1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
|
Network Working Group F. Strauss
Request for Comments: 3781 TU Braunschweig
Category: Experimental J. Schoenwaelder
International University Bremen
May 2004
Next Generation Structure of Management Information (SMIng)
Mappings to the Simple Network Management Protocol (SNMP)
Status of this Memo
This memo defines an Experimental Protocol for the Internet
community. It does not specify an Internet standard of any kind.
Discussion and suggestions for improvement are requested.
Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2004). All Rights Reserved.
Abstract
SMIng (Structure of Management Information, Next Generation)
(RFC3780), is a protocol-independent data definition language for
management information. This memo defines an SMIng language
extension that specifies the mapping of SMIng definitions of
identities, classes, and their attributes and events to dedicated
definitions of nodes, scalar objects, tables and columnar objects,
and notifications, for application to the SNMP management framework.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. SNMP Based Internet Management . . . . . . . . . . . . . . . . 3
2.1. Kinds of Nodes. . . . . . . . . . . . . . . . . . . . . 4
2.2. Scalar and Columnar Object Instances. . . . . . . . . . 5
2.3. Object Identifier Hierarchy . . . . . . . . . . . . . . 7
3. SMIng Data Type Mappings . . . . . . . . . . . . . . . . . . . 8
3.1. ASN.1 Definitions . . . . . . . . . . . . . . . . . . . 9
4. The snmp Extension Statement . . . . . . . . . . . . . . . . . 10
4.1. The oid Statement . . . . . . . . . . . . . . . . . . . 10
4.2. The node Statement. . . . . . . . . . . . . . . . . . . 10
4.2.1. The node's oid Statement . . . . . . . . . . . . 10
4.2.2. The node's represents Statement. . . . . . . . . 10
4.2.3. The node's status Statement. . . . . . . . . . . 11
4.2.4. The node's description Statement . . . . . . . . 11
4.2.5. The node's reference Statement . . . . . . . . . 11
Strauss & Schoenwaelder Experimental [Page 1]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
4.2.6. Usage Examples . . . . . . . . . . . . . . . . . 11
4.3. The scalars Statement . . . . . . . . . . . . . . . . . 11
4.3.1. The scalars' oid Statement . . . . . . . . . . . 12
4.3.2. The scalars' object Statement . . . . . . . . . 12
4.3.3. The scalars' status Statement . . . . . . . . . 13
4.3.4. The scalars' description Statement . . . . . . . 14
4.3.5. The scalars' reference Statement . . . . . . . . 14
4.3.6. Usage Example. . . . . . . . . . . . . . . . . . 14
4.4. The table Statement . . . . . . . . . . . . . . . . . . 14
4.4.1. The table's oid Statement. . . . . . . . . . . . 15
4.4.2. Table Indexing Statements. . . . . . . . . . . . 15
4.4.3. The table's create Statement . . . . . . . . . . 17
4.4.4. The table's object Statement . . . . . . . . . . 17
4.4.5. The table's status Statement . . . . . . . . . . 19
4.4.6. The table's description Statement . . . . . . . 19
4.4.7. The table's reference Statement . . . . . . . . 19
4.4.8. Usage Example . . . . . . . . . . . . . . . . . 19
4.5. The notification Statement . . . . . . . . . . . . . . 20
4.5.1. The notification's oid Statement . . . . . . . . 20
4.5.2. The notification's signals Statement . . . . . . 20
4.5.3. The notification's status Statement . . . . . . 20
4.5.4. The notification's description Statement . . . . 21
4.5.5. The notification's reference Statement . . . . . 21
4.5.6. Usage Example. . . . . . . . . . . . . . . . . . 21
4.6. The group Statement . . . . . . . . . . . . . . . . . . 21
4.6.1. The group's oid Statement . . . . . . . . . . . 22
4.6.2. The group's members Statement . . . . . . . . . 22
4.6.3. The group's status Statement . . . . . . . . . . 22
4.6.4. The group's description Statement . . . . . . . 22
4.6.5. The group's reference Statement . . . . . . . . 22
4.6.6. Usage Example . . . . . . . . . . . . . . . . . 22
4.7. The compliance Statement. . . . . . . . . . . . . . . . 23
4.7.1. The compliance's oid Statement . . . . . . . . . 23
4.7.2. The compliance's status Statement . . . . . . . 23
4.7.3. The compliance's description Statement . . . . . 23
4.7.4. The compliance's reference Statement . . . . . . 23
4.7.5. The compliance's mandatory Statement . . . . . . 24
4.7.6. The compliance's optional Statement. . . . . . . 24
4.7.7. The compliance's refine Statement . . . . . . . 24
4.7.8. Usage Example . . . . . . . . . . . . . . . . . 26
5. NMRG-SMING-SNMP-EXT . . . . . . . . . . . . . . . . . . . . . 26
6. NMRG-SMING-SNMP . . . . . . . . . . . . . . . . . . . . . . . 33
7. Security Considerations . . . . . . . . . . . . . . . . . . . 46
8. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 46
Strauss & Schoenwaelder Experimental [Page 2]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
9. References . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.1. Normative References. . . . . . . . . . . . . . . . . . 47
9.2. Informative References. . . . . . . . . . . . . . . . . 47
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 48
Full Copyright Statement . . . . . . . . . . . . . . . . . . . . . 49
1. Introduction
SMIng (Structure of Management Information, Next Generation)
[RFC3780] is a protocol-independent data definition language for
management information. This memo defines an SMIng language
extension that specifies the mapping of SMIng definitions of
identities, classes, and their attributes and events to dedicated
definitions of nodes, scalar objects, tables and columnar objects,
and notifications for application in the SNMP management framework.
Section 2 introduces basics of the SNMP management framework.
Section 3 defines how SMIng data types are mapped to the data types
supported by the SNMP protocol. It introduces some new ASN.1 [ASN1]
definitions which are used to represent new SMIng base types such as
floats in the SNMP protocol.
Section 4 describes the semantics of the SNMP mapping extensions for
SMIng. The formal SMIng specification of the extension is provided
in Section 5.
Section 6 contains an SMIng module which defines derived types (such
as RowStatus) that are specific to the SNMP mapping.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
2. SNMP-Based Internet Management
The SNMP network management framework [RFC3410] is based on the
concept of "managed objects". Managed objects represent real or
synthesized variables of systems that are to be managed. Note that
in spite of these terms this model is not object-oriented. For
naming purposes, the managed objects are organized hierarchically in
an "object identifier tree", where only leaf nodes may represent
objects.
Nodes in the object identifier tree may also identify conceptual
tables, rows of conceptual tables, notifications, groups of objects
and/or notifications, compliance statements, modules or other
information. Each node is identified by an unique "object
identifier" value which is a sequence of non-negative numbers, named
"sub-identifiers", where the left-most sub-identifier refers to the
Strauss & Schoenwaelder Experimental [Page 3]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
node next to the root of the tree and the right-most sub-identifier
refers to the node that is identified by the complete object
identifier value. Each sub-identifier has a value between 0 and
2^32-1 (4294967295).
The SMIng extensions described in this document are used to map SMIng
data definitions to SNMP compliant managed objects. This mapping is
designed to be readable to computer programs, named MIB compilers, as
well as to human readers.
2.1. Kinds of Nodes
Each node in the object identifier tree is of a certain kind and may
represent management information or not:
o Simple nodes, that do not represent management information, but
may be used for grouping nodes in a subtree. Those nodes are
defined by the `node' statement. This statement can also be used
to map an SMIng `identity' to a node.
o Nodes representing the identity of a module to allow references to
a module in other objects of type `ObjectIdentifier'. Those nodes
are defined by the `snmp' statement,
o Scalar objects, which have exactly one object instance and no
child nodes. See Section 2.2 for scalar objects' instances. A
set of scalar objects is mapped from one or more SMIng classes
using the `scalars' statement. The statement block of the
`scalars' statement contains one `implements' statement for each
class. The associated statement blocks in turn contain `object'
statements that specify the mapping of attributes to scalar
objects. Scalar objects MUST not have any child node.
o Tables, which represent the root node of a collection of
information structured in table rows. Table nodes are defined by
the `table' statement. A table object identifier SHOULD not have
any other child node than the implicitly defined row node (see
below).
o Rows, which belong to a table (that is, row's object identifier
consists of the table's full object identifier plus a single `1'
sub-identifier) and represent a sequence of one or more columnar
objects. A row node is implicitly defined for each table node.
Strauss & Schoenwaelder Experimental [Page 4]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
o Columnar objects, which belong to a row (that is, the columnar
objects' object identifier consists of the row's full object
identifier plus a single column-identifying sub-identifier) and
have zero or more object instances and no child nodes. They are
defined as follows: The classes that are implemented by a `table'
statement are identified by `implements' statements. The
statement block of each `implements' statement contains `object'
statements that specify the mapping of attributes to columnar
objects of this table. Columnar objects MUST not have any child
node.
o Notifications, which represent information that is sent by agents
within unsolicited transmissions. The `notification' statement is
used to map an SMIng event to a notification. A notification's
object identifier SHOULD not have any child node.
o Groups of objects and notifications, which may be used for
compliance statements. They are defined using the `group'
statement.
o Compliance statements which define requirements for MIB module
implementations. They are defined using the `compliance'
statement.
2.2. Scalar and Columnar Object Instances
Instances of managed objects are identified by appending an
instance-identifier to the object's object identifier. Scalar
objects and columnar objects use different ways to construct the
instance-identifier.
Scalar objects have exactly one object instance. It is identified by
appending a single `0' sub-identifier to the object identifier of the
scalar object.
