1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
|
Network Working Group C. Bormann, Editor, TZI/Uni Bremen
Request for Comments: 3095 C. Burmeister, Matsushita
Category: Standards Track M. Degermark, Univ. of Arizona
H. Fukushima, Matsushita
H. Hannu, Ericsson
L-E. Jonsson, Ericsson
R. Hakenberg, Matsushita
T. Koren, Cisco
K. Le, Nokia
Z. Liu, Nokia
A. Martensson, Ericsson
A. Miyazaki, Matsushita
K. Svanbro, Ericsson
T. Wiebke, Matsushita
T. Yoshimura, NTT DoCoMo
H. Zheng, Nokia
July 2001
RObust Header Compression (ROHC):
Framework and four profiles: RTP, UDP, ESP, and uncompressed
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2001). All Rights Reserved.
Abstract
This document specifies a highly robust and efficient header
compression scheme for RTP/UDP/IP (Real-Time Transport Protocol, User
Datagram Protocol, Internet Protocol), UDP/IP, and ESP/IP
(Encapsulating Security Payload) headers.
Existing header compression schemes do not work well when used over
links with significant error rates and long round-trip times. For
many bandwidth limited links where header compression is essential,
such characteristics are common.
Bormann, et al. Standards Track [Page 1]
^L
RFC 3095 Robust Header Compression July 2001
This is done in a framework designed to be extensible. For example,
a scheme for compressing TCP/IP headers will be simple to add, and is
in development. Headers specific to Mobile IPv4 are not subject to
special treatment, but are expected to be compressed sufficiently
well by the provided methods for compression of sequences of
extension headers and tunneling headers. For the most part, the same
will apply to work in progress on Mobile IPv6, but future work might
be required to handle some extension headers, when a standards track
Mobile IPv6 has been completed.
Table of Contents
1. Introduction....................................................6
2. Terminology.....................................................8
2.1. Acronyms.....................................................13
3. Background.....................................................14
3.1. Header compression fundamentals..............................14
3.2. Existing header compression schemes..........................14
3.3. Requirements on a new header compression scheme..............16
3.4. Classification of header fields..............................17
4. Header compression framework...................................18
4.1. Operating assumptions........................................18
4.2. Dynamicity...................................................19
4.3. Compression and decompression states.........................21
4.3.1. Compressor states..........................................21
4.3.1.1. Initialization and Refresh (IR) State....................22
4.3.1.2. First Order (FO) State...................................22
4.3.1.3. Second Order (SO) State..................................22
4.3.2. Decompressor states........................................23
4.4. Modes of operation...........................................23
4.4.1. Unidirectional mode -- U-mode..............................24
4.4.2. Bidirectional Optimistic mode -- O-mode....................25
4.4.3. Bidirectional Reliable mode -- R-mode......................25
4.5. Encoding methods.............................................25
4.5.1. Least Significant Bits (LSB) encoding .....................25
4.5.2. Window-based LSB encoding (W-LSB encoding).................28
4.5.3. Scaled RTP Timestamp encoding .............................28
4.5.4. Timer-based compression of RTP Timestamp...................31
4.5.5. Offset IP-ID encoding......................................34
4.5.6. Self-describing variable-length values ....................35
4.5.7. Encoded values across several fields in compressed headers 36
4.6. Errors caused by residual errors.............................36
4.7. Impairment considerations....................................37
5. The protocol...................................................39
5.1. Data structures..............................................39
5.1.1. Per-channel parameters.....................................39
5.1.2. Per-context parameters, profiles...........................40
5.1.3. Contexts and context identifiers ..........................41
Bormann, et al. Standards Track [Page 2]
^L
RFC 3095 Robust Header Compression July 2001
5.2. ROHC packets and packet types................................41
5.2.1. ROHC feedback .............................................43
5.2.2. ROHC feedback format ......................................45
5.2.3. ROHC IR packet type .......................................47
5.2.4. ROHC IR-DYN packet type ...................................48
5.2.5. ROHC segmentation..........................................49
5.2.5.1. Segmentation usage considerations........................49
5.2.5.2. Segmentation protocol....................................50
5.2.6. ROHC initial decompressor processing.......................51
5.2.7. ROHC RTP packet formats from compressor to decompressor....53
5.2.8. Parameters needed for mode transition in ROHC RTP..........54
5.3. Operation in Unidirectional mode.............................55
5.3.1. Compressor states and logic (U-mode).......................55
5.3.1.1. State transition logic (U-mode)..........................55
5.3.1.1.1. Optimistic approach, upwards transition................55
5.3.1.1.2. Timeouts, downward transition..........................56
5.3.1.1.3. Need for updates, downward transition..................56
5.3.1.2. Compression logic and packets used (U-mode)..............56
5.3.1.3. Feedback in Unidirectional mode..........................56
5.3.2. Decompressor states and logic (U-mode).....................56
5.3.2.1. State transition logic (U-mode)..........................57
5.3.2.2. Decompression logic (U-mode).............................57
5.3.2.2.1. Decide whether decompression is allowed................57
5.3.2.2.2. Reconstruct and verify the header......................57
5.3.2.2.3. Actions upon CRC failure...............................58
5.3.2.2.4. Correction of SN LSB wraparound........................60
5.3.2.2.5. Repair of incorrect SN updates.........................61
5.3.2.3. Feedback in Unidirectional mode..........................62
5.4. Operation in Bidirectional Optimistic mode...................62
5.4.1. Compressor states and logic (O-mode).......................62
5.4.1.1. State transition logic...................................63
5.4.1.1.1. Negative acknowledgments (NACKs), downward transition..63
5.4.1.1.2. Optional acknowledgments, upwards transition...........63
5.4.1.2. Compression logic and packets used.......................63
5.4.2. Decompressor states and logic (O-mode).....................64
5.4.2.1. Decompression logic, timer-based timestamp decompression.64
5.4.2.2. Feedback logic (O-mode)..................................64
5.5. Operation in Bidirectional Reliable mode.....................65
5.5.1. Compressor states and logic (R-mode).......................65
5.5.1.1. State transition logic (R-mode)..........................65
5.5.1.1.1. Upwards transition.....................................65
5.5.1.1.2. Downward transition....................................66
5.5.1.2. Compression logic and packets used (R-mode)..............66
5.5.2. Decompressor states and logic (R-mode).....................68
5.5.2.1. Decompression logic (R-mode).............................68
5.5.2.2. Feedback logic (R-mode)..................................68
5.6. Mode transitions.............................................69
5.6.1. Compression and decompression during mode transitions......70
Bormann, et al. Standards Track [Page 3]
^L
RFC 3095 Robust Header Compression July 2001
5.6.2. Transition from Unidirectional to Optimistic mode..........71
5.6.3. From Optimistic to Reliable mode...........................72
5.6.4. From Unidirectional to Reliable mode.......................72
5.6.5. From Reliable to Optimistic mode...........................72
5.6.6. Transition to Unidirectional mode..........................73
5.7. Packet formats...............................................74
5.7.1. Packet type 0: UO-0, R-0, R-0-CRC .........................78
5.7.2. Packet type 1 (R-mode): R-1, R-1-TS, R-1-ID ...............79
5.7.3. Packet type 1 (U/O-mode): UO-1, UO-1-ID, UO-1-TS ..........80
5.7.4. Packet type 2: UOR-2 ......................................82
5.7.5. Extension formats..........................................83
5.7.5.1. RND flags and packet types...............................88
5.7.5.2. Flags/Fields in context..................................89
5.7.6. Feedback packets and formats...............................90
5.7.6.1. Feedback formats for ROHC RTP............................90
5.7.6.2. ROHC RTP Feedback options................................91
5.7.6.3. The CRC option...........................................92
5.7.6.4. The REJECT option........................................92
5.7.6.5. The SN-NOT-VALID option..................................92
5.7.6.6. The SN option............................................93
5.7.6.7. The CLOCK option.........................................93
5.7.6.8. The JITTER option........................................93
5.7.6.9. The LOSS option..........................................94
5.7.6.10. Unknown option types....................................94
5.7.6.11. RTP feedback example....................................94
5.7.7. RTP IR and IR-DYN packets..................................96
5.7.7.1. Basic structure of the IR packet.........................96
5.7.7.2. Basic structure of the IR-DYN packet.....................98
5.7.7.3. Initialization of IPv6 Header [IPv6].....................99
5.7.7.4. Initialization of IPv4 Header [IPv4, section 3.1].......100
5.7.7.5. Initialization of UDP Header [RFC-768]..................101
5.7.7.6. Initialization of RTP Header [RTP]......................102
5.7.7.7. Initialization of ESP Header [ESP, section 2]...........103
5.7.7.8. Initialization of Other Headers.........................104
5.8. List compression............................................104
5.8.1. Table-based item compression..............................105
5.8.1.1. Translation table in R-mode.............................105
5.8.1.2. Translation table in U/O-modes..........................106
5.8.2. Reference list determination..............................106
5.8.2.1. Reference list in R-mode and U/O-mode...................107
5.8.3. Encoding schemes for the compressed list..................109
5.8.4. Special handling of IP extension headers..................112
5.8.4.1. Next Header field.......................................112
5.8.4.2. Authentication Header (AH)..............................114
5.8.4.3. Encapsulating Security Payload Header (ESP).............115
5.8.4.4. GRE Header [RFC 2784, RFC 2890].........................117
5.8.5. Format of compressed lists in Extension 3.................119
5.8.5.1. Format of IP Extension Header(s) field..................119
Bormann, et al. Standards Track [Page 4]
^L
RFC 3095 Robust Header Compression July 2001
5.8.5.2. Format of Compressed CSRC List..........................120
5.8.6. Compressed list formats...................................120
5.8.6.1. Encoding Type 0 (generic scheme)........................120
5.8.6.2. Encoding Type 1 (insertion only scheme).................122
5.8.6.3. Encoding Type 2 (removal only scheme)...................123
5.8.6.4. Encoding Type 3 (remove then insert scheme).............124
5.8.7. CRC coverage for extension headers........................124
5.9. Header compression CRCs, coverage and polynomials...........125
5.9.1. IR and IR-DYN packet CRCs.................................125
5.9.2. CRCs in compressed headers................................125
5.10. ROHC UNCOMPRESSED -- no compression (Profile 0x0000).......126
5.10.1. IR packet................................................126
5.10.2. Normal packet............................................127
5.10.3. States and modes.........................................128
5.10.4. Feedback.................................................129
5.11. ROHC UDP -- non-RTP UDP/IP compression (Profile 0x0002)....129
5.11.1. Initialization...........................................130
5.11.2. States and modes.........................................130
5.11.3. Packet types.............................................131
5.11.4. Extensions...............................................132
5.11.5. IP-ID....................................................133
5.11.6. Feedback.................................................133
5.12. ROHC ESP -- ESP/IP compression (Profile 0x0003)............133
5.12.1. Initialization...........................................133
5.12.2. Packet types.............................................134
6. Implementation issues.........................................134
6.1. Reverse decompression.......................................134
6.2. RTCP........................................................135
6.3. Implementation parameters and signals.......................136
6.3.1. ROHC implementation parameters at compressor..............137
6.3.2. ROHC implementation parameters at decompressor............138
6.4. Handling of resource limitations at the decompressor........139
6.5. Implementation structures...................................139
6.5.1. Compressor context........................................139
6.5.2. Decompressor context......................................141
6.5.3. List compression: Sliding windows in R-mode and U/O-mode..142
7. Security Considerations.......................................143
8. IANA Considerations...........................................144
9. Acknowledgments...............................................145
10. Intellectual Property Right Claim Considerations.............145
11. References...................................................146
11.1. Normative References.......................................146
11.2. Informative References.....................................147
12. Authors' Addresses...........................................148
Appendix A. Detailed classification of header fields.............152
A.1. General classification......................................153
A.1.1. IPv6 header fields........................................153
A.1.2. IPv4 header fields........................................155
Bormann, et al. Standards Track [Page 5]
^L
RFC 3095 Robust Header Compression July 2001
A.1.3. UDP header fields.........................................157
A.1.4. RTP header fields.........................................157
A.1.5. Summary for IP/UDP/RTP....................................159
A.2. Analysis of change patterns of header fields................159
A.2.1. IPv4 Identification.......................................162
A.2.2. IP Traffic-Class / Type-Of-Service........................163
A.2.3. IP Hop-Limit / Time-To-Live...............................163
A.2.4. UDP Checksum..............................................163
A.2.5. RTP CSRC Counter..........................................164
A.2.6. RTP Marker................................................164
A.2.7. RTP Payload Type..........................................164
A.2.8. RTP Sequence Number.......................................164
A.2.9. RTP Timestamp.............................................164
A.2.10. RTP Contributing Sources (CSRC)..........................165
A.3. Header compression strategies...............................165
A.3.1. Do not send at all........................................165
A.3.2. Transmit only initially...................................165
A.3.3. Transmit initially, but be prepared to update.............166
A.3.4. Be prepared to update or send as-is frequently............166
A.3.5. Guarantee continuous robustness...........................166
A.3.6. Transmit as-is in all packets.............................167
A.3.7. Establish and be prepared to update delta.................167
Full Copyright Statement..........................................168
1. Introduction
During the last five years, two communication technologies in
particular have become commonly used by the general public: cellular
telephony and the Internet. Cellular telephony has provided its
users with the revolutionary possibility of always being reachable
with reasonable service quality no matter where they are. The main
service provided by the dedicated terminals has been speech. The
Internet, on the other hand, has from the beginning been designed for
multiple services and its flexibility for all kinds of usage has been
one of its strengths. Internet terminals have usually been general-
purpose and have been attached over fixed connections. The
experienced quality of some services (such as Internet telephony) has
sometimes been low.
Today, IP telephony is gaining momentum thanks to improved technical
solutions. It seems reasonable to believe that in the years to come,
IP will become a commonly used way to carry telephony. Some future
cellular telephony links might also be based on IP and IP telephony.
Cellular phones may have become more general-purpose, and may have IP
stacks supporting not only audio and video, but also web browsing,
email, gaming, etc.
Bormann, et al. Standards Track [Page 6]
^L
RFC 3095 Robust Header Compression July 2001
One of the scenarios we are envisioning might then be the one in
Figure 1.1, where two mobile terminals are communicating with each
other. Both are connected to base stations over cellular links, and
the base stations are connected to each other through a wired (or
possibly wireless) network. Instead of two mobile terminals, there
could of course be one mobile and one wired terminal, but the case
with two cellular links is technically more demanding.
Mobile Base Base Mobile
Terminal Station Station Terminal
| ~ ~ ~ \ / \ / ~ ~ ~ ~ |
| | | |
+--+ | | +--+
| | | | | |
| | | | | |
+--+ | | +--+
| |
|=========================|
Cellular Wired Cellular
Link Network Link
Figure 1.1 : Scenario for IP telephony over cellular links
It is obvious that the wired network can be IP-based. With the
cellular links, the situation is less clear. IP could be terminated
in the fixed network, and special solutions implemented for each
supported service over the cellular link. However, this would limit
the flexibility of the services supported. If technically and
economically feasible, a solution with pure IP all the way from
terminal to terminal would have certain advantages. However, to make
this a viable alternative, a number of problems have to be addressed,
in particular problems regarding bandwidth efficiency.
For cellular phone systems, it is of vital importance to use the
scarce radio resources in an efficient way. A sufficient number of
users per cell is crucial, otherwise deployment costs will be
prohibitive. The quality of the voice service should also be as good
as in today's cellular systems. It is likely that even with support
for new services, lower quality of the voice service is acceptable
only if costs are significantly reduced.
Bormann, et al. Standards Track [Page 7]
^L
RFC 3095 Robust Header Compression July 2001
A problem with IP over cellular links when used for interactive voice
conversations is the large header overhead. Speech data for IP
telephony will most likely be carried by RTP [RTP]. A packet will
then, in addition to link layer framing, have an IP [IPv4] header (20
octets), a UDP [UDP] header (8 octets), and an RTP header (12 octets)
for a total of 40 octets. With IPv6 [IPv6], the IP header is 40
octets for a total of 60 octets. The size of the payload depends on
the speech coding and frame sizes being used and may be as low as
15-20 octets.
From these numbers, the need for reducing header sizes for efficiency
reasons is obvious. However, cellular links have characteristics
that make header compression as defined in [IPHC,CRTP] perform less
than well. The most important characteristic is the lossy behavior
of cellular links, where a bit error rate (BER) as high as 1e-3 must
be accepted to keep the radio resources efficiently utilized. In
severe operating situations, the BER can be as high as 1e-2. The
other problematic characteristic is the long round-trip time (RTT) of
the cellular link, which can be as high as 100-200 milliseconds. An
additional problem is that the residual BER is nontrivial, i.e.,
lower layers can sometimes deliver frames containing undetected
errors. A viable header compression scheme for cellular links must
be able to handle loss on the link between the compression and
decompression point as well as loss before the compression point.
Bandwidth is the most costly resource in cellular links. Processing
power is very cheap in comparison. Implementation or computational
simplicity of a header compression scheme is therefore of less
importance than its compression ratio and robustness.
2. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119.
BER
Bit Error Rate. Cellular radio links can have a fairly high BER.
In this document BER is usually given as a probability, but one
also needs to consider the error distribution as bit errors are
not independent.
Bormann, et al. Standards Track [Page 8]
^L
RFC 3095 Robust Header Compression July 2001
Cellular links
Wireless links between mobile terminals and base stations.
Compression efficiency
The performance of a header compression scheme can be described
with three parameters: compression efficiency, robustness and
compression transparency. The compression efficiency is
determined by how much the header sizes are reduced by the
compression scheme.
Compression transparency
The performance of a header compression scheme can be described
with three parameters: compression efficiency, robustness, and
compression transparency. The compression transparency is a
measure of the extent to which the scheme ensures that the
decompressed headers are semantically identical to the original
headers. If all decompressed headers are semantically identical
to the corresponding original headers, the transparency is 100
percent. Compression transparency is high when damage propagation
is low.
Context
The context of the compressor is the state it uses to compress a
header. The context of the decompressor is the state it uses to
decompress a header. Either of these or the two in combination
are usually referred to as "context", when it is clear which is
intended. The context contains relevant information from previous
headers in the packet stream, such as static fields and possible
reference values for compression and decompression. Moreover,
additional information describing the packet stream is also part
of the context, for example information about how the IP
Identifier field changes and the typical inter-packet increase in
sequence numbers or timestamps.
Context damage
When the context of the decompressor is not consistent with the
context of the compressor, decompression may fail to reproduce the
original header. This situation can occur when the context of the
decompressor has not been initialized properly or when packets
have been lost or damaged between compressor and decompressor.
Bormann, et al. Standards Track [Page 9]
^L
RFC 3095 Robust Header Compression July 2001
Packets which cannot be decompressed due to inconsistent contexts
are said to be lost due to context damage. Packets that are
decompressed but contain errors due to inconsistent contexts are
said to be damaged due to context damage.
Context repair mechanism
Context repair mechanisms are mechanisms that bring the contexts
in sync when they were not. This is needed to avoid excessive
loss due to context damage. Examples are the context request
mechanism of CRTP, the NACK mechanisms of O- and R-mode, and the
periodic refreshes of U-mode.
Note that there are also mechanisms that prevent (some) context
inconsistencies from occurring, for example the ACK-based updates
of the context in R-mode, the repetitions after change in U- and
O-mode, and the CRCs which protect context updating information.
CRC-DYNAMIC
Opposite of CRC-STATIC.
CRC-STATIC
A CRC over the original header is the primary mechanism used by
ROHC to detect incorrect decompression. In order to decrease
computational complexity, the fields of the header are
conceptually rearranged when the CRC is computed, so that it is
first computed over octets which are static (called CRC-STATIC in
this document) and then over octets whose values are expected to
change between packets (CRC-DYNAMIC). In this manner, the
intermediate result of the CRC computation, after it has covered
the CRC-STATIC fields, can be reused for several packets. The
restarted CRC computation only covers the CRC-DYNAMIC octets. See
section 5.9.
Damage propagation
Delivery of incorrect decompressed headers, due to errors in
(i.e., loss of or damage to) previous header(s) or feedback.
Loss propagation
Loss of headers, due to errors in (i.e., loss of or damage to)
previous header(s)or feedback.
Bormann, et al. Standards Track [Page 10]
^L
RFC 3095 Robust Header Compression July 2001
Error detection
Detection of errors. If error detection is not perfect, there
will be residual errors.
Error propagation
Damage propagation or loss propagation.
Header compression profile
A header compression profile is a specification of how to compress
the headers of a certain kind of packet stream over a certain kind
of link. Compression profiles provide the details of the header
compression framework introduced in this document. The profile
concept makes use of profile identifiers to separate different
profiles which are used when setting up the compression scheme.
All variations and parameters of the header compression scheme
that are not part of the context state are handled by different
profile identifiers.
Packet
Generally, a unit of transmission and reception (protocol data
unit). Specifically, when contrasted with "frame", the packet
compressed and then decompressed by ROHC. Also called
"uncompressed packet".
Packet Stream
A sequence of packets where the field values and change patterns
of field values are such that the headers can be compressed using
the same context.
Pre-HC links
The Pre-HC links are all links that a packet has traversed before
the header compression point. If we consider a path with cellular
links as first and last hops, the Pre-HC links for the compressor
at the last link are the first cellular link plus the wired links
in between.
Residual error
Error introduced during transmission and not detected by lower-
layer error detection schemes.
Bormann, et al. Standards Track [Page 11]
^L
RFC 3095 Robust Header Compression July 2001
Robustness
The performance of a header compression scheme can be described
with three parameters: compression efficiency, robustness, and
compression transparency. A robust scheme tolerates loss and
residual errors on the link over which header compression takes
place without losing additional packets or introducing additional
errors in decompressed headers.
RTT
The RTT (round-trip time) is the time elapsing from the moment the
compressor sends a packet until it receives feedback related to
that packet (when such feedback is sent).
Spectrum efficiency
Radio resources are limited and expensive. Therefore they must be
used efficiently to make the system economically feasible. In
cellular systems this is achieved by maximizing the number of
users served within each cell, while the quality of the provided
services is kept at an acceptable level. A consequence of
efficient spectrum use is a high rate of errors (frame loss and
residual bit errors), even after channel coding with error
correction.
String
A sequence of headers in which the values of all fields being
compressed change according to a pattern which is fixed with
respect to a sequence number. Each header in a string can be
compressed by representing it with a ROHC header which essentially
only carries an encoded sequence number. Fields not being
compressed (e.g., random IP-ID, UDP Checksum) are irrelevant to
this definition.
Timestamp stride
The timestamp stride (TS_STRIDE) is the expected increase in the
timestamp value between two RTP packets with consecutive sequence
numbers.
Bormann, et al. Standards Track [Page 12]
^L
RFC 3095 Robust Header Compression July 2001
2.1. Acronyms
This section lists most acronyms used for reference.
AH Authentication Header.
CID Context Identifier.
CRC Cyclic Redundancy Check. Error detection mechanism.
CRTP Compressed RTP. RFC 2508.
CTCP Compressed TCP. Also called VJ header compression. RFC 1144.
ESP Encapsulating Security Payload.
FC Full Context state (decompressor).
FO First Order state (compressor).
GRE Generic Routing Encapsulation. RFC 2784, RFC 2890.
HC Header Compression.
IPHC IP Header Compression. RFC 2507.
IPX Flag in Extension 2.
IR Initiation and Refresh state (compressor). Also IR packet.
IR-DYN IR-DYN packet.
LSB Least Significant Bits.
MRRU Maximum Reconstructed Reception Unit.
MTU Maximum Transmission Unit.
MSB Most Significant Bits.
NBO Flag indicating whether the IP-ID is in Network Byte Order.
NC No Context state (decompressor).
O-mode Bidirectional Optimistic mode.
PPP Point-to-Point Protocol.
R-mode Bidirectional Reliable mode.
RND Flag indicating whether the IP-ID behaves randomly.
ROHC RObust Header Compression.
RTCP Real-Time Control Protocol. See RTP.
RTP Real-Time Protocol. RFC 1889.
RTT Round Trip Time (see section 2).
SC Static Context state (decompressor).
SN (compressed) Sequence Number. Usually RTP Sequence Number.
SO Second Order state (compressor).
SPI Security Parameters Index.
SSRC Sending source. Field in RTP header.
CSRC Contributing source. Optional list of CSRCs in RTP header.
TC Traffic Class. Octet in IPv6 header. See also TOS.
TOS Type Of Service. Octet in IPv4 header. See also TC.
TS (compressed) RTP Timestamp.
U-mode Unidirectional mode.
W-LSB Window based LSB encoding. See section 4.5.2.
Bormann, et al. Standards Track [Page 13]
^L
RFC 3095 Robust Header Compression July 2001
3. Background
This chapter provides a background to the subject of header
compression. The fundamental ideas are described together with
existing header compression schemes. Their drawbacks and
requirements are then discussed, providing motivation for new header
compression solutions.
3.1. Header compression fundamentals
The main reason why header compression can be done at all is the fact
that there is significant redundancy between header fields, both
within the same packet header but in particular between consecutive
packets belonging to the same packet stream. By sending static field
information only initially and utilizing dependencies and
predictability for other fields, the header size can be significantly
reduced for most packets.
Relevant information from past packets is maintained in a context.
The context information is used to compress (decompress) subsequent
packets. The compressor and decompressor update their contexts upon
certain events. Impairment events may lead to inconsistencies
between the contexts of the compressor and decompressor, which in
turn may cause incorrect decompression. A robust header compression
scheme needs mechanisms for avoiding context inconsistencies and also
needs mechanisms for making the contexts consistent when they were
not.
3.2. Existing header compression schemes
The original header compression scheme, CTCP [VJHC], was invented by
Van Jacobson. CTCP compresses the 40 octet IP+TCP header to 4
octets. The CTCP compressor detects transport-level retransmissions
and sends a header that updates the context completely when they
occur. This repair mechanism does not require any explicit signaling
between compressor and decompressor.
A general IP header compression scheme, IP header compression [IPHC],
improves somewhat on CTCP and can compress arbitrary IP, TCP, and UDP
headers. When compressing non-TCP headers, IPHC does not use delta
encoding and is robust. When compressing TCP, the repair mechanism
of CTCP is augmented with a link-level nacking scheme which speeds up
the repair. IPHC does not compress RTP headers.
CRTP [CRTP, IPHC] by Casner and Jacobson is a header compression
scheme that compresses 40 octets of IPv4/UDP/RTP headers to a minimum
of 2 octets when the UDP Checksum is not enabled. If the UDP
Checksum is enabled, the minimum CRTP header is 4 octets. CRTP
Bormann, et al. Standards Track [Page 14]
^L
RFC 3095 Robust Header Compression July 2001
cannot use the same repair mechanism as CTCP since UDP/RTP does not
retransmit. Instead, CRTP uses explicit signaling messages from
decompressor to compressor, called CONTEXT_STATE messages, to
indicate that the context is out of sync. The link round-trip time
will thus limit the speed of this context repair mechanism.
On lossy links with long round-trip times, such as most cellular
links, CRTP does not perform well. Each lost packet over the link
causes several subsequent packets to be lost since the context is out
of sync during at least one link round-trip time. This behavior is
documented in [CRTPC]. For voice conversations such long loss events
will degrade the voice quality. Moreover, bandwidth is wasted by the
large headers sent by CRTP when updating the context. [CRTPC] found
that CRTP did not perform well enough for a lossy cellular link. It
is clear that CRTP alone is not a viable header compression scheme
for IP telephony over cellular links.
To avoid losing packets due to the context being out of sync, CRTP
decompressors can attempt to repair the context locally by using a
mechanism known as TWICE. Each CRTP packet contains a counter which
is incremented by one for each packet sent out by the CRTP
compressor. If the counter increases by more than one, at least one
packet was lost over the link. The decompressor then attempts to
repair the context by guessing how the lost packet(s) would have
updated it. The guess is then verified by decompressing the packet
and checking the UDP Checksum -- if it succeeds, the repair is deemed
successful and the packet can be forwarded or delivered. TWICE
derives its name from the observation that when the compressed packet
stream is regular, the correct guess is to apply the update in the
current packet twice. [CRTPC] found that even with TWICE, CRTP
doubled the number of lost packets. TWICE improves CRTP performance
significantly. However, there are several problems with using TWICE:
1) It becomes mandatory to use the UDP Checksum:
- the minimal compressed header size increases by 100% to 4
octets.
- most speech codecs developed for cellular links tolerate errors
in the encoded data. Such codecs will not want to enable the
UDP Checksum, since they do want damaged packets to be
delivered.
- errors in the payload will make the UDP Checksum fail when the
guess is correct (and might make it succeed when the guess is
wrong).
Bormann, et al. Standards Track [Page 15]
^L
RFC 3095 Robust Header Compression July 2001
2) Loss in an RTP stream that occurs before the compression point
will make updates in CRTP headers less regular. Simple-minded
versions of TWICE will then perform badly. More sophisticated
versions would need more repair attempts to succeed.
3.3. Requirements on a new header compression scheme
The major problem with CRTP is that it is not sufficiently robust
against packets being damaged between compressor and decompressor. A
viable header compression scheme must be less fragile. This
increased robustness must be obtained without increasing the
compressed header size; a larger header would make IP telephony over
cellular links economically unattractive.
A major cause of the bad performance of CRTP over cellular links is
the long link round-trip time, during which many packets are lost
when the context is out of sync. This problem can be attacked
directly by finding ways to reduce the link round-trip time. Future
generations of cellular technologies may indeed achieve lower link
round-trip times. However, these will probably always be fairly
high. The benefits in terms of lower loss and smaller bandwidth
demands if the context can be repaired locally will be present even
if the link round-trip time is decreased. A reliable way to detect a
successful context repair is then needed.
One might argue that a better way to solve the problem is to improve
the cellular link so that packet loss is less likely to occur. Such
modifications do not appear to come for free, however. If links were
made (almost) error free, the system might not be able to support a
sufficiently large number of users per cell and might thus be
economically infeasible.
One might also argue that the speech codecs should be able to deal
with the kind of packet loss induced by CRTP, in particular since the
speech codecs probably must be able to deal with packet loss anyway
if the RTP stream crosses the Internet. While the latter is true,
the kind of loss induced by CRTP is difficult to deal with. It is
usually not possible to completely hide a loss event where well over
100 ms worth of sound is completely lost. If such loss occurs
frequently at both ends of the end-to-end path, the speech quality
will suffer.
A detailed description of the requirements specified for ROHC may be
found in [REQ].
Bormann, et al. Standards Track [Page 16]
^L
RFC 3095 Robust Header Compression July 2001
3.4. Classification of header fields
As mentioned earlier, header compression is possible due to the fact
that there is much redundancy between header field values within
packets, but especially between consecutive packets. To utilize
these properties for header compression, it is important to
understand the change patterns of the various header fields.
All header fields have been classified in detail in appendix A. The
fields are first classified at a high level and then some of them are
studied more in detail. Finally, the appendix concludes with
recommendations on how the various fields should be handled by header
compression algorithms. The main conclusion that can be drawn is
that most of the header fields can easily be compressed away since
they never or seldom change. Only 5 fields, with a combined size of
about 10 octets, need more sophisticated mechanisms. These fields
are:
- IPv4 Identification (16 bits) - IP-ID
- UDP Checksum (16 bits)
- RTP Marker (1 bit) - M-bit
- RTP Sequence Number (16 bits) - SN
- RTP Timestamp (32 bits) - TS
The analysis in Appendix A reveals that the values of the TS and IP-
ID fields can usually be predicted from the RTP Sequence Number,
which increments by one for each packet emitted by an RTP source.
The M-bit is also usually the same, but needs to be communicated
explicitly occasionally. The UDP Checksum should not be predicted
and is sent as-is when enabled.
The way ROHC RTP compression operates, then, is to first establish
functions from SN to the other fields, and then reliably communicate
the SN. Whenever a function from SN to another field changes, i.e.,
the existing function gives a result which is different from the
field in the header to be compressed, additional information is sent
to update the parameters of that function.
Headers specific to Mobile IP (for IPv4 or IPv6) do not receive any
special treatment in this document. They are compressible, however,
and it is expected that the compression efficiency for Mobile IP
headers will be good enough due to the handling of extension header
lists and tunneling headers. It would be relatively painless to
introduce a new ROHC profile with special treatment for Mobile IPv6
specific headers should the completed work on the Mobile IPv6
protocols (work in progress in the IETF) make that necessary.
Bormann, et al. Standards Track [Page 17]
^L
RFC 3095 Robust Header Compression July 2001
4. Header compression framework
4.1. Operating assumptions
Cellular links, which are a primary target for ROHC, have a number of
characteristics that are described briefly here. ROHC requires
functionality from lower layers that is outlined here and more
thoroughly described in the lower layer guidelines document [LLG].
Channels
ROHC header-compressed packets flow on channels. Unlike many
fixed links, some cellular radio links can have several channels
connecting the same pair of nodes. Each channel can have
different characteristics in terms of error rate, bandwidth, etc.
Context identifiers
On some channels, the ability to transport multiple packet streams
is required. It can also be feasible to have channels dedicated
to individual packet streams. Therefore, ROHC uses a distinct
context identifier space per channel and can eliminate context
identifiers completely for one of the streams when few streams
share a channel.
Packet type indication
Packet type indication is done in the header compression scheme
itself. Unless the link already has a way of indicating packet
types which can be used, such as PPP, this provides smaller
compressed headers overall. It may also be less difficult to
allocate a single packet type, rather than many, in order to run
ROHC over links such as PPP.
Reordering
The channel between compressor and decompressor is required to
maintain packet ordering, i.e., the decompressor must receive
packets in the same order as the compressor sent them.
(Reordering before the compression point, however, is dealt with,
i.e., there is no assumption that the compressor will only receive
packets in sequence.)
Bormann, et al. Standards Track [Page 18]
^L
RFC 3095 Robust Header Compression July 2001
Duplication
The channel between compressor and decompressor is required to not
duplicate packets. (Duplication before the compression point,
however, is dealt with, i.e., there is no assumption that the
compressor will receive only one copy of each packet.)
Packet length
ROHC is designed under the assumption that lower layers indicate
the length of a compressed packet. ROHC packets do not contain
length information for the payload.
Framing
The link layer must provide framing that makes it possible to
distinguish frame boundaries and individual frames.
Error detection/protection
The ROHC scheme has been designed to cope with residual errors in
the headers delivered to the decompressor. CRCs and sanity checks
are used to prevent or reduce damage propagation. However, it is
RECOMMENDED that lower layers deploy error detection for ROHC
headers and do not deliver ROHC headers with high residual error
rates.
Without giving a hard limit on the residual error rate acceptable
to ROHC, it is noted that for a residual bit error rate of at most
1E-5, the ROHC scheme has been designed not to increase the number
of damaged headers, i.e., the number of damaged headers due to
damage propagation is designed to be less than the number of
damaged headers caught by the ROHC error detection scheme.
