summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc3143.txt
blob: 4b6871cf0eae3b16909307c325cc8afbaa798934 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
Network Working Group                                          I. Cooper
Request for Comments: 3143                                 Equinix, Inc.
Category: Informational                                        J. Dilley
                                               Akamai Technologies, Inc.
                                                               June 2001


                   Known HTTP Proxy/Caching Problems

Status of this Memo

   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2001).  All Rights Reserved.

Abstract

   This document catalogs a number of known problems with World Wide Web
   (WWW) (caching) proxies and cache servers.  The goal of the document
   is to provide a discussion of the problems and proposed workarounds,
   and ultimately to improve conditions by illustrating problems.  The
   construction of this document is a joint effort of the Web caching
   community.

Table of Contents

   1.    Introduction . . . . . . . . . . . . . . . . . . . . . . . .  2
   1.1   Problem Template . . . . . . . . . . . . . . . . . . . . . .  2
   2.    Known Problems . . . . . . . . . . . . . . . . . . . . . . .  4
   2.1   Known Specification Problems . . . . . . . . . . . . . . . .  5
   2.1.1 Vary header is underspecified and/or misleading  . . . . . .  5
   2.1.2 Client Chaining Loses Valuable Length Meta-Data  . . . . . .  9
   2.2   Known Architectural Problems . . . . . . . . . . . . . . . . 10
   2.2.1 Interception proxies break client cache directives . . . . . 10
   2.2.2 Interception proxies prevent introduction of new HTTP
            methods  . . . . . . . . . . . . . . . . . . . . . . . .  11
   2.2.3 Interception proxies break IP address-based authentication . 12
   2.2.4 Caching proxy peer selection in heterogeneous networks . . . 13
   2.2.5 ICP Performance  . . . . . . . . . . . . . . . . . . . . . . 15
   2.2.6 Caching proxy meshes can break HTTP serialization of content 16
   2.3   Known Implementation Problems  . . . . . . . . . . . . . . . 17
   2.3.1 User agent/proxy failover  . . . . . . . . . . . . . . . . . 17
   2.3.2 Some servers send bad Content-Length headers for files that
            contain CR . . . . . . . . . . . . . . . . . . . . . . .  18



Cooper & Dilley              Informational                      [Page 1]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


   3.    Security Considerations  . . . . . . . . . . . . . . . . . . 18
         References . . . . . . . . . . . . . . . . . . . . . . . . . 19
         Authors' Addresses . . . . . . . . . . . . . . . . . . . . . 20
   A.    Archived Known Problems  . . . . . . . . . . . . . . . . . . 21
   A.1   Architectural  . . . . . . . . . . . . . . . . . . . . . . . 21
   A.1.1 Cannot specify multiple URIs for replicated resources  . . . 21
   A.1.2 Replica distance is unknown  . . . . . . . . . . . . . . . . 22
   A.1.3 Proxy resource location  . . . . . . . . . . . . . . . . . . 23
   A.2   Implementation . . . . . . . . . . . . . . . . . . . . . . . 23
   A.2.1 Use of Cache-Control headers . . . . . . . . . . . . . . . . 23
   A.2.2 Lack of HTTP/1.1 compliance for caching proxies  . . . . . . 24
   A.2.3 ETag support . . . . . . . . . . . . . . . . . . . . . . . . 25
   A.2.4 Servers and content should be optimized for caching  . . . . 26
   A.3   Administration . . . . . . . . . . . . . . . . . . . . . . . 27
   A.3.1 Lack of fine-grained, standardized hierarchy controls  . . . 27
   A.3.2 Proxy/Server exhaustive log format standard for analysis . . 27
   A.3.3 Trace log timestamps . . . . . . . . . . . . . . . . . . . . 28
   A.3.4 Exchange format for log summaries  . . . . . . . . . . . . . 29
         Full Copyright Statement . . . . . . . . . . . . . . . . . . 32

1. Introduction

   This memo discusses problems with proxies - which act as
   application-level intermediaries for Web requests - and more
   specifically with caching proxies, which retain copies of previously
   requested resources in the hope of improving overall quality of
   service by serving the content locally.  Commonly used terminology in
   this memo can be found in the "Internet Web Replication and Caching
   Taxonomy"[2].

   No individual or organization has complete knowledge of the known
   problems in Web caching, and the editors are grateful to the
   contributors to this document.

1.1 Problem Template

   A common problem template is used within the following sections.  We
   gratefully acknowledge RFC2525 [1] which helped define an initial
   format for this known problems list.  The template format is
   summarized in the following table and described in more detail below.

      Name:           short, descriptive name of the problem (3-5 words)
      Classification: classifies the problem: performance, security, etc
      Description:    describes the problem succinctly
      Significance:   magnitude of problem, environments where it exists
      Implications:   the impact of the problem on systems and networks
      See Also:       a reference to a related known problem
      Indications:    states how to detect the presence of this problem



Cooper & Dilley              Informational                      [Page 2]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


      Solution(s):    describe the solution(s) to this problem, if any
      Workaround:     practical workaround for the problem
      References:     information about the problem or solution
      Contact:        contact name and email address for this section

   Name
      A short, descriptive, name (3-5 words) name associated with the
      problem.

   Classification
      Problems are grouped into categories of similar problems for ease
      of reading of this memo.  Choose the category that best describes
      the problem.  The suggested categories include three general
      categories and several more specific categories.

