This attribute:
o must not be present when TradingRole is set to
Consumer role,
Burdett Informational [Page 107]
^L
RFC 2801 IOTP/1.0 April 2000
o must be present when TradingRole is set to
Merchant, PaymentHandler or DeliveryHandler.
The content of this attribute is dependent on the
Transport Mechanism see the Transport Mechanism
Supplement.
The ErrorLogNetLocn can be used to send error
messages to the software company or some other
Organisation responsible for fixing problems in
the software which sent the incoming message. See
section 7.21.1 Error Processing Guidelines for
more details.
7.6.3 Contact Information Element
This contains information which can be used to contact an
Organisation or an individual. All attributes are optional however at
least one item of contact information should be present. Its
definition is as follows.
<!ELEMENT ContactInfo EMPTY >
<!ATTLIST ContactInfo
xml:lang NMTOKEN #IMPLIED
Tel CDATA #IMPLIED
Fax CDATA #IMPLIED
Email CDATA #IMPLIED
NetLocn CDATA #IMPLIED >
Attributes:
xml:lang Defines the language used by attributes within
this element. See section 3.8 Identifying
Languages.
Tel A telephone number by which the Organisation may
be contacted. Note that this is a text field and
no validation is carried out on it.
Fax A fax number by which the Organisation may be
contacted. Note that this is a text field and no
validation is carried out on it.
Email An email address by which the Organisation may be
contacted. Note that this field should conform to
the conventions for address specifications
contained in [RFC822].
Burdett Informational [Page 108]
^L
RFC 2801 IOTP/1.0 April 2000
NetLocn A location on the Internet by which information
about the Organisation may be obtained that can be
displayed using a web browser.
The content of this attribute must conform to
[RFC1738].
7.6.4 Person Name Element
This contains the name of an individual person. All fields are
optional however as a minimum either the GivenName or the FamilyName
should be present. Its definition is as follows.
<!ELEMENT PersonName EMPTY >
<!ATTLIST PersonName
xml:lang NMTOKEN #IMPLIED
Title CDATA #IMPLIED
GivenName CDATA #IMPLIED
Initials CDATA #IMPLIED
FamilyName CDATA #IMPLIED >
Attributes:
xml:lang Defines the language used by attributes within
this element. See section 3.8 Identifying
Languages.
Title A distinctive name; personal appellation,
hereditary or not, denoting or implying office
(e.g., judge, mayor) or nobility (e.g., duke,
duchess, earl), or used in addressing or referring
to a person (e.g., Mr, Mrs, Miss)
GivenName The primary or main name by which a person is
known amongst and identified by their family,
friends and acquaintances. Otherwise known as
first name or Christian Name.
Initials The first letter of the secondary names (other
than the Given Name) by which a person is known
amongst or identified by their family, friends and
acquaintances.
FamilyName The name by which family of related individuals
are known. It is typically the part of an
individual's name which is passed on by parents to
their children.
Burdett Informational [Page 109]
^L
RFC 2801 IOTP/1.0 April 2000
7.6.5 Postal Address Element
This contains an address which can be used, for example, for the
physical delivery of goods, services or letters. Its definition is as
follows.
<!ELEMENT PostalAddress EMPTY >
<!ATTLIST PostalAddress
xml:lang NMTOKEN #IMPLIED
AddressLine1 CDATA #IMPLIED
AddressLine2 CDATA #IMPLIED
CityOrTown CDATA #IMPLIED
StateOrRegion CDATA #IMPLIED
PostalCode CDATA #IMPLIED
Country CDATA #IMPLIED
LegalLocation (True | False) 'False' >
Attributes:
xml:lang Defines the language used by attributes within
this element. See section 3.8 Identifying
Languages.
AddressLine1 The first line of a postal address. e.g., "The
Meadows"
AddressLine2 The second line of a postal address. e.g., "Sandy
Lane"
CityOrTown The city of town of the address. e.g., "Carpham"
StateOrRegion The state or region within a country where the
city or town is placed. e.g., "Surrey"
PostalCode The code known as, for example a post code or zip
code, that is typically used by Postal
Organisations to organise postal deliveries into
efficient sequences. e.g., "KT22 1AA"
Country The country for the address. e.g., "UK"
LegalLocation This identifies whether the address is the
Registered Address for the Organisation. At least
one address for the Organisation must have a value
set to True unless the Trading Role is either
Consumer or DeliverTo.
Burdett Informational [Page 110]
^L
RFC 2801 IOTP/1.0 April 2000
7.7 Brand List Component
Brand List Components are contained within the Trading Protocol
Options Block (see section 8.1) of the IOTP Transaction. They
contains lists of:
o payment Brands (see also section 11.1 Brand Definitions and Brand
Selection),
o amounts to be paid in the currencies that are accepted or offered
by the Merchant,
o the payment protocols which can be used to make payments with a
Brand, and
o the net locations of the Payment Handlers which accept payment for
a payment protocol
The definition of a Brand List Component is as follows.
<!ELEMENT BrandList (Brand+, ProtocolAmount+,
CurrencyAmount+, PayProtocol+) >
<!ATTLIST BrandList
ID ID #REQUIRED
xml:lang NMTOKEN #REQUIRED
ShortDesc CDATA #REQUIRED
PayDirection (Debit | Credit) #REQUIRED >
Attributes:
ID An identifier which uniquely identifies the Brand
List Component within the IOTP Transaction.
xml:lang Defines the language used by attributes or child
elements within this component, unless overridden
by an xml:lang attribute on a child element. See
section 3.8 Identifying Languages.
ShortDesc A text description in the language defined by
xml:Lang giving details of the purpose of the
Brand List. This information must be displayed to
the receiver of the Brand List in order to assist
with making the selection. It is of particular
benefit in allowing a Consumer to distinguish the
purpose of a Brand List when an IOTP Transaction
involves more than one payment.
Burdett Informational [Page 111]
^L
RFC 2801 IOTP/1.0 April 2000
PayDirection Indicates the direction in which the payment for
which a Brand is being selected is to be made. Its
values may be:
o Debit The sender of the Payment Request Block
(e.g., the Consumer) to which this Brand List
relates will make the payment to the Payment
Handler, or
o Credit The sender of the Payment Request Block
to which this Brand List relates will receive a
payment from the Payment Handler.
Content:
Brand This describes a Brand. The sequence of the Brand
elements (see section 7.7.1) within the Brand List
does not indicate any preference. It is
recommended that software which processes this
Brand List presents Brands in a sequence which the
receiver of the Brand List prefers.
ProtocolAmount This links a particular Brand to:
o the currencies and amounts in CurrencyAmount
elements that can be used with the Brand, and
o the Payment Protocols and Payment Handlers,
which can be used with those currencies and
amounts, and a particular Brand
CurrencyAmount This contains a currency code and an amount.
PayProtocol This contains information about a Payment Protocol
and the Payment Handler which may be used with a
particular Brand.
The relationships between the elements which make up the content of
the Brand List is illustrated in the diagram below.
Burdett Informational [Page 112]
^L
RFC 2801 IOTP/1.0 April 2000
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
Brand List Component
| ProtocolAmountRefs
|-Brand Element-----------------------------
| | |
| - Protocol Brand Element-------- |
| | |
| ProtocolId| |
| | |
|-Protocol Amount Element<----------+-------
| | | |
| | | |
| |CurrencyAmountRefs |Pay |
| | |Protocol |
| v |Ref |
|-Currency Amount Element | |
| Element | |
| | |
-PayProtocolElement<------<--------
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 15 Brand List Element Relationships
Examples of complete Brand Lists are contained in section 11.2 Brand
List Examples.
7.7.1 Brand Element
A Brand Element describes a brand that can be used for making a
payment. One or more of these elements is carried in each Brand List
Component that has the PayDirection attribute set to Debit. Exactly
one Brand Element may be carried in a Brand List Component that has
the PayDirection attribute set to Credit.
<!ELEMENT Brand (ProtocolBrand*, PackagedContent*) >
<!ATTLIST Brand
ID ID #REQUIRED
xml:lang NMTOKEN #IMPLIED
BrandId CDATA #REQUIRED
BrandName CDATA #REQUIRED
BrandLogoNetLocn CDATA #REQUIRED
BrandNarrative CDATA #IMPLIED
ProtocolAmountRefs IDREFS #REQUIRED
ContentSoftwareId CDATA #IMPLIED >
Burdett Informational [Page 113]
^L
RFC 2801 IOTP/1.0 April 2000
Attributes:
ID Element identifier, potentially referenced in a
Brand Selection Component contained in a later
Payment Request message and uniquely identifies
the Brand element within the IOTP Transaction.
xml:lang Defines the language used by attributes and
content of this element. See section 3.8
Identifying Languages.
BrandId This contains a unique identifier for the brand
(or promotional brand). It is used to match
against a list of Payment Instruments which the
Consumer holds to determine whether or not the
Consumer can pay using the Brand.
Values of BrandId are managed under the procedure
described in section 12 IANA Considerations.
As values of BrandId are controlled under the
procedures defined in section 12 IANA
Considerations user defined values may be
defined.
BrandName This contains the name of the brand, for example
MasterCard Credit. This is the description of the
Brand which is displayed to the consumer in the
Consumers language defined by xml:lang. For
example it might be "American Airlines Advantage
Visa". Note that this attribute is not used for
matching against the payment instruments held by
the Consumer.
BrandLogoNetLocn The net location which can be used to download
the logo for the Organisation. See section
Retrieving Logos (see section 10).
The content of this attribute must conform to
[RFC1738].
BrandNarrative This optional attribute is designed to be used by
the Merchant to indicate some special conditions
or benefit which would apply if the Consumer
selected that brand. For example "5% discount",
"free shipping and handling", "free breakage
insurance for 1 year", "double air miles apply",
etc.
Burdett Informational [Page 114]
^L
RFC 2801 IOTP/1.0 April 2000
ProtocolAmountRefs Identifies the protocols and related currencies
and amounts which can be used with this Brand.
Specified as a list of ID's of Protocol Amount
Elements (see section 7.7.3) contained within the
Brand List.
ContentSoftwareId See section 14.Glossary.
Content:
ProtocolBrand Protocol Brand elements contain brand information
to be used with a specific payment protocol (see
section 7.7.2)
PackagedContent Optional Packaged Content (see section 3.7)
elements containing information about the brand
which may be used by the payment protocol. The
content of this information is defined in the
supplement for a payment protocol which describes
how the payment protocol works with IOTP.
Example Brand Elements are contained in section 11.2 Brand List
Examples.
7.7.2 Protocol Brand Element
The Protocol Brand Element contains information that is specific to
the use of a particular Protocol with a Brand. Its definition is as
follows.
<!ELEMENT ProtocolBrand (PackagedContent*) >
<!ATTLIST ProtocolBrand
ProtocolId CDATA #REQUIRED
ProtocolBrandId CDATA #REQUIRED >
Attributes:
ProtocolId This must match the value of a ProtocolId
attribute in a Pay Protocol Element (see section
7.7.5).
The values of ProtocolId should be unique within a
Brand Element otherwise there is an error.
Burdett Informational [Page 115]
^L
RFC 2801 IOTP/1.0 April 2000
ProtocolBrandId This is the Payment Brand Id to be used with a
particular payment protocol. For example, SET and
EMV have their own well defined, yet different,
values for the Brand Id to be used with each
protocol.
The valid values of this attribute are defined in
the supplement for the payment protocol identified
by ProtocolId that describes how the payment
protocol works with IOTP.
Content:
PackagedContent Optional Packaged Content (see section 3.7)
elements containing information about the
protocol/brand which may be used by the payment
protocol. The content of this information is
defined in the supplement for a payment protocol
which describes how the payment protocol works
with IOTP.
7.7.3 Protocol Amount Element
The Protocol Amount element links a Brand to:
o the currencies and amounts in Currency Amount Elements (see
section 7.7.4) that can be used with the Brand, and
o the Payment Protocols and Payment Handlers defined in a Pay
Protocol Element (see section 7.7.5), which can be used with those
currencies and amounts.
Its definition is as follows:
<!ELEMENT ProtocolAmount (PackagedContent*) >
<!ATTLIST ProtocolAmount
ID ID #REQUIRED
PayProtocolRef IDREF #REQUIRED
CurrencyAmountRefs IDREFS #REQUIRED
ContentSoftwareId CDATA #IMPLIED >
Attributes:
ID Element identifier, potentially referenced in a
Brand element; or in a Brand Selection Component
contained in a later Payment Request message
which uniquely identifies the Protocol Amount
element within the IOTP Transaction.
Burdett Informational [Page 116]
^L
RFC 2801 IOTP/1.0 April 2000
PayProtocolRef Contains an Element Reference (see section 3.5)
that refers to the Pay Protocol Element (see
section 7.7.5) that contains the Payment Protocol
and Payment Handlers that can be used with the
Brand.
CurrencyAmountRefs Contains a list of Element References (see
section 3.5) that refer to the Currency Amount
Element (see section 7.7.4) that describes the
currencies and amounts that can be used with the
Brand.
ContentSoftwareId See section 14. Glossary.
Content:
PackagedContent Optional Packaged Content (see section 3.7)
elements containing information about the protocol
amount which may be used by the payment protocol.
The content of this information is defined in the
supplement for a payment protocol which describes
how the payment protocol works with IOTP.
Examples of Protocol Amount Elements are contained in section 11.2
Brand List Examples.
7.7.4 Currency Amount Element
A Currency Amount element contains:
o a currency code (and its type), and
o an amount.
One or more of these elements is carried in each Brand List
Component. Its definition is as follows:
<!ELEMENT CurrencyAmount EMPTY >
<!ATTLIST CurrencyAmount
ID ID #REQUIRED
Amount CDATA #REQUIRED
CurrCodeType NMTOKEN 'ISO4217-A'
CurrCode CDATA #REQUIRED >
Attributes:
ID Element identifier, potentially referenced in a
Brand element; or in a Brand Selection Component
Burdett Informational [Page 117]
^L
RFC 2801 IOTP/1.0 April 2000
contained in a later Payment Request message which
uniquely identifies the Currency Amount Element
within the IOTP Transaction.
Amount Indicates the amount to be paid in whole and
fractional units of the currency. For example
$245.35 would be expressed "245.35". Note that
values smaller than the smallest denomination are
allowed. For example one tenth of a cent would be
"0.001".
CurrCodeType Indicates the domain of the CurrCode. This
attribute is included so that the currency code
may support non-standard "currencies" such as
frequent flyer points, trading stamps, etc. Its
values may be:
o ISO4217-A (the default) indicates the currency
code is a three character alphabetic currency
code that conforms to [ISO 4217]
o IOTP indicates that values of CurrCode are
managed under the procedure described in
section 12 IANA Considerations
CurrCode A code which identifies the currency to be used in
the payment. The domain of valid currency codes is
defined by CurrCodeType
As values of CurrCodeType are managed under the
procedure described in section 12 IANA
Considerations user defined values of CurrCodeType
may be defined.
Examples of Currency Amount Elements are contained in section 11.2
Brand List Examples.
7.7.5 Pay Protocol Element
A Pay Protocol element specifies details of a Payment Protocol and
the Payment Handler that can be used with a Brand. One or more of
these elements is carried in each Brand List.
<!ELEMENT PayProtocol (PackagedContent*) >
<!ATTLIST PayProtocol
ID ID #REQUIRED
xml:lang NMTOKEN #IMPLIED
ProtocolId NMTOKEN #REQUIRED
ProtocolName CDATA #REQUIRED
ActionOrgRef NMTOKEN #REQUIRED
Burdett Informational [Page 118]
^L
RFC 2801 IOTP/1.0 April 2000
PayReqNetLocn CDATA #IMPLIED
SecPayReqNetLocn CDATA #IMPLIED
ContentSoftwareId CDATA #IMPLIED >
Attributes:
ID Element identifier, potentially referenced in a
Brand element; or in a Brand Selection Component
contained in a later Payment Request message which
uniquely identifies the Pay Protocol element
within the IOTP Transaction.
xml:lang Defines the language used by attributes and
content of this element. See section 3.8
Identifying Languages.
ProtocolId Consists of a protocol name and version. For
example "SETv1.0".
The values of ProtocolId are defined by the
payment scheme/method owners in the document that
describes how to encapsulate a payment protocol
within IOTP.
ProtocolName A narrative description of the payment protocol
and its version in the language identified by
xml:lang. For example "Secure Electronic
Transaction Version 1.0". Its purpose is to help
provide information on the payment protocol being
used if problems arise.
ActionOrgRef An Element Reference (see section 3.5) to the
Organisation Component for the Payment Handler for
the Payment Protocol.
PayReqNetLocn The Net Location indicating where an unsecured
Payment Request message should be sent if this
protocol choice is used.
The content of this attribute is dependent on the
Transport Mechanism (such must conform to
[RFC1738].
SecPayReqNetLocn The Net Location indicating where a secured
Payment Request message should be sent if this
protocol choice is used.
Burdett Informational [Page 119]
^L
RFC 2801 IOTP/1.0 April 2000
A secured payment involves the use of a secure
channel such as [SSL/TLS] in order to communicate
with the Payment Handler.
The content of this attribute must conform to
[RFC1738]. See also See section 3.9 Secure and
Insecure Net Locations.
ContentSoftwareId See section 14. Glossary.
Content:
PackagedContent Optional Packaged Content elements (see section
3.7) containing information about the protocol
which is used by the payment protocol. The content
of this information is defined in the supplement
for a payment protocol which describes how the
payment protocol works with IOTP. An example of
its use could be to include a payment protocol
message.
Examples of Pay Protocol Elements are contained in section 11.2 Brand
List Examples.
7.8 Brand Selection Component
A Brand Selection Component identifies the choice of payment brand,
payment protocol and the Payment Handler. This element is used:
o in Payment Request messages within Baseline Purchase and Baseline
Value Exchange IOTP Transactions to identify the brand, protocol
and payment handler for a payment, or
o to, optionally, inform a merchant in a purchase of the payment
brand being used so that the offer and order details can be
amended accordingly.
In Baseline IOTP, the integrity of Brand Selection Components is not
guaranteed. However, modification of Brand Selection Components can
only cause denial of service if the payment protocol itself is secure
against message modification, duplication, and swapping attacks.
The definition of a Brand Selection Component is as follows.
<!ELEMENT BrandSelection (BrandSelBrandInfo?,
BrandSelProtocolAmountInfo?,
BrandSelCurrencyAmountInfo?) >
<!ATTLIST BrandSelection
Burdett Informational [Page 120]
^L
RFC 2801 IOTP/1.0 April 2000
ID ID #REQUIRED
BrandListRef NMTOKEN #REQUIRED
BrandRef NMTOKEN #REQUIRED
ProtocolAmountRef NMTOKEN #REQUIRED
CurrencyAmountRef NMTOKEN #REQUIRED >
Attributes:
ID An identifier which uniquely identifies the Brand
Selection Component within the IOTP Transaction.
BrandListRef The Element Reference (see section 3.5) of the
Brand List Component from which a Brand is being
selected
BrandRef The Element Reference of a Brand element within
the Brand List Component that is being selected
that is to be used in the payment.
ProtocolAmountRef The Element Reference of a Protocol Amount element
within the Brand List Component which is to be
used when making the payment.
CurrencyAmountRef The Element Reference of a Currency Amount element
within the Brand List Component which is to be
used when making the payment.
Content:
BrandSelBrandInfo, This contains any additional data that
BrandSelProtocolAmountInfo, may be required by a particular payment
BrandSelCurrencyAmountInfo brand or protocol. See sections 7.8.1,
7.8.2, and 7.8.3.
The following rules apply:
o the BrandListRef must contain the ID of a Brand List Component in
the same IOTP Transaction
o every Brand List Component in the Trading Protocol Options Block
(see section 8.1) must be referenced by one and only one Brand
Selection Component
o the BrandRef must refer to the ID of a Brand contained within the
Brand List Component referred to by BrandListRef
Burdett Informational [Page 121]
^L
RFC 2801 IOTP/1.0 April 2000
o the ProtocolAmountRef must refer to one of the Element IDs listed
in the ProtocolAmountRefs attribute of the Brand element
identified by BrandRef
o the CurrencyAmountRef must refer to one of the Element IDs listed
in the CurrencyAmountRefs attribute of the Protocol Amount Element
identified by ProtocolAmountRef.
An example of a Brand Selection Component is included in 11.2 Brand
List Examples.
7.8.1 Brand Selection Brand Info Element
The Brand Selection Brand Info Element contains any additional data
that may be required by a particular payment brand. See the IOTP
payment method supplement for a description of how and when it used.
<!ELEMENT BrandSelBrandInfo (PackagedContent+) >
<!ATTLIST BrandSelBrandInfo
ID ID #REQUIRED
ContentSoftwareId CDATA #IMPLIED >
Attributes:
ContentSoftwareId See section 14. Glossary.
Content:
PackagedContent Packaged Content elements (see section 3.7) that
contain additional data that may be required by a
particular payment brand. See the payment method
supplement for IOTP for rules on how this is used.
7.8.2 Brand Selection Protocol Amount Info Element
The Brand Selection Protocol Amount Info Element contains any
additional data that is payment protocol specific that may be
required by a particular payment brand or payment protocol. See the
IOTP payment method supplement for a description of how and when it
used.
<!ELEMENT BrandSelProtocolAmountInfo (PackagedContent+) >
<!ATTLIST BrandSelProtocolAmountInfo
ID ID #REQUIRED
ContentSoftwareId CDATA #IMPLIED >
Burdett Informational [Page 122]
^L
RFC 2801 IOTP/1.0 April 2000
Attributes:
ContentSoftwareId See section 14. Glossary.
Content:
PackagedContent Packaged Content elements (see section 3.7) that
may contain additional data that may be required
by a particular payment brand. See the payment
method supplement for IOTP for rules on how this
is used.
7.8.3 Brand Selection Currency Amount Info Element
The Brand Selection Currency Amount Info Element contains any
additional data that is payment brand and currency specific that may
be required by a particular payment brand. See the IOTP payment
method supplement for a description of how and when it used.
<!ELEMENT BrandSelCurrencyAmountInfo (PackagedContent+) >
<!ATTLIST BrandSelCurrencyAmountInfo
ID ID #REQUIRED
ContentSoftwareId CDATA #IMPLIED >
Attributes:
ContentSoftwareId See section 14. Glossary.
Content:
PackagedContent Packaged Content elements (see section 3.7) that
contain additional data relating to the payment
brand and currency. See the payment method
supplement for IOTP for rules on how this is used.
7.9 Payment Component
A Payment Component contains information used to control how a
payment is carried out. Its provides information on:
o the times within which a Payment with a Payment Handler may be
started
o a reference to the Brand List (see section 7.7) which identifies
the Brands, protocols, currencies and amounts which can be used to
make a payment
o whether or not a payment receipt will be provided
Burdett Informational [Page 123]
^L
RFC 2801 IOTP/1.0 April 2000
o whether another payment precedes this payment.
Its definition is as follows.
<!ELEMENT Payment EMPTY >
<!ATTLIST Payment
ID ID #REQUIRED
OkFrom CDATA #REQUIRED
OkTo CDATA #REQUIRED
BrandListRef NMTOKEN #REQUIRED
SignedPayReceipt (True | False) #REQUIRED
StartAfterRefs NMTOKENS #IMPLIED >
Attributes:
ID An identifier which uniquely identifies the
Payment Component within the IOTP Transaction.
OkFrom The date and time in [UTC] format after which a
Payment Handler may accept for processing a
Payment Request Block (see section 8.7) containing
the Payment Component.
OkTo The date and time in [UTC] format before which a
Payment Handler may accept for processing a
Payment Request Block containing the Payment
Component.
BrandListRef An Element Reference (see section 3.5) of a Brand
List Component (see section 7.7) within the TPO
Trading Block for the IOTP Transaction. The Brand
List identifies the alternative ways in which the
payment can be made.
SignedPayReceipt Indicates whether or not the Payment Response
Block (see section 8.9) generated by the Payment
Handler for the payment must be digitally signed.
StartAfter Contains Element References (see section 3.5) of
other Payment Components which describe payments
which must be complete before this payment can
start. If no StartAfter attribute is present then
there are no dependencies and the payment can
start immediately
Burdett Informational [Page 124]
^L
RFC 2801 IOTP/1.0 April 2000
7.10 Payment Scheme Component
A Payment Scheme Component contains payment protocol information for
a specific payment scheme which is transferred between the parties
involved in a payment for example a [SET] message. Its definition is
as follows.
<!ELEMENT PaySchemeData (PackagedContent+) >
<!ATTLIST PaySchemeData
ID ID #REQUIRED
PaymentRef NMTOKEN #IMPLIED
ConsumerPaymentId CDATA #IMPLIED
PaymentHandlerPayId CDATA #IMPLIED
ContentSoftwareId CDATA #IMPLIED >
Attributes:
ID An identifier which uniquely identifies the
Payment Scheme Component within the IOTP
Transaction.
PaymentRef An Element Reference (see section 3.5) to the
Payment Component (see section 7.9) to which
this Payment Scheme Component relates. It is
required unless the Payment Scheme Component is
part of an Transaction Inquiry Status
Transaction (see section 9.2.1).
ConsumerPaymentId An identifier specified by the Consumer which,
if returned by the Payment Handler in another
Payment Scheme Component or by other means, will
enable the Consumer to identify which payment is
being referred to.
PaymentHandlerPayId An identifier specified by the Payment Handler
which, if returned by the Consumer in another
Payment Scheme Component, or by other means,
will enable the Payment Handler to identify
which payment is being referred to. It is
required on every Payment Scheme Component apart
from the one contained in a Payment Request
Block.
ContentSoftwareId See section 14. Glossary.
Burdett Informational [Page 125]
^L
RFC 2801 IOTP/1.0 April 2000
Content:
PackagedContent Contains payment scheme protocol information as
Packaged Content elements (see section 3.7). See
the payment scheme supplement for the definition
of its content.
Note that:
o the values of the Name attribute of each
packaged content element are defined by the
Payment Protocol Supplement
o the value of each Name must be unique within a
Payment where a Payment is defined as all
Payment Scheme or Payment Receipt Components
with the same value of the PaymentRef attribute
7.11 Payment Receipt Component
A Payment Receipt is a record of a payment which demonstrates how
much money has been paid or received. It is distinct from a purchase
receipt in that it contains no record of what was being purchased.
Typically the content of a Payment Receipt Component will contain
data which describes:
o the amount paid and its currency
o the date and time of the payment
o internal reference numbers which identify the payment to the
payment system
o potentially digital signatures generated by the payment method
which can be used to prove after the event that the payment
occurred.
If the Payment Method being used provides the facility then the
Payment Receipt Component should contain payment protocol messages,
or references to messages, which prove the payment occurred.
The precise definition of the content is Payment Method dependent.
Refer to the supplement for the payment method being used to
determine the rules that apply.
Information contained in the Payment Receipt Component should be
displayed or otherwise made available to the Consumer.
Burdett Informational [Page 126]
^L
RFC 2801 IOTP/1.0 April 2000
Note: If the Payment Receipt Component contains Payment Protocol
Messages, then the Messages will need to be processed by Payment
Method software to convert it into a format which can be understood
by the Consumer
The definition of a Payment Receipt Component is as follows.
<!ELEMENT PayReceipt (PackagedContent*) >
<!ATTLIST PayReceipt
ID ID #REQUIRED
PaymentRef NMTOKEN #REQUIRED
PayReceiptNameRefs NMTOKENS #IMPLIED
ContentSoftwareId CDATA #IMPLIED >
Attributes:
ID An identifier which uniquely identifies the
Payment Receipt Component within the IOTP
Transaction.
PaymentRef Contains an Element Reference (see section 3.5)
to the Payment Component (see section 7.9) to
which this payment receipt applies
PayReceiptNameRefs Optionally contains a list of the values of the
Name attributes of Packaged Content elements that
together make up the receipt. The Packaged
Content elements are contained either within:
o Payment Scheme Data components exchanged
between the Payment Handler and the Consumer
roles during the Payment, and/or
o the Payment Receipt component itself.
Note that:
o each payment scheme defines in its supplement
the Names of the Packaged Content elements
that must be listed in this attribute (if
any).
o if a Payment Scheme Component contains
Packaged Content elements with a name that
matches a name within PayReceiptNameRefs, then
those Payment Scheme Components must be
referenced by Digests in the Payment Response
signature component (if such a signature is
being used)
The client software should save all the
components referenced so that the payment receipt
can be reconstructed when required.
Burdett Informational [Page 127]
^L
RFC 2801 IOTP/1.0 April 2000
ContentSoftwareId See section 14. Glossary.
Content:
PackagedContent Optionally contains payment scheme payment receipt
information as Packaged Content elements (see
section 3.7). See the payment scheme supplement
for the definition of its content.
Note that:
o the values of the Name attribute of each
packaged content element are defined by the
Payment Protocol Supplement
o the value of each Name must be unique within a
Payment where a Payment is defined as all
Payment Scheme or Payment Receipt Components,
with the same value of the PaymentRef attribute
Note that either the PayReceiptNameRefs attribute, the
PackagedContent element, or both must be present.
7.12 Payment Note Component
The Payment Note Component contains additional, non payment related,
information which the Payment Handler wants to provide to the
Consumer. For example, if a withdrawal or deposit were being made
then it could contain information on the remaining balance on the
account after the transfer was complete. The information should
duplicate information contained within the Payment Receipt Component.
Information contained in the Payment Note Component should be
displayed or otherwise made available to the Consumer. For
interoperability, the Payment Note Component should support, as a
minimum, the content types of "Plain Text", HTML and XML. Its
definition is as follows.
<!ELEMENT PaymentNote (PackagedContent+) >
<!ATTLIST PaymentNote
ID ID #REQUIRED
ContentSoftwareId CDATA #IMPLIED >
Attributes:
ID An identifier which uniquely identifies the
Payment Receipt Component within the IOTP
Transaction.
ContentSoftwareId See section 14. Glossary.
Burdett Informational [Page 128]
^L
RFC 2801 IOTP/1.0 April 2000
Content:
PackagedContent Contains additional, non payment related,
information which the Payment Handler wants to
provide to the Consumer as one or more Packaged
Content elements (see section 3.7).
7.13 Delivery Component
The Delivery Element contains information required to deliver goods
or services. Its definition is as follows.
<!ELEMENT Delivery (DeliveryData?, PackagedContent*) >
<!ATTLIST Delivery
ID ID #REQUIRED
xml:lang NMTOKEN #REQUIRED
DelivExch (True | False) #REQUIRED
DelivAndPayResp (True | False) #REQUIRED
ActionOrgRef NMTOKEN #IMPLIED >
Attributes:
ID An identifier which uniquely identifies the
Delivery Component within the IOTP Transaction.
xml:lang Defines the language used by attributes or child
elements within this component, unless overridden
by an xml:lang attribute on a child element. See
section 3.8 Identifying Languages.
DelivExch Indicates if this IOTP Transaction includes the
messages associated with a Delivery Exchange.
Valid values are:
o True indicates it does include a Delivery
Exchange
o False indicates it does not include a
Delivery Exchange
If set to true then a DeliveryData element must
be present. If set to false it may be absent.
DelivAndPayResp Indicates if the Delivery Response Block (see
section 8.11) and the Payment Response Block (see
section 8.9 ) are combined into one IOTP Message.
Valid values are:
o True indicates both blocks will be in the
same IOTP Message, and
Burdett Informational [Page 129]
^L
RFC 2801 IOTP/1.0 April 2000
o False indicates each block will be in a
different IOTP Message
DelivAndPayResp should not be true if DelivExch
is False.
In practice combining the Delivery Response Block
and Payment Response Block is only likely to be
practical if the Merchant, the Payment Handler
and the Delivery Handler are the same
Organisation since:
o the Payment Handler must have access to Order
Component information so that they know what
to deliver, and
o the Payment Handler must be able to carry out
the delivery
ActionOrgRef An Element Reference to the Organisation
Component of the Delivery Handler for this
delivery.
Content:
DeliveryData Contains details about how the delivery will be
carried out. See 7.13.1 Delivery Data Element
below.
PackagedContent Contains "user" data defined for the Merchant
which is required by the Delivery Handler as one
or more Packaged Content Elements see section 3.7.
7.13.1 Delivery Data Element
The DeliveryData element contains information about where and how
goods are to be delivered. Its definition is as follows.
