1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
|
Network Working Group A. Bierman
Request for Comments: 3434 K. McCloghrie
Category:Standards Track Cisco Systems, Inc.
December 2002
Remote Monitoring MIB Extensions for
High Capacity Alarms
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2002). All Rights Reserved.
Abstract
This memo defines a portion of the Management Information Base (MIB)
for use with network management protocols in the Internet community.
In particular, it describes managed objects for extending the alarm
thresholding capabilities found in the Remote Monitoring (RMON) MIB
(RFC 2819), to provide similar threshold monitoring of objects based
on the Counter64 data type.
Table of Contents
1 The Internet-Standard Management Framework ................... 2
2 Terms ........................................................ 2
3 Overview ..................................................... 2
3.1 Relationship to the Remote Monitoring MIBs ............... 3
4 MIB Structure ................................................ 4
4.1 MIB Group Overview ....................................... 4
4.1.1 High Capacity Alarm Control Group .................. 5
4.1.2 High Capacity Alarm Capabilities ................... 6
4.1.3 High Capacity Alarm Notifications .................. 6
5 Definitions .................................................. 6
6 Intellectual Property ........................................ 21
7 Acknowledgements ............................................. 21
8 Normative References ......................................... 21
9 Informative References ....................................... 22
Bierman & McCloghrie Standards Track [Page 1]
^L
RFC 3434 High Capacity Alarm MIB December 2002
10 Security Considerations ..................................... 22
11 Authors' Addresses .......................................... 23
12 Full Copyright Statement .................................... 24
1. The Internet-Standard Management Framework
For a detailed overview of the documents that describe the current
Internet-Standard Management Framework, please refer to section 7 of
RFC 3410 [RFC3410].
Managed objects are accessed via a virtual information store, termed
the Management Information Base or MIB. MIB objects are generally
accessed through the Simple Network Management Protocol (SNMP).
Objects in the MIB are defined using the mechanisms defined in the
Structure of Management Information (SMI). This memo specifies a MIB
module that is compliant to the SMIv2, which is described in STD 58,
RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580
[RFC2580].
2. Terms
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in BCP 14, RFC 2119.
[RFC2119]
3. Overview
There is a need for a standardized way of providing the same type of
alarm thresholding capabilities for Counter64 objects, as already
exists for Counter32 objects. The RMON-1 alarmTable objects and
RMON-1 notification types are specific to 32-bit objects, and cannot
be used to properly monitor Counter64-based objects. Extensions to
these existing constructs which explicitly support Counter64-based
objects are needed. These extensions are completely independent of
the existing RMON-1 alarm mechanisms.
The usage of Counter64 objects is increasing. One of the causes for
this increase is the increasing speeds of network interfaces; RFC
2863 [RFC2863] says:
As the speed of network media increase, the minimum time in which
a 32 bit counter will wrap decreases. For example, a 10Mbs stream
of back-to-back, full-size packets causes ifInOctets to wrap in
just over 57 minutes; at 100Mbs, the minimum wrap time is 5.7
minutes, and at 1Gbs, the minimum is 34 seconds. Requiring that
interfaces be polled frequently enough not to miss a counter wrap
is increasingly problematic.
Bierman & McCloghrie Standards Track [Page 2]
^L
RFC 3434 High Capacity Alarm MIB December 2002
and therefore requires:
For interfaces that operate at 20,000,000 (20 million) bits per
second or less, 32-bit byte and packet counters MUST be supported.
For interfaces that operate faster than 20,000,000 bits/second,
and slower than 650,000,000 bits/second, 32-bit packet counters
MUST be supported and 64-bit octet counters MUST be supported.
For interfaces that operate at 650,000,000 bits/second or faster,
64-bit packet counters AND 64-bit octet counters MUST be
supported.
Of the variables on which thresholds are set using RMON-1's
alarmTable, two of the most popular are: ifInOctets and ifOutOctets.
Thus, the increasing usage of the 64-bit versions: ifHCInOctets and
ifHCOutOctets means that there is an increasing requirement to use
RMON-1's thresholding capability for ifHCInOctets and ifHCOutOctets.
The RMON-1 Alarm Group is implemented not only by all RMON probes,
but also by the SNMP agents in many other types of devices for the
purpose of monitoring any of their (non-RMON) integer-valued MIB
objects. The fact that it has been so widely implemented indicates
its obvious value. Without this extension, that obvious value is
becoming incomplete because of its lack of support for 64-bit
integers. This extension is the easiest, simplest, and most
compatible way for an implementation to overcome that lack of
support.
3.1. Relationship to the Remote Monitoring MIBs
This MIB is intended to be implemented in Remote Monitoring (RMON)
probes, which may also support the RMON-1 MIB [RFC2819]. Such probes
may be stand-alone devices, or may be co-located with other
networking devices (e.g., ethernet switches and repeaters).
