summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc3658.txt
blob: 88cfb5af2425a9f49b3e67dc30ad0361cb5958ba (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
Network Working Group                                     O. Gudmundsson
Request for Comments: 3658                                 December 2003
Updates: 3090, 3008, 2535, 1035
Category: Standards Track


              Delegation Signer (DS) Resource Record (RR)

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2003).  All Rights Reserved.

Abstract

   The delegation signer (DS) resource record (RR) is inserted at a zone
   cut (i.e., a delegation point) to indicate that the delegated zone is
   digitally signed and that the delegated zone recognizes the indicated
   key as a valid zone key for the delegated zone.  The DS RR is a
   modification to the DNS Security Extensions definition, motivated by
   operational considerations.  The intent is to use this resource
   record as an explicit statement about the delegation, rather than
   relying on inference.

   This document defines the DS RR, gives examples of how it is used and
   describes the implications on resolvers.  This change is not
   backwards compatible with RFC 2535.  This document updates RFC 1035,
   RFC 2535, RFC 3008 and RFC 3090.
















Gudmundsson                 Standards Track                     [Page 1]
^L
RFC 3658      Delegation Signer (DS) Resource Record (RR)  December 2003


Table of Contents

   1.  Introduction. . . . . . . . . . . . . . . . . . . . . . . . .   3
       1.2.  Reserved Words. . . . . . . . . . . . . . . . . . . . .   4
   2.  Specification of the Delegation key Signer. . . . . . . . . .   4
       2.1.  Delegation Signer Record Model. . . . . . . . . . . . .   4
       2.2.  Protocol Change . . . . . . . . . . . . . . . . . . . .   5
             2.2.1.  RFC 2535 2.3.4 and 3.4: Special Considerations
                     at Delegation Points  . . . . . . . . . . . . .   6
                     2.2.1.1. Special processing for DS queries. . .   6
                     2.2.1.2. Special processing when child and an
                              ancestor share nameserver. . . . . . .   7
                     2.2.1.3. Modification on use of KEY RR in the
                              construction of Responses. . . . . . .   8
             2.2.2.  Signer's Name (replaces RFC3008 section 2.7). .   9
             2.2.3.  Changes to RFC 3090 . . . . . . . . . . . . . .   9
                     2.2.3.1. RFC 3090: Updates to section 1:
                              Introduction . . . . . . . . . . . . .   9
                     2.2.3.2. RFC 3090 section 2.1: Globally
                              Secured. . . . . . . . . . . . . . . .  10
                     2.2.3.3. RFC 3090 section 3: Experimental
                              Status . . . . . . . . . . . . . . . .  10
             2.2.4.  NULL KEY elimination. . . . . . . . . . . . . .  10
       2.3.  Comments on Protocol Changes. . . . . . . . . . . . . .  10
       2.4.  Wire Format of the DS record. . . . . . . . . . . . . .  11
             2.4.1.  Justifications for Fields . . . . . . . . . . .  12
       2.5.  Presentation Format of the DS Record. . . . . . . . . .  12
       2.6.  Transition Issues for Installed Base. . . . . . . . . .  12
             2.6.1.  Backwards compatibility with RFC 2535 and
                     RFC 1035. . . . . . . . . . . . . . . . . . . .  12
       2.7.  KEY and corresponding DS record example . . . . . . . .  13
   3.  Resolver. . . . . . . . . . . . . . . . . . . . . . . . . . .  14
       3.1.  DS Example" . . . . . . . . . . . . . . . . . . . . . .  14
       3.2.  Resolver Cost Estimates for DS Records" . . . . . . . .  15
   4.  Security Considerations . . . . . . . . . . . . . . . . . . .  15
   5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  16
   6.  Intellectual Property Statement . . . . . . . . . . . . . . .  16
   7.  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .  17
   8.  References. . . . . . . . . . . . . . . . . . . . . . . . . .  17
       8.1.  Normative References. . . . . . . . . . . . . . . . . .  17
       8.2.  Informational References. . . . . . . . . . . . . . . .  17
   9.  Author's Address. . . . . . . . . . . . . . . . . . . . . . .  18
   10. Full Copyright Statement. . . . . . . . . . . . . . . . . . .  19








Gudmundsson                 Standards Track                     [Page 2]
^L
RFC 3658      Delegation Signer (DS) Resource Record (RR)  December 2003


1.  Introduction

   Familiarity with the DNS system [RFC1035], DNS security extensions
   [RFC2535], and DNSSEC terminology [RFC3090] is important.