Negotiation
In addition to the packet handling mechanisms above, the link
layer MUST provide a way to negotiate header compression
parameters, see also section 5.1.1. (For unidirectional links,
this negotiation may be performed out-of-band or even a priori.)
4.2. Dynamicity
The ROHC protocol achieves its compression gain by establishing state
information at both ends of the link, i.e., at the compressor and at
the decompressor. Different parts of the state are established at
different times and with different frequency; hence, it can be said
that some of the state information is more dynamic than the rest.
Bormann, et al. Standards Track [Page 19]
^L
RFC 3095 Robust Header Compression July 2001
Some state information is established at the time a channel is
established; ROHC assumes the existence of an out-of-band negotiation
protocol (such as PPP), or predefined channel state (most useful for
unidirectional links). In both cases, we speak of "negotiated
channel state". ROHC does not assume that this state can change
dynamically during the channel lifetime (and does not explicitly
support such changes, although some changes may be innocuous from a
protocol point of view). An example of negotiated channel state is
the highest context ID number to be used by the compressor (MAX_CID).
Other state information is associated with the individual packet
streams in the channel; this state is said to be part of the context.
Using context identifiers (CIDs), multiple packet streams with
different contexts can share a channel. The negotiated channel state
indicates the highest context identifier to be used, as well as the
selection of one of two ways to indicate the CID in the compressed
header.
It is up to the compressor to decide which packets to associate with
a context (or, equivalently, which packets constitute a single
stream); however, ROHC is efficient only when all packets of a stream
share certain properties, such as having the same values for fields
that are described as "static" in this document (e.g., the IP
addresses, port numbers, and RTP parameters such as the payload
type). The efficiency of ROHC RTP also depends on the compressor
seeing most RTP Sequence Numbers.
Streams need not share all characteristics important for compression.
ROHC has a notion of compression profiles: a compression profile
denotes a predefined set of such characteristics. To provide
extensibility, the negotiated channel state includes the set of
profiles acceptable to the decompressor. The context state includes
the profile currently in use for the context.
Other elements of the context state may include the current values of
all header fields (from these one can deduce whether an IPv4 header
is present in the header chain, and whether UDP Checksums are
enabled), as well as additional compression context that is not part
of an uncompressed header, e.g., TS_STRIDE, IP-ID characteristics
(incrementing as a 16-bit value in network byte order? random?), a
number of old reference headers, and the compressor/decompressor
state machines (see next section).
This document actually defines four ROHC profiles: One uncompressed
profile, the main ROHC RTP compression profile, and two variants of
this profile for compression of packets with header chains that end
Bormann, et al. Standards Track [Page 20]
^L
RFC 3095 Robust Header Compression July 2001
in UDP and ESP, respectively, but where RTP compression is not
applicable. The descriptive text in the rest of this section is
referring to the main ROHC RTP compression profile.
4.3. Compression and decompression states
Header compression with ROHC can be characterized as an interaction
between two state machines, one compressor machine and one
decompressor machine, each instantiated once per context. The
compressor and the decompressor have three states each, which in many
ways are related to each other even if the meaning of the states are
slightly different for the two parties. Both machines start in the
lowest compression state and transit gradually to higher states.
Transitions need not be synchronized between the two machines. In
normal operation it is only the compressor that temporarily transits
back to lower states. The decompressor will transit back only when
context damage is detected.
Subsequent sections present an overview of the state machines and
their corresponding states, respectively, starting with the
compressor.
4.3.1. Compressor states
For ROHC compression, the three compressor states are the
Initialization and Refresh (IR), First Order (FO), and Second Order
(SO) states. The compressor starts in the lowest compression state
(IR) and transits gradually to higher compression states. The
compressor will always operate in the highest possible compression
state, under the constraint that the compressor is sufficiently
confident that the decompressor has the information necessary to
decompress a header compressed according to that state.
+----------+ +----------+ +----------+
| IR State | <--------> | FO State | <--------> | SO State |
+----------+ +----------+ +----------+
Decisions about transitions between the various compression states
are taken by the compressor on the basis of:
- variations in packet headers
- positive feedback from decompressor (Acknowledgments -- ACKs)
- negative feedback from decompressor (Negative ACKs -- NACKs)
- periodic timeouts (when operating in unidirectional mode, i.e.,
over simplex channels or when feedback is not enabled)
Bormann, et al. Standards Track [Page 21]
^L
RFC 3095 Robust Header Compression July 2001
How transitions are performed is explained in detail in chapter 5 for
each mode of operation.
4.3.1.1. Initialization and Refresh (IR) State
The purpose of the IR state is to initialize the static parts of the
context at the decompressor or to recover after failure. In this
state, the compressor sends complete header information. This
includes all static and nonstatic fields in uncompressed form plus
some additional information.
The compressor stays in the IR state until it is fairly confident
that the decompressor has received the static information correctly.
4.3.1.2. First Order (FO) State
The purpose of the FO state is to efficiently communicate
irregularities in the packet stream. When operating in this state,
the compressor rarely sends information about all dynamic fields, and
the information sent is usually compressed at least partially. Only
a few static fields can be updated. The difference between IR and FO
should therefore be clear.
The compressor enters this state from the IR state, and from the SO
state whenever the headers of the packet stream do not conform to
their previous pattern. It stays in the FO state until it is
confident that the decompressor has acquired all the parameters of
the new pattern. Changes in fields that are always irregular are
communicated in all packets and are therefore part of what is a
uniform pattern.
Some or all packets sent in the FO state carry context updating
information. It is very important to detect corruption of such
packets to avoid erroneous updates and context inconsistencies.
4.3.1.3. Second Order (SO) State
This is the state where compression is optimal. The compressor
enters the SO state when the header to be compressed is completely
predictable given the SN (RTP Sequence Number) and the compressor is
sufficiently confident that the decompressor has acquired all
parameters of the functions from SN to other fields. Correct
decompression of packets sent in the SO state only hinges on correct
decompression of the SN. However, successful decompression also
requires that the information sent in the preceding FO state packets
has been successfully received by the decompressor.
Bormann, et al. Standards Track [Page 22]
^L
RFC 3095 Robust Header Compression July 2001
The compressor leaves this state and goes back to the FO state when
the header no longer conforms to the uniform pattern and cannot be
independently compressed on the basis of previous context
information.
4.3.2. Decompressor states
The decompressor starts in its lowest compression state, "No Context"
and gradually transits to higher states. The decompressor state
machine normally never leaves the "Full Context" state once it has
entered this state.
+--------------+ +----------------+ +--------------+
| No Context | <---> | Static Context | <---> | Full Context |
+--------------+ +----------------+ +--------------+
Initially, while working in the "No Context" state, the decompressor
has not yet successfully decompressed a packet. Once a packet has
been decompressed correctly (for example, upon reception of an
initialization packet with static and dynamic information), the
decompressor can transit all the way to the "Full Context" state, and
only upon repeated failures will it transit back to lower states.
However, when that happens it first transits back to the "Static
Context" state. There, reception of any packet sent in the FO state
is normally sufficient to enable transition to the "Full Context"
state again. Only when decompression of several packets sent in the
FO state fails in the "Static Context" state will the decompressor go
all the way back to the "No Context" state.
When state transitions are performed is explained in detail in
chapter 5.
4.4. Modes of operation
The ROHC scheme has three modes of operation, called Unidirectional,
Bidirectional Optimistic, and Bidirectional Reliable mode.
It is important to understand the difference between states, as
described in the previous chapter, and modes. These abstractions are
orthogonal to each other. The state abstraction is the same for all
modes of operation, while the mode controls the logic of state
transitions and what actions to perform in each state.
Bormann, et al. Standards Track [Page 23]
^L
RFC 3095 Robust Header Compression July 2001
+----------------------+
| Unidirectional Mode |
| +--+ +--+ +--+ |
| |IR| |FO| |SO| |
| +--+ +--+ +--+ |
+----------------------+
^ ^
/ \
/ \
v v
+----------------------+ +----------------------+
| Optimistic Mode | | Reliable Mode |
| +--+ +--+ +--+ | | +--+ +--+ +--+ |
| |IR| |FO| |SO| | <--------------> | |IR| |FO| |SO| |
| +--+ +--+ +--+ | | +--+ +--+ +--+ |
+----------------------+ +----------------------+
The optimal mode to operate in depends on the characteristics of the
environment of the compression protocol, such as feedback abilities,
error probabilities and distributions, effects of header size
variation, etc. All ROHC implementations MUST implement and support
all three modes of operation. The three modes are briefly described
in the following subsections.
Detailed descriptions of the three modes of operation regarding
compression and decompression logic are given in chapter 5. The mode
transition mechanisms, too, are described in chapter 5.
4.4.1. Unidirectional mode -- U-mode
When in the Unidirectional mode of operation, packets are sent in one
direction only: from compressor to decompressor. This mode therefore
makes ROHC usable over links where a return path from decompressor to
compressor is unavailable or undesirable.
In U-mode, transitions between compressor states are performed only
on account of periodic timeouts and irregularities in the header
field change patterns in the compressed packet stream. Due to the
periodic refreshes and the lack of feedback for initiation of error
recovery, compression in the Unidirectional mode will be less
efficient and have a slightly higher probability of loss propagation
compared to any of the Bidirectional modes.
Compression with ROHC MUST start in the Unidirectional mode.
Transition to any of the Bidirectional modes can be performed as soon
as a packet has reached the decompressor and it has replied with a
feedback packet indicating that a mode transition is desired (see
chapter 5).
Bormann, et al. Standards Track [Page 24]
^L
RFC 3095 Robust Header Compression July 2001
4.4.2. Bidirectional Optimistic mode -- O-mode
The Bidirectional Optimistic mode is similar to the Unidirectional
mode. The difference is that a feedback channel is used to send
error recovery requests and (optionally) acknowledgments of
significant context updates from decompressor to compressor (not,
however, for pure sequence number updates). Periodic refreshes are
not used in the Bidirectional Optimistic mode.
O-mode aims to maximize compression efficiency and sparse usage of
the feedback channel. It reduces the number of damaged headers
delivered to the upper layers due to residual errors or context
invalidation. The frequency of context invalidation may be higher
than for R-mode, in particular when long loss/error bursts occur.
Refer to section 4.7 for more details.
4.4.3. Bidirectional Reliable mode -- R-mode
The Bidirectional Reliable mode differs in many ways from the
previous two. The most important differences are a more intensive
usage of the feedback channel and a stricter logic at both the
compressor and the decompressor that prevents loss of context
synchronization between compressor and decompressor except for very
high residual bit error rates. Feedback is sent to acknowledge all
context updates, including updates of the sequence number field.
However, not every packet updates the context in Reliable mode.
R-mode aims to maximize robustness against loss propagation and
damage propagation, i.e., minimize the probability of context
invalidation, even under header loss/error burst conditions. It may
have a lower probability of context invalidation than O-mode, but a
larger number of damaged headers may be delivered when the context
actually is invalidated. Refer to section 4.7 for more details.
4.5. Encoding methods
This chapter describes the encoding methods used for header fields.
How the methods are applied to each field (e.g., values of associated
parameters) is specified in section 5.7.
4.5.1. Least Significant Bits (LSB) encoding
Least Significant Bits (LSB) encoding is used for header fields whose
values are usually subject to small changes. With LSB encoding, the
k least significant bits of the field value are transmitted instead
of the original field value, where k is a positive integer. After
receiving k bits, the decompressor derives the original value using a
previously received value as reference (v_ref).
Bormann, et al. Standards Track [Page 25]
^L
RFC 3095 Robust Header Compression July 2001
The scheme is guaranteed to be correct if the compressor and the
decompressor each use interpretation intervals
1) in which the original value resides, and
2) in which the original value is the only value that has the
exact same k least significant bits as those transmitted.
The interpretation interval can be described as a function f(v_ref,
k). Let
f(v_ref, k) = [v_ref - p, v_ref + (2^k - 1) - p]
where p is an integer.
<------- interpretation interval (size is 2^k) ------->
|-------------+---------------------------------------|
v_ref - p v_ref v_ref + (2^k-1) - p
The function f has the following property: for any value k, the k
least significant bits will uniquely identify a value in f(v_ref, k).
The parameter p is introduced so that the interpretation interval can
be shifted with respect to v_ref. Choosing a good value for p will
yield a more efficient encoding for fields with certain
characteristics. Below are some examples:
a) For field values that are expected always to increase, p can be
set to -1. The interpretation interval becomes
[v_ref + 1, v_ref + 2^k].
b) For field values that stay the same or increase, p can be set to
0. The interpretation interval becomes [v_ref, v_ref + 2^k - 1].
c) For field values that are expected to deviate only slightly from a
constant value, p can be set to 2^(k-1) - 1. The interpretation
interval becomes [v_ref - 2^(k-1) + 1, v_ref + 2^(k-1)].
d) For field values that are expected to undergo small negative
changes and larger positive changes, such as the RTP TS for video,
or RTP SN when there is misordering, p can be set to 2^(k-2) - 1.
The interval becomes [v_ref - 2^(k-2) + 1, v_ref + 3 * 2^(k-2)],
i.e., 3/4 of the interval is used for positive changes.
The following is a simplified procedure for LSB compression and
decompression; it is modified for robustness and damage propagation
protection in the next subsection:
Bormann, et al. Standards Track [Page 26]
^L
RFC 3095 Robust Header Compression July 2001
1) The compressor (decompressor) always uses v_ref_c (v_ref_d), the
last value that has been compressed (decompressed), as v_ref;
2) When compressing a value v, the compressor finds the minimum value
of k such that v falls into the interval f(v_ref_c, k). Call this
function k = g(v_ref_c, v). When only a few distinct values of k
are possible, for example due to limitations imposed by packet
formats (see section 5.7), the compressor will instead pick the
smallest k that puts v in the interval f(v_ref_c, k).
3) When receiving m LSBs, the decompressor uses the interpretation
interval f(v_ref_d, m), called interval_d. It picks as the
decompressed value the one in interval_d whose LSBs match the
received m bits.
Note that the values to be encoded have a finite range; for example,
the RTP SN ranges from 0 to 0xFFFF. When the SN value is close to 0
or 0xFFFF, the interpretation interval can straddle the wraparound
boundary between 0 and 0xFFFF.
The scheme is complicated by two factors: packet loss between the
compressor and decompressor, and transmission errors undetected by
the lower layer. In the former case, the compressor and decompressor
will lose the synchronization of v_ref, and thus also of the
interpretation interval. If v is still covered by the
intersection(interval_c, interval_d), the decompression will be
correct. Otherwise, incorrect decompression will result. The next
section will address this issue further.
In the case of undetected transmission errors, the corrupted LSBs
will give an incorrectly decompressed value that will later be used
as v_ref_d, which in turn is likely to lead to damage propagation.
This problem is addressed by using a secure reference, i.e., a
reference value whose correctness is verified by a protecting CRC.
Consequently, the procedure 1) above is modified as follows:
1) a) the compressor always uses as v_ref_c the last value that has
been compressed and sent with a protecting CRC.
b) the decompressor always uses as v_ref_d the last correct
value, as verified by a successful CRC.
Note that in U/O-mode, 1) b) is modified so that if decompression of
the SN fails using the last verified SN reference, another
decompression attempt is made using the last but one verified SN
reference. This procedure mitigates damage propagation when a small
CRC fails to detect a damaged value. See section 5.3.2.2.3 for
further details.
Bormann, et al. Standards Track [Page 27]
^L
RFC 3095 Robust Header Compression July 2001
4.5.2. Window-based LSB encoding (W-LSB encoding)
This section describes how to modify the simplified algorithm in
4.5.1 to achieve robustness.
The compressor may not be able to determine the exact value of
v_ref_d that will be used by the decompressor for a particular value
v, since some candidates for v_ref_d may have been lost or damaged.
However, by using feedback or by making reasonable assumptions, the
compressor can limit the candidate set. The compressor then
calculates k such that no matter which v_ref_d in the candidate set
the decompressor uses, v is covered by the resulting interval_d.
Since the decompressor always uses as the reference the last received
value where the CRC succeeded, the compressor maintains a sliding
window containing the candidates for v_ref_d. The sliding window is
initially empty. The following operations are performed on the
sliding window by the compressor:
1) After sending a value v (compressed or uncompressed) protected by
a CRC, the compressor adds v to the sliding window.
2) For each value v being compressed, the compressor chooses k =
max(g(v_min, v), g(v_max, v)), where v_min and v_max are the
minimum and maximum values in the sliding window, and g is the
function defined in the previous section.
3) When the compressor is sufficiently confident that a certain value
v and all values older than v will not be used as reference by the
decompressor, the window is advanced by removing those values
(including v). The confidence may be obtained by various means.
In R-mode, an ACK from the decompressor implies that values older
than the ACKed one can be removed from the sliding window. In
U/O-mode there is always a CRC to verify correct decompression,
and a sliding window with a limited maximum width is used. The
window width is an implementation dependent optimization
parameter.
Note that the decompressor follows the procedure described in the
previous section, except that in R-mode it MUST ACK each header
received with a succeeding CRC (see also section 5.5).
4.5.3. Scaled RTP Timestamp encoding
The RTP Timestamp (TS) will usually not increase by an arbitrary
number from packet to packet. Instead, the increase is normally an
integral multiple of some unit (TS_STRIDE). For example, in the case
of audio, the sample rate is normally 8 kHz and one voice frame may
Bormann, et al. Standards Track [Page 28]
^L
RFC 3095 Robust Header Compression July 2001
cover 20 ms. Furthermore, each voice frame is often carried in one
RTP packet. In this case, the RTP increment is always n * 160 (=
8000 * 0.02), for some integer n. Note that silence periods have no
impact on this, as the sample clock at the source normally keeps
running without changing either frame rate or frame boundaries.
In the case of video, there is usually a TS_STRIDE as well when the
video frame level is considered. The sample rate for most video
codecs is 90 kHz. If the video frame rate is fixed, say, to 30
frames/second, the TS will increase by n * 3000 (= n * 90000 / 30)
between video frames. Note that a video frame is often divided into
several RTP packets to increase robustness against packet loss. In
this case several RTP packets will carry the same TS.
When using scaled RTP Timestamp encoding, the TS is downscaled by a
factor of TS_STRIDE before compression. This saves
floor(log2(TS_STRIDE))
bits for each compressed TS. TS and TS_SCALED satisfy the following
equality:
TS = TS_SCALED * TS_STRIDE + TS_OFFSET
TS_STRIDE is explicitly, and TS_OFFSET implicitly, communicated to
the decompressor. The following algorithm is used:
1. Initialization: The compressor sends to the decompressor the value
of TS_STRIDE and the absolute value of one or several TS fields.
The latter are used by the decompressor to initialize TS_OFFSET to
(absolute value) modulo TS_STRIDE. Note that TS_OFFSET is the
same regardless of which absolute value is used, as long as the
unscaled TS value does not wrap around; see 4) below.
2. Compression: After initialization, the compressor no longer
compresses the original TS values. Instead, it compresses the
downscaled values: TS_SCALED = TS / TS_STRIDE. The compression
method could be either W-LSB encoding or the timer-based encoding
described in the next section.
3. Decompression: When receiving the compressed value of TS_SCALED,
the decompressor first derives the value of the original
TS_SCALED. The original RTP TS is then calculated as TS =
TS_SCALED * TS_STRIDE + TS_OFFSET.
4. Offset at wraparound: Wraparound of the unscaled 32-bit TS will
invalidate the current value of TS_OFFSET used in the equation
above. For example, let us assume TS_STRIDE = 160 = 0xA0 and the
Bormann, et al. Standards Track [Page 29]
^L
RFC 3095 Robust Header Compression July 2001
current TS = 0xFFFFFFF0. TS_OFFSET is then 0x50 = 80. Then if
the next RTP TS = 0x00000130 (i.e., the increment is 160 * 2 =
320), the new TS_OFFSET should be 0x00000130 modulo 0xA0 = 0x90 =
144. The compressor is not required to re-initialize TS_OFFSET at
wraparound. Instead, the decompressor MUST detect wraparound of
the unscaled TS (which is trivial) and update TS_OFFSET to
TS_OFFSET = (Wrapped around unscaled TS) modulo TS_STRIDE
5. Interpretation interval at wraparound: Special rules are needed
for the interpretation interval of the scaled TS at wraparound,
since the maximum scaled TS, TSS_MAX, (0xFFFFFFFF / TS_STRIDE) may
not have the form 2^m - 1. For example, when TS_STRIDE is 160,
the scaled TS is at most 26843545 which has LSBs 10011001. The
wraparound boundary between the TSS_MAX may thus not correspond to
a natural boundary between LSBs.
interpretation interval
|<------------------------------>|
unused scaled TS
------------|--------------|---------------------->
TSS_MAX zero
When TSS_MAX is part of the interpretation interval, a number of
unused values are inserted into it after TSS_MAX such that their
LSBs follow naturally upon each other. For example, for TS_STRIDE
= 160 and k = 4, values corresponding to the LSBs 1010 through
1111 are inserted. The number of inserted values depends on k and
the LSBs of the maximum scaled TS. The number of valid values in
the interpretation interval should be high enough to maintain
robustness. This can be ensured by the following rule:
Let a be the number of LSBs needed if there was no
wraparound, and let b be the number of LSBs needed to
disambiguate between TSS_MAX and zero where the a LSBs of
TSS_MAX are set to zero. The number of LSB bits to send
while TSS_MAX or zero is part of the interpretation interval
is b.
This scaling method can be applied to many frame-based codecs.
However, the value of TS_STRIDE might change during a session, for
example as a result of adaptation strategies. If that happens, the
unscaled TS is compressed until re-initialization of the new
TS_STRIDE and TS_OFFSET is completed.
Bormann, et al. Standards Track [Page 30]
^L
RFC 3095 Robust Header Compression July 2001
4.5.4. Timer-based compression of RTP Timestamp
The RTP Timestamp [RFC 1889] is defined to identify the number of the
first sample used to generate the payload. When 1) RTP packets carry
payloads corresponding to a fixed sampling interval, 2) the sampling
is done at a constant rate, and 3) packets are generated in lock-step
with sampling, then the timestamp value will closely approximate a
linear function of the time of day. This is the case for
conversational media, such as interactive speech. The linear ratio
is determined by the source sample rate. The linear pattern can be
complicated by packetization (e.g., in the case of video where a
video frame usually corresponds to several RTP packets) or frame
rearrangement (e.g., B-frames are sent out-of-order by some video
codecs).
With a fixed sample rate of 8 kHz, 20 ms in the time domain is
equivalent to an increment of 160 in the unscaled TS domain, and to
an increment of 1 in the scaled TS domain with TS_STRIDE = 160.
As a consequence, the (scaled) TS of headers arriving at the
decompressor will be a linear function of time of day, with some
deviation due to the delay jitter (and the clock inaccuracies)
between the source and the decompressor. In normal operation, i.e.,
no crashes or failures, the delay jitter will be bounded to meet the
requirements of conversational real-time traffic. Hence, by using a
local clock the decompressor can obtain an approximation of the
(scaled) TS in the header to be decompressed by considering its
arrival time. The approximation can then be refined with the k LSBs
of the (scaled) TS carried in the header. The value of k required to
ensure correct decompression is a function of the jitter between the
source and the decompressor.
If the compressor knows the potential jitter introduced between
compressor and decompressor, it can determine k by using a local
clock to estimate jitter in packet arrival times, or alternatively it
can use a fixed k and discard packets arriving too much out of time.
The advantages of this scheme include:
a) The size of the compressed TS is constant and small. In
particular, it does NOT depend on the length of silence intervals.
This is in contrast to other TS compression techniques, which at
the beginning of a talkspurt require sending a number of bits
dependent on the duration of the preceding silence interval.
b) No synchronization is required between the clock local to the
compressor and the clock local to the decompressor.
Bormann, et al. Standards Track [Page 31]
^L
RFC 3095 Robust Header Compression July 2001
Note that although this scheme can be made to work using both scaled
and unscaled TS, in practice it is always combined with scaled TS
encoding because of the less demanding requirement on the clock
resolution, e.g., 20 ms instead of 1/8 ms. Therefore, the algorithm
described below assumes that the clock-based encoding scheme operates
on the scaled TS. The case of unscaled TS would be similar, with
changes to scale factors.
The major task of the compressor is to determine the value of k. Its
sliding window now contains not only potential reference values for
the TS but also their times of arrival at the compressor.
1) The compressor maintains a sliding window
{(T_j, a_j), for each header j that can be used as a reference},
where T_j is the scaled TS for header j, and a_j is the arrival
time of header j. The sliding window serves the same purpose as
the W-LSB sliding window of section 4.5.2.
2) When a new header n arrives with T_n as the scaled TS, the
compressor notes the arrival time a_n. It then calculates
Max_Jitter_BC =
max {|(T_n - T_j) - ((a_n - a_j) / TIME_STRIDE)|,
for all headers j in the sliding window},
where TIME_STRIDE is the time interval equivalent to one
TS_STRIDE, e.g., 20 ms. Max_Jitter_BC is the maximum observed
jitter before the compressor, in units of TS_STRIDE, for the
headers in the sliding window.
3) k is calculated as
k = ceiling(log2(2 * J + 1),
where J = Max_Jitter_BC + Max_Jitter_CD + 2.
Max_Jitter_CD is the upper bound of jitter expected on the
communication channel between compressor and decompressor (CD-CC).
It depends only on the characteristics of CD-CC.
Bormann, et al. Standards Track [Page 32]
^L
RFC 3095 Robust Header Compression July 2001
The constant 2 accounts for the quantization error introduced by
the clocks at the compressor and decompressor, which can be +/-1.
Note that the calculation of k follows the compression algorithm
described in section 4.5.1, with p = 2^(k-1) - 1.
4) The sliding window is subject to the same window operations as in
section 4.5.2, 1) and 3), except that the values added and removed
are paired with their arrival times.
Decompressor:
1) The decompressor uses as its reference header the last correctly
(as verified by CRC) decompressed header. It maintains the pair
(T_ref, a_ref), where T_ref is the scaled TS of the reference
header, and a_ref is the arrival time of the reference header.
2) When receiving a compressed header n at time a_n, the
approximation of the original scaled TS is calculated as:
T_approx = T_ref + (a_n - a_ref) / TIME_STRIDE.
3) The approximation is then refined by the k least significant bits
carried in header n, following the decompression algorithm of
section 4.5.1, with p = 2^(k-1) - 1.
Note: The algorithm does not assume any particular pattern in the
packets arriving at the compressor, i.e., it tolerates reordering
before the compressor and nonincreasing RTP Timestamp behavior.
Note: Integer arithmetic is used in all equations above. If
TIME_STRIDE is not equal to an integral number of clock ticks,
time must be normalized such that TIME_STRIDE is an integral
number of clock ticks. For example, if a clock tick is 20 ms and
TIME_STRIDE is 30 ms, (a_n - a_ref) in 2) can be multiplied by 3
and TIME_STRIDE can have the value 2.
Note: The clock resolution of the compressor or decompressor can
be worse than TIME_STRIDE, in which case the difference, i.e.,
actual resolution - TIME_STRIDE, is treated as additional jitter
in the calculation of k.
Note: The clock resolution of the decompressor may be communicated
to the compressor using the CLOCK feedback option.
Note: The decompressor may observe the jitter and report this to
the compressor using the JITTER feedback option. The compressor
may use this information to refine its estimate of Max_Jitter_CD.
Bormann, et al. Standards Track [Page 33]
^L
RFC 3095 Robust Header Compression July 2001
4.5.5. Offset IP-ID encoding
As all IPv4 packets have an IP Identifier to allow for fragmentation,
ROHC provides for transparent compression of this ID. There is no
explicit support in ROHC for the IPv6 fragmentation header, so there
is never a need to discuss IP IDs outside the context of IPv4.
This section assumes (initially) that the IPv4 stack at the source
host assigns IP-ID according to the value of a 2-byte counter which
is increased by one after each assignment to an outgoing packet.
Therefore, the IP-ID field of a particular IPv4 packet flow will
increment by 1 from packet to packet except when the source has
emitted intermediate packets not belonging to that flow.
For such IPv4 stacks, the RTP SN will increase by 1 for each packet
emitted and the IP-ID will increase by at least the same amount.
Thus, it is more efficient to compress the offset, i.e., (IP-ID - RTP
SN), instead of IP-ID itself.
The remainder of section 4.5.5 describes how to compress/decompress
the sequence of offsets using W-LSB encoding/decoding, with p = 0
(see section 4.5.1). All IP-ID arithmetic is done using unsigned
16-bit quantities, i.e., modulo 2^16.
Compressor:
The compressor uses W-LSB encoding (section 4.5.2) to compress a
sequence of offsets
Offset_i = ID_i - SN_i,
where ID_i and SN_i are the values of the IP-ID and RTP SN of
header i. The sliding window contains such offsets and not the
values of header fields, but the rules for adding and deleting
offsets from the window otherwise follow section 4.5.2.
Decompressor:
The reference header is the last correctly (as verified by CRC)
decompressed header.
When receiving a compressed packet m, the decompressor calculates
Offset_ref = ID_ref - SN_ref, where ID_ref and SN_ref are the
values of IP-ID and RTP SN in the reference header, respectively.
Bormann, et al. Standards Track [Page 34]
^L
RFC 3095 Robust Header Compression July 2001
Then W-LSB decoding is used to decompress Offset_m, using the
received LSBs in packet m and Offset_ref. Note that m may contain
zero LSBs for Offset_m, in which case Offset_m = Offset_ref.
Finally, the IP-ID for packet m is regenerated as
IP-ID for m = decompressed SN of packet m + Offset_m
Network byte order:
Some IPv4 stacks do use a counter to generate IP ID values as
described, but do not transmit the contents of this counter in
network byte order, but instead send the two octets reversed. In
this case, the compressor can compress the IP-ID field after
swapping the bytes. Consequently, the decompressor also swaps the
bytes of the IP-ID after decompression to regenerate the original
IP-ID. This requires that the compressor and the decompressor
synchronize on the byte order of the IP-ID field using the NBO or
NBO2 flag (see section 5.7).
Random IP Identifier:
Some IPv4 stacks generate the IP Identifier values using a
pseudo-random number generator. While this may provide some
security benefits, it makes it pointless to attempt compressing
the field. Therefore, the compressor should detect such random
behavior of the field. After detection and synchronization with
the decompressor using the RND or RND2 flag, the field is sent
as-is in its entirety as additional octets after the compressed
header.
4.5.6. Self-describing variable-length values
The values of TS_STRIDE and a few other compression parameters can
vary widely. TS_STRIDE can be 160 for voice and 90 000 for 1 f/s
video. To optimize the transfer of such values, a variable number of
octets is used to encode them. The number of octets used is
determined by the first few bits of the first octet:
First bit is 0: 1 octet.
7 bits transferred.
Up to 127 decimal.
Encoded octets in hexadecimal: 00 to 7F
First bits are 10: 2 octets.
14 bits transferred.
Up to 16 383 decimal.
Encoded octets in hexadecimal: 80 00 to BF FF
Bormann, et al. Standards Track [Page 35]
^L
RFC 3095 Robust Header Compression July 2001
First bits are 110: 3 octets.
21 bits transferred.
Up to 2 097 151 decimal.
Encoded octets in hexadecimal: C0 00 00 to DF FF FF
First bits are 111: 4 octets.
29 bits transferred.
Up to 536 870 911 decimal.
Encoded octets in hexadecimal: E0 00 00 00 to FF FF FF FF
4.5.7. Encoded values across several fields in compressed headers
When a compressed header has an extension, pieces of an encoded value
can be present in more than one field. When an encoded value is
split over several fields in this manner, the more significant bits
of the value are closer to the beginning of the header. If the
number of bits available in compressed header fields exceeds the
number of bits in the value, the most significant field is padded
with zeroes in its most significant bits.
For example, an unscaled TS value can be transferred using an UOR-2
header (see section 5.7) with an extension of type 3. The Tsc bit of
the extension is then unset (zero) and the variable length TS field
of the extension is 4 octets, with 29 bits available for the TS (see
section 4.5.6). The UOR-2 TS field will contain the three most
significant bits of the unscaled TS, and the 4-octet TS field in the
extension will contain the remaining 29 bits.
4.6. Errors caused by residual errors
ROHC is designed under the assumption that packets can be damaged
between the compressor and decompressor, and that such damaged
packets can be delivered to the decompressor ("residual errors").
Residual errors may damage the SN in compressed headers. Such damage
will cause generation of a header which upper layers may not be able
to distinguish from a correct header. When the compressed header
contains a CRC, the CRC will catch the bad header with a probability
dependent on the size of the CRC. When ROHC does not detect the bad
header, it will be delivered to upper layers.
Damage is not confined to the SN:
a) Damage to packet type indication bits can cause a header to be
interpreted as having a different packet type.
Bormann, et al. Standards Track [Page 36]
^L
RFC 3095 Robust Header Compression July 2001
b) Damage to CID information may cause a packet to be interpreted
according to another context and possibly also according to
another profile. Damage to CIDs will be more harmful when a large
part of the CID space is being used, so that it is likely that the
damaged CID corresponds to an active context.
c) Feedback information can also be subject to residual errors, both
when feedback is piggybacked and when it is sent in separate ROHC
packets. ROHC uses sanity checks and adds CRCs to vital feedback
information to allow detection of some damaged feedback.
Note that context damage can also result in generation of
incorrect headers; section 4.7 elaborates further on this.
4.7. Impairment considerations
Impairments to headers can be classified into the following types:
(1) the lower layer was not able to decode the packet and did not
deliver it to ROHC,
(2) the lower layer was able to decode the packet, but discarded
it because of a detected error,
(3) ROHC detected an error in the generated header and discarded
the packet, or
(4) ROHC did not detect that the regenerated header was damaged
and delivered it to upper layers.
Impairments cause loss or damage of individual headers. Some
impairment scenarios also cause context invalidation, which in turn
results in loss propagation and damage propagation. Damage
propagation and undetected residual errors both contribute to the
number of damaged headers delivered to upper layers. Loss
propagation and impairments resulting in loss or discarding of single
packets both contribute to the packet loss seen by upper layers.
Examples of context invalidating scenarios are:
(a) Impairment of type (4) on the forward channel, causing the
decompressor to update its context with incorrect information;
Bormann, et al. Standards Track [Page 37]
^L
RFC 3095 Robust Header Compression July 2001
(b) Loss/error burst of pattern update headers: Impairments of
types (1),(2) and (3) on consecutive pattern update headers; a
pattern update header is a header carrying a new pattern
information, e.g., at the beginning of a new talk spurt; this
causes the decompressor to lose the pattern update
information;
(c) Loss/error burst of headers: Impairments of types (1),(2) and
(3) on a number of consecutive headers that is large enough to
cause the decompressor to lose the SN synchronization;
(d) Impairment of type (4) on the feedback channel which mimics a
valid ACK and makes the compressor update its context;
(e) a burst of damaged headers (3) erroneously triggers the "k-
out-of-n" rule for detecting context invalidation, which
results in a NACK/update sequence during which headers are
discarded.
