1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
|
Network Working Group B. Moore
Request for Comments: 3670 IBM Corporation
Category: Standards Track D. Durham
Intel
J. Strassner
INTELLIDEN, Inc.
A. Westerinen
Cisco Systems
W. Weiss
Ellacoya
January 2004
Information Model for Describing
Network Device QoS Datapath Mechanisms
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2004). All Rights Reserved.
Abstract
The purpose of this document is to define an information model to
describe the quality of service (QoS) mechanisms inherent in
different network devices, including hosts. Broadly speaking, these
mechanisms describe the properties common to selecting and
conditioning traffic through the forwarding path (datapath) of a
network device. This selection and conditioning of traffic in the
datapath spans both major QoS architectures: Differentiated Services
and Integrated Services.
This document should be used with the QoS Policy Information Model
(QPIM) to model how policies can be defined to manage and configure
the QoS mechanisms (i.e., the classification, marking, metering,
dropping, queuing, and scheduling functionality) of devices.
Together, these two documents describe how to write QoS policy rules
to configure and manage the QoS mechanisms present in the datapaths
of devices.
Moore, et al. Standards Track [Page 1]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
This document, as well as QPIM, are information models. That is,
they represent information independent of a binding to a specific
type of repository.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1. Policy Management Conceptual Model . . . . . . . . . . . 6
1.2. Purpose and Relation to Other Policy Work. . . . . . . . 7
1.3. Typical Examples of Policy Usage . . . . . . . . . . . . 7
2. Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1. Common Needs Of DiffServ and IntServ . . . . . . . . . . 8
2.2. Specific Needs Of DiffServ . . . . . . . . . . . . . . . 9
2.3. Specific Needs Of IntServ. . . . . . . . . . . . . . . . 9
3. Methodology. . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1. Level of Abstraction for Expressing QoS Policies . . . . 10
3.2. Specifying Policy Parameters . . . . . . . . . . . . . . 11
3.3. Specifying Policy Services . . . . . . . . . . . . . . . 12
3.4. Level of Abstraction for Defining QoS Attributes and
Classes. . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5. Characterization of QoS Properties . . . . . . . . . . . 14
3.6. QoS Information Model Derivation . . . . . . . . . . . . 15
3.7. Attribute Representation . . . . . . . . . . . . . . . . 16
3.8. Mental Model . . . . . . . . . . . . . . . . . . . . . . 17
3.8.1. The QoSService Class . . . . . . . . . . . . . . 17
3.8.2. The ConditioningService Class. . . . . . . . . . 18
3.8.3. Preserving QoS Information from Ingress to
Egress . . . . . . . . . . . . . . . . . . . . . 19
3.9. Classifiers, FilterLists, and Filter Entries . . . . . . 21
3.10. Modeling of Droppers . . . . . . . . . . . . . . . . . . 23
3.10.1. Configuring Head and Tail Droppers . . . . . . . 23
3.10.2. Configuring RED Droppers . . . . . . . . . . . . 24
3.11. Modeling of Queues and Schedulers. . . . . . . . . . . . 25
3.11.1. Simple Hierarchical Scheduler. . . . . . . . . . 25
3.11.2. Complex Hierarchical Scheduler . . . . . . . . . 27
3.11.3. Excess Capacity Scheduler. . . . . . . . . . . . 29
3.11.4. Hierarchical CBQ Scheduler . . . . . . . . . . . 31
4. The Class Hierarchy. . . . . . . . . . . . . . . . . . . . . . 33
4.1. Associations and Aggregations. . . . . . . . . . . . . . 33
4.2. The Structure of the Class Hierarchies . . . . . . . . . 34
4.3. Class Definitions. . . . . . . . . . . . . . . . . . . . 38
4.3.1. The Abstract Class ManagedElement. . . . . . . . 38
4.3.2. The Abstract Class ManagedSystemElement. . . . . 39
4.3.3. The Abstract Class LogicalElement. . . . . . . . 39
4.3.4. The Abstract Class Service . . . . . . . . . . . 39
4.3.5. The Class ConditioningService. . . . . . . . . . 39
4.3.6. The Class ClassifierService. . . . . . . . . . . 40
4.3.7. The Class ClassifierElement. . . . . . . . . . . 41
Moore, et al. Standards Track [Page 2]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
4.3.8. The Class MeterService . . . . . . . . . . . . . 42
4.3.9. The Class AverageRateMeterService. . . . . . . . 44
4.3.10. The Class EWMAMeterService . . . . . . . . . . . 44
4.3.11. The Class TokenBucketMeterService. . . . . . . . 46
4.3.12. The Class MarkerService. . . . . . . . . . . . . 47
4.3.13. The Class PreambleMarkerService. . . . . . . . . 47
4.3.14. The Class ToSMarkerService . . . . . . . . . . . 48
4.3.15. The Class DSCPMarkerService. . . . . . . . . . . 49
4.3.16. The Class 8021QMarkerService . . . . . . . . . . 49
4.3.17. The Class DropperService . . . . . . . . . . . . 50
4.3.18. The Class HeadTailDropperService . . . . . . . . 52
4.3.19. The Class REDDropperService. . . . . . . . . . . 52
4.3.20. The Class QueuingService . . . . . . . . . . . . 54
4.3.21. The Class PacketSchedulingService. . . . . . . . 55
4.3.22. The Class NonWorkConservingSchedulingService . . 56
4.3.23. The Class QoSService . . . . . . . . . . . . . . 57
4.3.24. The Class DiffServService. . . . . . . . . . . . 58
4.3.25. The Class AFService. . . . . . . . . . . . . . . 59
4.3.26. The Class FlowService. . . . . . . . . . . . . . 60
4.3.27. The Class DropThresholdCalculationService. . . . 60
4.3.28. The Abstract Class FilterEntryBase . . . . . . . 61
4.3.29. The Class IPHeaderFilter . . . . . . . . . . . . 62
4.3.30. The Class 8021Filter . . . . . . . . . . . . . . 62
4.3.31. The Class PreambleFilter . . . . . . . . . . . . 62
4.3.32. The Class FilterList . . . . . . . . . . . . . . 63
4.3.33. The Abstract Class ServiceAccessPoint. . . . . . 63
4.3.34. The Class ProtocolEndpoint . . . . . . . . . . . 63
4.3.35. The Abstract Class Collection. . . . . . . . . . 65
4.3.36. The Abstract Class CollectionOfMSEs. . . . . . . 65
4.3.37. The Class BufferPool . . . . . . . . . . . . . . 65
4.3.38. The Abstract Class SchedulingElement . . . . . . 65
4.3.39. The Class AllocationSchedulingElement. . . . . . 66
4.3.40. The Class WRRSchedulingElement . . . . . . . . . 67
4.3.41. The Class PrioritySchedulingElement. . . . . . . 69
4.3.42. The Class BoundedPrioritySchedulingElement . . . 70
4.4. Association Definitions. . . . . . . . . . . . . . . . . 70
4.4.1. The Abstract Association Dependency. . . . . . . 71
4.4.2. The Association ServiceSAPDependency . . . . . . 71
4.4.3. The Association
IngressConditioningServiceOnEndpoint . . . . . . 71
4.4.4. The Association
EgressConditioningServiceOnEndpoint. . . . . . . 72
4.4.5. The Association HeadTailDropQueueBinding . . . . 72
4.4.6. The Association CalculationBasedOnQueue. . . . . 73
4.4.7. The Association ProvidesServiceToElement . . . . 74
4.4.8. The Association ServiceServiceDependency . . . . 74
4.4.9. The Association CalculationServiceForDropper . . 75
4.4.10. The Association QueueAllocation. . . . . . . . . 75
Moore, et al. Standards Track [Page 3]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
4.4.11. The Association ClassifierElementUsesFilterList. 76
4.4.12. The Association AFRelatedServices. . . . . . . . 77
4.4.13. The Association NextService. . . . . . . . . . . 78
4.4.14. The Association
NextServiceAfterClassifierElement. . . . . . . . 79
4.4.15. The Association NextScheduler. . . . . . . . . . 80
4.4.16. The Association FailNextScheduler. . . . . . . . 81
4.4.17. The Association NextServiceAfterMeter. . . . . . 82
4.4.18. The Association QueueToSchedule. . . . . . . . . 83
4.4.19. The Association SchedulingServiceToSchedule. . . 84
4.4.20. The Aggregation MemberOfCollection . . . . . . . 85
4.4.21. The Aggregation CollectedBufferPool. . . . . . . 85
4.4.22. The Abstract Aggregation Component . . . . . . . 86
4.4.23. The Aggregation ServiceComponent . . . . . . . . 86
4.4.24. The Aggregation QoSSubService. . . . . . . . . . 86
4.4.25. The Aggregation QoSConditioningSubService. . . . 87
4.4.26. The Aggregation
ClassifierElementInClassifierService . . . . . . 88
4.4.27. The Aggregation EntriesInFilterList. . . . . . . 89
4.4.28. The Aggregation ElementInSchedulingService . . . 90
5. Intellectual Property Statement. . . . . . . . . . . . . . . . 91
6. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 91
7. Security Considerations. . . . . . . . . . . . . . . . . . . . 91
8. References . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.1. Normative References. . . . . . . . . . . . . . . . . . . 92
8.2. Informative References . . . . . . . . . . . . . . . . . 92
9. Appendix A: Naming Instances in a Native CIM Implementation . 94
9.1. Naming Instances of the Classes Derived from Service. . . 94
9.2. Naming Instances of Subclasses of FilterEntryBase . . . . 94
9.3. Naming Instances of ProtocolEndpoint. . . . . . . . . . . 94
9.4. Naming Instances of BufferPool. . . . . . . . . . . . . . 95
9.4.1. The Property CollectionID. . . . . . . . . . . . 95
9.4.2. The Property CreationClassName . . . . . . . . . 95
9.5. Naming Instances of SchedulingElement . . . . . . . . . . 95
10. Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . 96
11. Full Copyright Statement . . . . . . . . . . . . . . . . . . . 97
1. Introduction
The purpose of this document is to define an information model to
describe the quality of service (QoS) mechanisms inherent in
different network devices, including hosts. Broadly speaking, these
mechanisms describe the attributes common to selecting and
conditioning traffic through the forwarding path (datapath) of a
network device. This selection and conditioning of traffic in the
datapath spans both major QoS architectures: Differentiated Services
(see [R2475]) and Integrated Services (see [R1633]).
Moore, et al. Standards Track [Page 4]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
This document is intended to be used with the QoS Policy Information
Model [QPIM] to model how policies can be defined to manage and
configure the QoS mechanisms (i.e., the classification, marking,
metering, dropping, queuing, and scheduling functionality) of
devices. Together, these two documents describe how to write QoS
policy rules to configure and manage the QoS mechanisms present in
the datapaths of devices.
This document, as well as [QPIM], are information models. That is,
they represent information independent of a binding to a specific
type of repository. A separate document could be written to provide
a mapping of the data contained in this document to a form suitable
for implementation in a directory that uses (L)DAP as its access
protocol. Similarly, a document could be written to provide a
mapping of the data in [QPIM] to a directory. Together, these four
documents (information models and directory schema mappings) would
then describe how to write QoS policy rules that can be used to store
information in directories to configure device QoS mechanisms.
The approach taken in this document defines a common set of classes
that can be used to model QoS in a device datapath. Vendors can then
map these classes, either directly or using an intervening format
like a COP-PR PIB, to their own device-specific implementations.
Note that the admission control element of Integrated Services is not
included in the scope of this model.
The design of the class, association, and aggregation hierarchies
described in this document is influenced by the Network QoS submodel
defined by the Distributed Management Task Force (DMTF) - see [CIM].
These hierarchies are not derived from the Policy Core Information
Model [PCIM]. This is because the modeling of the QoS mechanisms of
a device is separate and distinct from the modeling of policies that
manage those mechanisms. Hence, there is a need to separate QoS
mechanisms (this document) from their control (specified using the
generic policy document [PCIM] augmented by the QoS Policy document
[QPIM]).
While it is not a policy model per se, this document does have a
dependency on the Policy Core Information Model Extensions document
[PCIME]. The device-level packet filtering, through which a
Classifier splits a traffic stream into multiple streams, is based on
the FilterEntryBase and FilterList classes defined in [PCIME].
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in BCP 14, RFC 2119
[R2119].
Moore, et al. Standards Track [Page 5]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
1.1. Policy Management Conceptual Model
The Policy Core Information Model [PCIM] describes a general
methodology for constructing policy rules. PCIM Extensions [PCIME]
updates and extends the original PCIM. A policy rule aggregates a
set of policy conditions and an ordered set of policy actions. The
semantics of a policy rule are such that if the set of conditions
evaluates to TRUE, then the set of actions are executed.
Policy conditions and actions have two principal components: operands
and operators. Operands can be constants or variables. To specify a
policy, it is necessary to specify:
o the operands to be examined (also known as state variables);
o the operands to be changed (also known as configuration
variables);
o the relationships between these two sets of operands.
Operands can be specified at a high-level, such as Joe (a user) or
Gold (a service). Operands can also be specified at a much finer
level of detail, one that is much closer to the operation of the
device. Examples of the latter include an IP Address or a queue's
bandwidth allocation. Implicit in the use of operands is the binding
of legal values or ranges of values to an operand. For example, the
value of an IP address cannot be an integer. The concepts of
operands and their ranges are defined in [PCIME].
The second component of policy conditions and actions is a set of
operators. Operators can express both relationships (greater than,
member of a set, Boolean OR, etc.) and assignments. Together,
operators and operands can express a variety of conditions and
actions, such as:
If Bob is an Engineer...
If the source IP address is in the Marketing Subnet...
Set Joe's IP address to 192.0.2.100
Limit the bandwidth of application x to 10 Mb
We recognize that the definition of operator semantics is critical to
the definition of policies. However, the definition of these
operators is beyond the scope of this document. Rather, this
document (with [QPIM]) takes the first steps in identifying and
standardizing a set of properties (operands) for use in defining
policies for Differentiated and Integrated Services.
Moore, et al. Standards Track [Page 6]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
1.2. Purpose and Relation to Other Policy Work
This model establishes a canonical model of the QoS mechanisms of a
network device (e.g., a router, switch, or host) that is independent
of any specific type of network device. This enables traffic
conditioning to be described using a common set of abstractions,
modeled as a set of services and sub-services.
When the concepts of this document are used in conjunction with the
concepts of [QPIM], one is able to define policies that bind the
services in a network to the needs of applications using that
network. In other words, the business requirements of an
organization can be reflected in one set of policies, and those
policies can be translated to a lower-level set of policies that
control and manage the configuration and operation of network
devices.
1.3. Typical Examples of Policy Usage
Policies could be implemented as low-level rules using the
information model described in this specification. For example, in a
low-level policy, a condition could be represented as an evaluation
of a specific attribute from this model. Therefore, a condition such
as "If filter = HTTP" would be interpreted as a test determining
whether any HTTP filters have been defined for the device. A high-
level policy, such as "If protocol = HTTP, then mark with
Differentiated Services Code Point (DSCP) 24," would be expressed as
a series of actions in a low-level policy using the classes and
attributes described below:
1. Create HTTP filter
2. Create DSCP marker with the value of 24
3. Bind the HTTP filter to the DSCP marker
Note that unlike "mark with DSCP 24," these low-level actions are not
performed on a packet as it passes through the device. Rather, they
are configuration actions performed on the device itself, to make it
ready to perform the correct action(s) on the correct packet(s). The
act of moving from a high-level policy rule to the correct set of
low-level device configuration actions is an example of what
[POLTERM] characterizes as "policy translation" or "policy
conversion".
Moore, et al. Standards Track [Page 7]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
2. Approach
QoS activities in the IETF have mainly focused in two areas,
Integrated Services (IntServ) and Differentiated Services (DiffServ)
(see [POLTERM], [R1633] and [R2475]). This document focuses on the
specification of QoS properties and classes for modeling the datapath
where packet traffic is conditioned. However, the framework defined
by the classes in this document has been designed with the needs of
the admission control portion of IntServ in mind as well.
2.1. Common Needs Of DiffServ and IntServ
First, let us consider IntServ. IntServ has two principal
components. One component is embedded in the datapath of the
networking device. Its functions include the classification and
policing of individual flows, and scheduling admitted packets for the
outbound link. The other component of IntServ is admission control,
which focuses on the management of the signaling protocol (e.g., the
PATH and RESV messages of RSVP). This component processes
reservation requests, manages bandwidth, outsources decision making
to policy servers, and interacts with the Routing Table manager.
We will consider RSVP when defining the structure of this information
model. As this document focuses on the datapath, elements of RSVP
applicable to the datapath will be considered in the structure of the
classes. The complete IntServ device model will, as we have
indicated earlier, be addressed in a subsequent document.
This document models a small subset of the QoS policy problem, in
hopes of constructing a methodology that can be adapted for other
aspects of QoS in particular, and of policy construction in general.
The focus in this document is on QoS for devices that implement
traffic conditioning in the datapath.
DiffServ operates exclusively in the datapath. It has all of the
same components of the IntServ datapath, with two major differences.
First, DiffServ classifies packets based solely on their DSCP field,
whereas IntServ examines a subset of a standard flow's addressing 5-
tuple. The exception to this rule occurs in a router or host at the
boundary of a DiffServ domain. A device in this position may examine
a packet's DSCP, its addressing 5-tuple, other fields in the packet,
or even information wholly outside the packet, in determining the
DSCP value with which to mark the packet prior to its transfer into
the DiffServ domain. However, routers in the interior of a DiffServ
domain will only need to classify based on the DSCP field.
Moore, et al. Standards Track [Page 8]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
The second difference between IntServ and DiffServ is that the
signaling protocol used in IntServ (e.g., RSVP) affects the
configuration of the datapath in a more dynamic fashion. This is
because each newly admitted RSVP reservation requires a
reconfiguration of the datapath. In contrast, DiffServ requires far
fewer changes to the datapath after the Per Hop Behaviors (PHBs) have
been configured.
The approach advocated in this document for the creation of policies
that control the various QoS mechanisms of networking devices is to
first identify the attributes with which policies are to be
constructed. These attributes are the parameters used in expressions
that are necessary to construct policies. There is also a parallel
desire to define the operators, relations, and precedence constructs
necessary to construct the conditions and actions that constitute
these policies. However, these efforts are beyond the scope of this
document.
2.2. Specific Needs Of DiffServ
DiffServ-specific rules focus on two particular areas: the core and
the edges of the network. As explained in the DiffServ Architecture
document [R2475], devices at the edge of the network classify traffic
into different traffic streams. The core of the network then
forwards traffic from different streams by using a set of Per Hop
Behaviors (PHBs). A DSCP identifies each PHB. The DSCP is part of
the IP header of each packet (as described in [R2474]). This enables
multiple traffic streams to be aggregated into a small number of
aggregated traffic streams, where each aggregate traffic stream is
identified by a particular DSCP, and forwarded using a particular
PHB.
The attributes used to manipulate QoS capabilities in the core of the
network primarily address the behavioral characteristics of each
supported PHB. At the edges of the DiffServ network, the additional
complexities of flow classification, policing, RSVP mappings,
remarkings, and other factors have to be considered. Additional
modeling will be required in this area. However, first, the
standards for edges of the DiffServ network need more detail - to
allow the edges to be incorporated into the policy model.
2.3. Specific Needs Of IntServ
This document focuses exclusively on the forwarding aspects of
network QoS. Therefore, while the forwarding aspects of IntServ are
considered, the management of IntServ is not considered. This topic
will be addressed in a future document.