      *  Architecture: the fundamental design is incomplete, or
         incorrect

      *  Specification: the spec is ambiguous, incomplete, or incorrect.

      *  Implementation: the implementation of the spec is incorrect.

      *  Performance: perceived page response at the client is
         excessive; network bandwidth consumption is excessive; demand
         on origin or proxy servers exceed reasonable bounds.

      *  Administration: care and feeding of caches is, or causes, a
         problem.

      *  Security: privacy, integrity, or authentication concerns.

   Description
      A definition of the problem, succinct but including necessary
      background information.

   Significance (High, Medium, Low)
      May include a brief summary of the environments for which the
      problem is significant.

   Implications
      Why the problem is viewed as a problem.  What inappropriate
      behavior results from it? This section should substantiate the
      magnitude of any problem indicated with High significance.

   See Also
      Optional.  List of other known problems that are related to this
      one.




Cooper & Dilley              Informational                      [Page 3]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


   Indications
      How to detect the presence of the problem.  This may include
      references to one or more substantiating documents that
      demonstrate the problem.  This should include the network
      configuration that led to the problem such that it can be
      reproduced.  Problems that are not reproducible will not appear in
      this memo.

   Solution(s)
      Solutions that permanently fix the problem, if such are known. For
      example, what version of the software does not exhibit the
      problem?  Indicate if the solution is accepted by the community,
      one of several solutions pending agreement, or open possibly with
      experimental solutions.

   Workaround
      Practical workaround if no solution is available or usable.  The
      workaround should have sufficient detail for someone experiencing
      the problem to get around it.

   References
      References to related information in technical publications or on
      the web.  Where can someone interested in learning more go to find
      out more about this problem, its solution, or workarounds?

   Contact
      Contact name and email address of the person who supplied the
      information for this section.  The editors are listed as contacts
      for anonymous submissions.

2. Known Problems

   The remaining sections of this document present the currently
   documented known problems.  The problems are ordered by
   classification and significance.  Issues with protocol specification
   or architecture are first, followed by implementation issues.  Issues
   of high significance are first, followed by lower significance.

   Some of the problems initially identified in the previous versions of
   this document have been moved to Appendix A since they discuss issues
   where resolution primarily involves education rather than protocol
   work.

   A full list of the problems is available in the table of contents.







Cooper & Dilley              Informational                      [Page 4]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


2.1 Known Specification Problems

2.1.1 Vary header is underspecified and/or misleading

   Name
      The "Vary" header is underspecified and/or misleading

   Classification
      Specification

   Description
      The Vary header in HTTP/1.1 was designed to allow a caching proxy
      to safely cache responses even if the server's choice of variants
      is not entirely understood.  As RFC 2616 says:

         The Vary header field can be used to express the parameters the
         server uses to select a representation that is subject to
         server-driven negotiation.

      One might expect that this mechanism is useful in general for
      extensions that change the response message based on some aspects
      of the request.  However, that is not true.

      During the design of the HTTP delta encoding specification[9] it
      was realized that an HTTP/1.1 proxy that does not understand delta
      encoding might cache a delta-encoded response and then later
      deliver it to a non-delta-capable client, unless the extension
      included some mechanism to prevent this.  Initially, it was
      thought that Vary would suffice, but the following scenario proves
      this wrong.

      NOTE: It is likely that other scenarios exhibiting the same basic
      problem with "Vary" could be devised, without reference to delta
      encoding.  This is simply a concrete scenario used to explain the
      problem.

      A complete description of the IM and A-IM headers may be found in
      the "Delta encoding in HTTP" specification.  For the purpose of
      this problem description, the relevant details are:

      1. The concept of an "instance manipulation" is introduced.  In
         some ways, this is similar to a content-coding, but there are
         differences.  One example of an instance manipulation name is
         "vcdiff".

      2. A client signals its willingness to accept one or more
         instance-manipulations using the A-IM header.




Cooper & Dilley              Informational                      [Page 5]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


      3. A server indicates which instance-manipulations are used to
         encode the body of a response using the IM header.

      4. Existing implementations will ignore the A-IM and IM headers,
         following the usual HTTP rules for handling unknown headers.

      5. Responses encoded with an instance-manipulation are sent using
         the (proposed) 226 status code, "IM Used".

      6. In response to a conditional request that carries an IM header,
         if the request-URI has been modified then a server may transmit
         a compact encoding of the modifications using a delta-encoding
         instead of a status-200 response.  The encoded response cannot
         be understood by an implementation that does not support delta
         encodings.

      This summary omits many details.

      Suppose client A sends this request via proxy P:

         GET http://example.com/foo.html HTTP/1.1
         Host: example.com
         If-None-Match: "abc"
         A-IM: vcdiff

      and the origin server returns, via P, this response:

         HTTP/1.1 226 IM Used
         Etag: "def"
         Date: Wed, 19 Apr 2000 18:46:13 GMT
         IM: vcdiff
         Cache-Control: max-age-60
         Vary: A-IM, If-None-Match

      the body of which is a delta-encoded response (it encodes the
      difference between the Etag "abc" instance of foo.html, and the
      "def" instance).  Assume that P stores this response in its cache,
      and that P does not understand the vcdiff encoding.

      Later, client B, also ignorant of delta-encoding, sends this
      request via P:

         GET http://example.com/foo.html HTTP/1.1
         Host: example.com

      What can P do now?  According to the specification for the Vary
      header in RFC2616,




Cooper & Dilley              Informational                      [Page 6]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


         The Vary field value indicates the set of request-header fields
         that fully determines, while the response is fresh, whether a
         cache is permitted to use the response to reply to a subsequent
         request without revalidation.