Scenario (a) is mitigated by the CRC carried in all context updating
headers. The larger the CRC, the lower the chance of context
invalidation caused by (a). In R-mode, the CRC of context updating
headers is always 7 bits or more. In U/O-mode, it is usually 3 bits
and sometimes 7 or 8 bits.
Scenario (b) is almost completely eliminated when the compressor
ensures through ACKs that no context updating headers are lost, as in
R-mode.
Scenario (c) is almost completely eliminated when the compressor
ensures through ACKs that the decompressor will always detect the SN
wraparound, as in R-mode. It is also mitigated by the SN repair
mechanisms in U/O-mode.
Scenario (d) happens only when the compressor receives a damaged
header that mimics an ACK of some header present in the W-LSB window,
say ACK of header 2, while in reality header 2 was never received or
accepted by the decompressor, i.e., header 2 was subject to
impairment (1), (2) or (3). The damaged header must mimic the
feedback packet type, the ACK feedback type, and the SN LSBs of some
header in the W-LSB window.
Scenario (e) happens when a burst of residual errors causes the CRC
check to fail in k out of the last n headers carrying CRCs. Large k
and n reduces the probability of scenario (e), but also increases the
number of headers lost or damaged as a consequence of any context
invalidation.
Bormann, et al. Standards Track [Page 38]
^L
RFC 3095 Robust Header Compression July 2001
ROHC detects damaged headers using CRCs over the original headers.
The smallest headers in this document either include a 3-bit CRC
(U/O-mode) or do not include a CRC (R-mode). For the smallest
headers, damage is thus detected with a probability of roughly 7/8
for U/O-mode. For R-mode, damage to the smallest headers is not
detected.
All other things (coding scheme at lower layers, etc.) being equal,
the rate of headers damaged by residual errors will be lower when
headers are compressed compared when they are not, since fewer bits
are transmitted. Consequently, for a given ROHC CRC setup the rate
of incorrect headers delivered to applications will also be reduced.
The above analysis suggests that U/O-mode may be more prone than R-
mode to context invalidation. On the other hand, the CRC present in
all U/O-mode headers continuously screens out residual errors coming
from lower layers, reduces the number of damaged headers delivered to
upper layers when context is invalidated, and permits quick detection
of context invalidation.
R-mode always uses a stronger CRC on context updating headers, but no
CRC in other headers. A residual error on a header which carries no
CRC will result in a damaged header being delivered to upper layers
(4). The number of damaged headers delivered to the upper layers
depends on the ratio of headers with CRC vs. headers without CRC,
which is a compressor parameter.
5. The protocol
5.1. Data structures
The ROHC protocol is based on a number of parameters that form part
of the negotiated channel state and the per-context state. This
section describes some of this state information in an abstract way.
Implementations can use a different structure for and representation
of this state. In particular, negotiation protocols that set up the
per-channel state need to establish the information that constitutes
the negotiated channel state, but it is not necessary to exchange it
in the form described here.
5.1.1. Per-channel parameters
MAX_CID: Nonnegative integer; highest context ID number to be used by
the compressor (note that this parameter is not coupled to, but in
effect further constrained by, LARGE_CIDS).
Bormann, et al. Standards Track [Page 39]
^L
RFC 3095 Robust Header Compression July 2001
LARGE_CIDS: Boolean; if false, the short CID representation (0 bytes
or 1 prefix byte, covering CID 0 to 15) is used; if true, the
embedded CID representation (1 or 2 embedded CID bytes covering CID 0
to 16383) is used.
PROFILES: Set of nonnegative integers, each integer indicating a
profile supported by the decompressor. The compressor MUST NOT
compress using a profile not in PROFILES.
FEEDBACK_FOR: Optional reference to a channel in the reverse
direction. If provided, this parameter indicates which channel any
feedback sent on this channel refers to (see 5.7.6.1).
MRRU: Maximum reconstructed reception unit. This is the size of the
largest reconstructed unit in octets that the decompressor is
expected to reassemble from segments (see 5.2.5). Note that this
size includes the CRC. If MRRU is negotiated to be 0, no segment
headers are allowed on the channel.
5.1.2. Per-context parameters, profiles
Per-context parameters are established with IR headers (see section
5.2.3). An IR header contains a profile identifier, which determines
how the rest of the header is to be interpreted. Note that the
profile parameter determines the syntax and semantics of the packet
type identifiers and packet types used in conjunction with a specific
context. This document describes profiles 0x0000, 0x0001, 0x0002,
and 0x0003; further profiles may be defined when ROHC is extended in
the future.
Profile 0x0000 is for sending uncompressed IP packets. See section
5.10.
Profile 0x0001 is for RTP/UDP/IP compression, see sections 5.3
through 5.9.
Profile 0x0002 is for UDP/IP compression, i.e., compression of the
first 12 octets of the UDP payload is not attempted. See section
5.11.
Profile 0x0003 is for ESP/IP compression, i.e., compression of the
header chain up to and including the first ESP header, but not
subsequent subheaders. See section 5.12.
Initially, all contexts are in no context state, i.e., all packets
referencing this context except IR packets are discarded. If defined
by a "ROHC over X" document, per-channel negotiation can be used to
pre-establish state information for a context (e.g., negotiating
Bormann, et al. Standards Track [Page 40]
^L
RFC 3095 Robust Header Compression July 2001
profile 0x0000 for CID 15). Such state information can also be
marked read-only in the negotiation, which would cause the
decompressor to discard any IR packet attempting to modify it.
5.1.3. Contexts and context identifiers
Associated with each compressed flow is a context, which is the state
compressor and decompressor maintain in order to correctly compress
or decompress the headers of the packet stream. Contexts are
identified by a context identifier, CID, which is sent along with
compressed headers and feedback information.
The CID space is distinct for each channel, i.e., CID 3 over channel
A and CID 3 over channel B do not refer to the same context, even if
the endpoints of A and B are the same nodes. In particular, CIDs for
any pairs of forward and reverse channels are not related (forward
and reverse channels need not even have CID spaces of the same size).
Context information is conceptually kept in a table. The context
table is indexed using the CID which is sent along with compressed
headers and feedback information. The CID space can be negotiated to
be either small, which means that CIDs can take the values 0 through
15, or large, which means that CIDs take values between 0 and 2^14 -
1 = 16383. Whether the CID space is large or small is negotiated no
later than when a channel is established.
A small CID with the value 0 is represented using zero bits. A small
CID with a value from 1 to 15 is represented by a four-bit field in
place of a packet type field (Add-CID) plus four more bits. A large
CID is represented using the encoding scheme of section 4.5.6,
limited to two octets.
5.2. ROHC packets and packet types
The packet type indication scheme for ROHC has been designed under
the following constraints:
a) it must be possible to use only a limited number of packet sizes;
b) it must be possible to send feedback information in separate ROHC
packets as well as piggybacked on forward packets;
c) it is desirable to allow elimination of the CID for one packet
stream when few packet streams share a channel;
d) it is anticipated that some packets with large headers may be
larger than the MTU of very constrained lower layers.
Bormann, et al. Standards Track [Page 41]
^L
RFC 3095 Robust Header Compression July 2001
These constraints have led to a design which includes
- optional padding,
- a feedback packet type,
- an optional Add-CID octet which provides 4 bits of CID, and
- a simple segmentation and reassembly mechanism.
A ROHC packet has the following general format (in the diagram,
colons ":" indicate that the part is optional):
--- --- --- --- --- --- --- ---
: Padding : variable length
--- --- --- --- --- --- --- ---
: Feedback : 0 or more feedback elements
--- --- --- --- --- --- --- ---
: Header : variable, with CID information
--- --- --- --- --- --- --- ---
: Payload :
--- --- --- --- --- --- --- ---
Padding is any number (zero or more) of padding octets. Either of
Feedback or Header must be present.
Feedback elements always start with a packet type indication.
Feedback elements carry internal CID information. Feedback is
described in section 5.2.2.
Header is either a profile-specific header or an IR or IR-DYN header
(see sections 5.2.3 and 5.2.4). Header either
1) does not carry any CID information (indicating CID zero), or
2) includes one Add-CID Octet (see below), or
3) contains embedded CID information of length one or two octets.
Alternatives 1) and 2) apply only to compressed headers in channels
where the CID space is small. Alternative 3) applies only to
compressed headers in channels where the CID space is large.
Padding Octet
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 1 1 1 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+
Bormann, et al. Standards Track [Page 42]
^L
RFC 3095 Robust Header Compression July 2001
Add-CID Octet
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 1 1 1 0 | CID |
+---+---+---+---+---+---+---+---+
CID: 0x1 through 0xF indicates CIDs 1 through 15.
Note: The Padding Octet looks like an Add-CID octet for CID 0.
Header either starts with a packet type indication or has a packet
type indication immediately following an Add-CID Octet. All Header
packet types have the following general format (in the diagram,
slashes "/" indicate variable length):
0 x-1 x 7
--- --- --- --- --- --- --- ---
: Add-CID octet : if (CID 1-15) and (small CIDs)
+---+--- --- --- ---+--- --- ---+
| type indication | body | 1 octet (8-x bits of body)
+---+--- ---+---+---+--- --- ---+
: :
/ 0, 1, or 2 octets of CID / 1 or 2 octets if (large CIDs)
: :
+---+---+---+---+---+---+---+---+
/ body / variable length
+---+---+---+---+---+---+---+---+
The large CID, if present, is encoded according to section 4.5.6.
5.2.1. ROHC feedback
Feedback carries information from decompressor to compressor. The
following principal kinds of feedback are supported. In addition to
the kind of feedback, other information may be included in profile-
specific feedback information.
ACK : Acknowledges successful decompression of a packet,
which means that the context is up-to-date with a high
probability.
NACK : Indicates that the dynamic context of the
decompressor is out of sync. Generated when several
successive packets have failed to be decompressed
correctly.
Bormann, et al. Standards Track [Page 43]
^L
RFC 3095 Robust Header Compression July 2001
STATIC-NACK : Indicates that the static context of the decompressor
is not valid or has not been established.
It is anticipated that feedback to the compressor can be realized in
many ways, depending on the properties of the particular lower layer.
The exact details of how feedback is realized is to be specified in a
"ROHC over X" document, for each lower layer X in question. For
example, feedback might be realized using
1) lower-layer specific mechanisms
2) a dedicated feedback-only channel, realized for example by the
lower layer providing a way to indicate that a packet is a
feedback packet
3) a dedicated feedback-only channel, where the timing of the
feedback provides information about which compressed packet caused
the feedback
4) interspersing of feedback packets among normal compressed packets
going in the same direction as the feedback (lower layers do not
indicate feedback)
5) piggybacking of feedback information in compressed packets going
in the same direction as the feedback (this technique may reduce
the per-feedback overhead)
6) interspersing and piggybacking on the same channel, i.e., both 4)
and 5).
Alternatives 1-3 do not place any particular requirements on the ROHC
packet type scheme. Alternatives 4-6 do, however. The ROHC packet
type scheme has been designed to allow alternatives 4-6 (these may be
used for example over PPP):
a) The ROHC scheme provides a feedback packet type. The packet type
is able to carry variable-length feedback information.
b) The feedback information sent on a particular channel is passed
to, and interpreted by, the compressor associated with feedback on
that channel. Thus, the feedback information must contain CID
information if the associated compressor can use more than one
context. The ROHC feedback scheme requires that a channel carries
feedback to at most one compressor. How a compressor is
associated with feedback on a particular channel needs to be
defined in a "ROHC over X" document.
Bormann, et al. Standards Track [Page 44]
^L
RFC 3095 Robust Header Compression July 2001
c) The ROHC feedback information format is octet-aligned, i.e.,
starts at an octet boundary, to allow using the format over a
dedicated feedback channel, 2).
d) To allow piggybacking, 5), it is possible to deduce the length of
feedback information by examining the first few octets of the
feedback. This allows the decompressor to pass piggybacked
feedback information to the associated same-side compressor
without understanding its format. The length information
decouples the decompressor from the compressor in the sense that
the decompressor can process the compressed header immediately
without waiting for the compressor to hand it back after parsing
the feedback information.
5.2.2. ROHC feedback format
Feedback sent on a ROHC channel consists of one or more concatenated
feedback elements, where each feedback element has the following
format:
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 1 1 1 1 0 | Code | feedback type octet
+---+---+---+---+---+---+---+---+
: Size : if Code = 0
+---+---+---+---+---+---+---+---+
/ feedback data / variable length
+---+---+---+---+---+---+---+---+
Code: 0 indicates that a Size octet is present.
1-7 indicates the size of the feedback data field in
octets.
Size: Optional octet indicating the size of the feedback data
field in octets.
feedback data: Profile-specific feedback information. Includes
CID information.
The total size of the feedback data field is determinable upon
reception by the decompressor, by inspection of the Code field and
possibly the Size field. This explicit length information allows
piggybacking and also sending more than one feedback element in a
packet.
When the decompressor has determined the size of the feedback data
field, it removes the feedback type octet and the Size field (if
present) and hands the rest to the same-side associated compressor
Bormann, et al. Standards Track [Page 45]
^L
RFC 3095 Robust Header Compression July 2001
together with an indication of the size. The feedback data received
by the compressor has the following structure (feedback sent on a
dedicated feedback channel MAY also use this format):
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
: Add-CID octet : if for small CIDs and (CID != 0)
+---+---+---+---+---+---+---+---+
: :
/ large CID (4.5.6 encoding) / 1-2 octets if for large CIDs
: :
+---+---+---+---+---+---+---+---+
/ feedback /
+---+---+---+---+---+---+---+---+
The large CID, if present, is encoded according to section 4.5.6.
CID information in feedback data indicates the CID of the packet
stream for which feedback is sent. Note that the LARGE_CIDS
parameter that controls whether a large CID is present is taken from
the channel state of the receiving compressor's channel, NOT from
that of the channel carrying the feedback.
It is REQUIRED that the feedback field have either of the following
two formats:
FEEDBACK-1
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| profile specific information | 1 octet
+---+---+---+---+---+---+---+---+
FEEDBACK-2
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
|Acktype| |
+---+---+ profile specific / at least 2 octets
/ information |
+---+---+---+---+---+---+---+---+
Acktype: 0 = ACK
1 = NACK
2 = STATIC-NACK
3 is reserved (MUST NOT be used. Otherwise unparseable.)
The compressor can use the following logic to parse the feedback
field.
Bormann, et al. Standards Track [Page 46]
^L
RFC 3095 Robust Header Compression July 2001
1) If for large CIDs, the feedback will always start with a CID
encoded according to section 4.5.6. If the first bit is 0, the
CID uses one octet. If the first bit is 1, the CID uses two
octets.
2) If for small CIDs, and the size is one octet, the feedback is a
FEEDBACK-1.
3) If for small CIDs, and the size is larger than one octet, and the
feedback starts with the two bits 11, the feedback starts with an
Add-CID octet. If the size is 2, it is followed by FEEDBACK-1.
If the size is larger than 2, the Add-CID is followed by
FEEDBACK-2.
4) Otherwise, there is no Add-CID octet, and the feedback starts with
a FEEDBACK-2.
5.2.3. ROHC IR packet type
The IR header associates a CID with a profile, and typically also
initializes the context. It can typically also refresh (parts of)
the context. It has the following general format.
0 1 2 3 4 5 6 7
--- --- --- --- --- --- --- ---
: Add-CID octet : if for small CIDs and (CID != 0)
+---+---+---+---+---+---+---+---+
| 1 1 1 1 1 1 0 | x | IR type octet
+---+---+---+---+---+---+---+---+
: :
/ 0-2 octets of CID / 1-2 octets if for large CIDs
: :
+---+---+---+---+---+---+---+---+
| Profile | 1 octet
+---+---+---+---+---+---+---+---+
| CRC | 1 octet
+---+---+---+---+---+---+---+---+
| |
/ profile specific information / variable length
| |
+---+---+---+---+---+---+---+---+
x: Profile specific information. Interpreted according to the
profile indicated in the Profile field.
Bormann, et al. Standards Track [Page 47]
^L
RFC 3095 Robust Header Compression July 2001
Profile: The profile to be associated with the CID. In the IR
packet, the profile identifier is abbreviated to the 8 least
significant bits. It selects the highest-number profile in the
channel state parameter PROFILES that matches the 8 LSBs given.
CRC: 8-bit CRC computed using the polynomial of section 5.9.1. Its
coverage is profile-dependent, but it MUST cover at least the
initial part of the packet ending with the Profile field. Any
information which initializes the context of the decompressor
should be protected by the CRC.
Profile specific information: The contents of this part of the IR
packet are defined by the individual profiles. Interpreted
according to the profile indicated in the Profile field.
5.2.4. ROHC IR-DYN packet type
In contrast to the IR header, the IR-DYN header can never initialize
an uninitialized context. However, it can redefine what profile is
associated with a context, see for example 5.11 (ROHC UDP) and 5.12
(ROHC ESP). Thus the type needs to be reserved at the framework
level. The IR-DYN header typically also initializes or refreshes
parts of a context, typically the dynamic part. It has the following
general format:
0 1 2 3 4 5 6 7
--- --- --- --- --- --- --- ---
: Add-CID octet : if for small CIDs and (CID != 0)
+---+---+---+---+---+---+---+---+
| 1 1 1 1 1 0 0 0 | IR-DYN type octet
+---+---+---+---+---+---+---+---+
: :
/ 0-2 octets of CID / 1-2 octets if for large CIDs
: :
+---+---+---+---+---+---+---+---+
| Profile | 1 octet
+---+---+---+---+---+---+---+---+
| CRC | 1 octet
+---+---+---+---+---+---+---+---+
| |
/ profile specific information / variable length
| |
+---+---+---+---+---+---+---+---+
Profile: The profile to be associated with the CID. This is
abbreviated in the same way as with IR packets.
Bormann, et al. Standards Track [Page 48]
^L
RFC 3095 Robust Header Compression July 2001
CRC: 8-bit CRC computed using the polynomial of section 5.9.1.
Its coverage is profile-dependent, but it MUST cover at least
the initial part of the packet ending with the Profile field.
Any information which initializes the context of the
decompressor should be protected by the CRC.
Profile specific information: This part of the IR packet is
defined by individual profiles. It is interpreted according
to the profile indicated in the Profile field.
5.2.5. ROHC segmentation
Some link layers may provide a much more efficient service if the set
of different packet sizes to be transported is kept small. For such
link layers, these sizes will normally be chosen to transport
frequently occurring packets efficiently, with less frequently
occurring packets possibly adapted to the next larger size by the
addition of padding. The link layer may, however, be limited in the
size of packets it can offer in this efficient mode, or it may be
desirable to request only a limited largest size. To accommodate the
occasional packet that is larger than that largest size negotiated,
ROHC defines a simple segmentation protocol.
5.2.5.1. Segmentation usage considerations
The segmentation protocol defined in ROHC is not particularly
efficient. It is not intended to replace link layer segmentation
functions; these SHOULD be used whenever available and efficient for
the task at hand.
ROHC segmentation should only be used for occasional packets with
sizes larger than what is efficient to accommodate, e.g., due to
exceptionally large ROHC headers. The segmentation scheme was
designed to reduce packet size variations that may occur due to
outliers in the header size distribution. In other cases,
segmentation should be done at lower layers. The segmentation scheme
should only be used for packet sizes that are larger than the maximum
size in the allowed set of sizes from the lower layers.
In summary, ROHC segmentation should be used with a relatively low
frequency in the packet flow. If this cannot be ensured,
segmentation should be performed at lower layers.
Bormann, et al. Standards Track [Page 49]
^L
RFC 3095 Robust Header Compression July 2001
5.2.5.2. Segmentation protocol
Segment Packet
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 1 1 1 1 1 1 1 | F |
+---+---+---+---+---+---+---+---+
/ Segment / variable length
+---+---+---+---+---+---+---+---+
F: Final bit. If set, it indicates that this is the last segment of
a reconstructed unit.
The segment header may be preceded by padding octets and/or feedback.
It never carries a CID.
All segment header packets for one reconstructed unit have to be sent
consecutively on a channel, i.e., any non-segment-header packet
following a nonfinal segment header aborts the reassembly of the
current reconstructed unit and causes the decompressor to discard the
nonfinal segments received on this channel so far. When a final
segment header is received, the decompressor reassembles the segment
carried in this packet and any nonfinal segments that immediately
preceded it into a single reconstructed unit, in the order they were
received. The reconstructed unit has the format:
Reconstructed Unit
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| |
/ Reconstructed ROHC packet / variable length
| |
+---+---+---+---+---+---+---+---+
/ CRC / 4 octets
+---+---+---+---+---+---+---+---+
The CRC is used by the decompressor to validate the reconstructed
unit. It uses the FCS-32 algorithm with the following generator
polynomial: x^0 + x^1 + x^2 + x^4 + x^5 + x^7 + x^8 + x^10 + x^11 +
x^12 + x^16 + x^22 + x^23 + x^26 + x^32 [HDLC]. If the reconstructed
unit is 4 octets or less, or if the CRC fails, or if it is larger
than the channel parameter MRRU (see 5.1.1), the reconstructed unit
MUST be discarded by the decompressor.
Bormann, et al. Standards Track [Page 50]
^L
RFC 3095 Robust Header Compression July 2001
If the CRC succeeds, the reconstructed ROHC packet is interpreted as
a ROHC Header, optionally followed by a payload. Note that this
means that there can be no padding and no feedback in the
reconstructed unit, and that the CID is derived from the initial
octets of the reconstructed unit.
(It should be noted that the ROHC segmentation protocol was inspired
by SEAL by Steve Deering et al., which later became ATM AAL5. The
same arguments for not having sequence numbers in the segments but
instead providing a strong CRC in the reconstructed unit apply here
as well. Note that, as a result of this protocol, there is no way in
ROHC to make any use of a segment that has residual bit errors.)
5.2.6. ROHC initial decompressor processing
The following packet types are reserved at the framework level in the
ROHC scheme:
1110: Padding or Add-CID octet
11110: Feedback
11111000: IR-DYN packet
1111110: IR packet
1111111: Segment
Other packet types can be used at will by individual profiles.
The following steps is an outline of initial decompressor processing
which upon reception of a ROHC packet can determine its contents.
1) If the first octet is a Padding Octet (11100000),
strip away all initial Padding Octets and goto next step.
2) If the first remaining octet starts with 1110, it is an Add-CID
octet:
remember the Add-CID octet; remove the octet.
3) If the first remaining octet starts with 11110, and an Add-CID
octet was found in step 2),
an error has occurred; the header MUST be discarded without
further action.
4) If the first remaining octet starts with 11110, and an Add-CID
octet was not found in step 2), this is feedback:
find the size of the feedback data, call it s;
remove the feedback type octet;
Bormann, et al. Standards Track [Page 51]
^L
RFC 3095 Robust Header Compression July 2001
remove the Size octet if Code is 0;
send feedback data of length s to the same-side associated
compressor;
if packet exhausted, stop; otherwise goto 2).
5) If the first remaining octet starts with 1111111, this is a
segment:
attempt reconstruction using the segmentation protocol
(5.2.5). If a reconstructed packet is not produced, this
finishes the processing of the original packet. If a
reconstructed packet is produced, it is fed into step 1)
above. Padding, segments, and feedback are not allowed in
reconstructed packets, so when processing them, steps 1),
4), and 5) are modified so that the packet is discarded
without further action when their conditions match.
6) Here, it is known that the rest is forward information (unless the
header is damaged).
7) If the forward traffic uses small CIDs, there is no large CID in
the packet. If an Add-CID immediately preceded the packet type
(step 2), it has the CID of the Add-CID; otherwise it has CID 0.
8) If the forward traffic uses large CIDs, the CID starts with the
second remaining octet. If the first bit(s) of that octet are not
0 or 10, the packet MUST be discarded without further action. If
an Add-CID octet immediately preceded the packet type (step 2),
the packet MUST be discarded without further action.
9) Use the CID to find the context.
10) If the packet type is IR, the profile indicated in the IR packet
determines how it is to be processed. If the CRC fails to verify
the packet, it MUST be discarded. If a profile is indicated in
the context, the logic of that profile determines what, if any,
feedback is to be sent. If no profile is noted in the context,
no further action is taken.
11) If the packet type is IR-DYN, the profile indicated in the IR-DYN
packet determines how it is to be processed.
a) If the CRC fails to verify the packet, it MUST be discarded.
If a profile is indicated in the context, the logic of that
profile determines what, if any, feedback is to be sent. If no
profile is noted in the context, no further action is taken.
Bormann, et al. Standards Track [Page 52]
^L
RFC 3095 Robust Header Compression July 2001
b) If the context has not been initialized by an IR packet, the
packet MUST be discarded. The logic of the profile indicated
in the IR-DYN header (if verified by the CRC), determines what,
if any, feedback is to be sent.
12) Otherwise, the profile noted in the context determines how the
rest of the packet is to be processed. If the context has not
been initialized by an IR packet, the packet MUST be discarded
without further action.
The procedure for finding the size of the feedback data is as
follows:
Examine the three bits which immediately follow the feedback packet
type. When these bits are
1-7, the size of the feedback data is given by the bits;
0, a Size octet, which explicitly gives the size of the
feedback data, is present after the feedback type octet.
5.2.7. ROHC RTP packet formats from compressor to decompressor
ROHC RTP uses three packet types to identify compressed headers, and
two for initialization/refresh. The format of a compressed packet
can depend on the mode. Therefore a naming scheme of the form
<modes format is used in>-<packet type number>-<some property>
is used to uniquely identify the format when necessary, e.g., UOR-2,
R-1. For exact formats of the packet types, see section 5.7.
Packet type zero: R-0, R-0-CRC, UO-0.
This, the minimal, packet type is used when parameters of all SN-
functions are known by the decompressor, and the header to be
compressed adheres to these functions. Thus, only the W-LSB
encoded RTP SN needs to be communicated.
R-mode: Only if a CRC is present (packet type R-0-CRC) may the
header be used as a reference for subsequent decompression.
U-mode and O-mode: A small CRC is present in the UO-0 packet.
Packet type 1: R-1, R-1-ID, R-1-TS, UO-1, UO-1-ID, UO-1-TS.
This packet type is used when the number of bits needed for the SN
exceeds those available in packet type zero, or when the
parameters of the SN-functions for RTP TS or IP-ID change.
Bormann, et al. Standards Track [Page 53]
^L
RFC 3095 Robust Header Compression July 2001
R-mode: R-1-* packets are not used as references for subsequent
decompression. Values for other fields than the RTP TS or IP-ID
can be communicated using an extension, but they do not update the
context.
U-mode and O-mode: Only the values of RTP SN, RTP TS and IP-ID can
be used as references for future compression. Nonupdating values
can be provided for other fields using an extension (UO-1-ID).
Packet type 2: UOR-2, UOR-2-ID, UOR-2-TS
This packet type can be used to change the parameters of any SN-
function, except those for most static fields. Headers of packets
transferred using packet type 2 can be used as references for
subsequent decompression.
Packet type: IR
This packet type communicates the static part of the context,
i.e., the value of the constant SN-functions. It can optionally
also communicate the dynamic part of the context, i.e., the
parameters of the nonconstant SN-functions.
Packet type: IR-DYN
This packet type communicates the dynamic part of the context,
i.e., the parameters of nonconstant SN-functions.
5.2.8. Parameters needed for mode transition in ROHC RTP
The packet types IR (with dynamic information), IR-DYN, and UOR-2 are
common for all modes. They can carry a mode parameter which can take
the values U = Unidirectional, O = Bidirectional Optimistic, and R =
Bidirectional Reliable.
Feedback of types ACK, NACK, and STATIC-NACK carry sequence numbers,
and feedback packets can also carry a mode parameter indicating the
desired compression mode: U, O, or R.
As a shorthand, the notation PACKET(mode) is used to indicate which
mode value a packet carries. For example, an ACK with mode parameter
R is written ACK(R), and an UOR-2 with mode parameter O is written
UOR-2(O).
Bormann, et al. Standards Track [Page 54]
^L
RFC 3095 Robust Header Compression July 2001
5.3. Operation in Unidirectional mode
5.3.1. Compressor states and logic (U-mode)
Below is the state machine for the compressor in Unidirectional mode.
Details of the transitions between states and compression logic are
given subsequent to the figure.
Optimistic approach
+------>------>------>------>------>------>------>------>------+
| |
| Optimistic approach Optimistic approach |
| +------>------>------+ +------>------>------+ |
| | | | | |
| | v | v v
+----------+ +----------+ +----------+
| IR State | | FO State | | SO State |
+----------+ +----------+ +----------+
^ ^ | ^ | |
| | Timeout | | Timeout / Update | |
| +------<------<------+ +------<------<------+ |
| |
| Timeout |
+------<------<------<------<------<------<------<------<------+
5.3.1.1. State transition logic (U-mode)
The transition logic for compression states in Unidirectional mode is
based on three principles: the optimistic approach principle,
timeouts, and the need for updates.
5.3.1.1.1. Optimistic approach, upwards transition
Transition to a higher compression state in Unidirectional mode is
carried out according to the optimistic approach principle. This
means that the compressor transits to a higher compression state when
it is fairly confident that the decompressor has received enough
information to correctly decompress packets sent according to the
higher compression state.
When the compressor is in the IR state, it will stay there until it
assumes that the decompressor has correctly received the static
context information. For transition from the FO to the SO state, the
compressor should be confident that the decompressor has all
parameters needed to decompress according to a fixed pattern.
Bormann, et al. Standards Track [Page 55]
^L
RFC 3095 Robust Header Compression July 2001
The compressor normally obtains its confidence about decompressor
status by sending several packets with the same information according
to the lower compression state. If the decompressor receives any of
these packets, it will be in sync with the compressor. The number of
consecutive packets to send for confidence is not defined in this
document.
5.3.1.1.2. Timeouts, downward transition
When the optimistic approach is taken as described above, there will
always be a possibility of failure since the decompressor may not
have received sufficient information for correct decompression.
Therefore, the compressor MUST periodically transit to lower
compression states. Periodic transition to the IR state SHOULD be
carried out less often than transition to the FO state. Two
different timeouts SHOULD therefore be used for these transitions.
For an example of how to implement periodic refreshes, see [IPHC]
chapters 3.3.1-3.3.2.
5.3.1.1.3. Need for updates, downward transition
In addition to the downward state transitions carried out due to
periodic timeouts, the compressor must also immediately transit back
to the FO state when the header to be compressed does not conform to
the established pattern.
5.3.1.2. Compression logic and packets used (U-mode)
The compressor chooses the smallest possible packet format that can
communicate the desired changes, and has the required number of bits
for W-LSB encoded values.
5.3.1.3. Feedback in Unidirectional mode
The Unidirectional mode of operation is designed to operate over
links where a feedback channel is not available. If a feedback
channel is available, however, the decompressor MAY send an
acknowledgment of successful decompression with the mode parameter
set to U (send an ACK(U)). When the compressor receives such a
message, it MAY disable (or increase the interval between) periodic
IR refreshes.
5.3.2. Decompressor states and logic (U-mode)
Below is the state machine for the decompressor in Unidirectional
mode. Details of the transitions between states and decompression
logic are given subsequent to the figure.
Bormann, et al. Standards Track [Page 56]
^L
RFC 3095 Robust Header Compression July 2001
Success
+-->------>------>------>------>------>--+
| |
No Static | No Dynamic Success | Success
+-->--+ | +-->--+ +--->----->---+ +-->--+
| | | | | | | | |
| v | | v | v | v
+--------------+ +----------------+ +--------------+
| No Context | | Static Context | | Full Context |
+--------------+ +----------------+ +--------------+
^ | ^ |
| k_2 out of n_2 failures | | k_1 out of n_1 failures |
+-----<------<------<-----+ +-----<------<------<-----+
5.3.2.1. State transition logic (U-mode)
Successful decompression will always move the decompressor to the
Full Context state. Repeated failed decompression will force the
decompressor to transit downwards to a lower state. The decompressor
does not attempt to decompress headers at all in the No Context and
Static Context states unless sufficient information is included in
the packet itself.
5.3.2.2. Decompression logic (U-mode)
Decompression in Unidirectional mode is carried out following three
steps which are described in subsequent sections.
5.3.2.2.1. Decide whether decompression is allowed
In Full Context state, decompression may be attempted regardless of
what kind of packet is received. However, for the other states
decompression is not always allowed. In the No Context state only IR
packets, which carry the static information fields, may be
decompressed. Further, when in the Static Context state, only
packets carrying a 7- or 8-bit CRC can be decompressed (i.e., IR,
IR-DYN, or UOR-2 packets). If decompression may not be performed the
packet is discarded, unless the optional delayed decompression
mechanism is used, see section 6.1.
5.3.2.2.2. Reconstruct and verify the header
When reconstructing the header, the decompressor takes the header
information already stored in the context and updates it with the
information received in the current header. (If the reconstructed
header fails the CRC check, these updates MUST be undone.)
Bormann, et al. Standards Track [Page 57]
^L
RFC 3095 Robust Header Compression July 2001
The sequence number is reconstructed by replacing the sequence number
LSBs in the context with those received in the header. The resulting
value is then verified to be within the interpretation interval by
comparison with a previously reconstructed reference value v_ref (see
section 4.5.1). If it is not within this interval, an adjustment is
applied by adding N x interval_size to the reconstructed value so
that the result is brought within the interpretation interval. Note
that N can be negative.
If RTP Timestamp and IP Identification fields are not included in the
received header, they are supposed to be calculated from the sequence
number. The IP Identifier usually increases by the same delta as the
sequence number and the timestamp by the same delta times a fixed
value. See chapters 4.5.3 and 4.5.5 for details about how these
fields are encoded in compressed headers.
When working in Unidirectional mode, all compressed headers carry a
CRC which MUST be used to verify decompression.
5.3.2.2.3. Actions upon CRC failure
This section is written so that it is applicable to all modes.
A mismatch in the CRC can be caused by one or more of:
1. residual bit errors in the current header
2. a damaged context due to residual bit errors in previous headers
3. many consecutive packets being lost between compressor and
decompressor (this may cause the LSBs of the SN in compressed
packets to be interpreted wrongly, because the decompressor has
not moved the interpretation interval for lack of input -- in
essence, a kind of context damage).
(Cases 2 and 3 do not apply to IR packets; case 3 does not apply to
IR-DYN packets.) The 3-bit CRC present in some header formats will
eventually detect context damage reliably, since the probability of
undetected context damage decreases exponentially with each new
header processed. However, residual bit errors in the current header
are only detected with good probability, not reliably.
When a CRC mismatch is caused by residual bit errors in the current
header (case 1 above), the decompressor should stay in its current
state to avoid unnecessary loss of subsequent packets. On the other
hand, when the mismatch is caused by a damaged context (case 2), the
decompressor should attempt to repair the context locally. If the
local repair attempt fails, it must move to a lower state to avoid
Bormann, et al. Standards Track [Page 58]
^L
RFC 3095 Robust Header Compression July 2001
delivering incorrect headers. When the mismatch is caused by
prolonged loss (case 3), the decompressor might attempt additional
decompression attempts. Note that case 3 does not occur in R-mode.