   Experience shows that when the same data can reside in two
   administratively different DNS zones, the data frequently gets out of
   sync.  The presence of an NS RRset in a zone anywhere other than at
   the apex indicates a zone cut or delegation.  The RDATA of the NS
   RRset specifies the authoritative nameservers for the delegated or
   "child" zone.  Based on actual measurements, 10-30% of all
   delegations on the Internet have differing NS RRsets at parent and
   child.  There are a number of reasons for this, including a lack of
   communication between parent and child and bogus name servers being
   listed to meet registry requirements.

   DNSSEC [RFC2535, RFC3008, RFC3090] specifies that a child zone needs
   to have its KEY RRset signed by its parent to create a verifiable
   chain of KEYs.  There has been some debate on where the signed KEY
   RRset should reside, whether at the child [RFC2535] or at the parent.
   If the KEY RRset resides at the child, maintaining the signed KEY
   RRset in the child requires frequent two-way communication between
   the two parties.  First, the child transmits the KEY RRset to the
   parent and then the parent sends the signature(s) to the child.
   Storing the KEY RRset at the parent was thought to simplify the
   communication.

   DNSSEC [RFC2535] requires that the parent store a NULL KEY record for
   an unsecure child zone to indicate that the child is unsecure.  A
   NULL KEY record is a waste: an entire signed RRset is used to
   communicate effectively one bit of information - that the child is
   unsecure. Chasing down NULL KEY RRsets complicates the resolution
   process in many cases, because nameservers for both parent and child
   need to be queried for the KEY RRset if the child nameserver does not
   return it.  Storing the KEY RRset only in the parent zone simplifies
   this and would allow the elimination of the NULL KEY RRsets entirely.
   For large delegation zones, the cost of NULL keys is a significant
   barrier to deployment.

   Prior to the restrictions imposed by RFC 3445 [RFC3445], another
   implication of the DNSSEC key model is that the KEY record could be
   used to store public keys for other protocols in addition to DNSSEC
   keys.  There are a number of potential problems with this, including:

   1. The KEY RRset can become quite large if many applications and
      protocols store their keys at the zone apex.  Possible protocols
      are IPSEC, HTTP, SMTP, SSH and others that use public key
      cryptography.



Gudmundsson                 Standards Track                     [Page 3]
^L
RFC 3658      Delegation Signer (DS) Resource Record (RR)  December 2003


   2. The KEY RRset may require frequent updates.

   3. The probability of compromised or lost keys, which trigger
      emergency key roll-over procedures, increases.

   4. The parent may refuse to sign KEY RRsets with non-DNSSEC zone
      keys.

   5. The parent may not meet the child's expectations of turnaround
      time for resigning the KEY RRset.

   Given these reasons, SIG@parent isn't any better than SIG/KEY@Child.

1.2.  Reserved Words

   The key words "MAY", "MAY NOT", "MUST", "MUST NOT", "REQUIRED",
   "RECOMMENDED", "SHOULD", and "SHOULD NOT" in this document are to be
   interpreted as described in BCP 14, RFC 2119 [RFC2119].

2.  Specification of the Delegation key Signer

   This section defines the Delegation Signer (DS) RR type (type code
   43) and the changes to DNS to accommodate it.

2.1.  Delegation Signer Record Model

   This document presents a replacement for the DNSSEC KEY record chain
   of trust [RFC2535] that uses a new RR that resides only at the
   parent.  This record identifies the key(s) that the child uses to
   self-sign its own KEY RRset.

   Even though DS identifies two roles for KEYs, Key Signing Key (KSK)
   and Zone Signing Key (ZSK), there is no requirement that zone uses
   two different keys for these roles.  It is expected that many small
   zones will only use one key, while larger zones will be more likely
   to use multiple keys.

   The chain of trust is now established by verifying the parent KEY
   RRset, the DS RRset from the parent and the KEY RRset at the child.
   This is cryptographically equivalent to using just KEY records.

   Communication between the parent and child is greatly reduced, since
   the child only needs to notify the parent about changes in keys that
   sign its apex KEY RRset.  The parent is ignorant of all other keys in
   the child's apex KEY RRset.  Furthermore, the child maintains full
   control over the apex KEY RRset and its content.  The child can
   maintain any policies regarding its KEY usage for DNSSEC with minimal
   impact on the parent.  Thus, if the child wants to have frequent key



Gudmundsson                 Standards Track                     [Page 4]
^L
RFC 3658      Delegation Signer (DS) Resource Record (RR)  December 2003


   roll-over for its DNS zone keys, the parent does not need to be aware
   of it.  The child can use one key to sign only its apex KEY RRset and
   a different key to sign the other RRsets in the zone.