      Implicitly, however, the cache would be allowed to use the stored
      response in response to client B WITH "revalidation".  This is the
      potential bug.

      An obvious implementation of the proxy would send this request to
      test whether its cache entry is fresh (i.e., to revalidate the
      entry):

         GET /foo.html HTTP/1.1
         Host: example.com
         If-None-Match: "def"

      That is, the proxy simply forwards the new request, after doing
      the usual transformation on the URL and tacking on the "obvious"
      If-None-Match header.

      If the origin server's Etag for the current instance is still
      "def", it would naturally respond:

         HTTP/1.1 304 Not Modified
         Etag: "def"
         Date: Wed, 19 Apr 2000 18:46:14 GMT

      thus telling the proxy P that it can use its stored response.  But
      this cache response actually involves a delta-encoding that would
      not be sensible to client B, signaled by a header field that would
      be ignored by B, and so the client displays garbage.

      The problem here is that the original request (from client A)
      generated a response that is not sensible to client B, not merely
      one that is not "the appropriate representation" (as the result of
      server-driven negotiation).

      One might argue that the proxy P shouldn't be storing status-226
      responses in the first place.  True in theory, perhaps, but
      unfortunately RFC2616, section 13.4, says:

         A response received with any [status code other than 200, 203,
         206, 300, 301 or 410] MUST NOT be returned in a reply to a
         subsequent request unless there are cache-control directives or
         another header(s) that explicitly allow it.  For example, these





Cooper & Dilley              Informational                      [Page 7]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


         include the following: an Expires header (section 14.21); a
         "max-age", "s-maxage", "must-revalidate", "proxy-revalidate",
         "public" or "private" cache-control directive (section 14.9).

      In other words, the specification allows caching of responses with
      yet-to-be-defined status codes if the response carries a plausible
      Cache-Control directive.  So unless we ban servers implementing
      this kind of extension from using these Cache-Control directives
      at all, the Vary header just won't work.

   Significance
      Medium

   Implications
      Certain plausible extensions to the HTTP/1.1 protocol might not
      interoperate correctly with older HTTP/1.1 caches, if the
      extensions depend on an interpretation of Vary that is not the
      same as is used by the cache implementer.

      This would have the effect either of causing hard-to-debug cache
      transparency failures, or of discouraging the deployment of such
      extensions, or of encouraging the implementers of such extensions
      to disable caching entirely.

   Indications
      The problem is visible when hand-simulating plausible message
      exchanges, especially when using the proposed delta encoding
      extension.  It probably has not been visible in practice yet.

   Solution(s)

      1. Section 13.4 of the HTTP/1.1 specification should probably be
         changed to prohibit caching of responses with status codes that
         the cache doesn't understand, whether or not they include
         Expires headers and the like.  (It might require some care to
         define what "understands" means, leaving room for future
         extensions with new status codes.)  The behavior in this case
         needs to be defined as equivalent to "Cache-Control:  no-store"
         rather than "no-cache", since the latter allows revalidation.

         Possibly the specification of Vary should require that it be
         treated as "Cache-Control:  no-store" whenever the status code
         is unknown - that should solve the problem in the scenario
         given here.







Cooper & Dilley              Informational                      [Page 8]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


      2. Designers of HTTP/1.1 extensions should consider using
         mechanisms other than Vary to prevent false caching.

         It is not clear whether the Vary mechanism is widely
         implemented in caches; if not, this favors solution #1.

   Workaround
      A cache could treat the presence of a Vary header in a response as
      an implicit "Cache-control: no-store", except for "known" status
      codes, even though this is not required by RFC 2616.  This would
      avoid any transparency failures.  "Known status codes" for basic
      HTTP/1.1 caches probably include: 200, 203, 206, 300, 301, 410
      (although this list should be re-evaluated in light of the problem
      discussed here).

   References
      See [9] for the specification of the delta encoding extension, as
      well as for an example of the use of a Cache-Control extension
      instead of "Vary."

   Contact
      Jeff Mogul <mogul@pa.dec.com>

2.1.2 Client Chaining Loses Valuable Length Meta-Data

   Name
      Client Chaining Loses Valuable Length Meta-Data

   Classification
      Performance

   Description
      HTTP/1.1[3] implementations are prohibited from sending Content-
      Length headers with any message whose body has been Transfer-
      Encoded.  Because 1.0 clients cannot accept chunked Transfer-
      Encodings, receiving 1.1 implementations must forward the body to
      1.0 clients must do so without the benefit of information that was
      discarded earlier in the chain.

   Significance
      Low

   Implications
      Lacking either a chunked transfer encoding or Content-Length
      indication creates negative performance implications for how the
      proxy must forward the message body.





Cooper & Dilley              Informational                      [Page 9]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


      In the case of response bodies, the server may either forward the
      response while closing the connection to indicate the end of the
      response or must utilize store and forward semantics to buffer the
      entire response in order to calculate a Content-Length.  The
      former option defeats the performance benefits of persistent
      connections in HTTP/1.1 (and their Keep-Alive cousin in HTTP/1.0)
      as well as creating some ambiguously lengthed responses.  The
      latter store and forward option may not even be feasible given the
      size of the resource and it will always introduce increased
      latency.

      Request bodies must undertake the store and forward process as 1.0
      request bodies must be delimited by Content-Length headers.  As
      with response bodies this may place unacceptable resource
      constraints on the proxy and the request may not be able to be
      satisfied.