The following actions MUST be taken when a CRC check fails:
First, attempt to determine whether SN LSB wraparound (case 3) is
likely, and if so, attempt a correction. For this, the algorithm of
section 5.3.2.2.4 MAY be used. If another algorithm is used, it MUST
have at least as high a rate of correct repairs as the one in
5.3.2.2.4. (This step is not applicable to R-mode.)
Second, if the previous step did not attempt a correction, a repair
should be attempted under the assumption that the reference SN has
been incorrectly updated. For this, the algorithm of section
5.3.2.2.5 MAY be used. If another algorithm is used, it MUST have at
least as high a rate of correct repairs as the one in 5.3.2.2.5.
(This step is not applicable to R-mode.)
If both the above steps fail, additional decompression attempts
SHOULD NOT be made. There are two possible reasons for the CRC
failure: case 1 or unrecoverable context damage. It is impossible to
know for certain which of these is the actual cause. The following
rules are to be used:
a. When CRC checks fail only occasionally, assume residual errors in
the current header and simply discard the packet. NACKs SHOULD
NOT be sent at this time.
b. In the Full Context state: When the CRC check of k_1 out of the
last n_1 decompressed packets have failed, context damage SHOULD
be assumed and a NACK SHOULD be sent in O- and R-mode. The
decompressor moves to the Static Context state and discards all
packets until an update (IR, IR-DYN, UOR-2) which passes the CRC
check is received.
c. In the Static Context state: When the CRC check of k_2 out of the
last n_2 updates (IR, IR-DYN, UOR-2) have failed, static context
damage SHOULD be assumed and a STATIC-NACK is sent in O- and R-
mode. The decompressor moves to the No Context state.
d. In the No Context state: The decompressor discards all packets
until a static update (IR) which passes the CRC check is received.
(In O-mode and R-mode, feedback is sent according to sections
5.4.2.2 and 5.5.2.2, respectively.)
Bormann, et al. Standards Track [Page 59]
^L
RFC 3095 Robust Header Compression July 2001
Note that appropriate values for k_1, n_1, k_2, and n_2, are related
to the residual error rate of the link. When the residual error rate
is close to zero, k_1 = n_1 = k_2 = n_2 = 1 may be appropriate.
5.3.2.2.4. Correction of SN LSB wraparound
When many consecutive packets are lost there will be a risk of
sequence number LSB wraparound, i.e., the SN LSBs being interpreted
wrongly because the interpretation interval has not moved for lack of
input. The decompressor might be able to detect this situation and
avoid context damage by using a local clock. The following algorithm
MAY be used:
a. The decompressor notes the arrival time, a(i), of each incoming
packet i. Arrival times of packets where decompression fails are
discarded.
b. When decompression fails, the decompressor computes INTERVAL =
a(i) - a(i - 1), i.e., the time elapsed between the arrival of the
previous, correctly decompressed packet and the current packet.
c. If wraparound has occurred, INTERVAL will correspond to at least
2^k inter-packet times, where k is the number of SN bits in the
current header. On the basis of an estimate of the packet inter-
arrival time, obtained for example using a moving average of
arrival times, TS_STRIDE, or TS_TIME, the decompressor judges if
INTERVAL can correspond to 2^k inter-packet times.
d. If INTERVAL is judged to be at least 2^k packet inter-arrival
times, the decompressor adds 2^k to the reference SN and attempts
to decompress the packet using the new reference SN.
e. If this decompression succeeds, the decompressor updates the
context but SHOULD NOT deliver the packet to upper layers. The
following packet is also decompressed and updates the context if
its CRC succeeds, but SHOULD be discarded. If decompression of
the third packet using the new context also succeeds, the context
repair is deemed successful and this and subsequent decompressed
packets are delivered to the upper layers.
f. If any of the three decompression attempts in d. and e. fails, the
decompressor discards the packets and acts according to rules a)
through c) of section 5.3.2.2.3.
Using this mechanism, the decompressor may be able to repair the
context after excessive loss, at the expense of discarding two
packets.
Bormann, et al. Standards Track [Page 60]
^L
RFC 3095 Robust Header Compression July 2001
5.3.2.2.5. Repair of incorrect SN updates
The CRC can fail to detect residual errors in the compressed header
because of its limited length, i.e., the incorrectly decompressed
packet can happen to have the same CRC as the original uncompressed
packet. The incorrect decompressed header will then update the
context. This can lead to an erroneous reference SN being used in
W-LSB decoding, as the reference SN is updated for each successfully
decompressed header of certain types.
In this situation, the decompressor will detect the incorrect
decompression of the following packet with high probability, but it
does not know the reason for the failure. The following mechanism
allows the decompressor to judge if the context was updated
incorrectly by an earlier packet and, if so, to attempt a repair.
a. The decompressor maintains two decompressed sequence numbers: the
last one (ref 0) and the one before that (ref -1).
b. When receiving a compressed header the SN (SN curr1) is
decompressed using ref 0 as the reference. The other header
fields are decompressed using this decompressed SN curr1. (This
is part of the normal decompression procedure prior to any CRC
test failures.)
c. If the decompressed header generated in b. passes the CRC test,
the references are shifted as follows:
ref -1 = ref 0
ref 0 = SN curr1.
d. If the header generated in b. does not pass the CRC test, and the
SN (SN curr2) generated when using ref -1 as the reference is
different from SN curr1, an additional decompression attempt is
performed based on SN curr2 as the decompressed SN.
e. If the decompressed header generated in b. does not pass the CRC
test and SN curr2 is the same as SN curr1, an additional
decompression attempt is not useful and is not attempted.
f. If the decompressed header generated in d. passes the CRC test,
ref -1 is not changed while ref 0 is set to SN curr2.
g. If the decompressed header generated in d. does not pass the CRC
test, the decompressor acts according to rules a) through c) of
section 5.3.2.2.3.
Bormann, et al. Standards Track [Page 61]
^L
RFC 3095 Robust Header Compression July 2001
The purpose of this algorithm is to repair the context. If the
header generated in d. passes the CRC test, the references are
updated according to f., but two more headers MUST also be
successfully decompressed before the repair is deemed successful. Of
the three successful headers, the first two SHOULD be discarded and
only the third delivered to upper layers. If decompression of any of
the three headers fails, the decompressor MUST discard that header
and the previously generated headers, and act according to rules a)
through c) of section 5.3.2.2.3.
5.3.2.3. Feedback in Unidirectional mode
To improve performance for the Unidirectional mode over a link that
does have a feedback channel, the decompressor MAY send an
acknowledgment when decompression succeeds. Setting the mode
parameter in the ACK packet to U indicates that the compressor is to
stay in Unidirectional mode. When receiving an ACK(U), the
compressor should reduce the frequency of IR packets since the static
information has been correctly received, but it is not required to
stop sending IR packets. If IR packets continue to arrive, the
decompressor MAY repeat the ACK(U), but it SHOULD NOT repeat the
ACK(U) continuously.
5.4. Operation in Bidirectional Optimistic mode
5.4.1. Compressor states and logic (O-mode)
Below is the state machine for the compressor in Bidirectional
Optimistic mode. The details of each state, state transitions, and
compression logic are given subsequent to the figure.
Optimistic approach / ACK
+------>------>------>------>------>------>------>------>------+
| |
| Optimistic appr. / ACK Optimistic appr. /ACK ACK |
| +------>------>------+ +------>--- -->-----+ +->--+
| | | | | | |
| | v | v | v
+----------+ +----------+ +----------+
| IR State | | FO State | | SO State |
+----------+ +----------+ +----------+
^ ^ | ^ | |
| | STATIC-NACK | | NACK / Update | |
| +------<------<------+ +------<------<------+ |
| |
| STATIC-NACK |
+------<------<------<------<------<------<------<------<------+
Bormann, et al. Standards Track [Page 62]
^L
RFC 3095 Robust Header Compression July 2001
5.4.1.1. State transition logic
The transition logic for compression states in Bidirectional
Optimistic mode has much in common with the logic of the
Unidirectional mode. The optimistic approach principle and
transitions occasioned by the need for updates work in the same way
as described in chapter 5.3.1. However, in Optimistic mode there are
no timeouts. Instead, the Optimistic mode makes use of feedback from
decompressor to compressor for transitions in the backward direction
and for OPTIONAL improved forward transition.
5.4.1.1.1. Negative acknowledgments (NACKs), downward transition
Negative acknowledgments (NACKs), also called context requests,
obviate the periodic updates needed in Unidirectional mode. Upon
reception of a NACK the compressor transits back to the FO state and
sends updates (IR-DYN, UOR-2, or possibly IR) to the decompressor.
NACKs carry the SN of the latest packet successfully decompressed,
and this information MAY be used by the compressor to determine what
fields need to be updated.
Similarly, reception of a STATIC-NACK packet makes the compressor
transit back to the IR state.
5.4.1.1.2. Optional acknowledgments, upwards transition
In addition to NACKs, positive feedback (ACKs) MAY also be used for
UOR-2 packets in the Bidirectional Optimistic mode. Upon reception
of an ACK for an updating packet, the compressor knows that the
decompressor has received the acknowledged packet and the transition
to a higher compression state can be carried out immediately. This
functionality is optional, so a compressor MUST NOT expect to get
such ACKs initially.
The compressor MAY use the following algorithm to determine when to
expect ACKs for UOR-2 packets. Let an update event be when a
sequence of UOR-2 headers are sent to communicate an irregularity in
the packet stream. When ACKs have been received for k_3 out of the
last n_3 update events, the compressor will expect ACKs. A
compressor which expects ACKs will repeat updates (possibly not in
every packet) until an ACK is received.
5.4.1.2. Compression logic and packets used
The compression logic is the same for the Bidirectional Optimistic
mode as for the Unidirectional mode (see section 5.3.1.2).
Bormann, et al. Standards Track [Page 63]
^L
RFC 3095 Robust Header Compression July 2001
5.4.2. Decompressor states and logic (O-mode)
The decompression states and the state transition logic are the same
as for the Unidirectional case (see section 5.3.2). What differs is
the decompression and feedback logic.
5.4.2.1. Decompression logic, timer-based timestamp decompression
In Bidirectional mode (or if there is some other way for the
compressor to obtain the decompressor's clock resolution and the
link's jitter), timer-based timestamp decompression may be used to
improve compression efficiency when RTP Timestamp values are
proportional to wall-clock time. The mechanisms used are those
described in 4.5.4.
5.4.2.2. Feedback logic (O-mode)
The feedback logic defines what feedback to send due to different
events when operating in the various states. As mentioned above,
there are three principal kinds of feedback; ACK, NACK and STATIC-
NACK. Further, the logic described below will refer to different
kinds of packets that can be received by the decompressor;
Initialization and Refresh (IR) packets, IR packets without static
information (IR-DYN) and type 2 packets (UOR-2), or type 1 (UO-1) and
type 0 packets (UO-0). A type 0 packet carries a packet header
compressed according to a fixed pattern, while type 1, 2 and IR-DYN
packets are used when this pattern is broken.
Below, rules are defined stating which feedback to use when. If the
optional feedback is used once, the decompressor is REQUIRED to
continue to send optional feedback for the lifetime of the packet
stream.
State Actions
NC: - When an IR packet passes the CRC check, send an ACK(O).
- When receiving a type 0, 1, 2 or IR-DYN packet, or an IR
packet has failed the CRC check, send a STATIC-NACK(O),
subject to the considerations at the beginning of section
5.7.6.
SC: - When an IR packet is correctly decompressed, send an ACK(O).
- When a type 2 or an IR-DYN packet is correctly decompressed,
optionally send an ACK(O).
- When a type 0 or 1 packet is received, treat it as a
mismatching CRC and use the logic of section 5.3.2.2.3 to
decide if a NACK(O) should be sent.
Bormann, et al. Standards Track [Page 64]
^L
RFC 3095 Robust Header Compression July 2001
- When decompression of a type 2 packet, an IR-DYN packet or an
IR packet has failed, use the logic of section 5.3.2.2.3 to
decide if a STATIC-NACK(O) should be sent.
FC: - When an IR packet is correctly decompressed, send an ACK(O).
- When a type 2 or an IR-DYN packet is correctly decompressed,
optionally send an ACK(O).
- When a type 0 or 1 packet is correctly decompressed, no
feedback is sent.
- When any packet fails the CRC check, use the logic of
5.3.2.2.3 to decide if a NACK(O) should be sent.
5.5. Operation in Bidirectional Reliable mode
5.5.1. Compressor states and logic (R-mode)
Below is the state machine for the compressor in Bidirectional
Reliable mode. The details of each state, state transitions, and
compression logic are given subsequent to the figure.
ACK
+------>------>------>------>------>------>------>------+
| |
| ACK ACK | ACK
| +------>------>------+ +------>------>------+ +->-+
| | | | | | |
| | v | v | v
+----------+ +----------+ +----------+
| IR State | | FO State | | SO State |
+----------+ +----------+ +----------+
^ ^ | ^ | |
| | STATIC-NACK | | NACK / Update | |
| +------<------<------+ +------<------<------+ |
| |
| STATIC-NACK |
+------<------<------<------<------<------<------<------<------+
5.5.1.1. State transition logic (R-mode)
The transition logic for compression states in Reliable mode is based
on three principles: the secure reference principle, the need for
updates, and negative acknowledgments.
5.5.1.1.1. Upwards transition
The upwards transition is determined by the secure reference
principle. The transition procedure is similar to the one described
in section 5.3.1.1.1, with one important difference: the compressor
Bormann, et al. Standards Track [Page 65]
^L
RFC 3095 Robust Header Compression July 2001
bases its confidence only on acknowledgments received from the
decompressor. This ensures that the synchronization between the
compression context and decompression context will never be lost due
to packet losses.
5.5.1.1.2. Downward transition
Downward transitions are triggered by the need for updates or by
negative acknowledgment (NACKs and STATIC_NACKs), as described in
section 5.3.1.1.3 and 5.4.1.1.1, respectively. Note that NACKs
should rarely occur in R-mode because of the secure reference used
(see fourth paragraph of next section).
5.5.1.2. Compression logic and packets used (R-mode)
The compressor starts in the IR state by sending IR packets. It
transits to the FO state once it receives a valid ACK for an IR
packet sent (an ACK can only be valid if it refers to an SN sent
earlier). In the FO state, it sends the smallest packets that can
communicate the changes, according to W-LSB or other encoding rules.
Those packets could be of type R-1*, UOR-2, or even IR-DYN.
The compressor will transit to the SO state after it has determined
the presence of a string (see section 2), while also being confident
that the decompressor has the string parameters. The confidence can
be based on ACKs. For example, in a typical case where the string
pattern has the form of non-SN-field = SN * slope + offset, one ACK
is enough if the slope has been previously established by the
decompressor (i.e., only the new offset needs to be synchronized).
Otherwise, two ACKs are required since the decompressor needs two
headers to learn both the new slope and the new offset. In the SO
state, R-0* packets will be sent.
Note that a direct transition from the IR state to the SO state is
possible.
The secure reference principle is enforced in both compression and
decompression logic. The principle means that only a packet carrying
a 7- or 8-bit CRC can update the decompression context and be used as
a reference for subsequent decompression. Consequently, only field
values of update packets need to be added to the encoding sliding
windows (see 4.5) maintained by the compressor.
Reasons for the compressor to send update packets include:
1) The update may lead to a transition to higher compression
efficiency (meaning either a higher compression state or smaller
packets in the same state).
Bormann, et al. Standards Track [Page 66]
^L
RFC 3095 Robust Header Compression July 2001
2) It is desirable to shrink sliding windows. Windows are only
shrunk when an ACK is received.
The generation of a CRC is infrequent since it is only needed for
an update packet.
One algorithm for sending update packets could be:
* Let pRTT be the number of packets that are sent during one
round-trip time. In the SO state, when (64 - pRTT) headers have
been sent since the last acked reference, the compressor will
send m1 consecutive R-0-CRC headers, then send (pRTT - m1) R-0
headers. After these headers have been sent, if the compressor
has not received an ACK to at least one of the previously sent
R0-CRC, it sends R-0-CRC headers continuously until it receives a
corresponding ACK. m1 is an implementation parameter, which can
be as large as pRTT.
* In the FO state, m2 UOR-2 headers are sent when there is a
pattern change, after which the compressor sends (pRTT - m2)
R-1-* headers. m2 is an implementation parameter, which can be
as large as pRTT. At that time, if the compressor has not
received enough ACKs to the previously sent UOR-2 packets in
order to transit to SO state, it can repeat the cycle with the
same m2, or repeat the cycle with a larger m2, or send UOR-2
headers continuously (m2 = pRTT). The operation stops when the
compressor has received enough ACKs to make the transition.
An algorithm for processing ACKs could be:
* Upon reception of an ACK, the compressor first derives the
complete SN (see section 5.7.6.1). Then it searches the sliding
window for an update packet that has the same SN. If found, that
packet is the one being ACKed. Otherwise, the ACK is invalid and
MUST be discarded.
* It is possible, although unlikely, that residual errors on the
reverse channel could cause a packet to mimic a valid ACK
feedback. The compressor may use a local clock to reduce the
probability of processing such a mistaken ACK. After finding the
update packet as described above, the compressor can check the
time elapsed since the packet was sent. If the time is longer
than RTT_U, or shorter than RTT_L, the compressor may choose to
discard the ACK. RTT_U and RTT_L correspond to an upper bound
and lower bound of the RTT, respectively. (These bounds should
be chosen appropriately to allow some variation of RTT.) Note
that the only side effect of discarding a good ACK is slightly
reduced compression efficiency.
Bormann, et al. Standards Track [Page 67]
^L
RFC 3095 Robust Header Compression July 2001
5.5.2. Decompressor states and logic (R-mode)
The decompression states and the state transition logic are the same
as for the Unidirectional case (see section 5.3.2). What differs is
the decompression and feedback logic.
5.5.2.1. Decompression logic (R-mode)
The rules for when decompression is allowed are the same as for U-
mode. Although the acking scheme in R-mode guarantees that non-
decompressible packets are never sent by the compressor, residual
errors can cause delivery of unexpected packets for which
decompression should not be attempted.
Decompression MUST follow the secure reference principle as described
in 5.5.1.2.
CRC verification is infrequent since only update packets carry CRCs.
A CRC mismatch can only occur due to 1) residual bit errors in the
current header, and/or 2) a damaged context due to residual bit
errors in previous headers or feedback. Although it is impossible to
determine which is the actual cause, case 1 is more likely, as a
previous header reconstructed according to a damaged packet is
unlikely to pass the 7- or 8-bit CRC, and damaged packets are
unlikely to result in feedback that damages the context. The
decompressor SHOULD act according to section 5.3.2.2.3 when CRCs
fail, except that no local repair is performed. Note that all the
parameter numbers, k_1, n_1, k_2, and n_2, are applied to the update
packets only (i.e., exclude R-0, R-1*).
5.5.2.2. Feedback logic (R-mode)
The feedback logic for the Bidirectional Reliable mode is as follows:
- When an updating packet (i.e., a packet carrying a 7- or 8-bit CRC)
is correctly decompressed, send an ACK(R), subject to the sparse
ACK mechanism described below.
- When context damage is detected, send a NACK(R) if in Full Context
state, or a STATIC-NACK(R) if in Static Context state.
- In No Context state, send a STATIC-NACK(R) when receiving a non-IR
packet, subject to the considerations at the beginning of section
5.7.6. The decompressor SHOULD NOT send STATIC-NACK(R) when
receiving an IR packet that fails the CRC check, as the compressor
will stay in IR state and thus continue sending IR packets until a
valid ACK is received (see section 5.5.1.2).
Bormann, et al. Standards Track [Page 68]
^L
RFC 3095 Robust Header Compression July 2001
- Feedback is never sent for packets not updating the context (i.e.,
packets that do not carry a CRC)
A mechanism called "Sparse ACK" can be applied to reduce the feedback
overhead caused by a large RTT. For a sequence of ACK-triggering
events, a minimal set of ACKs MUST be sent:
1) For a sequence of R-0-CRC packets, the first one MUST be ACKed.
2) For a sequence of UOR-2, IR, or IR-DYN packets, the first N of
them MUST be ACKEd, where N is the number of ACKs needed to give
the compressor confidence that the decompressor has acquired the
new string parameters (see second paragraph of 5.5.1.2). In case
the decompressor cannot determine the value of N, the default
value 2 SHOULD be used. If the subsequently received packets
continue the same change pattern of header fields, sparse ACK can
be applied. Otherwise, each new pattern MUST be treated as a new
sequence, i.e., the first N packets that exhibit a new pattern
MUST be ACKed.
After sending these minimal ACKs, the decompressor MAY choose to ACK
only k subsequent packets per RTT ("Sparse ACKs"), where k is an
implementation parameter. To achieve robustness against loss of
ACKs, k SHOULD be at least 1.
To avoid ambiguity at the compressor, the decompressor MUST use the
feedback format whose SN field length is equal to or larger than the
one in the compressed packet that triggered the feedback.
Context damage is detected according to the principles in 5.3.2.2.3.
When the decompressor is capable of timer-based compression of the
RTP Timestamp (e.g., it has access to a clock with sufficient
resolution, and the jitter introduced internally in the receiving
node is sufficiently small) it SHOULD signal that it is ready to do
timer-based compression of the RTP Timestamp. The compressor will
then make a decision based on its knowledge of the channel and the
observed properties of the packet stream.
5.6. Mode transitions
The decision to move from one compression mode to another is taken by
the decompressor and the possible mode transitions are shown in the
figure below. Subsequent chapters describe how the transitions are
performed together with exceptions for the compression and
decompression functionality during transitions.
Bormann, et al. Standards Track [Page 69]
^L
RFC 3095 Robust Header Compression July 2001
+-------------------------+
| Unidirectional (U) mode |
+-------------------------+
/ ^ \ ^
/ / Feedback(U) \ \ Feedback(U)
/ / \ \
/ / \ \
Feedback(O) / / Feedback(R) \ \
v / v \
+---------------------+ Feedback(R) +-------------------+
| Optimistic (O) mode | ----------------> | Reliable (R) mode |
| | <---------------- | |
+---------------------+ Feedback(O) +-------------------+
5.6.1. Compression and decompression during mode transitions
The following sections assume that, for each context, the compressor
and decompressor maintain a variable whose value is the current
compression mode for that context. The value of the variable
controls, for the context in question, which packet types to use,
which actions to be taken, etc.
As a safeguard against residual errors, all feedback sent during a
mode transition MUST be protected by a CRC, i.e., the CRC option MUST
be used. A mode transition MUST NOT be initiated by feedback which
is not protected by a CRC.
The subsequent subsections define exactly when to change the value of
the MODE variable. When ROHC transits between compression modes,
there are several cases where the behavior of compressor or
decompressor must be restricted during the transition phase. These
restrictions are defined by exception parameters that specify which
restrictions to apply. The transition descriptions in subsequent
chapters refer to these exception parameters and defines when they
are set and to what values. All mode related parameters are listed
below together with their possible values, with explanations and
restrictions:
Parameters for the compressor side:
- C_MODE:
Possible values for the C_MODE parameter are (U)NIDIRECTIONAL,
(O)PTIMISTIC and (R)ELIABLE. C_MODE MUST be initialized to U.
- C_TRANS:
Possible values for the C_TRANS parameter are (P)ENDING and
(D)ONE. C_TRANS MUST be initialized to D. When C_TRANS is P,
it is REQUIRED
Bormann, et al. Standards Track [Page 70]
^L
RFC 3095 Robust Header Compression July 2001
1) that the compressor only use packet formats common to all
modes,
2) that mode information is included in packets sent, at least
periodically,
3) that the compressor not transit to the SO state,
4) that new mode transition requests be ignored.
Parameters for the decompressor side:
- D_MODE:
Possible values for the D_MODE parameter are (U)NIDIRECTIONAL,
(O)PTIMISTIC and (R)ELIABLE. D_MODE MUST be initialized to U.
- D_TRANS:
Possible values for the D_TRANS parameter are (I)NITIATED,
(P)ENDING and (D)ONE. D_TRANS MUST be initialized to D. A
mode transition can be initiated only when D_TRANS is D. While
D_TRANS is I, the decompressor sends a NACK or ACK carrying a
CRC option for each received packet.
5.6.2. Transition from Unidirectional to Optimistic mode
When there is a feedback channel available, the decompressor may at
any moment decide to initiate transition from Unidirectional to
Bidirectional Optimistic mode. Any feedback packet carrying a CRC
can be used with the mode parameter set to O. The decompressor can
then directly start working in Optimistic mode. The compressor
transits from Unidirectional to Optimistic mode as soon as it
receives any feedback packet that has the mode parameter set to O and
that passes the CRC check. The transition procedure is described
below:
Compressor Decompressor
----------------------------------------------
| |
| ACK(O)/NACK(O) +-<-<-<-| D_MODE = O
| +-<-<-<-<-<-<-<-+ |
C_MODE = O |-<-<-<-+ |
| |
If the feedback packet is lost, the compressor will continue to work
in Unidirectional mode, but as soon as any feedback packet reaches
the compressor it will transit to Optimistic mode.
Bormann, et al. Standards Track [Page 71]
^L
RFC 3095 Robust Header Compression July 2001
5.6.3. From Optimistic to Reliable mode
Transition from Optimistic to Reliable mode is permitted only after
at least one packet has been correctly decompressed, which means that
at least the static part of the context is established. An ACK(R) or
a NACK(R) feedback packet carrying a CRC is sent to initiate the mode
transition. The compressor MUST NOT use packet types 0 or 1 during
transition. The transition procedure is described below:
Compressor Decompressor
----------------------------------------------
| |
| ACK(R)/NACK(R) +-<-<-<-| D_TRANS = I
| +-<-<-<-<-<-<-<-+ |
C_TRANS = P |-<-<-<-+ |
C_MODE = R | |
|->->->-+ IR/IR-DYN/UOR-2(SN,R) |
| +->->->->->->->-+ |
|->-.. +->->->-| D_TRANS = P
|->-.. | D_MODE = R
| ACK(SN,R) +-<-<-<-|
| +-<-<-<-<-<-<-<-+ |
C_TRANS = D |-<-<-<-+ |
| |
|->->->-+ R-0*, R-1* |
| +->->->->->->->-+ |
| +->->->-| D_TRANS = D
| |
As long as the decompressor has not received an UOR-2, IR-DYN, or IR
packet with the mode transition parameter set to R, it must stay in
Optimistic mode. The compressor must not send packet types 1 or 0
while C_TRANS is P, i.e., not until it has received an ACK for a
UOR-2, IR-DYN, or IR packet sent with the mode transition parameter
set to R. When the decompressor receives packet types 0 or 1, after
having ACKed an UOR-2, IR-DYN, or IR packet, it sets D_TRANS to D.
5.6.4. From Unidirectional to Reliable mode
The transition from Unidirectional to Reliable mode follows the same
transition procedure as defined in section 5.6.3 above.
5.6.5. From Reliable to Optimistic mode
Either the ACK(O) or the NACK(O) feedback packet is used to initiate
the transition from Reliable to Optimistic mode and the compressor
MUST always run in the FO state during transition. The transition
procedure is described below:
Bormann, et al. Standards Track [Page 72]
^L
RFC 3095 Robust Header Compression July 2001
Compressor Decompressor
----------------------------------------------
| |
| ACK(O)/NACK(O) +-<-<-<-| D_TRANS = I
| +-<-<-<-<-<-<-<-+ |
C_TRANS = P |-<-<-<-+ |
C_MODE = O | |
|->->->-+ IR/IR-DYN/UOR-2(SN,O) |
| +->->->->->->->-+ |
|->-.. +->->->-| D_MODE = O
|->-.. |
| ACK(SN,O) +-<-<-<-|
| +-<-<-<-<-<-<-<-+ |
C_TRANS = D |-<-<-<-+ |
| |
|->->->-+ UO-0, UO-1* |
| +->->->->->->->-+ |
| +->->->-| D_TRANS = D
| |
As long as the decompressor has not received an UOR-2, IR-DYN, or IR
packet with the mode transition parameter set to O, it must stay in
Reliable mode. The compressor must not send packet types 0 or 1
while C_TRANS is P, i.e., not until it has received an ACK for an
UOR-2, IR-DYN, or IR packet sent with the mode transition parameter
set to O. When the decompressor receives packet types 0 or 1, after
having ACKed the UOR-2, IR-DYN, or IR packet, it sets D_TRANS to D.
5.6.6. Transition to Unidirectional mode
The decompressor can force a transition back to Unidirectional mode
if it desires to do so. Regardless of which mode this transition
starts from, a three-way handshake MUST be carried out to ensure
correct transition on the compressor side. The transition procedure
is described below:
Bormann, et al. Standards Track [Page 73]
^L
RFC 3095 Robust Header Compression July 2001
Compressor Decompressor
----------------------------------------------
| |
| ACK(U)/NACK(U) +-<-<-<-| D_TRANS = I
| +-<-<-<-<-<-<-<-+ |
C_TRANS = P |-<-<-<-+ |
C_MODE = U | |
|->->->-+ IR/IR-DYN/UOR-2(SN,U) |
| +->->->->->->->-+ |
|->-.. +->->->-|
|->-.. |
| ACK(SN,U) +-<-<-<-|
| +-<-<-<-<-<-<-<-+ |
C_TRANS = D |-<-<-<-+ |
| |
|->->->-+ UO-0, UO-1* |
| +->->->->->->->-+ |
| +->->->-| D_TRANS = D, D_MODE= U
After ACKing the first UOR-2(U), IR-DYN(U), or IR(U), the
decompressor MUST continue to send feedback with the Mode parameter
set to U until it receives packet types 0 or 1.
5.7. Packet formats
The following notation is used in this section:
bits(X) = the number of bits for field X present in the compressed
header (including extension).
field(X) = the value of field X in the compressed header.
context(X) = the value of field X as established in the context.
value(X) = field(X) if X is present in the compressed header;
= context(X) otherwise.
hdr(X) = the value of field X in the uncompressed or
decompressed header.
Updating properties: Lists the fields in the context that are
directly updated by processing the compressed header. Note
that there may be dependent fields that are implicitly also
updated (e.g., an update to context(SN) often updates
context(TS) as well). See also section 5.2.7.
Bormann, et al. Standards Track [Page 74]
^L
RFC 3095 Robust Header Compression July 2001
The following fields occur in several headers and extensions:
SN: The compressed RTP Sequence Number.
Compressed with W-LSB. The interpretation intervals, see section
4.5.1, are defined as follows:
p = 1 if bits(SN) <= 4
p = 2^(bits(SN)-5) - 1 if bits(SN) > 4
IP-ID: A compressed IP-ID field.
IP-ID fields in compressed base headers carry the compressed IP-ID
of the innermost IPv4 header whose corresponding RND flag is not
1. The rules below assume that the IP-ID is for the innermost IP
header. If it is for an outer IP header, the RND2 and NBO2 flags
are used instead of RND and NBO.
If value(RND) = 0, hdr(IP-ID) is compressed using Offset IP-ID
encoding (see section 4.5.5) using p = 0 and default-slope(IP-ID
offset) = 0.
If value(RND) = 1, IP-ID is the uncompressed hdr(IP-ID). IP-ID is
then passed as additional octets at the end of the compressed
header, after any extensions.
If value(NBO) = 0, the octets of hdr(IP-ID) are swapped before
compression and after decompression. The value of NBO is ignored
when value(RND) = 1.
TS: The compressed RTP Timestamp value.
If value(TIME_STRIDE) > 0, timer-based compression of the RTP
Timestamp is used (see section 4.5.4).
If value(Tsc) = 1, Scaled RTP Timestamp encoding is used before
compression (see section 4.5.3), and default-slope(TS) = 1.
If value(Tsc) = 0, the Timestamp value is compressed as-is, and
default-slope(TS) = value(TS_STRIDE).
The interpretation intervals, see section 4.5.1, are defined as
follows:
p = 2^(bits(TS)-2) - 1
Bormann, et al. Standards Track [Page 75]
^L
RFC 3095 Robust Header Compression July 2001
CRC: The CRC over the original, uncompressed, header.
For 3-bit CRCs, the polynomial of section 5.9.2 is used.
For 7-bit CRCs, the polynomial of section 5.9.2 is used.
For 8-bit CRCs, the polynomial of section 5.9.1 is used.
M: RTP Marker bit.
Context(M) is initially zero and is never updated. value(M) = 1
only when field(M) = 1.
Bormann, et al. Standards Track [Page 76]
^L
RFC 3095 Robust Header Compression July 2001
The general format for a compressed RTP header is as follows:
0 1 2 3 4 5 6 7
--- --- --- --- --- --- --- ---
: Add-CID octet : if for small CIDs and CID 1-15
+---+---+---+---+---+---+---+---+
| first octet of base header | (with type indication)
+---+---+---+---+---+---+---+---+
: :
/ 0, 1, or 2 octets of CID / 1-2 octets if large CIDs
: :
+---+---+---+---+---+---+---+---+
/ remainder of base header / variable number of bits
+---+---+---+---+---+---+---+---+
: :
/ Extension (see 5.7.5) / extension, if X = 1 in base header
: :
--- --- --- --- --- --- --- ---
: :
+ IP-ID of outer IPv4 header + 2 octets, if value(RND2) = 1
: :
--- --- --- --- --- --- --- ---
/ AH data for outer list / variable (see 5.8.4.2)
--- --- --- --- --- --- --- ---
: :
+ GRE checksum (see 5.8.4.4) + 2 octets, if GRE flag C = 1
: :
--- --- --- --- --- --- --- ---
: :
+ IP-ID of inner IPv4 header + 2 octets, if value(RND) = 1
: :
--- --- --- --- --- --- --- ---
/ AH data for inner list / variable (see 5.8.4.2)
--- --- --- --- --- --- --- ---
: :
+ GRE checksum (see 5.8.4.4) + 2 octets, if GRE flag C = 1
: :
--- --- --- --- --- --- --- ---
: :
+ UDP Checksum + 2 octets,
: : if context(UDP Checksum) != 0
--- --- --- --- --- --- --- ---
Note that the order of the fields following the optional extension is
the same as the order between the fields in an uncompressed header.
In subsequent sections, the position of the large CID in the diagrams
is indicated using this notation:
Bormann, et al. Standards Track [Page 77]
^L
RFC 3095 Robust Header Compression July 2001
+===+===+===+===+===+===+===+===+
Whether the UDP Checksum field is present or not is controlled by the
value of the UDP Checksum in the context. If nonzero, the UDP
Checksum is enabled and sent along with each packet. If zero, the
UDP Checksum is disabled and not sent. Should hdr(UDP Checksum) be
nonzero when context(UDP Checksum) is zero, the header cannot be
compressed. It must be sent uncompressed or the context
reinitialized using an IR packet. Context(UDP Checksum) is updated
only by IR or IR-DYN headers, never by UDP checksums sent in headers
of type 2, 1, or 0.