Moore, et al. Standards Track [Page 9]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
3. Methodology
There is a clear need to define attributes and behavior that together
define how traffic should be conditioned. This document defines a
set of classes and relationships that represent the QoS mechanisms
used to condition traffic; [QPIM] is used to define policies to
control the QoS mechanisms defined in this document.
However, some very basic issues need to be considered when combining
these documents. Considering these issues should help in
constructing a schema for managing the operation and configuration of
network QoS mechanisms through the use of QoS policies.
3.1. Level of Abstraction for Expressing QoS Policies
The first issue requiring consideration is the level of abstraction
at which QoS policies should be expressed. If we consider policies
as a set of rules used to react to events and manipulate attributes
or generate new events, we realize that policy represents a continuum
of specifications that relate business goals and rules to the
conditioning of traffic done by a device or a set of devices. An
example of a business level policy might be: from 1:00 pm PST to 7:00
am EST, sell off 40% of the network capacity on the open market. In
contrast, a device-specific policy might be: if the queue depth grows
at a geometric rate over a specified duration, trigger a potential
link failure event.
A general model for this continuum is shown in Figure 1 below.
+---------------------+
| High-Level Business | Not directly related to device
| Policies | operation and configuration details
+---------------------+
|
|
+---------V-----------+
| Device-Independent | Translate high-level policies to
| Policies | generic device operational and
+---------------------+ configuration information
|
|
+---------V-----------+
| Device-Dependent | Translate generic device information
| Policies | to specify how particular devices
+---------------------+ should operate and be configured
Figure 1. The Policy Continuum
Moore, et al. Standards Track [Page 10]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
High-level business policies are used to express the requirements of
the different applications, and prioritize which applications get
"better" treatment when the network is congested. The goal, then, is
to use policies to relate the operational and configuration needs of
a device directly to the business rules that the network
administrator is trying to implement in the network that the device
belongs to.
Device-independent policies translate business policies into a set of
generalized operational and configuration policies that are
independent of any specific device, but dependent on a particular set
of QoS mechanisms, such as random early detection (RED) dropping or
weighted round robin scheduling. Not only does this enable different
types of devices (routers, switches, hosts, etc.) to be controlled by
QoS policies, it also enables devices made by different vendors that
use the same types of QoS mechanisms to be controlled. This enables
these different devices to each supply the correct relative
conditioning to the same type of traffic.
In contrast, device-dependent policies translate device-independent
policies into ones that are specific for a given device. The reason
that a distinction is made between device-independent and device-
dependent policies is that in a given network, many different devices
having many different capabilities need to be controlled together.
Device-independent policies provide a common layer of abstraction for
managing multiple devices of different capabilities, while device-
dependent policies implement the specific conditioning that is
required. This document provides a common set of abstractions for
representing QoS mechanisms in a device-independent way.
This document is focused on the device-independent representation of
QoS mechanisms. QoS mechanisms are modeled in sufficient detail to
provide a common device-independent representation of QoS policies.
They can also be used to provide a basis for specialization, enabling
each vendor to derive a set of vendor-specific classes that represent
how traffic conditioning is done for that vendor's set of devices.
3.2. Specifying Policy Parameters
Policies are a function of parameters (attributes) and operators
(boolean, arithmetic, relational, etc.). Therefore, both need to be
defined as part of the same policy in order to correctly condition
the traffic. If the parameters of the policy are specified too
narrowly, they will reflect the individual implementations of QoS in
each device. As there is currently little consensus in the industry
on what the correct implementation model for QoS is, most defined
attributes would only be applicable to the unique characteristics of
a few individual devices. Moreover, standardizing all of these
Moore, et al. Standards Track [Page 11]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
potential implementation alternatives would be a never-ending task as
new implementations continued to appear on the market.
On the other hand, if the parameters of the policy are specified too
broadly, it is impossible to develop meaningful policies. For
example, if we concentrate on the so-called Olympic set of policies,
a business policy like "Bob gets Gold Service," is clearly
meaningless to the large majority of existing devices. This is
because the device has no way of determining who Bob is, or what QoS
mechanisms should be configured in what way to provide Gold service.
Furthermore, Gold service may represent a single service, or it may
identify a set of services that are related to each other. In the
latter case, these services may have different conditioning
characteristics.
This document defines a set of parameters that fit into a canonical
model for modeling the elements in the forwarding path of a device
implementing QoS traffic conditioning. By defining this model in a
device-independent way, the needed parameters can be appropriately
abstracted.
3.3. Specifying Policy Services
Administrators want the flexibility to be able to define traffic
conditioning without having to have a low-level understanding of the
different QoS mechanisms that implement that conditioning.
Furthermore, administrators want the flexibility to group different
services together, describing a higher-level concept such as "Gold
Service". This higher-level service could be viewed as providing the
processing to deliver "Gold" quality of service.
These two goals dictate the need for the following set of
abstractions:
o a flexible way to describe a service
o must be able to group different services that may use different
technologies (e.g., DiffServ and IEEE 802.1Q) together
o must be able to define a set of sub-services that together make up
a higher-level service
o must be able to associate a service and the set of QoS mechanisms
that are used to condition traffic for that service
o must be able to define policies that manage the QoS mechanisms
used to implement a service.
Moore, et al. Standards Track [Page 12]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
This document addresses this set of problems by defining a set of
classes and associations that can represent abstract concepts like
"Gold Service," and bind each of these abstract services to a
specific set of QoS mechanisms that implement the conditioning that
they require. Furthermore, this document defines the concept of
"sub-services," to enable Gold Service to be defined either as a
single service or as a set of services that together should be
treated as an atomic entity.
Given these abstractions, policies (as defined in [QPIM]) can be
written to control the QoS mechanisms and services defined in this
document.
3.4. Level of Abstraction for Defining QoS Attributes and Classes
This document defines a set of classes and properties to support
policies that configure device QoS mechanisms. This document
concentrates on the representation of services in the datapath that
support both DiffServ (for aggregate traffic conditioning) and
IntServ (for flow-based traffic conditioning). Classes and
properties for modeling IntServ admission control services may be
defined in a future document.
The classes and properties in this document are designed to be used
in conjunction with the QoS policy classes and properties defined in
[QPIM]. For example, to preserve the delay characteristics committed
to an end-user, a network administrator may wish to create policies
that monitor the queue depths in a device, and adjust resource
allocations when delay budgets are at risk (perhaps as a result of a
network topology change). The classes and properties in this
document define the specific services and mechanisms required to
implement those services. The classes and properties defined in
[QPIM] provide the overall structure of the policy that manages and
configures this service.
This combination of low-level specification (using this document) and
high-level structuring (using [QPIM]) of network services enables
network administrators to define new services required of the
network, that are directly related to business goals, while ensuring
that such services can be managed. However, this goal (of creating
and managing service-oriented policies) can only be realized if
policies can be constructed that are capable of supporting diverse
implementations of QoS. The solution is to model the QoS
capabilities of devices at the behavioral level. This means that for
traffic conditioning services realized in the datapath, the model
must support the following characteristics:
o modeling of a generic network service that has QoS capabilities
Moore, et al. Standards Track [Page 13]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
o modeling of how the traffic conditioning itself is defined
o modeling of how statistics are gathered to monitor QoS traffic
conditioning services - this facet of the model will be added in a
future document.
This document models a network service, and associates it with one or
more QoS mechanisms that are used to implement that service. It also
models in a canonical form the various components that are used to
condition traffic, such that standard as well as custom traffic
conditioning services may be described.
3.5. Characterization of QoS Properties
The QoS properties and classes will be described in more detail in
Section 4. However, we should consider the basic characteristics of
these properties, to understand the methodology for representing
them.
There are essentially two types of properties, state and
configuration. Configuration properties describe the desired state
of a device, and include properties and classes for representing
desired or proposed thresholds, bandwidth allocations, and how to
classify traffic. State properties describe the actual state of the
device. These include properties to represent the current
operational values of the attributes in devices configured via the
configuration properties, as well as properties that represent state
(queue depths, excess capacity consumption, loss rates, and so
forth).
In order to be correlated and used together, these two types of
properties must be modeled using a common information model. The
possibility of modeling state properties and their corresponding
configuration settings is accomplished using the same classes in this
model - although individual instances of the classes would have to be
appropriately named or placed in different containers to distinguish
current state values from desired configuration settings.
State information is addressed in a very limited fashion by QDDIM.
Currently, only CurrentQueueDepth is proposed as an attribute on
QueuingService. The majority of the model is related to
configuration. Given this fact, it is assumed that this model is a
direct memory map into a device. All manipulation of model classes
and properties directly affects the state of the device. If it is
desired to also use these classes to represent desired configuration,
that is left to the discretion of the implementor.
Moore, et al. Standards Track [Page 14]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
It is acknowledged that additional properties are needed to
completely model current state. However, many of the properties
defined in this document represent exactly the state variables that
will be configured by the configuration properties. Thus, the
definition of the configuration properties has an exact
correspondence with the state properties, and can be used in modeling
both actual (state) and desired/proposed configuration.
3.6. QoS Information Model Derivation
The question of context also leads to another question: how does the
information specified in the core and QoS policy models ([PCIM],
[PCIME], and [QPIM], respectively) integrate with the information
defined in this document? To put it another way, where should
device-independent concepts that lead to device-specific QoS
attributes be derived from?
Past thinking was that QoS was part of the policy model. This view
is not completely accurate, and it leads to confusion. QoS is a set
of services that can be controlled using policy. These services are
represented as device mechanisms. An important point here is that
QoS services, as well as other types of services (e.g., security),
are provided by the mechanisms inherent in a given device. This
means that not all devices are indeed created equal. For example,
although two devices may have the same type of mechanism (e.g., a
queue), one may be a simple implementation (i.e., a FIFO queue)
whereas one may be much more complex and robust (e.g., class-based
weighted fair queuing (CBWFQ)). However, both of these devices can
be used to deliver QoS services, and both need to be controlled by
policy. Thus, a device-independent policy can instruct the devices
to queue certain traffic, and a device-specific policy can be used to
control the queuing in each device.
Furthermore, policy is used to control these mechanisms, not to
represent them. For example, QoS services are implemented with
classifiers, meters, markers, droppers, queues, and schedulers.
Similarly, security is also a characteristic of devices, as
authentication and encryption capabilities represent services that
networked devices perform (irrespective of interactions with policy
servers). These security services may use some of the same
mechanisms that are used by QoS services, such as the concepts of
filters. However, they will mostly require different mechanisms than
the ones used by QoS, even though both sets of services are
implemented in the same devices.
Thus, the similarity between the QoS model and models for other
services is not so much that they contain a few common mechanisms.
Rather, they model how a device implements their respective services.
Moore, et al. Standards Track [Page 15]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
As such, the modeling of QoS should be part of a networking device
schema rather than a policy schema. This allows the networking
device schema to concentrate on modeling device mechanisms, and the
policy schema to focus on the semantics of representing the policy
itself (conditions, actions, operators, etc.). While this document
concentrates on defining an information model to represent QoS
services in a device datapath, the ultimate goal is to be able to
apply policies that control these services in network devices.
Furthermore, these two schemata (device and policy) must be tightly
integrated in order to enable policy to control QoS services.
3.7. Attribute Representation
The last issue to be considered is the question of how attributes are
represented. If QoS attributes are represented as absolute numbers
(e.g., Class AF2 gets 2 Mbs of bandwidth), it is more difficult to
make them uniform across multiple ports in a device or across
multiple devices, because of the broad variation in link capacities.
However, expressing attributes in relative or proportional terms
(e.g., Class AF2 gets 5% of the total link bandwidth) makes it more
difficult to express certain types of conditions and actions, such
as:
(If ConsumedBandwidth = AssignedBandwidth Then ...)
There are really three approaches to addressing this problem:
o Multiple properties can be defined to express the same value in
various forms. This idea has been rejected because of the
difficulty in keeping these different properties synchronized
(e.g., when one property changes, the others all have to be
updated).
o Multi-modal properties can be defined to express the same value,
in different terms, based on the access or assignment mode. This
option was rejected because it significantly complicates the model
and is impossible to express in current directory access protocols
(e.g., (L)DAP).
o Properties can be expressed as "absolutes", but the operators in
the policy schema would need to be more sophisticated. Thus, to
represent a percentage, division and multiplication operators are
required (e.g., Class AF2 gets .05 * the total link bandwidth).
This is the approach that has been taken in this document.
Moore, et al. Standards Track [Page 16]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
3.8. Mental Model
The mental model for constructing this schema is based on the work
done in the Differentiated Services working group. This schema is
based on information provided in the current versions of the DiffServ
Informal Management Model [DSMODEL], the DiffServ MIB [DSMIB], the
PIB [PIB], as well as on information in the set of RFCs that
constitute the basic definition of DiffServ itself ([R2475], [R2474],
[R2597], and [R3246]). In addition, a common set of terminology is
available in [POLTERM].
This model is built around two fundamental class hierarchies that are
bound together using a set of associations. The two class
hierarchies derive from the QoSService and ConditioningService base
classes. A set of associations relate lower-level QoSService
subclasses to higher-level QoS services, relate different types of
conditioning services together in processing a traffic class, and
relate a set of conditioning services to a specific QoS service.
This combination of associations enables us to view the device as
providing a set of services that can be configured, in a modular
building block fashion, to construct application-specific services.
Thus, this document can be used to model existing and future standard
as well as application-specific network QoS services.
3.8.1. The QoSService Class
The first of the classes defined here, QoSService, is used to
represent higher-level network services that require special
conditioning of their traffic. An instance of QoSService (or one of
its subclasses) is used to bring together a group of conditioning
services that, from the perspective of the system manager, are all
used to deliver a common service. Thus, the set of classifiers,
markers, and related conditioning services that provide premium
service to the "selected" set of user traffic may be grouped together
into a premium QoS service.
QoSService has a set of subclasses that represent different
approaches to delivering IP services. The currently defined set of
subclasses are a FlowService for flow-oriented QoS delivery and a
DiffServService for DiffServ aggregate-oriented QoS service delivery.
The QoS services can be related to each other as peers, or they can
be implemented as subservient services to each other. The
QoSSubService aggregation indicates that one or more QoSService
objects are subservient to a particular QoSService object. For
example, this enables us to define Gold Service as a combination of
two DiffServ services, one for high quality traffic treatment, and
one for servicing the rest of the traffic. Each of these
Moore, et al. Standards Track [Page 17]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
DiffServService objects would be associated with a set of
classifiers, markers, etc, such that the high quality traffic would
get EF marking and appropriate queuing.
The DiffServService class itself has an AFService subclass. This
subclass is used to represent the specific notion that several
related markings within the AF PHB Group work together to provide a
single service. When other DiffServ PHB Groups are defined that use
more than one code point, these will be likely candidates for
additional DiffServService subclasses.
Technology-specific mappings of these services, representing the
specific use of PHB marking or 802.1Q marking, are captured within
the ConditioningService hierarchy, rather than in the subclasses of
QoSService.
These concepts are depicted in Figure 2. Note that both of the
associations are aggregations: a QoSService object aggregates both
the set of QoSService objects subservient to it, and the set of
ConditioningService objects that realize it. See Section 4 for class
and association definitions.
/\______
0..1 \/ |
+--------------+ | QoSSubService +---------------+
| |0..n | | |
| QoSService |----- | Conditioning |
| | | Service |
| | | |
| |0..n 0..n| |
| | /\______________________| |
| | \/ QoSConditioning | |
+--------------+ SubService +---------------+
Figure 2. QoSService and its Aggregations
3.8.2. The ConditioningService Class
The goal of the ConditioningService classes is to describe the
sequence of traffic conditioning that is applied to a given traffic
stream on the ingress interface through which it enters a device, and
then on the egress interface through which it leaves the device.
This is done using a set of classes and relationships. The routing
decision in the device core, which selects which egress interface a
particular packet will use, is not represented in this model.
A single base class, ConditioningService, is the superclass for a set
of subclasses representing the mechanisms that condition traffic.
Moore, et al. Standards Track [Page 18]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
These subclasses define device-independent conditioning primitives
(including classifiers, meters, markers, droppers, queues, and
schedulers) that together implement the conditioning of traffic on an
interface. This model abstracts these services into a common set of
modular building blocks that can be used, regardless of device
implementation, to model the traffic conditioning internal to a
device.
The different conditioning mechanisms need to be related to each
other to describe how traffic is conditioned. Several important
variations of how these services are related together exist:
o A particular ingress or egress interface may not require all the
types of ConditioningServices.
o Multiple instances of the same mechanism may be required on an
ingress or egress interface.
o There is no set order of application for the ConditioningServices
on an ingress or egress interface.
Therefore, this model does not dictate a fixed ordering among the
subclasses of ConditioningService, or identify a subclass of
ConditioningService that must appear first or last among the
ConditioningServices on an ingress or egress interface. Instead,
this model ties together the various ConditioningService instances on
an ingress or egress interface using the NextService,
NextServiceAfterMeter, and NextServiceAfterConditioningElement
associations. There are also separate associations, called
IngressConditioningServiceOnEndpoint and
EgressConditioningServiceOnEndpoint, which, respectively, tie an
ingress interface to its first ConditioningService, and tie an egress
interface to its last ConditioningService(s).
3.8.3. Preserving QoS Information from Ingress to Egress
There is one important way in which the QDDIM model diverges from the
[DSMODEL]. In [DSMODEL], traffic passes through a network device in
three stages:
o It comes in on an ingress interface, where it may receive QoS
conditioning.
o It traverses the routing core, where logic outside the scope of
QoS determines which egress interface it will use to leave the
device.
Moore, et al. Standards Track [Page 19]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
o It may receive further QoS conditioning on the selected egress
interface, and then it leaves the device.
In this model, no information about the QoS conditioning that a
packet receives on the ingress interface is communicated with the
packet across the routing core to the egress interface.
The QDDIM model relaxes this restriction, to allow information about
the treatment that a packet received on an ingress interface to be
communicated along with the packet to the egress interface. (This
relaxation adds a capability that is present in many network
devices.) QDDIM represents this information transfer in terms of a
packet preamble, which is how many devices implement it. But
implementations are free to use other mechanisms to achieve the same
result.
+---------+
| Meter-A |
a | | b d
--->| In-|---PM-1--->
| | c e
| Out-|---PM-2--->
+---------+
Figure 3: Meter Followed by Two Preamble Markers
Figure 3 shows an example in which meter results are captured in a
packet preamble. The arrows labeled with single letters represent
instances of either the NextService association (a, d, and e), or of
its peer association NextServiceAfterMeter (b and c). PreambleMarker
PM-1 adds to the packet preamble an indication that the packet exited
Meter A as conforming traffic. Similarly, PreambleMarker PM-2 adds to
the preambles of packets that come through it indications that they
exited Meter A as nonconforming traffic. A PreambleMarker appends
its information to whatever is already present in a packet preamble,
as opposed to overwriting what is already there.
To foster interoperability, the basic format of the information
captured by a PreambleMarker is specified. (Implementations, of
course, are free to represent this information in a different way
internally - this is just how it is represented in the model.) The
information is represented by an ordered, multi-valued string
property FilterItemList, where each individual value of the property
is of the form "<type>,<value>". When a PreambleMarker "appends" its
information to the information that was already present in a packet
preamble, it does so by adding additional items of the indicated
format to the end of the list.