The functionality of the High Capacity Alarm Group is a superset of
RMON-1's Alarm Group. Thus, one day in the distant future, it is a
possibility that RMON-1's Alarm Group will be deprecated in favor of
this MIB's High Capacity Alarm Group. However, that day will not
come before this document, or one of its successors, reaches the same
standardization state as RMON-1.
Bierman & McCloghrie Standards Track [Page 3]
^L
RFC 3434 High Capacity Alarm MIB December 2002
4. MIB Structure
Figure 1: HC-ALARM MIB Functional Structure
+---------------------------------------------+
| |
| (RMON-1) (HC-ALARM) |
| +-----------+ +-----------+ |
| | | | | |
| | alarm | | hcAlarm | |
| | Table | | Table | |
| | | | | |
| +-----------+ +-----------+ |
| | | |
| V (RMON-1) V |
| +----------------------------------+ |
| | | |
| | eventTable | |
| | | |
| +----------------------------------+ |
| | | |
| | | |
| V V |
| +---------------+ +----------------+ |
| | risingAlarm | | hcRisingAlarm | |
| | fallingAlarm | | hcFallingAlarm | |
| | Notifications | | Notifications | |
| +---------------+ +----------------+ |
| (RMON-1) (HC-ALARM) |
+---------------------------------------------+
4.1. MIB Group Overview
The HC-ALARM MIB contains three MIB groups:
- hcAlarmControlObjects group
Controls the configuration of alarms for high capacity MIB
object instances.
- hcAlarmCapabilities group
Describes the high capacity alarm capabilities provided by the
agent.
- hcAlarmNotifications group
Provide new rising and falling threshold notifications for high
capacity objects.
Bierman & McCloghrie Standards Track [Page 4]
^L
RFC 3434 High Capacity Alarm MIB December 2002
4.1.1. High Capacity Alarm Control Group
This group contains one table, which is used by a management station
to configure high capacity alarm entries. To configure alarm
thresholding for Counter64 or CounterBasedGauge64 objects, a
management application must configure the hcAlarmTable in a manner
similar to how RMON-1's alarmTable is configured.
Because the language in some of the DESCRIPTION clauses of objects in
the alarmTable is specific to the alarmTable itself, their defined
semantics do not allow them to be used for this MIB also. Therefore,
the following objects are essentially cloned from the alarmTable to
the hcAlarmTable:
alarmTable hcAlarmTable
---------- ------------
alarmIndex hcAlarmIndex
alarmInterval hcAlarmInterval
alarmVariable hcAlarmVariable
alarmSampleType hcAlarmSampleType
alarmStartupAlarm hcAlarmStartupAlarm
alarmRisingEventIndex hcAlarmRisingEventIndex
alarmFallingEventIndex hcAlarmFallingEventIndex
alarmOwner hcAlarmOwner
alarmStatus hcAlarmStatus
In addition, the following hcAlarmTable objects are used as high
capacity values instead of the corresponding 32-bit version in the
alarmTable.
alarmTable hcAlarmTable
---------- ------------
alarmValue hcAlarmAbsValue
hcAlarmValueStatus
alarmRisingThreshold hcAlarmRisingThreshAbsValueLo
hcAlarmRisingThreshAbsValueHi
hcAlarmRisingThresholdValStatus
alarmFallingThreshold hcAlarmFallingThreshAbsValueLo
hcAlarmFallingThreshAbsValueHi
hcAlarmFallingThresholdValStatus
Nevertheless, the hcAlarmTable does have a few differences from the
alarmTable:
- Counter64 based objects are thresholded properly
- an entry is not destroyed if the instance identified by the
hcAlarmVariable is not available during a polling interval.
Bierman & McCloghrie Standards Track [Page 5]
^L
RFC 3434 High Capacity Alarm MIB December 2002
- the RowStatus textual convention is used instead of EntryStatus
for the hcAlarmStatus object.
- the non-volatile storage of an HC alarm entry is explicitly
controlled with a StorageType parameter.
- a counter is provided to indicate the number of times the
hcAlarmVariable object value could not be retrieved by the
agent.
4.1.2. High Capacity Alarm Capabilities
This group contains a single scalar object, called
hcAlarmCapabilities. It describes the basic high capacity alarm
features supported by the agent.
4.1.3. High Capacity Alarm Notifications
This group contains two notifications, hcRisingAlarm and
hcFallingAlarm. These are generated for high capacity alarms in the
same manner and used to convey essentially the same information as
RMON-1's risingAlarm and fallingAlarm notifications do for
alarmTable-specified alarms.