<!ELEMENT DeliveryData (PackagedContent*) >
<!ATTLIST DeliveryData
xml:lang NMTOKEN #IMPLIED
OkFrom CDATA #REQUIRED
OkTo CDATA #REQUIRED
DelivMethod NMTOKEN #REQUIRED
DelivToRef NMTOKEN #REQUIRED
DelivReqNetLocn CDATA #REQUIRED
SecDelivReqNetLocn CDATA #REQUIRED
ContentSoftwareId CDATA #IMPLIED >
Burdett Informational [Page 130]
^L
RFC 2801 IOTP/1.0 April 2000
Attributes:
xml:lang Defines the language used by attributes within
this component. See section 3.8 Identifying
Languages.
OkFrom The date and time in [UTC] format after which the
Delivery Handler may accept for processing a
Delivery Request Block (see section 8.10).
OkTo The date and time in [UTC] format before which
the Delivery Handler may accept for processing a
Delivery Request Block.
DelivMethod Indicates the method by which goods or services
may be delivered. Valid values are:
o Post the goods will be delivered by post or
courier
o Web the goods will be delivered
electronically in the Delivery Note Component
o Email the goods will be delivered
electronically by e-mail
Values of DelivMethod are managed under the
procedure described in section 12 IANA
Considerations which allows user defined codes to
be defined.
DelivToRef The Element Reference (see section 3.4) of an
Organisation Component within the IOTP
Transaction which has a role of DelivTo. The
information in this block is used to determine
where delivery is to be made. It must be
compatible with DelivMethod. Specifically if the
DelivMethod is:
o Post, then the there must be a Postal Address
Element containing sufficient information for
a postal delivery,
o Web, then there are no specific requirements.
The information will be sent in a web page
back to the Consumer
o Email, then there must be Contact Information
Element with a valid e-mail address
DelivReqNetLocn This contains the Net Location to which an
unsecured Delivery Request Block (see section
8.10) which contains the Delivery Component
should be sent.
Burdett Informational [Page 131]
^L
RFC 2801 IOTP/1.0 April 2000
The content of this attribute is dependent on the
Transport Mechanism and must conform to
[RFC1738].
SecDelivReqNetLocn This contains the Net Location to which a secured
Delivery Request Block (see section 8.10) which
contains the Delivery Component should be sent.
A secured delivery request involves the use of a
secure channel such as [SSL/TLS] in order to
communicate with the Payment Handler.
The content of this attribute is dependent on the
Transport Mechanism must conform to [RFC1738].
See also Section 3.9 Secure and Insecure Net
Locations.
ContentSoftwareId See section 14. Glossary.
Content:
PackagedContent Additional information about the delivery as one
or more Packaged Content elements (see section
3.7) provided to the Delivery Handler by the
merchant.
7.14 Consumer Delivery Data Component
A Consumer Delivery Data Component is used by a Consumer to specify
an identifier that can be used by the Consumer to identify the
Delivery.
Its definition is as follows:
<!ELEMENT ConsumerDeliveryData EMPTY >
<!ATTLIST ConsumerDeliveryData
ID ID #REQUIRED
ConsumerDeliveryId CDATA #REQUIRED>
Attributes:
ID An identifier which uniquely identifies the
Consumer Delivery Data Component within the IOTP
Transaction.
Burdett Informational [Page 132]
^L
RFC 2801 IOTP/1.0 April 2000
ConsumerDeliveryId An identifier specified by the Consumer which, if
returned by the Delivery Handler will enable the
Consumer to identify which Delivery is being
referred to.
7.15 Delivery Note Component
A Delivery Note contains delivery instructions about the delivery of
goods or services or potentially the actual Delivery Information
itself. It is information which the person or Organisation receiving
the Delivery Note can use when delivery occurs.
For interoperability, the Delivery Note Component Packaged Content
should support both Plain Text, HTML and XML.
It's definition is as follows.
<!ELEMENT DeliveryNote (PackagedContent+) >
<!ATTLIST DeliveryNote
ID ID #REQUIRED
xml:lang NMTOKEN #REQUIRED
DelivHandlerDelivId CDATA #IMPLIED
ContentSoftwareId CDATA #IMPLIED >
Attributes:
ID An identifier which uniquely identifies the
Delivery Note Component within the IOTP
Transaction.
xml:lang Defines the language used by attributes or child
elements within this component, unless
overridden by an xml:lang attribute on a child
element. See section 3.8 Identifying Languages.
DelivHandlerDelivId An optional identifier specified by the Delivery
Handler which, if returned by the Consumer in
another Delivery Component, or by other means,
will enable the Delivery Handler to identify
which Delivery is being referred to. It is
required on every Delivery Component apart from
the one contained in a Delivery Request Block.
An example use of this attribute is to contain a
delivery tracking number.
ContentSoftwareId See section 14. Glossary.
Burdett Informational [Page 133]
^L
RFC 2801 IOTP/1.0 April 2000
Content:
PackagedContent Contains actual delivery note information as one
or more Packaged Content elements (see section
3.7).
Note: If the content of the Delivery Message is a Mime message then
the Delivery Note may trigger an application which causes the actual
delivery to occur.
7.16 Status Component
A Status Component contains status information about the business
success or failure (see section 4.2) of a process.
Its definition is as follows.
<!ELEMENT Status EMPTY >
<!ATTLIST Status
ID ID #REQUIRED
xml:lang NMTOKEN #REQUIRED
StatusType NMTOKEN #REQUIRED
ElRef NMTOKEN #IMPLIED
ProcessState (NotYetStarted | InProgress |
CompletedOk | Failed | ProcessError) #REQUIRED
CompletionCode NMTOKEN #IMPLIED
ProcessReference CDATA #IMPLIED
StatusDesc CDATA #IMPLIED >
Attributes:
ID An identifier which uniquely identifies the Status
Component within the IOTP Transaction.
xml:lang Defines the language used by attributes within
this component. See section 3.8 Identifying
Languages.
StatusType Indicates the type of Document Exchange which the
Status is reporting on. It may be set to either
Offer, Payment, Delivery, Authentication or
Undefined.
Undefined means that the type of document exchange
could not be identified. This is caused by an
error in the initial input message of the
exchange.
Burdett Informational [Page 134]
^L
RFC 2801 IOTP/1.0 April 2000
Values of StatusType are managed under the
procedure described in section 12 IANA
Considerations which also allows user defined
values of StatusType to be defined.
ElRef If the StatusType is not set to Undefined then
ElRef contains an Element Reference (see section
3.5) to the Component for which the Status is
being described. It must refer to either:
o an Order Component (see section 7.5), if the
StatusType is Offer,
o a Payment Component (see section 7.9), if the
StatusType is Payment, or
o a Delivery Component (see section 7.13), if
the StatusType is Delivery
o an Authentication Request Component (see
section 7.2) if the StatusType is
Authentication.
ProcessState Contains a State Code which indicates the current
state of the process being carried out. Valid
values for ProcessState are:
o NotYetStarted. A Request Block has been
received but the process has not yet started
o InProgress. Processing of the Request Block
has started but it is not yet complete
o CompletedOk. The processing of the Request
Block has completed successfully without any
errors
o Failed. The processing of the Request Block
has failed because of a Business Error (see
section 4.2)
o ProcessError. This value is only used when the
Status Component is being used in connection
with an Inquiry Request Trading Block (see
section 8.12). It indicates there was a
Technical Error (see section 4.1) in the
Request Block which is being processed or some
internal processing error.
Note that this code reports on the processing of a
Request Block. Further, asynchronous processing
may occur after the Response Block associated with
the Process has been sent.
Burdett Informational [Page 135]
^L
RFC 2801 IOTP/1.0 April 2000
CompletionCode Indicates how the process completed. Valid values
for the CompletionCode are given below together
with the conditions when it must be present and
indications on when recovery from failures are
possible.
A CompletionCode is a maximum of 14 characters
long.
ProcessReference This optional attribute holds a reference for the
process whose status is being reported. It may
hold the following values:
o when StatusType is set to Offer, it should
contain the OrderIdentifier from the Order
Component
o when StatusType is set to Payment, it should
contain the PaymentHandlerPayId from the
Payment Scheme Data Component
o when StatusType is set to Delivery, it should
contain the DelivHandlerDelivId from the
Delivery Note Component
o when StatusType is set to Authentication, it
should contain the AuthenticationId from the
Authentication Request Component
This attribute should be absent in the Inquiry
Request message when the Consumer has not been
given such a reference number by the IOTP Service
Provider.
This attribute can be used inside an Inquiry
Response Block (see section 8.13) to give the
reference number for a transaction which has
previously been unavailable.
For example, the package tracking number might not
be assigned at the time a delivery response was
received. However, if the Consumer issues a
Baseline Transaction Status Inquiry later, the
Delivery Handler can put the package tracking
number into this attribute in the Inquiry Response
message and send it back to the Consumer.
StatusDesc An optional textual description of the current
status of the process in the language identified
by xml:lang.
Burdett Informational [Page 136]
^L
RFC 2801 IOTP/1.0 April 2000
7.16.1 Offer Completion Codes
The Completion Code is only required if the ProcessState attribute is
set to Failed. The following table contains the valid values for the
CompletionCode that may be used and indicates whether or not recovery
might be possible. It is recommended that the StatusDesc attribute is
used to provide further explanation where appropriate.
Value Description
AuthError Authentication Error. The check of the
Authentication Response which was carried out has
failed.
Recovery may be possible by the Consumer re-
submitting a new Authentication Response Block with
corrected information.
ConsCancelled Consumer Cancelled. The Consumer decides to cancel
the transaction for some reason. This code is only
valid in a Status Component contained in a Cancel
Block or an Inquiry Response Block.
No recovery possible.
MerchCancelled Offer Cancelled. The Merchant declines to generate
an offer for some reason and cancels the
transaction. This code is only valid in a Status
Component contained in a Cancel Block or an Inquiry
Response Block.
No recovery possible.
Unspecified Unspecified error. There is some unknown problem or
error which does not fall into one of the other
CompletionCodes.
No recovery possible.
TimedOutRcvr Recoverable Time Out. Messages were resent but no
response received. The document exchange has
therefore "Timed Out". This code is only valid on a
Transaction Inquiry.
Recovery is possible if the last message from the
other Trading Role is received again.
Burdett Informational [Page 137]
^L
RFC 2801 IOTP/1.0 April 2000
TimedOutNoRcvr Non Recoverable Time Out. Messages were resent but
no response received. The document exchange has
therefore "Timed Out". This code is only valid on a
Transaction Inquiry.
No recovery possible.
7.16.2 Payment Completion Codes
The CompletionCode is only required if the ProcessState attribute is
set to Failed. The following table contains the valid values for the
CompletionCode that may be used and indicates where recovery may be
possible. It is recommended that the StatusDesc attribute is used by
individual payment schemes to provide further explanation where
appropriate.
Value Description
BrandNotSupp Brand not supported. The payment brand is not
supported by the Payment Handler.
See below for recovery options.
CurrNotSupp Currency not supported. The currency in which the
payment is to be made is not supported by either
the Payment Instrument or the Payment Handler.
If the payment is Brand Independent, then the
Consumer may recover by selecting a different
currency, if available, or a different brand. Note
that this may involve a different Payment Handler.
ConsCancelled Consumer Cancelled. The Consumer decides to cancel
the payment for some reason. This code is only
valid in a Status Component contained in a Cancel
Block or an Inquiry Response Block.
Recovery is not possible.
PaymtCancelled Payment Cancelled. The Payment Handler declines to
complete the payment for some reason and cancels
the transaction. This code is only valid in a
Status Component contained in a Cancel Block or an
Inquiry Response Block.
See below for recovery options.
Burdett Informational [Page 138]
^L
RFC 2801 IOTP/1.0 April 2000
AuthError Authentication Error. The Payment Scheme specific
authentication check which was carried out has
failed.
Recovery may be possible. See the payment scheme
supplement to determine what is allowed.
InsuffFunds Insufficient funds. There are insufficient funds
available for the payment to be made.
See below for recovery options.
InstBrandInvalid Payment Instrument not valid for Brand. A Payment
Instrument is being used which does not correspond
with the Brand selected. For example a Visa credit
card is being used when MasterCard was selected as
the Brand.
See below for recovery options.
InstNotValid Payment instrument not valid for trade. The
Payment Instrument cannot be used for the proposed
type of trade, for some reason.
See below for recovery options.
BadInstrument Bad instrument. There is a problem with the
Payment Instrument being used which means that it
is unable to be used for the payment.
See below for recovery options.
Unspecified Unspecified error. There is some unknown problem
or error which does not fall into one of the other
CompletionCodes. The StatusDesc attribute should
provide the explanation of the cause.
See below for recovery options.
TimedOutRcvr Recoverable Time Out. Messages were resent but no
response received. The document exchange has
therefore "Timed Out". This code is only valid on
a Transaction Inquiry.
Recovery is possible if the last message from the
other Trading Role is received again.
Burdett Informational [Page 139]
^L
RFC 2801 IOTP/1.0 April 2000
TimedOutNoRcvr Non Recoverable Time Out. Messages were resent but
no response received. The document exchange has
therefore "Timed Out". This code is only valid on
a Transaction Inquiry.
No recovery possible.
If the Payment is Brand Independent, then recovery may be possible
for some values of the Completion Code, by the Consumer selecting
either a different payment brand or a different payment instrument
for the same brand. Note that this might involve a different Payment
Handler. The codes to which this applies are: BrandNotSupp,
PaymtCancelled, InsuffFunds, InstBrandInvalid, InstNotValid,
BadInstrument and Unspecified.
Recovery from Payments associated with Brand Dependent purchases is
only possible, if the Brand Selection component sent by the Merchant
to the Consumer does not change. In practice this means that the same
Brand, Protocol Amount and PayProtocol elements must be used. All
that can change is the Payment Instrument. Any other change will
invalidate the Merchant's Offer as a changed selection will
invalidate the Offer Response.
7.16.3 Delivery Completion Codes
The following table contains the valid values for the CompletionCode
attribute for a Delivery. It is recommended that the StatusDesc
attribute is used to provide further explanation where appropriate.
Value Description
BackOrdered Back Ordered. The goods to be delivered are on order
but they have not yet been received. Shipping will be
arranged when they are received. This is only valid
if ProcessState is CompletedOk.
Recovery is not possible.
PermNotAvail Permanently Not Available. The goods are permanently
unavailable and cannot be re-ordered. This is only
valid if ProcessState is Failed.
Recovery is not possible.
TempNotAvail Temporarily Not Available. The goods are temporarily
unavailable and may become available if they can be
ordered. This is only valid if ProcessState is
CompletedOk.
Burdett Informational [Page 140]
^L
RFC 2801 IOTP/1.0 April 2000
Recovery is not possible.
ShipPending Shipping Pending. The goods are available and are
scheduled for shipping but they have not yet been
shipped. This is only valid if ProcessState is
CompletedOk.
Recovery is not possible.
Shipped Goods Shipped. The goods have been shipped.
Confirmation of delivery is awaited. This is only
valid if ProcessState is CompletedOk.
Recovery is not possible.
ShippedNoConf Shipped - No Delivery Confirmation. The goods have
been shipped but it is not possible to confirm
delivery of the goods. This is only valid if
ProcessState is CompletedOk.
Recovery is not possible.
ConsCancelled Consumer Cancelled. The Consumer decides to cancel
the delivery for some reason. This code is only valid
in a Status Component contained in a Cancel Block or
an Inquiry Response Block.
Recovery is not possible.
DelivCancelled Delivery Cancelled. The Delivery Handler declines to
complete the Delivery for some reason and cancels the
transaction. This code is only valid in a Status
Component contained in a Cancel Block or an Inquiry
Response Block.
Recovery is not possible.
Confirmed Confirmed. All goods have been delivered and
confirmation of their delivery has been received.
This is only valid if ProcessState is CompletedOk.
Recovery is not possible.
Unspecified Unspecified error. There is some unknown problem or
error which does not fall into one of the other
CompletionCodes. The StatusDesc attribute should
provide the explanation of the cause.
Burdett Informational [Page 141]
^L
RFC 2801 IOTP/1.0 April 2000
Recovery is not possible.
TimedOutRcvr Recoverable Time Out. Messages were resent but no
response received. The document exchange has
therefore "Timed Out". This code is only valid on a
Transaction Inquiry.
Recovery is possible if the last message from the
other Trading Role is received again.
TimedOutNoRcvr Non Recoverable Time Out. Messages were resent but no
response received. The document exchange has
therefore "Timed Out". This code is only valid on a
Transaction Inquiry.
No recovery possible.
Note: Recovery from failed, or partially completed deliveries is not
possible. The Consumer should use the Transaction Status Inquiry
Transaction (see section 9.2.1) to determine up-to- date information
on the current state.
7.16.4 Authentication Completion Codes
The Completion Code is only required if the ProcessState attribute is
set to Failed. The following table contains the valid values for the
CompletionCode that may be used. It is recommended that the
StatusDesc attribute is used to provide further explanation where
appropriate.
Value Description
AutEeCancel Authenticatee Cancel. The Organisation being
authenticated declines to be authenticated for some
reason. This could be, for example because the
signature on an Authentication Request was invalid or
the Authenticator was not known or acceptable to the
Authenticatee.
Recovery is not possible.
AutOrCancel Authenticator Cancel. The Organisation requesting
authentication declines to validate the
Authentication Response received for some reason and
cancels the transaction.
Recovery is not possible.
Burdett Informational [Page 142]
^L
RFC 2801 IOTP/1.0 April 2000
NoAuthReq Authentication Request Not Available. The
Authenticatee does not have the data that must be
provided so that they may be successfully
authenticated. For example a password may have been
forgotten, the Authenticatee has not yet become a
member, or a smart card token is not present.
Recovery is not possible
AuthFailed Authentication Failed. The Authenticator checked the
Authentication Response but the authentication failed
for some reason. For example a password may have been
incorrect.
Recovery may be possible by the Authenticatee re-
sending a revised Authentication Response with
corrected data.
TradRolesIncon Trading Roles Inconsistent. The Trading Roles
contained within the TradingRoleList attribute of the
Trading Role Information Request Component (see
section 7.4) are inconsistent with the Trading Role
which the Authenticatee is taking in the IOTP
Transaction or is able to take. Examples of
inconsistencies include:
o asking a PaymentHandler for DeliveryHandler
information
o asking a Consumer for Merchant information
Recovery may be possible by the Authenticator re-
sending a revised Authentication Request Block with
corrected information.
Unspecified Unspecified error. There is some unknown problem or
error which does not fall into one of the other
CompletionCodes.
Recovery is not possible.
TimedOutRcvr Recoverable Time Out. Messages were resent but no
response received. The document exchange has
therefore "Timed Out". This code is only valid on a
Transaction Inquiry.
Recovery is possible if the last message from the
other Trading Role is received again.
Burdett Informational [Page 143]
^L
RFC 2801 IOTP/1.0 April 2000
TimedOutNoRcvr Non Recoverable Time Out. Messages were resent but no
response received. The document exchange has
therefore "Timed Out". This code is only valid on a
Transaction Inquiry.
No recovery possible.
7.16.5 Undefined Completion Codes
The Completion Code is only required if the ProcessState attribute is
set to Failed. The following table contains the valid values for the
CompletionCode that may be used. It is recommended that the
StatusDesc attribute is used to provide further explanation where
appropriate.
Value Description
InMsgHardError Input Message Hard Error. The type of Request Block
could not be identified or was inconsistent.
Therefore no single Document Exchange could be
identified. This will cause a Hard Error in the
transaction
7.16.6 Transaction Inquiry Completion Codes
The Completion Code is only required if the ProcessState attribute is
set to Failed. The following table contains the valid values for the
CompletionCode that may be used. It is recommended that the
StatusDesc attribute is used to provide further explanation where
appropriate.
Value Description
UnAuthReq Unauthorised Request. The recipient of the
Transaction Status Request declines to respond to the
request.
7.17 Trading Role Data Component
The Trading Role Data Component contains opaque data which needs to
be communicated between the Trading Roles involved in an IOTP
Transaction.
Trading Role Components identify:
o the Organisation that generated the component, and
o the Organisation that is to receive it.
Burdett Informational [Page 144]
^L
RFC 2801 IOTP/1.0 April 2000
They are first generated and included in a "Response" Block, and then
copied to the appropriate "Request" Block. For example a Payment
Handler might need to inform a Delivery Handler that a credit card
payment had been authorised but not captured. There may also be other
information that the Payment Handler has generated where the format
is privately agreed with the Delivery Handler which needs to be
communicated. In another example a Merchant might need to provide a
Payment Handler with some specific information about a Consumer so
that consumer can acquire double loyalty points with the payment.
Its definition is as follows.
<!ELEMENT TradingRoleData (PackagedContent+) >
<!ATTLIST TradingRoleData
ID ID #REQUIRED
OriginatorElRef NMTOKEN #REQUIRED
DestinationElRefs NMTOKENS #REQUIRED >
Attributes:
ID An identifier which uniquely identifies the
Trading Role Data Component within the IOTP
Transaction.
OrginatorElRef Contains an element reference to the Organisation
Component of the Organisation that created the
Trading Role Data Component and included it in a
"Response" Block (e.g., an Offer Response or a
Payment Response Block).
DestinationElRefs Contains element references to the Organisation
Components of the Organisations that are to
receive the Trading Role Data Component in a
"Request" Block (e.g., either a Payment Request or
a Delivery Request Block).
Content:
PackagedContent This contains the data which is to be sent between
the various Trading Roles as one or more
PackagedContent elements see section 3.7.
7.17.1 Who Receives a Trading Role Data Component
The rules for deciding what to do with Trading Role Data Components
are described below.
Burdett Informational [Page 145]
^L
RFC 2801 IOTP/1.0 April 2000
o whenever a Trading Role Data Component is received in a "Response"
block identify the Organisation Components of the Organisations
that are to receive it as identified by the DestinationElRefs
attribute.
o whenever a "Request" Block is being sent, check to see if it is
being sent to one of the Organisations identified by the
DestinationElRefs attribute. If it is then include in the
"Request" block:
- the Trading Role Data Component as well as,
- the Organisation Component of the Organisation identified by
the OriginatorElRef attribute (if not already present)
7.18 Inquiry Type Component
The Inquiry Type Component contains the information which indicates
the type of process that is being inquired upon. Its definition is as
follows.
<!ELEMENT InquiryType EMPTY >
<!ATTLIST InquiryType
ID ID #REQUIRED
Type NMTOKEN #REQUIRED
ElRef NMTOKEN #IMPLIED
ProcessReference CDATA #IMPLIED >
Attributes:
ID An identifier which uniquely identifies the
Inquiry Type Component within the IOTP
Transaction.
Type Contains the type of inquiry. Valid values for
Type are:
o Offer. The inquiry is about the status of an
offer and is addressed to the Merchant.
o Payment. The inquiry is about the status of a
payment and is addressed to the Payment
Handler.
o Delivery. The inquiry is about the status of a
delivery and addressed to the Delivery Handler.
ElRef Contains an Element Reference (see section 3.5) to
the component to which this Inquiry Type Component
applies. That is,
o TPO Block when Type is Offer
Burdett Informational [Page 146]
^L
RFC 2801 IOTP/1.0 April 2000
o Payment Component when Type is Payment
o Delivery Component when Type is Delivery
ProcessReference Optionally contains a reference to the process
being inquired upon. It should be set if the
information is available. For the definition of
the values it may contain, see the
ProcessReference attribute of the Status Component
(see section 7.16).
7.19 Signature Component
Note: Definitions of the XML structures for signatures and
certificates are described in the document titled "Digital Signatures
for the Internet Open Trading Protocol" by Kent Davidson and Yoshiaki
Kawatsura published at the same time as this document - see
[IOTPDSIG].
In the future it is anticipated that future versions of IOTP will
adopt a whatever method for digitally signing XML becomes the
standard.
Each Signature Component digitally signs one or more Blocks or
Components including other Signature Components.
The Signature Component:
o contains digests of one or more Blocks or Components in one or
more IOTP Messages within the same IOTP Transaction and places the
result in a Digest Element
o concatenates these Digest elements with other information on the
type of signature, the originator and potential recipients of the
signature and details of the signature algorithms being used and
places them in a Manifest element, and
o signs the Manifest element using the optional certificate
identified in the Certificate element within the Signature Block
placing the result in a Value element within a Signature Component
Note that there may be multiple Value elements that contain
signatures of a Manifest Element.
A Signature Component can be one of four types either:
o an Offer Response Signature,
o a Payment Response Signature,
Burdett Informational [Page 147]
^L
RFC 2801 IOTP/1.0 April 2000
o a Delivery Response Signature, or
o an Authentication Response Signature.
For a general explanation of signatures see section 6 Digital
Signatures.
7.19.1 IOTP usage of signature elements and attributes
Definitions of the elements and attributes are contained in
[IOTPDSIG]. The following contains additional information that
describes how these elements and attributes are used by IOTP.
SIGNATURE ELEMENT
The ID attribute is mandatory.
MANIFEST ELEMENT
The optional LocatorHrefBase attribute contains text which should be
concatenated before the text contained in the LocatorHREF attribute
of all Digest elements within the Manifest.
Its purpose is to reduce the size of LocatorHREF attribute values
since the first part of the LocatorHREF attributes in the same
signature are likely to be the same.
Typically, within IOTP, it will contain all the characters in a
LocatorHref attribute up to the sharp ("#") character (see
immediately below).
ALGORITHM AND PARAMETER ELEMENTS
The algorithm element identifies the algorithms used in generating
the signature. The type of the algorithm is defined by the value of
the Type attribute which indicates if it is to be used as a Digest
algorithm, a Signature algorithm or a Key Agreement algorithm.
The following Digest algorithms must be implemented:
o a [DOM-HASH] algorithm. This is identified by setting the Name
attribute of the Algorithm element to "urn:ibm:dom-hash"
o a [SHA1] algorithm. This is identified by setting the Name
attribute of the Algorithm element to "urn:fips:sha1", and
o a [MD5] algorithm. This is identified by setting the Name
attribute of the Algorithm element to "urn:rsa:md5"
Burdett Informational [Page 148]
^L
RFC 2801 IOTP/1.0 April 2000
o The following Signature algorithms must be implemented:
o a [DSA] algorithm. This is identified by setting the Name
attribute of the Algorithm element to "urn:us.gov:dsa"
o a [HMAC] algorithm. This is identified by setting the Name
attribute of the Algorithm element to "urn:ibm:hmac"
It is recommended that the following Signature algorithm is also
implemented:
o a [RSA] algorithm. This is identified by setting the Name
attribute of the Algorithm element to "urn:rsa:rsa"
In addition other payment scheme specific algorithms may be used. In
this case the value of the name attribute to use is specified in the
payment scheme supplement for that algorithm.
One algorithm may make use of other algorithms by use of the
Parameter element, for example:
<Algorithm ID=A1 type="digest" name="urn:ibm:dom-hash">
<Parameter type='AlgorithmRef'>A2</Parameter>
</Algorithm>
<Algorithm ID=A2 type="digest" name="urn:fips:sha1">
</Algorithm>
<Algorithm ID=A3 type="signature" name="urn:ibm:hmac">
<Parameter type='AlgorithmRef'>A1</Parameter>
</Algorithm>
DIGEST ELEMENT
The LocatorHREF attribute identifies the IOTP element which is being
digitally signed. Specifically it consists of:
o the value of the IotpTransId attribute of the Transaction ID
Component, followed by:
o a sharp character, i.e. "#", followed by
o an Element Reference (see section 3.5) to the element within the
IOTP Transaction which is the subject of the digest.
Before analysing the structure of the LocatorHREF attribute, it must
be concatenated with the value of the LocatorHrefBase attribute of
the Manifest element (see immediately above).
Burdett Informational [Page 149]
^L
RFC 2801 IOTP/1.0 April 2000
ATTRIBUTE ELEMENT
There must be one and only one Attribute Element that contains a Type
attribute with a value of IOTP Signature Type and with content set to
either: OfferResponse, PaymentResponse, DeliveryResponse,
AuthenticationRequest, AuthenticationResponse, PingRequest or
PingResponse; depending on the type of the signature.
Values of the content of the Attribute element are controlled under
the procedures defined in section 12 IANA Considerations which also
allows user defined values to be defined.
The Critical attribute must be set to true.
ORIGINATORINFO ELEMENT
The OriginatorRef attribute of the OriginatorInfo element must always
be present and contain an Element Reference (see section 3.5) to the
Organisation Component of the Organisation that generated the
Signature Component.
RECIPIENTINFO ELEMENT
The RecipientRefs attribute contains a list of Element References
(see section 3.5), that point to the Organisations that might need to
validate the signature. For details see below.
7.19.2 Offer Response Signature Component
The Manifest Element of a signature which has a type of OfferResponse
should contain Digest elements for the following Components:
o the Transaction Id Component (see section 3.3.1) of the IOTP
message that contains the Offer Response Signature
o the Transaction Reference Block (see section 3.3) of the IOTP
Message that contains the Offer Response Signature
o from the TPO Block:
- the Protocol Options Component
- each of the Organisation Components
- each of the Brand List Components
Burdett Informational [Page 150]
^L
RFC 2801 IOTP/1.0 April 2000
o optionally, all the Brand Selection Components if they were sent
to the Merchant in a TPO Selection Block
o from the Offer Response Block:
- the Order Component
- each of the Payment Components
- the Delivery Component
- each of the Authentication Request Components
- any Trading Role Data Components
The Offer Response Signature should also contain Digest elements for
the components that describe each of the Organisations that may or
will need to verify the signature. This involves:
o if the Merchant has received a TPO Selection Block containing
Brand Selection Components, then generate a Digest element for the
Payment Handler identified by the Brand Selection Component and
the Delivery Handler identified by the Delivery Component. See
section 6.3.1 Check Request Block sent Correct Organisation for a
description of how this can be done.
o if the Merchant is not expecting to receive a TPO Selection Block
then generate a Digest element for the Delivery Handler and all
the Payment Handlers that are involved.
7.19.3 Payment Receipt Signature Component
The Manifest Element of the Payment Receipt Signature Component
should contain Digest Elements for the following Components:
o the Transaction Id Component (see section 3.3.1) of the IOTP
message that contains the Payment Receipt Signature
o the Transaction Reference Block (see section 3.3) of the IOTP
Message that contains the Payment Receipt Signature
o the Offer Response Signature Component
o the Payment Receipt Component
o the Payment Note Component
o the Status Component
Burdett Informational [Page 151]
^L
RFC 2801 IOTP/1.0 April 2000
o the Brand Selection Component.
o any Trading Role Data Components
7.19.4 Delivery Response Signature Component
The Manifest Element of the Delivery Response Signature Component
should contain Digest Elements for the following Components:
o the Transaction Id Component (see section 3.3.1) of the IOTP
message that contains the Delivery Response Signature
o the Transaction Reference Block (see section 3.3) of the IOTP
Message that contains the Delivery Response Signature
o the Consumer Delivery Data component contained in the preceding
Delivery Request (if any)
o the Signature Components contained in the preceding Delivery
Request (if any)
o the Status Component
o the Delivery Note Component
7.19.5 Authentication Request Signature Component
The Manifest Element of the Authentication Request Signature
Component should contain Digest Elements for the following
Components:
o the Transaction Reference Block (see section 3.3) for the IOTP
Message that contains information that describes the IOTP Message
and IOTP Transaction
o the Transaction Id Component (see section 3.3.1) which globally
uniquely identifies the IOTP Transaction
o the following components of the TPO Block :
- the Protocol Options Component
- the Organisation Component
o the following components of the Authentication Request Block:
- the Authentication Request Component(s) (if present)
Burdett Informational [Page 152]
^L
RFC 2801 IOTP/1.0 April 2000
- the Trading Role Information Request Component (if present)
7.19.6 Authentication Response Signature Component
The Manifest Element of the Authentication Response Signature
Component should contain Digest Elements for the following
Components:
o the Transaction Reference Block (see section 3.3) for the IOTP
Message that contains information that describes the IOTP Message
and IOTP Transaction
o the Transaction Id Component (see section 3.3.1) which globally
uniquely identifies the IOTP Transaction
o the following components of the Authentication Request Block:
- the Authentication Request Component that was used in the
Authentication (if present)
- the Trading Role Information Request Component (if present)
o the Organisation Components contained in the Authentication
Response Block
7.19.7 Inquiry Request Signature Component
If the Inquiry Request is being signed (see section 9.2.1) the
Manifest Element of the Inquiry Request Signature Component should
contain Digest elements of the Inquiry Type Component, and if
present, the Payment Scheme Component.