Moore, et al. Standards Track [Page 20]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
QDDIM provides a limited set of <type>'s that a PreambleMarker may
use:
o ConformingFromMeter: the value is the name of the meter.
o PartConformingFromMeter: the value is the name of the meter.
o NonConformingFromMeter: the value is the name of the meter.
o VlanId: the value is the virtual LAN identifier (VLAN ID).
Implementations may recognize other <type>'s in addition to these.
If collisions of implementation-specific <type>'s become a problem,
it is possible that <type>'s may become an IANA-administered range in
a future revision of this document.
To make use of the information that a PreambleMarker stores in a
packet preamble, a specific subclass PreambleFilter of
FilterEntryBase is defined, to match on the "<type>,<value>" strings.
To simplify the case where there's just a single level of metering in
a device, but different individual meters on each ingress interface,
PreambleFilter allows a wildcard "any" for the <value> part of the
three meter-related filters. With this wildcard, an administrator
can specify a Classifier to select all packets that were found to be
conforming (or partially conforming, or non-conforming) by their
respective meters, without having to name each meter individually in
a separate ClassifierElement.
Once a meter result has been stored in a packet preamble, it is
available for any subsequent Classifier to use. So while the
motivation for this capability has been described in terms of
preserving QoS conditioning information from an ingress interface to
an egress interface, a prior meter result may also be used for
classifying packets later in the datapath on the same interface where
the meter resides.
3.9. Classifiers, FilterLists, and Filter Entries
This document uses a number of classes to model the classifiers
defined in [DSMODEL]: ClassifierService, ClassifierElement,
FilterList, FilterEntryBase, and various subclasses of
FilterEntryBase. There are also two associations involved:
ClassifierElementUsesFilterList and EntriesInFilterList. The QDDIM
model makes no use of CIM's FilterEntry class.
In [DSMODEL], a single traffic stream coming into a classifier is
split into multiple traffic streams leaving it, based on which of an
ordered set of filters each packet in the incoming stream matches. A
Moore, et al. Standards Track [Page 21]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
filter matches either a field in the packet itself, or possibly other
attributes associated with the packet. In the case of a multi-field
(MF) classifier, packets are assigned to output streams based on the
contents of multiple fields in the packet header. For example, an MF
classifier might assign packets to an output stream based on their
complete IP-addressing 5-tuple.
To optimize the representation of MF classifiers, subclasses of
FilterEntryBase are introduced, which allow multiple related packet
header fields to be represented in a single object. These subclasses
are IPHeaderFilter and 8021Filter. With IPHeaderFilter, for example,
criteria for selecting packets based on all five of the IP 5-tuple
header fields and the DiffServ DSCP can be represented by a
FilterList containing one IPHeaderFilter object. Because these two
classes have applications beyond those considered in this document,
they, as well as the abstract class FilterEntryBase, are defined in
the more general document [PCIME] rather than here.
The FilterList object is always needed, even if it contains only one
filter entry (that is, one FilterEntryBase subclass) object. This is
because a ClassifierElement can only be associated with a Filter
List, as opposed to an individual FilterEntry. FilterList is also
defined in [PCIME].
The EntriesInFilterList aggregation (also defined in [PCIME]) has a
property EntrySequence, which in the past (in CIM) could be used to
specify an evaluation order on the filter entries in a FilterList.
Now, however, the EntrySequence property supports only a single
value: '0'. This value indicates that the FilterEntries are ANDed
together to determine whether a packet matches the MF selector that
the FilterList represents.
A ClassifierElement specifies the starting point for a specific
policy or data path. Each ClassifierElement uses the
NextServiceAfterClassifierElement association to determine the next
conditioning service to apply for packets to.
A ClassifierService defines a grouping of ClassifierElements. There
are certain instances where a ClassifierService actually specifies an
aggregation of ClassifierServices. One practical case would be where
each ClassifierService specifies a group of policies associated with
a particular application and another ClassifierService groups the
application-specific ClassifierService instances. In this particular
case, the application-specific ClassifierService instances are
specified once, but unique combinations of these ClassifierServices
are specified, as needed, using other ClassifierService instances.
ClassifierService instances grouping other ClassifierService
instances may not specify a FilterList using the
Moore, et al. Standards Track [Page 22]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
ClassifierElementUsesFilterList association. This special use of
ClassifierService serves just as a Classifier collecting function.
3.10. Modeling of Droppers
In [DSMODEL], a distinction is made between absolute droppers and
algorithmic droppers. In QDDIM, both of these types of droppers are
modeled with the DropperService class, or with one of its subclasses.
In both cases, the queue from which the dropper drops packets is tied
to the dropper by an instance of the NextService association. The
dropper always plays the PrecedingService role in these associations,
and the queue always plays the FollowingService role. There is
always exactly one queue from which a dropper drops packets.
Since an absolute dropper drops all packets in its queue, it needs no
configuration beyond a NextService tie to that queue. For an
algorithmic dropper, however, further configuration is needed:
o a specific drop algorithm;
o parameters for the algorithm (for example, token bucket size);
o the source(s) of input(s) to the algorithm;
o possibly per-input parameters for the algorithm.
The first two of these items are represented by properties of the
DropperService class, or properties of one of its subclasses. The
last two, however, involve additional classes and associations.
3.10.1. Configuring Head and Tail Droppers
The HeadTailDropQueueBinding is the association that identifies the
inputs for the algorithm executed by a tail dropper. This
association is not used for a head dropper, because a head dropper
always has exactly one input to its drop algorithm, and this input is
always the queue from which it drops packets. For a tail dropper,
this association is defined to have a many-to-many cardinality.
There are, however, two distinct cases:
One dropper bound to many queues: This represents the case where the
drop algorithm for the dropper involves inputs from more than one
queue. The dropper still drops from only one queue, the one to which
it is tied by a NextService association. But the drop decision may
be influenced by the state of several queues. For the classes
HeadTailDropper and HeadTailDropQueueBinding, the rule for combining
the multiple inputs is simple addition: if the sum of the lengths of
the monitored queues exceeds the dropper's QueueThreshold value, then
Moore, et al. Standards Track [Page 23]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
packets are dropped. This rule for combining inputs may, however, be
overridden by a different rule in subclasses of one or both of these
classes.
One queue bound to many droppers: This represents the case where the
state of one queue (which is typically also the queue from which
packets are dropped) provides an input to multiple droppers' drop
algorithms. A use case here is a classifier that splits a traffic
stream into, say, four parts, representing four classes of traffic.
Each of the parts goes through a separate HeadTailDropper, then
they're re-merged onto the same queue. The net is a single queue
containing packets of four traffic types, with, say, the following
drop thresholds:
o Class 1 - 90% full
o Class 2 - 80% full
o Class 3 - 70% full
o Class 4 - 50% full
Here the percentages represent the overall state of the queue. With
this configuration, when the queue in question becomes 50% full,
Class 4 packets will be dropped rather than joining the queue, when
it becomes 70% full, Class 3 and 4 packets will be dropped, etc.
The two cases described here can also occur together, if a dropper
receives inputs from multiple queues, one or more of which are also
providing inputs to other droppers.
3.10.2. Configuring RED Droppers
Like a tail dropper, a RED dropper, represented by an instance of the
REDDropperService class, may take as its inputs the states of
multiple queues. In this case, however, there is an additional step:
each of these inputs may be smoothed before the RED dropper uses it,
and the smoothing process itself must be parameterized. Consequently,
in addition to REDDropperService and QueuingService, a third class,
DropThresholdCalculationService, is introduced, to represent the
per-queue parameterization of this smoothing process.
Moore, et al. Standards Track [Page 24]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
The following instance diagram illustrates how these classes work
with each other:
RDSvc-A
| | |
+-----+ | +-----+
| | |
DTCS-1 DTCS-2 DTCS-3
| | |
Q-1 Q-2 Q-3
Figure 4. Inputs for a RED Dropper
So REDDropperService-A (RDSvc-A) is using inputs from three queues to
make its drop decision. (As always, RDSvc-A is linked to the queue
from which it drops packets via the NextService association.) For
each of these three queues, there is a
(DropThresholdCalculationService) DTCS instance that represents the
smoothing weight and time interval to use when looking at that queue.
Thus each DTCS instance is tied to exactly one queue, although a
single queue may be examined (with different weight and time values)
by multiple DTCS instances. Also, a DTCS instance and the queue
behind it can be thought of as a "unit of reusability". So a single
DTCS can be referred to by multiple RDSvc's.
Unless it is overridden by a different rule in a subclass of
REDDropperService, the rule that a RED dropper uses to combine the
smoothed inputs from the DTCS's to create a value to use in making
its drop decision is simple addition.
3.11. Modeling of Queues and Schedulers
In order to appreciate the rationale behind this rather complex model
for scheduling, we must consider the rather complex nature of
schedulers, as well as the extreme variations in algorithms and
implementations. Although these variations are broad, we have
identified four examples that serve to test the model and justify its
complexity.
3.11.1. Simple Hierarchical Scheduler
A simple, hierarchical scheduler has the following properties. First,
when a scheduling opportunity is given to a set of queues, a single,
viable queue is determined based on some scheduling criteria, such as
bandwidth or priority. The output of the scheduler is the input to
another scheduler that treats the first scheduler (and its queues) as
a single logical queue. Hence, if the first scheduler determined the
appropriate packet to release based on a priority assigned to each
Moore, et al. Standards Track [Page 25]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
queue, the second scheduler might specify a bandwidth
limit/allocation for the entire set of queues aggregated by the first
scheduler.
+----------+ NextService
|QueuingSvc+----------------------------------------------+
| Name=EF1 | |
| | QueueTo +--------------+ ElementSched |
| +------------+PrioritySched +---------------+ |
+----------+ Schedule |Element | Service | |
| Name=EF1-Pri | | v
| Priority=1 | +-----------+-+-+
+--------------+ |SchedulingSvc +
| Name=PriSched1+
+--------------+ +----------+--+-+
|PrioritySched | ElementSched | ^
+----------+ |Element +---------------+ |
|QueuingSvc| QueueTo | Name=AF1x-Pri| Service |
| Name=AF1x+------------+ Priority=2 | |
| | Schedule +--------------+ |
| | NextService |
| +----------------------------------------------+
+----------+
:
+---------------+ NextScheduler
|SchedulingSvc +--------------------------------------------+
| Name=PriSched1| |
+-------+-------+ +--------------------+ElementSchedSvc|
| SchedToSched |AllocationScheduling+--------+ |
+---------------+Element | | |
| Name=PriSched1-Band| | |
| Units=Bytes | | v
| Bandwidth=100 | +------+------+--+
+--------------------+ |SchedulingSvc |
| Name=BandSched1|
+--------------------+ +------+------+--+
|AllocationScheduling| | ^
+---------------+ |Element +--------+ |
|QueuingService | | Name=BE-Band |ElementSchedSvc|
| Name=BE |QueueTo+ Units=Bytes | |
| |-------+ Bandwidth=50 | |
| |Sched +--------------------+ |
| | NextService |
| +--------------------------------------------+
+---------------+
Figure 5. Example 1: Simple Hierarchical Scheduler
Moore, et al. Standards Track [Page 26]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
Figure 5 illustrates the example and how it would be instantiated
using the model. In the figure, NextService determines the first
scheduler after the queue. NextScheduler determines the
subsequent ordering of schedulers. In addition, the
ElementSchedulingService association determines the set of
scheduling parameters used by a specific scheduler. Scheduling
parameters can be bound either to queues or to schedulers. In
the case of the SchedulingElement EF1-Pri, the binding is to a
queue, so the QueueToSchedule association is used. In the case
of the SchedulingElement PriSched1-Band, the binding is to
another scheduler, so the SchedulerToSchedule association is
used. Note that due to space constraints of the document, the
SchedulingService PRISched1 is represented twice, to show how it
is connected to all the other objects.
3.11.2. Complex Hierarchical Scheduler
A complex, hierarchical scheduler has the same characteristics as
a simple scheduler, except that the criteria for the second
scheduler are determined on a per queue basis rather than on an
aggregate basis. One scenario might be a set of bounded priority
schedulers. In this case, each queue is assigned a relative
priority. However, each queue is also not allowed to exceed a
bandwidth allocation that is unique to that queue. In order to
support this scenario, the queue must be bound to two separate
schedulers. Figure 6 illustrates this situation, by describing
an EF queue and a best effort (BE) queue both pointing to a
priority scheduler via the NextService association. The
NextScheduler association between the priority scheduler and the
bandwidth scheduler in turn defines the ordering of the
scheduling hierarchy. Also note that each scheduler has a
distinct set of scheduling parameters that are bound back to each
queue. This demonstrates the need to support two or more
parameter sets on a per queue basis.
Moore, et al. Standards Track [Page 27]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
+----------------+
|QueuingService |
| Name=EF |
| |QueueTo +----------------+ElementSchedSvc
| +----------+AllocationSched +--------+
++---+-----------+Schedule |Element | |
| | | Name=BandEF | |
| |QueueTo | Units=Bytes | |
| |Schedule | Bandwidth=100 | |
| | +----------------+ +------+---------+
| | |SchedulingSvc |
| | +------------------+ | Name=BandSched |
| +------+PriorityScheduling| +------------+--++
| |Element | ^ |
| | Name=PriEF |ElementSchedSvc | |
| | Priority=1 +---------------------+ | |
| +------------------+ | | |
|NextService | | |
+-------------------------------------------------+ | | |
| | | |
NextService | | | |
+-----------------------------------------------+ | | | |
| | | | | |
| +------------------+ElementSchedSvc | | | | |
| |PriorityScheduling+--------+ | | | | |
| |Element | | | | | | |
| | Name=PriBE | | v v | | |
| +------+ Priority=2 | +---+--------+-+-+-+Next| |
| | +------------------+ |SchedulingService +----+ |
| | | Name=PriSched |Sched |
| | +------------------+ |
| |QueueTo |
| |Schedule +----------------+ |
| | |AllocationSched |ElementSchedSvc |
+----+---------+ |Element +-----------------+
|QueuingService|QueueTo | Name=BandBE |
| Name=BE +------------+ Units=Bytes |
| |Schedule | Bandwidth=50 |
| | +----------------+
+--------------+
Figure 6. Example 2: Complex Hierarchical Scheduler
Moore, et al. Standards Track [Page 28]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
3.11.3. Excess Capacity Scheduler
An excess capacity scheduler offers a similar requirement to support
two scheduling parameter sets per queue. However, in this scenario
the reasons are a little different. Suppose a set of queues have
each been assigned bandwidth limits to ensure that no traffic class
starves out another traffic class. The result may be that one or
more queues have exceeded their allocation while the queues that
deserve scheduling opportunities are empty.
The question then is how is the excess (idle) bandwidth allocated.
Conceivably, the scheduling criteria for excess capacity are
completely different from the criteria that determine allocations
under uniform load. This could be supported with a scheduling
hierarchy. However, the problem is that the criteria for using the
subsequent scheduler are different from those in the last two cases.
Specifically, the next scheduler should only be used if a scheduling
opportunity exists that was passed over by the prior scheduler.
When a scheduler chooses to forgo a scheduling decision, it is
behaving as a non-work conserving scheduler. Work conserving
schedulers, by definition, will always take advantage of a scheduling
opportunity, irrespective of which queue is being serviced and how
much bandwidth it has consumed in the past. This point leads to an
interesting insight. The semantics of a non-work conserving
scheduler are equivalent to those of a meter, in that if a packet is
in profile it is given the scheduling opportunity, and if it is out
of profile it does not get a scheduling opportunity. However, with
meters there are semantics that determine the next action behavior
when the packet is in profile and when the packet is out of profile.
Similarly, with the non-work conserving scheduler, there needs to be
a means for determining the next scheduler when a scheduler chooses
not to utilize a scheduling opportunity.
Figure 7 illustrates this last scenario. It appears very similar to
Figure 6, except that the binding between the allocation scheduler
and the WRR scheduler is using a FailNextScheduler association. This
association is explicitly indicating the fact that the only time the
WRR scheduler would be used is when there are non-empty queues that
the allocation scheduler rejected for scheduling consideration. Note
that Figure 7 is incomplete, in that typically there would be several
more queues that are bound to an allocation scheduler and a WRR
scheduler.
Moore, et al. Standards Track [Page 29]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
+------------+
|QueuingSvc |
| Name=EF |
| |
| |
++-+---------+
| |
| |QueueTo
| |Schedule +--------------+
| | |SchedulingSvc |
| | +------------------+ | Name=WRRSched|
| +------+AllocationSched | +----------+-+-+
| |Element | ^ |
| | Name=BandEF |ElementSchedSvc | |
| | Units=Bytes +--------------------+ | |
| | Bandwidth=100 | | | |
| +------------------+ | | |
|NextService | | |
+----------------------------------------------+ | | |
| | | |
NextService | | | |
+--------------------------------------------+ | | | |
| | | | | |
| +------------------+ElementSchedSvc | | | | |
| |AllocationSched +--------+ | | | | |
| |Element | | | | | | |
| | Name=BandwidthAF1| | | | | | |
| | Units=Bytes | | v v | | |
| +------+ Bandwidth=50 | +--+----------+-+-++FailNext| |
| | +------------------+ |SchedulingService +--------+ |
| |QueueTo | Name=BandSched |Scheduler |
| |Schedule +------------------+ |
| | |
| | +---------------------+ |
++-+-----------+ | WRRSchedulingElement| |
|QueuingService|QueueTo | Name=WRRBE +------------+
| Name=BE +-----------+ Weight=30 |ElementSchedSvc
+--------------+Schedule +---------------------+
Figure 7. Example 3: Excess Capacity Scheduler
Moore, et al. Standards Track [Page 30]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
3.11.4. Hierarchical CBQ Scheduler
A hierarchical class-based queuing (CBQ) scheduler is the fourth
scenario to be considered. In hierarchical CBQ, each queue is
allocated a specific bandwidth allocation. Queues are grouped
together into a logical scheduler. This logical scheduler in turn
has an aggregate bandwidth allocation that equals the sum of the
queues it is scheduling. In turn, logical schedulers can be
aggregated into higher-level logical schedulers. Changing
perspectives and looking top down, the top-most logical scheduler has
100% of the link capacity. This allocation is parceled out to
logical schedulers below it such that the sum of the allocations is
equal to 100%. These second tier schedulers may in turn parcel out
their allocation across a third tier of schedulers and so forth until
the lowest tier that parcels out their allocations to specific queues
representing relatively fine-grained classes of traffic. The unique
aspect of hierarchical CBQ is that when there is insufficient
bandwidth for a specific allocation, schedulers higher in the tree
are tested to see if another portion of the tree has capacity to
spare.
Figure 8 demonstrates this example with two tiers. The example is
split in half because of space constraints, resulting in the CBQTier1
scheduling service instance being represented twice. Note that the
total allocation at the top tier is 50 Mb. The voice allocation is
22 Mb. The remaining 23 Mb is split between FTP and Web. Hence, if
Web traffic is actually consuming 20 Mb (5 Mb in excess of the
allocation). If FTP is consuming 5 Mb, then it is possible for the
CBQTier1 scheduler to offer 3Mb of its allocation to Web traffic.
However, this is not enough, so the FailNextScheduler association
needs to be traversed to determine if there is any excess capacity
available from the voice class. If the voice class is only consuming
15 Mb of its 22 Mb allocation, there are sufficient resources to
allow the web traffic through. Note that FailNextScheduler is used
as the association. The reason is because the CBQTier1 scheduler in
fact failed to schedule a packet because of insufficient resources.