   Indications
      The lack of HTTP/1.0 style persistent connections between 1.0
      clients and 1.1 proxies, only when accessing 1.1 servers, is a
      strong indication of this problem.

   Solution(s)
      An HTTP specification clarification that would allow origin known
      identity document Content-Lengths to be carried end to end would
      alleviate this issue.

   Workaround
      None.

   Contact
      Patrick McManus <mcmanus@AppliedTheory.com>

2.2 Known Architectural Problems

2.2.1 Interception proxies break client cache directives

   Name
      Interception proxies break client cache directives

   Classification
      Architecture

   Description
      HTTP[3] is designed for the user agent to be aware if it is
      connected to an origin server or to a proxy.  User agents
      believing they are transacting with an origin server but which are




Cooper & Dilley              Informational                     [Page 10]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


      really in a connection with an interception proxy may fail to send
      critical cache-control information they would have otherwise
      included in their request.

   Significance
      High

   Implications
      Clients may receive data that is not synchronized with the origin
      even when they request an end to end refresh, because of the lack
      of inclusion of either a "Cache-control: no-cache" or "must-
      revalidate" header.  These headers have no impact on origin server
      behavior so may not be included by the browser if it believes it
      is connected to that resource.  Other related data implications
      are possible as well.  For instance, data security may be
      compromised by the lack of inclusion of "private" or "no-store"
      clauses of the Cache-control header under similar conditions.

   Indications
      Easily detected by placing fresh (un-expired) content on a caching
      proxy while changing the authoritative copy, then requesting an
      end-to-end reload of the data through a proxy in both interception
      and explicit modes.

   Solution(s)
      Eliminate the need for interception proxies and IP spoofing, which
      will return correct context awareness to the client.

   Workaround
      Include relevant Cache-Control directives in every request at the
      cost of increased bandwidth and CPU requirements.

   Contact
      Patrick McManus <mcmanus@AppliedTheory.com>

2.2.2 Interception proxies prevent introduction of new HTTP methods

   Name
      Interception proxies prevent introduction of new HTTP methods

   Classification
      Architecture

   Description
      A proxy that receives a request with a method unknown to it is
      required to generate an HTTP 501 Error as a response.  HTTP
      methods are designed to be extensible so there may be applications
      deployed with initial support just for the user agent and origin



Cooper & Dilley              Informational                     [Page 11]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


      server.  An interception proxy that hijacks requests which include
      new methods destined for servers that have implemented those
      methods creates a de-facto firewall where none may be intended.

   Significance
      Medium within interception proxy environments.

   Implications
      Renders new compliant applications useless unless modifications
      are made to proxy software.  Because new methods are not required
      to be globally standardized it is impossible to keep up to date in
      the general case.

   Solution(s)
      Eliminate the need for interception proxies.  A client receiving a
      501 in a traditional HTTP environment may either choose to repeat
      the request to the origin server directly, or perhaps be
      configured to use a different proxy.

   Workaround
      Level 5 switches (sometimes called Level 7 or application layer
      switches) can be used to keep HTTP traffic with unknown methods
      out of the proxy.  However, these devices have heavy buffering
      responsibilities, still require TCP sequence number spoofing, and
      do not interact well with persistent connections.

      The HTTP/1.1 specification allows a proxy to switch over to tunnel
      mode when it receives a request with a method or HTTP version it
      does not understand how to handle.

   Contact
      Patrick McManus <mcmanus@AppliedTheory.com>
      Henrik Nordstrom <hno@hem.passagen.se> (HTTP/1.1 clarification)

2.2.3 Interception proxies break IP address-based authentication

   Name
      Interception proxies break IP address-based authentication

   Classification
      Architecture

   Description
      Some web servers are not open for public access, but restrict
      themselves to accept only requests from certain IP address ranges
      for security reasons.  Interception proxies alter the source
      (client) IP addresses to that of the proxy itself, without the




Cooper & Dilley              Informational                     [Page 12]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


      knowledge of the client/user.  This breaks such authentication
      mechanisms and prohibits otherwise allowed clients access to the
      servers.

   Significance
      Medium

   Implications
      Creates end user confusion and frustration.

   Indications
      Users  may start to see refused connections to servers after
      interception proxies are deployed.

   Solution(s)
      Use user-based authentication instead of (IP) address-based
      authentication.

   Workaround
      Using IP filters at the intercepting device (L4 switch) and bypass
      all requests to such servers concerned.

   Contact
      Keith K. Chau <keithc@unitechnetworks.com>

2.2.4 Caching proxy peer selection in heterogeneous networks

   Name
      Caching proxy peer selection in heterogeneous networks

   Classification
      Architecture

   Description
      ICP[4] based caching proxy peer selection in networks with large
      variance in latency and bandwidth between peers can lead to non-
      optimal peer selection.  For example take Proxy C with two
      siblings, Sib1 and Sib2, and the following network topology
      (summarized).

      *  Cache C's link to Sib1, 2 Mbit/sec with 300 msec latency

      *  Cache C's link to Sib2, 64 Kbit/sec with 10 msec latency.

      ICP[4] does not work well in this context.  If a user submits a
      request to Proxy C for page P that results in a miss, C will send
      an ICP request to Sib1 and Sib2.  Assume both siblings have the




Cooper & Dilley              Informational                     [Page 13]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


      requested object P.  The ICP_HIT reply will always come from Sib2
      before Sib1.  However, it is clear that the retrieval of large
      objects will be faster from Sib1, rather than Sib2.