7.19.8 Inquiry Response Signature Component
If the Inquiry Response is being signed (see section 9.2.1) the
Manifest Element of the Inquiry Response Signature Component should
contain Digest elements of the Trading Response Block and the Status
Component.
7.19.9 Ping Request Signature Component
If the Ping Request is being singed (see section 9.2.2), the Manifest
Element of the Ping Request Signature Component should contain Digest
elements for all the Organisation Components.
Burdett Informational [Page 153]
^L
RFC 2801 IOTP/1.0 April 2000
7.19.10 Ping Response Signature Component
If the Ping Response is being singed (see section 9.2.2), the
Manifest Element of the Ping Response Signature Component should
contain Digest elements fir all the Organisation Components.
7.20 Certificate Component
Note: Definitions of the XML structures for signatures and
certificates are described in the paper "Digital Signatures for the
Internet Open Trading Protocol", see [IOTPDSIG].
See note at the start of section 7.19 Signature Component for more
details.
A Certificate Component contains a Digital Certificate. They are used
only when required, for example, when asymmetric cryptography is
being used and the recipient of the signature that needs to check has
not already received the Public Key.
The structure of a Certificate Component is defined in [IOTPDSIG].
7.20.1 IOTP usage of signature elements and attributes
Detailed definitions of the above elements and attributes are
contained in [IOTPDSIG]. The following contains additional
information that describes how these elements and attributes are used
by IOTP.
CERTIFICATE COMPONENT
The ID attribute is mandatory.
VALUE ELEMENT
The ID attribute is mandatory.
7.21 Error Component
The Error Component contains information about Technical Errors (see
section 4.1) in an IOTP Message which has been received by one of the
Trading Roles involved in the trade.
For clarity two phrases are defined which are used in the description
of an Error Component:
o message in error. An IOTP message which contains or causes an
error of some kind
Burdett Informational [Page 154]
^L
RFC 2801 IOTP/1.0 April 2000
o message reporting the error. An IOTP message that contains an
Error Component that describes the error found in a message in
error.
The definition of the Error Component is as follows.
<!ELEMENT ErrorComp (ErrorLocation+, PackagedContent*) >
<!ATTLIST ErrorComp
ID NMTOKEN #REQUIRED
xml:lang NMTOKEN #REQUIRED
ErrorCode NMTOKEN #REQUIRED
ErrorDesc CDATA #REQUIRED
Severity (Warning|TransientError|HardError) #REQUIRED
MinRetrySecs CDATA #IMPLIED
SwVendorErrorRef CDATA #IMPLIED >
Attributes:
ID An identifier which uniquely identifies the Error
Component within the IOTP Transaction.
xml:lang Defines the language used by attributes or child
elements within this component, unless overridden
by an xml:lang attribute on a child element. See
section 3.8 Identifying Languages.
ErrorCode Contains an error code which indicates the nature
of the error in the message in error. Valid values
for the ErrorCode are given in section 7.21.2
Error Codes.
ErrorDesc Contains a narrative description of the error in
the language defined by xml:lang. The content of
this attribute is defined by the vendor/developer
of the software which generated the Error
Component
Severity Indicates the severity of the error. Valid values
are:
o Warning. This indicates that although there is
a message in error the IOTP Transaction can
still continue.
o TransientError. This indicates that the error
in the message in error may be recovered if the
message in error that is referred to by the
ErrorLocation element is resent
Burdett Informational [Page 155]
^L
RFC 2801 IOTP/1.0 April 2000
o HardError. This indicates that there is an
unrecoverable error in the message in error and
the IOTP Transaction must stop.
MinRetrySecs This attribute should be present if Severity is
set to TransientError. It is the minimum number of
whole seconds which the IOTP aware application
which received the message reporting the error
should wait before re-sending the message in error
identified by the ErrorLocation element.
If Severity is not set to TransientError then the
value of this attribute is ignored.
SwVendorErrorRef This attribute is a reference whose value is set
by the vendor/developer of the software which
generated the Error Component. It should contain
data which enables the vendor to identify the
precise location in their software and the set of
circumstances which caused the software to
generate a message reporting the error. See also
the SoftwareId attribute of the Message Id element
in the Transaction Reference Block (section 3.3).
Content:
ErrorLocation This identifies the IOTP Transaction Id of the
message in error and, where possible, the element
and attribute in the message in error that caused
the Error Component to be generated.
If the Severity of the error is not
TransientError, more than one ErrorLocation may be
specified as appropriate depending on the nature
of the error (see section 7.21.2 Error Codes) and
at the discretion of the vendor/developer of the
IOTP Aware Application.
PackagedContent This contains additional data which can be used to
understand the error. Its content may vary as
appropriate depending on the nature of the error
(see section 7.21.2 Error Codes) and at the
discretion of the vendor/developer of the IOTP
Aware Application. For a definition of
PackagedContent see section 3.7.
Burdett Informational [Page 156]
^L
RFC 2801 IOTP/1.0 April 2000
7.21.1 Error Processing Guidelines
If there is more than one Error Component in a message reporting the
error, carry out the actions appropriate for the Error Component with
the highest severity. In this context, HardError has a higher
severity than TransientError, which has a higher severity than
Warning.
7.21.1.1 Severity - Warning
If an IOTP aware application is generating a message reporting the
error with an Error Component where the Severity attribute is set to
Warning, then if the message reporting the error does not contain
another Error Component with a severity higher than Warning, the IOTP
Message must also include the Trading Blocks and Trading Components
that would have been included if no error was being reported.
If a message reporting the error is received with an Error Component
where Severity is set to Warning, then:
o it is recommended that information about the error is either
logged, or otherwise reported to the user,
o the implementer of the IOTP aware application must either, at
their or the user's discretion:
- continue the IOTP transaction as normal, or
- fail the IOTP transaction by generating a message reporting the
error with an Error Component with Severity set to HardError
(see section 7.21.1.3).
If the intention is to continue the IOTP transaction then, if there
are no other Error Components with a higher severity, check that the
necessary Trading Blocks and Trading Components for normal processing
of the transaction to continue are present. If they are not then
generate a message reporting the error with an Error Component with
Severity set to HardError.
7.21.1.2 Severity - Transient Error
If an IOTP Aware Application is generating a message reporting the
error with an Error Component where the Severity attribute is set to
TransientError, then there should be only one Error Component in the
message reporting the error. In addition, the MinRetrySecs attribute
should be present.
Burdett Informational [Page 157]
^L
RFC 2801 IOTP/1.0 April 2000
If a message reporting the error is received with an Error Component
where Severity is set to TransientError then:
o if the MinRetrySecs attribute is present and a valid number, then
use the MinRetrySecs value given. Otherwise if MinRetrySecs is
missing or is invalid, then:
- generate a message reporting the error containing an Error
Component with a Severity of Warning and send it on the next
IOTP message (if any) to be sent to the Trading Role which sent
the message reporting the error with the invalid MinRetrySecs,
and
- use a value for MinRetrySecs which is set by the
vendor/developer of the IOTP Aware Application.
o check that only one ErrorLocation element is contained within the
Error Component and that it refers to an IOTP Message which was
sent by the recipient of the Error Component with a Severity of
TransientError. If more than one ErrorLocation is present then
generate a message reporting the error with a Severity of
HardError.
7.21.1.3 Severity - Hard Error
If an IOTP Aware Application is generating a message reporting the
error with an Error Component where the Severity attribute set to
HardError, then there should be only one Error Component in the
message reporting the error.
If a message reporting the error is received with an Error Component
where Severity is set to HardError then terminate the IOTP
Transaction.
7.21.2 Error Codes
The following table contains the valid values for the ErrorCode
attribute of the Error Component. The first sentence of the
description contains the text that should be used to describe the
error when displayed or otherwise reported. Individual
implementations may translate this into alternative languages at
their discretion.
An Error Code must not be more that 14 characters long.
Burdett Informational [Page 158]
^L
RFC 2801 IOTP/1.0 April 2000
Value Description
Reserved Reserved. This error is reserved by the
vendor/developer of the software. Contact the
vendor/developer of the software for more information
See the SoftwareId attribute of the Message Id
element in the Transaction Reference Block(section
3.3).
XmlNotWellFrmd XML not well formed. The XML document is not well
formed. See [XML] for the meaning of "well formed".
Even if the XML is not well formed, it should still
be scanned to find the Transaction Reference Block so
that a properly formed Error Response may be
generated.
XmlNotValid XML not valid. The XML document is well formed but
the document is not valid. See [XML] for the meaning
of "valid". Specifically:
o the XML document does not comply with the
constraints defined in the IOTP document type
declaration (DTD) (see section 13 Internet Open
Trading Protocol Data Type Definition), and
o the XML document does not comply with the
constraints defined in the document type
declaration of any additional [XML Namespace] that
are declared.
As for XML not well formed, attempts should still be
made to extract the Transaction Reference Block so
that a properly formed Error Response may be
generated.
ElUnexpected Unexpected element. Although the XML document is well
formed and valid, an element is present that is not
expected in the particular context according to the
rules and constraints contained in this
specification.
ElNotSupp Element not supported. Although the document is well
formed and valid, an element is present that:
o is consistent with the rules and constraints
contained in this specification, but
o is not supported by the IOTP Aware Application
which is processing the IOTP Message.
Burdett Informational [Page 159]
^L
RFC 2801 IOTP/1.0 April 2000
ElMissing Element missing. Although the document is well formed
and valid, an element is missing that should have
been present if the rules and constraints contained
in this specification are followed.
In this case set the PackagedContent of the Error
Component to the type of the missing element.
ElContIllegal Element content illegal. Although the document is
well formed and valid, the element Content contains
values which do not conform to the rules and
constraints contained in this specification.
EncapProtErr Encapsulated protocol error. Although the document is
well formed and valid, the PackagedContent of an
element contains data from an encapsulated protocol
which contains errors.
AttUnexpected Unexpected attribute. Although the XML document is
well formed and valid, the presence of the attribute
is not expected in the particular context according
to the rules and constraints contained in this
specification.
AttNotSupp Attribute not supported. Although the XML document is
well formed and valid, and the presence of the
attribute in an element is consistent with the rules
and constraints contained in this specification, it
is not supported by the IOTP Aware Application which
is processing the IOTP Message.
AttMissing Attribute missing. Although the document is well
formed and valid, an attribute is missing that should
have been present if the rules and constraints
contained in this specification are followed.
In this case set the PackagedContent of the Error
Component to the type of the missing attribute.
AttValIllegal Attribute value illegal. The attribute contains a
value which does not conform to the rules and
constraints contained in this specification.
AttValNotRecog Attribute Value Not Recognised. The attribute
contains a value which the IOTP Aware Application
generating the message reporting the error could not
recognise.
Burdett Informational [Page 160]
^L
RFC 2801 IOTP/1.0 April 2000
MsgTooLarge Message too large. The message is too large to be
processed by the IOTP Aware Application.
ElTooLarge Element too large. The element is too large to be
processed by the IOTP Aware Application
ValueTooSmall Value too small or early. The value of all or part of
the Content of an element or an attribute, although
valid, is too small.
ValueTooLarge Value too large or in the future. The value of all or
part of the Content of an element or an attribute,
although valid, is too large.
ElInconsistent Element Inconsistent. Although the document is well
formed and valid, according to the rules and
constraints contained in this specification:
o the content of an element is inconsistent with the
content of other elements or their attributes, or
o the value of an attribute is inconsistent with the
value of one or more other attributes.
In this case create ErrorLocation elements which
identify all the attributes or elements which are
inconsistent.
TransportError Transport Error. This error code is used to indicate
that there is a problem with the Transport Mechanism
which is preventing the message from being received.
It is typically associated with a Transient Error.
Explanation of the Transport Error is contained
within the ErrorDesc attribute. The values which can
be used inside ErrorDesc with a TransportError is
specified in the IOTP supplement for the Transport
mechanism.
MsgBeingProc Message Being Processed. This error code is only used
with a Severity of Transient Error. It indicates that
the previous message, which may be an exchange
message or a request message, is being processed and,
if no response is received by the time indicated by
the MinRetrySecs attribute, then the original message
should be resent.
SystemBusy System Busy. This error code is only used with a
Severity of Transient Error. It indicates that the
server that received a message is currently too busy
to handle the message. If no response is received by
Burdett Informational [Page 161]
^L
RFC 2801 IOTP/1.0 April 2000
the time indicated by the MinRetrySecs attribute,
then the original message should be resent.
Note: If the server/system handling the Transport Mechanism (e.g.,
HTTP) is busy then a Transport Specific error message should be used
instead of an IOTP Error message. This code should be used in
association with IOTP servers/systems or other servers/systems to
which the IOTP server is connected.
UnknownError Unknown Error. Indicates that the transaction cannot
complete for some reason that is not covered
explicitly by any of the other errors. The ErrorDesc
attribute should be used to indicate the nature of
the problem.
This could be used to indicate, for example, an
internal error in a backend server or client process
of some kind.
7.21.3 Error Location Element
An Error Location Element identifies an element and optionally an
attribute in the message in error which is associated with the error.
It contains a reference to the IOTP Message, Trading Block, Trading
Component, element and attribute, which is in error.
<!ELEMENT ErrorLocation EMPTY >
<!ATTLIST ErrorLocation
ElementType NMTOKEN #REQUIRED
IotpMsgRef NMTOKEN #IMPLIED
BlkRef NMTOKEN #IMPLIED
CompRef NMTOKEN #IMPLIED
ElementRef NMTOKEN #IMPLIED
AttName NMTOKEN #IMPLIED >
Attributes:
ElementType This is the name of the type of the element where
the error is located. For example if the element
was declared as <!ELEMENT Org ... then its name is
"Org".
IotpMsgRef This is the value of the ID attribute of the of
the Message Id Component (see section 3.3.2) of
the message in error to which this Error Component
applies.
Burdett Informational [Page 162]
^L
RFC 2801 IOTP/1.0 April 2000
BlkRef If the error is associated with a specific Trading
Block, then this is the value of the ID attribute
of the Trading Block where the error is located.
CompRef If the error is associated with a specific Trading
Component, then this is the value of the ID
attribute of the Trading Component where the error
is located.
ElementRef If the error is associated with a specific element
within a Trading Component then, if the element
has an attribute with an "attribute type" (see
[XML]) of "ID", then this is the value of that
attribute.
AttName If the error is associated with the value of an
attribute, then this is the name of that
attribute. In this case the PackagedContent of the
Error Component should contain the value of the
attribute.
Note that as many as the attributes as possible should be included.
For example if an attribute in a child element of a Trading Component
contains an incorrect value, then all the attributes of ErrorLocation
should be present.
8. Trading Blocks
Trading Blocks are child elements of the top level IOTP Messages that
are sent in the form of [XML] documents directly between the
different Trading Roles that are taking part in a trade.
Each Trading Blocks consist of one or more Trading Components (see
section 7). This is illustrated in the diagram below.
Burdett Informational [Page 163]
^L
RFC 2801 IOTP/1.0 April 2000
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
IOTP MESSAGE <-----------IOTP Message - an XML Document
| which is transported between the
| Trading Roles
|-Trans Ref Block <----- Trans Ref Block - contains
| | information which describes the
| | IOTP Transaction and the IOTP
| | Message.
| |-Trans Id Comp. <--- Transaction Id Component -
| | uniquely identifies the IOTP
| | Transaction. The Trans Id
| | Components are the same across
| | all IOTP messages that comprise a
| | single IOTP transaction.
| |-Msg Id Comp. <----- Message Id Component - identifies
| and describes an IOTP Message
| within an IOTP Transaction
|-Signature Block <----- Signature Block (optional) -
| | contains one or more Signature
| | Components and their associated
| | Certificates
| |-Signature Comp. <-- Signature Component - contains
| | digital signatures. Signatures
| | may sign digests of the Trans Ref
| | Block and any Trading Component
| | in any IOTP Message in the same
| | IOTP Transaction.
| |-Certificate Comp. <-Certificate Component. Used to
| check the signature. (Optional)
------> |-Trading Block <--------Trading Block - an XML Element
| | |-Trading Comp. within an IOTP Message that
Trading | |-Trading Comp. contains a predefined set of
Blocks | |-Trading Comp. Trading Components
| | |-Trading Comp.
| | |-Trading Comp. <-----Trading Components - XML Elements
| | within a Trading Block that
------> |-Trading Block contain a predefined set of XML
| |-Trading Comp. elements and attributes
| |-Trading Comp. containing information required
| |-Trading Comp. to support a Trading Exchange
| |-Trading Comp.
| |-Trading Comp.
|
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 16 Trading Blocks
Burdett Informational [Page 164]
^L
RFC 2801 IOTP/1.0 April 2000
Trading Blocks are defined as part of the definition of an IOTP
Message (see section 3.1.1). The definition of an IOTP Message
element is repeated here:
<!ELEMENT IotpMessage
( TransRefBlk,
SigBlk?,
ErrorBlk?,
( AuthReqBlk |
AuthRespBlk |
AuthStatusBlk |
CancelBlk |
DeliveryReqBlk |
DeliveryRespBlk |
InquiryReqBlk |
InquiryRespBlk |
OfferRespBlk |
PayExchBlk |
PayReqBlk |
PayRespBlk |
PingReqBlk |
PingRespBlk |
TpoBlk |
TpoSelectionBlk
)*
) >
The remainder of this section defines the Trading Blocks in this
version of IOTP. They are:
o Authentication Request Block
o Authentication Response Block
o Authentication Status Block
o Cancel Block
o Delivery Request Block
o Delivery Response Block
o Error Block
o Inquiry Request Block
o Inquiry Response Block
Burdett Informational [Page 165]
^L
RFC 2801 IOTP/1.0 April 2000
o Offer Response Block
o Payment Exchange Block
o Payment Request Block
o Payment Response Block
o Signature Block
o Trading Protocol Options Block
o TPO Selection Block
The Transaction Reference Block is described in section 3.3.
8.1 Trading Protocol Options Block
The TPO Trading Block contains options which apply to the IOTP
Transaction. The definition of a TPO Trading Block is as follows.
<!ELEMENT TpoBlk ( ProtocolOptions, BrandList*, Org* ) >
<!ATTLIST TpoBlk
ID ID #REQUIRED >
Attributes:
ID An identifier which uniquely identifies the
Trading Protocol Options Block within the IOTP
Transaction (see section 3.4 ID Attributes).
Content:
ProtocolOptions The Protocol Options Component (see section
7.1)defines the options which apply to the whole
IOTP Transaction (see section 9).
BrandList This Brand List Component contains one or more
payment brands and protocols which may be selected
(see section 7.7).
Org The Organisation Components (see section 7.6)
identify the Organisations and their roles in the
IOTP Transaction. The roles and Organisations
which must be present will depend on the
particular type of IOTP Transaction. See the
definition of each transaction in section 9.
Internet Open Trading Protocol Transactions.
Burdett Informational [Page 166]
^L
RFC 2801 IOTP/1.0 April 2000
The TPO Block should contain:
o the Protocol Options Component
o the Organisation Component with the Trading Role of Merchant
o the Organisation Component with the Trading Role of Consumer
o optionally, the Organisation Component with the Trading Role of
DeliverTo, if there is a Delivery included in the IOTP Transaction
o Brand List Components for each payment in the IOTP Transaction
o Organisation Components for all the Payment Handlers involved
o optionally, Organisation Components for the Delivery Handler (if
any) for the transaction
o additional Organisation Components that the Merchant may want to
include. For example
- a Customer Care Provider
- an Certificate Authority that offers Merchant "Credentials" or
some other warranty on the goods or services being offered.
8.2 TPO Selection Block
The TPO Selection Block contains the results of selections made from
the options contained in the Trading Protocol Options Block (see
section 8.1).The definition of a TPO Selection Block is as follows.
<!ELEMENT TpoSelectionBlk (BrandSelection+) >
<!ATTLIST TpoSelectionBlk
ID ID #REQUIRED >
Attributes:
ID An identifier which uniquely identifies the TPO
Selection Block within the IOTP Transaction.
Content:
BrandSelection This identifies the choice of payment brand and
payment protocol to be used in a payment within
the IOTP Transaction. There is one Brand Selection
Component (see section 7.8) for each payment to be
made in the IOTP Transaction.
Burdett Informational [Page 167]
^L
RFC 2801 IOTP/1.0 April 2000
The TPO Selection Block should contain one Brand Selection Component
for each Brand List in the TPO Block.
8.3 Offer Response Block
The Offer Response Block contains details of the goods, services,
amount, delivery instructions or financial transaction which is to
take place. Its definition is as follows.
<!ELEMENT OfferRespBlk (Status, Order?, Payment*,
Delivery?, TradingRoleData*) >
<!ATTLIST OfferRespBlk
ID ID #REQUIRED >
Attributes:
ID An identifier which uniquely identifies the Offer
Response Block within the IOTP Transaction.
Content:
Status Contains status information about the business
success (see section 4.2) or failure of the
generation of the Offer. Note that in an Offer
Response Block, a ProcessState of NotYetStarted or
InProgress are illegal values.
Order The Order Component contains details about the
goods, services or financial transaction which is
taking place see section 7.5.
The Order Component must be present unless the
ProcessState attribute of the Status Component is
set to Failed.
Payment The Payment Components contain information about
the payments which are to be made see section 7.9.
Delivery The Delivery Component contains details of the
delivery to be made (see section 7.13).
TradingRoleData The Trading Role Data Component contains opaque
data which is needs to be communicated between the
Trading Roles involved in an IOTP Transaction (see
section 7.17).
The Offer Response Block should contain:
Burdett Informational [Page 168]
^L
RFC 2801 IOTP/1.0 April 2000
o the Order Component for the IOTP Transaction
o Payment Components for each Payment in the IOTP Transaction
o the Delivery Component the IOTP Transaction requires (if any).
8.4 Authentication Request Block
The Authentication Request Block contains the data which is used by
one Trading Role to obtain information about and optionally
authenticate another Trading Role.
In outline it contains:
o information about how the authentication itself will be carried
out, and/or
o a request for additional information about the Organisation being
authenticated.
Its definition is as follows.
<!ELEMENT AuthReqBlk (AuthReq*, TradingRoleInfoReq?) >
<!ATTLIST AuthReqBlk
ID ID #REQUIRED >
Attributes:
ID An identifier which uniquely identifies the
Authentication Request Block within the IOTP
Transaction.
Content:
AuthReq Each Authentication Request (see section 7.2)
component describes an alternative way in which
the recipient of the Authentication Request may
authenticate themselves by generating an
Authentication Response Component (see section
7.3).
If one Authentication Request Component is
present then that Authentication Request
Component should be used.
Burdett Informational [Page 169]
^L
RFC 2801 IOTP/1.0 April 2000
If more than one Authentication Request Component
is present then the recipient should choose one
of the components based on personal preference of
the recipient or their software.
If no Authentication Request Component is present
it means that the Authentication Request Block is
requesting the return of Organisation Components
as specified in the Trading Role Information
Request Component.
TradingRoleInfoReq The Trading Role Information Request Component
(see section 7.4) contains a list of Trading
Roles about which information is being requested
There must be at least one Component (either an Authentication
Request or a Trading Role Information Request) within the
Authentication Block otherwise it is an error.
8.5 Authentication Response Block
The Authentication Response Block contains the response which results
from processing the Authentication Request Block. Its definition is
as follows.
<!ELEMENT AuthRespBlk (AuthResp?, Org*) >
<!ATTLIST AuthRespBlk
ID ID #REQUIRED >
Attributes:
ID An identifier which uniquely identifies the
Authentication Response Block within the IOTP
Transaction.
Content:
AuthResp The optional Authentication Response Component
which contains the results of processing the
Authentication Request Component - see section
7.3.
Org Optional Organisation Components that contain
information corresponding to the Trading Roles as
requested by the TradingRoleList attribute of the
Trading Role Information Request component.
Burdett Informational [Page 170]
^L
RFC 2801 IOTP/1.0 April 2000
The components present in the Authentication Response Block must
match the requirement of the corresponding Authentication Request
Block otherwise it is an error.
8.6 Authentication Status Block
The Authentication Status Block indicates the success or failure of
the validation of an Authentication Response Block by an
Authenticator. Its definition is as follows.
<!ELEMENT AuthStatusBlk (Status) >
<!ATTLIST AuthStatusBlk
ID ID #REQUIRED >
Attributes:
ID An identifier which uniquely identifies the
Authentication Status Block within the IOTP
Transaction.
Content:
Status Contains status information about the business
success (see section 4.2) or failure of the
authentication
8.7 Payment Request Block
The Payment Request Block contains information which requests that a
payment is started. Its definition is as follows.
<!ELEMENT PayReqBlk (Status+, BrandList, BrandSelection,
Payment, PaySchemeData?, Org*, TradingRoleData*) >
<!ATTLIST PayReqBlk
ID ID #REQUIRED >
Attributes:
ID An identifier which uniquely identifies the
Payment Request Block within the IOTP Transaction.
Content:
Status Contains the Status Components (see section 7.13)
of the responses of the steps (e.g., an Offer
Response and/or a Payment Response) on which this
Burdett Informational [Page 171]
^L
RFC 2801 IOTP/1.0 April 2000
step depends. It is used to indicate the success
or failure of those steps. Payment should only
occur if the previous steps were successful.
BrandList The Brand List Component contains a list of one or
more payment brands and protocols which may be
selected (see section 7.7).
BrandSelection This identifies the choice of payment brand, the
payment protocol and the Payment Handler to be
used in a payment within the IOTP Transaction.
There is one Brand Selection Component (see
section 7.8) for each payment to be made in the
IOTP Transaction.
Payment The Payment Components contain information about
the payment which is being made see section 7.9.
PaySchemeData The Payment Scheme Component contains payment
scheme specific data see section 7.10.
Org The Organisation Component contains details of
Organisations involved in the payment (see section
7.6). The Organisations present are dependent on
the IOTP Transaction and the data which is to be
signed. See section 6 Digital Signatures for more
details.
TradingRoleData The Trading Role Data Component contains opaque
data which is needs to be communicated between the
Trading Roles involved in an IOTP Transaction (see
section 7.17).
The Payment Request Block should contain:
o the Organisation Component with a Trading Role of Merchant
o the Organisation Component with the Trading Role of Consumer
o the Payment Component for the Payment
o the Brand List Component for the Payment
o the Brand Selection Component for the Brand List
o the Organisation Component for the Payment Handler of the Payment
Burdett Informational [Page 172]
^L
RFC 2801 IOTP/1.0 April 2000
o the Organisation Component (if any) for the Organisation which
carried out the previous step, for example another Payment Handler
o the Organisation Component for the Organisation which is to carry
out the next step, if any. This may be, for example, either a
Delivery Handler or a Payment Handler.
o the Organisation Components for any additional Organisations that
the Merchant has included in the Offer Response Block
o an Optional Payment Scheme Data Component, if required by the
Payment Method as defined in the IOTP supplement for the payment
method
o any Trading Role Data Components that may be required (see section
7.17.1).
8.8 Payment Exchange Block
The Payment Exchange Block contains payment scheme specific data
which is exchanged between two of the roles in a trade. Its
definition is as follows.
<!ELEMENT PayExchBlk (PaySchemeData+) >
<!ATTLIST PayExchBlk
ID ID #REQUIRED >
Attributes:
ID An identifier which uniquely identifies the
Payment Exchange Block within the IOTP
Transaction.
Content:
PaySchemeData This Trading Component contains payment scheme
specific data see section 7.10 Payment Scheme
Component.
8.9 Payment Response Block
This Payment Response Block contains a information about the Payment
Status, an optional Payment Receipt, and an optional payment protocol
message. Its definition is as follows.
Burdett Informational [Page 173]
^L
RFC 2801 IOTP/1.0 April 2000
<!ELEMENT PayRespBlk (Status, PayReceipt?, PaySchemeData?,
PaymentNote?, TradingRoleData*) >
<!ATTLIST PayRespBlk
ID ID #REQUIRED >
Attributes:
ID An identifier which uniquely identifies the
Payment Response Block within the IOTP
Transaction.
Content:
Status Contains status information about the business
success (see section 4.2) or failure of the
payment. Note that in a Pay Response Block, a
ProcessState of NotYetStarted or InProgress are
illegal values.
PayReceipt Contains payment scheme specific data which can be
used to verify the payment occurred. See section
7.11 Payment Receipt Component. It must be present
if the ProcessState attribute of the Status
Component is set to CompletedOk. PayReceipt is
optional for other values as specified by the
appropriate Payment Scheme supplement.
PaySchemeData Contains payment scheme specific data see section,
for example a payment protocol message. See 7.10
Payment Scheme Component.
PaymentNote Contains additional, non payment related,
information which the Payment Handler wants to
provide to the Consumer. For example, if a
withdrawal or deposit were being made then it
could contain information on the remaining balance
on the account after the transfer was complete.
See section 7.12 Payment Note Component.
TradingRoleData The Trading Role Data Component contains opaque
data which is needs to be communicated between the
Trading Roles involved in an IOTP Transaction (see
section 7.17).
Burdett Informational [Page 174]
^L
RFC 2801 IOTP/1.0 April 2000
8.10 Delivery Request Block
The Delivery Request Block contains details of the goods or services
which are to be delivered together with a signature which can be used
to check that delivery is authorised. Its definition is as follows.
<!ELEMENT DeliveryReqBlk (Status+, Order, Org*, Delivery,
ConsumerDeliveryData?, TradingRoleData*) >
<!ATTLIST DeliveryReqBlk
ID ID #REQUIRED >
Attributes:
ID An identifier which uniquely identifies the
Delivery Request Block within the IOTP
Transaction.
Content:
Status Contains the Status Components (see section
7.13) of the responses of the steps (e.g., a
Payment Response) on which this step is
dependent. It is used to indicate the success
or failure of those steps. Delivery should only
occur if the previous steps were successful.
Order The Order Component contains details about the
goods, services or financial transaction which
is taking place see section 7.5.
The Organisation Components (see section 7.6)
identify the Organisations and their roles in
Org the IOTP Transaction. The roles and
Organisations which must be present will depend
on the particular type of IOTP Transaction. See
the definition of each transaction in section
9. Internet Open Trading Protocol Transactions.
Delivery The Delivery Component contains details of the
delivery to be made (see section 7.13).
ConsumerDeliveryData Optional. Contains an identifier specified by
the Consumer which, if returned by the Delivery
Handler will enable the Consumer to identify
which Delivery is being referred to.
Burdett Informational [Page 175]
^L
RFC 2801 IOTP/1.0 April 2000
TradingRoleData The Trading Role Data Component contains opaque
data which is needs to be communicated between
the Trading Roles involved in an IOTP
Transaction (see section 7.17).
The Delivery Request Block contains:
o the Organisation Component with a Trading Role of Merchant
o the Organisation Component for the Consumer and DeliverTo Trading
Roles
o the Delivery Component for the Delivery
o the Organisation Component for the Delivery Handler. Specifically
the Organisation Component identified by the ActionOrgRef
attribute on the Delivery Component
o the Organisation Component (if any) for the Organisation which
carried out the previous step, for example a Payment Handler
o the Organisation Components for any additional Organisations that
the Merchant has included in the Offer Response Block
o any Trading Role Data Components that may be required (see section
7.17.1).
8.11 Delivery Response Block
The Delivery Response Block contains a Delivery Note containing
details on how the goods will be delivered. Its definition is as
follows. Note that in a Delivery Response Block a Delivery Status
Element with a DeliveryStatusCode of NotYetStarted or InProgress is
invalid.
<!ELEMENT DeliveryRespBlk (Status, DeliveryNote) >
<!ATTLIST DeliveryRespBlk
ID ID #REQUIRED >
Attributes:
ID An identifier which uniquely identifies the
Delivery Response Block within the IOTP
Transaction.
Content:
Burdett Informational [Page 176]
^L
RFC 2801 IOTP/1.0 April 2000
Status Contains status information about the business
success (see section 4.2) or failure of the
delivery. Note that in a Delivery Response Block,
a ProcessState of NotYetStarted or InProgress are
illegal values.