It is conceivable that a variant of hierarchical CBQ allows a
hierarchy for successful scheduling as well. Hence, both
associations are necessary.
Note that due to space constraints of the document, the
SchedulingService CBQTier1 is represented twice, to show how it is
connected to all the other objects.
Moore, et al. Standards Track [Page 31]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
+-----------+ NextService
|QueuingSvc +-------------------------------------------+
| Name=Web | |
| |QueueTo+----------------+ ElementSchedSvc |
| +-------+AllocationSched +----------------+ |
+-----------+Sched |Element | | |
| Name=Web-Alloc | | v
| Bandwidth=15 | +-----------+-+-+
+----------------+ |SchedulingSvc +
| Name=CBQTier1 +
+----------------+ +-----------+-+-+
|AllocationSched | ElementSchedSvc| ^
+-----------+ |Element +----------------+ |
|QueuingSvc |QueueTo| Name=FTP-Alloc | |
| Name=FTP +-------+ Bandwidth=8 | |
| |Sched +----------------+ |
| | NextService |
| +-------------------------------------------+
+-----------+
:
+---------------+ FailNextScheduler
|SchedulingSvc +---------------------------------------------+
| Name=CBQTier1 | |
+-------+-------+ +---------------------+ElementSchedSvc|
| SchedToSched |AllocationScheduling +--------+ |
+---------------+Element | | |
| Name=LowPri-Alloc | | |
| Bandwidth=23 | | v
+---------------------+ +-----+------+-+
|SchedulingSvc |
| Name=CBQTop |
+---------------------+ +----------+-+-+
|AllocationScheduling |ElementSchedSvc | ^
+------------+ |Element +----------------+ |
|QueuingSvc |QueueTo| Name=BE-Band | |
| Name=Voice +-------+ Bandwidth=22 | |
| |Sched +---------------------+ |
| | NextService |
| +------------------------------------------------+
+------------+
Figure 8. Example 4: Hierarchical CBQ Scheduler
Moore, et al. Standards Track [Page 32]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
4. The Class Hierarchy
The following sections present the class and association hierarchies
that together comprise the information model for modeling QoS
capabilities at the device level.
4.1. Associations and Aggregations
Associations and aggregations are a means of representing
relationships between two (or theoretically more) objects.
Dependency, aggregation, and other relationships are modeled as
classes containing two (or more) object references. It should be
noted that aggregations represent either "whole-part" or "collection"
relationships. For example, aggregation can be used to represent the
containment relationship between a system and the components that
constitute the system.
Since associations and aggregations are classes, they can benefit
from all of the object-oriented features that other non-relationship
classes have. For example, they can contain properties and methods,
and inheritance can be used to refine their semantics such that they
represent more specialized types of their superclasses.
Note that an association (or an aggregation) object is treated as an
atomic unit (individual instance), even though it relates/collects/is
comprised of multiple objects. This is a defining feature of an
association (or an aggregation) - although the individual elements
that are related to other objects have their own identities, the
association (or aggregation) object that is constructed using these
objects has its own identity and name as well.
It is important to note that associations and aggregations form an
inheritance hierarchy that is separate from the class inheritance
hierarchy. Although associations and aggregations are typically bi-
directional, there is nothing that prevents higher order associations
or aggregations from being defined. However, such associations and
aggregations are inherently more complex to define, understand, and
use. In practice, associations and aggregations of orders higher
than binary are rarely used, because of their greatly increased
complexity and lack of generality. All of the associations and
aggregations defined in this model are binary.
Note also that by definition, associations and aggregations cannot be
unary.
Moore, et al. Standards Track [Page 33]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
Finally, note that associations and aggregations that are defined
between two classes do not affect the classes themselves. That is,
the addition or deletion of an association or an aggregation does not
affect the interfaces of the classes that it is connecting.
4.2. The Structure of the Class Hierarchies
The structure of the class, association, and aggregation class
inheritance hierarchies for managing the datapaths of QoS devices is
shown, respectively, in Figure 9, Figure 10, and Figure 11. The
notation (CIMCORE) identifies a class defined in the CIM Core model.
Please refer to [CIM] for the definitions of these classes.
Similarly, the notation [PCIME] identifies a class defined in the
Policy Core Information Model Extensions document. This model has
been influenced by [CIM], and is compatible with the Directory
Enabled Networks (DEN) effort.
+--ManagedElement (CIMCORE)
|
+--ManagedSystemElement (CIMCORE)
| |
| +--LogicalElement (CIMCORE)
| |
| +--Service (CIMCORE)
| | |
| | +--ConditioningService
| | | |
| | | +--ClassifierService
| | | | |
| | | | +--ClassifierElement
| | | |
| | | +--MeterService
| | | | |
| | | | +--AverageRateMeterService
| | | | |
| | | | +--EWMAMeterService
| | | | |
| | | | +--TokenBucketMeterService
| | | |
| | | +--MarkerService
| | | | |
| | | | +--PreambleMarkerService
| | | | |
| | | | +--TOSMarkerService
| | | | |
| | | | +--DSCPMarkerService
| | | | |
Moore, et al. Standards Track [Page 34]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
(continued from previous page;
the first four elements are repeated for convenience)
+--ManagedElement (CIMCORE)
|
+--ManagedSystemElement (CIMCORE)
| |
| +--LogicalElement (CIMCORE)
| |
| +--Service (CIMCORE)
| | | | +--8021QMarkerService
| | | |
| | | +--DropperService
| | | | |
| | | | +--HeadTailDropperService
| | | | |
| | | | +--RedDropperService
| | | |
| | | +--QueuingService
| | | |
| | | +--PacketSchedulingService
| | | |
| | | +--NonWorkConservingSchedulingService
| | |
| | +--QoSService
| | | |
| | | +--DiffServService
| | | | |
| | | | +--AFService
| | | |
| | | +--FlowService
| | |
| | +--DropThresholdCalculationService
| |
| +--FilterEntryBase [PCIME]
| | |
| | +--IPHeaderFilter [PCIME]
| | |
| | +--8021Filter [PCIME]
| | |
| | +--PreambleFilter
| |
| +--FilterList [PCIME]
| |
| +--ServiceAccessPoint (CIMCORE)
| |
| +--ProtocolEndpoint
Moore, et al. Standards Track [Page 35]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
(continued from previous page;
the first four elements are repeated for convenience)
+--ManagedElement (CIMCORE)
|
+--ManagedSystemElement (CIMCORE)
| |
| +--LogicalElement (CIMCORE)
| |
| +--Service (CIMCORE)
|
+--Collection (CIMCORE)
| |
| +--CollectionOfMSEs (CIMCORE)
| |
| +--BufferPool
|
+--SchedulingElement
|
+--AllocationSchedulingElement
|
+--WRRSchedulingElement
|
+--PrioritySchedulingElement
|
+--BoundedPrioritySchedulingElement
Figure 9. Class Inheritance Hierarchy
Moore, et al. Standards Track [Page 36]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
The inheritance hierarchy for the associations defined in this
document is shown in Figure 10.
+--Dependency (CIMCORE)
| |
| +--ServiceSAPDependency (CIMCORE)
| | |
| | +--IngressConditioningServiceOnEndpoint
| | |
| | +--EgressConditioningServiceOnEndpoint
| |
| +--HeadTailDropQueueBinding
| |
| +--CalculationBasedOnQueue
| |
| +--ProvidesServiceToElement (CIMCORE)
| | |
| | +--ServiceServiceDependency (CIMCORE)
| | |
| | +--CalculationServiceForDropper
| |
| +--QueueAllocation
| |
| +--ClassifierElementUsesFilterList
|
+--AFRelatedServices
|
+--NextService
| |
| +--NextServiceAfterClassifierElement
| |
| +--NextScheduler
| |
| +--FailNextScheduler
|
+--NextServiceAfterMeter
|
+--QueueToSchedule
|
+--SchedulingServiceToSchedule
Figure 10. Association Class Inheritance Hierarchy
Moore, et al. Standards Track [Page 37]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
The inheritance hierarchy for the aggregations defined in this
document is shown in Figure 11.
+--MemberOfCollection (CIMCORE)
| |
| +--CollectedBufferPool
|
+--Component (CIMCORE)
| |
| +--ServiceComponent (CIMCORE)
| | |
| | +--QoSSubService
| | |
| | +--QoSConditioningSubService
| | |
| | +--ClassifierElementInClassifierService
| |
| +--EntriesInFilterList [PCIME]
|
+--ElementInSchedulingService
Figure 11. Aggregation Class Inheritance Hierarchy
4.3. Class Definitions
This section presents the classes and properties that make up the
Information Model for describing QoS-related functionality in network
devices, including hosts. These definitions are derived from
definitions in the CIM Core model [CIM]. Only the QoS-related
classes are defined in this document. However, other classes drawn
from the CIM Core model, as well as from [PCIME], are described
briefly. The reader is encouraged to look at [CIM] and at [PCIME]
for further information. Associations and aggregations are defined
in Section 4.4.
4.3.1. The Abstract Class ManagedElement
This is an abstract class defined in the Core Model of CIM. It is
the root of the entire class inheritance hierarchy in CIM. Among the
associations that refer to it are two that are subclassed in this
document: Dependency and MemberOfCollection, which is an aggregation.
ManagedElement's properties are Caption and Description. Both are
free-form strings to describe an instantiated object. Please refer
to [CIM] for the full definition of this class.
Moore, et al. Standards Track [Page 38]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
4.3.2. The Abstract Class ManagedSystemElement
This is an abstract class defined in the Core Model of CIM; it is a
subclass of ManagedElement. ManagedSystemElement serves as the base
class for the PhysicalElement and LogicalElement class hierarchies.
LogicalElement, in turn, is the base class for a number of important
CIM hierarchies, including System. Any distinguishable component of
a System is a candidate for inclusion in this class hierarchy,
including physical components (e.g., chips and cards) and logical
components (e.g., software components, services, and other objects).
None of the associations in which this class participates is used
directly in the QoS device state model. However, the aggregation
Component, which relates one ManagedSystemElement to another, is the
base class for the two aggregations that form the core of the QoS
device state model: QoSSubService and QoSConditioningSubService.
Similarly, the association ProvidesServiceToElement, which relates a
ManagedSystemElement to a Service, is the base class for the model's
CalculationServiceForDropper association.
Please refer to [CIM] for the full definition of this class.
4.3.3. The Abstract Class LogicalElement
This is an abstract class defined in the Core Model of CIM. It is a
subclass of the ManagedSystemElement class, and is the base class for
all logical components of a managed System, such as Files, Processes,
or system capabilities in the form of Logical Devices and Services.
None of the associations in which this class participates is relevant
to the QoS device state model. Please refer to [CIM] for the full
definition of this class.
4.3.4. The Abstract Class Service
This is an abstract class defined in the Core Model of CIM. It is a
subclass of the LogicalElement class, and is the base class for all
objects that represent a "service" or functionality in a System. A
Service is a general-purpose object that is used to configure and
manage the implementation of functionality. As noted above in
section 4.3.2, this class participates in the
ProvidesServiceToElement association. Please refer to [CIM] for the
full definition of this class.
4.3.5. The Class ConditioningService
This is a concrete subclass of the CIM Core class Service; it
represents the ability to define how traffic is conditioned in the
data-forwarding path of a device. The subclasses of
Moore, et al. Standards Track [Page 39]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
ConditioningService define the particular types of conditioning that
are done. Six fundamental types of conditioning are defined in this
document. These are the services performed by a classifier, a meter,
a marker, a dropper, a queue, and a scheduler. Other, more
sophisticated types of conditioning may be defined in future
documents.
ConditioningService is a concrete class because at the time it was
defined in CIM, its superclass was concrete. While this class can be
instantiated, an instance of it would not accomplish anything,
because the nature of the conditioning, and the parameters that
control it, are specified only in the subclasses of
ConditioningService.
Two associations in which ConditioningService participates are
critical to its usage in QoS - QoSConditioningSubService and
NextService. QoSConditioningSubService aggregates
ConditioningServices into a particular QoS service (such as AF), to
describe the specific conditioning functionality that underlies that
QoS service in a particular device. NextService indicates the
subsequent conditioning service(s) for different traffic streams.
The class definition is as follows:
NAME ConditioningService
DESCRIPTION A concrete class to define how traffic
is conditioned in the data forwarding
path of a host or network device.
DERIVED FROM Service
TYPE Concrete
PROPERTIES (none)
4.3.6. The Class ClassifierService
The concept of a Classifier comes from [DSMODEL]. ClassifierService
is a concrete class that represents a logical entity in an ingress or
egress interface of a device, that takes a single input stream, and
sorts it into one or more output streams. The sorting is done by a
set of filters that select packets based on the packet contents, or
possibly based on other attributes associated with the packet. Each
output stream is the result of matching a particular filter.
The representation of classifiers in QDDIM is closely related to that
presented in [DSMIB] and [DSMODEL]. Rather than being linked
directly to its FilterLists, a classifier is modeled here as an
aggregation of ClassifierElements. Each of these ClassifierElements
is then linked to a single FilterList, by the association
ClassifierElementUsesFilterList.
Moore, et al. Standards Track [Page 40]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
A Classifier is modeled as a subclass of ConditioningService so that
it can be aggregated into a QoSService (using the
QoSConditioningSubService aggregation), and can use the NextService
association to identify the subsequent ConditioningService objects
for the different traffic streams.
ClassifierService is designed to allow hierarchical classification.
When hierarchical classification is used, a ClassifierElement may
point to another ClassifierService. When used for this purpose, the
ClassifierElement must not use the ClassifierElementUsesFilterList
association.
The class definition is as follows:
NAME ClassifierService
DESCRIPTION A concrete class describing how an input
traffic stream is sorted into multiple
output streams using one or more
filters.
DERIVED FROM ConditioningService
TYPE Concrete
PROPERTIES (none)
4.3.7. The Class ClassifierElement
The concept of a ClassifierElement comes from [DSMIB]. This concrete
class represents the linkage, within a single ClassifierService,
between a FilterList that specifies a set of criteria for selecting
packets from the stream of packets coming into the ClassifierService,
and the next ConditioningService to which the selected packets go
after they leave the ClassifierService. ClassifierElement has no
properties of its own. It is present to serve as the anchor for an
aggregation with its classifier, and for associations with its
FilterList and its next ConditioningService.
When a ClassifierElement is associated with a ClassifierService
through the NextServiceAfterClassifierElement association, the
ClassifierElement may not use the ClassifierElementUsesFilterList
association. Further, when a ClassifierElement is associated with a
ClassifierService as described above, the order of processing of the
associated ClassifierService is a function of the ClassifierOrder
property of the ClassifierElementInClassifierService aggregation.
For example, lets assume the following:
1. ClassifierService (C1) aggregates ClassifierElements (E1), (E2)
and (E3), with relative ClassifierOrder values of 1, 2, and 3.
Moore, et al. Standards Track [Page 41]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
2. ClassifierElements (E1) and (E3) associations to FilterLists (F1)
and (F3) respectively using the ClassifierElementUsesFilterList
association.
3. (E1) & (E3) are associated with Meters (M1) and (M3) through their
respective NextServiceAfterClassifierElement associations.
4. (E2) is associated with ClassifierService (C2) through its
NextServiceAfterClassifierElement association.
5. ClassifierService (C2) aggregates ClassifierElements (E4) and (E5)
with relative ClassifierOrder values of 1 and 2.
6. ClassifierElements (E4) and (E5) have associations to FilterLists
(F4) and (F5) respectively using the
ClassifierElementUsesFilterList association.
In this example, packet processing would match FilterLists in the
order of (F1), (F4), (F5), and (F3).
The class definition is as follows:
NAME ClassifierElement
DESCRIPTION A concrete class representing
the process by which a classifier
uses a filter to select packets
to forward to a specific next
conditioning service.
DERIVED FROM ClassifierService
TYPE Concrete
PROPERTIES (none)
4.3.8. The Class MeterService
This is a concrete class that represents the metering of network
traffic. Metering is the function of monitoring the arrival times of
packets of a traffic stream, and determining the level of conformance
of each packet with respect to a pre-established traffic profile. A
meter has the ability to invoke different ConditioningServices for
conforming and non-conforming traffic. Traffic leaving a meter may be
further conditioned (e.g., dropped or queued) by routing the packet
to another conditioning element. Please see [DSMODEL] for more
information on metering.
This class is the base class for defining different types of meters.
As such, it contains common properties that all meter subclasses
share. It is modeled as a ConditioningService so that it can be
aggregated into a QoSService (using the QoSConditioningSubService
Moore, et al. Standards Track [Page 42]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
association), to indicate that its functionality underlies that QoS
service. MeterService also participates in the NextServiceAfterMeter
association, to identify the subsequent ConditioningService objects
for conforming and non-conforming traffic.
The class definition is as follows:
NAME MeterService
DESCRIPTION A concrete class describing the
monitoring of traffic with respect to a
pre-established traffic profile.
DERIVED FROM ConditioningService
TYPE Concrete
PROPERTIES MeterType, OtherMeterType,
ConformanceLevels
Note: The MeterType property and the MeterService subclasses provide
similar information. The MeterType property is defined for query
purposes and for future expansion. It is possible that not all
MeterServices will require a subclass to define them. In these
cases, MeterService will be instantiated directly, and the MeterType
property will provide the only way of identifying the type of the
meter.
4.3.8.1. The Property MeterType
This property is an enumerated 16-bit unsigned integer that is used
to specify the particular type of meter represented by an instance of
MeterService. The following enumeration values are defined:
1 - Other
2 - Average Rate Meter
3 - Exponentially Weighted Moving Average Meter
4 - Token Bucket Meter
Note: if the value of MeterType is not one of these four values, it
SHOULD be interpreted as if it had the value '1' (Other).
4.3.8.2. The Property OtherMeterType
This is a string property that defines a vendor-specific description
of a type of meter. It is used when the value of the MeterType
property in the instance is equal to 1.
Moore, et al. Standards Track [Page 43]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
4.3.8.3. The Property ConformanceLevels
This property is a 16-bit unsigned integer. It indicates the number
of conformance levels supported by the meter. For example, when only
"in profile" versus "out of profile" metering is supported,
ConformanceLevels is equal to 2.
4.3.9. The Class AverageRateMeterService
This is a concrete subclass of MeterService that represents a simple
meter, called an Average Rate Meter. This type of meter measures the
average rate at which packets are submitted to it over a specified
time. Packets are defined as conformant if their average arrival
rate does not exceed the specified measuring rate of the meter. Any
packet that causes the specified measuring rate to be exceeded is
defined to be non-conforming. For more information, please see
[DSMODEL].
The class definition is as follows:
NAME AverageRateMeterService
DESCRIPTION A concrete class classifying traffic as
either conforming or non-conforming,
depending on whether the arrival of a
packet causes the average arrival rate
to exceed a pre-determined value.
DERIVED FROM MeterService
TYPE Concrete
PROPERTIES AverageRate, DeltaInterval
4.3.9.1. The Property AverageRate
This is an unsigned 32-bit integer that defines the rate used to
determine whether admitted packets are in conformance or not. The
value is specified in kilobits per second.
4.3.9.2. The Property DeltaInterval
This is an unsigned 64-bit integer that defines the time period over
which the average measurement should be taken. The value is
specified in microseconds.
4.3.10. The Class EWMAMeterService
This is a concrete subclass of the MeterService class that represents
an exponentially weighted moving average meter. This meter is a
simple low-pass filter that measures the rate of incoming packets
Moore, et al. Standards Track [Page 44]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
over a small, fixed sampling interval. Any admitted packet that
pushes the average rate over a pre-defined limit is defined to be
non-conforming. Please see [DSMODEL] for more information.