5. Definitions
HC-ALARM-MIB DEFINITIONS ::= BEGIN
IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
Integer32, Counter32, Unsigned32
FROM SNMPv2-SMI
MODULE-COMPLIANCE, OBJECT-GROUP,
NOTIFICATION-GROUP
FROM SNMPv2-CONF
RowStatus, VariablePointer, StorageType,
TEXTUAL-CONVENTION
FROM SNMPv2-TC
CounterBasedGauge64
FROM HCNUM-TC
rmon, OwnerString, rmonEventGroup
FROM RMON-MIB;
hcAlarmMIB MODULE-IDENTITY
LAST-UPDATED "200212160000Z"
ORGANIZATION "IETF RMONMIB Working Group"
CONTACT-INFO
" Andy Bierman
Cisco Systems, Inc.
Tel: +1 408 527-3711
Bierman & McCloghrie Standards Track [Page 6]
^L
RFC 3434 High Capacity Alarm MIB December 2002
E-mail: abierman@cisco.com
Postal: 170 West Tasman Drive
San Jose, CA USA 95134
Keith McCloghrie
Cisco Systems, Inc.
Tel: +1 408 526-5260
E-mail: kzm@cisco.com
Postal: 170 West Tasman Drive
San Jose, CA USA 95134
Send comments to <rmonmib@ietf.org>
Mailing list subscription info:
http://www.ietf.org/mailman/listinfo/rmonmib "
DESCRIPTION
"This module defines Remote Monitoring MIB extensions for
High Capacity Alarms.
Copyright (C) The Internet Society (2002). This version
of this MIB module is part of RFC 3434; see the RFC
itself for full legal notices."
REVISION "200212160000Z"
DESCRIPTION
"Initial version of the High Capacity Alarm MIB module.
This version published as RFC 3434."
::= { rmon 29 }
hcAlarmObjects OBJECT IDENTIFIER ::= { hcAlarmMIB 1 }
hcAlarmNotifications OBJECT IDENTIFIER ::= { hcAlarmMIB 2 }
hcAlarmConformance OBJECT IDENTIFIER ::= { hcAlarmMIB 3 }
hcAlarmControlObjects OBJECT IDENTIFIER ::= { hcAlarmObjects 1 }
hcAlarmCapabilitiesObjects OBJECT IDENTIFIER
::= { hcAlarmObjects 2 }
--
-- Textual Conventions
--
HcValueStatus ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"This data type indicates the validity and sign of the data
in associated object instances which represent the absolute
value of a high capacity numeric quantity. Such an object
may be represented with one or more object instances. An
object of type HcValueStatus MUST be defined within the same
Bierman & McCloghrie Standards Track [Page 7]
^L
RFC 3434 High Capacity Alarm MIB December 2002
structure as the object(s) representing the high capacity
absolute value.
If the associated object instance(s) representing the high
capacity absolute value could not be accessed during the
sampling interval, and is therefore invalid, then the
associated HcValueStatus object will contain the value
'valueNotAvailable(1)'.
If the associated object instance(s) representing the high
capacity absolute value are valid and actual value of the
sample is greater than or equal to zero, then the associated
HcValueStatus object will contain the value
'valuePositive(2)'.
If the associated object instance(s) representing the high
capacity absolute value are valid and the actual value of
the sample is less than zero, then the associated
HcValueStatus object will contain the value
'valueNegative(3)'. The associated absolute value should be
multiplied by -1 to obtain the true sample value."
SYNTAX INTEGER {
valueNotAvailable(1),
valuePositive(2),
valueNegative(3)
}
--
-- High Capacity Alarm Table
--
hcAlarmTable OBJECT-TYPE
SYNTAX SEQUENCE OF HcAlarmEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A list of entries for the configuration of high capacity
alarms."
::= { hcAlarmControlObjects 1 }
hcAlarmEntry OBJECT-TYPE
SYNTAX HcAlarmEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A conceptual row in the hcAlarmTable. Entries are usually
created in this table by management application action, but
may also be created by agent action as well."
Bierman & McCloghrie Standards Track [Page 8]
^L
RFC 3434 High Capacity Alarm MIB December 2002
INDEX { hcAlarmIndex }
::= { hcAlarmTable 1 }
HcAlarmEntry ::= SEQUENCE {
hcAlarmIndex Integer32,
hcAlarmInterval Integer32,
hcAlarmVariable VariablePointer,
hcAlarmSampleType INTEGER,
hcAlarmAbsValue CounterBasedGauge64,
hcAlarmValueStatus HcValueStatus,
hcAlarmStartupAlarm INTEGER,
hcAlarmRisingThreshAbsValueLo Unsigned32,
hcAlarmRisingThreshAbsValueHi Unsigned32,
hcAlarmRisingThresholdValStatus HcValueStatus,
hcAlarmFallingThreshAbsValueLo Unsigned32,
hcAlarmFallingThreshAbsValueHi Unsigned32,
hcAlarmFallingThresholdValStatus HcValueStatus,
hcAlarmRisingEventIndex Integer32,
hcAlarmFallingEventIndex Integer32,
hcAlarmValueFailedAttempts Counter32,
hcAlarmOwner OwnerString,
hcAlarmStorageType StorageType,
hcAlarmStatus RowStatus }
hcAlarmIndex OBJECT-TYPE
SYNTAX Integer32 (1..65535)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An arbitrary integer index value used to uniquely identify
this high capacity alarm entry."