DeliveryNote The Delivery Note Component contains details about
how the goods or services will be delivered (see
section 7.15).
8.12 Inquiry Request Trading Block
The Inquiry Request Trading Block contains an Inquiry Type Component
and an optional Payment Scheme Component to contain payment scheme
specific inquiry messages.
<!ELEMENT InquiryReqBlk ( InquiryType, PaySchemeData? ) >
<!ATTLIST InquiryReqBlk
ID ID #REQUIRED >
Attributes:
ID An identifier which uniquely identifies the
Inquiry Request Trading Block within the IOTP
Transaction.
Content:
InquiryType Inquiry Type Component (see section 7.18) that
contains the type of inquiry.
PaySchemeData Payment Scheme Component (see section 7.10) that
contains payment scheme specific inquiry messages
for inquiries on payments. This is present when
the Type attribute of Inquiry Type Component is
Payment.
8.13 Inquiry Response Trading Block
The Inquiry Response Trading Block contains a Status Component and an
optional Payment Scheme Component to contain payment scheme specific
inquiry messages. Its purpose is to enquire on the current status of
an IOTP transaction at a server.
Burdett Informational [Page 177]
^L
RFC 2801 IOTP/1.0 April 2000
<!ELEMENT InquiryRespBlk (Status, PaySchemeData?) >
<!ATTLIST InquiryRespBlk
ID ID #REQUIRED
LastReceivedIotpMsgRef NMTOKEN #IMPLIED
LastSentIotpMsgRef NMTOKEN #IMPLIED >
Attributes:
ID An identifier which uniquely identifies the
Inquiry Response Trading Block within the
IOTP Transaction.
LastReceivedIotpMsgRef Contains an Element Reference (see section
3.5) to the Message Id Component (see section
3.3.2) of the last message this server has
received from the Consumer. If there is no
previously received message from the Consumer
in the pertinent transaction, this attribute
should be contain the value Null. This
attribute exists for debugging purposes.
LastSentIotpMsgRef Contains an Element Reference (see section
3.5) to the Message Id Component (see section
3.3.2) of the last message this server has
sent to the Consumer. If there is no
previously sent message to the Consumer in
the pertinent transaction, this attribute
should contain the value Null. This attribute
exists for debugging purposes.
Content:
Status Contains status information about the business
success (see section 4.2) or failure of a certain
trading exchange (i.e., Offer, Payment, or
Delivery).
PaySchemeData Payment Scheme Component (see section 7.10) that
contains payment scheme specific inquiry messages
for inquiries on payments. This is present when
the Type attribute of StatusType attribute of the
Status Component is set to Payment.
Burdett Informational [Page 178]
^L
RFC 2801 IOTP/1.0 April 2000
8.14 Ping Request Block
The Ping Request Block is used to determine if a Server is operating
and whether or not cryptography is compatible.
The definition of a Ping Request Block is as follows.
<!ELEMENT PingReqBlk (Org*)>
<!ATTLIST PingReqBlk
ID ID #REQUIRED>
Attributes:
ID An identifier which uniquely identifies the Ping
Request Trading Block within the IOTP Transaction.
Content:
Org Optional Organisation Components (see section
7.6).
If no Organisation Component is present then the
Ping Request is anonymous and simply determines if
the server is operating.
However if Organisation Components are present,
then it indicates that the sender of the Ping
Request wants to verify that digital signatures
can be handled.
In this case the sender includes:
o an Organisation Component that identifies
itself specifying the Trading Role(s) it is
taking in IOTP transactions (Merchant, Payment
Handler, etc.)
o an Organisation Component that identifies the
intended recipient of the message.
These are then used to generate a signature over
the Ping Response Block.
8.15 Ping Response Block
The Ping Response Trading Block provides the result of a Ping
Request.
It contains an Organisation Component that identifies the sender of
the Ping Response.
Burdett Informational [Page 179]
^L
RFC 2801 IOTP/1.0 April 2000
If the Ping Request to which this block is a response contained
Organisation Components, then it also contains those Organisation
Components.
<!ELEMENT PingRespBlk (Org+)>
<!ATTLIST PingRespBlk
ID ID #REQUIRED
PingStatusCode (Ok | Busy | Down) #REQUIRED
SigVerifyStatusCode (Ok | NotSupported | Fail) #IMPLIED
xml:lang NMTOKEN #IMPLIED
PingStatusDesc CDATA #IMPLIED>
Attributes:
ID An identifier which uniquely identifies the Ping
Request Trading Block within the IOTP
Transaction.
PingStatusCode Contains a code which shows the status of the
sender software which processes IOTP messages.
Valid values are:
o Ok. Everything with the service is working
normally, including the signature
verification.
o Busy. Things are working normally but there
may be some delays.
o Down. The server is not functioning fully but
can still provide a Ping response.
SigVerifyStatusCode Contains a code which shows the status of
signature verification. This is present only
when the message containing the Ping Request
Block also contains a Signature Block. Valid
values are:
o Ok. The signature has successfully been
verified and proved compatible.
o NotSupported The receiver of this Ping
Request Block does not support validation of
signatures.
o Fail. Signature verification failed.
Xml:lang Defines the language used in PingStatusDesc.
This is present when PingStatusDesc is present.
PingStatusDesc Contains a short description of the status of
the server which sends this Ping Response Block.
Servers, if their designers want, can use this
Burdett Informational [Page 180]
^L
RFC 2801 IOTP/1.0 April 2000
attribute to send more refined status
information than PingStatusCode which can be
used for debugging purposes, for example.
Content:
Org These are Organisation Components (see section
7.6).
The Organisation Components of the sender of the
Ping Response is always included in addition to
the Organisation Components sent in the Ping
Request.
Note: Ping Status Code values do not include a value such as Fail,
since, when the software receiving the Ping Request message is not
working at all, no Ping Response message will be sent back.
8.16 Signature Block
The Signature Block contains one or more Signature Components and
associated Certificates (if required) which sign data associated with
the IOTP Transaction. For a general discussion and introduction to
how IOTP uses signatures, see section 6 Digital Signatures. The
definition of the Signature Component and certificates is contained
in the paper "Digital Signatures for the Internet Open Trading
Protocol", see [IOTPDSIG]. Descriptions of how these are used by
IOTP is contained in sections 7.19 and 7.20.
The definition of a Signature Block is as follows:
<!ELEMENT IotpSignatures (Signature+, Certificate*) >
<!ATTLIST IotpSignatures
ID ID #IMPLIED >
Attributes:
ID An identifier which uniquely identifies the
Signature Block within the IOTP Transaction.
Content:
Signature A Signature Component. See section 7.19.
Certificate A Certificate Component. See section 7.20.
Burdett Informational [Page 181]
^L
RFC 2801 IOTP/1.0 April 2000
The contents of a Signature Block depends on the Trading Block that
is contained in the same IOTP Message as the Signature Block.
8.16.1 Signature Block with Offer Response
A Signature Block which is in the same message as an Offer Response
Block contains just an Offer Response Signature Component (see
section 7.19.2).
8.16.2 Signature Block with Payment Request
A Signature Block which is in the same message as a Payment Request
Block contains:
o an Offer Response Signature Component (see section 7.19.2), and
o if the Payment is dependent on an earlier step (as indicated by
the StartAfter attribute on the Payment Component), then the
Payment Receipt Signature Component (see section 7.19.3) generated
by the previous step
8.16.3 Signature Block with Payment Response
A Signature Block which is in the same message as a Payment
Response Block contains just a Payment Receipt Signature Component
(see section 7.19.3) generated by the step.
8.16.4 Signature Block with Delivery Request
A Signature Block which is in the same message as a Delivery
Request Block contains:
o an Offer Response Signature Component (see section 7.19.2), and
o the Payment Receipt Signature Component (see section 7.19.3)
generated by the previous step.
8.16.5 Signature Block with Delivery Response
A Signature Block which is in the same message as a Delivery Response
Block contains just a Delivery Response Signature component (see
section 7.19.4) generated by the step.
Burdett Informational [Page 182]
^L
RFC 2801 IOTP/1.0 April 2000
8.17 Error Block
The Error Trading Block contains one or more Error Components (see
section 7.21) which contain information about Technical Errors (see
section 4.1) in an IOTP Message which has been received by one of the
Trading Roles involved in the trade.
For clarity two phrases are defined which are used in the description
of an Error Trading Block:
o message in error. An IOTP message which contains or causes an
error of some kind
o message reporting the error. An IOTP message that contains an
Error Trading Block that describes the error found in a message in
error.
An Error Trading Block may be contained in any message reporting the
error. The action which then follows depends on the severity of the
error. See the definition of an Error Component, for an explanation
of the different types of severity and the actions which can then
occur.
in3 Note: Although, an Error Trading Block can report multiple
different errors using multiple Error Components, there is no
obligation on a developer of an IOTP Aware Application to do so.
The structure of an Error Trading Block is as follows.
<!ELEMENT ErrorBlk (ErrorComp+, PaySchemeData*) >
<!ATTLIST ErrorBlk
ID ID #REQUIRED >
Attributes:
ID An identifier which uniquely identifies the Error
Trading Block within the IOTP Transaction.
Content:
ErrorComp An Error Components (see section 7.21) that
contains information about an individual Technical
Error.
PaySchemeData An optional Payment Scheme Component (see section
7.10) which contains a Payment Scheme Message. See
the appropriate payment scheme supplement to
Burdett Informational [Page 183]
^L
RFC 2801 IOTP/1.0 April 2000
determine whether or not this component needs to
be present and for the definition of what it must
contain.
8.18 Cancel Block
The Cancel Block is used by one Trading Role to inform any other that
a transaction has been cancelled. Example usage includes:
o a Consumer Role informing a non-Consumer role that it no longer
plans to continue with the transaction. This will allow the server
to close down the transaction tidily without a waiting for a
time-out to occur
o a non-Consumer Role to inform a Consumer role that the Transaction
is being stopped. In this case, the Consumer is then unlikely to
re-send the previous message that was sent in the mistaken
understanding that the original was not received.
Its definition is as follows.
<!ELEMENT CancelBlk (Status) >
<!ATTLIST CancelBlk
ID ID #REQUIRED >
Attributes:
ID An identifier which uniquely identifies the Cancel
Block within the IOTP Transaction.
Content:
Status Contains status information indicating that the
IOTP transaction has been cancelled.
9. Internet Open Trading Protocol Transactions
The Baseline Internet Open Trading Protocol supports three types of
transactions for different purposes. These are
o an Authentication IOTP transaction which supports authentication
of one party in a trade by another and/or requests information
about another Trading Role
Burdett Informational [Page 184]
^L
RFC 2801 IOTP/1.0 April 2000
o IOTP Transactions that involve one or more payments. Specifically:
- Deposit
- Purchase
- Refund
- Withdrawal, and
- Value Exchange
o IOTP Transactions designed to check the correct function of the
IOTP infrastructure. Specifically:
- Transaction Status Inquiry, and
- Ping
Although the Authentication IOTP Transaction can operate on its own,
authentication can optionally precede any of the "payment"
transactions. Therefore, the rest of this section is divided into
two parts covering:
o Authentication and Payment transactions (Authentication, Deposit,
Purchase, Refund, Withdrawal and Value Exchange)
o Infrastructure Transactions (Transaction Status Inquiry and Ping)
that are designed to support inquiries on whether or not a
transaction has succeeded or a Trading Role's servers are
operating correctly, and
9.1 Authentication and Payment Related IOTP Transactions
The Authentication and Payment related IOTP Transactions consist
of six Document Exchanges which are then combined in sequence to
implement a specific transaction.
Generally, there is a close, but not exact, correspondence between
a Document Exchange and a Trading Exchange. The main difference is
that some Document Exchanges implement part or all of two Trading
Exchanges simultaneously in order to minimise the number of actual
IOTP Messages which must be sent over the Internet.
The six Document Exchanges are:
o Authentication. This is a direct implementation of the
Authentication Trading Exchange
Burdett Informational [Page 185]
^L
RFC 2801 IOTP/1.0 April 2000
o Brand Dependent Offer. This is the Offer Trading Exchange combined
with the Brand Selection part of the Payment Trading Exchange. Its
purpose is to provide the Merchant with information on the Brand
selected so that the content of the Offer Response may be adapted
accordingly
o Brand Independent Offer. This is also an Offer Trading Exchange.
However, in this instance, the content of the Offer Response does
not depend on the Brand selected.
o Payment. This is a direct implementation of the Payment part of a
Payment Trading Exchange
o Delivery. This is a direct implementation of the Delivery Exchange
o Delivery with Payment. This is an implementation of combined
Payment and Delivery Trading Exchanges
These Document Exchanges are combined together in different sequences
to implement each IOTP Transaction. The way in which they may be
combined is illustrated by the diagram below.
Burdett Informational [Page 186]
^L
RFC 2801 IOTP/1.0 April 2000
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
START -----------------------------------------------------
| v
| ----------------
| | AUTHENTICATION |
| ----------------
-------------------------------------- | |
| | | |
| -------------- | ------------- |
v v v v |
------------------- ----------------- |
| BRAND INDEPENDENT | | BRAND DEPENDENT | |
| OFFER | | OFFER | |
------------------- ----------------- |
| | | | |
| --------------- | | |
| | | | |
| -------------- | -- | |
v v v v |
--------- -------------- |
| PAYMENT | | PAYMENT WITH | |
| (first) | | DELIVERY | |
--------- -------------- |
| | |
----------------------------- | |
v v | | |
---------- --------- | | |
| DELIVERY | | PAYMENT | | | |
| | | {second)| | | |
---------- --------- | | |
| | | | v
----------------------------------------------> STOP
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 17 Payment and Authentication Message Flow Combinations
The combinations of Document Exchanges that are valid depend on the
particular IOTP transaction.
The remainder of this sub-section describes:
o each Document Exchange in more detail including descriptions of
the content of each Trading Block in the Document Exchanges, and
o descriptions of how each IOTP Transaction uses the Document
Exchanges to effect the desired result.
Burdett Informational [Page 187]
^L
RFC 2801 IOTP/1.0 April 2000
Note: The descriptions of the Document Exchanges which follow
describe the ways in which various Business Errors (see section 4.2)
are handled. No reference is made however to the handling of
Technical Errors (see section 4.1) in any of the messages since these
are handled the same way irrespective of the context in which the
message is being sent. See section 4 for more details.
9.1.1 Authentication Document Exchange
The Authentication Document Exchange is a direct implementation of
the Authentication Trading Exchange (see section 2.2.4). It involves:
o an Authenticator - the Organisation which is requesting the
authentication, and
o an Authenticatee - the Organisation being authenticated.
The authentication consists of:
o an Authentication Request being sent by the Authenticator to the
Authenticatee,
o an Authentication Response being sent in return by the
Authenticatee to the Authenticator which is then checked, and
o an Authentication Status being sent by the Authenticator to the
Authenticatee to provide an indication of the success or failure
of the authentication.
An Authentication Document Exchange also:
o provides an Authenticatee with an Organisation Component which
describes the Authenticator, and
o optionally provides the Authenticator with Organisation Components
which describe the Authenticatee.
The Authentication Request may also be digitally signed which allows
the Authenticatee to verify the credentials of the Authenticator.
The IOTP Messages which are involved are illustrated by the diagram
below.
Burdett Informational [Page 188]
^L
RFC 2801 IOTP/1.0 April 2000
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
Organisation 1
(Authenticatee)
| Organisation 2
| (Authenticator)
STEP | |
1. First Organisation takes an action (for example by
pressing a button on an HTML page) which requires that
the Organisation is authenticated
1 --> 2 Authentication Need (outside scope of IOTP)
2. The second Organisation generates: an Authentication
Request Block containing one or more Authentication
Request Components and/or a Trading Role Information
Request Component, then sends it to the first
Organisation
1 <-- 2 TPO & AUTHENTICATION REQUEST. IotpMsg: Trans Ref Block;
Signature Block (optional); TPO Block; Auth Request Block
3. IOTP aware application started. If a Signature Block is
present, the first Organisation may use this to check the
credentials of the second Organisation. If credentials are
OK, the first Organisation selects an Authentication
Request to use (if present and more than one), then uses
the authentication algorithm selected to generate an
Authentication Response Block. If present, the Trading
Role Information Request Component is used to generate
Organisation Components. Finally a Signature Component is
created if required and all components are then sent back
to the second Organisation for validation.
1 --> 2 AUTHENTICATION RESPONSE. IotpMsg; Trans Ref Block;
Signature Block (optional) ; Auth Response Block
4. The second Organisation checks the Authentication
Response against the data in the Authentication Request
Block to check that the first Organisation is who they
appear to be, and sends an Authentication Status Block to
the first Organisation to indicate the result then
stops.
1 <-- 2 AUTHENTICATION STATUS. IotpMsg: Trans Ref Block;
Signature Block (optional); Auth Response Block
Burdett Informational [Page 189]
^L
RFC 2801 IOTP/1.0 April 2000
5. The first Organisation checks the authentication Status
Block and optionally keeps information on the IOTP
transaction for record keeping purposes and stops.
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 18 Authentication Document Exchange
9.1.1.1 Message Processing Guidelines
On receiving a TPO & Authentication Request IOTP Message (see below),
an Authenticatee may either:
o generate and send an Authentication Response IOTP Message back to
the Authenticator, or
o indicate failure to comply with the Authentication Request by
sending a Cancel Block back to the Authenticator containing a
Status Component with a StatusType of Authentication a
ProcessState of Failed and the CompletionCode (see section 7.16.4)
set to either: AutEeCancel, NoAuthReq, TradRolesIncon or
Unspecified.
On receiving an Authentication Response IOTP Message (see below), an
Authenticator should send in return, an Authentication Status IOTP
Message (see below) containing a Status Block with a Status Component
where the StatusType is set to Authentication, and:
o the ProcessState attribute of the Status Component is set to
CompletedOk which indicates a successful completion, or
o the ProcessState attribute is set to Failed and the CompletionCode
attribute is set to either: AutOrCancel, AuthFailed or Unspecified
which indicates a failed authentication,
On receiving an Authentication Status IOTP Message (see below), the
Authenticatee should check the Status Component in the Status Block.
If this indicates:
o a successful authentication, then the Authenticatee should either:
- continue with the next step in the IOTP Transaction of which
the Authentication Document Exchange is part (if any), or
Burdett Informational [Page 190]
^L
RFC 2801 IOTP/1.0 April 2000
- indicate a failure to continue with the rest of the IOTP
Transaction, by sending back to the Authenticator a Cancel
Block containing a Status Component with a StatusType of
Authentication, a ProcessState of Failed and the CompletionCode
(see section 7.16.4) set to AutEeCancel.
o a failed authentication, then the failure should be reported to
the Authenticatee and any further processing stopped.
If the Authenticator receives an IOTP Message containing a Cancel
block from a Consumer, then the Authenticatee may go to the
CancelNetLocn specified on the Trading Role Element in the
Organisation Component for the Authenticator contained in the Trading
Protocol Options Block.
9.1.1.2 TPO & Authentication Request IOTP Message
Apart from a Transaction Reference Block (see section 3.3), this
message consists of:
o a Trading Protocol Options Block (see section 8.1)
o an Authentication Request Block (see section 8.4), and
o an optional Signature Block (see section 8.16).
Each of these are described below.
TRADING PROTOCOL OPTIONS BLOCK
The Trading Protocol Options Block (see section 8.1) must contain the
following Trading Components:
o one Protocol Options Component (see Section 7.1) which defines the
options which apply to the whole Authentication Document Exchange.
o one Organisation Component (see section 7.6) which describes the
Authenticator. The Trading Role on the Organisation Component
should indicate the role which the Authenticator is taking in the
Trade, for example a Merchant or a Consumer.
AUTHENTICATION REQUEST BLOCK
The Authentication Request Block (see section 8.4) must contain the
following Trading Components:
o one Authentication Request Component (see section 7.2), and
Burdett Informational [Page 191]
^L
RFC 2801 IOTP/1.0 April 2000
SIGNATURE BLOCK (AUTHENTICATION REQUEST)
If the Authentication Request is being digitally signed then a
Signature Block must be included. It contains Digests of the
following XML elements:
o the Transaction Reference Block (see section 3.3) for the IOTP
Message that contains information that describes the IOTP Message
and IOTP Transaction
o the Transaction Id Component (see section 3.3.1) which globally
uniquely identifies the IOTP Transaction
o the following components of the TPO Block :
- the Protocol Options Component
- the Organisation Component
o the following components of the Authentication Request Block:
- the Authentication Request Component
- the Trading Role Information Request Component
9.1.1.3 Authentication Response IOTP Message
Apart from a Transaction Reference Block (see section 3.3), this
message consists of:
o an Authentication Response Block (see section 8.5), and
o an optional Signature Block (see section 8.16).
Each of these are described below.
AUTHENTICATION RESPONSE BLOCK
The Authentication Response Block must contain the following Trading
Component:
o one Authentication Response Component (see section 7.3)
o one Organisation Component for every Trading Role identified in
the TradingRoleList attribute of the Trading Role Information
Request Component contained in the Authentication Request Block.
Burdett Informational [Page 192]
^L
RFC 2801 IOTP/1.0 April 2000
SIGNATURE BLOCK (AUTHENTICATION RESPONSE)
If the Algorithm element (see section 12. IANA Considerations) within
the Authentication Request Component contained in the Authentication
Request Block indicates that the Authentication Response should
consist of a digital signature then a Signature Block must be
included in the same IOTP message that contains an Authentication
Response Block. The Signature Component contains Digest Elements for
the following XML elements:
o the Transaction Reference Block (see section 3.3) for the IOTP
Message that contains information that describes the IOTP Message
and IOTP Transaction
o the Transaction Id Component (see section 3.3.1) which globally
uniquely identifies the IOTP Transaction
o the following components of the Authentication Request Block:
- the Authentication Request Component
- the Trading Role Information Request Component
o the Organisation Components contained in the Authentication
Response Block
Note: It should not be assumed that all trading roles can support the
signing of data. Particularly it should not be assumed that Consumers
support the signing of data.
9.1.1.4 Authentication Status IOTP Message
Apart from a Transaction Reference Block (see section 3.3), this
message consists of:
o an Authentication Status Block (see section 8.5), and
o an optional Signature Block (see section 8.16).
Each of these are described below.
AUTHENTICATION STATUS BLOCK
The Authentication Status Block (see section 8.6) must contain the
following Trading Components:
o one Status Component (see section 7.16) with a ProcessState
attribute set to CompletedOk.
Burdett Informational [Page 193]
^L
RFC 2801 IOTP/1.0 April 2000
SIGNATURE BLOCK (AUTHENTICATION STATUS)
If the Authentication Status Block is being digitally signed then
a Signature Block must be included that contains a Signature
Component with Digest elements for the following XML elements:
o the Transaction Reference Block (see section 3.3) for the IOTP
Message that contains information that describes the IOTP Message
and IOTP Transaction
o the Transaction Id Component (see section 3.3.1) which globally
uniquely identifies the IOTP Transaction
o the following components of the Authentication Status Block:
- the Status Component (see section 7.16).
Note: If the Authentication Document Exchange is followed by an Offer
Document Exchange (see section 9.1.2) then the Authentication Status
Block and the Signature Block (Authentication Status) may be combined
with either:
o a TPO IOTP Message (see section 9.1.2.3), or
o a TPO and Offer Response IOTP Message (see section 9.1.2.6)
9.1.2 Offer Document Exchange
The Offer Document Exchange occurs in two basic forms:
o Brand Dependent Offer Exchange. Where the content of the offer,
e.g., the order details, amount, delivery details, etc., are
dependent on the payment brand and protocol selected by the
consumer, and
o Brand Independent Offer Exchange. Where the content of the offer
is not dependent on the payment brand and protocol selected.
Each of these types of Offer Document Exchange may be preceded by
an Authentication Document Exchange (see section 9.1.1).
9.1.2.1 Brand Dependent Offer Document Exchange
In a Brand Dependent Offer Document Exchange the TPO Block and the
Offer Response Block are sent separately by the Merchant to the
Consumer, i.e.:
Burdett Informational [Page 194]
^L
RFC 2801 IOTP/1.0 April 2000
o the Brand List Component is sent to the Consumer in a TPO Block,
o the Consumer selects a Payment Brand, Payment Protocol and
optionally a Currency and amount from the Brand List Component
o the Consumer sends the selected brand, protocol and
currency/amount back to the Merchant in a TPO Selection Block, and
o the Merchant uses the information received to define the content
of and then send the Offer Response Block to the Consumer.
Burdett Informational [Page 195]
^L
RFC 2801 IOTP/1.0 April 2000
This is illustrated by the diagram below.
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
Consumer
| Merchant
STEP | |
1. Consumer decides to trade and sends to the Merchant
information (e.g., using HTML) that enables the Merchant
to create an offer,
C --> M Offer information - outside scope of IOTP
2. Merchant decides which payment brand protocols,
currencies and amounts apply, places then in a Brand List
Component inside a TPO Block and sends to Consumer
C <-- M TPO. IotpMsg: Trans Ref Block; TPO Block
3. IOTP aware application started. Consumer selects the
payment brand, payment protocol and currency/amount to
use. Records selection in a Brand Selection Component and
sends back to Merchant.
C --> M TPO SELECTION. IotpMsg: Trans Ref Block; TPO Selection
Block
4. Merchant uses selected payment brand, payment protocol,
currency/amount and the offer information to create an
Offer Response Block containing details about the IOTP
Transaction including price, etc. Optionally signs it and
sends to the Consumer
C <-- M OFFER RESPONSE. IotpMsg: Trans Ref Block; Signature Block
(optional); Offer Response Block
5. Consumer checks the Offer is OK, then combines components
from the TPO Block, the TPO Selection Block and the Offer
Response Block to create the next IOTP Message for the
Transaction and sends it together with the Signature
block if present to the required Trading Role
CONTINUED ...
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 19 Brand Dependent Offer Document Exchange
Burdett Informational [Page 196]
^L
RFC 2801 IOTP/1.0 April 2000
Note, a Consumer identifies a Brand Dependent Offer Document
Exchange, by the absence of an Offer Response Block in the first IOTP
Message.
MESSAGE PROCESSING GUIDELINES
On receiving a TPO IOTP Message (see below), the Consumer may either:
o generate and send a TPO Selection IOTP Message back to the
Merchant, or
o indicate failure to continue with the IOTP Transaction by sending
a Cancel Block back to the Merchant containing a Status Component
with a StatusType of Offer, a ProcessState of Failed and the
CompletionCode (see section 7.16.4) set to either: ConsCancelled
or Unspecified.
On receiving a TPO Selection IOTP Message (see below) the Merchant
may either:
o generate and send an Offer Response IOTP Message back to the
Consumer, or
o indicate failure to continue with the IOTP Transaction by sending
a Cancel Block back to the Consumer containing a Status Component
with a StatusType of Offer, a ProcessState of Failed and the
CompletionCode (see section 7.16.4) set to either: MerchCancelled
or Unspecified.
On receiving an Offer Response IOTP Message (see below) the Consumer
may either:
o generate and send the next IOTP Message in the IOTP transaction
and send it to the required Trading Role. This is dependent on the
IOTP Transaction, or
o indicate failure to continue with the IOTP Transaction by sending
a Cancel Block back to the Merchant containing a Status Component
with a StatusType of Offer, a ProcessState of Failed and the
CompletionCode (see section 7.16.4) set to either: ConsCancelled
or Unspecified.
If the Merchant receives an IOTP Message containing a Cancel block,
then the Consumer is likely to go to the CancelNetLocn specified on
the Trading Role Element in the Organisation Component for the
Merchant.
Burdett Informational [Page 197]
^L
RFC 2801 IOTP/1.0 April 2000
If the Consumer receives an IOTP Message containing a Cancel block,
then the information contained in the IOTP Message should be reported
to the Consumer but no further action taken.
9.1.2.2 Brand Independent Offer Document Exchange
In a Brand Independent Offer Document Exchange the TPO Block and the
Offer Response Block are sent together by the Merchant to the
Consumer, i.e. there is one IOTP Message that contains both a TPO
Block, and an Offer Response Block.
The message flow is illustrated by the diagram below:
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
Consumer
| Merchant
STEP | |
1. Consumer decides to trade and sends to the Merchant
information (e.g., using HTML) that enables the Merchant
to create an offer,
C --> M Offer information - outside scope of IOTP
2. Merchant decides which payment brand protocols,
currencies and amounts apply, places then in a Brand List
Component inside a TPO Block, creates an Offer Response
containing details about the IOTP Transaction including
price, etc., optionally signs it and sends to Consumer
C <-- M TPO & OFFER RESPONSE. IotpMsg: Trans Ref Block; Signature
Block; TPO Block; Offer Response Block
3. IOTP aware application started. Consumer selects the
payment brand, payment protocol and currency/amount to
use. Records selection in a Brand Selection Component,
checks offer is OK, combines the Brand Selection
Component with information from the TPO Block and Offer
Response Block to create the next IOTP Message for the
Transaction and sends it together with the Signature
Block if present to the required Trading Role.
CONTINUED ...
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 20 Brand Independent Offer Exchange
Burdett Informational [Page 198]
^L
RFC 2801 IOTP/1.0 April 2000
Note that a Brand Independent Offer Document Exchange always occurs
when only one payment brand, protocol and currency/amount is being
offered to the Consumer by the Merchant. It is also likely to, but
will not necessarily, occur when multiple brands are being offered,
the Payment Handler is the same, and all brands use the same set of
protocols.
Note that the TPO Block and the Offer Response Block can be sent in
separate IOTP messages (see Brand Dependent Offer Document Exchange)
even if the Offer Response Block does not change. However this
increases the number of messages in the transaction and is therefore
likely to increase transaction response times.
IOTP aware applications supporting the Consumer Trading Role must
check for the existence of an Offer Response Block in the first IOTP
Message to determine whether the Offer Document Exchange is brand
dependent or not.
MESSAGE PROCESSING GUIDELINES
On receiving a TPO and Offer Response IOTP Message (see below), the
Consumer may either:
o generate and send the next IOTP Message in the IOTP transaction
and send it to the required Trading Role. This is dependent on the
IOTP Transaction, or
o indicate failure to continue with the IOTP Transaction by sending
a Cancel Block back to the Merchant containing a Status Component
with a StatusType of Offer, a ProcessState of Failed and the
CompletionCode (see section 7.16.1) set to either: ConsCancelled
or Unspecified.
If the Merchant receives an IOTP Message containing a Cancel block,
then the Consumer is likely to go to the CancelNetLocn specified on
the Trading Role Element in the Organisation Component for the
Merchant.
9.1.2.3 TPO IOTP Message
The TPO IOTP Message is only used with a Brand Dependent Offer
Document Exchange. Apart from a Transaction Reference Block (see
section 3.3), this message consists of just a Trading Protocol
Options Block (see section 8.1) which is described below.
Burdett Informational [Page 199]
^L
RFC 2801 IOTP/1.0 April 2000
TPO (TRADING PROTOCOL OPTIONS) BLOCK
The Trading Protocol Options Block (see section 8.1) must contain the
following Trading Components:
o one Protocol Options Component which defines the options which
apply to the whole IOTP Transaction. See Section 7.1.
o one Brand List Component (see section 7.7) for each Payment in the
IOTP Transaction that contain one or more payment brands and
protocols which may be selected for use in each payment
o Organisation Components (see section 7.6) with the following
roles:
- Merchant who is making the offer
- Consumer who is carrying out the transaction
- the PaymentHandler(s) for the payment. The "ID" of the Payment
Handler Organisation Component is contained within the PhOrgRef
attribute of the Payment Component
If the IOTP Transaction includes a Delivery then the TPO Block must
also contain:
o Organisation Components with the following roles:
- DeliveryHandler who will be delivering the goods or services
- DelivTo i.e. the person or Organisation which is to take
delivery
AUTHENTICATION STATUS AND SIGNATURE BLOCKS
If the Offer Document Exchange was preceded by an Authentication
Document Exchange, then the TPO IOTP Message may also contain:
o an Authentication Status Block (see section 8.6), and
o an optional Signature Block (Authentication Status) Signature
Block
See section 9.1.1.4 Authentication Status IOTP Message for more
details.