The class definition is as follows:
NAME EWMAMeterService
DESCRIPTION A concrete class classifying admitted
traffic as either conforming or non-
conforming, depending on whether the
arrival of a packet causes the average
arrival rate in a small fixed
sampling interval to exceed a
pre-determined value or not.
DERIVED FROM MeterService
TYPE Concrete
PROPERTIES AverageRate, DeltaInterval, Gain
4.3.10.1. The Property AverageRate
This property is an unsigned 32-bit integer that defines the average
rate against which the sampled arrival rate of packets should be
measured. Any packet that causes the sampled rate to exceed this
rate is deemed non-conforming. The value is specified in kilobits
per second.
4.3.10.2. The Property DeltaInterval
This property is an unsigned 64-bit integer that defines the sampling
interval used to measure the arrival rate. The calculated rate is
averaged over this interval and checked against the AverageRate
property. All packets whose computed average arrival rate is less
than the AverageRate are deemed conforming.
The value is specified in microseconds.
4.3.10.3. The Property Gain
This property is an unsigned 32-bit integer representing the
reciprocal of the time constant (e.g., frequency response) of what is
essentially a simple low-pass filter. For example, the value 64 for
this property represents a time constant value of 1/64.
Moore, et al. Standards Track [Page 45]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
4.3.11. The Class TokenBucketMeterService
This is a concrete subclass of the MeterService class that represents
the metering of network traffic using a token bucket meter. Two
types of token bucket meters are defined using this class - a simple,
two-parameter bucket meter, and a multi-stage meter.
A simple token bucket usually has two parameters, an average token
rate and a burst size, and has two conformance levels: "conforming"
and "non-conforming". This class also defines an excess burst size,
which enables the meter to have three conformance levels
("conforming", "partially conforming", and "non-conforming"). In
this case, packets that exceed the excess burst size are deemed non-
conforming, while packets that exceed the smaller burst size but are
less than the excess burst size are deemed partially conforming.
Operation of these meters is described in [DSMODEL].
The class definition is as follows:
NAME TokenBucketMeterService
DESCRIPTION A concrete class classifying admitted
traffic with respect to a token bucket.
Either two or three levels of
conformance can be defined.
DERIVED FROM MeterService
TYPE Concrete
PROPERTIES AverageRate, PeakRate,
BurstSize, ExcessBurstSize
4.3.11.1. The Property AverageRate
This property is an unsigned 32-bit integer that specifies the
committed rate of the meter. The value is expressed in kilobits per
second.
4.3.11.2. The Property PeakRate
This property is an unsigned 32-bit integer that specifies the peak
rate of the meter. The value is expressed in kilobits per second.
4.3.11.3. The Property BurstSize
This property is an unsigned 32-bit integer that specifies the
maximum number of tokens available for the committed rate (specified
by the AverageRate property). The value is expressed in kilobytes.
Moore, et al. Standards Track [Page 46]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
4.3.11.4. The Property ExcessBurstSize
This property is an unsigned 32-bit integer that specifies the
maximum number of tokens available for the peak rate (specified by
the PeakRate property). The value is expressed in kilobytes.
4.3.12. The Class MarkerService
This is a concrete class that represents the general process of
marking some field in a network packet with some value. Subclasses of
MarkerService identify particular fields to be marked, and introduce
properties to represent the values to be used in marking these
fields. Markers are usually invoked as a result of a preceding
classifier match. Operation of markers of various types is described
in [DSMODEL].
MarkerService is a concrete class because at the time it was defined
in CIM, its superclass was concrete. While this class can be
instantiated, an instance of it would not accomplish anything,
because both the field to be marked and the value to be used to mark
it are specified only in subclasses of MarkerService.
MarkerService is modeled as a ConditioningService so that it can be
aggregated into a QoSService (using the QoSConditioningSubService
association) to indicate that its functionality underlies that QoS
service. It participates in the NextService association to identify
the subsequent ConditioningService object that acts on traffic after
it has been marked by the marker.
The class definition is as follows:
NAME MarkerService
DESCRIPTION A concrete class representing the
general process of marking a selected
field in a packet with a specified
value. Packets are marked in order
to control the conditioning that
they will subsequently receive.
DERIVED FROM ConditioningService
TYPE Concrete
PROPERTIES (none)
4.3.13. The Class PreambleMarkerService
This is a concrete class that models the storing of traffic-
conditioning results in a packet preamble. See Section 3.8.3 for a
discussion of how, and why, QDDIM models the capability to store
these results in a packet preamble. An instance of
Moore, et al. Standards Track [Page 47]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
PreambleMarkerService appends to a packet preamble a two-part string
of the form "<type>,<value>". Section 3.8.3 provides a list of the
<type> strings defined by QDDIM. Implementations may support other
<type>'s in addition to these.
The class definition is as follows:
NAME PreambleMarkerService
DESCRIPTION A concrete class representing the saving
of traffic-conditioning results in a
packet preamble.
DERIVED FROM MarkerService
TYPE Concrete
PROPERTIES FilterItemList[ ]
4.3.13.1. The Multi-valued Property FilterItemList
This property is an ordered list of strings, where each string has
the format "<type>,<value>". See Section 3.8.3 for a list of
<type>'s defined in QDDIM, and the nature of the associated <value>
for each of these types.
4.3.14. The Class ToSMarkerService
This is a concrete class that represents the marking of the ToS field
in the IPv4 packet header [R791]. Following common practice, the
value to be written into the field is represented as an unsigned 8-
bit integer.
The class definition is as follows:
NAME ToSMarkerService
DESCRIPTION A concrete class representing the
process of marking the type of service
(ToS) field in the IPv4 packet header
with a specified value. Packets are
marked in order to control the
conditioning that they will subsequently
receive.
DERIVED FROM MarkerService
TYPE Concrete
PROPERTIES ToSValue
Moore, et al. Standards Track [Page 48]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
4.3.14.1. The Property ToSValue
This property is an unsigned 8-bit integer, representing a value to
be used for marking the type of service (ToS) field in the IPv4
packet header. The ToS field is defined to be a complete octet, so
the range for this property is 0..255. Some implementations,
however, require that the lowest-order bit in the ToS field always be
'0'. Such an implementation is consequently unable to support an odd
TosValue.
4.3.15. The Class DSCPMarkerService
This is a concrete class that represents the marking of the
differentiated services codepoint (DSCP) within the DS field in the
IPv4 and IPv6 packet headers, as defined in [R2474]. Following common
practice, the value to be written into the field is represented as an
unsigned 8-bit integer.
The class definition is as follows:
NAME DSCPMarkerService
DESCRIPTION A concrete class representing the
process of marking the DSCP field
in a packet with a specified
value. Packets are marked in order
to control the conditioning that
they will subsequently receive.
DERIVED FROM MarkerService
TYPE Concrete
PROPERTIES DSCPValue
4.3.15.1. The Property DSCPValue
This property is an unsigned 8-bit integer, representing a value to
be used for marking the DSCP within the DS field in an IPv4 or IPv6
packet header. Since the DSCP consists of 6 bits, the values for
this property are limited to the range 0..63. When the DSCP is
marked, the remaining two bit in the DS field are left unchanged.
4.3.16. The Class 8021QMarkerService
This is a concrete class that represents the marking of the user
priority field defined in the IEEE 802.1Q specification [IEEE802Q].
Following common practice, the value to be written into the field is
represented as an unsigned 8-bit integer.
Moore, et al. Standards Track [Page 49]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
The class definition is as follows:
NAME 8021QMarkerService
DESCRIPTION A concrete class representing the
process of marking the Priority
field in an 802.1Q-compliant frame
with a specified value. Frames are
marked in order to control the
conditioning that they will
subsequently receive.
DERIVED FROM MarkerService
TYPE Concrete
PROPERTIES PriorityValue
4.3.16.1. The Property PriorityValue
This property is an unsigned 8-bit integer, representing a value to
be used for marking the Priority field in the 802.1Q header. Since
the Priority field consists of 3 bits, the values for this property
are limited to the range 0..7. When the Priority field is marked,
the remaining bits in its octet are left unchanged.
4.3.17. The Class DropperService
This is a concrete class that represents the ability to selectively
drop network traffic, or to invoke another ConditioningService for
further processing of traffic that is not dropped. This is the base
class for different types of droppers. Droppers are distinguished by
the algorithm that they use to drop traffic. Please see [DSMODEL]
for more information about the various types of droppers. Note that
this class encompasses both Absolute Droppers and Algorithmic
Droppers from [DSMODEL].
DropperService is modeled as a ConditioningService so that it can be
aggregated into a QoSService (using the QoSConditioningSubService
association) to indicate that its functionality underlies that QoS
service. It participates in the NextService association to identify
the subsequent ConditioningService object that acts on any remaining
traffic that is not dropped.
NextService has special semantics for droppers, in addition to the
general "what happens next" semantics that apply to all
ConditioningServices. The queue(s) from which a particular dropper
drops packets are identified by following chain(s) of NextService
associations "rightwards" from the dropper until they reach a queue.
Moore, et al. Standards Track [Page 50]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
The class definition is as follows:
NAME DropperService
DESCRIPTION A concrete base class describing the
common characteristics of droppers.
DERIVED FROM ConditioningService
TYPE Concrete
PROPERTIES DropperType, OtherDropperType, DropFrom
Note: The DropperType property and the DropperService subclasses
provide similar information. The DropperType property is defined for
query purposes, as well as for those cases where a subclass of
DropperService is not needed to model a particular type of dropper.
For example, the Absolute Dropper defined in [DSMODEL] is modeled as
an instance of the DropperService class with its DropperType set to
'4' ("Absolute Dropper").
4.3.17.1. The Property DropperType
This is an enumerated 16-bit unsigned integer that defines the type
of dropper. Values include:
1 - Other
2 - Random
3 - HeadTail
4 - Absolute Dropper
Note: if the value of DropperType is not one of these four values, it
SHOULD be interpreted as if it had the value '1' (Other).
4.3.17.2. The Property OtherDropperType
This string property is used in conjunction with the DropperType
property. When the value of DropperType is '1' (i.e., Other), then
the name of the type of dropper appears in this property.
4.3.17.3. The Property DropFrom
This is an unsigned 16-bit integer enumeration that indicates the
point in the associated queue from which packets should be dropped.
Defined enumeration values are:
o unknown(0)
o head(1)
o tail(2)
Moore, et al. Standards Track [Page 51]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
Note: if the value of DropFrom is '0' (unknown), or if it is not one
of the three values listed here, then packets MAY be dropped from any
location in the associated queue.
4.3.18. The Class HeadTailDropperService
This is a concrete class that represents the threshold information of
a head or tail dropper. The inherited property DropFrom indicates
whether a particular instance of this class represents a head dropper
or a tail dropper.
A head dropper always examines the same queue from which it drops
packets, and this queue is always related to the dropper as the
following service in the NextService association.
The class definition is as follows:
NAME HeadTailDropperService
DESCRIPTION A concrete class used to describe
a head or tail dropper.
DERIVED FROM DropperService
TYPE Concrete
PROPERTIES QueueThreshold
4.3.18.1. The Property QueueThreshold
This is an unsigned 32-bit integer that indicates the queue depth at
which traffic will be dropped. For a tail dropper, all newly
arriving traffic is dropped. For a head dropper, packets at the
front of the queue are dropped to make room for new packets, which
are added at the end. The value is expressed in bytes.
4.3.19. The Class REDDropperService
This is a concrete class that represents the ability to drop network
traffic using a Random Early Detection (RED) algorithm. This
algorithm is described in [RED]. The purpose of a RED algorithm is
to avoid congestion (as opposed to managing congestion). Instead of
waiting for the queues to fill up, and then dropping large numbers of
packets, RED works by monitoring the average queue depth. When the
queue depth exceeds a minimum threshold, packets are randomly
discarded. These discards cause TCP to slow its transmission rate
for those connections that experienced the packet discards. Other
TCP connections are not affected by these discards. Please see
[DSMODEL] for more information about a dropper.
Moore, et al. Standards Track [Page 52]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
A RED dropper always drops packets from a single queue, which is
related to the dropper as the following service in the NextService
association. The queue(s) examined by the drop algorithm are found
by following the CalculationServiceForDropper association to find the
dropper's DropThresholdCalculationService, and then following the
CalculationBasedOnQueue association(s) to find the queue(s) being
watched.
The class definition is as follows:
NAME REDDropperService
DESCRIPTION A concrete class used to describe
dropping using the RED algorithm (or
one of its variants).
DERIVED FROM DropperService
TYPE Concrete
PROPERTIES MinQueueThreshold, MaxQueueThreshold,
ThresholdUnits, StartProbability,
StopProbability
NOTE: In [DSMIB], there is a single diffServRandomDropTable, which
represents the general category of random dropping. (RED is one type
of random dropping, but there are also types of random dropping
distinct from RED.) The REDDropperService class corresponds to the
columns in the table that apply to the RED algorithm in particular.
4.3.19.1. The Property MinQueueThreshold
This is an unsigned 32-bit integer that defines the minimum average
queue depth at which packets are subject to being dropped. The units
are identified by the ThresholdUnits property. The slope of the drop
probability function is described by the Start/StopProbability
properties.
4.3.19.2. The Property MaxQueueThreshold
This is an unsigned 32-bit integer that defines the maximum average
queue length at which packets are subject to always being dropped,
regardless of the dropping algorithm and probabilities being used.
The units are identified by the ThresholdUnits property.
4.3.19.3. The Property ThresholdUnits
This is an unsigned 16-bit integer enumeration that identifies the
units for the MinQueueThreshold and MaxQueueThreshold properties.
Defined enumeration values are:
Moore, et al. Standards Track [Page 53]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
o bytes(1)
o packets(2)
Note: if the value of ThresholdUnits is not one of these two values,
it SHOULD be interpreted as if it had the value '1' (bytes).
4.3.19.4. The Property StartProbability
This is an unsigned 32-bit integer; in conjunction with the
StopProbability property, it defines the slope of the drop
probability function. This function governs the rate at which
packets are subject to being dropped, as a function of the queue
length.
This property expresses a drop probability in drops per thousand
packets. For example, the value 100 indicates a drop probability of
100 per 1000 packets, that is, 10%. Min and max values are 0 to
1000.
4.3.19.5. The Property StopProbability
This is an unsigned 32-bit integer; in conjunction with the
StartProbability property, it defines the slope of the drop
probability function. This function governs the rate at which
packets are subject to being dropped, as a function of the queue
length.
This property expresses a drop probability in drops per thousand
packets. For example, the value 100 indicates a drop probability of
100 per 1000 packets, that is, 10%. Min and max values are 0 to
1000.
4.3.20. The Class QueuingService
This is a concrete class that represents the ability to queue network
traffic, and to specify the characteristics for determining long-term
congestion. Please see [DSMODEL] for more information about queuing
functionality.
QueuingService is modeled as a ConditioningService so that it can be
aggregated into a QoSService (using the QoSConditioningSubService
association) to indicate that its functionality underlies that QoS
service.
Moore, et al. Standards Track [Page 54]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
The class definition is as follows:
NAME QueuingService
DESCRIPTION A concrete class describing the ability
to queue network traffic and to specify
the characteristics for determining
long-term congestion.
DERIVED FROM ConditioningService
TYPE Concrete
PROPERTIES CurrentQueueDepth, DepthUnits
4.3.20.1. The Property CurrentQueueDepth
This is an unsigned 32-bit integer, which functions as a (read-only)
gauge representing the current depth of this one queue. This value
may be important in diagnosing unexpected behavior by a
DropThresholdCalculationService.
4.3.20.2. The Property DepthUnits
This is an unsigned 16-bit integer enumeration that identifies the
units for the CurrentQueueDepth property. Defined enumeration values
are:
o bytes(1)
o packets(2)
Note: if the value of DepthUnits is not one of these two values, it
SHOULD be interpreted as if it had the value '1' (bytes). The
4.3.21. Class PacketSchedulingService
This is a concrete class that represents a scheduling service, which
is a process that determines when a queued packet should be removed
from a queue and sent to an output interface. Note that output
interfaces can be physical network interfaces or interfaces to
components internal to systems, such as crossbars or back planes. In
either case, if multiple queues are involved, schedulers are used to
provide access to the interface.
Each instance of a PacketSchedulingService describes a scheduler from
the perspective of the queues that it is servicing. Please see
[DSMODEL] for more information about a scheduler.
PacketSchedulingService is modeled as a ConditioningService so that
it can be aggregated into a QoSService (using the
QoSConditioningSubService association) to indicate that its
functionality underlies that QoS service. It participates in the
Moore, et al. Standards Track [Page 55]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
NextService association to identify the subsequent
ConditioningService object, if any, that acts on traffic after it has
been processed by the scheduler.
The class definition is as follows:
NAME PacketSchedulingService
DESCRIPTION A concrete class used to determine when
a packet should be removed from a
queue and sent to an output interface.
DERIVED FROM ConditioningService
TYPE Concrete
PROPERTIES SchedulerType, OtherSchedulerType
4.3.21.1. The Property SchedulerType
This property is an enumerated 16-bit unsigned integer, and defines
the type of scheduler. Values are:
1 - Other
2 - FIFO
3 - Priority
4 - Allocation
5 - Bounded Priority
6 - Weighted Round Robin Packet
Note: if the value of SchedulerType is not one of these six values,
it SHOULD be interpreted as if it had the value '2' (FIFO).
4.3.21.2. The Property OtherSchedulerType
This string property is used in conjunction with the SchedulerType
property. When the value of SchedulerType is 1 (i.e., Other), then
the type of scheduler is specified in this property.
4.3.22. The Class NonWorkConservingSchedulingService
This class does not add any properties beyond those it inherits from
its superclass, PacketSchedulingService. It does, however,
participate in one additional association, FailNextScheduler.
Moore, et al. Standards Track [Page 56]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
The class definition is as follows:
NAME NonWorkConservingSchedulingService
DESCRIPTION A concrete class representing a
scheduler that is capable of operating
in a non-work conserving manner.
DERIVED FROM PacketSchedulingService
TYPE Concrete
PROPERTIES (none)
4.3.23. The Class QoSService
This is a concrete class that represents the ability to conceptualize
a QoS service as a set of coordinated sub-services. This enables the
network administrator to map business rules to the network, and the
network designer to engineer the network such that it can provide
different functions for different traffic streams.
This class has two main purposes. First, it serves as a common base
class for defining the various sub-services needed to build higher-
level QoS services. Second, it serves as a way to consolidate the
relationships between different types of QoS services and different
types of ConditioningServices.
For example, Gold Service may be defined as a QoSService which
aggregates two QoS services together. Each of these QoS services
could be represented by an instance of the class DiffServService, one
for servicing of very high demand packets (represented by an instance
of DiffServService itself), and one for the service given to most of
the packets, represented by an instance of AFService, which is a
subclass of DiffServService. The high demand DiffServService
instance will then use the QoSConditioningSubService aggregation to
aggregate together the necessary classifiers to indicate which
traffic it applies to, and the appropriate meters for contract
limits, the marker to mark the EF PHB in the packets, and the
queuing-related conditioning services. The AFService instance will
also use the QoSConditioningSubService aggregation, to aggregate its
classifiers and meters, the several markers used to mark the
different AF PHBs in the packets, and the queuing-related
conditioning services needed to deliver the packet treatment.