Within tables, different instances of the same columnar object are
identified by appending a sequence of one or more sub-identifiers to
the object identifier of the columnar object which consists of the
values of object instances that unambiguously distinguish a table
row. These indexing objects can be columnar objects of the same
and/or another table, but MUST NOT be scalar objects. Multiple
applications of the same object in a single table indexing
specification are strongly discouraged.
Strauss & Schoenwaelder Experimental [Page 5]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
The base types of the indexing objects indicate how to form the
instance-identifier:
o integer-valued or enumeration-valued: a single sub-identifier
taking the integer value (this works only for non-negative
integers and integers of a size of up to 32 bits),
o string-valued, fixed-length strings (or variable-length with
compact encoding): `n' sub-identifiers, where `n' is the length of
the string (each octet of the string is encoded in a separate
sub-identifier),
o string-valued, variable-length strings or bits-valued: `n+1' sub-
identifiers, where `n' is the length of the string or bits
encoding (the first sub-identifier is `n' itself, following this,
each octet of the string or bits is encoded in a separate sub-
identifier),
o object identifier-valued (with compact encoding): `n' sub-
identifiers, where `n' is the number of sub-identifiers in the
value (each sub-identifier of the value is copied into a separate
sub-identifier),
o object identifier-valued: `n+1' sub-identifiers, where `n' is the
number of sub-identifiers in the value (the first sub-identifier
is `n' itself, following this, each sub-identifier in the value is
copied),
Note that compact encoding can only be applied to an object having a
variable-length syntax (e.g., variable-length strings, bits objects
or object identifier-valued objects). Further, compact encoding can
only be associated with the last object in a list of indexing
objects. Finally, compact encoding MUST NOT be used on a variable-
length string object if that string might have a value of zero-
length.
Instances identified by use of integer-valued or enumeration-valued
objects are RECOMMENDED to be numbered starting from one (i.e., not
from zero). Integer objects that allow negative values, Unsigned64
objects, Integer64 objects and floating point objects MUST NOT be
used for table indexing.
Objects which are both specified for indexing in a row and also
columnar objects of the same row are termed auxiliary objects.
Auxiliary objects SHOULD be non-accessible, except in the following
circumstances:
o within a module originally written to conform to SMIv1, or
Strauss & Schoenwaelder Experimental [Page 6]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
o a row must contain at least one columnar object which is not an
auxiliary object. In the event that all of a row's columnar
objects are also specified to be indexing objects then one of them
MUST be accessible.
2.3. Object Identifier Hierarchy
The layers of the object identifier tree near the root are well
defined and organized by standardization bodies. The first level
next to the root has three nodes:
0: ccitt
1: iso
2: joint-iso-ccitt
Note that the renaming of the Commite Consultatif International de
Telegraphique et Telephonique (CCITT) to International
Telecommunications Union (ITU) had no consequence on the names used
in the object identifier tree.
The root of the subtree administered by the Internet Assigned Numbers
Authority (IANA) for the Internet is `1.3.6.1' which is assigned with
the identifier `internet'. That is, the Internet subtree of object
identifiers starts with the prefix `1.3.6.1.'.
Several branches underneath this subtree are used for network
management:
The `mgmt' (internet.2) subtree is used to identify "standard"
definitions. An information module produced by an IETF working group
becomes a "standard" information module when the document is first
approved by the IESG and enters the Internet standards track.
The `experimental' (internet.3) subtree is used to identify
experimental definitions being designed by working groups of the IETF
or IRTF. If an information module produced by a working group
becomes a "standard" module, then at the very beginning of its entry
onto the Internet standards track, the definitions are moved under
the mgmt subtree.
The `private' (internet.4) subtree is used to identify definitions
defined unilaterally. The `enterprises' (private.1) subtree beneath
private is used, among other things, to permit providers of
networking subsystems to register information modules of their
products.
Strauss & Schoenwaelder Experimental [Page 7]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
These and some other nodes are defined in the SMIng module NMRG-
SMING-SNMP-EXT (Section 5).
3. SMIng Data Type Mappings
SMIng [RFC3780] supports the following set of base types:
OctetString, Pointer, Integer32, Integer64, Unsigned32, Unsigned64,
Float32, Float64, Float128, Enumeration, Bits, and ObjectIdentifier.
The SMIng core module NMRG-SMING ([RFC3780], Appendix A) defines
additional derived types, among them Counter32 (derived from
Unsigned32), Counter64 (derived from Unsigned64), TimeTicks32 and
TimeTicks64 (derived from Unsigned32 and Unsigned64), IpAddress
(derived from OctetString), and Opaque (derived from OctetString).
The version 2 of the protocol operations for SNMP document [RFC3416]
defines the following 9 data types which are distinguished by the
protocol: INTEGER, OCTET STRING, OBJECT IDENTIFIER, IpAddress,
Counter32, TimeTicks, Opaque, Counter64, and Unsigned32.
The SMIng base types and their derived types are mapped to SNMP data
types according to the following table:
SMIng Data Type SNMP Data Type Comment
--------------- ------------------- -------
OctetString OCTET STRING (1)
Pointer OBJECT IDENTIFIER
Integer32 INTEGER
Integer64 Opaque (Integer64) (2)
Unsigned32 Unsigned32 (3)
Unsigned64 Opaque (Unsigned64) (2) (4)
Float32 Opaque (Float32) (2)
Float64 Opaque (Float64) (2)
Float128 Opaque (Float128) (2)
Enumeration INTEGER
Bits OCTET STRING
ObjectIdentifier OBJECT IDENTIFIER
Counter32 Counter32
Counter64 Counter64
TimeTicks32 TimeTicks
TimeTicks64 Opaque (Unsigned64) (2)
IpAddress IpAddress
Opaque Opaque
(1) This mapping includes all types derived from the OctetString
type except those types derived from the IpAddress and Opaque
SMIng types defined in the module NMRG-SMING.
Strauss & Schoenwaelder Experimental [Page 8]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
(2) This type is encoded according to the ASN.1 type with the same
name defined in Section 3.1. The resulting BER encoded value
is then wrapped in an Opaque value.
(3) This mapping includes all types derived from the Unsigned32
type except those types derived from the Counter32 and
TimeTicks32 SMIng types defined in the module NMRG-SMING.
(4) This mapping includes all types derived from the Unsigned64
type except those types derived from the Counter64 SMIng type
defined in the module NMRG-SMING.
3.1. ASN.1 Definitions
The ASN.1 [ASN1] type definitions below introduce data types which
are used to map the new SMIng base types into the set of ASN.1 types
supported by the second version of SNMP protocol operations
[RFC3416].
NMRG-SMING-SNMP-MAPPING DEFINITIONS ::= BEGIN
Integer64 ::=
[APPLICATION 10]
IMPLICIT INTEGER (-9223372036854775808..9223372036854775807)
Unsigned64
[APPLICATION 11]
IMPLICIT INTEGER (0..18446744073709551615)
Float32
[APPLICATION 12]
IMPLICIT OCTET STRING (SIZE (4))
Float64
[APPLICATION 13]
IMPLICIT OCTET STRING (SIZE (8))
Float128
[APPLICATION 14]
IMPLICIT OCTET STRING (SIZE (16))
END
The definitions of Integer64 and Unsigned64 are consistent with the
same definitions in the SPPI [RFC3159]. The floating point types
Float32, Float64 and Float128 support single, double and quadruple
Strauss & Schoenwaelder Experimental [Page 9]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
IEEE floating point values. The encoding of the values follows the
"IEEE Standard for Binary Floating-Point Arithmetic" as defined in
ANSI/IEEE Standard 754-1985 [IEEE754].
4. The snmp Extension Statement
The `snmp' statement is the main statement of the SNMP mapping
specification. It gets one or two arguments: an optional lower-case
identifier that specifies a node that represents the module's
identity, and a mandatory statement block that contains all details
of the SNMP mapping. All information of an SNMP mapping are mapped
to an SNMP conformant module of the same name as the containing SMIng
module. A single SMIng module must not contain more than one `snmp'
statement.
4.1. The oid Statement
The snmp's `oid' statement, which must be present, if the snmp
statement contains a module identifier and must be absent otherwise,
gets one argument which specifies the object identifier value that is
assigned to this module's identity node.
4.2. The node Statement
The `node' statement is used to name and describe a node in the
object identifier tree, without associating any class or attribute
information with this node. This may be useful to group definitions
in a subtree of related management information, or to uniquely define
an SMIng `identity' to be referenced in attributes of type Pointer.
The `node' statement gets two arguments: a lower-case node identifier
and a statement block that holds detailed node information in an
obligatory order.
See the `nodeStatement' rule of the grammar (Section 5) for the
formal syntax of the `node' statement.
4.2.1. The node's oid Statement
The node's `oid' statement, which must be present, gets one argument
which specifies the object identifier value that is assigned to this
node.
4.2.2. The node's represents Statement
The node's `represents' statement, which need not be present, makes
this node represent an SMIng identity, so that objects of type
Pointer can reference that identity. The statement gets one argument
which specifies the identity name.
Strauss & Schoenwaelder Experimental [Page 10]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
4.2.3 The node's status Statement
The node's `status' statement, which must be present, gets one
argument which is used to specify whether this node definition is
current or historic. The value `current' means that the definition
is current and valid. The value `obsolete' means the definition is
obsolete and should not be implemented and/or can be removed if
previously implemented. While the value `deprecated' also indicates
an obsolete definition, it permits new/continued implementation in
order to foster interoperability with older/existing implementations.
4.2.4. The node's description Statement
The node's `description' statement, which need not be present, gets
one argument which is used to specify a high-level textual
description of this node.