Burdett Informational [Page 200]
^L
RFC 2801 IOTP/1.0 April 2000
9.1.2.4 TPO Selection IOTP Message
The TPO Selection IOTP Message is only used with a Brand Dependent
Offer Document Exchange. Apart from a Transaction Reference Block
(see section 3.3), this message consists of just a TPO Selection
Block (see section 8.1) which is described below.
TPO SELECTION BLOCK
The TPO Selection Block (see section 8.2) contains:
o one Brand Selection Component (see section 7.8) for use in a
later Payment Exchange. It contains the results of the consumer
selecting a Payment Brand, Payment Protocol and currency/amount
from the list provided in the Brand List Component.
9.1.2.5 Offer Response IOTP Message
The Offer Response IOTP Message is only used with a Brand Dependent
Offer Document Exchange. Apart from a Transaction Reference Block
(see section 3.3), this message consists of:
o an Offer Response Block (see section 8.1) and
o an optional Signature Block (see section 8.16).
OFFER RESPONSE BLOCK
The Offer Response Block (see section 8.3) contains the following
components:
o one Status Component (see section 7.16) which indicates the status
of the Offer Response. The ProcessState attribute should be set to
CompletedOk
o one Order Component (see section 7.5) which contains details about
the goods and services which are being purchased or the financial
transaction which is taking place
o one or more Payment Component(s) (see section 7.9) for each
payment which is to be made
o zero or one Delivery Components (see section 7.13) containing
details of the delivery to be made if the IOTP Transaction
includes a delivery
o zero or more Trading Role Data Components (see section 7.17) if
required by the Merchant.
Burdett Informational [Page 201]
^L
RFC 2801 IOTP/1.0 April 2000
SIGNATURE BLOCK (OFFER RESPONSE)
If the Authentication Status Block is being digitally signed then a
Signature Block must be included that contains a Signature Component
(see section 7.19) with Digest Elements for the following XML
elements:
If the Offer Response is being digitally signed then a Signature
Block must be included that contains a Signature Component (see
section 7.19) with Digest Elements for the following XML elements:
o the Transaction Reference Block (see section 3.3) for the IOTP
Message that contains information that describes the IOTP Message
and IOTP Transaction
o the Transaction Id Component (see section 3.3.1) which globally
uniquely identifies the IOTP Transaction
o the following components of the TPO Block :
- the Protocol Options Component, and
- the Brand List Component
- all the Organisation Components present
o the following components of the Offer Response Block:
- the Order Component
- all the Payment Components present
- the Delivery Component if present
- any Trading Role Data Components present
9.1.2.6 TPO and Offer Response IOTP Message
The TPO and Offer Response IOTP Message is only used with a Brand
Independent Offer Document Exchange. Apart from a Transaction
Reference Block (see section 3.3), this message consists of:
o a Trading Protocol Options Block (see section 8.1)
o an Offer Response Block (see section 8.1) and
o an optional Signature Block (see section 8.16).
Burdett Informational [Page 202]
^L
RFC 2801 IOTP/1.0 April 2000
TPO (TRADING PROTOCOL OPTIONS) BLOCK
This is the same as the Trading Protocol Options Block described in
TPO IOTP Message (see section 9.1.2.3).
OFFER RESPONSE BLOCK
This the same as the Offer Response Block in the Offer Response IOTP
Message (see section 9.1.2.5).
AUTHENTICATION STATUS
If the Offer Document Exchange was preceded by an Authentication
Document Exchange, then the TPO and Offer Response IOTP Message may
also contain an Authentication Status Block (see section 8.6).
SIGNATURE BLOCK
This is the same as the Signature Block in the Offer Response IOTP
Message (see section 9.1.2.5) with the addition that:
o if the Offer Document Exchange is Brand Dependent then the
Signature Component in the Signature Block additionally contains a
Digest Element for the Brand Selection Component contained in the
TPO Selection Block
o if the Offer Document Exchange was preceded by an Authentication
Document Exchange then the Signature Component in the Signature
Block additionally contains a Digest Element for the
Authentication Status Block.
9.1.3 Payment Document Exchange
The Payment Document Exchange is a direct implementation of the last
part of a Payment Trading Exchange (see section 2.2.2) after the
Brand has been selected by the Consumer. A Payment Exchange consists
of:
o the Consumer requesting that a payment starts by generating
Payment Request IOTP Message using information from previous IOTP
Messages in the Transaction and then sending it to the Payment
Handler
o the Payment Handler and the Consumer then swapping Payment
Exchange IOTP Messages encapsulating payment protocol messages
until the payment is complete, and finally
Burdett Informational [Page 203]
^L
RFC 2801 IOTP/1.0 April 2000
o the Payment Handler sending a Payment Response IOTP Message to the
Consumer containing a receipt for the payment.
The IOTP Messages which are involved are illustrated by the diagram
below.
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
Consumer
| Payment
| Handler
STEP | |
1. Consumer generates Pay Request Block encapsulating a
payment protocol message if required and sends to Payment
Handler with the Signature Block if present
C --> P PAYMENT REQUEST. IotpMsg: Trans Ref Block; Signature
Block (optional); Pay Request Block
2. Payment Handler processes Pay Request Block, checks
optional signature and starts exchanging payment protocol
messages encapsulated in a Pay Exchange Block, with the
Consumer
C <-> P PAYMENT EXCHANGE. IotpMsg: Trans Ref Block; Pay Exchange
Block
3. Consumer and Payment Handler keep on exchanging Payment
Exchange blocks until eventually payment protocol
messages finish so Payment Handler creates a Pay Receipt
Component inside a Pay Response Block, and an optional
Signature Component inside a Signature Block, sends them
to the Consumer and stops.
C <-- P PAYMENT RESPONSE. IotpMsg: Trans Ref Block; Signature
Block (optional); Pay Response Block
4. Consumer checks Payment Response is OK. Optionally keeps
information on IOTP Transaction for record keeping
purposes and either stops or creates the next IOTP
message for the Transaction and sends it together with
the Signature Block, if present, to the required Trading
Role
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 21 Payment Document Exchange
Burdett Informational [Page 204]
^L
RFC 2801 IOTP/1.0 April 2000
9.1.3.1 Message Processing Guidelines
On receiving a Payment Request IOTP Message, the Payment Handler
should check that they are authorised to carry out the Payment (see
section 6 Digital Signatures). They may then either:
o generate and send a Payment Exchange IOTP Message back to the
Consumer, if more payment protocol messages need to be exchanged,
or
o generate and send a Payment Response IOTP Message if the exchange
of payment protocol messages is complete, or
o indicate failure to continue with the Payment by sending a Cancel
Block back to the Consumer containing a Status Component with a
StatusType of Payment, a ProcessState of Failed and the
CompletionCode (see section 7.16.4) set to either: BrandNotSupp,
CurrNotSupp, PaymtCancelled, AuthError, InsuffFunds,
InstBrandInvalid, InstNotValid, BadInstrument or Unspecified.
On receiving a Payment Exchange IOTP Message, the Consumer may
either:
o generate and send a Payment Exchange Message back to the Payment
Handler or
o indicate failure to continue with the Payment by sending a Cancel
Block back to the Payment Handler containing a Status Component
with a StatusType of Payment, a ProcessState of Failed and the
CompletionCode (see section 7.16.2) set to either: ConsCancelled
or Unspecified.
On receiving a Payment Exchange IOTP Message, the Payment Handler may
either:
o generate and send a Payment Exchange IOTP Message back to the
Consumer, if more payment protocol messages need to be exchanged,
or
o generate and send a Payment Response IOTP Message if the exchange
of payment protocol messages is complete, or
o indicate failure to continue with the Payment by sending a Cancel
Block back to the Consumer containing a Status Component with a
StatusType of Payment, a ProcessState of Failed and the
CompletionCode (see section 7.16.2) set to either: PaymtCancelled
or Unspecified.
Burdett Informational [Page 205]
^L
RFC 2801 IOTP/1.0 April 2000
On receiving a Payment Response IOTP Message, the Consumer may
either:
o generate and send the next IOTP Message in the IOTP transaction
and send it to the required Trading Role. This is dependent on the
IOTP Transaction,
o stop, since the IOTP Transaction has ended, or
o indicate failure to continue with the IOTP Transaction by sending
a Cancel Block back to the Merchant containing a Status Component
with a StatusType of Payment, a ProcessState of Failed and the
CompletionCode (see section 7.16.1) set to either: ConsCancelled
or Unspecified.
If the Consumer receives an IOTP Message containing a Cancel block,
then the information contained in the IOTP Message should be reported
to the Consumer but no further action taken.
If the Payment Handler receives an IOTP Message containing a Cancel
block, then the Consumer is likely to go to the CancelNetLocn
specified on the Trading Role Element in the Organisation Component
for the Payment Handler from which any further action may take place.
If the Merchant receives an IOTP Message containing a Cancel block,
then the Consumer should have completed the payment but not
continuing with the transaction for some reason. In this case the
Consumer is likely to go to the CancelNetLocn specified on the
Trading Role Element in the Organisation Component for the Merchant
from which any further action may take place.
9.1.3.2 Payment Request IOTP Message
Apart from a Transaction Reference Block (see section 3.3), this
message consists of:
o a Payment Request Block, and
o an optional Signature Block
PAYMENT REQUEST BLOCK
The Payment Request Block (see section 8.7) contains:
o the following components copied from the Offer Response Block from
the preceding Offer Document Exchange:
- the Status Component
Burdett Informational [Page 206]
^L
RFC 2801 IOTP/1.0 April 2000
- the Payment Component for the payment which is being carried
out
o the following components from the TPO Block:
- the Organisation Components with the roles of Merchant and for
the PaymentHandler that is being sent the Payment Request Block
- the Brand List Component for the payment, i.e. the Brand List
referred to by the BrandListRef attribute on the Payment
Component
o one Brand Selection Component for the Brand List, i.e. the Brand
Selection Component where BrandListRef attribute points to the
Brand List. This component can be either:
- copied from the TPO Selection Block if the payment was preceded
by a Brand Dependent Offer Document Exchange (see section
9.1.2.1), or
- created by the Consumer, containing the payment brand, payment
protocol and currency/amount selected from the Brand List, if
the payment was preceded by a Brand Independent Offer Document
Exchange (see section 9.1.2.2)
o an optional Payment Scheme Component (see section 7.10) if
required by the payment method used (see the Payment Method
supplement to determine if this is needed).
o zero or more Trading Role Data Components (see section 7.17).
Note that:
o if there is more than one Payment Components in an Offer Response
Block, then the second payment is the one within the Offer
Response Block that contains a StartAfter attribute (see section
7.9) that identifies the Payment Component for the first payment
o the Payment Handler to include is identified by the Brand
Selection Component (see section 7.8) for the payment. Also see
section 6.3.1 Check Request Block sent Correct Organisation for an
explanation on how Payment Handlers are identified
o the Brand List Component to include is the one identified by the
BrandListRef attribute of the Payment Component for the identified
payment
Burdett Informational [Page 207]
^L
RFC 2801 IOTP/1.0 April 2000
o the Brand Selection Component to include from the Offer Response
Block is the one that contains an BrandListRef attribute (see
section 3.5) which identifies the Brand List Component for the
second payment.
SIGNATURE BLOCK (PAYMENT REQUEST)
If the either the preceding Offer Document Exchange included an Offer
Response Signature (see section 9.1.2.5 Offer Response IOTP Message),
or a preceding Payment Exchange included a Payment Response Signature
(see section 9.1.3.4 Payment Response IOTP Message) then they should
both be copied to the Signature Block in the Payment Request IOTP
Message.
9.1.3.3 Payment Exchange IOTP Message
Apart from a Transaction Reference Block (see section 3.3), this
message consists of just a Payment Exchange Block.
PAYMENT EXCHANGE BLOCK
The Payment Exchange Block (see section 8.8) contains:
o one Payment Scheme Component (see section 7.10) which contains
payment method specific data. See the Payment Method supplement
for the payment method being used to determine what this should
contain.
9.1.3.4 Payment Response IOTP Message
Apart from a Transaction Reference Block (see section 3.3), this
message consists of:
o a Payment Response Block, and
o an optional Signature Block
PAYMENT RESPONSE BLOCK
The Payment Response Block (see section 8.9) contains:
o one Payment Receipt Component (see section 7.11) which contains
scheme specific data which can be used to verify the payment
occurred
Burdett Informational [Page 208]
^L
RFC 2801 IOTP/1.0 April 2000
o one Payment Scheme Component (see section 7.10) if required which
contains payment method specific data. See the Payment Method
supplement for the payment method being used to determine what
this should contain
o an optional Payment Note Component (see section 7.12)
o zero or more Trading Role Data Components (see section 7.17).
SIGNATURE BLOCK (PAYMENT RESPONSE)
If a signed Payment Receipt is being provided, indicated by the
SignedPayReceipt attribute of the Payment Component being set to
True, then the Signature Block should contain a Signature Component
which contains Digest Elements for the following:
o the Transaction Reference Block (see section 3.3) for the IOTP
Message which contains the first usage of the Payment Response
Block,
o the Transaction Id Component (see section 3.3.1) within the
Transaction Reference Block that globally uniquely identifies the
IOTP Transaction,
o the Payment Receipt Component from the Payment Response Block,
o the Payment Note Component from the Payment Response Block,
o the other Components referenced by the PayReceiptNameRefs
attribute (if present) of the Payment Receipt Component,
o the Status Component from the Payment Response Block,
o any Trading Role Data Components in the Payment Response Block,
and
o all the Signature Components contained in the Payment Request
Block if present.
9.1.4 Delivery Document Exchange
The Delivery Document Exchange is a direct implementation of a
Delivery Trading Exchange (see section 2.2.3). It consists of:
o the Consumer requesting a Delivery by generating Delivery Request
IOTP Message using information from previous IOTP Messages in the
Transaction and then sending it to the Delivery Handler
Burdett Informational [Page 209]
^L
RFC 2801 IOTP/1.0 April 2000
o the Delivery Handler sending a Delivery Response IOTP Message to
the Consumer containing details about the Handler's response to
the request together with an optional signature.
The message flow is illustrated by the diagram below.
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
Consumer
| Delivery
| Handler
STEP | |
1. Consumer generates Delivery Request Block and sends it to
the Delivery Handler with the Signature Block if present
C --> D DELIVERY REQUEST. IotpMsg: Trans Ref Block; Signature
Block; Delivery Request Block
2. Delivery Handler checks the Status and Order Components
in the Delivery Request and the optional Signatures,
creates a Delivery Response Block, sends to the Consumer
and stops.
C <-- D DELIVERY RESPONSE. IotpMsg: Trans Ref Block; Signature
Block; Delivery Response Block
3. Consumer checks Delivery Response Block and optional
Signature Block are OK. Optionally keeps information on
IOTP Transaction for record keeping purposes and stops.
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 22 Delivery Document Exchange
9.1.4.1 Message Processing Guidelines
On receiving a Delivery Request IOTP Message, the Delivery Handler
should check that they are authorised to carry out the Delivery (see
section 6 Digital Signatures). They may then either:
o generate and send a Delivery Response IOTP Message to the
Consumer, or
o indicate failure to continue with the Delivery by sending a Cancel
Block back to the Consumer containing a Status Component with a
StatusType of Delivery, a ProcessState of Failed and the
CompletionCode (see section 7.16.4) set to either: DelivCanceled,
or Unspecified.
Burdett Informational [Page 210]
^L
RFC 2801 IOTP/1.0 April 2000
On receiving a Delivery Response IOTP Message, the Consumer should
just stop since the IOTP Transaction is complete.
If the Consumer receives an IOTP Message containing a Cancel block,
then the information contained in the IOTP Message should be reported
to the Consumer but no further action taken.
9.1.4.2 Delivery Request IOTP Message
The Delivery Request IOTP Message consists of:
o a Delivery Request Block, and
o an optional Signature Block
DELIVERY REQUEST BLOCK
The Delivery Request Block (see section 8.10) contains:
o the following components copied from the Offer Response Block:
- the Status Component (see section 7.16)
- the Order Component (see section 7.5)
- the Organisation Component (see section 7.6) with the roles of:
Merchant, DeliveryHandler and DeliverTo
- the Delivery Component (see section 7.13)
o the following Component from the Payment Response Block:
- the Status Component (see section 7.16).
o zero or more Trading Role Data Components (see section 7.17).
SIGNATURE BLOCK (DELIVERY REQUEST)
If the preceding Offer Document Exchange included an Offer Response
Signature or the Payment Document Exchange included a Payment
Response Signature, then they should both be copied to the Signature
Block.
9.1.4.3 Delivery Response IOTP Message
The Delivery Response IOTP Message contains a Delivery Response Block
and an optional Signature Block.
Burdett Informational [Page 211]
^L
RFC 2801 IOTP/1.0 April 2000
DELIVERY RESPONSE BLOCK
The Delivery Response Block contains:
o one Delivery Note Component (see section 7.15) which contains
delivery instructions about the delivery of goods or services
in3 SIGNATURE BLOCK (DELIVERY RESPONSE)
The Signature Block should contain one Signature Component that
contains Digest elements that refer to
o the Transaction Id Component (see section 3.3.1) of the IOTP
message that contains the Delivery Response Signature
o the Transaction Reference Block (see section 3.3) of the IOTP
Message that contains the Delivery Response Signature
o the Consumer Delivery Data component contained in the Delivery
Request Block (if any)
o the Signature Components contained in the Delivery Request Block
(if any)
o the Status Component
o the Delivery Note Component
9.1.5 Payment and Delivery Document Exchange
The Payment and Delivery Document Exchange is a combination of the
last part of the Payment Trading Exchange (see section 2.2.2) and a
Delivery Trading Exchange (see section 2.2.3). It consists of:
o the Consumer requesting that a payment starts by generating
Payment Request IOTP Message using information from previous IOTP
Messages in the Transaction and then sending it to the Payment
Handler
o the Payment Handler and the Consumer then swapping Payment
Exchange IOTP Messages encapsulating payment protocol messages
until the payment is complete, and finally
o the Payment Handler sending to the Consumer in one IOTP Message:
- a Payment Response Block containing a receipt for the payment,
and
Burdett Informational [Page 212]
^L
RFC 2801 IOTP/1.0 April 2000
- a Delivery Response Block containing details of the goods or
services to be delivered
The IOTP Messages which are involved are illustrated by the diagram
below.
Burdett Informational [Page 213]
^L
RFC 2801 IOTP/1.0 April 2000
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
Consumer
| Payment
| Handler
STEP | |
1. Consumer generates Pay Request Block encapsulating a
payment protocol message if required and sends to Payment
Handler with the Signature Block if present
C --> P PAYMENT REQUEST. IotpMsg: Trans Ref Block; Signature
Block; Pay Request Block
2. Payment Handler processes Pay Request Block, checks
optional signature and starts exchanging payment protocol
messages encapsulated in a Pay Exchange Block, with the
Consumer
C <-> P PAYMENT EXCHANGE. IotpMsg: Trans Ref Block; Pay Exchange
Block
3. Consumer and Payment Handler keep on exchanging Payment
Exchange blocks until eventually payment protocol
messages finish so Payment Handler creates a Pay Receipt
Component inside a Pay Response Block, and an optional
Signature Component inside a Signature Block, then uses
information from the Offer Response Bock to create a
Delivery Response Block and sends both to the Consumer
and stops.
C <-- P PAYMENT RESPONSE & DELIVERY RESPONSE. IotpMsg: Trans Ref
Block; Signature Block; Pay Response Block; Delivery
Response Block
4. Consumer checks Payment Response and Delivery Response
Blocks are OK. Optionally keeps information on IOTP
Transaction for record keeping purposes and either stops
or creates the next IOTP message for the Transaction and
sends it together with the Signature Block, if present,
to the required Trading Role
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 23 Payment and Delivery Document Exchange
Burdett Informational [Page 214]
^L
RFC 2801 IOTP/1.0 April 2000
The Delivery Response Block and the Payment Response Block may be
combined into the same IOTP Message only if the Payment Handler has
the information available so that she can send the Delivery Response
Block. This is likely to, but will not necessarily, occur when the
Merchant, the Payment Handler and the Delivery Handler Roles are
combined.
The DelivAndPayResp attribute of the Delivery Component (see section
7.13) contained within the Offer Response Block (see section 8.3) is
set to True if the Delivery Response Block and the Payment Response
Block are combined into the same IOTP Message and is set to False if
the Delivery Response Block and the Payment Response Block are sent
in separate IOTP Messages.
9.1.5.1 Message Processing Guidelines
On receiving a Payment Request IOTP Message or a Payment Exchange
IOTP Message, the Payment Handler should carry out the same actions
as for a Payment Document Exchange (see section 9.1.3.1).
On receiving a Payment Exchange IOTP Message, the Consumer should
also carry out the same actions as for a Payment Document Exchange
(see section 9.1.3.1).
On receiving a Payment Response and Delivery Response IOTP Message
then the IOTP Transaction is complete and should take no further
action.
If the Consumer receives an IOTP Message containing a Cancel block,
then the information contained in the IOTP Message should be reported
to the Consumer but no further action taken.
If the Payment Handler receives an IOTP Message containing a Cancel
block, then the Consumer is likely to go to the CancelNetLocn
specified on the Trading Role Element in the Organisation Component
for the Payment Handler from which any further action may take place.
If the Merchant receives an IOTP Message containing a Cancel block,
then the Consumer should have completed the payment but not
continuing with the transaction for some reason. In this case the
Consumer is likely to go to the CancelNetLocn specified on the
Trading Role Element in the Organisation Component for the Merchant
from which any further action may take place.
9.1.5.2 Payment Request IOTP Message
The content of this message is the same as for a Payment Request IOTP
Message in a Payment Document Exchange (see section 9.1.3.2).
Burdett Informational [Page 215]
^L
RFC 2801 IOTP/1.0 April 2000
9.1.5.3 Payment Exchange IOTP Message
The content of this message is the same as for a Payment Exchange
IOTP Message in a Payment Document Exchange (see section 9.1.3.3).
9.1.5.4 Payment Response and Delivery Response IOTP Message
The content of this message consists of:
o a Payment Response Block,
o an optional Signature Block (Payment Response), and
o a Delivery Response Block.
PAYMENT RESPONSE BLOCK
The content of this block is the same as the Payment Response Block
in the Payment Response IOTP Message associated with a Payment
Document Exchange (see section 9.1.3.4).
SIGNATURE BLOCK (PAYMENT RESPONSE)
The content of this block is the same as the Signature Block (Payment
Response) in the Payment Response IOTP Message associated with a
Payment Document Exchange (see section 9.1.3.4).
DELIVERY RESPONSE BLOCK
The content of this block is the same as the Delivery Response Block
in the Delivery Response IOTP Message associated with a Delivery
Document Exchange (see section 9.1.4.3).
9.1.6 Baseline Authentication IOTP Transaction
A Baseline Authentication IOTP Transaction may occur at any time
between any of the Trading Roles involved in IOTP Transactions. This
means it could occur:
o before another IOTP Transaction
o at the same time as another IOTP Transaction
o independently of any other IOTP Transaction.
The Baseline Authentication IOTP Transaction consists of just an
Authentication Document Exchange (see section 9.1.1) as illustrated
by the diagram below.
Burdett Informational [Page 216]
^L
RFC 2801 IOTP/1.0 April 2000
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
START -------------------------------------------------------
v
----------------
| AUTHENTICATION |
----------------
|
|
|
|
------------------- ----------------- |
| BRAND INDEPENDENT | | BRAND DEPENDENT | |
| OFFER | | OFFER | |
------------------- ----------------- |
|
|
|
|
|
--------- -------------- |
| PAYMENT | | PAYMENT WITH | |
| (first) | | DELIVERY | |
--------- -------------- |
|
|
|
---------- --------- |
| DELIVERY | | PAYMENT | |
| | | {second)| |
---------- --------- |
v
STOP
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 24 Baseline Authentication IOTP Transaction
Example uses of the Baseline Authentication IOTP Transaction include:
o when the Baseline Authentication IOTP Transaction takes place as
an early part of a session where strong continuity exists. For
example, a Financial Institution could:
- set up a secure channel (e.g., using [SSL/TLS]) with a customer
- authenticate the customer using the Baseline Authentication
IOTP Transaction, and then
Burdett Informational [Page 217]
^L
RFC 2801 IOTP/1.0 April 2000
- provide the customer with access to account information and
other services with the confidence that they are communicating
with a bona fide customer.
o as a means of providing a Merchant role with Organisation
Components that contain information about Consumer and DelivTo
Trading Roles
o so that a Consumer may authenticate a Payment Handler before
starting a payment.
9.1.7 Baseline Deposit IOTP Transaction
The Baseline Deposit IOTP Transaction supports the deposit of
electronic cash with a Financial Institution.
Note: The Financial Institution has, in IOTP terminology, a role of
merchant in that a service (i.e. a deposit of electronic cash) is
being offered in return for a fee, for example bank charges of some
kind. The term "Financial Institution" is used in the diagrams and in
the text for clarity.
The Baseline Deposit IOTP Transaction consists of the following
Document Exchanges:
o an optional Authentication Document Exchange (see section 9.1.1)
o an Offer Document Exchange (see section 9.1.2), and
o a Payment Document Exchange (see section 9.1.3).
The way in which these Document Exchanges may be combined together is
illustrated by the diagram below.
Burdett Informational [Page 218]
^L
RFC 2801 IOTP/1.0 April 2000
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
START -----------------------------------------------------
| v
| ----------------
| | AUTHENTICATION |
| ----------------
-------------------------------------- |
| | |
| -------------- | -------------
v v v v
------------------- -----------------
| BRAND INDEPENDENT | | BRAND DEPENDENT |
| OFFER | | OFFER |
------------------- -----------------
| |
| |
| |
| -------------------
v v
--------- --------------
| PAYMENT | | PAYMENT WITH |
| (first) | | DELIVERY |
--------- --------------
|
----------------
|
---------- --------- |
| DELIVERY | | PAYMENT | |
| | | {second)| |
---------- --------- |
|
-----------------> STOP
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 25 Baseline Deposit IOTP Transaction
See section 9.1.12 "Valid Combinations of Document Exchanges" to
determine which combination of document exchanges apply to a
particular instance of an IOTP Transaction
Note that:
o a Merchant (Financial Institution) may be able to accept a deposit
in several different types of electronic cash although, since the
Consumer role that is depositing the electronic cash usually knows
what type of cash they want to deposit, it is usually constrained
Burdett Informational [Page 219]
^L
RFC 2801 IOTP/1.0 April 2000
in practice to only one type. However, there may be several
different protocols which may be used for the same "brand" of
electronic cash. In this case a Brand Dependent Offer may be
appropriate to negotiate the protocol to be used.
o the Merchant (Financial Institution) may use the results of the
authentication to identify not only the consumer but also the
account to which the payment is to be deposited. If no single
account can be identified, then it must be obtained by other
means. For example:
- the consumer could specify the account number prior to the
Baseline Deposit IOTP Transaction starting, or
- the consumer could have been identified earlier, for example
using a Baseline Authentication IOTP Transaction, and an
account selected from a list provided by the Financial
Institution.
o The Baseline Deposit IOTP Transaction without an Authentication
Document Exchange might be used:
- if a previous IOTP transaction, for example a Baseline
Withdrawal or a Baseline Authentication, authenticated the
consumer, and a secure channel has been maintained, therefore
the authenticity of the consumer is known
- if authentication is achieved as part of a proprietary payment
protocol and is therefore included in the Payment Document
Exchange
- if authentication of the consumer has been achieved by some
other means outside of the scope of IOTP, for example, by using
a pass phrase, or a proprietary banking software solution.
9.1.8 Baseline Purchase IOTP Transaction
The Baseline Purchase IOTP Transaction supports the purchase of goods
or services using any payment method. It consists of the following
Document Exchanges:
o an optional Authentication Document Exchange (see section 9.1.1)
o an Offer Document Exchange (see section 9.1.2)
o either:
- a Payment Document Exchange (see section 9.1.3) followed by
Burdett Informational [Page 220]
^L
RFC 2801 IOTP/1.0 April 2000
- a Delivery Document Exchange (see section 9.1.4)
o a Payment Document Exchange only, or
o a combined Payment and Delivery Document Exchange (see section
9.1.5).
The ways in which these Document Exchanges are combined is
illustrated by the diagram below.
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
START -----------------------------------------------------
| v
| ----------------
| | AUTHENTICATION |
| ----------------
-------------------------------------- | |
| | | |
| -------------- | ------------- |
v v v v |
------------------- ----------------- |
| BRAND INDEPENDENT | | BRAND DEPENDENT | |
| OFFER | | OFFER | |
------------------- ----------------- |
| | | | |
| --------------- | | |
| | | | |
| -------------- | -- | |
v v v v |
--------- -------------- |
| PAYMENT | | PAYMENT WITH | |
| (first) | | DELIVERY | |
--------- -------------- |
| | |
----------------------------- | |
v | | |
---------- --------- | | |
| DELIVERY | | PAYMENT | | | |
| | | {second)| | | |
---------- --------- | | |
| | | v
----------------------------------------------> STOP
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 26 Baseline Purchase IOTP Transaction
Burdett Informational [Page 221]
^L
RFC 2801 IOTP/1.0 April 2000
See section 9.1.12 "Valid Combinations of Document Exchanges" to
determine which combination of document exchanges apply to a
particular instance of an IOTP Transaction.
9.1.9 Baseline Refund IOTP Transaction
In business terms the refund process typically consists of:
o a request for a refund being made by the Consumer to the Merchant,
typically supported by evidence to demonstrate:
- the original trade took place, for example by providing a
receipt for the original transaction
- using some type of authentication, that the consumer requesting
the refund is the consumer, or a representative of the
consumer, who carried out the original trade
- the reason why the merchant should make the refund
o the merchant agreeing (or not) to the refund. This may involve
some negotiation between the Consumer and the Merchant, and, if
the merchant agrees,
o a refund payment by the Merchant to the Consumer.
The Baseline Refund IOTP Transaction supports a subset of the above,
specifically it supports:
o stand alone authentication of the Consumer using a separate
Baseline Authentication IOTP Transaction (see section 9.1.6)
o a refund payment by the Merchant to the Consumer using the
following two Trading Exchanges:
- an optional Authentication Document Exchange (see section
9.1.1)
- an Offer Document Exchange (see section 9.1.2), and
- a Payment Document Exchange (see section 9.1.3).
The ways in which these Document Exchanges are combined is
illustrated by the diagram below.
Burdett Informational [Page 222]
^L
RFC 2801 IOTP/1.0 April 2000
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
START -----------------------------------------------------
| v
| ----------------
| | AUTHENTICATION |
| ----------------
-------------------------------------- |
| | |
| -------------- | -------------
v v v v
------------------- -----------------
| BRAND INDEPENDENT | | BRAND DEPENDENT |
| OFFER | | OFFER |
------------------- -----------------
| |
| |
| |
| -------------------
v v
--------- --------------
| PAYMENT | | PAYMENT WITH |
| (first) | | DELIVERY |
--------- --------------
|
----------------
|
---------- --------- |
| DELIVERY | | PAYMENT | |
| | | {second)| |
---------- --------- |
|
-----------------> STOP
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 27 Baseline Refund IOTP Transaction
A Baseline Refund IOTP Transaction without an Authentication Document
Exchange might be used:
o when authentication of the consumer has been achieved by some
other means, for example, the consumer has entered some previously
supplied code in order to identify herself and the refund to which
the code applies. The code could be supplied, for example on a web
page or by e-mail.
Burdett Informational [Page 223]
^L
RFC 2801 IOTP/1.0 April 2000
o when a previous IOTP transaction, for example a Baseline
Authentication, authenticated the consumer, and a secure channel
has been maintained, therefore the authenticity of the consumer is
known and therefore the previously agreed refund can be
identified.
o when the authentication of the consumer is carried out by the
Payment Handler using a payment scheme authentication algorithm.
9.1.10 Baseline Withdrawal IOTP Transaction
The Baseline Withdrawal IOTP Transaction supports the withdrawal of
electronic cash from a Financial Institution.
Note: The Financial Institution has, in IOTP terminology, a role of
merchant in that a service (i.e. a withdrawal of electronic cash) is
being offered in return for a fee, for example bank charges of some
kind. The term "Financial Institution" is used in the diagrams and in
the text for clarity.
The Baseline Withdrawal IOTP Transaction consists of the following
Document Exchanges:
o an optional Authentication Document Exchange (see section 9.1.1)
o an Offer Document Exchange (see section 9.1.2), and
o a Payment Document Exchange (see section 9.1.3).