When an IPv4 header is present in the static context, for which the
corresponding RND flag has not been established to be 1, the packet
types R-1 and UO-1 MUST NOT be used.
When no IPv4 header is present in the static context, or the RND
flags for all IPv4 headers in the context have been established to be
1, the packet types R-1-ID, R-1-TS, UO-1-ID, and UO-1-TS MUST NOT be
used.
While in the transient state in which an RND flag is being
established, the packet types R-1-ID, R-1-TS, UO-1-ID, and UO-1-TS
MUST NOT be used. This implies that the RND flag(s) of the Extension
3 may have to be inspected before the format of a base header
carrying an Extension 3 can be determined.
5.7.1. Packet type 0: UO-0, R-0, R-0-CRC
Packet type 0 is indicated by the first bit being 0:
R-0
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 0 0 | SN |
+===+===+===+===+===+===+===+===+
Updating properties: R-0 packets do not update any part of the
context.
Bormann, et al. Standards Track [Page 78]
^L
RFC 3095 Robust Header Compression July 2001
R-0-CRC
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 0 1 | SN |
+===+===+===+===+===+===+===+===+
|SN | CRC |
+---+---+---+---+---+---+---+---+
Note: The SN field straddles the CID field.
Updating properties: R-0-CRC packets update context(RTP Sequence
Number).
UO-0
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 0 | SN | CRC |
+===+===+===+===+===+===+===+===+
Updating properties: UO-0 packets update the current value of
context(RTP Sequence Number).
5.7.2. Packet type 1 (R-mode): R-1, R-1-TS, R-1-ID
Packet type 1 is indicated by the first bits being 10:
R-1
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 1 0 | SN |
+===+===+===+===+===+===+===+===+
| M | X | TS |
+---+---+---+---+---+---+---+---+
Note: R-1 cannot be used if the context contains at least one IPv4
header with value(RND) = 0. This disambiguates it from R-1-ID and
R-1-TS.
Bormann, et al. Standards Track [Page 79]
^L
RFC 3095 Robust Header Compression July 2001
R-1-ID
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 1 0 | SN |
+===+===+===+===+===+===+===+===+
| M | X |T=0| IP-ID |
+---+---+---+---+---+---+---+---+
Note: R-1-ID cannot be used if there is no IPv4 header in the
context or if value(RND) and value(RND2) are both 1.
R-1-TS
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 1 0 | SN |
+===+===+===+===+===+===+===+===+
| M | X |T=1| TS |
+---+---+---+---+---+---+---+---+
Note: R-1-TS cannot be used if there is no IPv4 header in the
context or if value(RND) and value(RND2) are both 1.
X: X = 0 indicates that no extension is present;
X = 1 indicates that an extension is present.
T: T = 0 indicates format R-1-ID;
T = 1 indicates format R-1-TS.
Updating properties: R-1* headers do not update any part of the
context.
5.7.3. Packet type 1 (U/O-mode): UO-1, UO-1-ID, UO-1-TS
UO-1
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 1 0 | TS |
+===+===+===+===+===+===+===+===+
| M | SN | CRC |
+---+---+---+---+---+---+---+---+
Note: UO-1 cannot be used if the context contains at least one
IPv4 header with value(RND) = 0. This disambiguates it from UO-
1-ID and UO-1-TS.
Bormann, et al. Standards Track [Page 80]
^L
RFC 3095 Robust Header Compression July 2001
UO-1-ID
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 1 0 |T=0| IP-ID |
+===+===+===+===+===+===+===+===+
| X | SN | CRC |
+---+---+---+---+---+---+---+---+
Note: UO-1-ID cannot be used if there is no IPv4 header in the
context or if value(RND) and value(RND2) are both 1.
UO-1-TS
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 1 0 |T=1| TS |
+===+===+===+===+===+===+===+===+
| M | SN | CRC |
+---+---+---+---+---+---+---+---+
Note: UO-1-TS cannot be used if there is no IPv4 header in the
context or if value(RND) and value(RND2) are both 1.
X: X = 0 indicates that no extension is present;
X = 1 indicates that an extension is present.
T: T = 0 indicates format UO-1-ID;
T = 1 indicates format UO-1-TS.
Updating properties: UO-1* packets update context(RTP Sequence
Number). UO-1 and UO-1-TS packets update context(RTP Timestamp).
UO-1-ID packets update context(IP-ID). Values provided in
extensions, except those in other SN, TS, or IP-ID fields, do not
update the context.
Bormann, et al. Standards Track [Page 81]
^L
RFC 3095 Robust Header Compression July 2001
5.7.4. Packet type 2: UOR-2
Packet type 2 is indicated by the first bits being 110:
UOR-2
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 1 1 0 | TS |
+===+===+===+===+===+===+===+===+
|TS | M | SN |
+---+---+---+---+---+---+---+---+
| X | CRC |
+---+---+---+---+---+---+---+---+
Note: UOR-2 cannot be used if the context contains at least one
IPv4 header with value(RND) = 0. This disambiguates it from UOR-
2-ID and UOR-2-TS.
Note: The TS field straddles the CID field.
UOR-2-ID
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 1 1 0 | IP-ID |
+===+===+===+===+===+===+===+===+
|T=0| M | SN |
+---+---+---+---+---+---+---+---+
| X | CRC |
+---+---+---+---+---+---+---+---+
Note: UOR-2-ID cannot be used if there is no IPv4 header in the
context or if value(RND) and value(RND2) are both 1.
UOR-2-TS
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 1 1 0 | TS |
+===+===+===+===+===+===+===+===+
|T=1| M | SN |
+---+---+---+---+---+---+---+---+
| X | CRC |
+---+---+---+---+---+---+---+---+
Note: UOR-2-TS cannot be used if there is no IPv4 header in the
context or if value(RND) and value(RND2) are both 1.
Bormann, et al. Standards Track [Page 82]
^L
RFC 3095 Robust Header Compression July 2001
X: X = 0 indicates that no extension is present;
X = 1 indicates that an extension is present.
T: T = 0 indicates format UOR-2-ID;
T = 1 indicates format UOR-2-TS.
Updating properties: All values provided in UOR-2* packets update
the context, unless explicitly stated otherwise.
5.7.5. Extension formats
(Note: the term extension as used for additional information
contained in the ROHC headers does not bear any relationship to the
term extension header used in IP.)
Fields in extensions are concatenated with the corresponding field in
the base compressed header, if there is one. Bits in an extension
are less significant than bits in the base compressed header (see
section 4.5.7).
The TS field is scaled in all extensions, as it is in the base
header, except optionally when using Extension 3 where the Tsc flag
can indicate that the TS field is not scaled. Value(TS_STRIDE) is
used as the scale factor when scaling the TS field.
In the following three extensions, the interpretation of the fields
depends on whether there is a T-bit in the base compressed header,
and if so, on the value of that field. When there is no T-bit, +T
and -T both mean TS. This is the case when there are no IPv4 headers
in the static context, and when all IPv4 headers in the static
context have their corresponding RND flag set (i.e., RND = 1).
If there is a T-bit,
T = 1 indicates that +T is TS, and
-T is IP-ID;
T = 0 indicates that +T is IP-ID, and
-T is TS.
Extension 0:
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 0 0 | SN | +T |
+---+---+---+---+---+---+---+---+
Bormann, et al. Standards Track [Page 83]
^L
RFC 3095 Robust Header Compression July 2001
Extension 1:
+---+---+---+---+---+---+---+---+
| 0 1 | SN | +T |
+---+---+---+---+---+---+---+---+
| -T |
+---+---+---+---+---+---+---+---+
Extension 2:
+---+---+---+---+---+---+---+---+
| 1 0 | SN | +T |
+---+---+---+---+---+---+---+---+
| +T |
+---+---+---+---+---+---+---+---+
| -T |
+---+---+---+---+---+---+---+---+
Extension 3 is a more elaborate extension which can give values for
fields other than SN, TS, and IP-ID. Three optional flag octets
indicate changes to IP header(s) and RTP header, respectively.
Bormann, et al. Standards Track [Page 84]
^L
RFC 3095 Robust Header Compression July 2001
Extension 3:
0 1 2 3 4 5 6 7
+-----+-----+-----+-----+-----+-----+-----+-----+
| 1 1 | S |R-TS | Tsc | I | ip | rtp | (FLAGS)
+-----+-----+-----+-----+-----+-----+-----+-----+
| Inner IP header flags | ip2 | if ip = 1
..... ..... ..... ..... ..... ..... ..... .....
| Outer IP header flags | if ip2 = 1
..... ..... ..... ..... ..... ..... ..... .....
| SN | if S = 1
..... ..... ..... ..... ..... ..... ..... .....
/ TS (encoded as in section 4.5.6) / 1-4 octets,
..... ..... ..... ..... ..... ..... ..... ..... if R-TS = 1
| |
/ Inner IP header fields / variable,
| | if ip = 1
..... ..... ..... ..... ..... ..... ..... .....
| IP-ID | 2 octets, if I = 1
..... ..... ..... ..... ..... ..... ..... .....
| |
/ Outer IP header fields / variable,
| | if ip2 = 1
..... ..... ..... ..... ..... ..... ..... .....
| |
/ RTP header flags and fields / variable,
| | if rtp = 1
..... ..... ..... ..... ..... ..... ..... .....
S, R-TS, I, ip, rtp, ip2: Indicate presence of fields as shown to
the right of each field above.
Tsc: Tsc = 0 indicates that TS is not scaled;
Tsc = 1 indicates that TS is scaled according to section
4.5.3, using value(TS_STRIDE).
Context(Tsc) is always 1. If scaling is not desired, the
compressor will establish TS_STRIDE = 1.
SN: See the beginning of section 5.7.
TS: Variable number of bits of TS, encoded according to
section 4.5.6. See the beginning of section 5.7.
IP-ID: See the beginning of section 5.7.
Bormann, et al. Standards Track [Page 85]
^L
RFC 3095 Robust Header Compression July 2001
Inner IP header flags
These correspond to the inner IP header if there are two, and the
single IP header otherwise.
0 1 2 3 4 5 6 7
..... ..... ..... ..... ..... ..... ..... .....
| TOS | TTL | DF | PR | IPX | NBO | RND | ip2 | if ip = 1
..... ..... ..... ..... ..... ..... ..... .....
TOS, TTL, PR, IPX: Indicates presence of fields as shown to the
right of the field in question below.
DF: Don't Fragment bit of IP header.
NBO: Indicates whether the octets of hdr(IP identifier) of this IP
header are swapped before compression and after decompression.
NBO = 1 indicates that the octets need not be swapped. NBO = 0
indicates that the octets are to be swapped. See section 4.5.5.
RND: Indicates whether hdr(IP identifier) is not to be compressed
but instead sent as-is in compressed headers.
IP2: Indicates presence of Outer IP header fields. Unless the
static context contains two IP headers, IP2 is always zero.
Inner IP header fields
..... ..... ..... ..... ..... ..... ..... .....
| Type of Service/Traffic Class | if TOS = 1
..... ..... ..... ..... ..... ..... ..... .....
| Time to Live/Hop Limit | if TTL = 1
..... ..... ..... ..... ..... ..... ..... .....
| Protocol/Next Header | if PR = 1
..... ..... ..... ..... ..... ..... ..... .....
/ IP extension headers / variable,
..... ..... ..... ..... ..... ..... ..... ..... if IPX = 1
Type of Service/Traffic Class: That field in the uncompressed IP
header (absolute value).
Time to Live/Hop Limit: That field in the uncompressed IP header.
Protocol/Next Header: That field in the uncompressed IP header.
IP extension header(s): According to section 5.8.5.
Bormann, et al. Standards Track [Page 86]
^L
RFC 3095 Robust Header Compression July 2001
Outer IP header flags
The fields in this part of the Extension 3 header refer to the
outermost IP header:
0 1 2 3 4 5 6 7
..... ..... ..... ..... ..... ..... ..... ..... | TOS2| TTL2|
DF2 | PR2 |IPX2 |NBO2 |RND2 | I2 | if ip2 = 1
..... ..... ..... ..... ..... ..... ..... .....
These flags are the same as the Inner IP header flags, but refer
to the outer IP header instead of the inner IP header. The
following flag, however, has no counterpart in the Inner IP header
flags:
I2: Indicates presence of the IP-ID field.
Outer IP header fields
..... ..... ..... ..... ..... ..... ..... .....
| Type of Service/Traffic Class | if TOS2 = 1
..... ..... ..... ..... ..... ..... ..... .....
| Time to Live/Hop Limit | if TTL2 = 1
..... ..... ..... ..... ..... ..... ..... .....
| Protocol/Next Header | if PR2 = 1
..... ..... ..... ..... ..... ..... ..... .....
/ IP extension header(s) / variable,
..... ..... ..... ..... ..... ..... ..... ..... if IPX2 = 1
| IP-ID | 2 octets,
..... ..... ..... ..... ..... ..... ..... ..... if I2 = 1
The fields in this part of Extension 3 are as for the Inner IP
header fields, but they refer to the outer IP header instead of
the inner IP header. The following field, however, has no
counterpart among the Inner IP header fields:
IP-ID: The IP Identifier field of the outer IP header, unless
the inner header is an IPv6 header, in which case I2 is always
zero.
Bormann, et al. Standards Track [Page 87]
^L
RFC 3095 Robust Header Compression July 2001
RTP header flags and fields
0 1 2 3 4 5 6 7
..... ..... ..... ..... ..... ..... ..... .....
| Mode |R-PT | M | R-X |CSRC | TSS | TIS | if rtp = 1
..... ..... ..... ..... ..... ..... ..... .....
| R-P | RTP PT | if R-PT = 1
..... ..... ..... ..... ..... ..... ..... .....
/ Compressed CSRC list / if CSRC = 1
..... ..... ..... ..... ..... ..... ..... .....
/ TS_STRIDE / 1-4 oct if TSS = 1
..... ..... ..... ..... ..... ..... ..... ....
/ TIME_STRIDE (milliseconds) / 1-4 oct if TIS = 1
..... ..... ..... ..... ..... ..... ..... .....
Mode: Compression mode. 0 = Reserved,
1 = Unidirectional,
2 = Bidirectional Optimistic,
3 = Bidirectional Reliable.
R-PT, CSRC, TSS, TIS: Indicate presence of fields as shown to the
right of each field above.
R-P: RTP Padding bit, absolute value (presumed zero if absent).
R-X: RTP eXtension bit, absolute value.
M: See the beginning of section 5.7.
RTP PT: Absolute value of RTP Payload type field.
Compressed CSRC list: See section 5.8.1.
TS_STRIDE: Predicted increment/decrement of the RTP Timestamp
field when it changes. Encoded as in section 4.5.6.
TIME_STRIDE: Predicted time interval in milliseconds between
changes in the RTP Timestamp. Also an indication that the
compressor desires to perform timer-based compression of the RTP
Timestamp field: see section 4.5.4. Encoded as in section 4.5.6.
5.7.5.1. RND flags and packet types
The values of the RND and RND2 flags are changed by sending UOR-2
headers with Extension 3, or IR-DYN headers, where the flag(s) have
their new values. The establishment procedure of the flags is the
normal one for the current mode, i.e., in U-mode and O-mode the
values are repeated several times to ensure that the decompressor
Bormann, et al. Standards Track [Page 88]
^L
RFC 3095 Robust Header Compression July 2001
receives at least one. In R-mode, the flags are sent until an
acknowledgment for a packet with the new RND flag values is received.
The decompressor updates the values of its RND and RND2 flags
whenever it receives an UOR-2 with Extension 3 carrying values for
RND or RND2, and the UOR-2 CRC verifies successful decompression.
When an IPv4 header for which the corresponding RND flag has not been
established to be 1 is present in the static context, the packet
types R-1 and UO-1 MUST NOT be used.
When no IPv4 header is present in the static context, or the RND
flags for all IPv4 headers in the context have been established to be
1, the packet types R-1-ID, R-1-TS, UO-1-ID, and UO-1-TS MUST NOT be
used.
While in the transient state in which an RND flag is being
established, the packet types R-1-ID, R-1-TS, UO-1-ID, and UO-1-TS
MUST NOT be used. This implies that the RND flag(s) of Extension 3
may have to be inspected before the exact format of a base header
carrying an Extension 3 can be determined, i.e., whether a T-bit is
present or not.
5.7.5.2. Flags/Fields in context
Some flags and fields in Extension 3 need to be maintained in the
context of the decompressor. Their values are established using the
mechanism appropriate to the compression mode, unless otherwise
indicated in the table below and in referred sections.
Flag/Field Initial value Comment
---------------------------------------------------------------------
Mode Unidirectional See section 5.6
NBO 1 See section 4.5.5
RND 0 See sections 4.5.5, 5.7.5.1
NBO2 1 As NBO, but for outer header
RND2 0 As RND, but for outer header
TS_STRIDE 1 See section 4.5.3
TIME_STRIDE 0 See section 4.5.4
Tsc 1 Tsc is always 1 in context;
can be 0 only when an Extension 3
is present. See the discussion of the
TS field in the beginning of section
5.7.
Bormann, et al. Standards Track [Page 89]
^L
RFC 3095 Robust Header Compression July 2001
5.7.6. Feedback packets and formats
When the round-trip time between compressor and decompressor is
large, several packets can be in flight concurrently. Therefore,
several packets may be received by the decompressor after feedback
has been sent and before the compressor has reacted to feedback.
Moreover, decompression may fail due to residual errors in the
compressed header.
Therefore,
a) in O-mode, the decompressor SHOULD limit the rate at which
feedback on successful decompression is sent (if it is sent at
all);
b) when decompression fails, feedback SHOULD be sent only when
decompression of several consecutive packets has failed, and when
this occurs, the feedback rate SHOULD be limited;
c) when packets are received which belong to a rejected packet
stream, the feedback rate SHOULD be limited.
A decompressor MAY limit the feedback rate by sending feedback only
for one out of every k packets provoking the same (kind of) feedback.
The appropriate value of k is implementation dependent; k might be
chosen such that feedback is sent 1-3 times per link round-trip time.
See section 5.2.2 for a discussion concerning ways to provide
feedback information to the compressor.
5.7.6.1. Feedback formats for ROHC RTP
This section describes the format for feedback information in ROHC
RTP. See also 5.2.2.
Several feedback formats carry a field labeled SN. The SN field
contains LSBs of an RTP Sequence Number. The sequence number to use
is the sequence number of the header which caused the feedback
information to be sent. If that sequence number cannot be
determined, for example when decompression fails, the sequence number
to use is that of the last successfully decompressed header. If no
sequence number is available, the feedback MUST carry a SN-NOT-VALID
option. Upon reception, the compressor matches valid SN LSBs with
the most recent header sent with a SN with matching LSBs. The
decompressor must ensure that it sends enough SN LSBs in its feedback
that this correlation does not become ambiguous; e.g., if an 8-bit SN
LSB field could wrap around within a round-trip time, the FEEDBACK-1
format cannot be used.
Bormann, et al. Standards Track [Page 90]
^L
RFC 3095 Robust Header Compression July 2001
FEEDBACK-1
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| SN |
+---+---+---+---+---+---+---+---+
A FEEDBACK-1 is an ACK. In order to send a NACK or a STATIC-NACK,
FEEDBACK-2 must be used. FEEDBACK-1 does not contain any mode
information; FEEDBACK-2 must be used when mode information is
required.
FEEDBACK-2
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
|Acktype| Mode | SN |
+---+---+---+---+---+---+---+---+
| SN |
+---+---+---+---+---+---+---+---+
/ Feedback options /
+---+---+---+---+---+---+---+---+
Acktype: 0 = ACK
1 = NACK
2 = STATIC-NACK
3 is reserved (MUST NOT be used for parseability)
Mode: 0 is reserved
1 = Unidirectional mode
2 = Bidirectional Optimistic mode
3 = Bidirectional Reliable mode
Feedback options: A variable number of feedback options, see
section 5.7.6.2. Options may appear in any order.
5.7.6.2. ROHC RTP Feedback options
A ROHC RTP Feedback option has variable length and the following
general format:
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| Opt Type | Opt Len |
+---+---+---+---+---+---+---+---+
/ option data / Opt Len octets
+---+---+---+---+---+---+---+---+
Bormann, et al. Standards Track [Page 91]
^L
RFC 3095 Robust Header Compression July 2001
Sections 5.7.6.3-9 describe the currently defined ROHC RTP feedback
options.
5.7.6.3. The CRC option
The CRC option contains an 8-bit CRC computed over the entire
feedback payload, without the packet type and code octet, but
including any CID fields, using the polynomial of section 5.9.1. If
the CID is given with an Add-CID octet, the Add-CID octet immediately
precedes the FEEDBACK-1 or FEEDBACK-2 format. For purposes of
computing the CRC, the CRC fields of all CRC options are zero.
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| Opt Type = 1 | Opt Len = 1 |
+---+---+---+---+---+---+---+---+
| CRC |
+---+---+---+---+---+---+---+---+
When receiving feedback information with a CRC option, the compressor
MUST verify the information by computing the CRC and comparing the
result with the CRC carried in the CRC option. If the two are not
identical, the feedback information MUST be ignored.
5.7.6.4. The REJECT option
The REJECT option informs the compressor that the decompressor does
not have sufficient resources to handle the flow.
+---+---+---+---+---+---+---+---+
| Opt Type = 2 | Opt Len = 0 |
+---+---+---+---+---+---+---+---+
When receiving a REJECT option, the compressor stops compressing the
packet stream, and should refrain from attempting to increase the
number of compressed packet streams for some time. Any FEEDBACK
packet carrying a REJECT option MUST also carry a CRC option.
5.7.6.5. The SN-NOT-VALID option
The SN-NOT-VALID option indicates that the SN of the feedback is not
valid. A compressor MUST NOT use the SN of the feedback to find the
corresponding sent header when this option is present.
+---+---+---+---+---+---+---+---+
| Opt Type = 3 | Opt Len = 0 |
+---+---+---+---+---+---+---+---+
Bormann, et al. Standards Track [Page 92]
^L
RFC 3095 Robust Header Compression July 2001
5.7.6.6. The SN option
The SN option provides 8 additional bits of SN.
+---+---+---+---+---+---+---+---+
| Opt Type = 4 | Opt Len = 1 |
+---+---+---+---+---+---+---+---+
| SN |
+---+---+---+---+---+---+---+---+
5.7.6.7. The CLOCK option
The CLOCK option informs the compressor of the clock resolution of
the decompressor. This is needed to allow the compressor to estimate
the jitter introduced by the clock of the decompressor when doing
timer-based compression of the RTP Timestamp.
+---+---+---+---+---+---+---+---+
| Opt Type = 5 | Opt Len = 1 |
+---+---+---+---+---+---+---+---+
| clock resolution (ms) |
+---+---+---+---+---+---+---+---+
The smallest clock resolution which can be indicated is 1
millisecond. The value zero has a special meaning: it indicates that
the decompressor cannot do timer-based compression of the RTP
Timestamp. Any FEEDBACK packet carrying a CLOCK option SHOULD also
carry a CRC option.
5.7.6.8. The JITTER option
The JITTER option allows the decompressor to report the maximum
jitter it has observed lately, using the following formula which is
very similar to the formula for Max_Jitter_BC in section 4.5.4.
Let observation window i contain the decompressor's best
approximation of the sliding window of the compressor (see section
4.5.4) when header i is received.
Max_Jitter_i =
max {|(T_i - T_j) - ((a_i - a_j) / TIME_STRIDE)|,
for all headers j in observation window i}
Max_Jitter =
max { Max_Jitter_i, for a large number of recent headers i }
Bormann, et al. Standards Track [Page 93]
^L
RFC 3095 Robust Header Compression July 2001
This information may be used by the compressor to refine the formula
for determining k when doing timer-based compression of the RTP
Timestamp.
+---+---+---+---+---+---+---+---+
| Opt Type = 6 | Opt Len = 1 |
+---+---+---+---+---+---+---+---+
| Max_Jitter |
+---+---+---+---+---+---+---+---+
The decompressor MAY ignore the oldest observed values of
Max_Jitter_i. Thus, the reported Max_Jitter may decrease.
Robustness will be reduced if the compressor uses a jitter estimate
which is too small. Therefore, a FEEDBACK packet carrying a JITTER
option SHOULD also carry a CRC option. Moreover, the compressor MAY
ignore decreasing Max_Jitter values.
5.7.6.9. The LOSS option
The LOSS option allows the decompressor to report the largest
observed number of packets lost in sequence. This information MAY be
used by the compressor to adjust the size of the reference window
used in U- and O-mode.
+---+---+---+---+---+---+---+---+
| Opt Type = 7 | Opt Len = 1 |
+---+---+---+---+---+---+---+---+
| longest loss event (packets) |
+---+---+---+---+---+---+---+---+
The decompressor MAY choose to ignore the oldest loss events. Thus,
the value reported may decrease. Since setting the reference window
too small can reduce robustness, a FEEDBACK packet carrying a LOSS
option SHOULD also carry a CRC option. The compressor MAY choose to
ignore decreasing loss values.
5.7.6.10. Unknown option types
If an option type unknown to the compressor is encountered, it must
continue parsing the rest of the FEEDBACK packet, which is possible
since the length of the option is explicit, but MUST otherwise ignore
the unknown option.
5.7.6.11. RTP feedback example
Feedback for CID 8 indicating an ACK for SN 17 and Bidirectional
Reliable mode can have the following formats.
Bormann, et al. Standards Track [Page 94]
^L
RFC 3095 Robust Header Compression July 2001
Assuming small CIDs:
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 1 1 1 1 0 | 0 1 1 | feedback packet type, Code = 3
+---+---+---+---+---+---+---+---+
| 1 1 1 0 | 1 0 0 0 | Add-CID octet with CID = 8
+---+---+---+---+---+---+---+---+
| 0 0 | 1 1 | SN MSB = 0 | AckType = ACK, Mode = Reliable
+---+---+---+---+---+---+---+---+
| SN LSB = 17 |
+---+---+---+---+---+---+---+---+
The second, third, and fourth octet are handed to the compressor.
The FEEDBACK-1 format may also be used. Assuming large CIDs:
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 1 1 1 1 0 | 0 1 0 | feedback packet type, Code = 2
+---+---+---+---+---+---+---+---+
| 0 0 0 0 1 0 0 0 | large CID with value 8
+---+---+---+---+---+---+---+---+
| SN LSB = 17 |
+---+---+---+---+---+---+---+---+
The second and third octet are handed to the compressor.
Assuming small CIDs:
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 1 1 1 1 0 | 0 1 0 | feedback packet type, Code = 2
+---+---+---+---+---+---+---+---+
| 1 1 1 0 | 1 0 0 0 | Add-CID octet with CID = 8
+---+---+---+---+---+---+---+---+
| SN LSB = 17 |
+---+---+---+---+---+---+---+---+
The second and third octet are handed to the compressor.
Bormann, et al. Standards Track [Page 95]
^L
RFC 3095 Robust Header Compression July 2001
Assuming small CIDs and CID 0 instead of CID 8:
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 1 1 1 1 0 | 0 0 1 | feedback packet type, Code = 1
+---+---+---+---+---+---+---+---+
| SN LSB = 17 |
+---+---+---+---+---+---+---+---+
The second octet is handed to the compressor.
5.7.7. RTP IR and IR-DYN packets
The subheaders which are compressible are split into a STATIC part
and a DYNAMIC part. These parts are defined in sections 5.7.7.3
through 5.7.7.7.
The structure of a chain of subheaders is determined by each header
having a Next Header, or Protocol, field. This field identifies the
type of the following header. Each Static part below that is
followed by another Static part contains the Next Header/Protocol
field and allows parsing of the Static chain; the Dynamic chain, if
present, is structured analogously.
IR and IR-DYN packets will cause a packet to be delivered to upper
layers if and only if the payload is non-empty. This means that an
IP/UDP/RTP packet where the UDP length indicates a UDP payload of
size 12 octets cannot be represented by an IR or IR-DYN packet. Such
packets can instead be represented using the UNCOMPRESSED profile
(section 5.10).
5.7.7.1. Basic structure of the IR packet
This packet type communicates the static part of the context, i.e.,
the values of the constant SN functions. It can optionally also
communicate the dynamic part of the context, i.e., the parameters of
nonconstant SN functions. It can also optionally communicate the
payload of an original packet, if any.
Bormann, et al. Standards Track [Page 96]
^L
RFC 3095 Robust Header Compression July 2001
0 1 2 3 4 5 6 7
--- --- --- --- --- --- --- ---
| Add-CID octet | if for small CIDs and CID != 0
+---+---+---+---+---+---+---+---+
| 1 1 1 1 1 1 0 | D |
+---+---+---+---+---+---+---+---+
| |
/ 0-2 octets of CID info / 1-2 octets if for large CIDs
| |
+---+---+---+---+---+---+---+---+
| Profile | 1 octet
+---+---+---+---+---+---+---+---+
| CRC | 1 octet
+---+---+---+---+---+---+---+---+
| |
| Static chain | variable length
| |
+---+---+---+---+---+---+---+---+
| |
| Dynamic chain | present if D = 1, variable length
| |
- - - - - - - - - - - - - - - -
| |
| Payload | variable length
| |
- - - - - - - - - - - - - - - -
D: D = 1 indicates that the dynamic chain is present.
Profile: Profile identifier, abbreviated as defined in section
5.2.3.
CRC: 8-bit CRC, computed according to section 5.9.1.
Static chain: A chain of static subheader information.
Dynamic chain: A chain of dynamic subheader information. What
dynamic information is present is inferred from the Static
chain.
Payload: The payload of the corresponding original packet, if any.
The presence of a payload is inferred from the packet length.
Bormann, et al. Standards Track [Page 97]
^L
RFC 3095 Robust Header Compression July 2001
5.7.7.2. Basic structure of the IR-DYN packet
This packet type communicates the dynamic part of the context, i.e.,
the parameters of nonconstant SN functions.
0 1 2 3 4 5 6 7
--- --- --- --- --- --- --- ---
: Add-CID octet : if for small CIDs and CID != 0
+---+---+---+---+---+---+---+---+
| 1 1 1 1 1 0 0 0 | IR-DYN packet type
+---+---+---+---+---+---+---+---+
: :
/ 0-2 octets of CID info / 1-2 octets if for large CIDs
: :
+---+---+---+---+---+---+---+---+
| Profile | 1 octet
+---+---+---+---+---+---+---+---+
| CRC | 1 octet
+---+---+---+---+---+---+---+---+
| |
/ Dynamic chain / variable length
| |
+---+---+---+---+---+---+---+---+
: :
/ Payload / variable length
: :
- - - - - - - - - - - - - - - -
Profile: Profile identifier, abbreviated as defined in section 5.2.3.
CRC: 8-bit CRC, computed according to section 5.9.1.
NOTE: As the CRC checks only the integrity of the header
itself, an acknowledgment of this header does not signify that
previous changes to the static chain in the context are also
acknowledged. In particular, care should be taken when IR
packets that update an existing context are followed by IR-DYN
packets.
Dynamic chain: A chain of dynamic subheader information. What
dynamic information is present is inferred from the Static chain of
the context.
Payload: The payload of the corresponding original packet, if any.
The presence of a payload is inferred from the packet length.
Bormann, et al. Standards Track [Page 98]
^L
RFC 3095 Robust Header Compression July 2001
Note: The static and dynamic chains of IR or IR-DYN packets for
profile 0x0001 (ROHC RTP) MUST end with the static and dynamic parts
of an RTP header. If not, the packet MUST be discarded and the
context MUST NOT be updated.
Note: The static or dynamic chains of IR or IR-DYN packets for
profile 0x0002 (ROHC UDP) MUST end with the static and dynamic parts
of a UDP header. If not, the packet MUST be discarded and the
context MUST NOT be updated.
Note: The static or dynamic chains of IR or IR-DYN packets for
profile 0x0003 (ROHC ESP) MUST end with the static and dynamic parts
of an ESP header. If not, the packet MUST be discarded and the
context MUST NOT be updated.
5.7.7.3. Initialization of IPv6 Header [IPv6]
Static part:
+---+---+---+---+---+---+---+---+
| Version = 6 |Flow Label(msb)| 1 octet
+---+---+---+---+---+---+---+---+
/ Flow Label (lsb) / 2 octets
+---+---+---+---+---+---+---+---+
| Next Header | 1 octet
+---+---+---+---+---+---+---+---+
/ Source Address / 16 octets
+---+---+---+---+---+---+---+---+
/ Destination Address / 16 octets
+---+---+---+---+---+---+---+---+
Dynamic part:
+---+---+---+---+---+---+---+---+
| Traffic Class | 1 octet
+---+---+---+---+---+---+---+---+
| Hop Limit | 1 octet
+---+---+---+---+---+---+---+---+
/ Generic extension header list / variable length
+---+---+---+---+---+---+---+---+
Eliminated:
Payload Length
Bormann, et al. Standards Track [Page 99]
^L
RFC 3095 Robust Header Compression July 2001
Extras:
Generic extension header list: Encoded according to section
5.8.6.1, with all header items present in uncompressed form.
CRC-DYNAMIC: Payload Length field (octets 5-6).
CRC-STATIC: All other fields (octets 1-4, 7-40).
CRC coverage for extension headers is defined in section 5.8.7.
Note: The Next Header field indicates the type of the following
header in the static chain, rather than being a copy of the Next
Header field of the original IPv6 header. See also section 5.7.7.8.
5.7.7.4. Initialization of IPv4 Header [IPv4, section 3.1].
Static part:
Version, Protocol, Source Address, Destination Address.
+---+---+---+---+---+---+---+---+
| Version = 4 | 0 |
+---+---+---+---+---+---+---+---+
| Protocol |
+---+---+---+---+---+---+---+---+
/ Source Address / 4 octets
+---+---+---+---+---+---+---+---+
/ Destination Address / 4 octets
+---+---+---+---+---+---+---+---+
Dynamic part:
Type of Service, Time to Live, Identification, DF, RND, NBO,
extension header list.
+---+---+---+---+---+---+---+---+
| Type of Service |
+---+---+---+---+---+---+---+---+
| Time to Live |
+---+---+---+---+---+---+---+---+
/ Identification / 2 octets
+---+---+---+---+---+---+---+---+
| DF|RND|NBO| 0 |
+---+---+---+---+---+---+---+---+
/ Generic extension header list / variable length
+---+---+---+---+---+---+---+---+
Bormann, et al. Standards Track [Page 100]
^L
RFC 3095 Robust Header Compression July 2001
Eliminated:
IHL (IP Header Length, must be 5)
Total Length (inferred in decompressed packets)
MF flag (More Fragments flag, must be 0)
Fragment Offset (must be 0)
Header Checksum (inferred in decompressed packets)
Options, Padding (must not be present)
Extras:
RND, NBO See section 5.7.
Generic extension header list: Encoded according to section
5.8.6.1, with all header items present in uncompressed form.