QoSService is modeled as a type of Service, which is used as the
anchor point for defining a set of sub-services that implement the
desired conditioning characteristics for different types of flows.
It will direct the specific type of conditioning services to be used
in order to implement this service.
Moore, et al. Standards Track [Page 57]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
The class definition is as follows:
NAME QoSService
DESCRIPTION A concrete class used to represent a QoS
service or set of services, as defined
by a network administrator.
DERIVED FROM Service
TYPE Concrete
PROPERTIES (none)
4.3.24. The Class DiffServService
This is a concrete class representing the use of standard or custom
DiffServ services to implement a (higher-level) QoS service. Note
that a DiffServService object may be just one of a set of coordinated
QoSSubServices objects that together implement a higher-level QoS
service.
DiffServService is modeled as a subclass of QoSService. This enables
it to be related to a higher-level QoS service via QoSSubService, as
well as to specific ConditioningService objects (e.g., metering,
dropping, queuing, and others) via QoSConditioningSubService.
The class definition is as follows:
NAME DiffServService
DESCRIPTION A concrete class used to represent a
DiffServ service associated with a
particular Per Hop Behavior.
DERIVED FROM QoSService
TYPE Concrete
PROPERTIES PHBID
4.3.24.1. The Property PHBID
This property is a 16-bit unsigned integer, which identifies a
particular per hop behavior, or family of per hop behaviors. The
value here is a Per Hop Behavior Identification Code, as defined in
[R3140]. Note that as defined, these identification codes use the
default, recommended, code points for PHBs as part of their
structure. These values may well be different from the actual value
used in the marker, as the marked value is a domain-dependent value.
The ability to indicate the PHB Identification Code associated with a
service is helpful for tying the QoS Service to reference documents,
and for inter-domain coordination and operation.
Moore, et al. Standards Track [Page 58]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
4.3.25. The Class AFService
This is a concrete class that represents a specialization of the
general concept of forwarding network traffic, by adding specific
semantics that characterize the operation of the Assured Forwarding
(AF) Service ([R2597]).
[R2597] defines four different AF classes, to represent four
different treatments of traffic. A different amount of forwarding
resources, such as buffer space and bandwidth, are allocated to each
AF class. Within each AF class, IP packets are marked with one of
three possible drop precedence values. The drop precedence of a
packet determines the relative importance of that packet compared to
other packets within the same AF class, if congestion occurs. A
congested interface will try to avoid dropping packets marked with a
lower drop precedence value, by instead discarding packets marked
with a higher drop precedence value.
Note that [R2597] defines 12 DSCPs that together represent the AF Per
Hop Behavior (PHB) group. Implementations are free to extend this
(e.g., add more classes and/or drop precedences).
The AFService class is modeled as a specialization of
DiffServService, which is in turn a specialization of QoSService.
This enables it to be related to higher-level QoS services, as well
as to lower-level conditioning sub-services (e.g., classification,
metering, dropping, queuing, and others).
The class definition is as follows:
NAME AFService
DESCRIPTION A concrete class for describing the
common characteristics of differentiated
services that are used to affect
traffic forwarding, using the AF
PHB Group.
DERIVED FROM DiffServService
TYPE Concrete
PROPERTIES ClassNumber, DropperNumber
4.3.25.1. The Property ClassNumber
This property is an 8-bit unsigned integer that indicates the number
of AF classes that this AF implementation uses. Among the instances
aggregated using the QoSConditioningSubService aggregation with an
instance of AFService, one SHOULD find markers with as many distinct
values as the ClassNumber of the AFService instance.
Moore, et al. Standards Track [Page 59]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
4.3.25.2. The Property DropperNumber
This property is an 8-bit unsigned integer that indicates the number
of drop precedence values that this AF implementation uses. The
number of drop precedence values is the number PER AF CLASS. The
corresponding droppers will be found in the collection of
conditioning services aggregated with the QoSConditioningSubService
aggregation.
4.3.26. The Class FlowService
This class represents a service that supports a particular microflow.
The microflow is identified by the string-valued property FlowID. In
some implementations, an instance of this class corresponds to an
entry in the implementation's flow table.
The class definition is as follows:
NAME FlowService
DESCRIPTION A concrete class representing a
microflow.
DERIVED FROM QoSService
TYPE Concrete
PROPERTIES FlowID
4.3.26.1. The Property FlowID
This property is a string containing an identifier for a microflow.
4.3.27. The Class DropThresholdCalculationService
This class represents a logical entity that calculates an average
queue depth for a queue, based on a smoothing weight and a sampling
time interval. It does this calculation on behalf of a RED dropper,
to allow the dropper to make its decisions whether to drop packets
based on a smoothed average queue depth for the queue.
Moore, et al. Standards Track [Page 60]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
The class definition is as follows:
NAME DropThresholdCalculationService
DESCRIPTION A concrete class representing a logical
entity that calculates an average queue
depth for a queue, based on a smoothing
weight and a sampling time interval.
The latter are properties of this
Service, describing how it operates and
its necessary parameters.
DERIVED FROM Service
TYPE Concrete
PROPERTIES SmoothingWeight, TimeInterval
4.3.27.1. The Property SmoothingWeight
This property is a 32-bit unsigned integer, ranging between 0 and
100,000 - specified in thousandths. It defines the weighting of past
history in affecting the calculation of the current average queue
depth. The current queue depth calculation uses the inverse of this
value as its factor, and one minus that inverse as the factor for the
historical average. The calculation takes the form:
average = (old_average*(1-inverse of SmoothingWeight))
+ (current_queue_depth*inverse of SmoothingWeight)
Implementations may choose to limit the acceptable set of values to a
specified set, such as powers of 2.
Min and max values are 0 and 100000.
4.3.27.2. The Property TimeInterval
This property is a 32-bit unsigned integer, defining the number of
nanoseconds between each calculation of average/smoothed queue depth.
If this property is not specified, the CalculationService may
determine an appropriate interval.
4.3.28. The Abstract Class FilterEntryBase
FilterEntryBase is the abstract base class from which all filter
entry classes are derived. It serves as the endpoint for the
EntriesInFilterList aggregation, which groups filter entries into
filter lists. Its properties include CIM naming properties and an
IsNegated boolean property (to easily "NOT" the match information
specified in an instance of one of its subclasses).
Moore, et al. Standards Track [Page 61]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
Because FilterEntryBase has general applicability, it is defined in
[PCIME]. See [PCIME] for the definition of this class.
4.3.29. The Class IPHeaderFilter
This concrete class makes it possible to represent an entire IP
header filter in a single object. A property IpVersion identifies
whether the IP addresses in an instance are IPv4 or IPv6 addresses.
(Since the source and destination IP addresses come from the same
packet header, they will always be of the same type.)
See [PCIME] for the definition of this class.
4.3.30. The Class 8021Filter
This concrete class allows 802.1.source and destination MAC
addresses, as well as the 802.1 protocol ID, priority, and VLAN
identifier fields, to be expressed in a single object
See [PCIME] for the definition of this class.
4.3.31. The Class PreambleFilter
This is a concrete class that models classifying packets using
traffic-conditioning results stored in a packet preamble by a
PreambleMarkerService. See Section 3.8.3 for a discussion of how,
and why, QDDIM models the capability to store these results in a
packet preamble. An instance of PreambleFilter is used to select
packets based on a two-part string identifying a specific result.
The logic for this match is "at least one". That is, a packet with
multiple results in its preamble matches a filter if at least one of
these results matches the filter.
The class definition is as follows:
NAME PreambleFilter
DESCRIPTION A concrete class representing criteria
for selecting packets based on prior
traffic-conditioning results stored in
a packet preamble.
DERIVED FROM FilterEntryBase
TYPE Concrete
PROPERTIES FilterItemList[ ]
Moore, et al. Standards Track [Page 62]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
4.3.31.1. The Multi-valued Property FilterItemList
This property is an ordered list of strings, where each string has
the format "<type>,<value>". See Section 3.8.3 for a list of
<type>'s defined in QDDIM, and the nature of the associated <value>
for each of these types.
Note that there are two parallel terminologies for characterizing
meter results. The enumeration value "conforming(1)" is sometimes
described as "in profile," and the value "nonConforming(3)" is
sometimes described as "out of profile".
4.3.32. The Class FilterList
This is a concrete class that aggregates instances of (subclasses of)
FilterEntryBase via the aggregation EntriesInFilterList. It is
possible to aggregate different types of filters into a single
FilterList - for example, packet header filters (represented by the
IPHeaderFilter class) and security filters (represented by subclasses
of FilterEntryBase defined by IPsec).
The aggregation property EntriesInFilterList.EntrySequence is always
set to 0, to indicate that the aggregated filter entries are ANDed
together to form a selector for a class of traffic.
See [PCIME] for the definition of this class.
4.3.33. The Abstract Class ServiceAccessPoint
This is an abstract class defined in the Core Model of CIM. It is a
subclass of the LogicalElement class, and is the base class for all
objects that manage access to CIM_Services. It represents the
management of utilizing or invoking a Service. Please refer to [CIM]
for the full definition of this class.
4.3.34. The Class ProtocolEndpoint
This is a concrete class derived from ServiceAccessPoint, which
describes a communication point from which the services of the
network or the system's protocol stack may be accessed. Please refer
to [CIM] for the full definition of this class.
Moore, et al. Standards Track [Page 63]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
4.3.35. The Abstract Class Collection
This is an abstract class defined in the Core Model of CIM. It is
the superclass for all classes that represent groupings or bags, and
that carry no status or "state". (The latter would be more correctly
modeled as ManagedSystemElements.) Please refer to [CIM] for the
full definition of this class.
4.3.36. The Abstract Class CollectionOfMSEs
This is an abstract class defined in the Core Model of CIM. It is a
subclass of the Collection superclass, restricting the contents of
the Collection to ManagedSystemElements. Please refer to [CIM] for
the full definition of this class.
4.3.37. The Class BufferPool
This is a concrete class that represents the collection of buffers
used by a QueuingService. (The association QueueAllocation
represents this usage.) The existence and management of individual
buffers may be modeled in a future document. At the current level of
abstraction, modeling the existence of the BufferPool is necessary.
Long term, it is not sufficient.
In implementations where there are multiple buffer sizes, an instance
of BufferPool should be defined for each set of buffers with
identical or similar sizes. These instances of buffer pools can then
be grouped together using the CollectedBuffersPool aggregation.
Note that this class is derived from CollectionOfMSEs, and not from
Forwarding or ConditioningService. A BufferPool is only a collection
of storage, and is NOT a Service.
The class definition is as follows:
NAME BufferPool
DESCRIPTION A concrete class representing
a collection of buffers.
DERIVED FROM CollectionOfMSEs
TYPE Concrete
PROPERTIES Name, BufferSize, TotalBuffers,
AvailableBuffers, SharedBuffers
4.3.37.1. The Property Name
This property is a string with a maximum length of 256 characters.
It is the common name or label by which the object is known.
Moore, et al. Standards Track [Page 64]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
4.3.37.2. The Property BufferSize
This property is a 32-bit unsigned integer, identifying the
approximate number of bytes in each buffer in the buffer pool. An
implementation will typically group buffers of roughly the same size
together, to reduce the number of buffer pools it needs to manage.
This model does not specify the degree to which buffers in the same
buffer pool may differ in size.
4.3.37.3. The Property TotalBuffers
This property is a 32-bit unsigned integer, reporting the total
number of individual buffers in the pool.
4.3.37.4. The Property AvailableBuffers
This property is a 32-bit unsigned integer, reporting the number of
buffers in the Pool that are currently not allocated to any instance
of a QueuingService. Buffers allocated to a QueuingService could
either be in use (that is, currently contain packet data), or be
allocated to a queue pending the arrival of new packet data.
4.3.37.5. The Property SharedBuffers
This property is a 32-bit unsigned integer, reporting the number of
buffers in the Pool that have been simultaneously allocated to
multiple instances of QueuingService.
4.3.38. The Abstract Class SchedulingElement
This is an abstract class that represents the configuration
information that a PacketSchedulingService has for one of the
elements that it is scheduling. The scheduled element is either a
QueuingService or another PacketSchedulingService.
Among the subclasses of this class, some are defined in such a way
that all of their instances are work conserving. Other subclasses,
however, may have instances that either are or are not work
conserving. In this class, the boolean property WorkConserving
indicates whether an instance is or is not work conserving. The
range of values for WorkConserving is restricted to TRUE in the
subclasses that are inherently work conserving, since instances of
these classes cannot be anything other than work conserving.
Moore, et al. Standards Track [Page 65]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
The class definition is as follows:
NAME SchedulingElement
DESCRIPTION An abstract class representing the
configuration information that a
PacketSchedulingService has for one of
the elements that it is scheduling.
DERIVED FROM ManagedElement
TYPE Abstract
PROPERTIES WorkConserving
4.3.38.1. The Property WorkConserving
This boolean property indicates whether the PacketSchedulingService
tied to this instance by the ElementInSchedulingService aggregation
is treating the input tied to this instance by the QueueToSchedule or
SchedulingServiceToSchedule association in a work-conserving manner.
Note that this property is writable, indicating that an administrator
can change the behavior of the SchedulingElement - but only for those
elements that can operate in a non-workconserving mode.
4.3.39. The Class AllocationSchedulingElement
This class is a subclass of the abstract class SchedulingElement. It
introduces five new properties to support bandwidth-based scheduling.
As is the case with all subclasses of SchedulingElement, the input
associated with an instance of AllocationSchedulingElement is of one
of two types: either a queue, or another scheduler.
The class definition is as follows:
NAME AllocationSchedulingElement
DESCRIPTION A concrete class containing parameters
for controlling bandwidth-based
scheduling.
DERIVED FROM SchedulingElement
TYPE Concrete
PROPERTIES AllocationUnits, BandwidthAllocation,
BurstAllocation, CanShare,
WorkFlexible
Moore, et al. Standards Track [Page 66]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
4.3.39.1. The Property AllocationUnits
This property is a 16-bit unsigned integer enumeration that
identifies the units in which the BandwidthAllocation and
BurstAllocation properties are expressed. The following values are
defined:
o bytes(1)
o packets(2)
o cells(3) -- fixed-size, for example, ATM
Note: if the value of AllocationUnits is not one of these three
values, it SHOULD be interpreted as if it had the value '1' (bytes).
4.3.39.2. The Property BandwidthAllocation
This property is a 32-bit unsigned integer that defines the number of
units/second that should be allocated to the associated input. The
units are identified by the AllocationUnits property.
4.3.39.3. The Property BurstAllocation
This property is a 32-bit unsigned integer that specifies the amount
of temporary or short-term bandwidth (in units per second) that can
be allocated to an input, beyond the amount of bandwidth allocated
through the BandwidthAllocation property. If the maximum actual
bandwidth allocation for the input were to be measured, it would be
the sum of the BurstAllocation and the BandwidthAllocation
properties. The units are identified by the AllocationUnits
property.
4.3.39.4. The Property CanShare
This is a boolean property that, if TRUE, enables unused bandwidth
from the associated input to be allocated to other inputs serviced by
the Scheduler.
4.3.39.5. The Property WorkFlexible
This is a boolean property that, if TRUE, indicates that the behavior
of the scheduler relative to this input can be altered by changing
the value of the inherited property WorkConserving.
4.3.40. The Class WRRSchedulingElement
This class is a subclass of the abstract class SchedulingElement,
representing a weighted round robin (WRR) scheduling discipline. It
introduces a new property WeightingFactor, to give some inputs a
Moore, et al. Standards Track [Page 67]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
higher probability of being serviced than other inputs. It also
introduces a property Priority, to serve as a tiebreaker to be used
when inputs have equal weighting factors. As is the case with all
subclasses of SchedulingElement, the input associated with an
instance of WRRSchedulingElement is of one of two types: either a
queue, or another scheduler.
Because scheduling of this type is always work conserving, the
inherited boolean property WorkConserving is restricted to the value
TRUE in this class.
The class definition is as follows:
NAME WRRSchedulingElement
DESCRIPTION This class specializes the
SchedulingElement class to add
a per-input weight. This is used
by a weighted round robin packet
scheduler when it handles its
associated inputs. It also adds a
second property to serve as a tie-breaker
in the case where multiple inputs have
been assigned the same weight.
DERIVED FROM SchedulingElement
TYPE Concrete
PROPERTIES WeightingFactor, Priority
4.3.40.1. The Property WeightingFactor
This property is a 32-bit unsigned integer, which defines the
weighting factor that offers some inputs a higher probability of
being serviced than other inputs. This property represents this
probability. Its minimum value is 0, its maximum value is 100000,
and its units are in thousandths.
4.3.40.2. The Property Priority
This property is a 16-bit unsigned integer, which serves as a
tiebreaker, in the event that two or more inputs have equal weights.
A larger value represents a higher priority. If this property is
specified for any of the WRRSchedulingElements associated with a
PacketSchedulingService, then it must be specified for all
WRRSchedulingElements for that PacketSchedulingService, and the
property values for these WRRSchedulingElements must all be
different.
Moore, et al. Standards Track [Page 68]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
While this condition may not occur in some implementations of a
weighted round-robin scheduler, many implementations require a
priority to resolve an equal-weight condition. In instances where
this behavior is not necessary or is undesirable, this property may
be left unspecified.
4.3.41. The Class PrioritySchedulingElement
This class is a subclass of the abstract class SchedulingElement. It
indicates that a scheduler is taking packets from a set of inputs
using the priority scheduling discipline. As is the case with all
subclasses of SchedulingElement, the input associated with an
instance of PrioritySchedulingElement is of one of two types: either
a queue, or another scheduler. The property Priority in
PrioritySchedulingElement represents the priority for an input,
relative to the priorities of all the other inputs to which the
scheduler that aggregates this PrioritySchedulingElement is
associated. Inputs to which the scheduler is related via other
scheduling disciplines do not figure in this prioritization.
Because scheduling of this type is always work conserving, the
inherited boolean property WorkConserving is restricted to the value
TRUE in this class.
The class definition is as follows:
NAME PrioritySchedulingElement
DESCRIPTION A concrete class that specializes the
SchedulingElement class to add a
Priority property. This property is
used by a SchedulingService that is doing
priority scheduling for a set of inputs.
DERIVED FROM SchedulingElement
TYPE Concrete
PROPERTIES Priority
4.3.41.1. The Property Priority
This property is a 16-bit unsigned integer that indicates the
priority level of a scheduler input relative to the other inputs
serviced by this PacketSchedulingService. A larger value represents
a higher priority.
Moore, et al. Standards Track [Page 69]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
4.3.42. The Class BoundedPrioritySchedulingElement
This class is a subclass of the class PrioritySchedulingElement,
which is itself derived from the abstract class SchedulingElement.
As is the case with all subclasses of SchedulingElement, the input
associated with an instance of BoundedPrioritySchedulingElement is of
one of two types: either a queue, or another scheduler.
BoundedPrioritySchedulingElement adds an upper bound (in kilobits per
second) on how much traffic can be handled from an input. This data
is specific to that one input. It is needed when bounded strict
priority scheduling is performed.
This class inherits from its superclass PrioritySchedulingElement the
restriction of the inherited boolean property WorkConserving to the
value TRUE.
The class definition is as follows:
NAME BoundedPrioritySchedulingElement
DESCRIPTION This concrete class specializes the
PrioritySchedulingElement class to add
a BandwidthBound property. This property
bounds the rate at which traffic from the
associated input can be handled.