   This model fits well with a slow roll out of DNSSEC and the islands
   of security model.  In this model, someone who trusts "good.example."
   can preconfigure a key from "good.example." as a trusted key, and
   from then on trusts any data signed by that key or that has a chain
   of trust to that key.  If "example." starts advertising DS records,
   "good.example." does not have to change operations by suspending
   self-signing.  DS records can be used in configuration files to
   identify trusted keys instead of KEY records.  Another significant
   advantage is that the amount of information stored in large
   delegation zones is reduced: rather than the NULL KEY record at every
   unsecure delegation demanded by RFC 2535, only secure delegations
   require additional information in the form of a signed DS RRset.

   The main disadvantage of this approach is that verifying a zone's KEY
   RRset requires two signature verification operations instead of the
   one in RFC 2535 chain of trust.  There is no impact on the number of
   signatures verified for other types of RRsets.

2.2.  Protocol Change

   All DNS servers and resolvers that support DS MUST support the OK bit
   [RFC3225] and a larger message size [RFC3226].  In order for a
   delegation to be considered secure the delegation MUST contain a DS
   RRset.  If a query contains the OK bit, a nameserver returning a
   referral for the delegation MUST include the following RRsets in the
   authority section in this order:

   If DS RRset is present:
      parent's copy of child's NS RRset
      DS and SIG(DS)

   If no DS RRset is present:
      parent's copy of child's NS RRset
      parent's zone NXT and SIG(NXT)

   This increases the size of referral messages, possibly causing some
   or all glue to be omitted.  If the DS or NXT RRsets with signatures
   do not fit in the DNS message, the TC bit MUST be set.  Additional
   section processing is not changed.

   A DS RRset accompanying a NS RRset indicates that the child zone is
   secure.  If a NS RRset exists without a DS RRset, the child zone is
   unsecure (from the parents point of view).  DS RRsets MUST NOT appear
   at non-delegation points or at a zone's apex.



Gudmundsson                 Standards Track                     [Page 5]
^L
RFC 3658      Delegation Signer (DS) Resource Record (RR)  December 2003


   Section 2.2.1 defines special considerations related to authoritative
   nameservers responding to DS queries and replaces RFC 2535 sections
   2.3.4 and 3.4.  Section 2.2.2 replaces RFC 3008 section 2.7, and
   section 2.2.3 updates RFC 3090.

2.2.1.  RFC 2535 2.3.4 and 3.4: Special Considerations at Delegation
        Points

   DNS security views each zone as a unit of data completely under the
   control of the zone owner with each entry (RRset) signed by a special
   private key held by the zone manager.  But the DNS protocol views the
   leaf nodes in a zone that are also the apex nodes of a child zone
   (i.e., delegation points) as "really" belonging to the child zone.
   The corresponding domain names appear in two master files and might
   have RRsets signed by both the parent and child zones' keys.  A
   retrieval could get a mixture of these RRsets and SIGs, especially
   since one nameserver could be serving both the zone above and below a
   delegation point [RFC2181].

   Each DS RRset stored in the parent zone MUST be signed by at least
   one of the parent zone's private keys.  The parent zone MUST NOT
   contain a KEY RRset at any delegation point.  Delegations in the
   parent MAY contain only the following RR types: NS, DS, NXT and SIG.
   The NS RRset MUST NOT be signed.  The NXT RRset is the exceptional
   case: it will always appear differently and authoritatively in both
   the parent and child zones, if both are secure.

   A secure zone MUST contain a self-signed KEY RRset at its apex.  Upon
   verifying the DS RRset from the parent, a resolver MAY trust any KEY
   identified in the DS RRset as a valid signer of the child's apex KEY
   RRset.  Resolvers configured to trust one of the keys signing the KEY
   RRset MAY now treat any data signed by the zone keys in the KEY RRset
   as secure.  In all other cases, resolvers MUST consider the zone
   unsecure.

   An authoritative nameserver queried for type DS MUST return the DS
   RRset in the answer section.

2.2.1.1.  Special processing for DS queries

   When a nameserver is authoritative for the parent zone at a
   delegation point and receives a query for the DS record at that name,
   it MUST answer based on data in the parent zone, return DS or
   negative answer.  This is true whether or not it is also
   authoritative for the child zone.