It is RECOMMENDED to include all semantics and purposes of this node.
4.2.5. The node's reference Statement
The node's `reference' statement, which need not be present, gets one
argument which is used to specify a textual cross-reference to some
other document, either another module which defines related
definitions, or some other document which provides additional
information relevant to this node.
4.2.6. Usage Examples
node iso { oid 1; status current; };
node org { oid iso.3; status current; };
node dod { oid org.6; status current; };
node internet { oid dod.1; status current; };
node zeroDotZero {
oid 0.0;
represents NMRG-SMING::null;
status current;
description "A null value used for pointers.";
};
4.3. The scalars Statement
The `scalars' statement is used to define the mapping of one or more
classes to a group of SNMP scalar managed objects organized under a
common parent node. The `scalars' statement gets two arguments: a
Strauss & Schoenwaelder Experimental [Page 11]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
lower-case scalar group identifier and a statement block that holds
detailed mapping information of this scalar group in an obligatory
order.
See the `scalarsStatement' rule of the grammar (Section 5) for the
formal syntax of the `scalars' statement.
4.3.1. The scalars' oid Statement
The scalars' `oid' statement, which must be present, gets one
argument which specifies the object identifier value that is assigned
to the common parent node of this scalar group.
4.3.2. The scalars' object Statement
The scalars' `object' statement, which must be present at least once,
makes this scalar group contain a given scalar object. It gets two
arguments: the name of the scalar object to be defined and a
statement block that holds additional detailed information in an
obligatory order.
4.3.2.1. The object's implements Statement
The `implements' statement, which must be present, is used to specify
a single leaf attribute of a class that is implemented by this scalar
object. The type of this attribute must be a simple type, i.e., not
a class.
4.3.2.2. The object's subid Statement
The `subid' statement, which need not be present, is used to specify
the sub-identifier that identifies the scalar object within this
scalar group, i.e., the object identifier of the scalar object is the
concatenation of the values of this scalar group's oid statement and
of this subid statement.
If this statement is omitted, the sub-identifier is the one of the
previous object statement within this scalar group plus 1. If the
containing object statement is the first one within the containing
scalar group and the subid statement is omitted, the sub-identifier
is 1.
4.3.2.3. The object's status Statement
The object's `status' statement, which need not be present, gets one
argument which is used to specify whether this scalar object
definition is current or historic. The value `current' means that
Strauss & Schoenwaelder Experimental [Page 12]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
the definition is current and valid. The value `obsolete' means the
definition is obsolete and should not be implemented and/or can be
removed if previously implemented. While the value `deprecated' also
indicates an obsolete definition, it permits new/continued
implementation in order to foster interoperability with
older/existing implementations.
Scalar objects SHOULD NOT be defined as `current' if the implemented
attribute definition is `deprecated' or `obsolete'. Similarly, they
SHOULD NOT be defined as `deprecated' if the implemented attribute is
`obsolete'. Nevertheless, subsequent revisions of used class
definitions cannot be avoided, but SHOULD be taken into account in
subsequent revisions of the local module.
Note that it is RECOMMENDED to omit the status statement which means
that the status is inherited from the containing scalars statement.
However, if the status of a scalar object varies from the containing
scalar group, it has to be expressed explicitly, e.g., if the
implemented attribute has been deprecated or obsoleted.
4.3.2.4. The object's description Statement
The object's `description' statement, which need not be present, gets
one argument which is used to specify a high-level textual
description of this scalar object.
Note that in contrast to other definitions this description statement
is not mandatory and it is RECOMMENDED to omit it, if the object is
fully described by the description of the implemented attribute.
4.3.2.5. The object's reference Statement
The object's `reference' statement, which need not be present, gets
one argument which is used to specify a textual cross-reference to
some other document, either another module which defines related
definitions, or some other document which provides additional
information relevant to this scalar object.
It is RECOMMENDED to omit this statement, if the object's references
are fully described by the implemented attribute.
4.3.3. The scalars' status Statement
The scalars' `status' statement, which must be present, gets one
argument which is used to specify whether this scalar group
definition is current or historic. The value `current' means that
the definition is current and valid. The value `obsolete' means the
definition is obsolete and should not be implemented and/or can be
Strauss & Schoenwaelder Experimental [Page 13]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
removed if previously implemented. While the value `deprecated' also
indicates an obsolete definition, it permits new/continued
implementation in order to foster interoperability with
older/existing implementations.
4.3.4. The scalars' description Statement
The scalars' `description' statement, which must be present, gets one
argument which is used to specify a high-level textual description of
this scalar group.
It is RECOMMENDED to include all semantic definitions necessary for
the implementation of this scalar group.
4.3.5. The scalars' reference Statement
The scalars' `reference' statement, which need not be present, gets
one argument which is used to specify a textual cross-reference to
some other document, either another module which defines related
definitions, or some other document which provides additional
information relevant to this scalars statement.
4.3.6. Usage Example
scalars ip {
oid mib-2.4;
object ipForwarding { implements Ip.forwarding; };
object ipDefaultTTL { implements Ip.defaultTTL; };
// ...
status current;
description
"This scalar group implements the Ip class.";
};
4.4. The table Statement
The `table' statement is used to define the mapping of one or more
classes to a single SNMP table of columnar managed objects. The
`table' statement gets two arguments: a lower-case table identifier
and a statement block that holds detailed mapping information of this
table in an obligatory order.
See the `tableStatement' rule of the grammar (Section 5) for the
formal syntax of the `table' statement.
Strauss & Schoenwaelder Experimental [Page 14]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
4.4.1. The table's oid Statement
The table's `oid' statement, which must be present, gets one argument
which specifies the object identifier value that is assigned to this
table's node.
4.4.2. Table Indexing Statements
SNMP table mappings offers five methods to supply table indexing
information: ordinary tables, table augmentations, sparse table
augmentations, table expansions, and reordered tables use different
statements to denote their indexing information. Each table
definition must contain exactly one of the following indexing
statements.
4.4.2.1. The table's index Statement for Table Indexing
The table's `index' statement, which is used to supply table indexing
information of base tables, gets one argument that specifies a
comma-separated list of objects, that are used for table indexing,
enclosed in parenthesis.
The elements of the `unique' statement of the implemented class(es)
and their order should be regarded as a hint for the index elements
of the table.
In case of modules that should be compatible on the SNMP protocol
level to SMIv2 versions of the module, an optional `implied' keyword
may be added in front of the list to indicate a compact encoding of
the last object in the list. See Section 2.2 for details.
4.4.2.2. The table's augments Statement for Table Indexing
The table's `augments' statement, which is used to supply table
indexing information of tables that augment a base table, gets one
argument that specifies the identifier of the table to be augmented.
Note that a table augmentation cannot itself be augmented. Anyhow, a
base table may be augmented by multiple table augmentations.
A table augmentation makes instances of subordinate columnar objects
identified according to the index specification of the base table
corresponding to the table named in the `augments' statement.
Further, instances of subordinate columnar objects of a table
augmentation exist according to the same semantics as instances of
subordinate columnar objects of the base table being augmented. As
such, note that creation of a base table row implies the
Strauss & Schoenwaelder Experimental [Page 15]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
correspondent creation of any table row augmentations. Table
augmentations MUST NOT be used in table row creation and deletion
operations.
4.4.2.3. The table's extends Statement for Table Indexing
The table's `extends' statement, which is used to supply table
indexing information of tables that sparsely augment a base table,
gets one argument that specifies the identifier of the table to be
sparsely augmented. Note that a sparse table augmentation cannot
itself be augmented. Anyhow, a base table may be augmented by
multiple table augmentations, sparsely or not.
A sparse table augmentation makes instances of subordinate columnar
objects identified, if present, according to the index specification
of the base table corresponding to the table named in the `extends'
statement. Further, instances of subordinate columnar objects of a
sparse table augmentation exist according to the semantics as
instances of subordinate columnar objects of the base table and the
(non-formal) rules that confine the sparse relationship. As such,
note that creation of a sparse table row augmentation may be implied
by the creation of a base table row as well as done by an explicit
creation. However, if a base table row gets deleted, any dependent
sparse table row augmentations get also deleted implicitly.
4.4.2.4. The table's reorders Statement for Table Indexing
The table's `reorders' statement is used to supply table indexing
information of tables, that contain exactly the same index objects of
a base table but in a different order. It gets at least two
arguments. The first one specifies the identifier of the base table.
The second one specifies a comma-separated list of exactly those
object identifiers of the base table's `index' statement, but in the
order to be used in this table. Note that a reordered table cannot
itself be reordered. Anyhow, a base table may be used for multiple
reordered tables.
Under some circumstances, an optional `implied' keyword may be added
in front of the list to indicate a compact encoding of the last
object in the list. See Section 2.2 for details.
Instances of subordinate columnar objects of a reordered table exist
according to the same semantics as instances of subordinate columnar
objects of the base table. As such, note that creation of a base
table row implies the correspondent creation of any related reordered
table row. Reordered tables MUST NOT be used in table row creation
and deletion operations.
Strauss & Schoenwaelder Experimental [Page 16]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
4.4.2.5. The table's expands Statement for Table Indexing
The table's `expands' statement is used to supply table indexing
information of table expansions. Table expansions use exactly the
same index objects of another table together with additional indexing
objects. Thus, the `expands' statement gets at least two arguments.
The first one specifies the identifier of the base table. The second
one specifies a comma-separated list of the additional object
identifiers used for indexing. Note that an expanded table may
itself be expanded, and base tables may be used for multiple table
expansions.
Under some circumstances, an optional `implied' keyword may be added
in front of the list to indicate a compact encoding of the last
object in the list. See Section 2.2 for details.