CRC-DYNAMIC: Total Length, Identification, Header Checksum
(octets 3-4, 5-6, 11-12).
CRC-STATIC: All other fields (octets 1-2, 7-10, 13-20)
CRC coverage for extension headers is defined in section 5.8.7.
Note: The Protocol field indicates the type of the following header
in the static chain, rather than being a copy of the Protocol field
of the original IPv4 header. See also section 5.7.7.8.
5.7.7.5. Initialization of UDP Header [RFC-768].
Static part:
+---+---+---+---+---+---+---+---+
/ Source Port / 2 octets
+---+---+---+---+---+---+---+---+
/ Destination Port / 2 octets
+---+---+---+---+---+---+---+---+
Dynamic part:
+---+---+---+---+---+---+---+---+
/ Checksum / 2 octets
+---+---+---+---+---+---+---+---+
Bormann, et al. Standards Track [Page 101]
^L
RFC 3095 Robust Header Compression July 2001
Eliminated:
Length
The Length field of the UDP header MUST match the Length field(s)
of the preceding subheaders, i.e., there must not be any padding
after the UDP payload that is covered by the IP Length.
CRC-DYNAMIC: Length field, Checksum (octets 5-8).
CRC-STATIC: All other fields (octets 1-4).
5.7.7.6. Initialization of RTP Header [RTP].
Static part:
SSRC.
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
/ SSRC / 4 octets
+---+---+---+---+---+---+---+---+
Dynamic part:
P, X, CC, PT, M, sequence number, timestamp, timestamp stride,
CSRC identifiers.
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| V=2 | P | RX| CC | (RX is NOT the RTP X bit)
+---+---+---+---+---+---+---+---+
| M | PT |
+---+---+---+---+---+---+---+---+
/ RTP Sequence Number / 2 octets
+---+---+---+---+---+---+---+---+
/ RTP Timestamp (absolute) / 4 octets
+---+---+---+---+---+---+---+---+
/ Generic CSRC list / variable length
+---+---+---+---+---+---+---+---+
: Reserved | X | Mode |TIS|TSS: if RX = 1
+---+---+---+---+---+---+---+---+
: TS_Stride : 1-4 octets, if TSS = 1
+---+---+---+---+---+---+---+---+
: Time_Stride : 1-4 octets, if TIS = 1
+---+---+---+---+---+---+---+---+
Bormann, et al. Standards Track [Page 102]
^L
RFC 3095 Robust Header Compression July 2001
Eliminated:
Nothing.
Extras:
RX: Controls presence of extension.
Mode: Compression mode. 0 = Reserved,
1 = Unidirectional,
2 = Bidirectional Optimistic,
3 = Bidirectional Reliable.
X: Copy of X bit from RTP header (presumed 0 if RX = 0)
Reserved: Set to zero when sending, ignored when received.
Generic CSRC list: CSRC list encoded according to section
5.8.6.1, with all CSRC items present.
CRC-DYNAMIC: Octets containing M-bit, sequence number field,
and timestamp (octets 2-8).
CRC-STATIC: All other fields (octets 1, 9-12, original CSRC list).
5.7.7.7. Initialization of ESP Header [ESP, section 2]
This is for the case when the NULL encryption algorithm [NULL] is NOT
being used with ESP, so that subheaders after the ESP header are
encrypted (see 5.12). See 5.8.4.3 for compression of the ESP header
when NULL encryption is being used.
Static part:
+---+---+---+---+---+---+---+---+
/ SPI / 4 octets
+---+---+---+---+---+---+---+---+
Dynamic part:
+---+---+---+---+---+---+---+---+
/ Sequence Number / 4 octets
+---+---+---+---+---+---+---+---+
Eliminated:
Other fields are encrypted, and can neither be located nor
compressed.
Bormann, et al. Standards Track [Page 103]
^L
RFC 3095 Robust Header Compression July 2001
CRC-DYNAMIC: Sequence number (octets 5-8)
CRC-STATIC: All other octets.
Note: No encrypted data is considered to be part of the header for
purposes of computing the CRC, i.e., octets after the eight octet are
not considered part of the header.
5.7.7.8. Initialization of Other Headers
Headers not explicitly listed in previous subsections can be
compressed only by making them part of an extension header chain
following an IPv4 or IPv6 header, see section 5.8.
5.8. List compression
Header information from the packet stream to be compressed can be
structured as an ordered list, which is largely constant between
packets. The generic structure of such a list is as follows.
+--------+--------+--...--+--------+
list: | item 1 | item 2 | | item n |
+--------+--------+--...--+--------+
This section describes the compression scheme for such information.
The basic principles of list-based compression are the following:
1) While the list is constant, no information about the list is sent
in compressed headers.
2) Small changes in the list are represented as additions (Insertion
scheme), or deletions (Removal scheme), or both (Remove Then
Insert scheme).
3) The list can also be sent in its entirety (Generic scheme).
There are two kinds of lists: CSRC lists in RTP packets, and
extension header chains in IP packets (both IPv4 and IPv6).
IPv6 base headers and IPv4 headers cannot be part of an extension
header chain. Headers which can be part of extension header chains
include
a) the AH header
b) the null ESP header
c) the minimal encapsulation header [RFC2004, section 3.1]
d) the GRE header [GRE1, GRE2]
e) IPv6 extension headers.
Bormann, et al. Standards Track [Page 104]
^L
RFC 3095 Robust Header Compression July 2001
The table-based item compression scheme (5.8.1), which reduces the
size of each item, is described first. Then it is defined which
reference list to use in the insertion and removal schemes (5.8.2).
List encoding schemes are described in section 5.8.3, and a few
special cases in section 5.8.4. Finally, exact formats are described
in sections 5.8.5-5.8.6.
5.8.1. Table-based item compression
The Table-based item compression scheme is a way to compress
individual items sent in compressed lists. The compressor assigns
each item in a list a unique identifier Index. The compressor
conceptually maintains a table with all items, indexed by Index. The
(Index, item) pair is sent together in compressed lists until the
compressor gains enough confidence that the decompressor has observed
the mapping between the item and its Index. Such confidence is
obtained by receiving an acknowledgment from the decompressor in R-
mode, and in U/O-mode by sending L (Index, item) pairs (not
necessarily consecutively). After that, the Index alone is sent in
compressed lists to indicate the corresponding item. The compressor
may reassign an existing Index to a new item, and then needs to re-
establish the mapping in the same manner as above.
The decompressor conceptually maintains a table that contains all
(Index, item) pairs it knows about. The table is updated whenever an
(Index, item) pair is received (and decompression is verified by a
CRC). The decompressor retrieves the item from the table whenever an
Index without an accompanying item is received.
5.8.1.1. Translation table in R-mode
At the compressor side, an entry in the Translation Table has the
following structure.
+-------+------+---------------+
Index i | Known | item | SN1, SN2, ... |
+-------+------+---------------+
The Known flag indicates whether the mapping between Index i and item
has been established, i.e., if Index i alone can be sent in
compressed lists. Known is initially zero. It is also set to zero
whenever Index i is assigned to a new item. Known is set to one when
the corresponding (Index, item) pair is acknowledged.
Acknowledgments are based on the RTP Sequence Number, so a list of
RTP Sequence Numbers of all packets which contain the (Index, item)
pair is included in the translation table. When a packet with a
sequence number in the sequence number list is acknowledged, the
Known flag is set, and the sequence number list can be discarded.
Bormann, et al. Standards Track [Page 105]
^L
RFC 3095 Robust Header Compression July 2001
Each entry in the Translation Table at the decompressor side has the
following structure:
+-------+------+
Index i | Known | item |
+-------+------+
All Known fields are initialized to zero. Whenever the decompressor
receives an (Index, item) pair, it inserts item into the table at
position Index and sets the Known flag in that entry to one. If an
index without an accompanying item is received for which the Known
flag is zero, the header MUST be discarded and a NACK SHOULD be sent.
5.8.1.2. Translation table in U/O-modes
At the compressor side, each entry in the Translation Table has the
following structure:
+-------+------+---------+
Index | Known | item | Counter |
+-------+------+---------+
The Index, Known, and item fields have the same meaning as in section
5.8.1.1.
Known is set when the (Index, item) pair has been sent in L
compressed lists (not necessarily consecutively). The Counter field
keeps track of how many times the pair has been sent. Counter is set
to 0 for each new entry added to the table, and whenever Index is
assigned to a new item. Counter is incremented by 1 whenever an
(Index, item) pair is sent. When the counter reaches L, the Known
field is set and after that only the Index needs to be sent in
compressed lists.
At the decompressor side, the Translation Table is the same as the
Translation Table defined in R-mode.
5.8.2. Reference list determination
In reference based compression schemes (i.e., addition or deletion
based schemes), compression and decompression of a list (curr_list)
are based on a reference list (ref_list) which is assumed to be
present in the context of both compressor and decompressor. The
compressed list is an encoding of the differences between curr_list
and ref_list. Upon reception of a compressed list, the decompressor
applies the differences to its reference list in order to obtain the
original list.
Bormann, et al. Standards Track [Page 106]
^L
RFC 3095 Robust Header Compression July 2001
To identify the reference list (to be) used, each compressed list
carries an identifier (ref_id). The reference list is established by
different methods in R-mode and U/O-mode.
5.8.2.1. Reference list in R-mode and U/O-mode
In R-mode, the choice of reference list is based on acknowledgments,
i.e., the compressor uses as ref_list the latest list which has been
acknowledged by the decompressor. The ref_list is updated only upon
receiving an acknowledgment. The least significant bits of the RTP
Sequence Number of the acknowledged packet are used as the ref_id.
In U/O-mode, a sequence of identical lists are considered as
belonging to the same generation and are all assigned the same
generation identifier (gen_id). Gen_id increases by 1 each time the
list changes and is carried in compressed and uncompressed lists that
are candidates for being used as reference lists. Normally, Gen_id
must have been repeated in at least L headers before the list can be
used as a ref_list. However, some acknowledgments may be sent in O-
mode (and also in U-mode), and whenever an acknowledgment for a
header is received, the list of that header is considered known and
need not be repeated further. The least significant bits of the
Gen_id is used as the ref_id in U/O-mode.
The logic of the compressor and decompressor for reference based list
compression is similar to that for SN and TS. The principal
difference is that the decompressor maintains a sliding window with
candidates for ref_list, and retrieves ref_list from the sliding
window using the ref_id of the compressed list.
Logic of compressor:
a) In the IR state, the compressor sends Generic lists (see 5.8.5)
containing all items of the current list in order to establish or
refresh the context of the decompressor.
In R-mode, such Generic lists are sent until a header is
acknowledged. The list of that header can be used as a reference
list to compress subsequent lists.
In U/O-mode, the compressor sends generation identifiers with the
Generic lists until
1) a generation identifier has been repeated L times, or
2) an acknowledgment for a header carrying a generation identifier
has been received.
Bormann, et al. Standards Track [Page 107]
^L
RFC 3095 Robust Header Compression July 2001
The repeated (1) or acknowledged (2) list can be used as a
reference list to compress subsequent lists and is kept together
with its generation identifier.
b) When not in the IR state, the compressor moves to the FO state
when it observes a difference between curr_list and the previous
list. It sends compressed lists based on ref_list to update the
context of the decompressor. (However, see d).)
In R-mode, the compressor keeps sending compressed lists using the
same reference until it receives an acknowledgment for a packet
containing the newest list. The compressor may then move to the
SO state with regard to the list.
In U/O-mode, the compressor keeps sending compressed lists with
generation identifiers until
1) a generation identifier has been repeated L times, or
2) an acknowledgment for a header carrying the latest generation
identifier has been received.
The repeated or acknowledged list is used as the future reference
list. The compressor may move to the SO state with regard to the
list.
c) In R-mode, the compressor maintains a sliding window containing
the lists which have been sent to update the context of the
decompressor and have not yet been acknowledged. The sliding
window shrinks when an acknowledgment arrives: all lists sent
before the acknowledged list are removed. The compressor may use
the Index to represent items of lists in the sliding window.
In U/O-mode, the compressor needs to store
1) the reference list and its generation identifier, and
2) if the current generation identifier is different from the
reference generation, the current list and the sequence
numbers with which the current list has been sent.
(2) is needed to determine if an acknowledgment concerns the
latest generation. It is not needed in U-mode.
d) In U/O-mode, the compressor may choose to not send a generation
identifier with a compressed list. Such lists without generation
identifiers are not assigned a new generation identifier and must
Bormann, et al. Standards Track [Page 108]
^L
RFC 3095 Robust Header Compression July 2001
not be used as future reference lists. They do not update the
context. This feature is useful when a new list is repeated few
times and the list then reverts back to its old value.
Logic of decompressor:
e) In R-mode, the decompressor acknowledges all received uncompressed
or compressed lists which establish or update the context. (Such
compressed headers contain a CRC.)
In O-mode, the decompressor MAY acknowledge a list with a new
generation identifier, see section 5.4.2.2.
In U-mode, the decompressor MAY acknowledge a list sent in an IR
packet, see section 5.3.2.3.
f) The decompressor maintains a sliding window which contains the
lists that may be used as reference lists.
In R-mode, the sliding window contains lists which have been
acknowledged but not yet used as reference lists.
In U/O-mode, the sliding window contains at most one list per
generation. It contains all generations seen by the decompressor
newer than the last generation used as a reference.
g) When the decompressor receives a compressed list, it retrieves the
proper ref_list from the sliding window based on the ref_id, and
decompresses the compressed list obtaining curr_list.
In R-mode, curr_list is inserted into the sliding window if an
acknowledgment is sent for it. The sliding window is shrunk by
removing all lists received before ref_list.
In U/O-mode, curr_list is inserted into the sliding window
together with its generation identifier if the compressed list had
a generation identifier and the sliding window does not contain a
list with that generation identifier. All lists with generations
older than ref_id are removed from the sliding window.
5.8.3. Encoding schemes for the compressed list
Four encoding schemes for the compressed list are described here.
The exact formats of the compressed CSRC list and compressed IP
extension header list using these encoding schemes are described in
sections 5.8.5-5.8.6.
Bormann, et al. Standards Track [Page 109]
^L
RFC 3095 Robust Header Compression July 2001
Generic scheme
In contrast to subsequent schemes, this scheme does not rely on a
reference list having been established. The entire list is sent,
using table based compression for each individual item. The
generic scheme is always used when establishing the context of the
decompressor and may also be used at other times, as the
compressor sees fit.
Insertion Only scheme
When the new list can be constructed from ref_list by adding
items, a list of the added items is sent (using table based
compression), along with the positions in ref_list where the new
items will be inserted. An insertion bit mask indicates the
insertion positions in ref_list.
Upon reception of a list compressed according to the Insertion
Only scheme, curr_list is obtained by scanning the insertion bit
mask from left to right. When a '0' is observed, an item is
copied from the ref_list. When a '1' is observed, an item is
copied from the list of added items. If a '1' is observed when
the list of added items has been exhausted, an error has occurred
and decompression fails: The header MUST NOT be delivered to upper
layers; it should be discarded, and MUST NOT be acknowledged nor
used as a reference.
To construct the insertion bit mask and the list of added items,
the compressor MAY use the following algorithm:
1) An empty bit list and an empty Inserted Item list are generated
as the starting point.
2) Start by considering the first item of curr_list and ref_list.
3) If curr_list has a different item than ref_list,
a set bit (1) is appended to the bit list;
the first item in curr_list (represented using table-based
item compression) is appended to the Inserted Item list;
advance to the next item of curr_list;
otherwise,
a zero bit (0) is appended to the bit list;
advance to the next item of curr_list;
advance to the next item of ref_list.
Bormann, et al. Standards Track [Page 110]
^L
RFC 3095 Robust Header Compression July 2001
4) Repeat 3) until curr_list has been exhausted.
5) If the length of the bit list is less than the required bit
mask length, append additional zeroes.
Removal Only scheme
This scheme can be used when curr_list can be obtained by removing
some items in ref_list. The positions of the items which are in
ref_list, but not in curr_list, are sent as a removal bit mask.
Upon reception of the compressed list, the decompressor obtains
curr_list by scanning the removal bit mask from left to right.
When a '0' is observed, the next item of ref_list is copied into
curr_list. When a '1' is observed, the next item of ref_list is
skipped over without being copied. If a '0' is observed when
ref_list has been exhausted, an error has occurred and
decompression fails: The header MUST NOT be delivered to upper
layers; it should be discarded, and MUST NOT be acknowledged nor
used as a reference.
To construct the removal bit mask and the list of added items, the
compressor MAY use the following algorithm:
1) An empty bit list is generated as the starting point.
2) Start by considering the first item of curr_list and ref_list.
3) If curr_list has a different item than ref_list,
a set bit (1) is appended to the bit list;
advance to the next item of ref_list;
otherwise,
a zero bit (0) is appended to the bit list;
advance to the next item of curr_list;
advance to the next item of ref_list.
4) Repeat 3) until curr_list has been exhausted.
5) If the length of the bit list is less than the required bit
mask length, append additional ones.
Bormann, et al. Standards Track [Page 111]
^L
RFC 3095 Robust Header Compression July 2001
Remove Then Insert scheme
In this scheme, curr_list is obtained by first removing items from
ref_list, and then inserting items into the resulting list. A
removal bit mask, an insertion bit mask, and a list of added items
are sent.
Upon reception of the compressed list, the decompressor processes
the removal bit mask as in the Removal Only scheme. The resulting
list is then used as the reference list when the insertion bit
mask and the list of added items are processed, as in the
Insertion Only scheme.
5.8.4. Special handling of IP extension headers
In CSRC list compression, each CSRC is assigned an index. In
contrast, in IP extension header list compression an index is usually
associated with a type of extension header. When there is more than
one IP header, there is more than one list of extension headers. An
index per type per list is then used.
The association with a type means that a new index need not always be
used each time a field in an IP extension header changes. However,
when a field in an extension header changes, the mapping between the
index and the new value of the extension header needs to be
established, except in the special handling cases defined in the
following subsections.
5.8.4.1. Next Header field
The next header field in an IP header or extension header changes
whenever the type of the immediately following header changes, e.g.,
when a new extension header is inserted after it, when the immediate
subsequent extension header is removed from the list, or when the
order of extension headers is changed. Thus it may not be uncommon
that, for a given header, the next header field changes while the
remaining fields do not change.
Therefore, in the case that only the next header field changes, the
extension header is considered to be unchanged and rules for special
treatment of the change in the next header field are defined below.
All communicated uncompressed extension header items indicate their
own type in their Next Header field. Note that the rules below
explain how to treat the Next Header fields while showing the
conceptual reference list as an exact recreation of the original
uncompressed extension header list.
Bormann, et al. Standards Track [Page 112]
^L
RFC 3095 Robust Header Compression July 2001
a) When a subsequent extension header is removed from the list, the
new value of the next header field is obtained from the reference
extension header list. For example, assume that the reference
header list (ref_list) consists of headers A, B and C (ref_ext_hdr
A, B, C), and the current extension header list (curr_list) only
consists of extension headers A and C (curr_ext_hdr A, C). The
order and value of the next header fields of these extension
headers are as follows.
ref_list:
+--------+-----+ +--------+-----+ +--------+-----+
| type B | | | type C | | | type D | |
+--------+ | +--------+ | +--------+ |
| | | | | |
+--------------+ +--------------+ +--------------+
ref_ext_hdr A ref_ext_hdr B ref_ext_hdr C
curr_list:
+--------+-----+ +--------+-----+
| type C | | | type D | |
+--------+ | +--------+ |
| | | |
+--------------+ +--------------+
curr_ext_hdr A curr_ext_hdr C
Comparing the curr_ext_hdr A in curr_list and the ref_ext_hdr A in
ref_list, the value of next header field is changed from "type B"
to "type C" because of the removal of extension header B. The new
value of the next header field in curr_ext_hdr A, i.e., "type C",
does not need to be sent to the decompressor. Instead, it is
retrieved from the next header field of the removed ref_ext_hdr B.
b) When a new extension header is inserted after an existing
extension header, the next header field in the communicated item
will carry the type of itself, rather than the type of the header
that follows. For example, assume that the reference header list
(ref_list) consists of headers A and C (ref_ext_hdr A, C), and the
current header list (curr_list) consists of headers A, B and C
(curr_ext_hdr A, B, C). The order and the value of the next
header fields of these extension headers are as follows.
Bormann, et al. Standards Track [Page 113]
^L
RFC 3095 Robust Header Compression July 2001
ref_list:
+--------+-----+ +--------+-----+
| type C | | | type D | |
+--------+ | +--------+ |
| | | |
+--------------+ +--------------+
ref_ext_hdr A ref_ext_hdr C
curr_list:
+--------+-----+ +--------+-----+ +--------+-----+
| type B | | | type C | | | type D | |
+--------+ | +--------+ | +--------+ |
| | | | | |
+--------------+ +--------------+ +--------------+
curr_ext_hdr A curr_ext_hdr B curr_ext_hdr C
Comparing the curr_list and the ref_list, the value of the next
header field in extension header A is changed from "type C" to
"type B".
The uncompressed curr_ext_hdr B is carried in the compressed
header list. However, it carries "type B" instead of "type C" in
its next header field. When the decompressor inserts a new header
after curr_ext_hdr A, the next header field of A is taken from the
new header, and the next header field of the new header is taken
from ref_ext_hdr A.
c) Some headers whose compression is defined in this document do not
contain Next Header fields or do not have their Next Header field
in the standard position (first octet of the header). The GRE and
ESP headers are such headers. When sent as uncompressed items in
lists, these headers are modified so that they do have a Next
Header field as their first octet (see 5.8.4.3 and 5.8.4.4). This
is necessary to enable the decompressor to decode the item.
5.8.4.2. Authentication Header (AH)
The sequence number field in the AH [AH] contains a monotonically
increasing counter value for a security association. Therefore, when
comparing curr_list with ref_list, if the sequence number in AH
changes and SPI field does not change, the AH is not considered as
changed.
If the sequence number in the AH linearly increases as the RTP
Sequence Number increases, and the compressor is confident that the
decompressor has obtained the pattern, the sequence number in AH need
not be sent. The decompressor applies linear extrapolation to
reconstruct the sequence number in the AH.
Bormann, et al. Standards Track [Page 114]
^L
RFC 3095 Robust Header Compression July 2001
Otherwise, a compressed sequence number is included in the IPX
compression field in an Extension 3 of an UOR-2 header.
The authentication data field in AH changes from packet to packet and
is sent as-is. If the uncompressed AH is sent, the authentication
data field is sent inside the uncompressed AH; otherwise, it is sent
after the compressed IP/UDP/RTP and IPv6 extension headers and before
the payload. See beginning of section 5.7.
Note: The payload length field of the AH uses a different notion of
length than other IPv6 extension headers.
5.8.4.3. Encapsulating Security Payload Header (ESP)
When the Encapsulating Security Payload Header (ESP) [ESP] is present
and an encryption algorithm other than NULL is being used, the UDP
and RTP headers are both encrypted and cannot be compressed. The ESP
header thus ends the compressible header chain. The ROHC ESP profile
defined in section 5.12 MAY be used for the stream in this case.
A special case is when the NULL encryption algorithm is used. This
is the case when the ESP header is used for authentication only, and
not for encryption. The payload is not encrypted by the NULL
encryption algorithm, so compression of the rest of the header chain
is possible. The rest of this section describes compression of the
ESP header when the NULL encryption algorithm is used with ESP.
It is not possible to determine whether NULL encryption is used by
inspecting a header in the stream, this information is present only
at the encryption endpoints. However, a compressor may attempt
compression under the assumption that the NULL encryption algorithm
is being used, and later abort compression when the assumption proves
to be false.
The compressor may, for example, inspect the Next Header fields and
the header fields supposed to be static in subsequent headers in
order to determine if NULL encryption is being used. If these change
unpredictably, an encryption algorithm other than NULL is probably
being used and compression of subsequent headers SHOULD be aborted.
Compression of the stream is then either discontinued, or a profile
that compresses only up to the ESP header may be used (see 5.12).
While attempting to compress the header, the compressor should use
the SPI of the ESP header together with the destination IP address as
the defining fields for determining which packets belong to the
stream.
Bormann, et al. Standards Track [Page 115]
^L
RFC 3095 Robust Header Compression July 2001
In the ESP header [ESP, section 2], the fields that can be compressed
are the SPI, the sequence number, the Next Header, and the padding
bytes if they are in the standard format defined in [ESP]. (As
always, the decompressor reinserts these fields based on the
information in the context. Care must be taken to correctly reinsert
all the information as the Authentication Data must be verified over
the exact same information it was computed over.)
ESP header [ESP, section 2]:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Security Parameters Index (SPI) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Payload Data (variable) |
~ ~
| |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | Padding (0-255 octets) |
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | Pad Length | Next Header |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Authentication Data |
+ (variable length, but assumed to be 12 octets) +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
SPI: Static. If it changes, it needs to be reestablished.
Sequence Number: Not sent when the offset from the sequence number
of the compressed header is constant. When the offset is not
constant, the sequence number may be compressed by sending
LSBs. See 5.8.4.
Payload Data: This is where subsequent headers are to be found.
Parsed according to the Next Header field.
Padding: The padding octets are assumed to be as defined in [ESP],
i.e., to take the values 1, 2, ..., k, where k = Pad Length.
If the padding in the static context has this pattern, padding
in compressed headers is assumed to have this pattern as well
and is removed. If padding in the static context does not
have this pattern, the padding is not removed.
Bormann, et al. Standards Track [Page 116]
^L
RFC 3095 Robust Header Compression July 2001
Pad Length: Dynamic. Always sent. 14th octet from end of packet.
Next Header: Static. 13th octet from end of packet.
Authentication Data: Can have variable length, but when compression
of NULL-encryption ESP header is attempted, it is assumed to have
length 12 octets.
The sequence number in ESP has the same behavior as the sequence
number field in AH. When it increases linearly, it can be compressed
to zero bits. When it does not increase linearly, a compressed
sequence number is included in the IPX compression field in an
Extension 3 of an UOR-2 header.
The information which is part of an uncompressed item of a compressed
list is the Next Header field, followed by the SPI and the Sequence
Number. Padding, Pad Length, Next Header, and Authentication Data
are sent as-is at the end of the packet. This means that the Next
Header occurs in two places.
Uncompressed ESP list item:
+---+---+---+---+---+---+---+---+
| Next Header ! 1 octet (see section 5.8.4.1)
+---+---+---+---+---+---+---+---+
/ SPI / 4 octets
+---+---+---+---+---+---+---+---+
/ Sequence Number / 4 octets
+---+---+---+---+---+---+---+---+
When sending Uncompressed ESP list items, all ESP fields near the
the end of the packet are left untouched (Padding, Pad Length,
Next Header, Authentication Data).
A compressed item consists of a compressed sequence number. When an
item is compressed, Padding (if it follows the 1, 2, ..., k pattern)
and Next Header are removed near the end of the packet.
Authentication Data and Pad Length remain as-is near the end of the
packet.
5.8.4.4. GRE Header [RFC 2784, RFC 2890]
The GRE header is a set of flags, followed by a mandatory Protocol
Type and optional parts as indicated by the flags.
Bormann, et al. Standards Track [Page 117]
^L
RFC 3095 Robust Header Compression July 2001
The sequence number field in the GRE header contains a counter value
for a GRE tunnel. Therefore, when comparing curr_list with ref_list,
if the sequence number in GRE changes, the GRE is not considered as
changed.
If the sequence number in the GRE header linearly increases as the
RTP Sequence Number increases and the compressor is confident that
the decompressor has received the pattern, the sequence number in GRE
need not be sent. The decompressor applies linear extrapolation to
reconstruct the sequence number in the GRE header.
Otherwise, a compressed sequence number is included in the IPX
compression field in an Extension 3 of an UOR-2 header.
The checksum data field in GRE, if present, changes from packet to
packet and is sent as-is. If the uncompressed GRE header is sent,
the checksum data field is sent inside the uncompressed GRE header;
otherwise, if present, it is sent after the compressed IP/UDP/RTP and
IPv6 extension headers and before the payload. See beginning of
section 5.7.
In order to allow simple parsing of lists of items, an uncompressed
GRE header sent as an item in a list is modified from the original
GRE header in the following manner: 1) the 16-bit Protocol Type field
that encodes the type of the subsequent header using Ether types (see
Ether types section in [ASSIGNED]) is removed. 2) A one-octet Next
Header field is inserted as the first octet of the header. The value
of the Next Header field corresponds to GRE (this value is 47
according to the Assigned Internet Protocol Number section of
[ASSIGNED]) when the uncompressed item is to be inserted in a list,
and to the type of the subsequent header when the uncompressed item
is in a Generic list. Note that this implies that only GRE headers
with Ether types that correspond to an IP protocol number can be
compressed.
Uncompressed GRE list item:
+---+---+---+---+---+---+---+---+
| Next Header ! 1 octet (see section 5.8.4.1)
+---+---+---+---+---+---+---+---+
/ C | | K | S | | Ver | 1 octet
+---+---+---+---+---+---+---+---+
/ Checksum / 2 octets, if C=1
+---+---+---+---+---+---+---+---+
/ Key / 4 octets, if K=1
+---+---+---+---+---+---+---+---+
/ Sequence Number / 4 octets, if S=1
+---+---+---+---+---+---+---+---+
Bormann, et al. Standards Track [Page 118]
^L
RFC 3095 Robust Header Compression July 2001
The bits left blank in the second octet are set to zero when
sending and ignored when received.
The fields Reserved0 and Reserved1 of the GRE header [GRE2] must
be all zeroes; otherwise, the packet cannot be compressed by this
profile.
5.8.5. Format of compressed lists in Extension 3
5.8.5.1. Format of IP Extension Header(s) field
In Extension 3 (section 5.7.5), there is a field called IP extension
header(s). This section describes the format of that field.
0 1 2 3 4 5 6 7
+-----+-----+-----+-----+-----+-----+-----+-----+
| CL | ASeq| ESeq| Gseq| res | 1 octet
+-----+-----+-----+-----+-----+-----+-----+-----+
: compressed AH Seq Number, 1 or 4 octets : if ASeq = 1
----- ----- ----- ----- ----- ----- ----- -----
: compressed ESP Seq Number, 1 or 4 octets : if Eseq = 1
----- ----- ----- ----- ----- ----- ----- -----
: compressed GRE Seq Number, 1 or 4 octets : if Gseq = 1
----- ----- ----- ----- ----- ----- ----- -----
: compressed header list, variable length : if CL = 1
----- ----- ----- ----- ----- ----- ----- -----
ASeq: indicates presence of compressed AH Seq Number
ESeq: indicates presence of compressed ESP Seq Number
GSeq: indicates presence of compressed GRE Seq Number
CL: indicates presence of compressed header list
res: reserved; set to zero when sending, ignored when received
When Aseq, Eseq, or Gseq is set, the corresponding header item (AH,
ESP, or GRE header) is compressed. When not set, the corresponding
header item is sent uncompressed or is not present.
The format of compressed AH, ESP and GRE Sequence Numbers can each be
either of the following:
Bormann, et al. Standards Track [Page 119]
^L
RFC 3095 Robust Header Compression July 2001
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+ +---+---+---+---+---+---+---+---+
| 0 | LSB of sequence number | | 1 | |
+---+---+---+---+---+---+---+---+ +---+ +
| |
+ LSB of sequence number +
| |
+ +
| |
+---+---+---+---+---+---+---+---+
The format of the compressed header list field is described in
section 5.8.6.
5.8.5.2. Format of Compressed CSRC List
The Compressed CSRC List field in the RTP header part of an Extension
3 (section 5.7.5) is as in section 5.8.6.
5.8.6. Compressed list formats
This section describes the format of compressed lists. The format is
the same for CSRC lists and header lists. In CSRC lists, the items
are CSRC identifiers; in header lists, they are uncompressed or
compressed headers, as described in 5.8.4.2-4.
5.8.6.1. Encoding Type 0 (generic scheme)
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| ET=0 |GP |PS | CC = m |
+---+---+---+---+---+---+---+---+
: gen_id : 1 octet, if GP = 1
+---+---+---+---+---+---+---+---+
| XI 1, ..., XI m | m octets, or m * 4 bits
/ --- --- --- ---/
| : Padding : if PS = 0 and m is odd
+---+---+---+---+---+---+---+---+
| |
/ item 1, ..., item n / variable
| |
+---+---+---+---+---+---+---+---+
ET: Encoding type is zero.
PS: Indicates size of XI fields:
PS = 0 indicates 4-bit XI fields;
PS = 1 indicates 8-bit XI fields.
Bormann, et al. Standards Track [Page 120]
^L
RFC 3095 Robust Header Compression July 2001
GP: Indicates presence of gen_id field.
CC: CSRC counter from original RTP header.
gen_id: Identifier for a sequence of identical lists. It is
present in U/O-mode when the compressor decides that it may use
this list as a future reference list.
XI 1, ..., XI m: m XI items. The format of an XI item is as
follows:
+---+---+---+---+
PS = 0: | X | Index |
+---+---+---+---+
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
PS = 1: | X | Index |
+---+---+---+---+---+---+---+---+
X = 1 indicates that the item corresponding to the Index
is sent in the item 0, ..., item n list.
X = 0 indicates that the item corresponding to the Index is
not sent.
When 4-bit XI items are used and m > 1, the XI items are placed in
octets in the following manner:
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| XI k | XI k + 1 |
+---+---+---+---+---+---+---+---+
Padding: A 4-bit padding field is present when PS = 0 and m is
odd. The Padding field is set to zero when sending and ignored
when receiving.
Item 1, ..., item n:
Each item corresponds to an XI with X = 1 in XI 1, ..., XI m.
Bormann, et al. Standards Track [Page 121]
^L
RFC 3095 Robust Header Compression July 2001
5.8.6.2. Encoding Type 1 (insertion only scheme)
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| ET=1 |GP |PS | XI 1 |
+---+---+---+---+---+---+---+---+
: gen_id : 1 octet, if GP = 1
+---+---+---+---+---+---+---+---+
| ref_id |
+---+---+---+---+---+---+---+---+
/ insertion bit mask / 1-2 octets
+---+---+---+---+---+---+---+---+
| XI list | k octets, or (k - 1) * 4 bits
/ --- --- --- ---/
| : Padding : if PS = 0 and k is even
+---+---+---+---+---+---+---+---+
| |
/ item 1, ..., item n / variable
| |
+---+---+---+---+---+---+---+---+
Unless explicitly stated otherwise, fields have the same meaning and
values as for encoding type 0.
ET: Encoding type is one (1).
XI 1: When PS = 0, the first 4-bit XI item is placed here.