Gudmundsson                 Standards Track                     [Page 6]
^L
RFC 3658      Delegation Signer (DS) Resource Record (RR)  December 2003


   When the nameserver is authoritative for the child zone at a
   delegation point but not the parent zone, there is no natural
   response, since the child zone is not authoritative for the DS record
   at the zone's apex.  As these queries are only expected to originate
   from recursive nameservers which are not DS-aware, the authoritative
   nameserver MUST answer with:

      RCODE:             NOERROR
      AA bit:            set
      Answer Section:    Empty
      Authority Section: SOA [+ SIG(SOA) + NXT + SIG(NXT)]

   That is, it answers as if it is authoritative and the DS record does
   not exist.  DS-aware recursive nameservers will query the parent zone
   at delegation points, so will not be affected by this.

   A nameserver authoritative for only the child zone, that is also a
   caching server MAY (if the RD bit is set in the query) perform
   recursion to find the DS record at the delegation point, or MAY
   return the DS record from its cache.  In this case, the AA bit MUST
   NOT be set in the response.

2.2.1.2.  Special processing when child and an ancestor share
          nameserver

   Special rules are needed to permit DS RR aware nameservers to
   gracefully interact with older caches which otherwise might falsely
   label a nameserver as lame because of the placement of the DS RR set.

   Such a situation might arise when a nameserver is authoritative for
   both a zone and it's grandparent, but not the parent.  This sounds
   like an obscure example, but it is very real.  The root zone is
   currently served on 13 machines, and "root-servers.net." is served on
   4 of the 13, but "net." is severed on different nameservers.

   When a nameserver receives a query for (<QNAME>, DS, <QCLASS>), the
   response MUST be determined from reading these rules in order:

   1) If the nameserver is authoritative for the zone that holds the DS
      RR set (i.e., the zone that delegates <QNAME>, a.k.a. the "parent"
      zone), the response contains the DS RR set as an authoritative
      answer.

   2) If the nameserver is offering recursive service and the RD bit is
      set in the query, the nameserver performs the query itself
      (according to the rules for resolvers described below) and returns
      its findings.




Gudmundsson                 Standards Track                     [Page 7]
^L
RFC 3658      Delegation Signer (DS) Resource Record (RR)  December 2003


   3) If the nameserver is authoritative for the zone that holds the
      <QNAME>'s SOA RR set, the response is an authoritative negative
      answer as described in 2.2.1.1.

   4) If the nameserver is authoritative for a zone or zones above the
      QNAME, a referral to the most enclosing (deepest match) zone's
      servers is made.

   5) If the nameserver is not authoritative for any part of the QNAME,
      a response indicating a lame nameserver for QNAME is given.

   Using these rules will require some special processing on the part of
   a DS RR aware resolver.  To illustrate this, an example is used.

   Assuming a nameserver is authoritative for roots.example.net. and for
   the root zone but not the intervening two zones (or the intervening
   two label deep zone).  Assume that QNAME=roots.example.net.,
   QTYPE=DS, and QCLASS=IN.

   The resolver will issue this request (assuming no cached data)
   expecting a referral to a nameserver for .net.  Instead, rule number
   3 above applies and a negative answer is returned by the nameserver.
   The reaction by the resolver is not to accept this answer as final,
   as it can determine from the SOA RR in the negative answer the
   context within which the nameserver has answered.

   A solution would be to instruct the resolver to hunt for the
   authoritative zone of the data in a brute force manner.

   This can be accomplished by taking the owner name of the returned SOA
   RR and striping off enough left-hand labels until a successful NS
   response is obtained.  A successful response here means that the
   answer has NS records in it.  (Entertaining the possibility that a
   cut point can be two labels down in a zone.)

   Returning to the example, the response will include a negative answer
   with either the SOA RR for "roots.example.net." or "example.net."
   depending on whether roots.example.net is a delegated domain.  In
   either case, removing the left most label of the SOA owner name will
   lead to the location of the desired data.

2.2.1.3.  Modification on use of KEY RR in the construction of Responses

   This section updates RFC 2535 section 3.5 by replacing it with the
   following:






Gudmundsson                 Standards Track                     [Page 8]
^L
RFC 3658      Delegation Signer (DS) Resource Record (RR)  December 2003


   A query for KEY RR MUST NOT trigger any additional section
   processing.  Security aware resolvers will include corresponding SIG
   records in the answer section.

   KEY records SHOULD NOT be added to the additional records section in
   response to any query.