4.4.3. The table's create Statement
The table's `create' statement, which need not be present, gets no
argument. If the `create' statement is present, table row creation
(and deletion) is possible.
4.4.4. The table's object Statement
The table's `object' statement, which must be present at least once,
makes this table contain a given columnar object. It gets two
arguments: the name of the columnar object to be defined and a
statement block that holds additional detailed information in an
obligatory order.
4.4.4.1. The object's implements Statement
The `implements' statement, which must be present, is used to specify
a single leaf attribute of a class that is implemented by this
columnar object. The type of this attribute must be a simple type,
i.e., not a class.
4.4.4.2. The object's subid Statement
The `subid' statement, which need not be present, is used to specify
the sub-identifier that identifies the columnar object within this
table, i.e., the object identifier of the columnar object is the
concatenation of the values of this table's oid statement and of this
subid statement.
Strauss & Schoenwaelder Experimental [Page 17]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
If this statement is omitted, the sub-identifier is the one of the
previous object statement within this table plus 1. If the
containing object statement is the first one within the containing
table and the subid statement is omitted, the sub-identifier is 1.
4.4.4.3. The object's status Statement
The object's `status' statement, which need not be present, gets one
argument which is used to specify whether this columnar object
definition is current or historic. The value `current' means that
the definition is current and valid. The value `obsolete' means the
definition is obsolete and should not be implemented and/or can be
removed if previously implemented. While the value `deprecated' also
indicates an obsolete definition, it permits new/continued
implementation in order to foster interoperability with
older/existing implementations.
Columnar objects SHOULD NOT be defined as `current' if the
implemented attribute definition is `deprecated' or `obsolete'.
Similarly, they SHOULD NOT be defined as `deprecated' if the
implemented attribute is `obsolete'. Nevertheless, subsequent
revisions of used class definitions cannot be avoided, but SHOULD be
taken into account in subsequent revisions of the local module.
Note that it is RECOMMENDED to omit the status statement which means
that the status is inherited from the containing table statement.
However, if the status of a columnar object varies from the
containing table, it has to be expressed explicitly, e.g., if the
implemented attribute has been deprecated or obsoleted.
4.4.4.4. The object's description Statement
The object's `description' statement, which need not be present, gets
one argument which is used to specify a high-level textual
description of this columnar object.
Note that in contrast to other definitions this description statement
is not mandatory and it is RECOMMENDED to omit it, if the object is
fully described by the description of the implemented attribute.
4.4.4.5. The object's reference Statement
The object's `reference' statement, which need not be present, gets
one argument which is used to specify a textual cross-reference to
some other document, either another module which defines related
definitions, or some other document which provides additional
information relevant to this columnar object.
Strauss & Schoenwaelder Experimental [Page 18]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
It is RECOMMENDED to omit this statement, if the object's references
are fully described by the implemented attribute.
4.4.5. The table's status Statement
The table's `status' statement, which must be present, gets one
argument which is used to specify whether this table definition is
current or historic. The value `current' means that the definition
is current and valid. The value `obsolete' means the definition is
obsolete and should not be implemented and/or can be removed if
previously implemented. While the value `deprecated' also indicates
an obsolete definition, it permits new/continued implementation in
order to foster interoperability with older/existing implementations.
4.4.6. The table's description Statement
The table's `description' statement, which must be present, gets one
argument which is used to specify a high-level textual description of
this table.
It is RECOMMENDED to include all semantic definitions necessary for
the implementation of this table.
4.4.7. The table's reference Statement
The table's `reference' statement, which need not be present, gets
one argument which is used to specify a textual cross-reference to
some other document, either another module which defines related
definitions, or some other document which provides additional
information relevant to this table statement.
4.4.8. Usage Example
table ifTable {
oid interfaces.2;
index (ifIndex);
object ifIndex { implements Interface.index; };
object ifDescr { implements Interface.description; };
// ...
status current;
description
"This table implements the Interface class.";
};
Strauss & Schoenwaelder Experimental [Page 19]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
4.5. The notification Statement
The `notification' statement is used to map events defined within
classes to SNMP notifications. The `notification' statement gets two
arguments: a lower-case notification identifier and a statement block
that holds detailed notification information in an obligatory order.
See the `notificationStatement' rule of the grammar (Section 5) for
the formal syntax of the `notification' statement.
4.5.1. The notification's oid Statement
The notification's `oid' statement, which must be present, gets one
argument which specifies the object identifier value that is assigned
to this notification.
4.5.2. The notification's signals Statement
The notification's `signals' statement, which must be present,
denotes the event that is signaled by this notification. The
statement gets two arguments: the event to be signaled (in the
qualified form `Class.event') and a statement block that holds
detailed information on the objects transmitted with this
notification in an obligatory order.
4.5.2.1. The signals' object Statement
The signals' `object' statement, which can be present zero, one or
multiple times, makes a single instance of a class attribute be
contained in this notification. It gets one argument: the specific
class attribute. The namespace of attributes not specified by
qualified names is the namespace of the event's class specified in
the `signals' statement.
4.5.3. The notification's status Statement
The notification's `status' statement, which must be present, gets
one argument which is used to specify whether this notification
definition is current or historic. The value `current' means that
the definition is current and valid. The value `obsolete' means the
definition is obsolete and should not be implemented and/or can be
removed if previously implemented. While the value `deprecated' also
indicates an obsolete definition, it permits new/continued
implementation in order to foster interoperability with
older/existing implementations.
Strauss & Schoenwaelder Experimental [Page 20]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
4.5.4. The notification's description Statement
The notification's `description' statement, which need not be
present, gets one argument which is used to specify a high-level
textual description of this notification.
It is RECOMMENDED to include all semantics and purposes of this
notification.
4.5.5. The notification's reference Statement
The notification's `reference' statement, which need not be present,
gets one argument which is used to specify a textual cross-reference
to some other document, either another module which defines related
definitions, or some other document which provides additional
information relevant to this notification statement.
4.5.6. Usage Example
notification linkDown {
oid snmpTraps.3;
signals Interface.linkDown {
object ifIndex;
object ifAdminStatus;
object ifOperStatus;
};
status current;
description
"This notification signals the linkDown event
of the Interface class.";
};
4.6. The group Statement
The `group' statement is used to define a group of arbitrary nodes in
the object identifier tree. It gets two arguments: a lower-case
group identifier and a statement block that holds detailed group
information in an obligatory order.
Note that the primary application of groups are compliance
statements, although they might be referred in other formal or
informal documents.
See the `groupStatement' rule of the grammar (Section 5) for the
formal syntax of the `group' statement.
Strauss & Schoenwaelder Experimental [Page 21]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
4.6.1. The group's oid Statement
The group's `oid' statement, which must be present, gets one argument
which specifies the object identifier value that is assigned to this
group.
4.6.2. The group's members Statement
The group's `members' statement, which must be present, gets one
argument which specifies the list of nodes by their identifiers to be
contained in this group. The list of nodes has to be comma-separated
and enclosed in parenthesis.
4.6.3. The group's status Statement
The group's `status' statement, which must be present, gets one
argument which is used to specify whether this group definition is
current or historic. The value `current' means that the definition
is current and valid. The value `obsolete' means the definition is
obsolete and the group should no longer be used. While the value
`deprecated' also indicates an obsolete definition, it permits
new/continued use of this group.
4.6.4. The group's description Statement
The group's `description' statement, which must be present, gets one
argument which is used to specify a high-level textual description of
this group. It is RECOMMENDED to include any relation to other
groups.
4.6.5. The group's reference Statement
The group's `reference' statement, which need not be present, gets
one argument which is used to specify a textual cross-reference to
some other document, either another module which defines related
groups, or some other document which provides additional information
relevant to this group.
4.6.6. Usage Example
The snmpGroup, originally defined in [RFC3418], may be described as
follows:
group snmpGroup {
oid snmpMIBGroups.8;
objects (snmpInPkts, snmpInBadVersions,
snmpInASNParseErrs,
snmpSilentDrops, snmpProxyDrops,
Strauss & Schoenwaelder Experimental [Page 22]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
snmpEnableAuthenTraps);
status current;
description
"A collection of objects providing basic
instrumentation and control of an agent.";
};
4.7. The compliance Statement
The `compliance' statement is used to define a set of conformance
requirements, named a `compliance statement'. It gets two arguments:
a lower-case compliance identifier and a statement block that holds
detailed compliance information in an obligatory order.
See the `complianceStatement' rule of the grammar (Section 5) for the
formal syntax of the `compliance' statement.
4.7.1. The compliance's oid Statement
The compliance's `oid' statement, which must be present, gets one
argument which specifies the object identifier value that is assigned
to this compliance statement.
4.7.2. The compliance's status Statement
The compliance's `status' statement, which must be present, gets one
argument which is used to specify whether this compliance statement
is current or historic. The value `current' means that the
definition is current and valid. The value `obsolete' means the
definition is obsolete and no longer specifies a valid definition of
conformance. While the value `deprecated' also indicates an obsolete
definition, it permits new/continued use of the compliance
specification.
4.7.3. The compliance's description Statement
The compliance's `description' statement, which must be present, gets
one argument which is used to specify a high-level textual
description of this compliance statement.
4.7.4. The compliance's reference Statement
The compliance's `reference' statement, which need not be present,
gets one argument which is used to specify a textual cross-reference
to some other document, either another module which defines related
compliance statements, or some other document which provides
additional information relevant to this compliance statement.
Strauss & Schoenwaelder Experimental [Page 23]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
4.7.5. The compliance's mandatory Statement
The compliance's `mandatory' statement, which need not be present,
gets one argument which is used to specify a comma-separated list of
one or more groups (Section 4.6) of objects and/or notifications
enclosed in parenthesis. These groups are unconditionally mandatory
for implementation.