      The problem is more complex because Sib1 and Sib2 can't have a
      100% hit ratio.  With a hit rate of 10%, it is more efficient to
      use Sib1 with resources larger than 48K.  The best choice depends
      on at least the hit rate and link characteristics; maybe other
      parameters as well.

   Significance
      Medium

   Implications
      By using the first peer to respond, peer selection algorithms are
      not optimizing retrieval latency to end users.  Furthermore they
      are causing more work for the high-latency peer since it must
      respond to such requests but will never be chosen to serve content
      if the lower latency peer has a copy.

   Indications
      Inherent in design of ICP v1, ICP v2, and any cache mesh protocol
      that selects peers based upon first response.

      This problem is not exhibited by cache digest or other protocols
      which (attempt to) maintain knowledge of peer contents and only
      hit peers that are believed to have a copy of the requested page.

   Solution(s)
      This problem is architectural with the peer selection protocols.

   Workaround
      Cache mesh design when using such a protocol should be done in
      such a way that there is not a high latency variance among peers.
      In the example presented in the above description the high latency
      high bandwidth peer could be used as a parent, but should not be
      used as a sibling.

   Contact
      Ivan Lovric <ivan.lovric@cnet.francetelecom.fr>
      John Dilley <jad@akamai.com>










Cooper & Dilley              Informational                     [Page 14]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


2.2.5 ICP Performance

   Name
      ICP performance

   Classification
      Architecture(ICP), Performance

   Description
      ICP[4] exhibits O(n^2) scaling properties, where n is the number
      of participating peer proxies.  This can lead ICP traffic to
      dominate HTTP traffic within a network.

   Significance
      Medium

   Implications
      If a proxy has many ICP peers the bandwidth demand of ICP can be
      excessive.  System managers must carefully regulate ICP peering.
      ICP also leads proxies to become homogeneous in what they serve;
      if your proxy does not have a document it is unlikely your peers
      will have it either.  Therefore, ICP traffic requests are largely
      unable to locate a local copy of an object (see [6]).

   Indications
      Inherent in design of ICP v1, ICP v2.

   Solution(s)
      This problem is architectural - protocol redesign or replacement
      is required to solve it if ICP is to continue to be used.

   Workaround
      Implementation workarounds exist, for example to turn off use of
      ICP, to carefully regulate peering, or to use another mechanism if
      available, such as cache digests.  A cache digest protocol shares
      a summary of cache contents using a Bloom Filter technique.  This
      allows a cache to estimate whether a peer has a document.  Filters
      are updated regularly but are not always up-to-date so cannot help
      when a spike in popularity occurs.  They also increase traffic but
      not as much as ICP.

      Proxy clustering protocols organize proxies into a mesh provide
      another alternative solution.  There is ongoing research on this
      topic.

   Contact
      John Dilley <jad@akamai.com>




Cooper & Dilley              Informational                     [Page 15]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


2.2.6 Caching proxy meshes can break HTTP serialization of content

   Name
      Caching proxy meshes can break HTTP serialization of content

   Classification
      Architecture (HTTP protocol)

   Description
      A caching proxy mesh where a request may travel different paths,
      depending on the state of the mesh and associated caches, can
      break HTTP content serialization, possibly causing the end user to
      receive older content than seen on an earlier request, where the
      request traversed another path in the mesh.

   Significance
      Medium

   Implications
      Can cause end user confusion.  May in some situations (sibling
      cache hit, object has changed state from cacheable to uncacheable)
      be close to impossible to get the caches properly updated with the
      new content.

   Indications
      Older content is unexpectedly returned from a caching proxy mesh
      after some time.

   Solutions(s)
      Work with caching proxy vendors and researchers to find a suitable
      protocol for maintaining proxy relations and object state in a
      mesh.

   Workaround
      When designing a hierarchy/mesh, make sure that for each end-
      user/URL combination there is only one single path in the mesh
      during normal operation.

   Contact
      Henrik Nordstrom <hno@hem.passagen.se>











Cooper & Dilley              Informational                     [Page 16]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


2.3 Known Implementation Problems

2.3.1 User agent/proxy failover

   Name
      User agent/proxy failover

   Classification
      Implementation

   Description
      Failover between proxies at the user agent (using a proxy.pac[8]
      file) is erratic and no standard behavior is defined.
      Additionally, behavior is hard-coded into the browser, so that
      proxy administrators cannot use failover at the user agent
      effectively.

   Significance
      Medium

   Implications
      Architects are forced to implement failover at the proxy itself,
      when it may be more appropriate and economical to do it within the
      user agent.

   Indications
      If a browser detects that its primary proxy is down, it will wait
      n minutes before trying the next one it is configured to use.  It
      will then wait y minutes before asking the user if they'd like to
      try the original proxy again.  This is very confusing for end
      users.

   Solution(s)
      Work with browser vendors to establish standard extensions to
      JavaScript proxy.pac libraries that will allow configuration of
      these timeouts.

   Workaround
      User education; redundancy at the proxy level.

   Contact
      Mark Nottingham <mnot@mnot.net>









Cooper & Dilley              Informational                     [Page 17]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


2.3.2 Some servers send bad Content-Length headers for files that
      contain CR

   Name
      Some servers send bad Content-Length headers for files that
      contain CR

   Classification
      Implementation

   Description
      Certain web servers send a Content-length value that is larger
      than number of bytes in the HTTP message body.  This happens when
      the server strips off CR characters from text files with lines
      terminated with CRLF as the file is written to the client.  The
      server probably uses the stat() system call to get the file size
      for the Content-Length header.  Servers that exhibit this behavior
      include the GN Web server (version 2.14 at least).