DERIVED FROM PrioritySchedulingElement
TYPE Concrete
PROPERTIES BandwidthBound
4.3.42.1. The Property BandwidthBound
This property is a 32-bit unsigned integer that defines the upper
limit on the amount of traffic that can be handled from the input.
This is not a shaped upper bound, since bursts can occur. It is a
strict bound, limiting the impact of the input. The units are
kilobits per second.
4.4. Association Definitions
This section details the QoS device datapath associations, including
the aggregations, which were shown earlier in Figures 4 and 5. These
associations are defined as classes in the Information Model. Each
of these classes has two properties referring to instances of the two
classes that the association links. Some of the association classes
have additional properties as well.
Moore, et al. Standards Track [Page 70]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
4.4.1. The Abstract Association Dependency
This abstract association defines two object references (named
Antecedent and Dependent) that establish general dependency
relationships between different managed objects in the information
model. The Antecedent reference identifies the independent object in
the association, while the Dependent reference identifies the entity
that IS dependent.
The association's cardinality is many to many.
The association is defined in the Core Model of CIM. Please refer to
[CIM] for the full definition of this class.
4.4.2. The Association ServiceSAPDependency
This association defines two object references that establish a
general dependency relationship between a Service object and a
ServiceAccessPoint object. This relationship indicates that the
referenced Service uses the ServiceAccessPoint of ANOTHER Service.
The Service is the Dependent reference, relying on the
ServiceAccessPoint to gain access to another Service.
The association's cardinality is many to many.
The association is defined in the Core Model of CIM. Please refer to
[CIM] for the full definition of this class.
4.4.3. The Association IngressConditioningServiceOnEndpoint
This association is derived from the association
ServiceSAPDependency, and represents the binding, in the ingress
direction, between a protocol endpoint and the first
ConditioningService that processes packets received via that protocol
endpoint. Since there can only be one "first" ConditioningService
for a protocol endpoint, the cardinality for the Dependent object
reference is narrowed from 0..n to 0..1. Since, on the other hand, a
single ConditioningService can be the first to process packets
received via multiple protocol endpoints, the cardinality of the
Antecedent object reference remains 0..n.
Moore, et al. Standards Track [Page 71]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
The class definition is as follows:
NAME IngressConditioningServiceOnEndpoint
DESCRIPTION An association that establishes a
dependency relationship between a protocol
endpoint and the first conditioning
service that processes traffic arriving
via that protocol endpoint.
DERIVED FROM ServiceSAPDependency
ABSTRACT False
PROPERTIES Antecedent[ref ProtocolEndpoint[0..n]],
Dependent[ref ConditioningService[0..1]]
4.4.4. The Association EgressConditioningServiceOnEndpoint
This association is derived from the association
ServiceSAPDependency, and represents the binding, in the egress
direction, between a protocol endpoint and the last
ConditioningService that processes packets before they leave a
network device via that protocol endpoint. (This "last"
ConditioningService is ordinarily a scheduler, but it doesn't have to
be.) Since there can be multiple "last" ConditioningServices for a
protocol endpoint in the case of a fallback scheduler, the
cardinality for the Dependent object reference remains 0..n. Since,
however, a single ConditioningService cannot be the last one to
process packets for multiple protocol endpoints, the cardinality of
the Antecedent object reference is narrowed from 0..n to 0..1.
The class definition is as follows:
NAME EgressConditioningServiceOnEndpoint
DESCRIPTION An association that establishes a
dependency relationship between a protocol
endpoint and the last conditioning
service(s) that process traffic to be
transmitted via that protocol endpoint.
DERIVED FROM ServiceSAPDependency
ABSTRACT False
PROPERTIES Antecedent[ref ProtocolEndpoint[0..1]],
Dependent[ref ConditioningService[0..n]]
4.4.5. The Association HeadTailDropQueueBinding
This association is a subclass of Dependency, describing the
association between a head or tail dropper and a queue that it
monitors to determine when to drop traffic. The referenced queue is
the one whose queue depth is compared against the Dropper's
threshold. The cardinality is 1..n on the queue side, since a
Moore, et al. Standards Track [Page 72]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
head/tail dropper must monitor at least one queue. For the classes
HeadTailDropper and HeadTailDropQueueBinding, the rule for combining
the inputs from multiple queues is simple addition: if the sum of the
lengths of the monitored queues exceeds the dropper's QueueThreshold
value, then packets are dropped. This rule for combining inputs may,
however, be overridden by a different rule in subclasses of one or
both of these classes.
The class definition is as follows:
NAME HeadTailDropQueueBinding
DESCRIPTION A generic association used to establish a
dependency relationship between a
head or tail dropper and a queue that it
monitors.
DERIVED FROM Dependency
ABSTRACT False
PROPERTIES Antecedent[ref QueuingService[1..n]],
Dependent[ref
HeadTailDropperService [0..n]]
4.4.6. The Association CalculationBasedOnQueue
This association is a subclass of Dependency, which defines two
object references that establish a dependency relationship between a
QueuingService and an instance of the DropThresholdCalculationService
class. The queue's current depth is used by the calculation service
in calculating an average queue depth.
The class definition is as follows:
NAME CalculationBasedOnQueue
DESCRIPTION A generic association used to establish a
dependency relationship between a
QueuingService object and a
DropThresholdCalculationService object.
DERIVED FROM ServiceServiceDependency
ABSTRACT False
PROPERTIES Antecedent[ref QueuingService[1..1]],
Dependent[ref
DropThresholdCalculationService [0..n]]
Moore, et al. Standards Track [Page 73]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
4.4.6.1. The Reference Antecedent
This property is inherited from the Dependency association, and
overridden to serve as an object reference to a QueuingService object
(instead of to the more general ManagedElement). This reference
identifies the queue that the DropThresholdCalculationService will
use in its calculation of average queue depth.
4.4.6.2. The Reference Dependent
This property is inherited from the Dependency association, and
overridden to serve as an object reference to a
DropThresholdCalculationService object (instead of to the more
general ManagedElement). This reference identifies a
DropThresholdCalculationService that uses the referenced queue's
current depth as one of the inputs to its calculation of average
queue depth.
4.4.7. The Association ProvidesServiceToElement
This association defines two object references that establish a
dependency relationship in which a ManagedSystemElement depends on
the functionality of one or more Services. The association's
cardinality is many to many.
The association is defined in the Core Model of CIM. Please refer to
[CIM] for the full definition of this class.
4.4.8. The Association ServiceServiceDependency
This association defines two object references that establish a
dependency relationship between two Service objects. The particular
type of dependency is represented by the TypeOfDependency property;
typical examples include that one Service is required to be present
or required to have completed for the other Service to operate.
This association is very similar to the ServiceSAPDependency
relationship. For the latter, the Service is dependent on an
AccessPoint to get at another Service. In this relationship, it
directly identifies its Service dependency. Both relationships
should not be instantiated, since their information is repetitive.
The association's cardinality is many to many.
The association is defined in the Core Model of CIM. Please refer to
[CIM] for the full definition of this class.
Moore, et al. Standards Track [Page 74]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
4.4.9. The Association CalculationServiceForDropper
This association is a subclass of ServiceServiceDependency, which
defines two object references that represent the reliance of a
REDDropperService on a DropThresholdCalculationService - calculating
an average queue depth based on the observed depths of one or more
queues.
The class definition is as follows:
NAME CalculationServiceForDropper
DESCRIPTION A generic association used to establish a
dependency relationship between a
calculation service and a
REDDropperSrevice for which it performs
average queue depth calculations
DERIVED FROM ServiceServiceDependency
ABSTRACT False
PROPERTIES Antecedent[ref
DropThresholdCalculationService[1..n]],
Dependent[ref REDDropperService[0..n]]
4.4.9.1. The Reference Antecedent
This property is inherited from the ServiceServiceDependency
association, and overridden to serve as an object reference to a
DropThresholdCalculationService object (instead of to the more
general Service object). The cardinality of the object reference is
1..n, indicating that a RED dropper may be served by one or more
calculation services.
4.4.9.2. The Reference Dependent
This property is inherited from the ServiceServiceDependency
association, and overridden to serve as an object reference to a
REDDropperService object (instead of to the more general Service
object). This reference identifies a RED dropper served by a
DropThresholdCalculationService.
4.4.10. The Association QueueAllocation
This association is a subclass of Dependency, which defines two
object references that establish a dependency relationship between a
QueuingService and a BufferPool that provides storage space for the
packets in the queue.
Moore, et al. Standards Track [Page 75]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
The class definition is as follows:
NAME QueueAllocation
DESCRIPTION A generic association used to establish a
dependency relationship between a
QueuingService object and a BufferPool
object.
DERIVED FROM Dependency
ABSTRACT False
PROPERTIES Antecedent[ref BufferPool[0..n]],
Dependent[ref QueuingService[0..n]]
AllocationPercentage
4.4.10.1. The Reference Antecedent
This property is inherited from the Dependency association, and
overridden to serve as an object reference to a BufferPool object.
This reference identifies the BufferPool in which packets on the
QueuingService's queue are stored.
4.4.10.2. The Reference Dependent
This property is inherited from the Dependency association, and
overridden to serve as an object reference to a QueuingService
object. This reference identifies the QueuingService whose packets
are being stored in the BufferPool's buffers.
4.4.10.3. The Property AllocationPercentage
This property is an 8-bit unsigned integer with minimum value of zero
and maximum value of 100. It defines the percentage of the
BufferPool that should be allocated to the referenced QueuingService.
If absolute sizes are desired, this would be accomplished by defining
individual BufferPools of the specified sizes, with
QueueAllocation.AllocationPercentages set to 100.
4.4.11. The Association ClassifierElementUsesFilterList
This association is a subclass of the Dependency association. It
relates one or more ClassifierElements with a FilterList representing
the criteria for selecting packets for each of the ClassifierElements
to process.
In the QDDIM model, a classifier is always modeled as a
ClassifierService that aggregates a set of ClassifierElements. When
ClassifierElements use the NextServiceAfterClassifierElement
Moore, et al. Standards Track [Page 76]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
association to bind to another ClassifierService (to construct a
hierarchical classifier), the ClassifierElementUsesFilterList
association must not be specified.
The class definition is as follows:
NAME ClassifierElementUsesFilterList
DESCRIPTION An association relating a
ClassifierElement to the FilterList
representing the criteria for selecting
packets for that
ClassifierElement to process.
DERIVED FROM Dependency
ABSTRACT False
PROPERTIES Antecedent[ref FilterList [0..1]],
Dependent[ref ClassifierElement [0..n]]
4.4.11.1. The Reference Antecedent
This property is inherited from the Dependency association, and
overridden to serve as an object reference to a FilterList object,
instead of to the more general ManagedElement object. Also, its
cardinality is restricted to 0 and 1, indicating that a
ClassifierElement uses either one FilterList to select packets for it
or no FilterList when the ClassifierElement uses the
NextServiceAfterClassifierElement association to bind to another
ClassifierService to form a hierarchical classifier.
4.4.11.2. The Reference Dependent
This property is inherited from the Dependency association, and
overridden to serve as an object reference to a ClassifierElement
object, instead of to the more general ManagedElement object. This
reference identifies a ClassifierElement that depends on the
associated FilterList object to represent its packet-selection
criteria.
4.4.12. The Association AFRelatedServices
This association defines two object references that establish a
dependency relationship between two AFService objects. This
dependency is the precedence of the individual AF drop-related
Services within an AF IP packet-forwarding class.
Moore, et al. Standards Track [Page 77]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
The class definition is as follows:
NAME AFRelatedServices
DESCRIPTION An association used to establish
a dependency relationship between two
AFService objects.
DERIVED FROM Nothing
ABSTRACT False
PROPERTIES AFLowerDropPrecedence[ref
AFService[0..1]],
AFHigherDropPrecedence[ref
AFService[0..n]]
4.4.12.1. The Reference AFLowerDropPrecedence
This property serves as an object reference to an AFService object
that has the lower probability of dropping packets.
4.4.12.2. The Reference AFHigherDropPrecedence
This property serves as an object reference to an AFService object
that has the higher probability of dropping packets.
4.4.13. The Association NextService
This association defines two object references that establish a
predecessor-successor relationship between two ConditioningService
objects. This association is used to indicate the sequence of
ConditioningServices required to process a particular type of
traffic.
Instances of this dependency describe the various relationships
between different ConditioningServices (such as classifiers, meters,
droppers, etc.) that are used collectively to condition traffic.
Both one-to-one and more complicated fan-in and/or fan-out
relationships can be described. The ConditioningServices may feed
one another directly, or they may be mapped to multiple "next"
Services based on the characteristics of the packet.
Moore, et al. Standards Track [Page 78]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
The class definition is as follows:
NAME NextService
DESCRIPTION An association used to establish
a predecessor-successor relationship
between two ConditioningService objects.
DERIVED FROM Nothing
ABSTRACT False
PROPERTIES PrecedingService[ref
ConditioningService[0..n]],
FollowingService[ref
ConditioningService[0..n]]
4.4.13.1. The Reference PrecedingService
This property serves as an object reference to a ConditioningService
object that occurs earlier in the processing sequence for a given
type of traffic.
4.4.13.2. The Reference FollowingService
This property serves as an object reference to a ConditioningService
object that occurs later in the processing sequence for a given type
of traffic, immediately after the ConditioningService identified by
the PrecedingService object reference.
4.4.14. The Association NextServiceAfterClassifierElement
This association refines the definition of its superclass, the
NextService association, in two ways:
o It restricts the PrecedingService object reference to the class
ClassifierElement.
o It restricts the cardinality of the FollowingService object
reference to exactly 1.
The class definition is as follows:
NAME NextServiceAfterClassifierElement
DESCRIPTION An association used to establish
a predecessor-successor relationship
between a single ClassifierElement within
a Classifier and the next
ConditioningService object that is
responsible for further processing of
the traffic selected by that
ClassifierElement.
Moore, et al. Standards Track [Page 79]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
DERIVED FROM NextService
ABSTRACT False
PROPERTIES PrecedingService
[ref ClassifierElement[0..n]],
FollowingService
[ref ConditioningService[1..1]
4.4.14.1. The Reference PrecedingService
This property is inherited from the NextService association. It is
overridden in this subclass to restrict the object reference to a
ClassifierElement, as opposed to the more general ConditioningService
defined in the NextService superclass.
This property serves as an object reference to a ClassifierElement,
which is a component of a single ClassifierService. Packets selected
by this ClassifierElement are always passed to the
ConditioningService identified by the FollowingService object
reference.
4.4.14.2. The Reference FollowingService
This property is inherited from the NextService association. It is
overridden in this subclass to restrict the cardinality of the
reference to exactly 1. This reflects the requirement that the
behavior of a DiffServ classifier must be deterministic: the packets
selected by a given ClassifierElement in a given ClassifierService
must always go to one and only one next ConditioningService.
4.4.15. The Association NextScheduler
This association is a subclass of NextService, and defines two object
references that establish a predecessor-successor relationship
between PacketSchedulingServices. In a hierarchical queuing
configuration where a second scheduler treats the output of a first
scheduler as a single, aggregated input, the two schedulers are
related via the NextScheduler association.
The class definition is as follows:
NAME NextScheduler
DESCRIPTION An association used to establish
predecessor-successor relationships
between PacketSchedulingService objects
for simple hierarchical scheduling.
DERIVED FROM NextService
ABSTRACT False
Moore, et al. Standards Track [Page 80]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
PROPERTIES PrecedingService[ref
PacketSchedulingService[0..n]],
FollowingService[ref
PacketSchedulingService[0..1]]
4.4.15.1. The Reference PrecedingService
This property is inherited from the NextService association, and
overridden to serve as an object reference to a
PacketSchedulingService object (instead of to the more general
ConditioningService object). This reference identifies a scheduler
whose output is being treated as a single, aggregated input by the
scheduler identified by the FollowingService reference. The [0..n]
cardinality indicates that a single FollowingService scheduler may
bring together the aggregated outputs of multiple prior schedulers.
4.4.15.2. The Reference FollowingService
This property is inherited from the NextService association, and
overridden to serve as an object reference to a
PacketSchedulingService object (instead of to the more general
ConditioningService object). This reference identifies a scheduler
that includes among its inputs the aggregated outputs of one or more
PrecedingService schedulers.
4.4.16. The Association FailNextScheduler
This association is a subclass of the NextScheduler association.
FailNextScheduler represents the relationship between two schedulers
when the first scheduler passes up a scheduling opportunity (thereby
behaving in a non-work conserving manner), and makes the resulting
bandwidth available to the second scheduler for its use. See
Sections 3.11.3 and 3.11.4 for examples of where this association
might be used.
The class definition is as follows:
NAME FailNextScheduler
DESCRIPTION This association specializes the
NextScheduler association. It
establishes a relationship between a
non-work-conserving scheduler and a
second scheduler to which it makes
available the bandwidth that it elects
not to use.
DERIVED FROM NextScheduler
ABSTRACT False
Moore, et al. Standards Track [Page 81]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
PROPERTIES PrecedingService[ref
NonWorkConservingSchedulingService[0..n]]
4.4.16.1. The Reference PrecedingService
This property is inherited from the NextScheduler association, and
overridden to serve as an object reference to a
NonWorkConservingSchedulingService object (instead of to the more
general PacketSchedulingService object). This reference identifies a
non-work-conserving scheduler whose excess bandwidth is being made
available to the scheduler identified by the FollowingService
reference. The [0..n] cardinality indicates that a single
FollowingService scheduler may have the opportunity to use the unused
bandwidth of multiple prior non-work-conserving schedulers.
4.4.17. The Association NextServiceAfterMeter
This association describes a predecessor-successor relationship
between a MeterService and one or more ConditioningService objects
that process traffic from the meter. For example, for devices that
implement preamble marking, the FollowingService reference (after the
meter) is a PreambleMarkerService, to record the results of the
metering in the preamble.
It might be expected that the NextServiceAfterMeter association would
subclass from NextService. However, meters are 1:n fan-out elements,
and require a mechanism to distinguish between the different
results/outputs of the meter. Therefore, this association defines a
new key property, MeterResult, which is used to record the result and
identify the output through which this traffic left the meter.
Because of this additional key, NextServiceAfterMeter cannot be a
subclass of NextService.
The class definition is as follows:
NAME NextServiceAfterMeter
DESCRIPTION An association used to establish
a predecessor-successor relationship
between a particular output of a
MeterService and the next
ConditioningService object that is
responsible for further processing of
the traffic.
DERIVED FROM Nothing
ABSTRACT False
Moore, et al. Standards Track [Page 82]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
PROPERTIES PrecedingService[ref MeterService[0..n]],
FollowingService[ref
ConditioningService[0..n]],
MeterResult
4.4.17.1. The Reference PrecedingService
The preceding MeterService, 'earlier' in the processing sequence for
a packet. Since Meters are 1:n fan-out devices, this relationship
associates a particular output of a MeterService (identified by the
MeterResult property) to the next ConditioningService that is used to
further process the traffic.
4.4.17.2. The Reference FollowingService
The 'next' or following ConditioningService.
4.4.17.3. The Property MeterResult
This property is an enumerated 16-bit unsigned integer, and
represents information describing the result of the metering. Traffic
is distinguished as being conforming, non-conforming, or partially
conforming. More complicated metering can be built either by
extending the enumeration or by cascading meters.
The enumerated values are: "Unknown" (0), "Conforming" (1),
"PartiallyConforming" (2), "NonConforming" (3).