::= { hcAlarmEntry 1 }
hcAlarmInterval OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
UNITS "seconds"
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The interval in seconds over which the data is sampled and
compared with the rising and falling thresholds. When
setting this variable, care should be taken in the case of
deltaValue sampling - the interval should be set short
enough that the sampled variable is very unlikely to
increase or decrease by more than 2^63 - 1 during a single
sampling interval.
Bierman & McCloghrie Standards Track [Page 9]
^L
RFC 3434 High Capacity Alarm MIB December 2002
This object may not be modified if the associated
hcAlarmStatus object is equal to active(1)."
::= { hcAlarmEntry 2 }
hcAlarmVariable OBJECT-TYPE
SYNTAX VariablePointer
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The object identifier of the particular variable to be
sampled. Only variables that resolve to an ASN.1 primitive
type of INTEGER (INTEGER, Integer32, Counter32, Counter64,
Gauge, or TimeTicks) may be sampled.
Because SNMP access control is articulated entirely in terms
of the contents of MIB views, no access control mechanism
exists that can restrict the value of this object to
identify only those objects that exist in a particular MIB
view. Because there is thus no acceptable means of
restricting the read access that could be obtained through
the alarm mechanism, the probe must only grant write access
to this object in those views that have read access to all
objects on the probe.
This object may not be modified if the associated
hcAlarmStatus object is equal to active(1)."
::= { hcAlarmEntry 3 }
hcAlarmSampleType OBJECT-TYPE
SYNTAX INTEGER {
absoluteValue(1),
deltaValue(2)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The method of sampling the selected variable and
calculating the value to be compared against the thresholds.
If the value of this object is absoluteValue(1), the value
of the selected variable will be compared directly with the
thresholds at the end of the sampling interval. If the
value of this object is deltaValue(2), the value of the
selected variable at the last sample will be subtracted from
the current value, and the difference compared with the
thresholds.
If the associated hcAlarmVariable instance could not be
obtained at the previous sample interval, then a delta
Bierman & McCloghrie Standards Track [Page 10]
^L
RFC 3434 High Capacity Alarm MIB December 2002
sample is not possible, and the value of the associated
hcAlarmValueStatus object for this interval will be
valueNotAvailable(1).
This object may not be modified if the associated
hcAlarmStatus object is equal to active(1)."
::= { hcAlarmEntry 4 }
hcAlarmAbsValue OBJECT-TYPE
SYNTAX CounterBasedGauge64
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The absolute value (i.e., unsigned value) of the
hcAlarmVariable statistic during the last sampling period.
The value during the current sampling period is not made
available until the period is completed.
To obtain the true value for this sampling interval, the
associated instance of hcAlarmValueStatus must be checked,
and the value of this object adjusted as necessary.
If the MIB instance could not be accessed during the
sampling interval, then this object will have a value of
zero and the associated instance of hcAlarmValueStatus will
be set to 'valueNotAvailable(1)'."
::= { hcAlarmEntry 5 }
hcAlarmValueStatus OBJECT-TYPE
SYNTAX HcValueStatus
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates the validity and sign of the data for
the hcAlarmAbsValue object, as described in the
HcValueStatus textual convention."
::= { hcAlarmEntry 6 }
hcAlarmStartupAlarm OBJECT-TYPE
SYNTAX INTEGER {
risingAlarm(1),
fallingAlarm(2),
risingOrFallingAlarm(3)
}
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The alarm that may be sent when this entry is first set to
Bierman & McCloghrie Standards Track [Page 11]
^L
RFC 3434 High Capacity Alarm MIB December 2002
active. If the first sample after this entry becomes active
is greater than or equal to the rising threshold and this
object is equal to risingAlarm(1) or
risingOrFallingAlarm(3), then a single rising alarm will be
generated. If the first sample after this entry becomes
valid is less than or equal to the falling threshold and
this object is equal to fallingAlarm(2) or
risingOrFallingAlarm(3), then a single falling alarm will be
generated.
This object may not be modified if the associated
hcAlarmStatus object is equal to active(1)."