The way in which these Document Exchanges may be combined together is
illustrated by the diagram below.
Burdett Informational [Page 224]
^L
RFC 2801 IOTP/1.0 April 2000
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
START -----------------------------------------------------
| v
| ----------------
| | AUTHENTICATION |
| ----------------
-------------------------------------- |
| | |
| -------------- | -------------
v v v v
------------------- -----------------
| BRAND INDEPENDENT | | BRAND DEPENDENT |
| OFFER | | OFFER |
------------------- -----------------
| |
| |
| |
| -------------------
v v
--------- --------------
| PAYMENT | | PAYMENT WITH |
| (first) | | DELIVERY |
--------- --------------
|
----------------
|
---------- --------- |
| DELIVERY | | PAYMENT | |
| | | {second)| |
---------- --------- |
|
-----------------> STOP
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 28 Baseline Withdrawal IOTP Transaction
Note that:
o a Merchant (Financial Institution) may be able to offer withdrawal
of several different types of electronic cash. In practice usually
only one form of electronic cash may be offered. However, there
may be several different protocols which may be used for the same
"brand" of electronic cash.
Burdett Informational [Page 225]
^L
RFC 2801 IOTP/1.0 April 2000
o the Merchant (Financial Institution) may use the results of the
authentication to identify not only the consumer but also the
account from which the withdrawal is to be made. If no single
account can be identified, then it must be obtained by other
means. For example:
- the consumer could specify the account number prior to the
Baseline Withdrawal IOTP Transaction starting, or
- the consumer could have been identified earlier, for example
using a Baseline Authentication IOTP Transaction, and an
account selected from a list provided by the Financial
Institution.
o a Baseline Withdrawal without an authentication might be used:
- if a previous IOTP transaction, for example a Baseline Deposit
or a Baseline Authentication, authenticated the consumer, and a
secure channel has been maintained, therefore the authenticity
of the consumer is known
- if authentication is achieved as part of a proprietary payment
protocol and is therefore included in the Payment Document
Exchange
- if authentication of the consumer has been achieved by some
other means, for example, by using a pass phrase, or a
proprietary banking software solution.
9.1.11 Baseline Value Exchange IOTP Transaction
The Baseline Value Exchange Transaction uses Payment Document
Exchanges to support the exchange of value in one currency obtained
using one payment method with value in the same or another currency
using the same or another payment method. Examples of its use
include:
o electronic cash advance on a credit card. For example the first
payment could be a "dollar SET Payment" using a credit card with
the second payment being a download of Visa Cash e-cash in
dollars.
o foreign exchange using the same payment method. For example the
payment could be an upload of Mondex value in British Pounds and
the second a download of Mondex value in Euros
Burdett Informational [Page 226]
^L
RFC 2801 IOTP/1.0 April 2000
o foreign exchange using different payment methods. For example the
first payment could be a SET payment in Canadian Dollars followed
a download of GeldKarte in Deutchmarks.
The Baseline Value Exchange uses the following Document Exchanges:
o an optional Authentication Document Exchange (see section 9.1.1)
o an Offer Document Exchange (see section 9.1.2), which provides
details of what values and currencies will be exchanged, and
o two Payment Document Exchanges (see section 9.1.3) which carry out
the two payments involved.
The way in which these Document Exchanges may be combined together is
illustrated by the diagram below.
Burdett Informational [Page 227]
^L
RFC 2801 IOTP/1.0 April 2000
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
START -----------------------------------------------------
| v
| ----------------
| | AUTHENTICATION |
| ----------------
-------------------------------------- |
| | |
| -------------- | -------------
v v v v
------------------- -----------------
| BRAND INDEPENDENT | | BRAND DEPENDENT |
| OFFER | | OFFER |
------------------- -----------------
| |
| |
| |
| -------------------
v v
--------- --------------
| PAYMENT | | PAYMENT WITH |
| (first) | | DELIVERY |
--------- --------------
|
----
v
---------- ---------
| DELIVERY | | PAYMENT |
| | | {second)|
---------- ---------
|
-----------------------------> STOP
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 29 Baseline Value Exchange IOTP Transaction
Burdett Informational [Page 228]
^L
RFC 2801 IOTP/1.0 April 2000
The Baseline Value Exchange IOTP Transaction occurs in two basic
forms:
o Brand Dependent Value Exchange. Where the content of the offer,
for example the rate at which one form of value is exchanged for
another, is dependent on the payment brands and protocols selected
by the consumer, and
o Brand Independent Value Exchange. Where the content of the offer
is not dependent on the payment brands and protocols selected.
Note: In the above the role is a Merchant even though the
Organisation carrying out the Value Exchange may be a Bank or some
other Financial Institution. This is because the Bank is acting as a
merchant in that they are making an offer which the Consumer can
either accept or decline.
The TPO Block and Offer Response Block may only be combined into the
same IOTP Message if the content of the Offer Response Block does not
change as a result of selecting the payment brands and payment
protocols to be used in the Value Exchange.
BASELINE VALUE EXCHANGE SIGNATURES
The use of signatures to ensure the integrity of a Baseline Value
Exchange is illustrated by the diagram below.
Burdett Informational [Page 229]
^L
RFC 2801 IOTP/1.0 April 2000
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
Signature generated IotpMsg (TPO)
by Merchant ensures - Trans Ref Block
integrity of the Offer --------> - - Signature Block
| - TPO Block MERCHANT
| - Offer Response Block
|
Signature generated by |
the Payment Handler of | IotpMsg (Pay Resp 1)
the first payment binds | - Trans Ref Block PAYMENT
Pay Receipt for the first -----> -> - Signature Block ----- HANDLER
payment to the Offer - Pay Response Block 1 | 1
|
Signature generated by |
the Payment Handler of IotpMsg (Pay Resp 2) | PAYMENT
the second payment binds - Trans Ref Block | HANDLER
the second payment to the -----> - Signature Block <------ 2
first payment and therefore - Pay Response Block 2
to the Offer
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 30 Baseline Value Exchange Signatures
9.1.12 Valid Combinations of Document Exchanges
The following diagram illustrates the data conditions in the various
IOTP messages which can be used by a Consumer Trading Role to
determine whether the combination of Document Exchanges are valid.
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
START
|
v
Auth Request Block in =TRUE
first IOTP Message ? ---------------------------------------
| = FALSE |
v v
Offer Response Block in ----------------
first IOTP Message ? | AUTHENTICATION |
|=TRUE |=FALSE ----------------
| | |
| | v
Burdett Informational [Page 230]
^L
RFC 2801 IOTP/1.0 April 2000
| ---------------------- TPO & Offer Response
------------- | Blocks in last IOTP Msg
| | |=TRUE |=FALSE
| | | v
| ------------- | ---- TPO Block only if
| | | last IOTP Message
| | | of Authentication
| | | |=TRUE |=FALSE
v v v v |
------------------- ----------------- |
| BRAND INDEPENDENT | | BRAND DEPENDENT | |
| OFFER | | OFFER | |
------------------- ----------------- |
| | |
v v |
Offer Response Block contains |
Delivery Component ? |
|=FALSE |=TRUE |
--- v |
| Value of DelivAndPayResp |
| attribute of Delivery Component ? |
| |=FALSE |=TRUE |
| | | |
v v v |
--------- -------------- |
| PAYMENT | | PAYMENT WITH | |
| (first) | | DELIVERY | |
--------- -------------- |
| | |
v | |
Offer and Response Block contains -------------->|
Delivery Component ? |
|=TRUE |=FALSE |
| v |
| Two Payment Components |
| present in Offer Response Block? |
| |=TRUE |=FALSE |
v v | |
---------- --------- | |
| DELIVERY | | PAYMENT | | |
| | | {second)| | |
---------- --------- | |
| | | v
----------------------------------------------> STOP
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 31 Valid Combinations of Document Exchanges
Burdett Informational [Page 231]
^L
RFC 2801 IOTP/1.0 April 2000
1) If first IOTP Message of an IOTP Transaction contains an
Authentication Request then:
a) IOTP Transaction includes an Authentication Document Exchange
(see section 9.1.1). (Note 1)
b) If the last IOTP Message of the Authentication Document
Exchange includes a TPO Block and an Offer Response Block then:
i) IOTP Transaction includes a Brand Independent Offer Document
Exchange (see section 9.1.2.2). (Note 2)
c) Otherwise, if the last IOTP Message of the Authentication
Exchange includes a TPO Block but NO Offer Response Block,
then:
i) IOTP Transaction includes a Brand Dependent Offer Document
Exchange (see section 9.1.2.1). (Note 2)
d) Otherwise (Authentication Status IOTP Message of the
Authentication Document Exchange contains neither a TPO Block
but nor an Offer Response Block)
i) IOTP Transaction consists of just an Authentication Document
Exchange. (Note 3)
2) Otherwise (no Authentication Request in first IOTP Message):
e) IOTP Transaction does not include an Authentication Document
Exchange (Note 2)
f) If first IOTP Message contains an Offer Response Block, then:
i) the IOTP Transaction contains a Brand Independent Offer
Document Exchange (Note 2)
g) Otherwise (no Offer Response Block in first IOTP Message):
i) the IOTP Transaction includes a Brand Dependent Offer
Document Exchange (Note 2)
3) If an Offer Response Block exists in any IOTP message then:
h) If the Offer Response Block contains a Delivery Component then:
i) If the DelivAndPayResp attribute of the Delivery Component
is set to True, then:
Burdett Informational [Page 232]
^L
RFC 2801 IOTP/1.0 April 2000
(1) the IOTP Transaction consists of a Payment And Delivery
Document Exchange (see section 9.1.5) (Note 4)
ii) otherwise (the DelivAndPayResp attribute of the Delivery
Component is set to False)
(1) the IOTP Transaction consists of a Payment Document
Exchange (see section 9.1.3) followed by a Delivery
Document Exchange (see section 9.1.4) (Note 4)
i) otherwise (the Offer Response Block does not contain a Delivery
Component)
i) if the Offer Response Block contains just one Payment
Component, then:
(1) the IOTP Transaction contains just one Payment Document
Exchange (Note 5)
ii) if the Offer Response Block contains two Payment Components,
then:
(1) the IOTP Transaction contains two Payment Document
Exchanges. The StartAfter attribute of the Payment
Components is used to indicate which payment occurs
first (Note 6)
iii) if the Offer Response Block contains no or more than two
Payment Components, then there is an error
4) Otherwise (no Offer Response Block) there is an error.
The following table indicates the types of IOTP Transactions which
can validly have the conditions indicated above.
Note IOTP Transaction Validity
1. Any Payment and Authentication IOTP Transaction
2. Any Payment and Authentication IOTP Transaction except Baseline
Authentication
3. Either Baseline Authentication, or a Baseline Purchase, Refund,
Deposit, Withdrawal or Value Exchange with a failed Authentication
4. Baseline Purchase only
5. Baseline Purchase, Refund, Deposit or Withdrawal
Burdett Informational [Page 233]
^L
RFC 2801 IOTP/1.0 April 2000
6. Baseline Value Exchange only
9.1.13 Combining Authentication Transactions with other Transactions
In the previous sections an Authentication Document Exchange is shown
preceding an Offer Document Exchange as part of a single IOTP
Transaction with the same IOTP Transaction Id.
It is also possible to run a separate Authentication Transaction at
any point, even in parallel with another IOTP Transaction. Typically
this will be used:
o by a Consumer to authenticate a Merchant, Payment Handler or a
Delivery Handler, or
o by a Payment Handler or Delivery Handler to authenticate a
Consumer.
In outline the basic process consists of:
o the Trading Role that decides it wants to carry out an
authentication of another role suspends the current IOTP
transaction being carried out
o a stand-alone Authentication transaction is then carried out. This
may, at implementer's option, be linked to the original IOTP
Transaction using a Related To Component (see section 3.3.3) in
the Transaction Reference Block.
o if the Authentication transaction is successful, then the original
IOTP Transaction is restarted
o if the Authentication fails then the original IOTP Transaction is
cancelled.
For example, a Consumer could:
o authenticate the Payment Handler for a Payment between receiving
an Offer Response from a Merchant and before sending the Payment
Request to that Payment Handler
o authenticate a Delivery Handler for a Delivery between receiving
the Payment Response from a Payment Handler and before sending the
Delivery Request
A Payment Handler could authenticate a Consumer after receiving the
Payment Request and before sending the next Payment related message.
Burdett Informational [Page 234]
^L
RFC 2801 IOTP/1.0 April 2000
A Delivery Handler could authenticate a Consumer after receiving the
Delivery Request and before sending the Delivery Response.
Note: Some Payment Methods may carry out an authentication within the
Payment Exchange. In this case the information required to carry out
the authentication will be included in Payment Scheme Components.
In this instance IOTP aware application will not be aware that an
authentication has occurred since the Payment Scheme Components that
contain authentication request information will be indistinguishable
from other Payment Scheme Components.
9.2 Infrastructure Transactions
Infrastructure Transactions are designed to support inquiries about
whether or not a transaction has succeeded or a Trading Role's
servers are operating correctly. There are two types of transaction:
o a Transaction Status Inquiry Transaction which provides
information on the status of an existing or complete IOTP
transaction, and
o Ping Transaction that enables one IOTP aware application to
determine if the IOTP aware application at another Trading Role is
operating and verify whether or not signatures can be handled.
Each of these is described below
9.2.1 Baseline Transaction Status Inquiry IOTP Transaction
The Baseline IOTP Transaction Status Inquiry provides information on
the status of an existing or complete IOTP transaction.
The Trading Blocks used by the Baseline Transaction Status Inquiry
Transaction are:
o an Inquiry Request Trading Block (see section 8.12),
o an Inquiry Response Trading Block (see section 8.13)
o an optional Signature Block (see section 8.16).
The Inquiry IOTP Transaction can be used for a variety of reasons.
For example:
o to help in resuming a suspended transaction to determine the
current state of processing of one of the other roles,
Burdett Informational [Page 235]
^L
RFC 2801 IOTP/1.0 April 2000
o for a merchant to determine if a payment, delivery, etc., was
completed. For example, a Consumer might claim that payment was
made but no signed IOTP payment receipt was available to prove it.
If the Merchant makes an inquiry of the Payment Handler then the
Merchant can determine whether or not payment was made.
Note: Inquiries on Baseline Ping IOTP Transactions (see section
9.2.2) are ignored.
MAKING INQUIRIES OF ANOTHER TRADING ROLE
One Trading Role may make an inquiry of any other Trading Role at any
point in time.
IOTP aware software that supports the Consumer Trading Role may not:
o digitally sign a response if requested, since it may not have the
capability, or
o respond to an Inquiry Request at all since it may not be on-line,
or may consider that the request is not reasonable since, for
example, the Request was not digitally signed.
As a guideline:
o the Consumer should send a Transaction Status Inquiry Block to a
Trading Role only after the following events have occurred:
- to the Merchant, after sending a TPO Selection Block,
- to the Payment Handler, after sending a Payment Request Block,
- to the Delivery Handler, after sending a Delivery Request Block,
o other Trading Roles should send a Transaction Status Inquiry Block
to the Consumer only after receiving a message from the Consumer
and before sending the final "Response" message to the Consumer
o there are no restrictions on non-Consumer Trading Roles sending
Inquiries to other trading roles.
TRANSACTION STATUS INQUIRY TRANSPORT SESSION
For a Transaction Status Inquiry on an ongoing transaction a
different transport session from the ongoing transaction is used. For
a Transaction Status Inquiry on a past transaction, how the IOTP
Burdett Informational [Page 236]
^L
RFC 2801 IOTP/1.0 April 2000
module on the software at the Trading Role is started upon the
receipt of Inquiry Request message is defined in each Mapping to
Transport supplement for IOTP.
TRANSACTION STATUS INQUIRY ERROR HANDLING
Errors in a Transaction Status Inquiry can be categorised into one of
the following three cases:
o Business errors (see section 4.2) in the original (inquired)
messages
o Technical errors (see section 4.1) - both IOTP and payment scheme
specific ones - in the original IOTP (inquired) messages
o Technical errors in the message containing the Inquiry Request
Block itself
The following outlines what the software should do in each case
BUSINESS ERRORS IN THE ORIGINAL MESSAGES
Return an Inquiry Response Block containing the Status Component
which was last sent to the Consumer Role.
TECHNICAL ERRORS IN THE ORIGINAL MESSAGES
Return an Inquiry Response Block containing a Status Component. The
Status Component should contain a ProcessState attribute set to
ProcessError. In this case send back an Error Block indicating where
the error was found in the original message.
TECHNICAL ERRORS IN THE INQUIRY REQUEST BLOCK
Return an Error message. That is, send back an Error Block containing
the Error Code (see section 7.21.2) which describes the nature of the
error in the Inquiry Request message.
INQUIRY TRANSACTION MESSAGES
The following Figure outlines the Baseline IOTP Transaction Status
Inquiry process.
Burdett Informational [Page 237]
^L
RFC 2801 IOTP/1.0 April 2000
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
1st Role
| 2nd Role
STEP | |
1. The first role decides to inquire on an IOTP Transaction
by, for example, clicking on the inquiry button of an
IOTP Aware Application. This will then generate an
Inquiry Request Block and send it to the appropriate
Trading Role.
1 --> 2 INQUIRY REQUEST. IotpMsg: TransRef Block; Signature Block
(optional); Inquiry Request Block
2. The Trading Role checks the digital signature (if
present). If the recipient wants to respond, then the
Trading Role checks the transaction status of the
transaction that is being inquired upon by using the
IotpTransId in the Transaction ID Component of the
Transaction Reference Block, then generates the
appropriate Inquiry Response Block, sends the message
back to the 1st Role and stops
1 <-- 2 INQUIRY RESPONSE. IotpMsg: TransRef Block; Inquiry
Response Block; Signature Block (Optional)
3. First role checks the Inquiry Response Block and optional
signature, takes whatever action is appropriate or
perhaps stops. This may include displaying status
information to the end user.
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 32 Baseline Transaction Status Inquiry
The remainder of this sub-section on the Baseline Transaction Status
Inquiry IOTP Transaction defines the contents of each Trading Block.
Note that the term "original transaction" is the transaction which a
trading role wants to discover some information about.
TRANSACTION REFERENCE BLOCK
A Trading Role making an inquiry must use a Transaction Id Component
(see section 3.3.1) where both the IotpTransId and TransTimeStamp
attributes are the same as in the Transaction Id Component of the
original transaction that is being inquired upon. The IotpTransId
attribute in this component serves as the key in querying the
Burdett Informational [Page 238]
^L
RFC 2801 IOTP/1.0 April 2000
transaction logs maintained at the Trading Role's site. The value of
the ID attribute of the Message Id Component should be different from
those of any in the original transaction (see section 3.4.1).
If up-to-date status information is required then the MsgId
Component, and in particular the ID attribute for the MsgId Component
must be different from any other IOTP Message that has been sent by
the Trading Role. This is required because of the way that
Idempotency is handled by IOTP (see section 4.5.2.2 Checking/Handling
Duplicate Messages).
INQUIRY REQUEST BLOCK
The Inquiry Request Block (see section 8.12) contains the following
components:
o one Inquiry Type Component (see section 7.18). This identifies
whether the inquiry is on an offer, payment, or delivery.
o zero or one Payment Scheme Components (see section 7.10). This is
for encapsulating payment scheme specific inquiry messages for
inquiries on a payment.
SIGNATURE BLOCK (INQUIRY REQUEST)
If a signature block is present on the message containing the Inquiry
Request Block then it may be checked to determine if the Inquiry
Request is authorised.
If present, the Inquiry Request Signature Block (see section 8.12)
contains the following components:
o one Signature Component (see section 7.19)
o one or more Certificate Components, if required.
Inquiry Response Blocks should only be generated if the Transaction
is authorised.
Note: Digital signatures on an Inquiry Request is only likely to
occur if the recipient of the request expects the Inquiry Request to
be signed. In this version of IOTP this will require some kind of
pre-existing agreement. This means that:
o Consumers are unlikely to generate requests with signatures,
although it is not an error if they do
Burdett Informational [Page 239]
^L
RFC 2801 IOTP/1.0 April 2000
o the other trading roles may agree that digital signatures are
required. For example a Payment Handler may require that an
Inquiry Request is digitally signed by the Merchant so that they
can check that the request is valid.
On the other hand if the original transaction to which the Inquiry
relates was carried out over a secure channel (e.g., [SSL]) then it
is probably reasonable to presume that if the sender of the Inquiry
knows the Transaction Id component of the original message (including
for example the timestamp) then the inquiry is likely to be genuine.
INQUIRY RESPONSE BLOCK
The Inquiry Response Block (see section 8.13) contains the following
components:
o one Status Component (see section 7.16). This component holds the
status information on the inquired transaction,
o zero or one Payment Scheme Components. These contain encapsulated
payment scheme specific inquiry messages for inquiries on payment.
SIGNATURE BLOCK (INQUIRY RESPONSE)
If a signature block is present on the message containing the Inquiry
Response Block then it may be checked by the receiver of the block to
determine if the Inquiry Response is valid.
If present, the Inquiry Response Signature Block (see section 8.13)
contains the following components:
o one Signature Component (see section 7.19)
o one or more Certificate Components, if required.
Note: Digital signatures on an Inquiry Response is only likely to
occur if the recipient of the response expects the Inquiry Request to
be signed. In this version of IOTP this will require some kind of
pre-existing agreement. This means that:
o Consumers are unlikely to generate responses with signatures,
although it is not an error if they do
o the other trading roles may agree that digital signatures are
required. For example a Merchant may require that an Inquiry
Response is digitally signed by the Payment Handler so that they
can check that the request response is valid.
Burdett Informational [Page 240]
^L
RFC 2801 IOTP/1.0 April 2000
9.2.2 Baseline Ping IOTP Transaction
The purpose of the Baseline IOTP Ping Transaction is to test basic
connectivity between the Trading Roles that may take part in an IOTP
Transaction.
It enables IOTP aware application software to:
o determine if the IOTP aware application at another Trading Role is
operating, and
o verify whether or not the two trading roles signatures can be
processed.
For example it can be used by a Merchant to determine if a Payment
Handler or Delivery Handler is up and running prior to starting a
Purchase transaction that uses those trading roles.
The Trading Blocks used by the Baseline Ping IOTP Transaction are:
o a Ping Request Block (see section 8.14)
o a Ping Response Block (see section 8.15), and
o a Signature Block (see section 8.16).
PING MESSAGES
The following figure outlines the message flows in the Baseline IOTP
Ping Transaction.
Burdett Informational [Page 241]
^L
RFC 2801 IOTP/1.0 April 2000
*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*
1st Role
| 2nd Role
STEP | |
1. The IOTP Aware Application in the first Trading Role
decides to check whether the counterparty IOTP
application is up and running. It generates a Ping
Request Block and optional Signature Block and sends them
to the second trading role.
1 --> 2 PING REQUEST. IotpMsg: Trans Ref Block; Signature Block
(Optional); Ping Request Block
2. The second Trading Role which receives the Ping Request
Block generates a Ping Response Block and sends it back
to the sender of the original Ping Request with a
signature block if required.
1 <-- 2 PING Response. IotpMsg: Trans Ref Block; Signature Block
(Optional); Ping Response Block
3. The first Trading Role checks the Ping Response Block and
takes appropriate action, if necessary
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Figure 33 Baseline Ping Messages
The verification that signatures can be handled is indicated by the
sender of the Ping Request Block including:
o Organisation Components that identify itself and the intended
recipient of the Ping Request Block, and
o a Signature Block that signs data in the Ping Request.
In this way the receiver of the Ping Request:
o knows who is sending the Ping Request and can therefore verify the
Signature on the Request, and
o knows who to generate a signature for on the Ping Response.
Note that a Ping Request:
o does not affect any on-going transaction
Burdett Informational [Page 242]
^L
RFC 2801 IOTP/1.0 April 2000
o does NOT initiate an IOTP transaction, unlike other IOTP
transaction messages such as TPO or Transaction Status Inquiry.
All IOTP aware applications must return a Ping Response message to
the sender of a Ping Request message when it is received.
A Baseline IOTP Ping request can also contain an optional Signature
Block. IOTP aware applications can, for example, use the Signature
Block to check the recipient of a Ping Request can successfully
process and check signatures it has received.
For each Baseline Ping IOTP Transaction, each IOTP role shall
establish a different transport session from other IOTP transactions.
Any IOTP Trading Role can send a Ping request to any other IOTP
Trading Role at any time it wants. A Ping message has its own
IotpTransId, which is different from other IOTP transactions.
The remainder of this sub-section on the Baseline Ping IOTP
Transaction defines the contents of each Trading Block.
TRANSACTION REFERENCE BLOCK
The IotpTransId of a Ping transaction should be different from any
other IOTP transaction.
PING REQUEST BLOCK
If the Ping Transaction is anonymous then no Organisation Components
are included in the Ping Request Block (see section 8.7).
If the Ping Transaction is not anonymous then the Ping Request Block
contains Organisation Components for:
o the sender of the Ping Request Block, and
o the verifier of the Signature Component
If Organisation Components are present, then it indicates that the
sender of the Ping Request message has generated a Signature Block.
The signature block must be verified by the Trading Role that
receives the Ping Request Block.
SIGNATURE BLOCK (PING REQUEST)
The Ping Request Signature Block (see section 8.16) contains the
following components:
Burdett Informational [Page 243]
^L
RFC 2801 IOTP/1.0 April 2000
o one Signature Component (see section 7.19)
o one or more Certificate Components, if required.
PING RESPONSE BLOCK
The Ping Response Block (see section 8.15) contains the following
component:
o the Organisation Component of the sender of the Ping Response
message
If the Ping Transaction is not anonymous then the Ping Response
additionally contains:
o copies of the Organisation Components contained in the Ping
Request Block.
SIGNATURE BLOCK (PING RESPONSE)
The Ping Response Signature Block (see section 8.16) contains the
following components:
o one Signature Component (see section 7.19)
o one or more Certificate Components, if required.
10. Retrieving Logos
This section describes how to retrieve logos for display by IOTP
aware software using the Logo Net Locations attribute contained in
the Brand Element (see section 7.7.1) and the Organisation Component
(see section 7.6).
The full address of a logo is defined as follows: Logo_address ::=
Logo_net_location "/" Logo_size Logo_color_depth ".gif"
Where:
o Logo_net_location is obtained from the LogoNetLocn attribute in
the Brand Element (see section 7.7.1) or the Organisation
Component. Note that:
- the content of this attribute is dependent on the Transport
Mechanism (such as HTTP) that is used. See the Transport
Mechanism supplement,
Burdett Informational [Page 244]
^L
RFC 2801 IOTP/1.0 April 2000
- implementers should check that if the rightmost character of
Logo Net Location is set to right-slash "/" then another, right
slash should not be included when generating the Logo Address,
o Logo_size identifies the size of the logo,
o Logo_color_depth identifies the colour depth of the logo
o "gif" indicates that the logos are in "gif" format
Logo_size and Logo_color_depth are specified by the implementer of
the IOTP software that is retrieving the logo depending on the size
and colour that they want to use.
10.1 Logo Size
There are five standard sizes for logos. The sizes in pixels and the
corresponding values for Logo Size are given in the table below.
Size in Logo Size
Pixels Value
32 x 32 or exsmall
32 x 20
53 x 33 small
103 x 65 medium
180 x 114 large
263 x 166 exlarge
10.2 Logo Color Depth
There are three standard colour depths. The colour depth (including
bits per pixel) and the corresponding value for Logo_Color_Depth are
given in the table below.
Color Depth Logo Color
(bits per pixel) Depth Value
4 (16 colors) 4
8 (256 colors) nothing
24 (16 million colors) 24
Burdett Informational [Page 245]
^L
RFC 2801 IOTP/1.0 April 2000
Note that if Logo Color Depth is omitted then a logo with the default
colour depth of 256 colours will be retrieved.
10.3 Logo Net Location Examples
If Logo Net Location was set to "ftp://logos.xzpay.com", then:
o "ftp://logos.xzpay.com/medium.gif" would retrieve a medium size
256 colour logo
o "http://logos.xzpay.com/small4.gif" would retrieve a small size 16
colour logo
Note: Organisations which make logos available for use with IOTP
should always make available "small" and "medium" size logos and use
the "gif" format.
11. Brands
This section contains:
o a definition of Brands and an outline of Brand Selection using
Brand Lists, and
o some XML examples of Brand Lists
11.1 Brand Definitions and Brand Selection
One of the key features of IOTP is the ability for a merchant to
offer a list of Brands from which a consumer may make a selection.
This section provides an overview of what is involved and provides
guidance on how selection of a brand and associated payment
instrument can be carried out by a Consumer. It covers:
o definitions of Payment Instruments and Brands - what are Payment
Instruments and Brands in an IOTP context. Further categorises
Brands as optionally a "Dual Brand" or a "Promotional Brand",
o identification and selection of Promotional Brands - Promotional
Brands offer a Consumer some additional benefit, for example
loyalty points or a discount. This means that both Consumers and
Merchant must be able to correctly identify that a valid
Promotional Brand is being used.
Also see the following sections:
Burdett Informational [Page 246]
^L
RFC 2801 IOTP/1.0 April 2000
o Brand List Component (section 7.7) which contains definitions of
the XML elements which contain the list of Brands offered by a
Merchant to a Consumer, and
o Brand Selection Component (section 7.8) for details of how a
Consumer records the Brand, currency, amount and payment protocol
that was selected.
11.1.1 Definition of Payment Instrument
A Payment Instrument is the means by which a Consumer pays for goods
or services offered by a Merchant. It can be, for example:
o a credit card such as MasterCard or Visa;
o a debit card such as MasterCard's Maestro;
o a smart card based electronic cash payment instrument such as a
Mondex Card, a GeldKarte card or a Visa Cash card
o a software based electronic payment account such as a CyberCash or
DigiCash account.
Most Payment Instruments have a number, typically an account number,
by which the Payment Instrument can be identified.
11.1.2 Definition of Brand
A Brand is the mark which identifies a particular type of Payment
Instrument. A list of Brands are the payment options which are
presented by the Merchant to the Consumer and from which the Consumer
makes a selection. Each Brand may have a different Payment Handler.
Examples of Brands include:
o payment association and proprietary Brands, for example
MasterCard, Visa, American Express, Diners Club, Mondex,
GeldKarte, CyberCash, etc.
o promotional brands (see below). These include:
- store brands, where the Payment Instrument is issued to a
Consumer by a particular Merchant, for example Walmart, Sears,
or Marks and Spencer (UK)
- cobrands, for example American Advantage Visa, where an
Organisation uses their own brand in conjunction with,
typically, a payment association Brand.
Burdett Informational [Page 247]
^L
RFC 2801 IOTP/1.0 April 2000
11.1.3 Definition of Dual Brand
A Dual Brand means that a single payment instrument may be used as if
it were two separate Brands. For example there could be a single
Japanese "UC" MasterCard which can be used as either a UC card or a
regular MasterCard. The UC card Brand and the MasterCard Brand could
each have their own separate Payment Handlers. This means that:
o the merchant treats, for example "UC" and "MasterCard" as two
separate Brands when offering a list of Brands to the Consumer,
o the consumer chooses a Brand, for example either "UC" or
"MasterCard,
o the consumer IOTP aware application determines which Payment
Instrument(s) match the chosen Brand, and selects, perhaps with
user assistance, the correct Payment Instrument to use.
Note: Dual Brands need no special treatment by the Merchant and
therefore no explicit reference is made to Dual Brands in the DTD.
This is because, as far as the Merchant is concerned, each Brand in a
Dual Brand is treated as a separate Brand. It is at the Consumer,
that the matching of a Brand to a Dual Brand Payment Instrument needs
to be done.
11.1.4 Definition of Promotional Brand
A Promotional Brand means that, if the Consumer pays with that Brand,
then the Consumer will receive some additional benefit which can be
received in two ways:
o at the time of purchase. For example if a Consumer pays with a
"Walmart MasterCard" at a Walmart web site, then a 5% discount
might apply, which means the consumer actually pays less,
o from their Payment Instrument (card) issuer when the payment
appears on their statement. For example loyalty points in a
frequent flyer scheme could be awarded based on the total payments
made with the Payment Instrument since the last statement was
issued.