If an agent claims compliance to a MIB module then it must implement
each and every object and notification within each group listed in
the `mandatory' statement(s) of the compliance statement(s) of that
module.
4.7.6. The compliance's optional Statement
The compliance's `optional' statement, which need not be present, is
repeatedly used to name each group which is conditionally mandatory
for compliance to the compliance statement. It can also be used to
name unconditionally optional groups. A group named in an `optional'
statement MUST be absent from the correspondent `mandatory'
statement. The `optional' statement gets two arguments: a lower-case
group identifier and a statement block that holds detailed compliance
information on that group.
Conditionally mandatory groups include those groups which are
mandatory only if a particular protocol is implemented, or only if
another group is implemented. The `description' statement specifies
the conditions under which the group is conditionally mandatory.
A group which is named in neither a `mandatory' statement nor an
`optional' statement, is unconditionally optional for compliance to
the module.
See the `optionalStatement' rule of the grammar (Section 5) for the
formal syntax of the `optional' statement.
4.7.6.1. The optional's description Statement
The optional's `description' statement, which must be present, gets
one argument which is used to specify a high-level textual
description of the conditions under which this group is conditionally
mandatory or unconditionally optional.
4.7.7. The compliance's refine Statement
The compliance's `refine' statement, which need not be present, is
repeatedly used to specify each object for which compliance has a
refined requirement with respect to the module definition. The
Strauss & Schoenwaelder Experimental [Page 24]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
object must be present in one of the conformance groups named in the
correspondent `mandatory' or `optional' statements. The `refine'
statement gets two arguments: a lower-case identifier of a scalar or
columnar object and a statement block that holds detailed refinement
information on that object.
See the `refineStatement' rule of the grammar (Section 5) for the
formal syntax of the `refine' statement.
4.7.7.1. The refine's type Statement
The refine's `type' statement, which need not be present, gets one
argument that is used to provide a refined type for the correspondent
object. Type restrictions may be applied by appending subtyping
information according to the rules of the base type. See [RFC3780]
for SMIng base types and their type restrictions. In case of
enumeration or bitset types the order of named numbers is not
significant.
Note that if a `type' and a `writetype' statement are both present
then this type only applies when instances of the correspondent
object are read.
4.7.7.2. The refine's writetype Statement
The refine's `writetype' statement, which need not be present, gets
one argument that is used to provide a refined type for the
correspondent object, only when instances of that object are written.
Type restrictions may be applied by appending subtyping information
according to the rules of the base type. See [RFC3780] for SMIng
base types and their type restrictions. In case of enumeration or
bitset types the order of named numbers is not significant.
4.7.7.3. The refine's access Statement
The refine's `access' statement, which need not be present, gets one
argument that is used to specify the minimal level of access that the
correspondent object must implement in the sense of its original
`access' statement. Hence, the refine's `access' statement MUST NOT
specify a greater level of access than is specified in the
correspondent object definition.
An implementation is compliant if the level of access it provides is
greater or equal to the minimal level in the refine's `access'
statement and less or equal to the maximal level in the object's
`access' statement.
Strauss & Schoenwaelder Experimental [Page 25]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
4.7.7.4. The refine's description Statement
The refine's `description' statement, which must be present, gets one
argument which is used to specify a high-level textual description of
the refined compliance requirement.
4.7.8. Usage Example
The compliance statement contained in the SNMPv2-MIB [RFC3418],
converted to SMIng:
compliance snmpBasicComplianceRev2 {
oid snmpMIBCompliances.3;
status current;
description
"The compliance statement for SNMP entities which
implement this MIB module.";
mandatory (snmpGroup, snmpSetGroup, systemGroup,
snmpBasicNotificationsGroup);
optional snmpCommunityGroup {
description
"This group is mandatory for SNMP entities which
support community-based authentication.";
};
optional snmpWarmStartNotificationGroup {
description
"This group is mandatory for an SNMP entity which
supports command responder applications, and is
able to reinitialize itself such that its
configuration is unaltered.";
};
};
5. NMRG-SMING-SNMP-EXT
The grammar of the snmp statement (including all its contained
statements) conforms to the Augmented Backus-Naur Form (ABNF)
[RFC2234]. It is included in the abnf statement of the snmp SMIng
extension definition in the NMRG-SMING-SNMP-EXT module below.
module NMRG-SMING-SNMP-EXT {
organization "IRTF Network Management Research Group (NMRG)";
contact "IRTF Network Management Research Group (NMRG)
http://www.ibr.cs.tu-bs.de/projects/nmrg/
Strauss & Schoenwaelder Experimental [Page 26]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
Frank Strauss
TU Braunschweig
Muehlenpfordtstrasse 23
38106 Braunschweig
Germany
Phone: +49 531 391 3266
EMail: strauss@ibr.cs.tu-bs.de
Juergen Schoenwaelder
International University Bremen
P.O. Box 750 561
28725 Bremen
Germany
Phone: +49 421 200 3587
EMail: j.schoenwaelder@iu-bremen.de";
description "This module defines a SMIng extension to define
the mapping of SMIng definitions of class and
their attributes and events to SNMP compatible
definitions of modules, node, scalars, tables,
and notifications, and additional information on
module compliances.
Copyright (C) The Internet Society (2004).
All Rights Reserved.
This version of this module is part of
RFC 3781, see the RFC itself for full
legal notices.";
revision {
date "2003-12-16";
description "Initial revision, published as RFC 3781.";
};
//
//
//
extension snmp {
status current;
description
"The snmp statement maps SMIng definitions to SNMP
conformant definitions.";
abnf "
;;
;; sming-snmp.abnf -- Grammar of SNMP mappings in ABNF
;; notation (RFC 2234).
Strauss & Schoenwaelder Experimental [Page 27]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
;;
;; @(#) $Id: sming-snmp.abnf,v 1.14 2003/10/23 19:31:55 strauss Exp $
;;
;; Copyright (C) The Internet Society (2004). All Rights Reserved.
;;
;;
;; Statement rules.
;;
snmpStatement = snmpKeyword *1(sep lcIdentifier) optsep
\"{\" stmtsep
*1(oidStatement stmtsep)
*(nodeStatement stmtsep)
*(scalarsStatement stmtsep)
*(tableStatement stmtsep)
*(notificationStatement stmtsep)
*(groupStatement stmtsep)
*(complianceStatement stmtsep)
statusStatement stmtsep
descriptionStatement stmtsep
*1(referenceStatement stmtsep)
\"}\" optsep \";\"
nodeStatement = nodeKeyword sep lcIdentifier optsep
\"{\" stmtsep
oidStatement stmtsep
*1(representsStatement stmtsep)
statusStatement stmtsep
*1(descriptionStatement stmtsep)
*1(referenceStatement stmtsep)
\"}\" optsep \";\"
representsStatement = representsKeyword sep
qucIdentifier optsep \";\"
scalarsStatement = scalarsKeyword sep lcIdentifier optsep
\"{\" stmtsep
oidStatement stmtsep
1*(objectStatement stmtsep)
statusStatement stmtsep
descriptionStatement stmtsep
*1(referenceStatement stmtsep)
\"}\" optsep \";\"
tableStatement = tableKeyword sep lcIdentifier optsep
\"{\" stmtsep
oidStatement stmtsep
Strauss & Schoenwaelder Experimental [Page 28]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
anyIndexStatement stmtsep
*1(createStatement stmtsep)
1*(objectStatement stmtsep)
statusStatement stmtsep
descriptionStatement stmtsep
*1(referenceStatement stmtsep)
\"}\" optsep \";\"
objectStatement = objectKeyword sep lcIdentifier optsep
\"{\" stmtsep
implementsStatement stmtsep
*1(subidStatement stmtsep)
*1(statusStatement stmtsep)
*1(descriptionStatement stmtsep)
*1(referenceStatement stmtsep)
\"}\" optsep \";\"
implementsStatement = implementsKeyword sep qcattrIdentifier
optsep \";\"
notificationStatement = notificationKeyword sep lcIdentifier
optsep \"{\" stmtsep
oidStatement stmtsep
signalsStatement stmtsep
statusStatement stmtsep
descriptionStatement stmtsep
*1(referenceStatement stmtsep)
\"}\" optsep \";\"
signalsStatement = signalsKeyword sep qattrIdentifier
optsep \"{\" stmtsep
*(signalsObjectStatement)
\"}\" optsep \";\"
signalsObjectStatement = objectKeyword sep
qattrIdentifier optsep \";\"
groupStatement = groupKeyword sep lcIdentifier optsep
\"{\" stmtsep
oidStatement stmtsep
membersStatement stmtsep
statusStatement stmtsep
descriptionStatement stmtsep
*1(referenceStatement stmtsep)
\"}\" optsep \";\"
complianceStatement = complianceKeyword sep lcIdentifier optsep
\"{\" stmtsep
Strauss & Schoenwaelder Experimental [Page 29]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
oidStatement stmtsep
statusStatement stmtsep
descriptionStatement stmtsep
*1(referenceStatement stmtsep)
*1(mandatoryStatement stmtsep)
*(optionalStatement stmtsep)
*(refineStatement stmtsep)
\"}\" optsep \";\"
anyIndexStatement = indexStatement /
augmentsStatement /
reordersStatement /
extendsStatement /
expandsStatement
indexStatement = indexKeyword *1(sep impliedKeyword) optsep
\"(\" optsep qlcIdentifierList
optsep \")\" optsep \";\"
augmentsStatement = augmentsKeyword sep qlcIdentifier
optsep \";\"
reordersStatement = reordersKeyword sep qlcIdentifier
*1(sep impliedKeyword)
optsep \"(\" optsep
qlcIdentifierList optsep \")\"
optsep \";\"
extendsStatement = extendsKeyword sep qlcIdentifier optsep \";\"
expandsStatement = expandsKeyword sep qlcIdentifier
*1(sep impliedKeyword)
optsep \"(\" optsep
qlcIdentifierList optsep \")\"
optsep \";\"
createStatement = createKeyword optsep \";\"
membersStatement = membersKeyword optsep \"(\" optsep
qlcIdentifierList optsep
\")\" optsep \";\"
mandatoryStatement = mandatoryKeyword optsep \"(\" optsep
qlcIdentifierList optsep
\")\" optsep \";\"
optionalStatement = optionalKeyword sep qlcIdentifier optsep
\"{\" descriptionStatement stmtsep
Strauss & Schoenwaelder Experimental [Page 30]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
\"}\" optsep \";\"
refineStatement = refineKeyword sep qlcIdentifier optsep \"{\"
*1(typeStatement stmtsep)
*1(writetypeStatement stmtsep)
*1(accessStatement stmtsep)
descriptionStatement stmtsep
\"}\" optsep \";\"
typeStatement = typeKeyword sep
(refinedBaseType / refinedType)
optsep \";\"
writetypeStatement = writetypeKeyword sep
(refinedBaseType / refinedType)
optsep \";\"
oidStatement = oidKeyword sep objectIdentifier optsep \";\"
subidStatement = subidKeyword sep subid optsep \";\"
;;
;; Statement keywords.