::= { hcAlarmEntry 7 }
hcAlarmRisingThreshAbsValueLo OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The lower 32 bits of the absolute value for threshold for
the sampled statistic. The actual threshold value is
determined by the associated instances of the
hcAlarmRisingThreshAbsValueHi and
hcAlarmRisingThresholdValStatus objects, as follows:
ABS(threshold) = hcAlarmRisingThreshAbsValueLo +
(hcAlarmRisingThreshAbsValueHi * 2^^32)
The absolute value of the threshold is adjusted as required,
as described in the HcValueStatus textual convention. These
three object instances are conceptually combined to
represent the rising threshold for this entry.
When the current sampled value is greater than or equal to
this threshold, and the value at the last sampling interval
was less than this threshold, a single event will be
generated. A single event will also be generated if the
first sample after this entry becomes valid is greater than
or equal to this threshold and the associated
hcAlarmStartupAlarm is equal to risingAlarm(1) or
risingOrFallingAlarm(3).
After a rising event is generated, another such event will
not be generated until the sampled value falls below this
threshold and reaches the threshold identified by the
hcAlarmFallingThreshAbsValueLo,
hcAlarmFallingThreshAbsValueHi, and
hcAlarmFallingThresholdValStatus objects.
Bierman & McCloghrie Standards Track [Page 12]
^L
RFC 3434 High Capacity Alarm MIB December 2002
This object may not be modified if the associated
hcAlarmStatus object is equal to active(1)."
::= { hcAlarmEntry 8 }
hcAlarmRisingThreshAbsValueHi OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The upper 32 bits of the absolute value for threshold for
the sampled statistic. The actual threshold value is
determined by the associated instances of the
hcAlarmRisingThreshAbsValueLo and
hcAlarmRisingThresholdValStatus objects, as follows:
ABS(threshold) = hcAlarmRisingThreshAbsValueLo +
(hcAlarmRisingThreshAbsValueHi * 2^^32)
The absolute value of the threshold is adjusted as required,
as described in the HcValueStatus textual convention. These
three object instances are conceptually combined to
represent the rising threshold for this entry.
When the current sampled value is greater than or equal to
this threshold, and the value at the last sampling interval
was less than this threshold, a single event will be
generated. A single event will also be generated if the
first sample after this entry becomes valid is greater than
or equal to this threshold and the associated
hcAlarmStartupAlarm is equal to risingAlarm(1) or
risingOrFallingAlarm(3).
After a rising event is generated, another such event will
not be generated until the sampled value falls below this
threshold and reaches the threshold identified by the
hcAlarmFallingThreshAbsValueLo,
hcAlarmFallingThreshAbsValueHi, and
hcAlarmFallingThresholdValStatus objects.
This object may not be modified if the associated
hcAlarmStatus object is equal to active(1)."
::= { hcAlarmEntry 9 }
hcAlarmRisingThresholdValStatus OBJECT-TYPE
SYNTAX HcValueStatus
MAX-ACCESS read-create
STATUS current
Bierman & McCloghrie Standards Track [Page 13]
^L
RFC 3434 High Capacity Alarm MIB December 2002
DESCRIPTION
"This object indicates the sign of the data for the rising
threshold, as defined by the hcAlarmRisingThresAbsValueLo
and hcAlarmRisingThresAbsValueHi objects, as described in
the HcValueStatus textual convention.
The enumeration 'valueNotAvailable(1)' is not allowed, and
the associated hcAlarmStatus object cannot be equal to
'active(1)' if this object is set to this value.
This object may not be modified if the associated
hcAlarmStatus object is equal to active(1)."
::= { hcAlarmEntry 10 }
hcAlarmFallingThreshAbsValueLo OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The lower 32 bits of the absolute value for threshold for
the sampled statistic. The actual threshold value is
determined by the associated instances of the
hcAlarmFallingThreshAbsValueHi and
hcAlarmFallingThresholdValStatus objects, as follows:
ABS(threshold) = hcAlarmFallingThreshAbsValueLo +
(hcAlarmFallingThreshAbsValueHi * 2^^32)
The absolute value of the threshold is adjusted as required,
as described in the HcValueStatus textual convention. These
three object instances are conceptually combined to
represent the falling threshold for this entry.
When the current sampled value is less than or equal to this
threshold, and the value at the last sampling interval was
greater than this threshold, a single event will be
generated. A single event will also be generated if the
first sample after this entry becomes valid is less than or
equal to this threshold and the associated
hcAlarmStartupAlarm is equal to fallingAlarm(2) or
risingOrFallingAlarm(3).
After a falling event is generated, another such event will
not be generated until the sampled value rises above this
threshold and reaches the threshold identified by the
hcAlarmRisingThreshAbsValueLo,
hcAlarmRisingThreshAbsValueHi, and
hcAlarmRisingThresholdValStatus objects.
Bierman & McCloghrie Standards Track [Page 14]
^L
RFC 3434 High Capacity Alarm MIB December 2002
This object may not be modified if the associated
hcAlarmStatus object is equal to active(1)."