   RFC 2535 specified that KEY records be added to the additional
   section when SOA or NS records were included in an answer.  This was
   done to reduce round trips (in the case of SOA) and to force out NULL
   KEYs (in the NS case).  As this document obsoletes NULL keys, there
   is no need for the inclusion of KEYs with NSs.  Furthermore, as SOAs
   are included in the authority section of negative answers, including
   the KEYs each time will cause redundant transfers of KEYs.

   RFC 2535 section 3.5 also included a rule for adding the KEY RRset to
   the response for a query for A and AAAA types.  As Restrict KEY
   [RFC3445] eliminated use of KEY RR by all applications, this rule is
   no longer needed.

2.2.2.  Signer's Name (replaces RFC 3008 section 2.7)

   The signer's name field of a SIG RR MUST contain the name of the zone
   to which the data and signature belong.  The combination of signer's
   name, key tag, and algorithm MUST identify a zone key if the SIG is
   to be considered material.  This document defines a standard policy
   for DNSSEC validation; local policy MAY override the standard policy.

   There are no restrictions on the signer field of a SIG(0) record. The
   combination of signer's name, key tag, and algorithm MUST identify a
   key if this SIG(0) is to be processed.

2.2.3.  Changes to RFC 3090

   A number of sections in RFC 3090 need to be updated to reflect the DS
   record.

2.2.3.1.  RFC 3090: Updates to section 1: Introduction

   Most of the text is still relevant but the words "NULL key" are to be
   replaced with "missing DS RRset".  In section 1.3, the last three
   paragraphs discuss the confusion in sections of RFC 2535 that are
   replaced in section 2.2.1 above.  Therefore, these paragraphs are now
   obsolete.







Gudmundsson                 Standards Track                     [Page 9]
^L
RFC 3658      Delegation Signer (DS) Resource Record (RR)  December 2003


2.2.3.2.  RFC 3090 section 2.1: Globally Secured

   Rule 2.1.b is replaced by the following rule:

   2.1.b. The KEY RRset at a zone's apex MUST be self-signed by a
   private key whose public counterpart MUST appear in a zone signing
   KEY RR (2.a) owned by the zone's apex and specifying a mandatory-to-
   implement algorithm.  This KEY RR MUST be identified by a DS RR in a
   signed DS RRset in the parent zone.

   If a zone cannot get its parent to advertise a DS record for it, the
   child zone cannot be considered globally secured.  The only exception
   to this is the root zone, for which there is no parent zone.

2.2.3.3.  RFC 3090 section 3: Experimental Status.

   The only difference between experimental status and globally secured
   is the missing DS RRset in the parent zone.  All locally secured
   zones are experimental.

2.2.4.  NULL KEY elimination

   RFC 3445 section 3 eliminates the top two bits in the flags field of
   KEY RR.  These two bits were used to indicate NULL KEY or NO KEY. RFC
   3090 defines that zone as either secure or not and these rules
   eliminate the need to put NULL keys in the zone apex to indicate that
   the zone is not secured for a algorithm.  Along with this document,
   these other two eliminate all uses for the NULL KEY.  This document
   obsoletes NULL KEY.

2.3.  Comments on Protocol Changes

   Over the years, there have been various discussions surrounding the
   DNS delegation model, declaring it to be broken because there is no
   good way to assert if a delegation exists.  In the RFC 2535 version
   of DNSSEC, the presence of the NS bit in the NXT bit map proves there
   is a delegation at this name.  Something more explicit is required
   and the DS record addresses this need for secure delegations.

   The DS record is a major change to DNS: it is the first resource
   record that can appear only on the upper side of a delegation.
   Adding it will cause interoperability problems and requires a flag
   day for DNSSEC.  Many old nameservers and resolvers MUST be upgraded
   to take advantage of DS.  Some old nameservers will be able to be
   authoritative for zones with DS records but will not add the NXT or
   DS records to the authority section.  The same is true for caching
   nameservers; in fact, some might even refuse to pass on the DS or NXT
   records.



Gudmundsson                 Standards Track                    [Page 10]
^L
RFC 3658      Delegation Signer (DS) Resource Record (RR)  December 2003


2.4.  Wire Format of the DS record

   The DS (type=43) record contains these fields: key tag, algorithm,
   digest type, and the digest of a public key KEY record that is
   allowed and/or used to sign the child's apex KEY RRset.  Other keys
   MAY sign the child's apex KEY RRset.