4.4.18. The Association QueueToSchedule
This is a top-level association, representing the relationship
between a queue (QueuingService) and a SchedulingElement. The
SchedulingElement, in turn, represents the information in a packet
scheduling service that is specific to this queue, such as relative
priority or allocated bandwidth.
It cannot be expressed formally with the association cardinalities,
but there is an additional constraint on participation in this
association. A particular instance of (a subclass of)
SchedulingElement always participates either in exactly one instance
of this association, or in exactly one instance of the association
SchedulingServiceToSchedule.
Moore, et al. Standards Track [Page 83]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
The class definition is as follows:
NAME QueueToSchedule
DESCRIPTION This association relates a queue to
the SchedulingElement containing
information specific to the queue.
DERIVED FROM Nothing
ABSTRACT False
PROPERTIES Queue[ref QueuingService[0..1]],
SchedElement[ref
SchedulingElement[0..n]]
4.4.18.1. The Reference Queue
This property serves as an object reference to a QueuingService
object. A QueuingService object may be associated 0 or more
SchedulingElement objects.
4.4.18.2. The Reference SchedElement
This property serves as an object reference to a SchedulingElement
object. A SchedulingElement is always associated either with exactly
one QueuingService or with exactly one upstream scheduler
(PacketSchedulingService).
4.4.19. The Association SchedulingServiceToSchedule
This is a top-level association, representing the relationship
between a scheduler (PacketSchedulingService) and a
SchedulingElement, in a configuration involving cascaded schedulers.
The SchedulingElement, in turn, represents the information in a
subsequent packet scheduling service that is specific to this
scheduler, such as relative priority or allocated bandwidth.
It cannot be expressed formally with the association cardinalities,
but there is an additional constraint on participation in this
association. A particular instance of (a subclass of)
SchedulingElement always participates either in exactly one instance
of this association, or in exactly one instance of the association
QueueToSchedule.
The class definition is as follows:
NAME SchedulingServiceToSchedule
DESCRIPTION This association relates a scheduler to
the SchedulingElement in a subsequent
scheduler containing information specific
to this scheduler.
Moore, et al. Standards Track [Page 84]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
DERIVED FROM Nothing
ABSTRACT False
PROPERTIES SchedService[ref
PacketSchedulingService[0..1]],
SchedElement[ref
SchedulingElement[0..n]]
4.4.19.1. The Reference SchedService
This property serves as an object reference to a
PacketSchedulingService object. A PacketSchedulingService object may
be associated 0 or more SchedulingElement objects.
4.4.19.2. The Reference SchedElement
This property serves as an object reference to a SchedulingElement
object. A SchedulingElement is always associated either with exactly
one QueuingService or with exactly one upstream scheduler
(PacketSchedulingService).
4.4.20. The Aggregation MemberOfCollection
This aggregation is a generic relationship used to model the
aggregation of a set of ManagedElements in a generalized Collection
object. The aggregation's cardinality is many to many.
MemberOfCollection is defined in the Core Model of CIM. Please refer
to [CIM] for the full definition of this class.
4.4.21. The Aggregation CollectedBufferPool
This aggregation models the ability to treat a set of buffers as a
pool, or collection, that can in turn be contained in a "higher-
level" buffer pool. This class overrides the more generic
MemberOfCollection aggregation to restrict both the aggregate and the
part component objects to be instances only of the BufferPool class.
The class definition for the aggregation is as follows:
NAME CollectedBufferPool
DESCRIPTION A generic association used to aggregate
a set of related buffers into a
higher-level buffer pool.
DERIVED FROM MemberOfCollection
ABSTRACT False
PROPERTIES Collection[ref BufferPool[0..1]],
Member[ref BufferPool[0..n]]
Moore, et al. Standards Track [Page 85]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
4.4.21.1. The Reference Collection
This property represents the parent, or aggregate, object in the
relationship. It is a BufferPool object.
4.4.21.2. The Reference Member
This property represents the child, or lower level pool, in the
relationship. It is one of the set of BufferPools that together make
up the higher-level pool.
4.4.22. The Abstract Aggregation Component
This abstract aggregation is a generic relationship used to establish
"part-of" relationships between managed objects (named GroupComponent
and PartComponent). The association's cardinality is many to many.
The association is defined in the Core Model of CIM. Please refer to
[CIM] for the full definition of this class.
4.4.23. The Aggregation ServiceComponent
This aggregation is used to model a set of subordinate Services that
are aggregated together to form a higher-level Service. This
aggregation is derived from the more generic Component superclass to
restrict the types of objects that can participate in this
relationship. The association's cardinality is many to many.
The association is defined in the Core Model of CIM. Please refer to
[CIM] for the full definition of this class.
4.4.24. The Aggregation QoSSubService
This aggregation represents a set of subordinate QoSService objects
(that is, a set of instances of subclasses of the QoSService class)
that are aggregated together to form a higher-level QoSService. A
QoSService is a specific type of Service that conceptualizes QoS
functionality as a set of coordinated sub-services.
This aggregation is derived from the more generic ServiceComponent
superclass to restrict the types of objects that can participate in
this relationship to QoSService objects, instead of a more generic
Service object. It also restricts the cardinality of the aggregate
to 0-or-1 (instead of the more generic 0-or-more).
Moore, et al. Standards Track [Page 86]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
The class definition for the aggregation is as follows:
NAME QoSSubService
DESCRIPTION A generic association used to establish
"part-of" relationships between a
higher-level QoSService object and the
set of lower-level QoSServices that
are aggregated to create/form it.
DERIVED FROM ServiceComponent
ABSTRACT False
PROPERTIES GroupComponent[ref QoSService[0..1]],
PartComponent[ref QoSService[0..n]]
4.4.24.1. The Reference GroupComponent
This property is overridden in this aggregation to represent an
object reference to a QoSService object (instead of to the more
generic Service object defined in its superclass). This object
represents the parent, or aggregate, object in the relationship.
4.4.24.2. The Reference PartComponent
This property is overridden in this aggregation to represent an
object reference to a QoSService object (instead of to the more
generic Service object defined in its superclass). This object
represents the child, or "component", object in the relationship.
4.4.25. The Aggregation QoSConditioningSubService
This aggregation identifies the set of conditioning services that
together condition traffic for a particular QoS service.
This aggregation is derived from the more generic ServiceComponent
superclass; it restricts the types of objects that can participate in
it to ConditioningService and QoSService objects, instead of the more
generic Service objects.
The class definition for the aggregation is as follows:
NAME QoSConditioningSubService
DESCRIPTION A generic aggregation used to establish
"part-of" relationships between a set
of ConditioningService objects and the
particular QoSService object(s) that they
provide traffic conditioning for.
DERIVED FROM ServiceComponent
ABSTRACT False
Moore, et al. Standards Track [Page 87]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
PROPERTIES GroupComponent[ref QoSService[0..n]],
PartComponent[ref
ConditioningService[0..n]]
4.4.25.1. The Reference GroupComponent
This property is overridden in this aggregation to represent an
object reference to a QoSService object (instead of to the more
generic Service object defined in its superclass). The cardinality
of the reference remains 0..n, to indicate that a given
ConditioningService may provide traffic conditioning for 0, 1, or
more than 1 QoSService objects.
This object represents the parent, or aggregate, object in the
association. In this case, this object represents the QoSService
that aggregates one or more ConditioningService objects to implement
the appropriate traffic conditioning for its traffic.
4.4.25.2. The Reference PartComponent
This property is overridden in this aggregation to represent an
object reference to a ConditioningService object (instead of to the
more generic Service object defined in its superclass). This object
represents the child, or "component", object in the relationship. In
this case, this object represents one or more ConditioningService
objects that together indicate how traffic for a specific QoSService
is conditioned.
4.4.26. The Aggregation ClassifierElementInClassifierService
This aggregation represents the relationship between a classifier and
the classifier elements that provide the fan-out function for the
classifier. A classifier typically aggregates multiple classifier
elements. A classifier element, however, is aggregated only by a
single classifier. See [DSMODEL] and [DSMIB] for more about
classifiers and classifier elements.
The class definition for the aggregation is as follows:
NAME ClassifierElementInClassifierService
DESCRIPTION An aggregation representing the
relationship between a classifier
and its classifier elements.
DERIVED FROM ServiceComponent
ABSTRACT False
Moore, et al. Standards Track [Page 88]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
PROPERTIES GroupComponent[ref
ClassifierService[1..1]],
PartComponent[ref
ClassifierElement[0..n],
ClassifierOrder
4.4.26.1. The Reference GroupComponent
This property is overridden in this aggregation to represent an
object reference to a ClassifierService object (instead of to the
more generic Service object defined in its superclass). It also
restricts the cardinality of the aggregate to 1..1 (instead of the
more generic 0-or-more), representing the fact that a
ClassifierElement always exists within the context of exactly one
ClassifierService.
4.4.26.2. The Reference PartComponent
This property is overridden in this aggregation to represent an
object reference to a ClassifierElement object (instead of to the
more generic Service object defined in its superclass). This object
represents a single traffic selector for the classifier. A
ClassifierElement usually has an association to a FilterList that
provides selection criteria for packets from the traffic stream
coming into the classifier, and to a ConditioningService to which
packets selected by these criteria are next forwarded.
4.4.26.3. The Property ClassifierOrder
Because the filters for a classifier can overlap, it is necessary to
specify the order in which the ClassifierElements aggregated by a
ClassifierService are presented with packets coming into the
classifier. This property is an unsigned 32-bit integer representing
this order. Values are represented in ascending order: first '1',
then '2', and so on. Different values MUST be assigned for each of
the ClassifierElements aggregated by a given ClassifierService.
4.4.27. The Aggregation EntriesInFilterList
This aggregation is a specialization of the Component aggregation; it
is used to define a set of filter entries (subclasses of
FilterEntryBase) that are aggregated by a FilterList.
The cardinalities of the aggregation itself are 0..1 on the
FilterList end, and 0..n on the FilterEntryBase end. Thus in the
general case, a filter entry can exist without being aggregated into
Moore, et al. Standards Track [Page 89]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
any FilterList. However, the only way a filter entry can figure in
the QoS Device model is by being aggregated into a FilterList by this
aggregation.
See [PCIME] for the definition of this aggregation.
4.4.28. The Aggregation ElementInSchedulingService
This concrete aggregation represents the relationship between a
PacketSchedulingService and the set of SchedulingElements that tie it
to its inputs.
The class definition for the aggregation is as follows:
NAME ElementInSchedulingService
DESCRIPTION An aggregation used to tie a
PacketSchedlingService to the
configuration information for one of
the elements (either a QueuingService or
another PacketSchedulingService) that it
schedules.
DERIVED FROM Component
ABSTRACT False
PROPERTIES GroupComponent[ref
PacketSchedulingService[0..1]],
PartComponent[ref
SchedulingElement[1..n]
4.4.28.1. The Reference GroupComponent
This property is overridden in this aggregation to represent an
object reference to a PacketSchedulingService object (instead of to
the more generic Service object defined in its superclass). It also
restricts the cardinality of the aggregate to 0..1 (instead of the
more generic 0-or-more), representing the fact that a
SchedulingElement exists within the context of at most one
PacketSchedulingService.
4.4.28.2. The Reference PartComponent
This property is overridden in this aggregation to represent an
object reference to a SchedulingElement object (instead of to the
more generic Service object defined in its superclass). This object
represents a single scheduling element for the scheduler. It also
restricts the cardinality of the SchedulingElement to 1..n (instead
of the more generic 0-or-more), representing the fact that a
PacketSchedulingService always includes at least one
SchedulingElement.
Moore, et al. Standards Track [Page 90]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
5. Intellectual Property Statement
The IETF takes no position regarding the validity or scope of any
intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; neither does it represent that it
has made any effort to identify any such rights. Information on the
IETF's procedures with respect to rights in standards-track and
standards-related documentation can be found in BCP-11.
Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF Secretariat.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights which may cover technology that may be required to practice
this standard. Please address the information to the IETF Executive
Director.
6. Acknowledgements
The authors wish to thank the participants of the Policy Framework
and Differentiated Services working groups for their many helpful
comments and suggestions. Special thanks to Joel Halpern, who
provided some key technical direction during the latter stages of the
document's development.
7. Security Considerations
Like [PCIM] and [PCIME], this document defines an information model
that cannot be implemented directly. Consequently, security issues
do not arise until it is mapped to an actual, implementable data
model such as a MIB, PIB, or LDAP schema. See [PCIM] for a general
discussion of security considerations for information models. See
also [DSMIB] (which in fact is a data model that corresponds to a
large extent with the QDDIM information model), for a discussion of
the security implications of specific objects in the model.
Moore, et al. Standards Track [Page 91]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
8. References
8.1. Normative References
[CIM] Common Information Model (CIM) Schema, version 2.5.
Distributed Management Task Force, Inc., available at
http://www.dmtf.org/standards/cim_schema_v25.php.
[IEEE802Q] Virtual Bridged Local Area Networks, ANSI/IEEE std 802.1Q,
1998 edition. Approved December 8, 1998
[PCIM] Moore, B., Ellesson, E., Strassner, J. and A. Westerinen,
"Policy Core Information Model - Version 1 Specification",
RFC 3060, February 2001.
[PCIME] Moore, B., Ed., "Policy Core Information Model (PCIM)
Extensions", RFC 3460, January 2003.
[R791] Postel, J., "Internet Protocol", STD 5, RFC 791, September
1981.
[R2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[R2474] Nichols, K., Blake, S., Baker, F. and D. Black,
"Definition of the Differentiated Services Field (DS
Field) in the IPv4 and IPv6 Headers", RFC 2474, December
1998.
[R2597] Heinanen, J., Baker, F., Weiss, W. and J. Wroclawski,
"Assured Forwarding PHB Group", RFC 2597, June 1999.
[R3140] Black, D., Brim, S., Carpenter, B. and F. Le Faucheur,
"Per Hop Behavior Identification Codes", RFC 3140, June
2001.
8.2. Informative References
[DSMIB] Baker, F., Chan, K. and A. Smith, "Management Information
Base for the Differentiated Services Architecture", RFC
3289, May 2002.
[DSMODEL] Bernet, Y., Blake, S., Grossman, D. and A. Smith, "An
Informal Management Model for DiffServ Routers", RFC 3290,
May 2002.
Moore, et al. Standards Track [Page 92]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
[PIB] Chan, K., Sahita, R., Hahn, S. and K. McCloghrie,
"Differentiated Services Quality of Service Policy
Information Base", RFC 3317, March 2003.
[POLTERM] Westerinen, A., Schnizlein, J., Strassner, J., Scherling,
M., Quinn, B., Herzog, S., Huynh, A., Carlson, M., Perry,
J. and S. Waldbusser, "Terminology for Policy-Based
Management", RFC 3198, November 2001.
[QPIM] Snir, Y., Ramberg, Y., Strassner, J., Cohen, R. and B.
Moore, "Policy Quality of Service (QoS) Information
Model", RFC 3644, November 2003.
[R1633] Braden, R., Clark, D. and S. Shenker, "Integrated Services
in the Internet Architecture: An Overview", RFC 1633,
June 1994.
[R2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.
and W. Weiss, "An Architecture for Differentiated
Service", RFC 2475, December 1998.
[R3246] Davie, B., Charny, A., Bennet, J.C.R., Benson, K., Le
Boudec, J.Y., Courtney, W., Davari, S., Firoiu, V. and D.
Stiliadis, "An Expedited Forwarding PHB (Per-Hop
Behavior)", RFC 3246, March 2002.
[RED] See http://www.aciri.org/floyd/red.html
Moore, et al. Standards Track [Page 93]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
9. Appendix A: Naming Instances in a Native CIM Implementation
Following the precedent established in [PCIM], this document has
placed the details of how to name instances of its classes in a
native CIM implementation here in an appendix. Since Appendix A in
[PCIM] has a lengthy discussion of the general principles of CIM
naming, this appendix does not repeat that information here. Readers
interested in a more global discussion of how instances are named in
a native CIM implementation should refer to [PCIM].
9.1. Naming Instances of the Classes Derived from Service
Most of the classes defined in this model are derived from the CIM
class Service. Although Service is an abstract class, it
nevertheless has key properties included as part of its definition.
The purpose of including key properties in an abstract class is to
have instances of all of its instantiable subclasses named in the
same way. Thus, the majority of the classes in this model name their
instances in exactly the same way: with the two key properties
CreationClassName and Name that they inherit from Service.
9.2. Naming Instances of Subclasses of FilterEntryBase
Like Service, FilterEntryBase (defined in [PCIME]) is an abstract
class that includes key properties in its definition.
FilterEntryBase has four key properties. Two of them,
SystemCreationClassName and SystemName, are propagated to it via the
weak association FilterEntryInSystem. The other two,
CreationClassName and Name, are native to FilterEntryBase.
Thus, instances of all of the subclasses of FilterEntryBase,
including the PreambleFilter class defined here, are named in the
same way: with the four key properties they inherit from
FilterEntryBase.
9.3. Naming Instances of ProtocolEndpoint
The class ProtocolEndpoint inherits its key properties from its
superclass, ServiceAccessPoint. These key properties provide the
same naming structure that we've seen before: two propagated key
properties SystemCreationClassName and SystemName, plus two native
key properties CreationClassName and Name.
Moore, et al. Standards Track [Page 94]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
9.4. Naming Instances of BufferPool
Unlike the other classes in this model, BufferPool is not derived
from Service. Consequently, it does not inherit its key properties
from Service. Instead, it inherits one of its key properties,
CollectionID, from its superclass Collection, and adds its other key
property, CreationClassName, in its own definition.
9.4.1. The Property CollectionID
CollectionID is a string property with a maximum length of 256
characters. It identifies the buffer pool. Note that this property
is defined in the BufferPool class's superclass, CollectionOfMSEs,
but not as a key property. It is overridden in BufferPool, to make
it part of this class's composite key.
9.4.2. The Property CreationClassName
This property is a string property of with a maximum length of 256
characters. It is set to "CIM_BufferPool" if this class is directly
instantiated, or to the class name of the BufferPool subclass that is
created.
9.5. Naming Instances of SchedulingElement
This class has not yet been incorporated into the CIM model, so it
does not have any CIM naming properties yet. If the normal pattern
is followed, however, instances will be named with two properties
CreationClassName and Name.
Moore, et al. Standards Track [Page 95]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
10. Authors' Addresses
Bob Moore
P. O. Box 12195, BRQA/B501/G206
3039 Cornwallis Rd.
Research Triangle Park, NC 27709-2195
Phone: (919) 254-4436
EMail: remoore@us.ibm.com
David Durham
Intel
2111 NE 25th Avenue
Hillsboro, OR 97124
Phone: (503) 264-6232
EMail: david.durham@intel.com
John Strassner
INTELLIDEN, Inc.
90 South Cascade Avenue
Colorado Springs, CO 80903
Phone: (719) 785-0648
EMail: john.strassner@intelliden.com
Andrea Westerinen
Cisco Systems, Bldg 20
725 Alder Drive
Milpitas, CA 95035
EMail: andreaw@cisco.com
Walter Weiss
Ellacoya Networks
7 Henry Clay Dr.
Merrimack, NH 03054
Phone: (603) 879-7364
EMail: walterweiss@attbi.com
Moore, et al. Standards Track [Page 96]
^L
RFC 3670 QoS Device Datapath Info Model January 2004
11. Full Copyright Statement
Copyright (C) The Internet Society (2004). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assignees.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Moore, et al. Standards Track [Page 97]
^L
|