::= { hcAlarmEntry 11 }
hcAlarmFallingThreshAbsValueHi OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The upper 32 bits of the absolute value for threshold for
the sampled statistic. The actual threshold value is
determined by the associated instances of the
hcAlarmFallingThreshAbsValueLo and
hcAlarmFallingThresholdValStatus objects, as follows:
ABS(threshold) = hcAlarmFallingThreshAbsValueLo +
(hcAlarmFallingThreshAbsValueHi * 2^^32)
The absolute value of the threshold is adjusted as required,
as described in the HcValueStatus textual convention. These
three object instances are conceptually combined to
represent the falling threshold for this entry.
When the current sampled value is less than or equal to this
threshold, and the value at the last sampling interval was
greater than this threshold, a single event will be
generated. A single event will also be generated if the
first sample after this entry becomes valid is less than or
equal to this threshold and the associated
hcAlarmStartupAlarm is equal to fallingAlarm(2) or
risingOrFallingAlarm(3).
After a falling event is generated, another such event will
not be generated until the sampled value rises above this
threshold and reaches the threshold identified by the
hcAlarmRisingThreshAbsValueLo,
hcAlarmRisingThreshAbsValueHi, and
hcAlarmRisingThresholdValStatus objects.
This object may not be modified if the associated
hcAlarmStatus object is equal to active(1)."
::= { hcAlarmEntry 12 }
hcAlarmFallingThresholdValStatus OBJECT-TYPE
SYNTAX HcValueStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
Bierman & McCloghrie Standards Track [Page 15]
^L
RFC 3434 High Capacity Alarm MIB December 2002
"This object indicates the sign of the data for the falling
threshold, as defined by the hcAlarmFallingThreshAbsValueLo
and hcAlarmFallingThreshAbsValueHi objects, as described in
the HcValueStatus textual convention.
The enumeration 'valueNotAvailable(1)' is not allowed, and
the associated hcAlarmStatus object cannot be equal to
'active(1)' if this object is set to this value.
This object may not be modified if the associated
hcAlarmStatus object is equal to active(1)."
::= { hcAlarmEntry 13 }
hcAlarmRisingEventIndex OBJECT-TYPE
SYNTAX Integer32 (0..65535)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The index of the eventEntry that is used when a rising
threshold is crossed. The eventEntry identified by a
particular value of this index is the same as identified by
the same value of the eventIndex object. If there is no
corresponding entry in the eventTable, then no association
exists. In particular, if this value is zero, no associated
event will be generated, as zero is not a valid event index.
This object may not be modified if the associated
hcAlarmStatus object is equal to active(1)."
::= { hcAlarmEntry 14 }
hcAlarmFallingEventIndex OBJECT-TYPE
SYNTAX Integer32 (0..65535)
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The index of the eventEntry that is used when a falling
threshold is crossed. The eventEntry identified by a
particular value of this index is the same as identified by
the same value of the eventIndex object. If there is no
corresponding entry in the eventTable, then no association
exists. In particular, if this value is zero, no associated
event will be generated, as zero is not a valid event index.
This object may not be modified if the associated
hcAlarmStatus object is equal to active(1)."
::= { hcAlarmEntry 15 }
hcAlarmValueFailedAttempts OBJECT-TYPE
Bierman & McCloghrie Standards Track [Page 16]
^L
RFC 3434 High Capacity Alarm MIB December 2002
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of times the associated hcAlarmVariable instance
was polled on behalf of this hcAlarmEntry, (while in the
active state) and the value was not available. This counter
may experience a discontinuity if the agent restarts,
indicated by the value of sysUpTime."
::= { hcAlarmEntry 16 }
hcAlarmOwner OBJECT-TYPE
SYNTAX OwnerString
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The entity that configured this entry and is therefore
using the resources assigned to it."
::= { hcAlarmEntry 17 }
hcAlarmStorageType OBJECT-TYPE
SYNTAX StorageType
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The type of non-volatile storage configured for this entry.
If this object is equal to 'permanent(4)', then the
associated hcAlarmRisingEventIndex and
hcAlarmFallingEventIndex objects must be writable."
::= { hcAlarmEntry 18 }
hcAlarmStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION
"The status of this row.
An entry MUST NOT exist in the active state unless all
objects in the entry have an appropriate value, as described
in the description clause for each writable object.
The hcAlarmStatus object may be modified if the associated
instance of this object is equal to active(1),
notInService(2), or notReady(3). All other writable objects
may be modified if the associated instance of this object is
equal to notInService(2) or notReady(3)."