;;
snmpKeyword = %x73 %x6E %x6D %x70
nodeKeyword = %x6E %x6F %x64 %x65
representsKeyword = %x72 %x65 %x70 %x72 %x65 %x73 %x65 %x6E %x74
%x73
scalarsKeyword = %x73 %x63 %x61 %x6C %x61 %x72 %x73
tableKeyword = %x74 %x61 %x62 %x6C %x65
implementsKeyword = %x69 %x6D %x70 %x6C %x65 %x6D %x65 %x6E %x74
%x73
subidKeyword = %x73 %x75 %x62 %x69 %x64
objectKeyword = %x6F %x62 %x6A %x65 %x63 %x74
notificationKeyword = %x6E %x6F %x74 %x69 %x66 %x69 %x63 %x61 %x74
%x69 %x6F %x6E
signalsKeyword = %x73 %x69 %x67 %x6E %x61 %x6C %x73
oidKeyword = %x6F %x69 %x64
groupKeyword = %x67 %x72 %x6F %x75 %x70
complianceKeyword = %x63 %x6F %x6D %x70 %x6C %x69 %x61 %x6E %x63
%x65
impliedKeyword = %x69 %x6D %x70 %x6C %x69 %x65 %x64
indexKeyword = %x69 %x6E %x64 %x65 %x78
augmentsKeyword = %x61 %x75 %x67 %x6D %x65 %x6E %x74 %x73
reordersKeyword = %x72 %x65 %x6F %x72 %x64 %x65 %x72 %x73
extendsKeyword = %x65 %x78 %x74 %x65 %x6E %x64 %x73
expandsKeyword = %x65 %x78 %x70 %x61 %x6E %x64 %x73
Strauss & Schoenwaelder Experimental [Page 31]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
createKeyword = %x63 %x72 %x65 %x61 %x74 %x65
membersKeyword = %x6D %x65 %x6D %x62 %x65 %x72 %x73
mandatoryKeyword = %x6D %x61 %x6E %x64 %x61 %x74 %x6F %x72 %x79
optionalKeyword = %x6F %x70 %x74 %x69 %x6F %x6E %x61 %x6C
refineKeyword = %x72 %x65 %x66 %x69 %x6E %x65
writetypeKeyword = %x77 %x72 %x69 %x74 %x65 %x74 %x79 %x70 %x65
;; End of ABNF
";
};
//
//
//
snmp {
node ccitt { oid 0; };
node zeroDotZero {
oid 0.0;
description "A null value used for pointers.";
};
node iso { oid 1; };
node org { oid iso.3; };
node dod { oid org.6; };
node internet { oid dod.1; };
node directory { oid internet.1; };
node mgmt { oid internet.2; };
node mib-2 { oid mgmt.1; };
node transmission { oid mib-2.10; };
node experimental { oid internet.3; };
node private { oid internet.4; };
node enterprises { oid private.1; };
node security { oid internet.5; };
node snmpV2 { oid internet.6; };
node snmpDomains { oid snmpV2.1; };
node snmpProxys { oid snmpV2.2; };
node snmpModules { oid snmpV2.3; };
node joint-iso-ccitt { oid 2; };
status current;
description
"This set of nodes defines the core object
identifier hierarchy";
reference
"RFC 2578, Section 2.";
Strauss & Schoenwaelder Experimental [Page 32]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
};
};
6. NMRG-SMING-SNMP
The module NMRG-SMING-SNMP specified below defines derived types that
are specific to the SNMP mapping.
module NMRG-SMING-SNMP {
organization "IRTF Network Management Research Group (NMRG)";
contact "IRTF Network Management Research Group (NMRG)
http://www.ibr.cs.tu-bs.de/projects/nmrg/
Frank Strauss
TU Braunschweig
Muehlenpfordtstrasse 23
38106 Braunschweig
Germany
Phone: +49 531 391 3266
EMail: strauss@ibr.cs.tu-bs.de
Juergen Schoenwaelder
International University Bremen
P.O. Box 750 561
28725 Bremen
Germany
Phone: +49 421 200 3587
EMail: j.schoenwaelder@iu-bremen.de";
description "Core type definitions for the SMIng SNMP mapping.
These definitions are based on RFC 2579 definitions
that are specific to the SNMP protocol and its
naming system.
Copyright (C) The Internet Society (2004).
All Rights Reserved.
This version of this module is part of
RFC 3781, see the RFC itself for full
legal notices.";
revision {
date "2003-12-16";
description "Initial version, published as RFC 3781.";
};
Strauss & Schoenwaelder Experimental [Page 33]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
typedef TestAndIncr {
type Integer32 (0..2147483647);
description
"Represents integer-valued information used for atomic
operations. When the management protocol is used to
specify that an object instance having this type is to
be modified, the new value supplied via the management
protocol must precisely match the value presently held by
the instance. If not, the management protocol set
operation fails with an error of `inconsistentValue'.
Otherwise, if the current value is the maximum value of
2^31-1 (2147483647 decimal), then the value held by the
instance is wrapped to zero; otherwise, the value held by
the instance is incremented by one. (Note that
regardless of whether the management protocol set
operation succeeds, the variable-binding in the request
and response PDUs are identical.)
The value of the SNMP access clause for objects having
this type has to be `readwrite'. When an instance of a
columnar object having this type is created, any value
may be supplied via the management protocol.
When the network management portion of the system is re-
initialized, the value of every object instance having
this type must either be incremented from its value prior
to the re-initialization, or (if the value prior to the
re-initialization is unknown) be set to a
pseudo-randomly generated value."; };
typedef AutonomousType {
type Pointer;
description
"Represents an independently extensible type
identification value. It may, for example, indicate a
particular OID sub-tree with further MIB definitions, or
define a particular type of protocol or hardware.";
};
typedef VariablePointer {
type Pointer;
description
"A pointer to a specific object instance. For example,
sysContact.0 or ifInOctets.3.";
};
typedef RowPointer {
type Pointer;
Strauss & Schoenwaelder Experimental [Page 34]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
description
"Represents a pointer to a conceptual row. The value is
the name of the instance of the first accessible columnar
object in the conceptual row.
For example, ifIndex.3 would point to the 3rd row in the
ifTable (note that if ifIndex were not-accessible, then
ifDescr.3 would be used instead).";
};
typedef RowStatus {
type Enumeration (active(1), notInService(2),
notReady(3), createAndGo(4),
createAndWait(5), destroy(6));
description
"The RowStatus type is used to manage the creation and
deletion of conceptual rows, and is used as the type for the
row status column of a conceptual row.
The status column has six defined values:
- `active', which indicates that the conceptual row is
available for use by the managed device;
- `notInService', which indicates that the conceptual
row exists in the agent, but is unavailable for use by
the managed device (see NOTE below);
- `notReady', which indicates that the conceptual row
exists in the agent, but is missing information
necessary in order to be available for use by the
managed device;
- `createAndGo', which is supplied by a management
station wishing to create a new instance of a
conceptual row and to have its status automatically set
to active, making it available for use by the managed
device;
- `createAndWait', which is supplied by a management
station wishing to create a new instance of a
conceptual row (but not make it available for use by
the managed device); and,
- `destroy', which is supplied by a management station
wishing to delete all of the instances associated with
an existing conceptual row.
Strauss & Schoenwaelder Experimental [Page 35]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
Whereas five of the six values (all except `notReady') may
be specified in a management protocol set operation, only
three values will be returned in response to a management
protocol retrieval operation: `notReady', `notInService' or
`active'. That is, when queried, an existing conceptual row
has only three states: it is either available for use by the
managed device (the status column has value `active'); it is
not available for use by the managed device, though the
agent has sufficient information to make it so (the status
column has value `notInService'); or, it is not available
for use by the managed device, and an attempt to make it so
would fail because the agent has insufficient information
(the state column has value `notReady').