                        1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           key tag             |  algorithm    |  Digest type  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                digest  (length depends on type)               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                (SHA-1 digest is 20 bytes)                     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The key tag is calculated as specified in RFC 2535.  Algorithm MUST
   be allowed to sign DNS data.  The digest type is an identifier for
   the digest algorithm used.  The digest is calculated over the
   canonical name of the delegated domain name followed by the whole
   RDATA of the KEY record (all four fields).

      digest = hash( canonical FQDN on KEY RR | KEY_RR_rdata)

      KEY_RR_rdata = Flags | Protocol | Algorithm | Public Key

   Digest type value 0 is reserved, value 1 is SHA-1, and reserving
   other types requires IETF standards action.  For interoperability
   reasons, keeping number of digest algorithms low is strongly
   RECOMMENDED.  The only reason to reserve additional digest types is
   to increase security.

   DS records MUST point to zone KEY records that are allowed to
   authenticate DNS data.  The indicated KEY records protocol field MUST
   be set to 3; flag field bit 7 MUST be set to 1.  The value of other
   flag bits is not significant for the purposes of this document.

   The size of the DS RDATA for type 1 (SHA-1) is 24 bytes, regardless
   of key size.  New digest types probably will have larger digests.





Gudmundsson                 Standards Track                    [Page 11]
^L
RFC 3658      Delegation Signer (DS) Resource Record (RR)  December 2003


2.4.1.  Justifications for Fields

   The algorithm and key tag fields are present to allow resolvers to
   quickly identify the candidate KEY records to examine.  SHA-1 is a
   strong cryptographic checksum: it is computationally infeasible for
   an attacker to generate a KEY record that has the same SHA-1 digest.
   Combining the name of the key and the key rdata as input to the
   digest provides stronger assurance of the binding.  Having the key
   tag in the DS record adds greater assurance than the SHA-1 digest
   alone, as there are now two different mapping functions.

   This format allows concise representation of the keys that the child
   will use, thus keeping down the size of the answer for the
   delegation, reducing the probability of DNS message overflow.  The
   SHA-1 hash is strong enough to uniquely identify the key and is
   similar to the PGP key footprint.  The digest type field is present
   for possible future expansion.

   The DS record is well suited to listing trusted keys for islands of
   security in configuration files.

2.5.  Presentation Format of the DS Record

   The presentation format of the DS record consists of three numbers
   (key tag, algorithm, and digest type) followed by the digest itself
   presented in hex:

      example.   DS  12345 3 1 123456789abcdef67890123456789abcdef67890

2.6.  Transition Issues for Installed Base

   No backwards compatibility with RFC 2535 is provided.

   RFC 2535-compliant resolvers will assume that all DS-secured
   delegations are locally secure.  This is bad, but the DNSEXT Working
   Group has determined that rather than dealing with both RFC 2535-
   secured zones and DS-secured zones, a rapid adoption of DS is
   preferable.  Thus, the only option for early adopters is to upgrade
   to DS as soon as possible.

2.6.1.  Backwards compatibility with RFC 2535 and RFC 1035

   This section documents how a resolver determines the type of
   delegation.







Gudmundsson                 Standards Track                    [Page 12]
^L
RFC 3658      Delegation Signer (DS) Resource Record (RR)  December 2003


   RFC 1035 delegation (in parent) has:

   RFC 1035           NS

   RFC 2535 adds the following two cases:

   Secure RFC 2535:   NS + NXT + SIG(NXT)
                      NXT bit map contains: NS SIG NXT
   Unsecure RFC 2535: NS + KEY + SIG(KEY) + NXT + SIG(NXT)
                      NXT bit map contains: NS SIG KEY NXT
                      KEY must be a NULL key.

   DNSSEC with DS has the following two states:

   Secure DS:         NS + DS + SIG(DS)
                      NXT bit map contains: NS SIG NXT DS
   Unsecure DS:       NS + NXT + SIG(NXT)
                      NXT bit map contains: NS SIG NXT

   It is difficult for a resolver to determine if a delegation is secure
   RFC 2535 or unsecure DS.  This could be overcome by adding a flag to
   the NXT bit map, but only upgraded resolvers would understand this
   flag, anyway.  Having both parent and child signatures for a KEY
   RRset might allow old resolvers to accept a zone as secure, but the
   cost of doing this for a long time is much higher than just
   prohibiting RFC 2535-style signatures at child zone apexes and
   forcing rapid deployment of DS-enabled nameservers and resolvers.

   RFC 2535 and DS can, in theory, be deployed in parallel, but this
   would require resolvers to deal with RFC 2535 configurations forever.
   This document obsoletes the NULL KEY in parent zones, which is a
   difficult enough change that to cause a flag day.