   Significance
      Low.  Surveys indicate only a small number of sites run faulty
      servers.

   Implications
      In this case, an HTTP client (e.g., user agent or proxy) may
      believe it received a partial response.  HTTP/1.1 [3] advises that
      caches MAY store partial responses.

   Indications
      Count the number of bytes in the message body and compare to the
      Content-length value.  If they differ the server exhibits this
      problem.

   Solutions
      Upgrade or replace the buggy server.

   Workaround
      Some browsers and proxies use one TCP connection per object and
      ignore the Content-Length.  The document end of file is identified
      by the close of the TCP socket.

   Contact
      Duane Wessels <wessels@measurement-factory.com>

3. Security Considerations

   This memo does not raise security considerations in itself.  See the
   individual submissions for details of security concerns and issues.



Cooper & Dilley              Informational                     [Page 18]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


References

   [1]  Paxson, V., Allman, M., Dawson, S., Fenner, W., Griner, J.,
        Heavens, I., Lahey, K., Semke, J. and B. Volz, "Known TCP
        Implementation Problems", RFC 2525, March 1999.

   [2]  Cooper, I., Melve, I. and G. Tomlinson, "Internet Web
        Replication and Caching Taxonomy", RFC 3040, January 2001.

   [3]  Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
        Leach, P. and T. Berners-Lee, "Hypertext Transfer Protocol --
        HTTP/1.1", RFC 2616, June 1999.

   [4]  Wessels, D. and K. Claffy, "Internet Cache Protocol (ICP),
        Version 2", RFC 2186, September 1997.

   [5]  Davison, B., "Web Traffic Logs: An Imperfect Resource for
        Evaluation", in Proceedings of the Ninth Annual Conference of
        the Internet Society (INET'99), July 1999.

   [6]  Melve, I., "Relation Analysis, Cache Meshes", in Proceedings of
        the 3rd International WWW Caching Workshop, June 1998,
        <http://wwwcache.ja.net/events/workshop/29/magicnumber.html>.

   [7]  Krishnamurthy, B. and M. Arlett, "PRO-COW: Protocol Compliance
        on the Web", AT&T Labs Technical Report #990803-05-TM, August
        1999, <http://www.research.att.com/~bala/papers/procow-1.ps.gz>.

   [8]  Netscape, Inc., "Navigator Proxy Auto-Config File Format", March
        1996,
        http://home.netscape.com/eng/mozilla/2.0/relnotes/demo/proxy-
        live.html

   [9]  Mogul, J., Krishnamurthy, B., Douglis, F., Feldmann, A., Goland,
        Y., van Hoff, A. and D. Hellerstein, "HTTP Delta in HTTP", Work
        in Progress.















Cooper & Dilley              Informational                     [Page 19]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


Authors' Addresses

   Ian Cooper
   Equinix, Inc.
   2450 Bayshore Parkway
   Mountain View, CA  94043
   USA

   Phone: +1 650 316 6065
   EMail: icooper@equinix.com


   John Dilley
   Akamai Technologies, Inc.
   1400 Fashion Island Blvd
   Suite 703
   San Mateo, CA  94404
   USA

   Phone: +1 650 627 5244
   EMail: jad@akamai.com






























Cooper & Dilley              Informational                     [Page 20]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


Appendix A.  Archived Known Problems

   The following sub-sections are an archive of problems identified in
   the initial production of this memo.  These are typically problems
   requiring further work/research, or user education.  They are
   included here for reference purposes only.

A.1 Architectural

A.1.1 Cannot specify multiple URIs for replicated resources

   Name
      Cannot specify multiple URIs for replicated resources

   Classification
      Architecture

   Description
      There is no way to specify that multiple URIs may be used for a
      single resource, one for each replica of the resource.  Similarly,
      there is no way to say that some set of proxies (each identified
      by a URI) may be used to resolve a URI.

   Significance
      Medium

   Implications
      Forces users to understand the replication model and mechanism.
      Makes it difficult to create a replication framework without
      protocol support for replication and naming.

   Indications
      Inherent in HTTP/1.0, HTTP/1.1.

   Solution(s)
      Architectural - protocol design is necessary.

   Workaround
      Replication mechanisms force users to locate a replica or mirror
      site for replicated content.

   Contact
      Daniel LaLiberte <liberte@w3.org>








Cooper & Dilley              Informational                     [Page 21]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


A.1.2 Replica distance is unknown

   Name
      Replica distance is unknown

   Classification
      Architecture

   Description
      There is no recommended way to find out which of several servers
      or proxies is closer either to the requesting client or to another
      machine, either geographically or in the network topology.

   Significance
      Medium

   Implications
      Clients must guess which replica is closer to them when requesting
      a copy of a document that may be served from multiple locations.
      Users must know the set of servers that can serve a particular
      object.  This in general is hard to determine and maintain.  Users
      must understand network topology in order to choose the closest
      copy.  Note that the closest copy is not always the one that will
      result in quickest service.  A nearby but heavily loaded server
      may be slower than a more distant but lightly loaded server.

   Indications
      Inherent in HTTP/1.0, HTTP/1.1.