::= { hcAlarmEntry 19 }
Bierman & McCloghrie Standards Track [Page 17]
^L
RFC 3434 High Capacity Alarm MIB December 2002
--
-- Capabilities
--
hcAlarmCapabilities OBJECT-TYPE
SYNTAX BITS {
hcAlarmCreation(0),
hcAlarmNvStorage(1)
}
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"An indication of the high capacity alarm capabilities
supported by this agent.
If the 'hcAlarmCreation' BIT is set, then this agent allows
NMS applications to create entries in the hcAlarmTable.
If the 'hcAlarmNvStorage' BIT is set, then this agent allows
entries in the hcAlarmTable which will be recreated after a
system restart, as controlled by the hcAlarmStorageType
object."
::= { hcAlarmCapabilitiesObjects 1 }
--
-- Notifications
--
hcAlarmNotifPrefix OBJECT IDENTIFIER
::= { hcAlarmNotifications 0 }
hcRisingAlarm NOTIFICATION-TYPE
OBJECTS { hcAlarmVariable,
hcAlarmSampleType,
hcAlarmAbsValue,
hcAlarmValueStatus,
hcAlarmRisingThreshAbsValueLo,
hcAlarmRisingThreshAbsValueHi,
hcAlarmRisingThresholdValStatus,
hcAlarmRisingEventIndex }
STATUS current
DESCRIPTION
"The SNMP notification that is generated when a high
capacity alarm entry crosses its rising threshold and
generates an event that is configured for sending SNMP
traps.
The hcAlarmEntry object instances identified in the OBJECTS
Bierman & McCloghrie Standards Track [Page 18]
^L
RFC 3434 High Capacity Alarm MIB December 2002
clause are from the entry that causes this notification to
be generated."
::= { hcAlarmNotifPrefix 1 }
hcFallingAlarm NOTIFICATION-TYPE
OBJECTS { hcAlarmVariable,
hcAlarmSampleType,
hcAlarmAbsValue,
hcAlarmValueStatus,
hcAlarmFallingThreshAbsValueLo,
hcAlarmFallingThreshAbsValueHi,
hcAlarmFallingThresholdValStatus,
hcAlarmFallingEventIndex }
STATUS current
DESCRIPTION
"The SNMP notification that is generated when a high
capacity alarm entry crosses its falling threshold and
generates an event that is configured for sending SNMP
traps.
The hcAlarmEntry object instances identified in the OBJECTS
clause are from the entry that causes this notification to
be generated."
::= { hcAlarmNotifPrefix 2 }
--
-- Conformance Section
--
hcAlarmCompliances OBJECT IDENTIFIER ::= { hcAlarmConformance 1 }
hcAlarmGroups OBJECT IDENTIFIER ::= { hcAlarmConformance 2 }
hcAlarmCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"Describes the requirements for conformance to the High
Capacity Alarm MIB."
MODULE -- this module
MANDATORY-GROUPS {
hcAlarmControlGroup,
hcAlarmCapabilitiesGroup,
hcAlarmNotificationsGroup
}
MODULE RMON-MIB
MANDATORY-GROUPS { rmonEventGroup }
::= { hcAlarmCompliances 1 }
Bierman & McCloghrie Standards Track [Page 19]
^L
RFC 3434 High Capacity Alarm MIB December 2002
-- Object Groups
hcAlarmControlGroup OBJECT-GROUP
OBJECTS {
hcAlarmInterval,
hcAlarmVariable,
hcAlarmSampleType,
hcAlarmAbsValue,
hcAlarmValueStatus,
hcAlarmStartupAlarm,
hcAlarmRisingThreshAbsValueLo,
hcAlarmRisingThreshAbsValueHi,
hcAlarmRisingThresholdValStatus,
hcAlarmFallingThreshAbsValueLo,
hcAlarmFallingThreshAbsValueHi,
hcAlarmFallingThresholdValStatus,
hcAlarmRisingEventIndex,
hcAlarmFallingEventIndex,
hcAlarmValueFailedAttempts,
hcAlarmOwner,
hcAlarmStorageType,
hcAlarmStatus
}
STATUS current
DESCRIPTION
"A collection of objects used to configure entries for high
capacity alarm threshold monitoring purposes."
::= { hcAlarmGroups 1 }
hcAlarmCapabilitiesGroup OBJECT-GROUP
OBJECTS {
hcAlarmCapabilities
}
STATUS current
DESCRIPTION
"A collection of objects used to indicate an agent's high
capacity alarm threshold monitoring capabilities."
::= { hcAlarmGroups 2 }
hcAlarmNotificationsGroup NOTIFICATION-GROUP
NOTIFICATIONS {
hcRisingAlarm,
hcFallingAlarm
}
STATUS current
DESCRIPTION
"A collection of notifications to deliver information
related to a high capacity rising or falling threshold event
Bierman & McCloghrie Standards Track [Page 20]
^L
RFC 3434 High Capacity Alarm MIB December 2002
to a management application."