2.7.  KEY and corresponding DS record example

   This is an example of a KEY record and the corresponding DS record.

   dskey.example. KEY  256 3 1 (
                  AQPwHb4UL1U9RHaU8qP+Ts5bVOU1s7fYbj2b3CCbzNdj
                  4+/ECd18yKiyUQqKqQFWW5T3iVc8SJOKnueJHt/Jb/wt
                  ) ; key id = 28668
             DS   28668 1  1  49FD46E6C4B45C55D4AC69CBD3CD34AC1AFE51DE









Gudmundsson                 Standards Track                    [Page 13]
^L
RFC 3658      Delegation Signer (DS) Resource Record (RR)  December 2003


3.  Resolver

3.1.  DS Example

   To create a chain of trust, a resolver goes from trusted KEY to DS to
   KEY.

      Assume the key for domain "example." is trusted.  Zone "example."
      contains at least the following records:
      example.          SOA     <soa stuff>
      example.          NS       ns.example.
      example.          KEY     <stuff>
      example.          NXT      secure.example. NS SOA KEY SIG NXT
      example.          SIG(SOA)
      example.          SIG(NS)
      example.          SIG(NXT)
      example.          SIG(KEY)
      secure.example.   NS      ns1.secure.example.
      secure.example.   DS      tag=12345 alg=3 digest_type=1 <foofoo>
      secure.example.   NXT     unsecure.example. NS SIG NXT DS
      secure.example.   SIG(NXT)
      secure.example.   SIG(DS)
      unsecure.example  NS      ns1.unsecure.example.
      unsecure.example. NXT     example. NS SIG NXT
      unsecure.example. SIG(NXT)

      In zone "secure.example." following records exist:
      secure.example.   SOA      <soa stuff>
      secure.example.   NS       ns1.secure.example.
      secure.example.   KEY      <tag=12345 alg=3>
      secure.example.   KEY      <tag=54321 alg=5>
      secure.example.   NXT      <nxt stuff>
      secure.example.   SIG(KEY) <key-tag=12345 alg=3>
      secure.example.   SIG(SOA) <key-tag=54321 alg=5>
      secure.example.   SIG(NS)  <key-tag=54321 alg=5>
      secure.example.   SIG(NXT) <key-tag=54321 alg=5>

   In this example, the private key for "example." signs the DS record
   for "secure.example.", making that a secure delegation.  The DS
   record states which key is expected to sign the KEY RRset at
   "secure.example.".  Here "secure.example." signs its KEY RRset with
   the KEY identified in the DS RRset, thus the KEY RRset is validated
   and trusted.

   This example has only one DS record for the child, but parents MUST
   allow multiple DS records to facilitate key roll-over and multiple
   KEY algorithms.




Gudmundsson                 Standards Track                    [Page 14]
^L
RFC 3658      Delegation Signer (DS) Resource Record (RR)  December 2003


   The resolver determines the security status of "unsecure.example." by
   examining the parent zone's NXT record for this name.  The absence of
   the DS bit indicates an unsecure delegation.  Note the NXT record
   SHOULD only be examined after verifying the corresponding signature.

3.2.  Resolver Cost Estimates for DS Records

   From a RFC 2535 recursive resolver point of view, for each delegation
   followed to chase down an answer, one KEY RRset has to be verified.
   Additional RRsets might also need to be verified based on local
   policy (e.g., the contents of the NS RRset).  Once the resolver gets
   to the appropriate delegation, validating the answer might require
   verifying one or more signatures.  A simple A record lookup requires
   at least N delegations to be verified and one RRset.  For a DS-
   enabled recursive resolver, the cost is 2N+1.  For an MX record,
   where the target of the MX record is in the same zone as the MX
   record, the costs are N+2 and 2N+2, for RFC 2535 and DS,
   respectively.  In the case of a negative answer, the same ratios hold
   true.

   The recursive resolver has to do an extra query to get the DS record,
   which will increase the overall cost of resolving this question, but
   it will never be worse than chasing down NULL KEY records from the
   parent in RFC 2535 DNSSEC.

   DS adds processing overhead on resolvers and increases the size of
   delegation answers, but much less than storing signatures in the
   parent zone.

4.  Security Considerations

   This document proposes a change to the validation chain of KEY
   records in DNSSEC.  The change is not believed to reduce security in
   the overall system.  In RFC 2535 DNSSEC, the child zone has to
   communicate keys to its parent and prudent parents will require some
   authentication with that transaction.  The modified protocol will
   require the same authentication, but allows the child to exert more
   local control over its own KEY RRset.