   Solution(s)
      Architectural - protocol work is necessary.  This is a specific
      instance of a general problem in widely distributed systems.  A
      general solution is unlikely, however a specific solution in the
      web context is possible.

   Workaround
      Servers can (many do) provide location hints in a replica
      selection web page.  Users choose one based upon their location.
      Users can learn which replica server gives them best performance.
      Note that the closest replica geographically is not necessarily
      the closest in terms of network topology.  Expecting users to
      understand network topology is unreasonable.

   Contact
      Daniel LaLiberte <liberte@w3.org>






Cooper & Dilley              Informational                     [Page 22]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


A.1.3 Proxy resource location

   Name
      Proxy resource location

   Classification
      Architecture

   Description
      There is no way for a client or server (including another proxy)
      to inform a proxy of an alternate address (perhaps including the
      proxy to use to reach that address) to use to fetch a resource.
      If the client does not trust where the redirected resource came
      from, it may need to validate it or validate where it came from.

   Significance
      Medium

   Implications
      Proxies have no systematic way to locate resources within other
      proxies or origin servers.  This makes it more difficult to share
      information among proxies.  Information sharing would improve
      global efficiency.

   Indications
      Inherent in HTTP/1.0, HTTP/1.1.

   Solution(s)
      Architectural - protocol design is necessary.

   Workaround
      Certain proxies share location hints in the form of summary
      digests of their contents (e.g., Squid).  Certain proxy protocols
      enable a proxy query another for its contents (e.g., ICP).  (See
      however "ICP  Performance" issue (Section 2.2.5).)

   Contact
      Daniel LaLiberte <liberte@w3.org>

A.2 Implementation

A.2.1 Use of Cache-Control headers

   Name
      Use of Cache-Control headers

   Classification
      Implementation



Cooper & Dilley              Informational                     [Page 23]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


   Description
      Many (if not most) implementations incorrectly interpret Cache-
      Control response headers.

   Significance
      High

   Implications
      Cache-Control headers will be spurned by end users if there are
      conflicting or non-standard implementations.

   Indications
      -

   Solution(s)
      Work with vendors and others to assure proper application

   Workaround
      None.

   Contact
      Mark Nottingham <mnot@mnot.net>

A.2.2 Lack of HTTP/1.1 compliance for caching proxies

   Name
      Lack of HTTP/1.1 compliance for caching proxies

   Classification
      Implementation

   Description
      Although performance benchmarking of caches is starting to be
      explored, protocol compliance is just as important.

   Significance
      High

   Implications
      Caching proxy vendors implement their interpretation of the
      specification; because the specification is very large, sometimes
      vague and ambiguous, this can lead to inconsistent behavior
      between caching proxies.

      Caching proxies need to comply to the specification (or the
      specification needs to change).





Cooper & Dilley              Informational                     [Page 24]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


   Indications
      There is no currently known compliance test being used.

      There is work underway to quantify how closely servers comply with
      the current specification.  A joint technical report between AT&T
      and HP Labs [7] describes the compliance testing.  This report
      examines how well each of a set of top traffic-producing sites
      support certain HTTP/1.1 features.

      The Measurement Factory (formerly IRCache) is working to develop
      protocol compliance testing software.  Running such a conformance
      test suite against caching proxy products would measure compliance
      and ultimately would help assure they comply to the specification.

   Solution(s)
      Testing should commence and be reported in an open industry forum.
      Proxy implementations should conform to the specification.

   Workaround
      There is no workaround for non-compliance.

   Contact
      Mark Nottingham <mnot@mnot.net>
      Duane Wessels <wessels@measurement-factory.com>

A.2.3 ETag support

   Name
      ETag support

   Classification
      Implementation

   Description
      Available caching proxies appear not to support ETag (strong)
      validation.

   Significance
      Medium

   Implications
      Last-Modified/If-Modified-Since validation is inappropriate for
      many requirements, both because of its weakness and its use of
      dates.  Lack of a usable, strong coherency protocol leads
      developers and end users not to trust caches.

   Indications
      -



Cooper & Dilley              Informational                     [Page 25]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


   Solution(s)
      Work with vendors to implement ETags; work for better validation
      protocols.

   Workaround
      Use Last-Modified/If-Modified-Since validation.

   Contact
      Mark Nottingham <mnot@mnot.net>

A.2.4 Servers and content should be optimized for caching

   Name
      Servers and content should be optimized for caching

   Classification
      Implementation (Performance)

   Description
      Many web servers and much web content could be implemented to be
      more conducive to caching, reducing bandwidth demand and page load
      delay.

   Significance
      Medium

   Implications
      By making poor use of caches, origin servers encourage longer load
      times, greater load on caching proxies, and increased network
      demand.

   Indications
      The problem is most apparent for pages that have low or zero
      expires time, yet do not change.

   Solution(s)
      -

   Workaround
      Servers could start using unique object identifiers for write-only
      content: if an object changes it gets a new name, otherwise it is
      considered to be immutable and therefore have an infinite expire
      age.  Certain hosting providers do this already.

   Contact
      Peter Danzig





Cooper & Dilley              Informational                     [Page 26]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


A.3 Administration

A.3.1 Lack of fine-grained, standardized hierarchy controls

   Name
      Lack of fine-grained, standardized hierarchy controls

   Classification
      Administration

   Description
      There is no standard for instructing a proxy as to how it should
      resolve the parent to fetch a given object from.  Implementations
      therefore vary greatly, and it can be difficult to make them
      interoperate correctly in a complex environment.

