1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
|
Network Working Group J. Altman
Request for Comments: 2950 Columbia University
Category: Standards Track September 2000
Telnet Encryption: CAST-128 64 bit Cipher Feedback
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2000). All Rights Reserved.
Abstract
This document specifies how to use the CAST-128 encryption algorithm
in cipher feedback mode with the telnet encryption option. Two key
sizes are defined: 40 bit and 128 bit.
1. Command Names and Codes
Encryption Type
CAST5_40_CFB64 8
CAST128_CFB64 10
Suboption Commands
CFB64_IV 1
CFB64_IV_OK 2
CFB64_IV_BAD 3
2. Command Meanings
IAC SB ENCRYPT IS CAST5_40_CFB64 CFB64_IV <initial vector> IAC SE
IAC SB ENCRYPT IS CAST128_CFB64 CFB64_IV <initial vector> IAC SE
The sender of this command generates a random 8 byte initial
vector, and sends it to the other side of the connection using the
CFB64_IV command. The initial vector is sent in clear text. Only
the side of the connection that is WILL ENCRYPT may send the
CFB64_IV command.
Altman Standards Track [Page 1]
^L
RFC 2950 CAST-128 64 bit Cipher Feedback September 2000
IAC SB ENCRYPT REPLY CAST5_40_CFB64 CFB64_IV_OK IAC SE
IAC SB ENCRYPT REPLY CAST128_CFB64 CFB64_IV_OK IAC SE
IAC SB ENCRYPT REPLY CAST5_40_CFB64 CFB64_IV_BAD IAC SE
IAC SB ENCRYPT REPLY CAST128_CFB64 CFB64_IV_BAD IAC SE
The sender of these commands either accepts or rejects the initial
vector received in a CFB64_IV command. Only the side of the
connection that is DO ENCRYPT may send the CFB64_IV_OK and
CFB64_IV_BAD commands. The CFB64_IV_OK command MUST be sent for
backwards compatibility with existing implementations; there really
isn't any reason why a sender would need to send the CFB64_IV_BAD
command except in the case of a protocol violation where the IV
sent was not of the correct length (i.e., 8 bytes).
3. Implementation Rules
Once a CFB64_IV_OK command has been received, the WILL ENCRYPT side
of the connection should do keyid negotiation using the ENC_KEYID
command. Once the keyid negotiation has successfully identified a
common keyid, then START and END commands may be sent by the side of
the connection that is WILL ENCRYPT. Data will be encrypted using
the CAST128 64 bit Cipher Feedback algorithm.
If encryption (decryption) is turned off and back on again, and the
same keyid is used when re-starting the encryption (decryption), the
intervening clear text must not change the state of the encryption
(decryption) machine.
If a START command is sent (received) with a different keyid, the
encryption (decryption) machine must be re-initialized immediately
following the end of the START command with the new key and the
initial vector sent (received) in the last CFB64_IV command.
If a new CFB64_IV command is sent (received), and encryption
(decryption) is enabled, the encryption (decryption) machine must be
re-initialized immediately following the end of the CFB64_IV command
with the new initial vector, and the keyid sent (received) in the
last START command.
If encryption (decryption) is not enabled when a CFB64_IV command is
sent (received), the encryption (decryption) machine must be re-
initialized after the next START command, with the keyid sent
(received) in that START command, and the initial vector sent
(received) in this CFB64_IV command.
Altman Standards Track [Page 2]
^L
RFC 2950 CAST-128 64 bit Cipher Feedback September 2000
4. Algorithm
CAST 64 bit Cipher Feedback
key --->+------+
+->| CAST |--+
| +------+ |
| v
INPUT --(---------->(+)+---> DATA
| |
+--------------+
Given:
iV: Initial vector, 64 bits (8 bytes) long.
Dn: the nth chunk of 64 bits (8 bytes) of data to encrypt (decrypt).
On: the nth chunk of 64 bits (8 bytes) of encrypted (decrypted) output.
V0 = CAST(iV, key)
On = Dn ^ Vn
V(n+1) = CAST(On, key)
5. Integration with the AUTHENTICATION telnet option
As noted in the telnet ENCRYPTION option specifications, a keyid
value of zero indicates the default encryption key, as might be
derived from the telnet AUTHENTICATION option. If the default
encryption key negotiated as a result of the telnet AUTHENTICATION
option contains less than 16 (5) bytes, then the CAST128_CFB64
(CAST5_40_CFB64) option must not be offered or used as a valid telnet
encryption option.
If there are less than 32 (10) bytes of key data, the first 16 (5)
bytes of key data are used as keyid 0 in each direction. If there
are at least 32 (10) bytes of key data, the first 16 (5) bytes of key
data are used to encrypt the data sent by the telnet client to the
telnet server; the second 16 (5) bytes of key data are used to
encrypt the data sent by the telnet server to the telnet client.
Any extra key data is used as random data to be sent as an
initialization vector.
6. Security Considerations
Encryption using Cipher Feedback does not ensure data integrity; the
active attacker has a limited ability to modify text, if he can
predict the clear-text that was being transmitted. The limitations
faced by the attacker (that only 8 bytes can be modified at a time,
Altman Standards Track [Page 3]
^L
RFC 2950 CAST-128 64 bit Cipher Feedback September 2000
and the following 8-byte block of data will be corrupted, thus making
detection likely) are significant, but it is possible that an active
attacker still might be able to exploit this weakness.
The tradeoff here is that adding a message authentication code (MAC)
will significantly increase the number of bytes needed to send a
single character in the telnet protocol, which will impact
performance on slow (i.e. dialup) links.
Encryption modes using 40-bit keys are not to be considered secure.
The 40 bit key mode CAST5_40_CFB64 is listed here simply to document
the implementations that are already prevalent on the Internet but
have never been documented.
7. Acknowledgments
This document was based on the "Telnet Encryption: DES 64 bit Cipher
Feedback" document originally written by Dave Borman of Cray Research
with the assistance of the IETF Telnet Working Group.
8. References
[1] Adams, C., "The CAST-128 Encryption Algorithm", RFC 2144, May
1997.
Author's Address
Jeffrey Altman, Editor
Columbia University
612 West 115th Street Room 716
New York NY 10025 USA
Phone: +1 (212) 854-1344
EMail: jaltman@columbia.edu
Altman Standards Track [Page 4]
^L
RFC 2950 CAST-128 64 bit Cipher Feedback September 2000
Full Copyright Statement
Copyright (C) The Internet Society (2000). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Altman Standards Track [Page 5]
^L
|