NOTE WELL
This textual convention may be used for a MIB table,
irrespective of whether the values of that table's
conceptual rows are able to be modified while it is
active, or whether its conceptual rows must be taken
out of service in order to be modified. That is, it is
the responsibility of the DESCRIPTION clause of the
status column to specify whether the status column must
not be `active' in order for the value of some other
column of the same conceptual row to be modified. If
such a specification is made, affected columns may be
changed by an SNMP set PDU if the RowStatus would not
be equal to `active' either immediately before or after
processing the PDU. In other words, if the PDU also
contained a varbind that would change the RowStatus
value, the column in question may be changed if the
RowStatus was not equal to `active' as the PDU was
received, or if the varbind sets the status to a value
other than 'active'.
Also note that whenever any elements of a row exist, the
RowStatus column must also exist.
To summarize the effect of having a conceptual row with a
column having a type of RowStatus, consider the following
state diagram:
Strauss & Schoenwaelder Experimental [Page 36]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
STATE
+--------------+-----------+-------------+-------------
| A | B | C | D
| |status col.|status column|
|status column | is | is |status column
ACTION |does not exist| notReady | notInService| is active
--------------+--------------+-----------+-------------+-------------
set status |noError ->D|inconsist- |inconsistent-|inconsistent-
column to | or | entValue| Value| Value
createAndGo |inconsistent- | | |
| Value| | |
--------------+--------------+-----------+-------------+-------------
set status |noError see 1|inconsist- |inconsistent-|inconsistent-
column to | or | entValue| Value| Value
createAndWait |wrongValue | | |
--------------+--------------+-----------+-------------+-------------
set status |inconsistent- |inconsist- |noError |noError
column to | Value| entValue| |
active | | | |
| | or | |
| | | |
| |see 2 ->D|see 8 ->D| ->D
--------------+--------------+-----------+-------------+-------------
set status |inconsistent- |inconsist- |noError |noError ->C
column to | Value| entValue| |
notInService | | | |
| | or | | or
| | | |
| |see 3 ->C| ->C|see 6
--------------+--------------+-----------+-------------+-------------
set status |noError |noError |noError |noError ->A
column to | | | | or
destroy | ->A| ->A| ->A|see 7
--------------+--------------+-----------+-------------+-------------
set any other |see 4 |noError |noError |see 5
column to some| | | |
value | | see 1| ->C| ->D
--------------+--------------+-----------+-------------+-------------
(1) go to B or C, depending on information available to the
agent.
(2) if other variable bindings included in the same PDU,
provide values for all columns which are missing but
required, then return noError and goto D.
Strauss & Schoenwaelder Experimental [Page 37]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
(3) if other variable bindings included in the same PDU,
provide values for all columns which are missing but
required, then return noError and goto C.
(4) at the discretion of the agent, the return value may be
either:
inconsistentName: because the agent does not choose to
create such an instance when the corresponding
RowStatus instance does not exist, or
inconsistentValue: if the supplied value is
inconsistent with the state of some other MIB object's
value, or
noError: because the agent chooses to create the
instance.
If noError is returned, then the instance of the status
column must also be created, and the new state is B or C,
depending on the information available to the agent. If
inconsistentName or inconsistentValue is returned, the row
remains in state A.
(5) depending on the MIB definition for the column/table,
either noError or inconsistentValue may be returned.
(6) the return value can indicate one of the following
errors:
wrongValue: because the agent does not support
createAndWait, or
inconsistentValue: because the agent is unable to take
the row out of service at this time, perhaps because it
is in use and cannot be de-activated.
(7) the return value can indicate the following error:
inconsistentValue: because the agent is unable to
remove the row at this time, perhaps because it is in
use and cannot be de-activated.
NOTE: Other processing of the set request may result in a
response other than noError being returned, e.g.,
wrongValue, noCreation, etc.
Strauss & Schoenwaelder Experimental [Page 38]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
Conceptual Row Creation
There are four potential interactions when creating a
conceptual row: selecting an instance-identifier which is
not in use; creating the conceptual row; initializing any
objects for which the agent does not supply a default; and,
making the conceptual row available for use by the managed
device.
Interaction 1: Selecting an Instance-Identifier
The algorithm used to select an instance-identifier varies
for each conceptual row. In some cases, the instance-
identifier is semantically significant, e.g., the
destination address of a route, and a management station
selects the instance-identifier according to the semantics.
In other cases, the instance-identifier is used solely to
distinguish conceptual rows, and a management station
without specific knowledge of the conceptual row might
examine the instances present in order to determine an
unused instance-identifier. (This approach may be used, but
it is often highly sub-optimal; however, it is also a
questionable practice for a naive management station to
attempt conceptual row creation.)
Alternately, the MIB module which defines the conceptual row
might provide one or more objects which provide assistance
in determining an unused instance-identifier. For example,
if the conceptual row is indexed by an integer-value, then
an object having an integer-valued SYNTAX clause might be
defined for such a purpose, allowing a management station to
issue a management protocol retrieval operation. In order
to avoid unnecessary collisions between competing management
stations, `adjacent' retrievals of this object should be
different.
Finally, the management station could select a pseudo-random
number to use as the index. In the event that this index
was already in use and an inconsistentValue was returned in
response to the management protocol set operation, the
management station should simply select a new pseudo-random
number and retry the operation.
A MIB designer should choose between the two latter
algorithms based on the size of the table (and therefore the
efficiency of each algorithm). For tables in which a large
number of entries are expected, it is recommended that a MIB
Strauss & Schoenwaelder Experimental [Page 39]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
object be defined that returns an acceptable index for
creation. For tables with small numbers of entries, it is
recommended that the latter pseudo-random index mechanism be
used.
Interaction 2: Creating the Conceptual Row
Once an unused instance-identifier has been selected, the
management station determines if it wishes to create and
activate the conceptual row in one transaction or in a
negotiated set of interactions.
Interaction 2a: Creating and Activating the Conceptual Row
The management station must first determine the column
requirements, i.e., it must determine those columns for
which it must or must not provide values. Depending on the
complexity of the table and the management station's
knowledge of the agent's capabilities, this determination
can be made locally by the management station. Alternately,
the management station issues a management protocol get
operation to examine all columns in the conceptual row that
it wishes to create. In response, for each column, there
are three possible outcomes:
- a value is returned, indicating that some other
management station has already created this conceptual
row. We return to interaction 1.
- the exception `noSuchInstance' is returned,
indicating that the agent implements the object-type
associated with this column, and that this column in at
least one conceptual row would be accessible in the MIB
view used by the retrieval were it to exist. For those
columns to which the agent provides read-create access,
the `noSuchInstance' exception tells the management
station that it should supply a value for this column
when the conceptual row is to be created.
- the exception `noSuchObject' is returned, indicating
that the agent does not implement the object-type
associated with this column or that there is no
conceptual row for which this column would be
accessible in the MIB view used by the retrieval. As
such, the management station can not issue any
management protocol set operations to create an
instance of this column.
Strauss & Schoenwaelder Experimental [Page 40]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
Once the column requirements have been determined, a
management protocol set operation is accordingly issued.
This operation also sets the new instance of the status
column to `createAndGo'.
When the agent processes the set operation, it verifies that
it has sufficient information to make the conceptual row
available for use by the managed device. The information
available to the agent is provided by two sources: the
management protocol set operation which creates the
conceptual row, and, implementation-specific defaults
supplied by the agent (note that an agent must provide
implementation-specific defaults for at least those objects
which it implements as read-only). If there is sufficient
information available, then the conceptual row is created, a
`noError' response is returned, the status column is set to
`active', and no further interactions are necessary (i.e.,
interactions 3 and 4 are skipped). If there is insufficient
information, then the conceptual row is not created, and the
set operation fails with an error of `inconsistentValue'.
On this error, the management station can issue a management
protocol retrieval operation to determine if this was
because it failed to specify a value for a required column,
or, because the selected instance of the status column
already existed. In the latter case, we return to
interaction 1. In the former case, the management station
can re-issue the set operation with the additional
information, or begin interaction 2 again using
`createAndWait' in order to negotiate creation of the
conceptual row.
NOTE WELL
Regardless of the method used to determine the column
requirements, it is possible that the management
station might deem a column necessary when, in fact,
the agent will not allow that particular columnar
instance to be created or written. In this case, the
management protocol set operation will fail with an
error such as `noCreation' or `notWritable'. In this
case, the management station decides whether it needs
to be able to set a value for that particular columnar
instance. If not, the management station re-issues the
management protocol set operation, but without setting
Strauss & Schoenwaelder Experimental [Page 41]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
a value for that particular columnar instance;
otherwise, the management station aborts the row
creation algorithm.
Interaction 2b: Negotiating the Creation of the Conceptual
Row
The management station issues a management protocol set
operation which sets the desired instance of the status
column to `createAndWait'. If the agent is unwilling to
process a request of this sort, the set operation fails with
an error of `wrongValue'. (As a consequence, such an agent
must be prepared to accept a single management protocol set
operation, i.e., interaction 2a above, containing all of the
columns indicated by its column requirements.) Otherwise,
the conceptual row is created, a `noError' response is
returned, and the status column is immediately set to either
`notInService' or `notReady', depending on whether it has
sufficient information to make the conceptual row available
for use by the managed device. If there is sufficient
information available, then the status column is set to
`notInService'; otherwise, if there is insufficient
information, then the status column is set to `notReady'.
Regardless, we proceed to interaction 3.
Interaction 3: Initializing non-defaulted Objects
The management station must now determine the column
requirements. It issues a management protocol get operation
to examine all columns in the created conceptual row. In
the response, for each column, there are three possible
outcomes:
- a value is returned, indicating that the agent
implements the object-type associated with this column
and had sufficient information to provide a value. For
those columns to which the agent provides read-create
access (and for which the agent allows their values to
be changed after their creation), a value return tells
the management station that it may issue additional
management protocol set operations, if it desires, in
order to change the value associated with this column.