   Significance
      Medium

   Implications
      Complications in deployment of caches in a complex network
      (especially corporate networks)

   Indications
      Inability of some proxies to be configured to direct traffic based
      on domain name, reverse lookup IP address, raw IP address, in
      normal operation and in failover mode.  Inability in some proxies
      to set a preferred parent / backup parent configuration.

   Solution(s)
      -

   Workaround
      Work with vendors to establish an acceptable configuration within
      the limits of their product; standardize on one product.

   Contact
      Mark Nottingham <mnot@mnot.net>

A.3.2 Proxy/Server exhaustive log format standard for analysis

   Name
      Proxy/Server exhaustive log format standard for analysis

   Classification
      Administration





Cooper & Dilley              Informational                     [Page 27]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


   Description
      Most proxy or origin server logs used for characterization or
      evaluation do not provide sufficient detail to determine
      cacheability of responses.

   Significance
      Low (for operationality; high significance for research efforts)

   Implications
      Characterizations and simulations are based on non-representative
      workloads.

   See Also
      W3C Web Characterization Activity, since they are also concerned
      with collecting high quality logs and building characterizations
      from them.

   Indications
      -

   Solution(s)
      To properly clean and to accurately determine cacheability of
      responses, a complete log is required (including all request
      headers as well as all response headers such as "User-agent" [for
      removal of spiders] and "Expires", "max-age", "Set-cookie", "no-
      cache", etc.)

   Workaround
      -

   References
      See "Web Traffic Logs: An Imperfect Resource for Evaluation"[5]
      for some discussion of this.

   Contact
      Brian D. Davison <davison@acm.org>
      Terence Kelly <tpkelly@eecs.umich.edu>

A.3.3 Trace log timestamps

   Name
      Trace log timestamps

   Classification
      Administration






Cooper & Dilley              Informational                     [Page 28]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


   Description
      Some proxies/servers log requests without sufficient timing
      detail.  Millisecond resolution is often too small to preserve
      request ordering and either the servers should record request
      reception time in addition to completion time, or elapsed time
      plus either one.

   Significance
      Low (for operationality; medium significance for research efforts)

   Implications
      Characterization and simulation fidelity is improved with accurate
      timing and ordering information.  Since logs are generally written
      in order of request completion, these logs cannot be re-played
      without knowing request generation times and reordering
      accordingly.

   See Also
      -

   Indications
      Timestamps can be identical for multiple entries (when only
      millisecond resolution is used).  Request orderings can be jumbled
      when clients open additional connections for embedded objects
      while still receiving the container object.

   Solution(s)
      Since request completion time is common (e.g., Squid), recommend
      continuing to use it (with microsecond resolution if possible)
      plus recording elapsed time since request reception.

   Workaround
      -

   References
      See "Web Traffic Logs: An Imperfect Resource for Evaluation"[5]
      for some discussion of this.

   Contact
      Brian D. Davison <davison@acm.org>

A.3.4 Exchange format for log summaries

   Name
      Exchange format for log summaries

   Classification
      Administration/Analysis?



Cooper & Dilley              Informational                     [Page 29]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


   Description
      Although we have (more or less) a standard log file format for
      proxies (plain vanilla Common Logfile and Squid), there isn't a
      commonly accepted format for summaries of those log files.
      Summaries could be generated by the cache itself, or by post-
      processing existing log file formats such as Squid's.

   Significance
      High, since it means that each log file summarizing/analysis tool
      is essentially reinventing the wheel (un-necessary repetition of
      code), and the cost of processing a large number of large log
      files through a variety of analysis tools is (again for no good
      reason) excessive.

   Implications
      In order to perform a meaningful analysis (e.g., to measure
      performance in relation to loading/configuration over time) the
      access logs from multiple busy caches, it's often necessary to run
      first one tool then another, each against the entire log file (or
      a significantly large subset of the log).  With log files running
      into hundreds of MB even after compression (for a cache dealing
      with millions of transactions per day) this is a non-trivial task.

   See Also
      IP packet/header sniffing - it may be that individual transactions
      are at a level of granularity which simply isn't sensible to be
      attempting on extremely busy caches.  There may also be legal
      implications in some countries, e.g., if this analysis identifies
      individuals.

   Indications
      Disks/memory full(!) Stats (using multiple programs) take too long
      to run.  Stats crunching must be distributed out to multiple
      machines because of its high computational cost.

   Solution(s)
      Have the proxy produce a standardized summary of its activity
      either automatically or via an external (e.g., third party) tool,
      in a commonly agreed format.  The format could be something like
      XML or the Extended Common Logfile, but the format and contents
      are subjects for discussion.  Ideally this approach would permit
      individual cache server products to supply subsets of the possible
      summary info, since it may not be feasible for all servers to
      provide all of the information which people would like to see.







Cooper & Dilley              Informational                     [Page 30]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


   Workaround
      Devise a private summary format for your own personal use - but
      this complicates or even precludes the exchange of summary info
      with other interested parties.

   References
      See the web pages for the commonly used cache stats analysis
      programs, e.g., Calamaris, squidtimes, squidclients, etc.

   Contact
      Martin Hamilton <martin@wwwcache.ja.net>








































Cooper & Dilley              Informational                     [Page 31]
^L
RFC 3143           Known HTTP Proxy/Caching Problems           June 2001


Full Copyright Statement

   Copyright (C) The Internet Society (2001).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.



















Cooper & Dilley              Informational                     [Page 32]
^L