When PS = 1, the field is set to zero when sending, and
ignored when receiving.
ref_id: The identifier of the reference CSRC list used when the
list was compressed. It is the 8 least significant bits of
the RTP Sequence Number in R-mode and gen_id (see section
5.8.2) in U/O-mode.
insertion bit mask: Bit mask indicating the positions where new
items are to be inserted. See Insertion Only scheme in
section 5.8.3. The bit mask can have either of the
following two formats:
Bormann, et al. Standards Track [Page 122]
^L
RFC 3095 Robust Header Compression July 2001
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 0 | 7-bit mask | bit 1 is the first bit
+---+---+---+---+---+---+---+---+
+---+---+---+---+---+---+---+---+
| 1 | | bit 1 is the first bit
+---+ 15-bit mask +
| | bit 7 is the last bit
+---+---+---+---+---+---+---+---+
XI list: XI fields for items to be inserted. When the insertion
bit mask has k ones, the total number of XI fields is k. When
PS = 1, all XI fields are in the XI list. When PS = 0, the
first XI field is in the XI 1 field, and the remaining k - 1
XI fields are in the XI list.
Padding: Present when PS = 0 and k is even.
item 1, ..., item n: One item for each XI field with the X bit
set.
5.8.6.3. Encoding Type 2 (removal only scheme)
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| ET=2 |GP |res| Count |
+---+---+---+---+---+---+---+---+
: gen_id : 1 octet, if GP = 1
+---+---+---+---+---+---+---+---+
| ref_id |
+---+---+---+---+---+---+---+---+
/ removal bit mask / 1-2 octets
+---+---+---+---+---+---+---+---+
Unless explicitly stated otherwise, fields have the same meaning
and values as in section 5.8.5.2.
ET: Encoding type is 2.
res: Reserved. Set to zero when sending, ignored when
received.
Count: Number of elements in ref_list.
Bormann, et al. Standards Track [Page 123]
^L
RFC 3095 Robust Header Compression July 2001
removal bit mask: Indicates the elements in ref_list to be
removed in order to obtain the current list. See section
5.8.3. The removal bit mask has the same format as the
insertion bit mask of section 5.8.6.3.
5.8.6.4. Encoding Type 3 (remove then insert scheme)
See section 5.8.3 for a description of the Remove then insert
scheme.
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| ET=3 |GP |PS | XI 1 |
+---+---+---+---+---+---+---+---+
: gen_id : 1 octet, if GP = 1
+---+---+---+---+---+---+---+---+
| ref_id |
+---+---+---+---+---+---+---+---+
/ removal bit mask / 1-2 octets
+---+---+---+---+---+---+---+---+
/ insertion bit mask / 1-2 octets
+---+---+---+---+---+---+---+---+
| XI list | k octets, or (k - 1) * 4 bits
/ --- --- --- ---/
| : Padding : if PS = 0 and k is even
+---+---+---+---+---+---+---+---+
| |
/ item 1, ..., item n / variable
| |
+---+---+---+---+---+---+---+---+
The fields in this header have the same meaning and formats as in
section 5.8.5.2, except when explicitly stated otherwise below.
ET: Encoding type is 3.
removal bit mask: See section 5.8.6.3.
5.8.7. CRC coverage for extension headers
All fields of extension headers are CRC-STATIC, with the following
exceptions which are CRC-DYNAMIC.
1) Entire AH header.
2) Entire ESP header.
3) Sequence number in GRE, Checksum in GRE
Bormann, et al. Standards Track [Page 124]
^L
RFC 3095 Robust Header Compression July 2001
5.9. Header compression CRCs, coverage and polynomials
This chapter describes how to calculate the CRCs used in packet
headers defined in this document. (Note that another type of CRC is
defined for reconstructed units in section 5.2.5.)
5.9.1. IR and IR-DYN packet CRCs
The CRC in the IR and IR-DYN packet is calculated over the entire IR
or IR-DYN packet, excluding Payload and including CID or any Add-CID
octet. For purposes of computing the CRC, the CRC field in the
header is set to zero.
The initial content of the CRC register is to be preset to all 1's.
The CRC polynomial to be used for the 8-bit CRC is:
C(x) = 1 + x + x^2 + x^8
5.9.2. CRCs in compressed headers
The CRC in compressed headers is calculated over all octets of the
entire original header, before compression, in the following manner.
The octets of the header are classified as either CRC-STATIC or CRC-
DYNAMIC, and the CRC is calculated over:
1) the concatenated CRC-STATIC octets of the original header, placed
in the same order as they appear in the original header, followed
by
2) the concatenated CRC-DYNAMIC octets of the original header, placed
in the same order as they appear in the original header.
The intention is that the state of the CRC computation after 1) will
be saved. As long as the CRC-STATIC octets do not change, the CRC
calculation will then only need to process the CRC-DYNAMIC octets.
In a typical RTP/UDP/IPv4 header, 25 octets are CRC-STATIC and 15 are
CRC-DYNAMIC. In a typical RTP/UDP/IPv6 header, 49 octets are CRC-
STATIC and 11 are CRC-DYNAMIC. This technique will thus reduce the
computational complexity of the CRC calculation by roughly 60% for
RTP/UDP/IPv4 and by roughly 80% for RTP/UDP/IPv6.
Note: Whenever the CRC-STATIC fields change, the new saved CRC state
after 1) is compared with the old state. If the states are
identical, the CRC cannot catch the error consisting in the
decompressor not having updated the static context. In U/O-mode the
Bormann, et al. Standards Track [Page 125]
^L
RFC 3095 Robust Header Compression July 2001
compressor SHOULD then for a while use packet types with another CRC
length, for which there is a difference in CRC state, to ensure error
detection.
The initial content of the CRC register is preset to all 1's.
The polynomial to be used for the 3 bit CRC is:
C(x) = 1 + x + x^3
The polynomial to be used for the 7 bit CRC is:
C(x) = 1 + x + x^2 + x^3 + x^6 + x^7
The CRC in compressed headers is calculated over the entire original
header, before compression.
5.10. ROHC UNCOMPRESSED -- no compression (Profile 0x0000)
In ROHC, compression has not been defined for all kinds of IP
headers. Profile 0x0000 provides a way to send IP packets without
compressing them. This can be used for IP fragments, RTCP packets,
and in general for any packet for which compression of the header has
not been defined, is not possible due to resource constraints, or is
not desirable for some other reason.
After initialization, the only overhead for sending packets using
Profile 0x0000 is the size of the CID. When uncompressed packets are
frequent, Profile 0x0000 should be associated with a CID with size
zero or one octet. There is no need to associate Profile 0x0000 with
more than one CID.
5.10.1. IR packet
The initialization packet (IR packet) for Profile 0x0000 has the
following format:
Bormann, et al. Standards Track [Page 126]
^L
RFC 3095 Robust Header Compression July 2001
0 1 2 3 4 5 6 7
--- --- --- --- --- --- --- ---
: Add-CID octet : if for small CIDs and (CID != 0)
+---+---+---+---+---+---+---+---+
| 1 1 1 1 1 1 0 |res|
+---+---+---+---+---+---+---+---+
: :
/ 0-2 octets of CID info / 1-2 octets if for large CIDs
: :
+---+---+---+---+---+---+---+---+
| Profile = 0 | 1 octet
+---+---+---+---+---+---+---+---+
| CRC | 1 octet
+---+---+---+---+---+---+---+---+
: : (optional)
/ IP packet / variable length
: :
--- --- --- --- --- --- --- ---
res: Always zero.
Profile: 0.
CRC: 8-bit CRC, computed using the polynomial of section 5.9.1.
The CRC covers the first octet of the IR packet through the
Profile octet of the IR packet, i.e., it does not cover the
CRC itself or the IP packet.
IP packet: An uncompressed IP packet may be included in the IR
packet. The decompressor determines if the IP packet is
present by considering the length of the IR packet.
5.10.2. Normal packet
A Normal packet is a normal IP packet plus CID information. When the
channel uses small CIDs, and profile 0x0000 is associated with a CID
> 0, an Add-CID octet is prepended to the IP packet. When the
channel uses large CIDs, the CID is placed so that it starts at the
second octet of the Normal packet.
Bormann, et al. Standards Track [Page 127]
^L
RFC 3095 Robust Header Compression July 2001
0 1 2 3 4 5 6 7
--- --- --- --- --- --- --- ---
: Add-CID octet : if for small CIDs and (CID != 0)
+---+---+---+---+---+---+---+---+
| first octet of IP packet |
+---+---+---+---+---+---+---+---+
: :
/ 0-2 octets of CID info / 1-2 octets if for large CIDs
: :
+---+---+---+---+---+---+---+---+
| |
/ rest of IP packet / variable length
| |
+---+---+---+---+---+---+---+---+
Note that the first octet of the IP packet starts with the bit
pattern 0100 (IPv4) or 0110 (IPv6). This does not conflict with any
reserved packet types. Hence, no bits in addition to the CID are
needed. The profile is reasonably future-proof since problems do not
occur until IP version 14.
5.10.3. States and modes
There are two modes in Profile 0x0000: Unidirectional mode and
Bidirectional mode. In Unidirectional mode, the compressor repeats
the IR packet periodically. In Bidirectional mode, the compressor
never repeats the IR packet. The compressor and decompressor always
start in Unidirectional mode. Whenever feedback is received, the
compressor switches to Bidirectional mode.
The compressor can be in either of two states: the IR state or the
Normal state. It starts in the IR state.
a) IR state: Only IR packets can be sent. After sending a small
number of IR packets (only one when refreshing), the compressor
switches to the Normal state.
b) Normal state: Only Normal packets can be sent. When in
Unidirectional mode, the compressor periodically transits back to
the IR state. The length of the period is implementation
dependent, but should be fairly long. Exponential backoff may be
used.
c) When feedback is received in any state, the compressor switches to
Bidirectional mode.
Bormann, et al. Standards Track [Page 128]
^L
RFC 3095 Robust Header Compression July 2001
The decompressor can be in either of two states: NO_CONTEXT or
FULL_CONTEXT. It starts in NO_CONTEXT.
d) When an IR packet is received in the NO_CONTEXT state, the
decompressor first verifies the packet using the CRC. If the
packet is OK, the decompressor 1) moves to the FULL_CONTEXT state,
2) delivers the IP packet to upper layers if present, 3) MAY send
an ACK. If the packet is not OK, it is discarded without further
action.
e) When any other packet is received in the NO_CONTEXT state, it is
discarded without further action.
f) When an IR packet is received in the FULL_CONTEXT state, the
packet is first verified using the CRC. If OK, the decompressor
1) delivers the IP packet to upper layers if present, 2) MAY send
an ACK. If the packet is not OK, no action is taken.
g) When a Normal packet is received in the FULL_CONTEXT state, the
CID information is removed and the IP packet is delivered to upper
layers.
5.10.4. Feedback
The only kind of feedback in Profile 0x0000 is ACKs. Profile 0x0000
MUST NOT be rejected. Profile 0x0000 SHOULD be associated with at
most one CID. ACKs use the FEEDBACK-1 format of section 5.2. The
value of the profile-specific octet in the FEEDBACK-1 ACK is 0
(zero).
5.11. ROHC UDP -- non-RTP UDP/IP compression (Profile 0x0002)
UDP/IP headers do not have a sequence number which is as well-behaved
as the RTP Sequence Number. For UDP/IPv4, there is an IP-ID field
which may be echoed in feedback information, but when no IPv4 header
is present such feedback identification becomes problematic.
Therefore, in the ROHC UDP profile, the compressor generates a 16-bit
sequence number SN which increases by one for each packet received in
the packet stream. This sequence number is thus relatively well-
behaved and can serve as the basis for most mechanisms described for
ROHC RTP. It is called SN or UDP SN below. Unless stated otherwise,
the mechanisms of ROHC RTP are used also for ROHC UDP, with the UDP
SN taking the role of the RTP Sequence Number.
Bormann, et al. Standards Track [Page 129]
^L
RFC 3095 Robust Header Compression July 2001
The ROHC UDP profile always uses p = -1 when interpreting the SN,
since there will be no repetitions or reordering of the compressor-
generated SN. The interpretation interval thus always starts with
(ref_SN + 1).
5.11.1. Initialization
The static context for ROHC UDP streams can be initialized in either
of two ways:
1) By using an IR packet as in section 5.7.7.1, where the profile is
two (2) and the static chain ends with the static part of an UDP
packet. At the compressor, UDP SN is initialized to a random
value when the IR packet is sent.
2) By reusing an existing context where the existing static chain
contains the static part of a UDP packet, e.g., the context of a
stream compressed using ROHC RTP (profile 0x0001). This is done
with an IR-DYN packet (section 5.7.7.2) identifying profile
0x0002, where the dynamic chain corresponds to the prefix of the
existing static chain that ends with the UDP header. UDP SN is
initialized to the RTP Sequence Number if the earlier profile was
profile 0x0001, and to a random number otherwise.
For ROHC UDP, the dynamic part of a UDP packet is different from
section 5.7.7.5: a two-octet field containing the UDP SN is added
after the Checksum field. This affects the format of dynamic chains
in IR and IR-DYN packets.
Note: 2) can be used for packet streams which were initially assumed
to be RTP streams, so that compression started with profile 0x0001,
but were later found evidently not to be RTP streams.
5.11.2. States and modes
ROHC UDP uses the same states and modes as ROHC RTP. Mode
transitions and state logic are the same except when explicitly
stated otherwise. Mechanisms dealing with fields in the RTP header
(except the RTP SN) are not used. The decompressed UDP SN is never
included in any header delivered to upper layers. The UDP SN is used
in place of the RTP SN in feedback.
Bormann, et al. Standards Track [Page 130]
^L
RFC 3095 Robust Header Compression July 2001
5.11.3. Packet types
The general format of a ROHC UDP packet is the same as for ROHC RTP
(see beginning of section 5.7). Padding and CIDs are the same, as is
the feedback packet type (5.7.6.1) and the feedback. IR and IR-DYN
packets (5.7.7) are changed as described in 5.11.1.
The general format of compressed packets is also the same, but there
are differences in specific formats and extensions as detailed below.
The differences are caused by removal of all RTP specific information
except the RTP SN, which is replaced by the UDP SN.
Unless explicitly stated below, the packet formats are as in sections
5.7.1-6.
R-1
The TS field is replaced by an IP-ID field. The M flag has become
part of IP-ID. The X bit has moved. The formats R-1-ID and R-1-
TS are not used.
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 1 0 | SN |
+===+===+===+===+===+===+===+===+
| X | IP-ID |
+---+---+---+---+---+---+---+---+
UO-1
The TS field is replaced by an IP-ID field. The M flag has become
part of SN. Formats UO-1-ID and UO-1-TS are not used.
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 1 0 | IP-ID |
+===+===+===+===+===+===+===+===+
| SN | CRC |
+---+---+---+---+---+---+---+---+
UOR-2
Bormann, et al. Standards Track [Page 131]
^L
RFC 3095 Robust Header Compression July 2001
New format:
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 1 1 0 | SN |
+===+===+===+===+===+===+===+===+
| X | CRC |
+---+---+---+---+---+---+---+---+
5.11.4. Extensions
Extensions are as in 5.7.5, with the following exceptions:
Extension 0:
+---+---+---+---+---+---+---+---+
| 0 0 | SN | IP-ID |
+---+---+---+---+---+---+---+---+
Extension 1:
+---+---+---+---+---+---+---+---+
| 0 1 | SN | IP-ID |
+---+---+---+---+---+---+---+---+
| IP-ID |
+---+---+---+---+---+---+---+---+
Extension 2:
+---+---+---+---+---+---+---+---+
| 1 0 | SN | IP-ID2 |
+---+---+---+---+---+---+---+---+
| IP-ID2 |
+---+---+---+---+---+---+---+---+
| IP-ID |
+---+---+---+---+---+---+---+---+
IP-ID2: For outer IP-ID field.
Extension 3 is the same as Extension 3 in section 5.7.5, with the
following exceptions.
1) The initial flag octet has the following format:
0 1 2 3 4 5 6 7
+-----+-----+-----+-----+-----+-----+-----+-----+
| 1 1 | S | Mode | I | ip | ip2 |
+-----+-----+-----+-----+-----+-----+-----+-----+
Bormann, et al. Standards Track [Page 132]
^L
RFC 3095 Robust Header Compression July 2001
Mode: Replaces R-TS and Tsc of 5.7.5. Provides mode information
as was earlier done in RTP header flags and fields.
ip2: Replaces rtp bit of 5.7.5. Moved here from the Inner IP
header flags octet.
2) The bit which was the ip2 flag in the Inner IP header flags in
5.7.5 is reserved. It is set to zero when sending and ignored
when receiving.
5.11.5. IP-ID
Treated as in ROHC RTP, but the offset is from UDP SN.
5.11.6. Feedback
Feedback is as for ROHC RTP with the following exceptions:
1) UDP SN replaces RTP SN in feedback.
2) The CLOCK option (5.7.6.6) is not used.
3) The JITTER option (5.7.6.7) is not used.
5.12. ROHC ESP -- ESP/IP compression (Profile 0x0003)
When the ESP header is being used with an encryption algorithm other
than NULL, subheaders after the ESP header are encrypted and cannot
be compressed. Profile 0x0003 is for compression of the chain of
headers up to and including the ESP header in this case. When the
NULL encryption algorithm is being used, other profiles can be used
and could give higher compression rates. See section 5.8.4.3.
This profile is very similar to the ROHC UDP profile. It uses the
ESP sequence number as the basis for compression instead of a
generated number, but is otherwise very similar to ROHC UDP. The
interpretation interval (value of p) for the ESP-based SN is as with
ROHC RTP (profile 0x0001). Apart from this, unless stated explicitly
below, mechanisms and formats are as for ROHC UDP.
5.12.1. Initialization
The static context for ROHC ESP streams can be initialized in either
of two ways:
1) by using an IR packet as in section 5.7.7.1, where the profile is
three (3) and the static chain ends with the static part of an ESP
header.
Bormann, et al. Standards Track [Page 133]
^L
RFC 3095 Robust Header Compression July 2001
2) by reusing an existing context, where the existing static chain
contains the static part of an ESP header. This is done with an
IR-DYN packet (section 5.7.7.2) identifying profile 0x0003, where
the dynamic chain corresponds to the prefix of the existing static
chain that ends with the ESP header.
In contrast to ROHC UDP, no extra sequence number is added to the
dynamic part of the ESP header: the ESP sequence number is the only
element.
Note: 2) can be used for streams where compression has been initiated
under the assumption that NULL encryption was being used with ESP.
When it becomes obvious that an encryption algorithm other than NULL
is being used, the compressor may send an IR-DYN according to 2) to
switch to profile 0x0003 without having to send an IR packet.
5.12.2. Packet types
The packet types for ROHC ESP are the same as for ROHC UDP, except
that the ESP sequence number is used instead of the generated
sequence number of ROHC UDP. The ESP header is not part of any
compressed list in ROHC ESP.
6. Implementation issues
This document specifies mechanisms for the protocol and leaves many
details on the use of these mechanisms to the implementers. This
chapter is aimed to give guidelines, ideas and suggestions for
implementing the scheme.
6.1. Reverse decompression
This section describes an OPTIONAL decompressor operation to reduce
the number of packets discarded due to an invalid context.
Once a context becomes invalid (e.g., when more consecutive packet
losses than expected have occurred), subsequent compressed packets
cannot immediately be decompressed correctly. Reverse decompression
aims at decompressing such packets later instead of discarding them,
by storing them until the context has been updated and validated and
then attempting decompression.
Let the sequence of stored packets be i, i + 1, ..., i + k, where i
is the first packet and i + k is the last packet before the context
was updated. The decompressor will attempt to recover the stored
packets in reverse order, i.e., starting with i + k, and working back
toward i. When a stored packet has been reconstructed, its
correctness is verified using its CRC. Packets not carrying a CRC
Bormann, et al. Standards Track [Page 134]
^L
RFC 3095 Robust Header Compression July 2001
must not be delivered to upper layers. Packets where the CRC
succeeds are delivered to upper layers in their original order, i.e.,
i, i + 1, ..., i + k.
Note that this reverse decompression introduces buffering while
waiting for the context to be validated and thereby introduces
additional delay. Thus, it should be used only when some amount of
delay is acceptable. For example, for video packets belonging to the
same video frame, the delay in packet arrivals does not cause
presentation time delay. Delay-insensitive streaming applications
can also be tolerant of such delay. If the decompressor cannot
determine whether the application can tolerate delay, it should not
perform reverse decompression.
The following illustrates the decompression procedure in some detail:
1. The decompressor stores compressed packets that cannot be
decompressed correctly due to an invalid context.
2. When the decompressor has received a context updating packet and
the context has been validated, it proceeds to recover the last
packet stored. After decompression, the decompressor checks the
correctness of the reconstructed header using the CRC.
3. If the CRC indicates successful decompression, the decompressor
stores the complete packet and attempts to decompress the
preceding packet. In this way, the stored packets are recovered
in reverse order until no compressed packets are left. For each
packet, the decompressor checks the correctness of the
decompressed headers using the header compression CRC.
4. If the CRC indicates an incorrectly decompressed packet, the
reverse decompression attempt MUST be terminated and all remaining
uncompressed packets MUST be discarded.
5. Finally, the decompressor forwards all the correctly decompressed
packets to upper layers in their original order.
6.2. RTCP
RTCP is the RTP Control Protocol [RTP]. RTCP is based on periodic
transmission of control packets to all participants in a session,
using the same distribution mechanism as for data packets. Its
primary function is to provide feedback from the data receivers on
the quality of the data distribution. The feedback information may
be used for issues related to congestion control functions, and
directly useful for control of adaptive encodings.
Bormann, et al. Standards Track [Page 135]
^L
RFC 3095 Robust Header Compression July 2001
In an RTP session there will be two types of packet streams: one with
the RTP header and application data, and one with the RTCP control
information. The difference between the streams at the transport
level is in the UDP port numbers: the RTP port number is always even,
the RTCP port number is that number plus one and therefore always odd
[RTP, section 10]. The ROHC header compressor implementation has
several ways at hand to handle the RTCP stream:
1. One compressor/decompressor entity carrying both types of streams
on the same channel, using CIDs to distinguish between them. For
sending a single RTP stream together with its RTCP packets on one
channel, it is most efficient to set LARGE_CIDS to false, send the
RTP packets with the implied CID 0 and use the Add-CID mechanism
to send the RTCP packets.
2. Two compressor/decompressor entities, one for RTP and another one
for RTCP, carrying the two types of streams on separate channels.
This means that they will not share the same CID number space.
RTCP headers may simply be sent uncompressed using profile 0x0000.
More efficiently, ROHC UDP compression (profile 0x0002) can be used.
6.3. Implementation parameters and signals
A ROHC implementation may have two kinds of parameters: configuration
parameters that are mandatory and must be negotiated between
compressor and decompressor peers, and implementation parameters that
are optional and, when used, stipulate how a ROHC implementation is
to operate.
Configuration parameters are mandatory and must be negotiated between
compressor and decompressor, so that they have the same values at
both compressor and decompressor, see section 5.1.1.
Implementation parameters make it possible for an external entity to
stipulate how an implementation of a ROHC compressor or decompressor
should operate. Implementation parameters have local significance,
are optional to use and are thus not necessary to negotiate between
compressor and decompressor. Note that this does not preclude
signaling or negotiating implementation parameters using lower layer
functionality in order to set the way a ROHC implementation should
operate. Some implementation parameters are valid only at either of
compressor or decompressor. Implementation parameters may further be
divided into parameters that allow an external entity to describe the
way the implementation should operate and parameters that allow an
external entity to trigger a specific event, i.e., signals.
Bormann, et al. Standards Track [Page 136]
^L
RFC 3095 Robust Header Compression July 2001
6.3.1. ROHC implementation parameters at compressor
CONTEXT_REINITIALIZATION -- signal
This parameter triggers a reinitialization of the entire context at
the decompressor, both the static and the dynamic part. The
compressor MUST, when CONTEXT_REINITIALIZATION is triggered, back off
to the IR state and fully reinitialize the context by sending IR
packets with both the static and dynamic chains covering the entire
uncompressed headers until it is reasonably confident that the
decompressor contexts are reinitialized. The context
reinitialization MUST be done for all contexts at the compressor.
This parameter may for instance be used to do context relocation at,
e.g., a cellular handover that results in a change of compression
point in the radio access network.
NO_OF_PACKET_SIZES_ALLOWED -- value: positive integer
This parameter may be set by an external entity to specify the number
of packet sizes a ROHC implementation may use. However, the
parameter may be used only if PACKET_SIZES is not used by an external
entity. With this parameter set, the ROHC implementation at the
compressor MUST NOT use more different packet sizes than the value
this parameter stipulates. The ROHC implementation must itself be
able to determine which packet sizes will be used and describe these
to an external entity using PACKET_SIZES_USED. It should be noted
that one packet size might be used for several header formats, and
that the number of packet sizes can be reduced by employing padding
and segmentation.
NO_OF_PACKET_SIZES_USED _- value: positive integer
This parameter is set by the ROHC implementation to indicate how many
packet sizes it will actually use. It can be set to a large value to
indicate that no particular attempt is made to minimize that number.
PACKET_SIZES_ALLOWED -- value: list of positive integers (bytes)
This parameter, if set, governs which packet sizes in bytes may be
used by the ROHC implementation. Thus, packet sizes not in the set
of values for this parameter MUST NOT be used. Hence, an external
entity can mandate a ROHC implementation to produce packet sizes that
fit pre-configured lower layers better. If this parameter is used to
stipulate which packet sizes a ROHC implementation can use, the
following rules apply:
- A packet large enough to hold the entire IR header (both static and
dynamic chain) MUST be part of the set of sizes, unless MRRU is set
to a large enough value to allow segmentation.
- The packet size likely to be used most frequently in the SO state
SHOULD be part of the set.
Bormann, et al. Standards Track [Page 137]
^L
RFC 3095 Robust Header Compression July 2001
- The packet size likely to be used most frequently in the FO state
SHOULD be part of the set.
PACKET_SIZES_USED -- values: set of positive integers (bytes)
This parameter describes which packet sizes a ROHC implementation
uses if NO_OF_PACKET_SIZES_ALLOWED or PACKET_SIZES_ALLOWED is used by
an external entity to stipulate how many packet sizes a ROHC
implementation should use. The information about used packet sizes
(bytes) in this parameter, may then be used to configure lower
layers.
PAYLOAD_SIZES -_ values: set of positive integer values (bytes)
This parameter is set by an external entity that wants to make use of
the PACKET_SIZES_USED parameter to indicate which payload sizes can
be expected.
When a ROHC implementation has a limited set of allowed packet sizes,
and the most preferable header format has a size that is not part of
the set, it has the following options:
- Choose the next larger header format from the allowed set. This is
probably the most efficient choice.
- Use the most preferable header format as if there were no
restrictions on size, and then add padding octets to complete a
packet of the next larger size in the allowed set.
- Use segmentation to fragment the packet into pieces that would make
up packets of sizes that are permissible (possibly after the
addition of padding to the last segment).
It should be noted that even if the two last parameters introduce the
possibility of restricting the number of packet sizes used, such
restrictions will have a negative impact on compression performance.
6.3.2. ROHC implementation parameters at decompressor
MODE -- values: [U-mode, O-mode, R-mode]
This parameter triggers a mode transition using the mechanism
described in chapter 5 when the parameter changes value, i.e., to U-
mode (Unidirectional mode), O-mode (Bidirectional Optimistic mode) or
R-mode (Bidirectional Reliable mode). The mode transition is made
from the current mode to the new mode as signaled by the
implementation parameter. For example, if the current mode is
Bidirectional Optimistic mode, MODE should have the value O-mode. If
the MODE is changed to R-mode, a mode transition MUST be made from
Bidirectional Optimistic mode to Bidirectional Reliable mode. MODE
should not only serve as a trigger for mode transitions, but also
make it visible which mode ROHC operates in.
Bormann, et al. Standards Track [Page 138]
^L
RFC 3095 Robust Header Compression July 2001
CLOCK_RESOLUTION -- value: nonnegative integer
This parameter indicates the system clock resolution in units of
milliseconds. A zero (0) value means that there is no clock
available. If nonzero, this parameter allows the decompressor to use
timer-based TS compression (section 4.5.4) and SN wraparound
detection (section 5.3.2.2.4). In this case, its specific value is
also significant for correctness of the algorithms.
REVERSE_DECOMPRESSION_DEPTH -- value: nonnegative integer
This parameter determines whether reverse decompression as described
in section 6.1 should be used or not, and if used, to what extent.
The value indicates the maximum number of packets that can be
buffered, and thus possibly be reverse decompressed by the
decompressor. A zero (0) value means that reverse decompression MUST
NOT be used.
6.4. Handling of resource limitations at the decompressor
In a point-to-point link, the two nodes can agree on the number of
compressed sessions they are prepared to support for this link. It
may, however, not be possible for the decompressor to accurately
predict when it will run out of resources. ROHC allows the
negotiated number of contexts to be larger than could be accommodated
in the worst case. Then, as context resources are consumed, an
attempt to set up a new context may be rejected by the decompressor,
using the REJECT option of the feedback payload.
Upon reception of a REJECT option, the compressor SHOULD wait for a
while before attempting to compress additional streams destined for
the rejecting node.
6.5. Implementation structures
This section provides some explanatory material on data structures
that a ROHC implementation will have to maintain in one form or
another. It is not intended to constrain the implementations.
6.5.1. Compressor context
The compressor context consists of a static part and a dynamic part.
The content of the static part is the same as the static chain
defined in section 5.7.7. The dynamic part consists of multiple
elements which can be categorized into four types.
a) Sliding Window (SW)
b) Translation Table (TT)
c) Flag
d) Field
Bormann, et al. Standards Track [Page 139]
^L
RFC 3095 Robust Header Compression July 2001
These elements may be common to all modes or mode specific. The
following table summarizes all these elements.
+--------+---------------------------+-------------+----------------+
| | Common to | Specific to | Specific to |
| | all modes | R-mode | U/O-mode |
+--------+---------------------------+-------------+----------------+
| SWs | GSW | R_CSW | UO_CSW |
| | | R_IESW | UO_IESW |
+--------+---------------------------+-------------+----------------+
| TTs | | R_CTT | UO_CTT |
| | | R_IETT | UO_IETT |
+--------+---------------------------+-------------+----------------+
| Flags | UDP Chksum | | ACKED |
| | TSS, TIS | | |
| | RND, RND2 | | |
| | NBO, NBO2 | | |
+--------+---------------------------+-------------+----------------+
| Fields | Profile | | CSRC_REF_ID |
| | C_MODE | | CSRC_GEN_ID |
| | C_STATE | | CSRC_GEN_COUNT |
| | C_TRANS | | IPEH_REF_ID |
| | TS_STRIDE (if TSS = 1) | | IPEH_GEN_ID |
| | TS_OFFSET (if TSS = 1) | | IPEH_GEN_COUNT |
| | TIME_STRIDE (if TIS = 1) | | |
| | CURR_TIME (if TIS = 1) | | |
| | MAX_JITTER_CD (if TIS = 1)| | |
| | LONGEST_LOSS_EVENT(O) | | |
| | CLOCK_RESOLUTION(O) | | |
| | MAX_JITTER(O) | | |
+--------+---------------------------+-------------+----------------+
1) GSW: Generic W_LSB Sliding Window
Each element in GSW consists of all the dynamic fields in the
dynamic chain (defined in section 5.7.7) plus the fields specified
in a) but excluding the fields specified in b).
a) Packet Arrival Time (if TIS = 1)
Scaled RTP Time Stamp (if TSS = 1) (optional)
Offset_i (if RND = 0) (optional)
b) UDP Checksum, TS Stride, CSRC list, IPv6 Extension Headers
2) R_CSW: CSRC Sliding Window in R-mode
R_IESW: IPv6 Extension Header Sliding Window in R-mode
Bormann, et al. Standards Track [Page 140]
^L
RFC 3095 Robust Header Compression July 2001
UO_CSW: CSRC Sliding Window in U/O-mode
UO_IESW: IPv6 Extension Header Sliding Window in U/O-mode
Each element in R_CSW, R_IESW, UO_CSW and UO_IESW is defined in
section 6.5.3.
3) R_CTT: CSRC Translation Table in R-mode
R_IETT: IPv6 Extension Header Translation Table in U/O-mode
UO_CTT: CSRC Translation Table in U/O-mode
UO_IETT: IPv6 Extension Header Translation Table in U/O-mode
Each element in R_CTT and R_IETT is defined in section 5.8.1.1.
Each element in UO_CTT and UO_IETT is defined in section 5.8.1.2.
4) ACKED: Indicates whether or not the decompressor has ever acked
5) CURR_TIME: The current time value (used for context relocation
when timer-based timestamp compression is used)
6) All the other flags and fields are defined elsewhere in the ROHC
document.
6.5.2. Decompressor context
The decompressor context consists of a static part and a dynamic
part. The content of the static part is the same as the static chain
defined in section 5.7.7. The dynamic part consists of multiple
elements, one of which is the nonstatic reference header that
includes all the nonstatic fields. These nonstatic fields are the
fields in the dynamic chain defined in section 5.7.7, excluding UDP
Checksum and TS_Stride. All the remaining elements can be
categorized into four types:
a) Sliding Window (SW)
b) Translation Table (TT)
d) Flag
e) Field
These elements may be mode specific or common to all modes. The
following table summarizes all these elements.
Bormann, et al. Standards Track [Page 141]
^L
RFC 3095 Robust Header Compression July 2001
+--------+---------------------------+-------------+----------------+
| | Common to | Specific to | Specific to |
| | all modes | R-mode | U/O-mode |
+--------+---------------------------+-------------+----------------+
| SWs | | R_CSW | UO_CSW |
| | | R_IESW | UO_IESW |
+--------+---------------------------+-------------+----------------+
| TTs | | R_CTT | UO_CTT |
| | | R_IETT | UO_IETT |
+--------+---------------------------+-------------+----------------+
| Flags | UDP Checksum | | ACKED |
| | TSS, TIS | | |
| | RND, RND2 | | |
| | NBO, NBO2 | | |
+--------+---------------------------+-------------+----------------+
| Fields | Profile | | CSRC_GEN_ID |
| | D_MODE | | IPEH_GEN_ID |
| | D_STATE | | PRE_SN_V_REF |
| | D_TRANS | | |
| | TS_STRIDE (if TSS = 1) | | |
| | TS_OFFSET (if TSS = 1) | | |
| | TIME_STRIDE (if TIS = 1) | | |
| | PKT_ARR_TIME (if TIS = 1) | | |
| | LONGEST_LOSS_EVENT(O) | | |
| | CLOCK_RESOLUTION(O) | | |
| | MAX_JITTER(O) | | |
+--------+---------------------------+-------------+----------------+
1) ACKED: Indicates whether or not ACK has ever been sent.
2) PKT_ARR_TIME: The arrival time of the packet that most recently
decompressed and verified using CRC.
PRE_SN_V_REF: The sequence number of the packet verified before
the most recently verified packet.
CSRC_GEN_ID: The CSRC gen_id of the most recently received packet.
IPEH_GEN_ID: The IPv6 Extension Header gen_id of the most recently
received packet.