Note that:
o the first example (obtaining the benefit at the time of purchase),
requires that:
- the Consumer is informed of the benefits which arise if that
Brand is selected
Burdett Informational [Page 248]
^L
RFC 2801 IOTP/1.0 April 2000
- if the Brand is selected, the Merchant changes the relevant
IOTP Components in the Offer Response to reflect the correct
amount to be paid
o the second (obtaining a benefit through the Payment Instrument
issuer) does not require that the Offer Response is changed
o each Promotional Brand should be identified as a separate Brand in
the list of Brands offered by the Merchant. For example:
"Walmart", "Sears", "Marks and Spencer" and "American Advantage
Visa", would each be a separate Brand.
11.1.5 Identifying Promotional Brands
There are two problems which need to handled in identifying
Promotional Brands:
o how does the Merchant or their Payment Handler positively identify
the promotional brand being used at the time of purchase
o how does the Consumer reliably identify the correct promotional
brand from the Brand List presented by the Merchant
The following is a description of how this could be achieved.
Note: Please note that the approach described here is a model
approach that solves the problem. Other equivalent methods may be
used.
11.1.5.1 Merchant/Payment Handler Identification of Promotional Brands
Correct identification that the Consumer is paying using a
Promotional Brand is important since a Consumer might fraudulently
claim to have a Promotional Brand that offers a reduced payment
amount when in reality they do not.
Two approaches seem possible:
o use some feature of the Payment Instrument or the payment method
to positively identify the Brand being used. For example, the SET
certificate for the Brand could be used, if one is available, or
o use the Payment Instrument (card) number to look up information
about the Payment Instrument on a Payment Instrument issuer
database to determine if the Payment Instrument is a promotional
brand.
Burdett Informational [Page 249]
^L
RFC 2801 IOTP/1.0 April 2000
Note that:
o the first assumes that SET is available.
o the second is only possible if the Merchant, or alternatively the
Payment Handler, has access to card issuer information.
IOTP does not provide the Merchant with Payment Instrument
information (e.g., a card or account number). This is only sent as
part of the encapsulated payment protocol to a Payment Handler. This
means that:
o the Merchant would have to assume that the Payment Instrument
selected was a valid Promotional Brand, or
o the Payment Handler would have to check that the Payment
Instrument was for the valid Promotional Brand and fail the
payment if it was not.
A Payment Handler checking that a brand is a valid Promotional Brand
is most likely if the Payment Handler is also the Card Issuer.
11.1.5.2 Consumer Selection of Promotional Brands
Two ways by which a Consumer can correctly select a Promotional Brand
are:
o the Consumer visually matching a logo for the Promotional Brand
which has been provided to the Consumer by the Merchant,
o the Consumer's IOTP aware application matching a code for the
Promotional Brand which the application has registered against a
similar code contained in the list of Brands offered by the
Merchant.
In the latter case, the code contained in the Consumer wallet must
match exactly the code in the list offered by the Merchant otherwise
no match will be found. Ways in which the Consumer's IOTP Aware
Application could obtain such a code include:
o the Consumer types the code in directly. This is error prone and
not user friendly, also the consumer needs to be provided with the
code. This approach is not recommended,
o using one of the Brand Identifiers defined by IOTP and pre-loaded
into the Consumers IOTP Aware application or wallet by the
developer of the Wallet,
Burdett Informational [Page 250]
^L
RFC 2801 IOTP/1.0 April 2000
o using some information contained in the software or other data
associated with the Payment Instrument. This could be:
- a SET certificate for Brands which use this payment method
- a code provided by the payment software which handles the
particular payment method, this could apply to, for example,
GeldKarte, Mondex, CyberCash and DigiCash,
o the consumer making an initial "manual" link between a Promotional
Brand in the list of Brands offered by the Merchant and an
individual Payment Instrument, the first time the promotional
brand is used. The IOTP Aware application would then "remember"
the code for the Promotional Brand for use in future purchases.
11.1.5.3 Consumer Software Brand Id recommendation
New Brand Ids are allocated under IANA procedures (see section 12
IANA Considerations). Which also contains an initial list of Brand
Identifiers.
It is recommended that implementers of consumer IOTP aware
applications (e.g., software wallets) pre-load their software with
the then current set of Brand Ids and provide a method by which they
can be updated. For example, by going to the software developer's web
site.
11.2 Brand List Examples
This example contains three examples of the XML for a Brand List
Component. It covers:
o a simple credit card based example
o a credit card based brand list including promotional credit card
brands, and
o a complex electronic cash based brand list
Note that:
o brand lists can be as complex or as simple as required
o all example techniques described in this appendix can be included
in one brand list.
Burdett Informational [Page 251]
^L
RFC 2801 IOTP/1.0 April 2000
11.2.1 Simple Credit Card Based Example
This is a simple example involving:
o only major credit card payment brands
o a single price in a single currency
o a single Payment Handler, and
o a single payment protocol
<BrandList ID='M1.2'
XML:Lang='us-en'
ShortDesc='Purchase book including s&h'
PayDirection='Debit' >
<Brand ID ='M1.30'
BrandId='MasterCard'
BrandName='MasterCard Credit'
BrandLogoNetLocn='ftp://otplogos.mastercard.com/mastercardcredit'
ProtocolAmountRefs='M1.33'>
</Brand>
<Brand ID ='M.31'
BrandId='Visa'
BrandName='Visa Credit'
BrandLogoNetLocn='ftp://otplogos.visa.com/visacredit'
ProtocolAmountRefs='M1.33'>
</Brand>
<Brand ID ='M1.32'
BrandId='AmericanExpress'
BrandName='American Express'
BrandLogoNetLocn='ftp://otplogos.amex.com'
ProtocolAmountRefs ='M1.33' >
</Brand >
<ProtocolAmount ID ='M1.33'
PayProtocolRef='M1.35'
CurrencyAmountRefs='M1.34'>
</ProtocolAmount>
<CurrencyAmount ID ='M1.34'
Amount='10.95'
CurrCode='USD'/>
<PayProtocol ID ='M1.35'
ProtocolId='SCCD1.0'
ProtocolName='Secure Channel Credit/Debit'
PayReqNetLocn='http://www.example.com/etill/sccd1' >
</PayProtocol>
</BrandList>
Burdett Informational [Page 252]
^L
RFC 2801 IOTP/1.0 April 2000
11.2.2 Credit Card Brand List Including Promotional Brands
An example of a Credit Card based Brand List follows. It includes:
o two ordinary card association brands and two promotional credit
card brands. The promotional brands consist of one loyalty based
(British Airways MasterCard) which offers additional loyalty
points and one store based (Walmart) which offers a discount on
purchases over a certain amount
o two payment protocols:
- SET (Secure Electronic Transactions) see [SET], and
- SCCD (Secure Channel Credit Debit) see [SCCD].
<BrandList ID='M1.2'
XML:Lang='us-en'
ShortDesc='Purchase ladies coat'
PayDirection='Debit' >
<Brand ID ='M1.3'
BrandId='MasterCard'
BrandName='MasterCard Credit'
BrandLogoNetLocn='ftp://otplogos.mastercard.com'
ProtocolAmountRefs='M1.7 M1.8'>
<ProtocolBrand ProtocolId='SET1.0' ProtocolBrandId='MasterCard:'>
</ProtocolBrand>
</Brand>
<Brand ID ='M1.4'
BrandId='Visa'
BrandName='Visa Credit'
BrandLogoNetLocn='ftp://otplogos.visa.com'
ProtocolAmountRefs='M1.7 M1.8'>
<ProtocolBrand ProtocolId='SET1.0' ProtocolBrandId='Visa:'>
</ProtocolBrand>
</Brand>
<Brand ID ='M1.5'
BrandId='BritishAirwaysMC'
BrandName='British Airways MasterCard'
BrandLogoNetLocn='ftp://otplogos.britishairways.co.uk'
BrandNarrative='Double air miles with British Airways MasterCard'
ProtocolAmountRefs ='M1.7 M1.8' >
<ProtocolBrand ProtocolId='SET1.0' ProtocolBrandId='MasterCard:BA'>
</ProtocolBrand>
</Brand >
<Brand ID ='M1.6'
BrandId='Walmart'
BrandName='Walmart Store Card'
Burdett Informational [Page 253]
^L
RFC 2801 IOTP/1.0 April 2000
BrandLogoNetLocn='ftp://otplogos.walmart.com'
BrandNarrative='5% off with your Walmart Card
on purchases over $150'
ProtocolAmountRefs='M1.8'>
</Brand>
<ProtocolAmount ID ='M1.7'
PayProtocolRef='M1.10'
CurrencyAmountRefs='M1.9' >
<PackagedContent Transform="BASE64">
238djqw1298erh18dhoire
</PackagedContent>
</ProtocolAmount>
<ProtocolAmount ID ='M1.8'
PayProtocolRef='M1.11'
CurrencyAmountRefs='M1.9' >
<PackagedContent Transform="BASE64">
238djqw1298erh18dhoire
</PackagedContent>
</ProtocolAmount>
<CurrencyAmount ID ='M1.9'
Amount='157.53'
CurrCode='USD'/>
<PayProtocol ID ='M1.10'
ProtocolId='SET1.0'
ProtocolName='Secure Electronic Transaction Version 1.0'
PayReqNetLocn='http://www.example.com/etill/set1' >
<PackagedContent Transform="BASE64">
8ueu26e482hd82he82
</PackagedContent>
</PayProtocol>
<PayProtocol ID ='M1.11'
ProtocolId='SCCD1.0'
ProtocolName='Secure Channel Credit/Debit'
PayReqNetLocn='http://www.example.com/etill/sccd1' >
<PackagedContent Transform="BASE64">
82hd82he8226e48ueu
</PackagedContent>
</PayProtocol>
</BrandList>
11.2.3 Brand Selection Example
In order to pay by 'British Airways' MasterCard using the example
above using SET and therefore getting double air miles, the Brand
Selection would be:
<BrandSelection ID='C1.2'
Burdett Informational [Page 254]
^L
RFC 2801 IOTP/1.0 April 2000
BrandListRef='M1.3'
BrandRef='M1.5'
ProtocolAmountRef='M1.7'
CurrencyAmountRef='M1.9' >
</BrandSelection>
11.2.4 Complex Electronic Cash Based Brand List
The following is an fairly complex example which includes:
o payments using either Mondex, GeldKarte, CyberCash or DigiCash
o in currencies including US dollars, British Pounds, Italian Lira,
German Marks and Canadian Dollars
o a discount on the price if the payment is made in Mondex using
British pounds or US dollars, and
o more than one Payment Handler is used for payments involving
Mondex or CyberCash
o support for more than one version of a CyberCash CyberCoin payment
protocol.
<BrandList ID='M1.2'
XML:Lang='us-en'
ShortDesc='Company report on XYZ Co'
PayDirection='Debit' >
<Brand ID ='M1.13'
BrandId='Mondex'
BrandName='Mondex Electronic Cash'
BrandLogoNetLocn='ftp://otplogos.mondex.com'
ProtocolAmountRefs='M1.17 M1.18'>
</Brand>
<Brand ID ='M1.14'
BrandId='GeldKarte'
BrandName='GeldKarte Electronic Cash'
BrandLogoNetLocn='ftp://otplogos.geldkarte.co.de'
ProtocolAmountRefs='M1.19'>
</Brand>
<Brand ID ='M1.15'
BrandId='CyberCoin'
BrandName='CyberCoin Eletronic Cash'
BrandLogoNetLocn='http://otplogos.cybercash.com'
ProtocolAmountRefs ='M1.20' >
</Brand >
<Brand ID ='M1.16'
BrandId='DigiCash'
Burdett Informational [Page 255]
^L
RFC 2801 IOTP/1.0 April 2000
BrandName='DigiCash Electronic Cash'
BrandLogoNetLocn='http://otplogos.digicash.com'
BrandNarrative='5% off with your Walmart Card
on purchases over $150'
ProtocolAmountRefs='M1.22'>
</Brand>
<ProtocolAmount ID ='M1.17'
PayProtocolRef='M1.31'
CurrencyAmountRefs='M1.25 M1.29'>
</ProtocolAmount>
<ProtocolAmount ID ='M1.18'
PayProtocolRef='M1.32'
CurrencyAmountRefs='M1.26 M1.27 M1.28 M1.30'>
</ProtocolAmount>
<ProtocolAmount ID ='M1.19'
PayProtocolRef='M1.35'
CurrencyAmountRefs='M1.28'>
</ProtocolAmount>
<ProtocolAmount ID ='M1.20'
PayProtocolRef='M1.34 M1.33'
CurrencyAmountRefs='M1.23 M1.24 M1.27 M1.28 M1.29 M1.30'>
</ProtocolAmount>
<ProtocolAmount ID ='M1.21'
PayProtocolRef='M1.36'
CurrencyAmountRefs='M1.23 M1.24 M1.27 M1.28 M1.29 M1.30'>
</ProtocolAmount>
<CurrencyAmount ID ='M1.23'
Amount='20.00'
CurrCode='USD'/>
<CurrencyAmount ID ='M1.24'
Amount='12.00'
CurrCode='GBP'/>
<CurrencyAmount ID ='M1.25'
Amount='19.50'
CurrCode='USD'/>
<CurrencyAmount ID ='M1.26'
Amount='11.75'
CurrCode='GBP'/>
<CurrencyAmount ID ='M1.27'
Amount='36.00'
CurrCode='DEM'/>
<CurrencyAmount ID ='M1.28'
Amount='100.00'
CurrCode='FFR'/>
<CurrencyAmount ID ='M1.29'
Amount='22.00'
CurrCode='CAD'/>
<CurrencyAmount ID ='M1.30'
Burdett Informational [Page 256]
^L
RFC 2801 IOTP/1.0 April 2000
Amount='15000'
CurrCode='ITL'/>
<PayProtocol ID ='M1.31'
ProtocolId='MXv1.0'
ProtocolName='Mondex IOTP Protocol Version 1.0'
PayReqNetLocn='http://www.mxbankus.com/etill/mx' >
</PayProtocol>
<PayProtocol ID ='M1.32'
ProtocolId='MXv1.0'
ProtocolName='Mondex IOTP Protocol Version 1.0'
PayReqNetLocn='http://www.mxbankuk.com/vserver' >
</PayProtocol>
<PayProtocol ID ='M1.33'
ProtocolId='Ccashv1.0'
ProtocolName='CyberCoin Version 1.0'
PayReqNetLocn='http://www.cybercash.com/ccoin' >
</PayProtocol>
<PayProtocol ID ='M1.34'
ProtocolId='CCashv2.0'
ProtocolName='CyberCoin Version 2.0'
PayReqNetLocn='http://www.cybercash.com/ccoin' >
</PayProtocol>
<PayProtocol ID ='M1.35'
ProtocolId='GKv1.0'
ProtocolName='GeldKarte Version 1.0'
PayReqNetLocn='http://www.example.com/pgway' >
</PayProtocol>
<PayProtocol ID ='M1.36'
ProtocolId='DCashv1.0'
ProtocolName='DigiCash Protocol Version 1.0'
PayReqNetLocn='http://www.example.com/digicash' >
</PayProtocol>
</BrandList>
12. IANA Considerations
This section describes the codes that are controlled by IANA, and
also how new codes can be created for testing purposes that are not
controlled by IANA.
12.1 Codes Controlled by IANA
To help ensure interoperability, there is a need for codes used by
IOTP to be maintained in a controlled environment so that their
meaning and usage are well defined and duplicate codes avoided.
[IANA] is the mechanism to be used for this purpose as described in
RFC 2434.
Burdett Informational [Page 257]
^L
RFC 2801 IOTP/1.0 April 2000
The element types and attributes names to which this procedure
applies is shown in the table below together with the initial values
that are valid for these attributes.
Note that:
o the IETF Trade mailing list's email address is ietf-
trade@elistx.com
o "Designated Experts" (see [IANA]) are appointed by the IESG.
Element Type/ Attribute Values
Attribute Name
Algorithm/ "sha1" - indicates that a [SHA1] authentication
Name will apply
(When Algorithm
is a child of an "signature" - indicates that authentication
AuthReq consists of the generation of a digital signature.
Component)
"Pay:ppp" where "ppp" may be set to any valid
value for "iotpbrand" (see below)
With the exception of Algorithms that begin with
"pay:", new values are allocated following review
on the IETF Trade mailing list and by the
Designated Expert.
Note: The Algorithm element is likely to be eventually defined
within the [DSIG] name space. It is likely that the maintenance
procedure defined here may need to vary over time, as the DSIG
proposals become more widely adopted.
Element Type/ Attribute Values
Attribute Name
Brand/BrandId The following list of initial BrandIds have been
taken from those Organisations that have applied
for SET certificates as at 1st June 1999:
"Amex" - American Express
"Dankort" - Dankort
"JCB" - JCB
"Maestro" - Maestro
Burdett Informational [Page 258]
^L
RFC 2801 IOTP/1.0 April 2000
"MasterCard" - MasterCard
"NICOS" - NICOS
"VISA" - Visa
In addition the following Brand Id values are
defined:
"Mondex"
"GeldKarte"
New values of BrandId must be announced to the
IETF Trade mailing list and, if there are no
objections within three weeks, are allocated on a
"first come first served" basis.
CurrencyAmount/ Currency codes are dependent on CurrCodeType (see
CurrCode below).
If CurrCodeType is "ISO4217-A" then the currency
code is an alphabetic currency code as defined by
[ISO4217].
If CurrCodeType is "IOTP" then new values must be
announced to the IETF Trade mailing list and, if
there are no objections within three weeks, are
allocated on a "first come first served" basis.
Note: The Currency Code Type of IOTP, is designed to allow the
support of "new" psuedo currencies such as loyalty or frequent flyer
points. At the time of writing this specification, no currency codes
of this type have been defined.
Element Type/ Attribute Values
Attribute Name
CurrencyAmount/ "ISO4217-A"
CurrCodeType
"IOTP"
New values of CurrCodeType attribute are allocated
following review on the IETF Trade mailing list
and by the Designated Expert.
DeliveryData/ "Post"
DelivMethod
Burdett Informational [Page 259]
^L
RFC 2801 IOTP/1.0 April 2000
"Web"
"Email"
New values of Delivery Method attribute are
allocated following review on the IETF Trade
mailing list and by the Designated Expert. This
may require the publication of additional
documentation to describe how the delivery method
is used.
PackagedContent/ "PCDATA"
Content
"MIME"
"MIME:mimetype" (where mimetype must be the same
as content-type as defined by [MIME] )
"XML"
If the Content attribute is of the form
"MIME"mimetype", then control of new values for
"mimetype" is as defined in [MIME].
Otherwise, new values of the Content attribute are
allocated following review on the IETF Trade
mailing list and by the Designated Expert. This
may require the publication of additional
documentation to describe how the new attribute is
used within a Packaged Content element.
RelatedTo/ "IotpTransaction"
RelationshipType
"Reference"
New values of the RelationshipType attribute are
allocated following review on the IETF Trade
Working Group mailing list and by the Designated
Expert. This may require the publication of
additional documentation to describe how the
Element Type/ Attribute Values
Attribute Name
delivery method is used.
Status/ Offer
StatusType
Payment
Burdett Informational [Page 260]
^L
RFC 2801 IOTP/1.0 April 2000
Delivery
Authentication
Unidentified
New values of the Status Type attribute are
allocated following:
o publication to the IETF Trade Working Group,
of an RFC describing the Trading Exchange,
Trading Roles and associated components that
relate to the Status, and
o review of the document on the IETF Trade
mailing list and by the Designated Expert.
Note: The document describing new values for the Status Type
attribute may be combined with documents that describe new Trading
Roles and types of signatures (see below).
TradingRole/ "Consumer"
TradingRole
"Merchant"
"PaymentHandler"
"DeliveryHandler"
"DelivTo"
"CustCare"
New values of the Trading Role attribute are
allocated following:
o publication to the IETF Trade Working Group,
of an RFC describing the Trading Exchange,
Trading Roles and associated components that
relate to the Trading Role, and
o review of the document on the IETF Trade
mailing list and by the Designated Expert.
Note: The document describing new values for the Trading Role
attribute may be
Element Type/ Attribute Values
Attribute Name
combined with documents that describe
new Status Types (see above) and
types of signatures (see below).
Burdett Informational [Page 261]
^L
RFC 2801 IOTP/1.0 April 2000
TransId/ "BaselineAuthentication"
IotpTransType
"BaselineDeposit"
"BaselinePurchase"
"BaselineRefund"
"BaselineWithdrawal"
"BaselineValueExchange"
"BaselineInquiry"
"BaselinePing"
New values of the IotpTransType attribute are
allocated following:
o publication to the IETF Trade mailing list, of
an RFC describing the new IOTP Transaction, and
o review of the document on the IETF Trade
Working Group mailing list and by the
Designated Expert.
Attribute/ Content
(see Signature
"OfferResponse"
Component) "PaymentResponse"
"DeliveryResponse"
"AuthenticationRequest"
"AuthenticationResponse"
"PingRequest"
"PingResponse"
New values of the code that define the type of a
signature are allocated following:
o publication to the IETF Trade Working Group,
of an RFC describing the Trading Exchange where
the signature is being used, and
o review of the document on the IETF Trade
mailing list and by the Designated Expert.
Burdett Informational [Page 262]
^L
RFC 2801 IOTP/1.0 April 2000
Element Type/ Attribute Values
Attribute Name
Note: The document describing new values for the types of signatures
may be combined with documents that describe new Status Types and
Trading Roles (see above).
12.2 Codes not controlled by IANA
In addition to the formal development and registration of codes as
described above, there is still a need for developers to experiment
using new IOTP codes. For this reason, "user defined codes" may be
used to identify additional values for the codes contained within
this specification without the need for them to be registered with
IANA.
The definition of a user defined code is as follows:
user_defined_code ::= ( "x-" | "X-" ) NameChar (NameChar)*
NameChar NameChar has the same definition as the [XML]
definition of NameChar
Use of domain names (see [DNS]) to make user defined codes unique is
recommended although this method cannot be relied upon.
13. Internet Open Trading Protocol Data Type Definition
This section contains the XML DTD for the Internet Open Trading
Protocols.
Burdett Informational [Page 263]
^L
RFC 2801 IOTP/1.0 April 2000
<!--
******************************************************
* *
* INTERNET OPEN TRADING PROTOCOL VERSION 1.0 DTD *
* Filename: ietf.org/rfc/rfc2801.dtd *
* *
* Changes from version 07 (iotp-v1.0-protocol-07.dtd)*
* - NO CHANGES *
* *
* *
* *
* *
* Copyright Internet Engineering Task Force 1998-2000*
* *
******************************************************
******************************************************
* IOTP MESSAGE DEFINITION *
******************************************************
-->
<!ELEMENT IotpMessage
( TransRefBlk,
IotpSignatures?,
ErrorBlk?,
( AuthReqBlk |
AuthRespBlk |
AuthStatusBlk |
CancelBlk |
DeliveryReqBlk |
DeliveryRespBlk |
InquiryReqBlk |
InquiryRespBlk |
OfferRespBlk |
PayExchBlk |
PayReqBlk |
PayRespBlk |
PingReqBlk |
PingRespBlk |
TpoBlk |
TpoSelectionBlk
)*
) >
<!ATTLIST IotpMessage
xmlns CDATA
'iotp:ietf.org/iotp-v1.0' >
Burdett Informational [Page 264]
^L
RFC 2801 IOTP/1.0 April 2000
<!--
******************************************************
* TRANSACTION REFERENCE BLOCK DEFINITION *
******************************************************
-->
<!ELEMENT TransRefBlk (TransId, MsgId, RelatedTo*) >
<!ATTLIST TransRefBlk
ID ID #REQUIRED >
<!ELEMENT TransId EMPTY >
<!ATTLIST TransId
ID ID #REQUIRED
Version NMTOKEN #FIXED '1.0'
IotpTransId CDATA #REQUIRED
IotpTransType CDATA #REQUIRED
TransTimeStamp CDATA #REQUIRED >
<!ELEMENT MsgId EMPTY >
<!ATTLIST MsgId
ID ID #REQUIRED
RespIotpMsg NMTOKEN #IMPLIED
xml:lang NMTOKEN #REQUIRED
LangPrefList NMTOKENS #IMPLIED
CharSetPrefList NMTOKENS #IMPLIED
SenderTradingRoleRef NMTOKEN #IMPLIED
SoftwareId CDATA #REQUIRED
TimeStamp CDATA #IMPLIED >
<!ELEMENT RelatedTo (PackagedContent) >
<!ATTLIST RelatedTo
ID ID #REQUIRED
xml:lang NMTOKEN #REQUIRED
RelationshipType NMTOKEN #REQUIRED
Relation CDATA #REQUIRED
RelnKeyWords NMTOKENS #IMPLIED >
<!--
******************************************************
* Packaged Content Common Element *
******************************************************
-->
Burdett Informational [Page 265]
^L
RFC 2801 IOTP/1.0 April 2000
<!ELEMENT PackagedContent (#PCDATA) >
<!ATTLIST PackagedContent
Name CDATA #IMPLIED
Content NMTOKEN "PCDATA"
Transform (NONE|BASE64) "NONE" >
<!--
******************************************************
* TRADING COMPONENTS *
******************************************************
-->
<!-- PROTOCOL OPTIONS COMPONENT -->
<!ELEMENT ProtocolOptions EMPTY >
<!ATTLIST ProtocolOptions
ID ID #REQUIRED
xml:lang NMTOKEN #REQUIRED
ShortDesc CDATA #REQUIRED
SenderNetLocn CDATA #IMPLIED
SecureSenderNetLocn CDATA #IMPLIED
SuccessNetLocn CDATA #REQUIRED >
<!-- AUTHENTICATION DATA COMPONENT -->
<!ELEMENT AuthReq (Algorithm, PackagedContent*)>
<!ATTLIST AuthReq
ID ID #REQUIRED
AuthenticationId CDATA #REQUIRED
ContentSoftwareId CDATA #IMPLIED >
<!-- AUTHENTICATION RESPONSE COMPONENT -->
<!ELEMENT AuthResp (PackagedContent*) >
<!ATTLIST AuthResp
ID ID #REQUIRED
AuthenticationId CDATA #REQUIRED
SelectedAlgorithmRef NMTOKEN #REQUIRED
ContentSoftwareId CDATA #IMPLIED >
<!-- TRADING ROLE INFO REQUEST COMPONENT -->
<!ELEMENT TradingRoleInfoReq EMPTY>
<!ATTLIST TradingRoleInfoReq
ID ID #REQUIRED
TradingRoleList NMTOKENS #REQUIRED >
<!-- ORDER COMPONENT -->
<!ELEMENT Order (PackagedContent*) >
<!ATTLIST Order
ID ID #REQUIRED
Burdett Informational [Page 266]
^L
RFC 2801 IOTP/1.0 April 2000
xml:lang NMTOKEN #REQUIRED
OrderIdentifier CDATA #REQUIRED
ShortDesc CDATA #REQUIRED
OkFrom CDATA #REQUIRED
OkTo CDATA #REQUIRED
ApplicableLaw CDATA #REQUIRED
ContentSoftwareId CDATA #IMPLIED >
<!-- ORGANISATION COMPONENT -->
<!ELEMENT Org (TradingRole+, ContactInfo?,
PersonName?, PostalAddress?)>
<!ATTLIST Org
ID ID #REQUIRED
xml:lang NMTOKEN #REQUIRED
OrgId CDATA #REQUIRED
LegalName CDATA #IMPLIED
ShortDesc CDATA #IMPLIED
LogoNetLocn CDATA #IMPLIED >
<!ELEMENT TradingRole EMPTY >
<!ATTLIST TradingRole
ID ID#REQUIRED
TradingRole NMTOKEN #REQUIRED
IotpMsgIdPrefix NMTOKEN #REQUIRED
CancelNetLocn CDATA #IMPLIED
ErrorNetLocn CDATA #IMPLIED
ErrorLogNetLocn CDATA #IMPLIED >
<!ELEMENT ContactInfo EMPTY >
<!ATTLIST ContactInfo
xml:lang NMTOKEN #IMPLIED
Tel CDATA #IMPLIED
Fax CDATA #IMPLIED
Email CDATA #IMPLIED
NetLocn CDATA #IMPLIED >
<!ELEMENT PersonName EMPTY >
<!ATTLIST PersonName
xml:lang NMTOKEN #IMPLIED
Title CDATA #IMPLIED
GivenName CDATA #IMPLIED
Initials CDATA #IMPLIED
FamilyName CDATA #IMPLIED >
Burdett Informational [Page 267]
^L
RFC 2801 IOTP/1.0 April 2000
<!ELEMENT PostalAddress EMPTY >
<!ATTLIST PostalAddress
xml:lang NMTOKEN #IMPLIED
AddressLine1 CDATA #IMPLIED
AddressLine2 CDATA #IMPLIED
CityOrTown CDATA #IMPLIED
StateOrRegion CDATA #IMPLIED
PostalCode CDATA #IMPLIED
Country CDATA #IMPLIED
LegalLocation (True | False) 'False' >
<!-- BRAND LIST COMPONENT -->
<!ELEMENT BrandList (Brand+, ProtocolAmount+,
CurrencyAmount+, PayProtocol+) >
<!ATTLIST BrandList
ID ID #REQUIRED
xml:lang NMTOKEN #REQUIRED
ShortDesc CDATA #REQUIRED
PayDirection (Debit | Credit) #REQUIRED >
<!ELEMENT Brand (ProtocolBrand*, PackagedContent*) >
<!ATTLIST Brand
ID ID #REQUIRED
xml:lang NMTOKEN #IMPLIED
BrandId CDATA #REQUIRED
BrandName CDATA #REQUIRED
BrandLogoNetLocn CDATA #REQUIRED
BrandNarrative CDATA #IMPLIED
ProtocolAmountRefs IDREFS #REQUIRED
ContentSoftwareId CDATA #IMPLIED >
<!ELEMENT ProtocolBrand (PackagedContent*) >
<!ATTLIST ProtocolBrand
ProtocolId CDATA #REQUIRED
ProtocolBrandId CDATA #REQUIRED >
<!ELEMENT ProtocolAmount (PackagedContent*) >
<!ATTLIST ProtocolAmount
ID ID #REQUIRED
PayProtocolRef IDREF #REQUIRED
CurrencyAmountRefs IDREFS #REQUIRED
ContentSoftwareId CDATA #IMPLIED >
<!ELEMENT CurrencyAmount EMPTY >
<!ATTLIST CurrencyAmount
ID ID #REQUIRED
Amount CDATA #REQUIRED
Burdett Informational [Page 268]
^L
RFC 2801 IOTP/1.0 April 2000
CurrCodeType NMTOKEN 'ISO4217-A'
CurrCode CDATA #REQUIRED >
<!ELEMENT PayProtocol (PackagedContent*) >
<!ATTLIST PayProtocol
ID ID #REQUIRED
xml:lang NMTOKEN #IMPLIED
ProtocolId NMTOKEN #REQUIRED
ProtocolName CDATA #REQUIRED
ActionOrgRef NMTOKEN #REQUIRED
PayReqNetLocn CDATA #IMPLIED
SecPayReqNetLocn CDATA #IMPLIED
ContentSoftwareId CDATA #IMPLIED >
<!-- BRAND SELECTION COMPONENT -->
<!ELEMENT BrandSelection (BrandSelBrandInfo?,
BrandSelProtocolAmountInfo?,
BrandSelCurrencyAmountInfo?) >
<!ATTLIST BrandSelection
ID ID #REQUIRED
BrandListRef NMTOKEN #REQUIRED
BrandRef NMTOKEN #REQUIRED
ProtocolAmountRef NMTOKEN #REQUIRED
CurrencyAmountRef NMTOKEN #REQUIRED >
<!ELEMENT BrandSelBrandInfo (PackagedContent+) >
<!ATTLIST BrandSelBrandInfo
ID ID #REQUIRED
ContentSoftwareId CDATA #IMPLIED >
<!ELEMENT BrandSelProtocolAmountInfo (PackagedContent+) >
<!ATTLIST BrandSelProtocolAmountInfo
ID ID #REQUIRED
ContentSoftwareId CDATA #IMPLIED >
<!ELEMENT BrandSelCurrencyAmountInfo (PackagedContent+) >
<!ATTLIST BrandSelCurrencyAmountInfo
ID ID #REQUIRED
ContentSoftwareId CDATA #IMPLIED >
<!-- PAYMENT COMPONENT -->
<!ELEMENT Payment EMPTY >
<!ATTLIST Payment
ID ID #REQUIRED
OkFrom CDATA #REQUIRED
OkTo CDATA #REQUIRED
BrandListRef NMTOKEN #REQUIRED
Burdett Informational [Page 269]
^L
RFC 2801 IOTP/1.0 April 2000
SignedPayReceipt (True | False) #REQUIRED
StartAfterRefs NMTOKENS #IMPLIED >
<!-- PAYMENT SCHEME COMPONENT -->
<!ELEMENT PaySchemeData (PackagedContent+) >
<!ATTLIST PaySchemeData
ID ID #REQUIRED
PaymentRef NMTOKEN #IMPLIED
ConsumerPaymentId CDATA #IMPLIED
PaymentHandlerPayId CDATA #IMPLIED
ContentSoftwareId CDATA #IMPLIED >
<!-- PAYMENT RECEIPT COMPONENT -->
<!ELEMENT PayReceipt (PackagedContent*) >
<!ATTLIST PayReceipt
ID ID #REQUIRED
PaymentRef NMTOKEN #REQUIRED
PayReceiptNameRefs NMTOKENS #IMPLIED
ContentSoftwareId CDATA #IMPLIED >
<!-- PAYMENT NOTE COMPONENT -->
<!ELEMENT PaymentNote (PackagedContent+) >
<!ATTLIST PaymentNote
ID ID #REQUIRED
ContentSoftwareId CDATA #IMPLIED >