   There is a remote possibility that an attacker could generate a valid
   KEY that matches all the DS fields, of a specific DS set, and thus
   forge data from the child.  This possibility is considered
   impractical, as on average more than

      2 ^ (160 - <Number of keys in DS set>)

   keys would have to be generated before a match would be found.




Gudmundsson                 Standards Track                    [Page 15]
^L
RFC 3658      Delegation Signer (DS) Resource Record (RR)  December 2003


   An attacker that wants to match any DS record will have to generate
   on average at least 2^80 keys.

   The DS record represents a change to the DNSSEC protocol and there is
   an installed base of implementations, as well as textbooks on how to
   set up secure delegations.  Implementations that do not understand
   the DS record will not be able to follow the KEY to DS to KEY chain
   and will consider all zones secured that way as unsecure.

5.  IANA Considerations

   IANA has allocated an RR type code for DS from the standard RR type
   space (type 43).

   IANA has established a new registry for the DS RR type for digest
   algorithms.  Defined types are:

      0 is Reserved,
      1 is SHA-1.

   Adding new reservations requires IETF standards action.

6.  Intellectual Property Statement

   The IETF takes no position regarding the validity or scope of any
   intellectual property or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; neither does it represent that it
   has made any effort to identify any such rights.  Information on the
   IETF's procedures with respect to rights in standards-track and
   standards-related documentation can be found in BCP-11.  Copies of
   claims of rights made available for publication and any assurances of
   licenses to be made available, or the result of an attempt made to
   obtain a general license or permission for the use of such
   proprietary rights by implementors or users of this specification can
   be obtained from the IETF Secretariat.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights which may cover technology that may be required to practice
   this standard.  Please address the information to the IETF Executive
   Director.








Gudmundsson                 Standards Track                    [Page 16]
^L
RFC 3658      Delegation Signer (DS) Resource Record (RR)  December 2003


7.  Acknowledgments

   Over the last few years a number of people have contributed ideas
   that are captured in this document.  The core idea of using one key
   to sign only the KEY RRset comes from discussions with Bill Manning
   and Perry Metzger on how to put in a single root key in all
   resolvers. Alexis Yushin, Brian Wellington, Sam Weiler, Paul Vixie,
   Jakob Schlyter, Scott Rose, Edward Lewis, Lars-Johan Liman, Matt
   Larson, Mark Kosters, Dan Massey, Olaf Kolman, Phillip Hallam-Baker,
   Miek Gieben, Havard Eidnes, Donald Eastlake 3rd., Randy Bush, David
   Blacka, Steve Bellovin, Rob Austein, Derek Atkins, Roy Arends, Mark
   Andrews, Harald Alvestrand, and others have provided useful comments.

8.  References

8.1.  Normative References

   [RFC1035]  Mockapetris, P., "Domain Names - Implementation and
              Specification", STD 13, RFC 1035, November 1987.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2535]  Eastlake, D., "Domain Name System Security Extensions",
              RFC 2535, March 1999.

   [RFC3008]  Wellington, B., "Domain Name System Security (DNSSEC)
              Signing Authority", RFC 3008, November 2000.

   [RFC3090]  Lewis, E., "DNS Security Extension Clarification on Zone
              Status", RFC 3090, March 2001.

   [RFC3225]  Conrad, D., "Indicating Resolver Support of DNSSEC", RFC
              3225, December 2001.

   [RFC3445]  Massey, D. and S. Rose, "Limiting the scope of the KEY
              Resource Record (RR)", RFC 3445, December 2002.

8.2.  Informational References

   [RFC2181]  Elz, R. and R. Bush, "Clarifications to the DNS
              Specification", RFC 2181, July 1997.

   [RFC3226]  Gudmundsson, O., "DNSSEC and IPv6 A6 aware server/resolver
              message size requirements", RFC 3226, December 2001.






Gudmundsson                 Standards Track                    [Page 17]
^L
RFC 3658      Delegation Signer (DS) Resource Record (RR)  December 2003


9.  Author's Address

   Olafur Gudmundsson
   3821 Village Park Drive
   Chevy Chase, MD,  20815

   EMail: ds-rfc@ogud.com












































Gudmundsson                 Standards Track                    [Page 18]
^L
RFC 3658      Delegation Signer (DS) Resource Record (RR)  December 2003


10.  Full Copyright Statement

   Copyright (C) The Internet Society (2003).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assignees.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.



















Gudmundsson                 Standards Track                    [Page 19]
^L