- the exception `noSuchInstance' is returned,
indicating that the agent implements the object-type
associated with this column, and that this column in at
least one conceptual row would be accessible in the MIB
view used by the retrieval were it to exist. However,
Strauss & Schoenwaelder Experimental [Page 42]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
the agent does not have sufficient information to
provide a value, and until a value is provided, the
conceptual row may not be made available for use by the
managed device. For those columns to which the agent
provides read-create access, the `noSuchInstance'
exception tells the management station that it must
issue additional management protocol set operations, in
order to provide a value associated with this column.
- the exception `noSuchObject' is returned, indicating
that the agent does not implement the object-type
associated with this column or that there is no
conceptual row for which this column would be
accessible in the MIB view used by the retrieval. As
such, the management station can not issue any
management protocol set operations to create an
instance of this column.
If the value associated with the status column is
`notReady', then the management station must first deal with
all `noSuchInstance' columns, if any. Having done so, the
value of the status column becomes `notInService', and we
proceed to interaction 4.
Interaction 4: Making the Conceptual Row Available
Once the management station is satisfied with the values
associated with the columns of the conceptual row, it issues
a management protocol set operation to set the status column
to `active'. If the agent has sufficient information to
make the conceptual row available for use by the managed
device, the management protocol set operation succeeds (a
`noError' response is returned). Otherwise, the management
protocol set operation fails with an error of
`inconsistentValue'.
NOTE WELL
A conceptual row having a status column with value
`notInService' or `notReady' is unavailable to the
managed device. As such, it is possible for the
managed device to create its own instances during the
time between the management protocol set operation
which sets the status column to `createAndWait' and the
management protocol set operation which sets the status
column to `active'. In this case, when the management
protocol set operation is issued to set the status
column to `active', the values held in the agent
Strauss & Schoenwaelder Experimental [Page 43]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
supersede those used by the managed device.
If the management station is prevented from setting the
status column to `active' (e.g., due to management station or
network failure) the conceptual row will be left in the
`notInService' or `notReady' state, consuming resources
indefinitely. The agent must detect conceptual rows that
have been in either state for an abnormally long period of
time and remove them. It is the responsibility of the
DESCRIPTION clause of the status column to indicate what an
abnormally long period of time would be. This period of time
should be long enough to allow for human response time
(including `think time') between the creation of the
conceptual row and the setting of the status to `active'. In
the absence of such information in the DESCRIPTION clause, it
is suggested that this period be approximately 5 minutes in
length. This removal action applies not only to newly-
created rows, but also to previously active rows which are
set to, and left in, the notInService state for a prolonged
period exceeding that which is considered normal for such a
conceptual row.
Conceptual Row Suspension
When a conceptual row is `active', the management station
may issue a management protocol set operation which sets the
instance of the status column to `notInService'. If the
agent is unwilling to do so, the set operation fails with an
error of `wrongValue' or `inconsistentValue'.
Otherwise, the conceptual row is taken out of service, and a
`noError' response is returned. It is the responsibility of
the DESCRIPTION clause of the status column to indicate
under what circumstances the status column should be taken
out of service (e.g., in order for the value of some other
column of the same conceptual row to be modified).
Conceptual Row Deletion
For deletion of conceptual rows, a management protocol set
operation is issued which sets the instance of the status
column to `destroy'. This request may be made regardless of
the current value of the status column (e.g., it is possible
to delete conceptual rows which are either `notReady',
`notInService' or `active'.) If the operation succeeds, then
all instances associated with the conceptual row are
immediately removed.";
};
Strauss & Schoenwaelder Experimental [Page 44]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
typedef StorageType {
type Enumeration (other(1), volatile(2),
nonVolatile(3), permanent(4),
readOnly(5));
description
"Describes the memory realization of a conceptual row. A
row which is volatile(2) is lost upon reboot. A row
which is either nonVolatile(3), permanent(4) or
readOnly(5), is backed up by stable storage. A row which
is permanent(4) can be changed but not deleted. A row
which is readOnly(5) cannot be changed nor deleted.
If the value of an object with this syntax is either
permanent(4) or readOnly(5), it cannot be modified.
Conversely, if the value is either other(1), volatile(2)
or nonVolatile(3), it cannot be modified to be
permanent(4) or readOnly(5). (All illegal modifications
result in a 'wrongValue' error.)
Every usage of this textual convention is required to
specify the columnar objects which a permanent(4) row
must at a minimum allow to be writable.";
};
typedef TDomain {
type Pointer;
description
"Denotes a kind of transport service.
Some possible values, such as snmpUDPDomain, are defined
in the SNMPv2-TM MIB module. Other possible values are
defined in other MIB modules."
reference
"The SNMPv2-TM MIB module is defined in RFC 3417."
};
typedef TAddressOrZero {
type OctetString (0..255);
description
"Denotes a transport service address.
A TAddress value is always interpreted within the context
of a TDomain value. Thus, each definition of a TDomain
value must be accompanied by a definition of a textual
convention for use with that TDomain. Some possible
textual conventions, such as SnmpUDPAddress for
snmpUDPDomain, are defined in the SNMPv2-TM MIB module.
Other possible textual conventions are defined in other
Strauss & Schoenwaelder Experimental [Page 45]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
MIB modules.
A zero-length TAddress value denotes an unknown transport
service address."
reference
"The SNMPv2-TM MIB module is defined in RFC 3417."
};
typedef TAddress {
type TAddressOrZero (1..255);
description
"Denotes a transport service address.
This type does not allow a zero-length TAddress value."
};
};
7. Security Considerations
This document presents an extension of the SMIng data definition
language which supports the mapping of SMIng data definitions so that
they can be used with the SNMP management framework. The language
extension and the mapping itself has no security impact on the
Internet.
8. Acknowledgements
Since SMIng started as a close successor of SMIv2, some paragraphs
and phrases are directly taken from the SMIv2 specifications
[RFC2578], [RFC2579], [RFC2580] written by Jeff Case, Keith
McCloghrie, David Perkins, Marshall T. Rose, Juergen Schoenwaelder,
and Steven L. Waldbusser.
The authors would like to thank all participants of the 7th NMRG
meeting held in Schloss Kleinheubach from 6-8 September 2000, which
was a major step towards the current status of this memo, namely
Heiko Dassow, David Durham, Keith McCloghrie, and Bert Wijnen.
Furthermore, several discussions within the SMING Working Group
reflected experience with SMIv2 and influenced this specification at
some points.
Strauss & Schoenwaelder Experimental [Page 46]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
9. References
9.1. Normative References
[RFC3780] Strauss, F. and J. Schoenwaelder, "SMIng - Next Generation
Structure of Management Information", RFC 3780, May 2004.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
Specifications: ABNF", RFC 2234, November 1997.
9.2. Informative References
[RFC3410] Case, J., Mundy, R., Partain, D. and B. Stewart,
"Introduction and Applicability Statements for Internet
Standard Management Framework", RFC 3410, December 2002.
[RFC2578] McCloghrie, K., Perkins, D. and J. Schoenwaelder,
"Structure of Management Information Version 2 (SMIv2)",
STD 58, RFC 2578, April 1999.
[RFC2579] McCloghrie, K., Perkins, D. and J. Schoenwaelder, "Textual
Conventions for SMIv2", STD 59, RFC 2579, April 1999.
[RFC2580] McCloghrie, K., Perkins, D. and J. Schoenwaelder,
"Conformance Statements for SMIv2", STD 60, RFC 2580,
April 1999.
[ASN1] International Organization for Standardization,
"Specification of Abstract Syntax Notation One (ASN.1)",
International Standard 8824, December 1987.
[RFC3159] McCloghrie, K., Fine, M., Seligson, J., Chan, K., Hahn,
S., Sahita, R., Smith, A. and F. Reichmeyer, "Structure of
Policy Provisioning Information (SPPI)", RFC 3159, August
2001.
[IEEE754] Institute of Electrical and Electronics Engineers, "IEEE
Standard for Binary Floating-Point Arithmetic", ANSI/IEEE
Standard 754-1985, August 1985.
Strauss & Schoenwaelder Experimental [Page 47]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
[RFC3418] Presuhn, R., Case, J., McCloghrie, K., Rose, M. and S.
Waldbusser, "Management Information Base (MIB) for the
Simple Network Management Protocol (SNMP)", STD 62, RFC
3418, December 2002.
[RFC3416] Presuhn, R., Case, J., McCloghrie, K., Rose, M. and S.
Waldbusser, "Version 2 of the Protocol Operations for the
Simple Network Management Protocol (SNMP)", STD 62, RFC
3416, December 2002.
Authors' Addresses
Frank Strauss
TU Braunschweig
Muehlenpfordtstrasse 23
38106 Braunschweig
Germany
Phone: +49 531 391 3266
EMail: strauss@ibr.cs.tu-bs.de
URI: http://www.ibr.cs.tu-bs.de/
Juergen Schoenwaelder
International University Bremen
P.O. Box 750 561
28725 Bremen
Germany
Phone: +49 421 200 3587
EMail: j.schoenwaelder@iu-bremen.de
URI: http://www.eecs.iu-bremen.de/
Strauss & Schoenwaelder Experimental [Page 48]
^L
RFC 3781 SMIng Mappings to SNMP May 2004
Full Copyright Statement
Copyright (C) The Internet Society (2004). This document is subject
to the rights, licenses and restrictions contained in BCP 78, and
except as set forth therein, the authors retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at ietf-
ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Strauss & Schoenwaelder Experimental [Page 49]
^L
|