::= { hcAlarmGroups 3 }
END
6. Intellectual Property
The IETF takes no position regarding the validity or scope of any
intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; neither does it represent that it
has made any effort to identify any such rights. Information on the
IETF's procedures with respect to rights in standards-track and
standards-related documentation can be found in BCP-11. Copies of
claims of rights made available for publication and any assurances of
licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such
proprietary rights by implementors or users of this specification can
be obtained from the IETF Secretariat.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights which may cover technology that may be required to practice
this standard. Please address the information to the IETF Executive
Director.
7. Acknowledgements
This memo is a product of the RMONMIB working group, and is based on
existing alarmTable objects in the RMON-1 MIB module [RFC2819]. In
order to maintain the RMON 'look-and-feel' and semantic consistency,
some of Steve Waldbusser's text from [RFC2819] has been adapted for
use in this MIB.
8. Normative References
[RFC2026] Bradner, S., "The Internet Standards Process -- Revision
3", BCP 9, RFC 2026, October 1996.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
Bierman & McCloghrie Standards Track [Page 21]
^L
RFC 3434 High Capacity Alarm MIB December 2002
[RFC2578] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
Rose, M. and S. Waldbusser, "Structure of Management
Information Version 2 (SMIv2)", STD 58, RFC 2578, April
1999.
[RFC2579] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
Rose, M. and S. Waldbusser, "Textual Conventions for
SMIv2", STD 58, RFC 2579, April 1999.
[RFC2580] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
Rose, M. and S. Waldbusser, "Conformance Statements for
SMIv2", RFC 2580, STD 58, April 1999.
[RFC2819] Waldbusser, S., "Remote Network Monitoring Management
Information Base", STD 59, RFC 2819, May 2000.
[RFC3414] Blumenthal, U. and B. Wijnen, "User-based Security Model
(USM) for version 3 of the Simple Network Management
Protocol (SNMPv3)", STD 62, RFC 3414, December 2002.
[RFC3415] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based
Access Control Model (VACM) for the Simple Network
Management Protocol (SNMP)", STD 62, RFC 3415, December
2002.
9. Informative References
[RFC3410] Case, J., Mundy, R., Partain, D. and B. Stewart,
"Introduction and Applicability Statements for Internet-
Standard Management Framework", RFC 3410, December 2002.
[RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group
MIB", RFC 2863, June, 2000.
10. Security Considerations
There are a number of management objects defined in this MIB that
have a MAX-ACCESS clause of read-write and/or read-create. Such
objects may be considered sensitive or vulnerable in some network
environments. The support for SET operations in a non-secure
environment without proper protection can have a negative effect on
network operations.
There are a number of managed objects in this MIB that may contain
sensitive information. These are:
hcAlarmAbsValue
hcAlarmValueStatus
Bierman & McCloghrie Standards Track [Page 22]
^L
RFC 3434 High Capacity Alarm MIB December 2002
These objects are used together, and may expose the values of
particular MIB instances, as identified by associated instances of
the hcAlarmVariable object.
hcAlarmVariable
This object identifies the object instance that the associated
hcAlarmEntry will periodically sample. Because SNMP access control
is articulated entirely in terms of the contents of MIB views, no
access control mechanism exists that can restrict the value of this
object to identify only those objects that exist in a particular MIB
view. Thus, because there is no acceptable means of restricting the
read access that could be obtained through the alarm mechanism, the
probe must only grant write access to this object in those views that
have read access to all objects on the probe.
SNMPv1 by itself is not a secure environment. Even if the network
itself is secure (for example by using IPSec), there is no control as
to who on the secure network is allowed to access and GET/SET
(read/change/create/delete) the objects in this MIB.
It is recommended that the implementors consider the security
features as provided by the SNMPv3 framework. Specifically, the use
of the User-based Security Model STD 62, RFC 3414 [RFC3414] and the
View-based Access Control Model STD 62, RFC 3415 [RFC3415] is
recommended.
It is then a customer/user responsibility to ensure that the SNMP
entity giving access to an instance of this MIB, is properly
configured to give access to only the objects, and to those
principals (users) that have legitimate rights to indeed GET or SET
(change/create/delete) them.
11. Authors' Addresses
Andy Bierman
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA USA 95134
Phone: +1 408-527-3711
EMail: abierman@cisco.com
Keith McCloghrie
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA USA 95134
Phone: +1 408-526-5260
EMail: kzm@cisco.com
Bierman & McCloghrie Standards Track [Page 23]
^L
RFC 3434 High Capacity Alarm MIB December 2002
12. Full Copyright Statement
Copyright (C) The Internet Society (2002). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Bierman & McCloghrie Standards Track [Page 24]
^L
|