<!-- DELIVERY COMPONENT -->
<!ELEMENT Delivery (DeliveryData?, PackagedContent*) >
<!ATTLIST Delivery
ID ID #REQUIRED
xml:lang NMTOKEN #REQUIRED
DelivExch (True | False) #REQUIRED
DelivAndPayResp (True | False) #REQUIRED
ActionOrgRef NMTOKEN #IMPLIED >
<!ELEMENT DeliveryData (PackagedContent*) >
<!ATTLIST DeliveryData
xml:lang NMTOKEN #IMPLIED
OkFrom CDATA #REQUIRED
OkTo CDATA #REQUIRED
DelivMethod NMTOKEN #REQUIRED
DelivToRef NMTOKEN #REQUIRED
DelivReqNetLocn CDATA #IMPLIED
SecDelivReqNetLocn CDATA #IMPLIED
Burdett Informational [Page 270]
^L
RFC 2801 IOTP/1.0 April 2000
ContentSoftwareId CDATA #IMPLIED >
<!-- CONSUMER DELIVERY DATA COMPONENT -->
<!ELEMENT ConsumerDeliveryData EMPTY >
<!ATTLIST ConsumerDeliveryData
ID ID #REQUIRED
ConsumerDeliveryId CDATA #REQUIRED >
<!-- DELIVERY NOTE COMPONENT -->
<!ELEMENT DeliveryNote (PackagedContent+) >
<!ATTLIST DeliveryNote
ID ID #REQUIRED
xml:lang NMTOKEN #REQUIRED
DelivHandlerDelivId CDATA #IMPLIED
ContentSoftwareId CDATA #IMPLIED >
<!-- STATUS COMPONENT -->
<!ELEMENT Status EMPTY >
<!ATTLIST Status
ID ID #REQUIRED
xml:lang NMTOKEN #REQUIRED
StatusType NMTOKEN #REQUIRED
ElRef NMTOKEN #IMPLIED
ProcessState (NotYetStarted | InProgress |
CompletedOk | Failed | ProcessError) #REQUIRED
CompletionCode NMTOKEN #IMPLIED
ProcessReference CDATA #IMPLIED
StatusDesc CDATA #IMPLIED >
<!-- TRADING ROLE DATA COMPONENT -->
<!ELEMENT TradingRoleData (PackagedContent+) >
<!ATTLIST TradingRoleData
ID ID #REQUIRED
OriginatorElRef NMTOKEN #REQUIRED
DestinationElRefs NMTOKENS #REQUIRED >
<!-- INQUIRY TYPE COMPONENT -->
<!ELEMENT InquiryType EMPTY >
<!ATTLIST InquiryType
ID ID #REQUIRED
Type NMTOKEN #REQUIRED
ElRef NMTOKEN #IMPLIED
ProcessReference CDATA #IMPLIED >
Burdett Informational [Page 271]
^L
RFC 2801 IOTP/1.0 April 2000
<!-- ERROR COMPONENT -->
<!ELEMENT ErrorComp (ErrorLocation+, PackagedContent*) >
<!ATTLIST ErrorComp
ID NMTOKEN #REQUIRED
xml:lang NMTOKEN #REQUIRED
ErrorCode NMTOKEN #REQUIRED
ErrorDesc CDATA #REQUIRED
Severity (Warning|TransientError|HardError) #REQUIRED
MinRetrySecs CDATA #IMPLIED
SwVendorErrorRef CDATA #IMPLIED >
<!ELEMENT ErrorLocation EMPTY >
<!ATTLIST ErrorLocation
ElementType NMTOKEN #REQUIRED
IotpMsgRef NMTOKEN #IMPLIED
BlkRef NMTOKEN #IMPLIED
CompRef NMTOKEN #IMPLIED
ElementRef NMTOKEN #IMPLIED
AttName NMTOKEN #IMPLIED >
<!--
******************************************************
* TRADING BLOCKS *
******************************************************
-->
<!-- TRADING PROTOCOL OPTIONS BLOCK -->
<!ELEMENT TpoBlk ( ProtocolOptions, BrandList*, Org* ) >
<!ATTLIST TpoBlk
ID ID #REQUIRED >
<!-- TPO SELECTION BLOCK -->
<!ELEMENT TpoSelectionBlk (BrandSelection+) >
<!ATTLIST TpoSelectionBlk
ID ID #REQUIRED >
<!-- OFFER RESPONSE BLOCK -->
<!ELEMENT OfferRespBlk (Status, Order?, Payment*,
Delivery?, TradingRoleData*) >
<!ATTLIST OfferRespBlk
ID ID #REQUIRED >
Burdett Informational [Page 272]
^L
RFC 2801 IOTP/1.0 April 2000
<!-- AUTHENTICATION REQUEST BLOCK -->
<!ELEMENT AuthReqBlk (AuthReq*, TradingRoleInfoReq?) >
<!ATTLIST AuthReqBlk
ID ID #REQUIRED >
<!-- AUTHENTICATION RESPONSE BLOCK -->
<!ELEMENT AuthRespBlk (AuthResp?, Org*) >
<!ATTLIST AuthRespBlk
ID ID #REQUIRED >
<!-- AUTHENTICATION STATUS BLOCK -->
<!ELEMENT AuthStatusBlk (Status) >
<!ATTLIST AuthStatusBlk
ID ID #REQUIRED >
<!-- PAYMENT REQUEST BLOCK -->
<!ELEMENT PayReqBlk (Status+, BrandList, BrandSelection,
Payment, PaySchemeData?, Org*, TradingRoleData*) >
<!ATTLIST PayReqBlk
ID ID #REQUIRED >
<!-- PAYMENT EXCHANGE BLOCK -->
<!ELEMENT PayExchBlk (PaySchemeData) >
<!ATTLIST PayExchBlk
ID ID #REQUIRED >
<!-- PAYMENT RESPONSE BLOCK -->
<!ELEMENT PayRespBlk (Status, PayReceipt?, PaySchemeData?,
PaymentNote?, TradingRoleData*) >
<!ATTLIST PayRespBlk
ID ID #REQUIRED >
<!-- DELIVERY REQUEST BLOCK -->
<!ELEMENT DeliveryReqBlk (Status+, Order, Org*, Delivery,
ConsumerDeliveryData?, TradingRoleData*) >
<!ATTLIST DeliveryReqBlk
ID ID #REQUIRED >
<!-- DELIVERY RESPONSE BLOCK -->
<!ELEMENT DeliveryRespBlk (Status, DeliveryNote) >
<!ATTLIST DeliveryRespBlk
ID ID #REQUIRED >
Burdett Informational [Page 273]
^L
RFC 2801 IOTP/1.0 April 2000
<!-- INQUIRY REQUEST BLOCK -->
<!ELEMENT InquiryReqBlk ( InquiryType, PaySchemeData? ) >
<!ATTLIST InquiryReqBlk
ID ID #REQUIRED >
<!-- INQUIRY RESPONSE BLOCK -->
<!ELEMENT InquiryRespBlk (Status, PaySchemeData?) >
<!ATTLIST InquiryRespBlk
ID ID #REQUIRED
LastReceivedIotpMsgRef NMTOKEN #IMPLIED
LastSentIotpMsgRef NMTOKEN #IMPLIED >
<!-- PING REQUEST BLOCK -->
<!ELEMENT PingReqBlk (Org*)>
<!ATTLIST PingReqBlk
ID ID #REQUIRED>
<!-- PING RESPONSE BLOCK -->
<!ELEMENT PingRespBlk (Org+)>
<!ATTLIST PingRespBlk
ID ID #REQUIRED
PingStatusCode (Ok | Busy | Down) #REQUIRED
SigVerifyStatusCode (Ok | NotSupported | Fail) #IMPLIED
xml:lang NMTOKEN #IMPLIED
PingStatusDesc CDATA #IMPLIED>
<!-- ERROR BLOCK -->
<!ELEMENT ErrorBlk (ErrorComp+, PaySchemeData*) >
<!ATTLIST ErrorBlk
ID ID #REQUIRED >
<!-- CANCEL BLOCK -->
<!ELEMENT CancelBlk (Status) >
<!ATTLIST CancelBlk
ID ID #REQUIRED >
<!--
******************************************************
* IOTP SIGNATURES BLOCK DEFINITION *
******************************************************
-->
Burdett Informational [Page 274]
^L
RFC 2801 IOTP/1.0 April 2000
<!ELEMENT IotpSignatures (Signature+ ,Certificate*) >
<!ATTLIST IotpSignatures
ID ID #IMPLIED
>
<!--
******************************************************
* IOTP SIGNATURE COMPONENT DEFINITION *
******************************************************
-->
<!ELEMENT Signature (Manifest, Value+) >
<!ATTLIST Signature
ID ID #IMPLIED
>
<!ELEMENT Manifest
( Algorithm+,
Digest+,
Attribute*,
OriginatorInfo,
RecipientInfo+
)
>
<!ATTLIST Manifest
LocatorHRefBase CDATA #IMPLIED
>
<!ELEMENT Algorithm (Parameter*) >
<!ATTLIST Algorithm
ID ID #REQUIRED
type (digest|signature) #IMPLIED
name NMTOKEN #REQUIRED
>
<!ELEMENT Digest (Locator, Value) >
<!ATTLIST Digest
DigestAlgorithmRef IDREF #REQUIRED
>
<!ELEMENT Attribute ( ANY ) >
<!ATTLIST Attribute
type NMTOKEN #REQUIRED
critical ( true | false ) #REQUIRED
>
<!ELEMENT OriginatorInfo ANY >
Burdett Informational [Page 275]
^L
RFC 2801 IOTP/1.0 April 2000
<!ATTLIST OriginatorInfo
OriginatorRef NMTOKEN #IMPLIED
>
<!ELEMENT RecipientInfo ANY >
<!ATTLIST RecipientInfo
SignatureAlgorithmRef IDREF #REQUIRED
SignatureValueRef IDREF #IMPLIED
SignatureCertRef IDREF #IMPLIED
RecipientRefs NMTOKENS #IMPLIED
>
<!ELEMENT KeyIdentifier EMPTY>
<!ATTLIST KeyIdentifier
value CDATA #REQUIRED
>
<!ELEMENT Parameter ANY >
<!ATTLIST Parameter
type CDATA #REQUIRED
>
<!--
******************************************************
* IOTP CERTIFICATE COMPONENT DEFINITION *
******************************************************
-->
<!ELEMENT Certificate
( IssuerAndSerialNumber, ( Value | Locator ) )
>
<!ATTLIST Certificate
ID ID #IMPLIED
type NMTOKEN #REQUIRED
>
<!ELEMENT IssuerAndSerialNumber EMPTY >
<!ATTLIST IssuerAndSerialNumber
issuer CDATA #REQUIRED
number CDATA #REQUIRED
>
<!--
******************************************************
* IOTP SHARED COMPONENT DEFINITION *
******************************************************
Burdett Informational [Page 276]
^L
RFC 2801 IOTP/1.0 April 2000
-->
<!ELEMENT Value ( #PCDATA ) >
<!ATTLIST Value
ID ID #IMPLIED
encoding (base64|none) 'base64'
>
<!ELEMENT Locator EMPTY>
<!ATTLIST Locator
xml:link CDATA #FIXED 'simple'
href CDATA #REQUIRED
>
14. Glossary
This section contains a glossary of some of the terms used within
this specification in alphabetical order.
NAME DESCRIPTION
Authenticator The Organisation which is requesting the
authentication of another Organisation, and
Authenticatee The Organisation being authenticated by an
Authenticator
Business Error See Status Component.
Brand A Brand is the mark which identifies a particular
type of Payment Instrument. A list of Brands are
the payment options which are presented by the
Merchant to the Consumer and from which the
Consumer makes a selection. Each Brand may have a
different Payment Handler. Examples of Brands
include:
o payment association and proprietary Brands,
for example MasterCard, Visa, American Express,
Diners Club, American Express, Mondex,
GeldKarte, CyberCash, etc.
o Promotional Brands (see below). These include:
o store Brands, where the Payment Instrument is
issued to a Consumer by a particular Merchant,
for example Walmart, Sears, or Marks and
Spencer (UK)
o coBrands, for example American Advantage Visa,
where an a company uses their own Brand in
conjunction with, typically, a payment
association Brand.
Burdett Informational [Page 277]
^L
RFC 2801 IOTP/1.0 April 2000
Consumer The Organisation which is to receive the benefit
of and typically pay for the goods or services.
ContentSoftwareId This contains information which identifies the
software which generated the content of the
element. Its purpose is to help resolve
interoperability problems that might occur as a
result of incompatibilities between messages
produced by different software. It is a single
text string in the language defined by xml:lang.
It must contain, as a minimum:
o the name of the software manufacturer
o the name of the software
o the version of the software, and
o the build of the software
It is recommended that this attribute is included
whenever the software which generated the content
cannot be identified from the SoftwareId attribute
on the Message Id Component (see section 3.3.2)
Customer Care An Organisation that is providing customer care
Provider typically on behalf of a Merchant. Examples of
customer care include, responding to problems
raised by a Consumer arising from an IOTP
Transaction that the Consumer took part in.
Delivery Handler The Organisation that directly delivers the goods
or services to the Consumer on behalf of the
Merchant. Delivery can be in the form of either
digital goods (e.g., a [MIME] message), or
physically delivered using the post or a courier.
Document Exchange A Document Exchange consists of a set of IOTP
Messages exchanged between two parties that
implement part or all of two Trading Exchanges
simultaneously in order to minimise the number of
actual IOTP Messages which must be sent over the
Internet.
Document Exchanges are combined together in
sequence to implement a particular IOTP
Transaction.
Dual Brand A Dual Brand means that a single Payment
Instrument may be used as if it were two separate
Brands. For example there could be a single
Japanese "UC" MasterCard which can be used as
Burdett Informational [Page 278]
^L
RFC 2801 IOTP/1.0 April 2000
either a UC card or a regular MasterCard. The UC
card Brand and the MasterCard Brand could each
have their own separate Payment Handlers. This
means that:
o the Merchant treats, for example "UC" and
"MasterCard" as two separate Brands when
offering a list of Brands to the Consumer,
o the Consumer chooses a Brand, for example
either "UC" or "MasterCard,
o the Consumer IOTP aware application determines
which Payment Instrument(s) match the chosen
Brand, and selects, perhaps with user
assistance, the correct Payment Instrument to
use.
Error Block An Error Block reports that a Technical Error was
found in an IOTP Message that was previously
received. Typically Technical Errors are caused by
errors in the XML which has been received or some
technical failure of the processing of the IOTP
Message. Frequently the generation or receipt of
an Error Block will result in failure of the IOTP
Transaction. They are distinct from Business
Errors, reported in a Status Component, which can
also cause failure of an IOTP Transaction.
Exchange Block An Exchange Block is sent between the two Trading
Roles involved in a Trading Exchange. It contains
one or more Trading Components. Exchange Blocks
are always sent after a Request Block and before a
Response Block in a Trading Exchange. The content
of an Exchange Block is dependent on the type of
Trading Exchange being carried out.
IOTP Message An IOTP Message is the outermost wrapper for the
document(s) which are sent between Trading Roles
that are taking part in a trade. It is a well
formed XML document. The documents it contains
consist of:
o a Transaction Reference Block to uniquely
identify the IOTP Transaction of which the IOTP
Message is part,
o an optional Signature Block to digitally sign
the Trading Blocks or Trading Components
associated with the IOTP Transaction
o an optional Error Block to report on technical
errors contained in a previously received IOTP
Message, and
Burdett Informational [Page 279]
^L
RFC 2801 IOTP/1.0 April 2000
o a collection of IOTP Trading Blocks which
carries the data required to carry out an IOTP
Transaction.
IOTP Transaction An instance of an Internet Open Trading Protocol
Transaction consists of a set of IOTP Messages
transferred between Trading Roles. The rules for
what may be contained in the IOTP Messages is
defined by the Transaction Type of the IOTP
Transaction.
IOTP Transaction A Transaction Type identifies the type an of IOTP
Type Transaction. Examples of Transaction Type include:
Purchase, Refund, Authentication, Withdrawal,
Deposit (of electronic cash). The Transaction Type
specifies for an IOTP Transaction:
o the Trading Exchanges which may be included in
the transaction,
o how those Trading Exchanges may be combined to
meet the business needs of the transaction
o which Trading Blocks may be included in the
IOTP Messages that make up the transaction
o Consult this specification for the rules that
apply for each Transaction Type.
Merchant The Organisation from whom the service or goods
are being obtained, who is legally responsible for
providing the goods or services and receives the
benefit of any payment made
Merchant Customer The Organisation that is involved with customer
Care Provider dispute negotiation and resolution on behalf of
the Merchant
Organisation A company or individual that takes part in a Trade
as a Trading Role. The Organisations may take one
or more of the roles involved in the Trade
Payment Handler The Organisation that physically receives the
payment from the Consumer on behalf of the
Merchant
Payment A Payment Instrument is the means by which
Instrument Consumer pays for goods or services offered by a
Merchant. It can be, for example:
o a credit card such as MasterCard or Visa;
o a debit card such as MasterCard's Maestro;
o a smart card based electronic cash Payment
Burdett Informational [Page 280]
^L
RFC 2801 IOTP/1.0 April 2000
Instrument such as a Mondex Card, a GeldKarte
card or a Visa Cash card
o a software based electronic payment account
such as a CyberCash's CyberCoin or DigiCash
account.
All Payment Instruments have a number, typically
an account number, by which the Payment Instrument
can be identified.
Promotional Brand A Promotional Brand means that, if the Consumer
pays with that Brand, then the Consumer will
receive some additional benefit which can be
received in two ways:
o at the time of purchase. For example if a
Consumer pays with a "Walmart MasterCard" at a
Walmart web site, then a 5% discount might
apply, which means the Consumer actually pays
less,
o from their Payment Instrument (card) issuer
when the payment appears on their statement.
For example loyalty points in a frequent flyer
scheme could be awarded based on the total
payments made with the Payment Instrument since
the last statement was issued.
Each Promotional Brand should be identified as a
separate Brand in the list of Brands offered by
the Merchant.
Receipt Component A Receipt Component is a record of the successful
completion of a Trading Exchange. Examples of
Receipt Components include: Payment Receipts, and
Delivery Notes. It's content may dependent on the
technology used to perform the Trading Exchange.
For example a Secure Electronic Transaction (SET)
payment receipt consists of SET payment messages
which record the result of the payment.
Request Block A Request Block is Trading Block that contains a
request for a Trading Exchange to start. The
Trading Components in a Request Block may be
signed by a Signature Block so that their
authenticity may be checked and to determine that
the Trading Exchange being requested is
authorised. Authorisation for a Trading Exchange
to start can be provided by the signatures
contained on Receipt Components contained in
Burdett Informational [Page 281]
^L
RFC 2801 IOTP/1.0 April 2000
Response Blocks resulting from previously
completed Trading Exchanges. Examples of Request
Blocks are Payment Request and Delivery Request
Response Block A Response Block is a Trading Block that indicates
that a Trading Exchange is complete. It is sent by
the Trading Role that received a Request Block to
the Trading Role that sent the Request Block. The
Response Block contains a Status Component that
contains information about the completion of the
Trading Exchange, for example it indicates whether
or not the Trading Exchange completed
successfully. For some Trading Exchanges the
Response Block contains a Receipt Component that
forms a record of the Trading Exchange. Receipt
Components may be digitally signed using a
Signature Block to make completion non-refutable.
Examples of Response Blocks include Offer
Response, Payment Response and Delivery Response.
Signature Block A Signature Block is a Trading Block that contains
one or more digital signatures in the form of
Signature Components. A Signature Component may
digitally sign any Block or Component in any IOTP
Message in the same IOTP Transaction.
Status Component A Status Component contains information that
describes the state of a Trading Exchange.
Before the Trading Exchange is complete the Status
Component can indicate information about how the
Trading Exchange is progressing.
Once a Trading Exchange is complete the Status
Component can only indicate the success of the
Trading Exchange or that a Business Error has
occurred.
A Business Error indicates that continuation with
the Trading Exchange was not possible because of
some business rule or logic, for example,
"insufficient funds available", rather than any
Technical Error associated with the content or
format of the IOTP Messages in the IOTP
Transaction.
Technical Error See Error Block.
Burdett Informational [Page 282]
^L
RFC 2801 IOTP/1.0 April 2000
Trading Block A Trading Block consists of one or more Trading
Components. One or more Trading Blocks may be
contained within the IOTP Messages which are
physically sent in the form of [XML] documents
between the different Trading Roles that are
taking part in a trade. Trading Blocks are of
three main types:
o a Request Block,
o an Exchange Block, or a
o a Response Block
Trading Component A Trading Component is a collection of XML
elements and attributes. Trading Components are
the child elements of the Trading Blocks. Examples
of Trading Components are: Offer, Brand List,
Payment Receipt, Delivery [information], Payment
Amount [information]
Trading Exchange A Trading Exchange consists of the exchange,
between two Trading Roles, of a sequence of
documents. The documents may be in the form of
Trading Blocks or they may be transferred by some
other means, for example through entering data
into a web page. Each Trading Exchange consists of
three main parts:
o the sending of a Request Block by one Trading
Role (the initiator) to another Trading Role
(the recipient),
o the optional exchange of one or more Exchange
Blocks between the recipient and the initiator,
until eventually,
o the Trading Role that received the Request
Block sends a Response Block to the initiator.
A Trading Exchange is designed to implement a
useful service of some kind. Examples of Trading
Exchanges/services are:
o Offer, which results in a Consumer receiving
an offer from a Merchant to carry out a
business transaction of some kind,
o Payment, where a Consumer makes a payment to a
Payment Handler,
o Delivery, where a Consumer requests, and
optionally obtains, delivery of goods or
services from a Delivery Handler, and
o Authentication, where any Trading Role may
request and receive information about another
Trading Role.
Burdett Informational [Page 283]
^L
RFC 2801 IOTP/1.0 April 2000
Trading Role A Trading Role identifies the different ways in
which Organisations can participate in a trade.
There are five Trading Roles: Consumer, Merchant,
Payment Handler, Delivery Handler, and Merchant
Customer Care Provider.
Transaction A Transaction Reference Block identifies an IOTP
Reference Block Transaction. It contains data that identifies:
o the Transaction Type,
o the IOTP Transaction uniquely, through a
globally unique transaction identifier
o the IOTP Message uniquely within the IOTP
Transaction, through a message identifier
The Transaction Reference Block may also contain
references to other transactions which may or may
not be IOTP Transactions
15. References
This section contains references to related documents identified in
this specification.
[Base64] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message
Bodies", RFC 2045, November 1996.
[DOM-HASH] Maruyama, H., Tamura, K. and N. Uramoto, "Digest Values
for DOM (DOMHASH)", RFC 2803, April 2000.
[DNS] Mockapetris, P., "Domain names - concepts and
facilities", STD 13, RFC 1034, November 1987.
[DNS] Mockapetris, P., "Domain names - implementation and
specification", STD 13, RFC 1035, November 1987.
[DSA] The Digital Signature Algorithm (DSA) published by the
National Institute of Standards and Technology (NIST) in
the Digital Signature Standard (DSS), which is a part of
the US government's Capstone project.
[ECCDSA] Elliptic Curve Cryptosystems Digital Signature Algorithm
(ECCDSA). Elliptic curve cryptosystems are analogues of
public-key cryptosystems such as RSA in which modular
multiplication is replaced by the elliptic curve addition
operation. See: V. S. Miller. Use of elliptic curves in
cryptography. In Advances in Cryptology - Crypto '85,
pages 417-426, Springer-Verlag, 1986.
Burdett Informational [Page 284]
^L
RFC 2801 IOTP/1.0 April 2000
[HMAC] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC: Keyed-
Hashing for Message Authentication", RFC 2104, February
1997.
[HTML] Berners-Lee, T. and D. Connolly, "Hypertext Markup
Language - 2.0", RFC 1866, November 1995.
[HTML] Hyper Text Mark Up Language. The Hypertext Mark-up
Language (HTML) is a simple mark-up language used to
create hypertext documents that are platform independent.
See the World Wide Web (W3C) consortium web site at:
http://www.w3.org/MarkUp/
[HTTP] Berners-Lee, T., Fielding, R. and H. Frystyk, "Hypertext
Transfer Protocol -- HTTP/1.0", RFC 1945, May 1996.
[HTTP] Fielding, R., Gettys, J., Mogul, J., Frystyk, T. and T.
Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1.",
RFC 2616, June 1999.
[IANA] The Internet Assigned Numbers Authority. The organisation
responsible for co-ordinating the names and numbers
associated with the Internet. See http://www.iana.org/
[ISO4217] ISO 4217: Codes for the Representation of Currencies.
Available from ANSI or ISO.
[IOTPDSIG] Davidson, K. and Y. Kawatsura, "Digital Signatures for
the v1.0 Internet Open Trading Protocol (IOTP)", RFC
2802, April 2000.
[MD5] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
April 1992.
[MIME] Crocker, D., "Standard for the Format of ARPA Internet
Text Messages", STD 11, RFC 822, August 1982.
[MIME] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message
Bodies", RFC 2045, November 1996.
[MIME] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part Two: Media Types", RFC 2046,
November 1996.
[MIME] Moore, K., "MIME (Multipurpose Internet Mail Extensions)
Part Three: Message Header Extensions for Non-ASCII Text"
RFC 2047, November 1996.
Burdett Informational [Page 285]
^L
RFC 2801 IOTP/1.0 April 2000
[MIME] Freed, N., Klensin, J. and J. Postel, "Multipurpose
Internet Mail Extensions (MIME) Part Four: Registration
Procedures", RFC 2048, November 1996.
[MIME] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part Five: Conformance Criteria and
Examples" RFC 2049, November 1996.
[OPS] Open Profiling Standard. A proposed standard which
provides a framework with built-in privacy safeguards for
the trusted exchange of profile information between
individuals and web sites. Being developed by Netscape
and Microsoft amongst others.
[RFC1738] Berners-Lee, T., Masinter, L. and M. McCahill, "Uniform
Resource Locators (URL)", RFC 1738, December 1994.
[RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", BCP 26, RFC 2434,
October 1998.
[RSA] RSA is a public-key cryptosystem for both encryption and
authentication supported by RSA Data Security Inc. See:
R. L. Rivest, A. Shamir, and L.M. Adleman. A method for
obtaining digital signatures and public-key
cryptosystems. Communications of the ACM, 21(2): 120-126,
February 1978.
[SCCD] Secure Channel Credit Debit. A method of conducting a
credit or debit card payment where unauthorised access to
account information is prevented through use of secure
channel transport mechanisms such as SSL/TLS. An IOTP
supplement describing how SCCD works is under
development.
[SET] Secure Electronic Transaction Specification, Version 1.0,
May 31, 1997. Supports credit and debit card payments
using certificates at the Consumer and Merchant to help
ensure authenticity. Download from:
<http://www.setco.org>.
[SSL/TLS] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.
[SHA1] [FIPS-180-1]"Secure Hash Standard", National Institute of
Standards and Technology, US Department Of Commerce,
April 1995. Also known as: 59 Fed Reg. 35317 (1994). See
http://www.itl.nist.gov/div897/pubs/fip180-1.htm
Burdett Informational [Page 286]
^L
RFC 2801 IOTP/1.0 April 2000
[UTC] Universal Time Co-ordinated. A method of defining time
absolutely relative to Greenwich Mean Time (GMT).
Typically of the form: "CCYY-MM-DDTHH:MM:SS.sssZ+n"
where the "+n" defines the number of hours from GMT. See
ISO DIS8601.
[UTF16] The Unicode Standard, Version 2.0. The Unicode
Consortium, Reading, Massachusetts. See ISO/IEC 10646 1
Proposed Draft Amendment 1
[X.509] ITU Recommendation X.509 1993 | ISO/IEC 9594-8: 1995,
Including Draft Amendment 1: Certificate Extensions
(Version 3 Certificate)
[XML Recommendation for Namespaces in XML, World Wide Web
Namespace] Consortium, 14 January 1999, "http://www.w3.org/TR/REC-
xml-names"
[XML] Extensible Mark Up Language. A W3C recommendation. See
http://www.w3.org/TR/1998/REC-xml-19980210 for the 10
February 1998 version.
16. Author's Address
The author of this document is:
David Burdett
Commerce One
4440 Rosewood Drive, Bldg 4
Pleasanton
California 94588
USA
Phone: +1 (925) 520 4422
EMail: david.burdett@commerceone.com
The author of this document particularly wants to thank Mondex
International Limited (www.mondex.com) for the tremendous support
provided in the formative stages of the development of this
specification.
Burdett Informational [Page 287]
^L
RFC 2801 IOTP/1.0 April 2000
In addition the author appreciates the following contributors to this
protocol (in alphabetic order of company) without which it could not
have been developed.
- Phillip Mullarkey, British Telecom plc
- Andrew Marchewka, Canadian Imperial Bank of Commerce
- Brian Boesch, CyberCash Inc.
- Tom Arnold, CyberSource
- Terry Allen, Commerce One (formally Veo Systems)
- Richard Brown, GlobeSet Inc.
- Peter Chang, Hewlett Packard
- Masaaki Hiroya, Hitachi Ltd
- Yoshiaki Kawatsura, Hitachi Ltd
- Mark Linehan, International Business Machines
- Jonathan Sowler, JCP Computer Services Ltd
- John Wankmueller, MasterCard International
- Steve Fabes, Mondex International Ltd
- Donald Eastlake 3rd, Motorola Inc (formerly International
Business Machines Inc)
- Surendra Reddy, Oracle Corporation
- Akihiro Nakano, Plat Home, Inc. (ex Hitachi Ltd)
- Chris Smith, Royal Bank of Canada
- Hans Bernhard-Beykirch, SIZ (IT Development and Coordination
Centre of the German Savings Banks Organisation)
- W. Reid Carlisle, Spyrus (ex Citibank Universal Card Services,
formally AT&T Universal Card Services)
- Efrem Lipkin, Sun Microsystems
Burdett Informational [Page 288]
^L
RFC 2801 IOTP/1.0 April 2000
- Tony Lewis, Visa International
The author would also like to thank the following organisations for
their support:
- Amino Communications
- DigiCash
- Fujitsu
- General Information Systems
- Globe Id Software
- Hyperion
- InterTrader
- Nobil I T Corp
- Mercantec
- Netscape
- Nippon Telegraph and Telephone Corporation
- Oracle Corporation
- Smart Card Integrations Ltd.
- Spyrus
- Verifone
- Unisource nv
- Wells Fargo Bank
Burdett Informational [Page 289]
^L
RFC 2801 IOTP/1.0 April 2000
17. Full Copyright Statement
Copyright (C) The Internet Society (2000). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Burdett Informational [Page 290]
^L
|