3) The remaining elements are as defined in the compressor context.
6.5.3. List compression: Sliding windows in R-mode and U/O-mode
In R-mode list compression (see section 5.8.2.1), each entry in the
sliding window, both at the compressor side and at the decompressor
side, has the following structure:
Bormann, et al. Standards Track [Page 142]
^L
RFC 3095 Robust Header Compression July 2001
+---------------------+--------+------------+
| RTP Sequence Number | icount | index list |
+---------------------+--------+------------+
The table index list contains a list of index. Each of these index
corresponds to the item in the original list carried in the packet
identified by the RTP Sequence Number. The mapping between the index
and the item is identified in the translation table. The icount
field carries the number of index in the following index list.
In U/O-mode list compression, each entry in the sliding window at
both the compressor side and decompressor side has the following
structure.
+--------+--------+------------+
| Gen_id | icount | index list |
+--------+--------+------------+
The icount and index list fields are the same as defined in R-mode.
Instead of using the RTP Sequence Number to identify each entry, the
Gen_id is included in the sliding window in U/O-mode.
7. Security Considerations
Because encryption eliminates the redundancy that header compression
schemes try to exploit, there is some inducement to forego encryption
of headers in order to enable operation over low-bandwidth links.
However, for those cases where encryption of data (and not headers)
is sufficient, RTP does specify an alternative encryption method in
which only the RTP payload is encrypted and the headers are left in
the clear. That would still allow header compression to be applied.
ROHC compression is transparent with regard to the RTP Sequence
Number and RTP Timestamp fields, so the values of those fields can be
used as the basis of payload encryption schemes (e.g., for
computation of an initialization vector).
A malfunctioning or malicious header compressor could cause the
header decompressor to reconstitute packets that do not match the
original packets but still have valid IP, UDP and RTP headers and
possibly also valid UDP checksums. Such corruption may be detected
with end-to-end authentication and integrity mechanisms which will
not be affected by the compression. Moreover, this header
compression scheme uses an internal checksum for verification of
reconstructed headers. This reduces the probability of producing
decompressed headers not matching the original ones without this
being noticed.
Bormann, et al. Standards Track [Page 143]
^L
RFC 3095 Robust Header Compression July 2001
Denial-of-service attacks are possible if an intruder can introduce
(for example) bogus STATIC, DYNAMIC or FEEDBACK packets onto the link
and thereby cause compression efficiency to be reduced. However, an
intruder having the ability to inject arbitrary packets at the link
layer in this manner raises additional security issues that dwarf
those related to the use of header compression.
8. IANA Considerations
The ROHC profile identifier is a non-negative integer. In many
negotiation protocols, it will be represented as a 16-bit value. Due
to the way the profile identifier is abbreviated in ROHC packets, the
8 least significant bits of the profile identifier have a special
significance: Two profile identifiers with identical 8 LSBs should be
assigned only if the higher-numbered one is intended to supersede the
lower-numbered one. To highlight this relationship, profile
identifiers should be given in hexadecimal (as in 0x1234, which would
for example supersede 0x0A34).
Following the policies outlined in [IANA-CONSIDERATIONS], the IANA
policy for assigning new values for the profile identifier shall be
Specification Required: values and their meanings must be documented
in an RFC or in some other permanent and readily available reference,
in sufficient detail that interoperability between independent
implementations is possible. In the 8 LSBs, the range 0 to 127 is
reserved for IETF standard-track specifications; the range 128 to 254
is available for other specifications that meet this requirement
(such as Informational RFCs). The LSB value 255 is reserved for
future extensibility of the present specification.
The following profile identifiers are already allocated:
Profile Document Usage
identifier
0x0000 RFCthis ROHC uncompressed
0x0001 RFCthis ROHC RTP
0x0002 RFCthis ROHC UDP
0x0003 RFCthis ROHC ESP
Bormann, et al. Standards Track [Page 144]
^L
RFC 3095 Robust Header Compression July 2001
9. Acknowledgments
Earlier header compression schemes described in [CJHC], [IPHC], and
[CRTP] have been important sources of ideas and knowledge.
The editor would like to extend his warmest thanks to Mikael
Degermark, who actually did a lot of the editing work, and Peter
Eriksson, who made a copy editing pass through the document,
significantly increasing its editorial consistency. Of course, all
remaining editorial problems have then been inserted by the editor.
Thanks to Andreas Jonsson (Lulea University), who supported this work
by his study of header field change patterns.
Finally, this work would not have succeeded without the continual
advice in navigating the IETF standards track, garnished with both
editorial and technical comments, from the IETF transport area
directors, Allison Mankin and Scott Bradner.
10. Intellectual Property Right Claim Considerations
The IETF has been notified of intellectual property rights claimed in
regard to some or all of the specification contained in this
document. For more information consult the online list of claimed
rights.
The IETF takes no position regarding the validity or scope of any
intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; neither does it represent that it
has made any effort to identify any such rights. Information on the
IETF's procedures with respect to rights in standards-track and
standards-related documentation can be found in BCP-11. Copies of
claims of rights made available for publication and any assurances of
licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such
proprietary rights by implementors or users of this specification can
be obtained from the IETF Secretariat.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights which may cover technology that may be required to practice
this standard. Please address the information to the IETF Executive
Director.
Bormann, et al. Standards Track [Page 145]
^L
RFC 3095 Robust Header Compression July 2001
11. References
11.1. Normative References
[UDP] Postel, J., "User Datagram Protocol", STD 6,
RFC 768, August 1980.
[IPv4] Postel, J., "Internet Protocol", STD 5, RFC
791, September 1981.
[IPv6] Deering, S. and R. Hinden, "Internet Protocol,
Version 6 (IPv6) Specification", RFC 2460,
December 1998.
[RTP] Schulzrinne, H., Casner, S., Frederick, R. and
V. Jacobson, "RTP: A Transport Protocol for
Real-Time Applications", RFC 1889, January
1996.
[HDLC] Simpson, W., "PPP in HDLC-like framing", STD
51, RFC 1662, July 1994.
[ESP] Kent, S. and R. Atkinson, "IP Encapsulating
Security Payload", RFC 2406, November 1998.
[NULL] Glenn, R. and S. Kent, "The NULL Encryption
Algorithm and Its Use With Ipsec", RFC 2410,
November 1998.
[AH] Kent, S. and R. Atkinson, "IP Authentication
Header", RFC 2402, November 1998.
[MINE] Perkins, C., "Minimal Encapsulation within IP",
RFC 2004, October 1996.
[GRE1] Farinacci, D., Li, T., Hanks, S., Meyer, D. and
P. Traina, "Generic Routing Encapsulation
(GRE)", RFC 2784, March 2000.
[GRE2] Dommety, G., "Key and Sequence Number
Extensions to GRE", RFC 2890, August 2000.
[ASSIGNED] Reynolds, J. and J. Postel, "Assigned Numbers",
STD 2, RFC 1700, October 1994.
Bormann, et al. Standards Track [Page 146]
^L
RFC 3095 Robust Header Compression July 2001
11.2. Informative References
[VJHC] Jacobson, V., "Compressing TCP/IP Headers for
Low-Speed Serial Links", RFC 1144, February
1990.
[IPHC] Degermark, M., Nordgren, B. and S. Pink, "IP
Header Compression", RFC 2507, February 1999.
[CRTP] Casner, S. and V. Jacobson, "Compressing
IP/UDP/RTP Headers for Low-Speed Serial Links",
RFC 2508, February 1999.
[CRTPC] Degermark, M., Hannu, H., Jonsson, L.E.,
Svanbro, K., "Evaluation of CRTP Performance
over Cellular Radio Networks", IEEE Personal
Communication Magazine, Volume 7, number 4, pp.
20-25, August 2000.
[REQ] Degermark, M., "Requirements for robust
IP/UDP/RTP header compression", RFC 3096, June
2001.
[LLG] Svanbro, K., "Lower Layer Guidelines for Robust
RTP/UDP/IP Header Compression", Work in
Progress.
[IANA-CONSIDERATIONS] Alvestrand, H. and T. Narten, "Guidelines for
Writing an IANA Considerations Section in
RFCs", BCP 26, RFC 2434, October 1998.
Bormann, et al. Standards Track [Page 147]
^L
RFC 3095 Robust Header Compression July 2001
12. Authors' Addresses
Carsten Bormann, Editor
Universitaet Bremen TZI
Postfach 330440
D-28334 Bremen, Germany
Phone: +49 421 218 7024
Fax: +49 421 218 7000
EMail: cabo@tzi.org
Carsten Burmeister
Panasonic European Laboratories GmbH
Monzastr. 4c
63225 Langen, Germany
Phone: +49-6103-766-263
Fax: +49-6103-766-166
EMail: burmeister@panasonic.de
Mikael Degermark
The University of Arizona
Dept of Computer Science
P.O. Box 210077
Tucson, AZ 85721-0077, USA
Phone: +1 520 621-3498
Fax: +1 520 621-4642
EMail: micke@cs.arizona.edu
Hideaki Fukushima
Matsushita Electric Industrial Co.,
Ltd006, Kadoma, Kadoma City,
Osaka, Japan
Phone: +81-6-6900-9192
Fax: +81-6-6900-9193
EMail: fukusima@isl.mei.co.jp
Bormann, et al. Standards Track [Page 148]
^L
RFC 3095 Robust Header Compression July 2001
Hans Hannu
Box 920
Ericsson Erisoft AB
SE-971 28 Lulea, Sweden
Phone: +46 920 20 21 84
Fax: +46 920 20 20 99
EMail: hans.hannu@ericsson.com
Lars-Erik Jonsson
Box 920
Ericsson Erisoft AB
SE-971 28 Lulea, Sweden
Phone: +46 920 20 21 07
Fax: +46 920 20 20 99
EMail: lars-erik.jonsson@ericsson.com
Rolf Hakenberg
Panasonic European Laboratories GmbH
Monzastr. 4c
63225 Langen, Germany
Phone: +49-6103-766-162
Fax: +49-6103-766-166
EMail: hakenberg@panasonic.de
Tmima Koren
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134, USA
Phone: +1 408-527-6169
EMail: tmima@cisco.com
Bormann, et al. Standards Track [Page 149]
^L
RFC 3095 Robust Header Compression July 2001
Khiem Le
2-700
Mobile Networks Laboratory
Nokia Research Center
6000 Connection Drive
Irving, TX 75039, USA
Phone: +1-972-894-4882
Fax: +1 972 894-4589
EMail: khiem.le@nokia.com
Zhigang Liu
2-700
Mobile Networks Laboratory
Nokia Research Center
6000 Connection Drive
Irving, TX 75039, USA
Phone: +1 972 894-5935
Fax: +1 972 894-4589
EMail: zhigang.liu@nokia.com
Anton Martensson
Ericsson Radio Systems AB
Torshamnsgatan 23
SE-164 80 Stockholm, Sweden
Phone: +46 8 404 3881
Fax: +46 8 757 5550
EMail: anton.martensson@era.ericsson.se
Akihiro Miyazaki
Matsushita Electric Industrial Co., Ltd
1006, Kadoma, Kadoma City, Osaka, Japan
Phone: +81-6-6900-9192
Fax: +81-6-6900-9193
EMail: akihiro@isl.mei.co.jp
Bormann, et al. Standards Track [Page 150]
^L
RFC 3095 Robust Header Compression July 2001
Krister Svanbro
Box 920
Ericsson Erisoft AB
SE-971 28 Lulea, Sweden
Phone: +46 920 20 20 77
Fax: +46 920 20 20 99
EMail: krister.svanbro@ericsson.com
Thomas Wiebke
Panasonic European Laboratories GmbH
Monzastr. 4c
63225 Langen, Germany
Phone: +49-6103-766-161
Fax: +49-6103-766-166
EMail: wiebke@panasonic.de
Takeshi Yoshimura
NTT DoCoMo, Inc.
3-5, Hikarinooka
Yokosuka, Kanagawa, 239-8536, Japan
Phone: +81-468-40-3515
Fax: +81-468-40-3788
EMail: yoshi@spg.yrp.nttdocomo.co.jp
Haihong Zheng
2-700
Mobile Networks Laboratory
Nokia Research Center
6000 Connection Drive
Irving, TX 75039, USA
Phone: +1 972 894-4232
Fax: +1 972 894-4589
EMail: haihong.zheng@nokia.com
Bormann, et al. Standards Track [Page 151]
^L
RFC 3095 Robust Header Compression July 2001
Appendix A. Detailed classification of header fields
Header compression is possible thanks to the fact that most header
fields do not vary randomly from packet to packet. Many of the
fields exhibit static behavior or change in a more or less
predictable way. When designing a header compression scheme, it is
of fundamental importance to understand the behavior of the fields in
detail.
In this appendix, all IP, UDP and RTP header fields are classified
and analyzed in two steps. First, we have a general classification
in A.1 where the fields are classified on the basis of stable
knowledge and assumptions. The general classification does not take
into account the change characteristics of changing fields because
those will vary more or less depending on the implementation and on
the application used. A less stable but more detailed analysis of
the change characteristics is then done in A.2. Finally, A.3
summarizes this appendix with conclusions about how the various
header fields should be handled by the header compression scheme to
optimize compression and functionality.
Bormann, et al. Standards Track [Page 152]
^L
RFC 3095 Robust Header Compression July 2001
A.1. General classification
At a general level, the header fields are separated into 5 classes:
INFERRED These fields contain values that can be inferred from
other values, for example the size of the frame
carrying the packet, and thus do not have to be
handled at all by the compression scheme.
STATIC These fields are expected to be constant throughout
the lifetime of the packet stream. Static information
must in some way be communicated once.
STATIC-DEF STATIC fields whose values define a packet stream.
They are in general handled as STATIC.
STATIC-KNOWN These STATIC fields are expected to have well-known
values and therefore do not need to be communicated
at all.
CHANGING These fields are expected to vary in some way:
randomly, within a limited value set or range, or in
some other manner.
In this section, each of the IP, UDP and RTP header fields is
assigned to one of these classes. For all fields except those
classified as CHANGING, the motives for the classification are also
stated. In section A.2, CHANGING fields are further examined and
classified on the basis of their expected change behavior.
A.1.1. IPv6 header fields
+---------------------+-------------+----------------+
| Field | Size (bits) | Class |
+---------------------+-------------+----------------+
| Version | 4 | STATIC |
| Traffic Class | 8 | CHANGING |
| Flow Label | 20 | STATIC-DEF |
| Payload Length | 16 | INFERRED |
| Next Header | 8 | STATIC |
| Hop Limit | 8 | CHANGING |
| Source Address | 128 | STATIC-DEF |
| Destination Address | 128 | STATIC-DEF |
+---------------------+-------------+----------------+
Bormann, et al. Standards Track [Page 153]
^L
RFC 3095 Robust Header Compression July 2001
Version
The version field states which IP version is used. Packets with
different values in this field must be handled by different IP
stacks. All packets of a packet stream must therefore be of the
same IP version. Accordingly, the field is classified as STATIC.
Flow Label
This field may be used to identify packets belonging to a specific
packet stream. If not used, the value should be set to zero.
Otherwise, all packets belonging to the same stream must have the
same value in this field, it being one of the fields that define
the stream. The field is therefore classified as STATIC-DEF.
Payload Length
Information about packet length (and, consequently, payload
length) is expected to be provided by the link layer. The field
is therefore classified as INFERRED.
Next Header
This field will usually have the same value in all packets of a
packet stream. It encodes the type of the subsequent header.
Only when extension headers are sometimes present and sometimes
not, will the field change its value during the lifetime of the
stream. The field is therefore classified as STATIC.
Source and Destination addresses
These fields are part of the definition of a stream and must thus
be constant for all packets in the stream. The fields are
therefore classified as STATIC-DEF.
Total size of the fields in each class:
+--------------+--------------+
| Class | Size (octets)|
+--------------+--------------+
| INFERRED | 2 |
| STATIC | 1.5 |
| STATIC-DEF | 34.5 |
| CHANGING | 2 |
+--------------+--------------+
Bormann, et al. Standards Track [Page 154]
^L
RFC 3095 Robust Header Compression July 2001
A.1.2. IPv4 header fields
+---------------------+-------------+----------------+
| Field | Size (bits) | Class |
+---------------------+-------------+----------------+
| Version | 4 | STATIC |
| Header Length | 4 | STATIC-KNOWN |
| Type Of Service | 8 | CHANGING |
| Packet Length | 16 | INFERRED |
| Identification | 16 | CHANGING |
| Reserved flag | 1 | STATIC-KNOWN |
| Don't Fragment flag | 1 | STATIC |
| More Fragments flag | 1 | STATIC-KNOWN |
| Fragment Offset | 13 | STATIC-KNOWN |
| Time To Live | 8 | CHANGING |
| Protocol | 8 | STATIC |
| Header Checksum | 16 | INFERRED |
| Source Address | 32 | STATIC-DEF |
| Destination Address | 32 | STATIC-DEF |
+---------------------+-------------+----------------+
Version
The version field states which IP version is used. Packets with
different values in this field must be handled by different IP
stacks. All packets of a packet stream must therefore be of the
same IP version. Accordingly, the field is classified as STATIC.
Header Length
As long no options are present in the IP header, the header length
is constant and well known. If there are options, the fields
would be STATIC, but it is assumed here that there are no options.
The field is therefore classified as STATIC-KNOWN.
Packet Length
Information about packet length is expected to be provided by the
link layer. The field is therefore classified as INFERRED.
Flags
The Reserved flag must be set to zero and is therefore classified
as STATIC-KNOWN. The Don't Fragment (DF) flag will be constant
for all packets in a stream and is therefore classified as STATIC.
Bormann, et al. Standards Track [Page 155]
^L
RFC 3095 Robust Header Compression July 2001
Finally, the More Fragments (MF) flag is expected to be zero
because fragmentation is NOT expected, due to the small packet
size expected. The More Fragments flag is therefore classified as
STATIC-KNOWN.
Fragment Offset
Under the assumption that no fragmentation occurs, the fragment
offset is always zero. The field is therefore classified as
STATIC-KNOWN.
Protocol
This field will usually have the same value in all packets of a
packet stream. It encodes the type of the subsequent header.
Only when extension headers are sometimes present and sometimes
not, will the field change its value during the lifetime of a
stream. The field is therefore classified as STATIC.
Header Checksum
The header checksum protects individual hops from processing a
corrupted header. When almost all IP header information is
compressed away, there is no point in having this additional
checksum; instead it can be regenerated at the decompressor side.
The field is therefore classified as INFERRED.
Source and Destination addresses
These fields are part of the definition of a stream and must thus
be constant for all packets in the stream. The fields are
therefore classified as STATIC-DEF.
Total size of the fields in each class:
+--------------+----------------+
| Class | Size (octets) |
+--------------+----------------+
| INFERRED | 4 |
| STATIC | 1 oct + 5 bits |
| STATIC-DEF | 8 |
| STATIC-KNOWN | 2 oct + 3 bits |
| CHANGING | 4 |
+--------------+----------------+
Bormann, et al. Standards Track [Page 156]
^L
RFC 3095 Robust Header Compression July 2001
A.1.3. UDP header fields
+------------------+-------------+-------------+
| Field | Size (bits) | Class |
+------------------+-------------+-------------+
| Source Port | 16 | STATIC-DEF |
| Destination Port | 16 | STATIC-DEF |
| Length | 16 | INFERRED |
| Checksum | 16 | CHANGING |
+------------------+-------------+-------------+
Source and Destination ports
These fields are part of the definition of a stream and must thus
be constant for all packets in the stream. The fields are
therefore classified as STATIC-DEF.
Length
This field is redundant and is therefore classified as INFERRED.
Total size of the fields in each class:
+------------+---------------+
| Class | Size (octets) |
+------------+---------------+
| INFERRED | 2 |
| STATIC-DEF | 4 |
| CHANGING | 2 |
+------------+---------------+
A.1.4. RTP header fields
+-----------------+-------------+----------------+
| Field | Size (bits) | Class |
+-----------------+-------------+----------------+
| Version | 2 | STATIC-KNOWN |
| Padding | 1 | STATIC |
| Extension | 1 | STATIC |
| CSRC Counter | 4 | CHANGING |
| Marker | 1 | CHANGING |
| Payload Type | 7 | CHANGING |
| Sequence Number | 16 | CHANGING |
| Timestamp | 32 | CHANGING |
| SSRC | 32 | STATIC-DEF |
| CSRC | 0(-480) | CHANGING |
+-----------------+-------------+----------------+
Bormann, et al. Standards Track [Page 157]
^L
RFC 3095 Robust Header Compression July 2001
Version
Only one working RTP version exists, namely version 2. The field
is therefore classified as STATIC-KNOWN.
Padding
The use of this field is application-dependent, but when payload
padding is used it is likely to be present in all packets. The
field is therefore classified as STATIC.
Extension
If RTP extensions are used by the application, these extensions
are likely to be present in all packets (but the use of extensions
is very uncommon). However, for safety's sake this field is
classified as STATIC and not STATIC-KNOWN.
SSRC
This field is part of the definition of a stream and must thus be
constant for all packets in the stream. The field is therefore
classified as STATIC-DEF.
Total size of the fields in each class:
+--------------+---------------+
| Class | Size (octets) |
+--------------+---------------+
| STATIC | 2 bits |
| STATIC-DEF | 4 |
| STATIC-KNOWN | 2 bits |
| CHANGING | 7.5(-67.5) |
+--------------+---------------+
Bormann, et al. Standards Track [Page 158]
^L
RFC 3095 Robust Header Compression July 2001
A.1.5. Summary for IP/UDP/RTP
Summarizing this for IP/UDP/RTP one obtains
+----------------+----------------+----------------+
| Class \ IP ver | IPv6 (octets) | IPv4 (octets) |
+----------------+----------------+----------------+
| INFERRED | 4 | 6 |
| STATIC | 1 oct + 6 bits | 1 oct + 7 bits |
| STATIC-DEF | 42.5 | 16 |
| STATIC-KNOWN | 2 bits | 2 oct + 5 bits |
| CHANGING | 11.5(-71.5) | 13.5(-73.5) |
+----------------+----------------+----------------+
| Total | 60(-120) | 40(-100) |
+----------------+----------------+----------------+
A.2. Analysis of change patterns of header fields
To design suitable mechanisms for efficient compression of all header
fields, their change patterns must be analyzed. For this reason, an
extended classification is done based on the general classification
in A.1, considering the fields which were labeled CHANGING in that
classification. Different applications will use the fields in
different ways, which may affect their behavior. For the fields
whose behavior is variable, typical behavior for conversational audio
and video will be discussed.
The CHANGING fields are separated into five different subclasses:
STATIC These are fields that were classified as
CHANGING on a general basis, but are classified
as STATIC here due to certain additional
assumptions.
SEMISTATIC These fields are STATIC most of the time.
However, occasionally the value changes but
reverts to its original value after a known
number of packets.
RARELY-CHANGING (RC) These are fields that change their values
occasionally and then keep their new values.
ALTERNATING These fields alternate between a small number
of different values.
IRREGULAR These, finally, are the fields for which no
useful change pattern can be identified.
Bormann, et al. Standards Track [Page 159]
^L
RFC 3095 Robust Header Compression July 2001
To further expand the classification possibilities without increasing
complexity, the classification can be done either according to the
values of the field and/or according to the values of the deltas for
the field.
When the classification is done, other details are also stated
regarding possible additional knowledge about the field values and/or
field deltas, according to the classification. For fields classified
as STATIC or SEMISTATIC, the case could be that the value of the
field is not only STATIC but also well KNOWN a priori (two states for
SEMISTATIC fields). For fields with non-irregular change behavior,
it could be known that changes usually are within a LIMITED range
compared to the maximal change for the field. For other fields, the
values are completely UNKNOWN.
Bormann, et al. Standards Track [Page 160]
^L
RFC 3095 Robust Header Compression July 2001
Table A.1 classifies all the CHANGING fields on the basis of their
expected change patterns, especially for conversational audio and
video.
+------------------------+-------------+-------------+-------------+
| Field | Value/Delta | Class | Knowledge |
+========================+=============+=============+=============+
| Sequential | Delta | STATIC | KNOWN |
| -----------+-------------+-------------+-------------+
| IPv4 Id: Seq. jump | Delta | RC | LIMITED |
| -----------+-------------+-------------+-------------+
| Random | Value | IRREGULAR | UNKNOWN |
+------------------------+-------------+-------------+-------------+
| IP TOS / Tr. Class | Value | RC | UNKNOWN |
+------------------------+-------------+-------------+-------------+
| IP TTL / Hop Limit | Value | ALTERNATING | LIMITED |
+------------------------+-------------+-------------+-------------+
| Disabled | Value | STATIC | KNOWN |
| UDP Checksum: ---------+-------------+-------------+-------------+
| Enabled | Value | IRREGULAR | UNKNOWN |
+------------------------+-------------+-------------+-------------+
| No mix | Value | STATIC | KNOWN |
| RTP CSRC Count: -------+-------------+-------------+-------------+
| Mixed | Value | RC | LIMITED |
+------------------------+-------------+-------------+-------------+
| RTP Marker | Value | SEMISTATIC | KNOWN/KNOWN |
+------------------------+-------------+-------------+-------------+
| RTP Payload Type | Value | RC | UNKNOWN |
+------------------------+-------------+-------------+-------------+
| RTP Sequence Number | Delta | STATIC | KNOWN |
+------------------------+-------------+-------------+-------------+
| RTP Timestamp | Delta | RC | LIMITED |
+------------------------+-------------+-------------+-------------+
| No mix | - | - | - |
| RTP CSRC List: -------+-------------+-------------+-------------+
| Mixed | Value | RC | UNKNOWN |
+------------------------+-------------+-------------+-------------+
Table A.1 : Classification of CHANGING header fields
The following subsections discuss the various header fields in
detail. Note that table A.1 and the discussions below do not
consider changes caused by loss or reordering before the compression
point.
Bormann, et al. Standards Track [Page 161]
^L
RFC 3095 Robust Header Compression July 2001
A.2.1. IPv4 Identification
The Identification field (IP ID) of the IPv4 header is there to
identify which fragments constitute a datagram when reassembling
fragmented datagrams. The IPv4 specification does not specify
exactly how this field is to be assigned values, only that each
packet should get an IP ID that is unique for the source-destination
pair and protocol for the time the datagram (or any of its fragments)
could be alive in the network. This means that assignment of IP ID
values can be done in various ways, which we have separated into
three classes.
Sequential jump
This is the most common assignment policy in today's IP stacks. A
single IP ID counter is used for all packet streams. When the
sender is running more than one packet stream simultaneously, the
IP ID can increase by more than one between packets in a stream.
The IP ID values will be much more predictable and require less
bits to transfer than random values, and the packet-to-packet
increment (determined by the number of active outgoing packet
streams and sending frequencies) will usually be limited.
Random
Some IP stacks assign IP ID values using a pseudo-random number
generator. There is thus no correlation between the ID values of
subsequent datagrams. Therefore there is no way to predict the IP
ID value for the next datagram. For header compression purposes,
this means that the IP ID field needs to be sent uncompressed
with each datagram, resulting in two extra octets of header. IP
stacks in cellular terminals SHOULD NOT use this IP ID assignment
policy.
Sequential
This assignment policy keeps a separate counter for each outgoing
packet stream and thus the IP ID value will increment by one for
each packet in the stream, except at wrap around. Therefore, the
delta value of the field is constant and well known a priori.
When RTP is used on top of UDP and IP, the IP ID value follows
the RTP Sequence Number. This assignment policy is the most
desirable for header compression purposes. However, its usage is
not as common as it perhaps should be. The reason may be that it
can be realized only when UDP and IP are implemented together so
that UDP, which separates packet streams by the Port
identification fields, can make IP use separate ID counters for
each packet stream.
Bormann, et al. Standards Track [Page 162]
^L
RFC 3095 Robust Header Compression July 2001
In order to avoid violating [IPv4], packets sharing the same IP
address pair and IP protocol number cannot use the same IP ID
values. Therefore, implementations of sequential policies must
make the ID number spaces disjoint for packet streams of the same
IP protocol going between the same pair of nodes. This can be
done in a number of ways, all of which introduce occasional
jumps, and thus makes the policy less than perfectly sequential.
For header compression purposes less frequent jumps are
preferred.
It should be noted that the ID is an IPv4 mechanism and is therefore
not a problem for IPv6. For IPv4 the ID could be handled in three
different ways. First, we have the inefficient but reliable solution
where the ID field is sent as-is in all packets, increasing the
compressed headers by two octets. This is the best way to handle the
ID field if the sender uses random assignment of the ID field.
Second, there can be solutions with more flexible mechanisms
requiring less bits for the ID handling as long as sequential jump
assignment is used. Such solutions will probably require even more
bits if random assignment is used by the sender. Knowledge about the
sender's assignment policy could therefore be useful when choosing
between the two solutions above. Finally, even for IPv4, header
compression could be designed without any additional information for
the ID field included in compressed headers. To use such schemes, it
must be known which assignment policy for the ID field is being used
by the sender. That might not be possible to know, which implies
that the applicability of such solutions is very uncertain. However,
designers of IPv4 stacks for cellular terminals SHOULD use an
assignment policy close to sequential.
A.2.2. IP Traffic-Class / Type-Of-Service
The Traffic-Class (IPv6) or Type-Of-Service (IPv4) field is expected
to be constant during the lifetime of a packet stream or to change
relatively seldom.
A.2.3. IP Hop-Limit / Time-To-Live
The Hop-Limit (IPv6) or Time-To-Live (IPv4) field is expected to be
constant during the lifetime of a packet stream or to alternate
between a limited number of values due to route changes.
A.2.4. UDP Checksum
The UDP checksum is optional. If disabled, its value is constantly
zero and could be compressed away. If enabled, its value depends on
the payload, which for compression purposes is equivalent to it
changing randomly with every packet.
Bormann, et al. Standards Track [Page 163]
^L
RFC 3095 Robust Header Compression July 2001
A.2.5. RTP CSRC Counter
This is a counter indicating the number of CSRC items present in the
CSRC list. This number is expected to be almost constant on a
packet- to-packet basis and change by small amounts. As long as no
RTP mixer is used, the value of this field is zero.
A.2.6. RTP Marker
For audio the marker bit should be set only in the first packet of a
talkspurt, while for video it should be set in the last packet of
every picture. This means that in both cases the RTP marker is
classified as SEMISTATIC with well-known values for both states.
A.2.7. RTP Payload Type
Changes of the RTP payload type within a packet stream are expected
to be rare. Applications could adapt to congestion by changing
payload type and/or frame sizes, but that is not expected to happen
frequently.
A.2.8. RTP Sequence Number
The RTP Sequence Number will be incremented by one for each packet
sent.
A.2.9. RTP Timestamp
In the audio case:
As long as there are no pauses in the audio stream, the RTP
Timestamp will be incremented by a constant delta, corresponding
to the number of samples in the speech frame. It will thus mostly
follow the RTP Sequence Number. When there has been a silent
period and a new talkspurt begins, the timestamp will jump in
proportion to the length of the silent period. However, the
increment will probably be within a relatively limited range.
In the video case:
Between two consecutive packets, the timestamp will either be
unchanged or increase by a multiple of a fixed value corresponding
to the picture clock frequency. The timestamp can also decrease
by a multiple of the fixed value if B-pictures are used. The
delta interval, expressed as a multiple of the picture clock
frequency, is in most cases very limited.
Bormann, et al. Standards Track [Page 164]
^L
RFC 3095 Robust Header Compression July 2001
A.2.10. RTP Contributing Sources (CSRC)
The participants in a session, which are identified by the CSRC
fields, are expected to be almost the same on a packet-to-packet
basis with relatively few additions and removals. As long as RTP
mixers are not used, no CSRC fields are present at all.
A.3. Header compression strategies
This section elaborates on what has been done in previous sections.
On the basis of the classifications, recommendations are given on how
to handle the various fields in the header compression process.
Seven different actions are possible; these are listed together with
the fields to which each action applies.
A.3.1. Do not send at all
The fields that have well known values a priori do not have to be
sent at all. These are:
- IPv6 Payload Length
- IPv4 Header Length
- IPv4 Reserved Flag
- IPv4 Last Fragment Flag
- IPv4 Fragment Offset
- UDP Checksum (if disabled)
- RTP Version
A.3.2. Transmit only initially
The fields that are constant throughout the lifetime of the packet
stream have to be transmitted and correctly delivered to the
decompressor only once. These are:
- IP Version
- IP Source Address
- IP Destination Address
- IPv6 Flow Label
- IPv4 May Fragment Flag
- UDP Source Port
- UDP Destination Port
- RTP Padding Flag
- RTP Extension Flag
- RTP SSRC
Bormann, et al. Standards Track [Page 165]
^L
RFC 3095 Robust Header Compression July 2001
A.3.3. Transmit initially, but be prepared to update
The fields that are changing only occasionally must be transmitted
initially but there must also be a way to update these fields with
new values if they change. These fields are:
- IPv6 Next Header
- IPv6 Traffic Class
- IPv6 Hop Limit
- IPv4 Protocol
- IPv4 Type Of Service (TOS)
- IPv4 Time To Live (TTL)
- RTP CSRC Counter
- RTP Payload Type
- RTP CSRC List
Since the values of the IPv4 Protocol and the IPv6 Next Header fields
are in effect linked to the type of the subsequent header, they
deserve special treatment when subheaders are inserted or removed.
A.3.4. Be prepared to update or send as-is frequently
For fields that normally either are constant or have values deducible
from some other field, but that frequently diverge from that
behavior, there must be an efficient way to update the field value or
send it as-is in some packets. These fields are:
- IPv4 Identification (if not sequentially assigned)
- RTP Marker
- RTP Timestamp
A.3.5. Guarantee continuous robustness
For fields that behave like a counter with a fixed delta for ALL
packets, the only requirement on the transmission encoding is that
packet losses between compressor and decompressor must be tolerable.
If several such fields exist, all these can be communicated together.
Such fields can also be used to interpret the values for fields
listed in the previous section. Fields that have this counter
behavior are:
- IPv4 Identification (if sequentially assigned)
- RTP Sequence Number
Bormann, et al. Standards Track [Page 166]
^L
RFC 3095 Robust Header Compression July 2001
A.3.6. Transmit as-is in all packets
Fields that have completely random values for each packet must be
included as-is in all compressed headers. Those fields are:
- IPv4 Identification (if randomly assigned)
- UDP Checksum (if enabled)
A.3.7. Establish and be prepared to update delta
Finally, there is a field that is usually increasing by a fixed delta
and is correlated to another field. For this field it would make
sense to make that delta part of the context state. The delta must
then be initiated and updated in the same way as the fields listed in
A.3.3. The field to which this applies is:
- RTP Timestamp
Bormann, et al. Standards Track [Page 167]
^L
RFC 3095 Robust Header Compression July 2001
Full Copyright Statement
Copyright (C) The Internet Society (2001). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Bormann, et al. Standards Track [Page 168]
^L
|