1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
|
Network Working Group J. Peterson
Request for Comments: 3859 NeuStar
Category: Standards Track August 2004
Common Profile for Presence (CPP)
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2004).
Abstract
At the time this document was written, numerous presence protocols
were in use (largely as components of commercial instant messaging
services), and little interoperability between services based on
these protocols has been achieved. This specification defines common
semantics and data formats for presence to facilitate the creation of
gateways between presence services.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 3
3. Abstract Presence Service . . . . . . . . . . . . . . . . . . 4
3.1. Overview of the Presence Service . . . . . . . . . . . . 4
3.2. Identification of PRESENTITIES and WATCHERS . . . . . . 6
3.2.1. Address Resolution . . . . . . . . . . . . . . . 6
3.3. Format of Presence Information . . . . . . . . . . . . . 6
3.4. The Presence Service . . . . . . . . . . . . . . . . . . 7
3.4.1. The Subscribe Operation . . . . . . . . . . . . 7
3.4.2. The Notify Operation . . . . . . . . . . . . . . 8
3.4.3. Subscribe Operation (with Zero Duration) . . . . 8
4. Security Considerations . . . . . . . . . . . . . . . . . . . 8
5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 9
5.1. The PRES URI Scheme . . . . . . . . . . . . . . . . . . 9
6. Contributors . . . . . . . . . . . . . . . . . . . . . . . . . 10
7. References . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7.1. Normative References . . . . . . . . . . . . . . . . . . 10
7.2. Informative References . . . . . . . . . . . . . . . . . 11
Peterson Standards Track [Page 1]
^L
RFC 3859 Common Profile for Presence August 2004
A. PRES URI IANA Registration Template . . . . . . . . . . . . . 12
A.1. URI Scheme Name . . . . . . . . . . . . . . . . . . . . 12
A.2. URI Scheme Syntax . . . . . . . . . . . . . . . . . . . 12
A.3. Character Encoding Considerations . . . . . . . . . . . 12
A.4. Intended Usage . . . . . . . . . . . . . . . . . . . . . 12
A.5. Applications and/or Protocols which use this URI Scheme
Name . . . . . . . . . . . . . . . . . . . . . . . . . . 12
A.6. Interoperability Considerations . . . . . . . . . . . . 13
A.7. Security Considerations . . . . . . . . . . . . . . . . 13
A.8. Relevant Publications . . . . . . . . . . . . . . . . . 13
A.9. Person & Email Address to Contact for Further
Information. . . . . . . . . . . . . . . . . . . . . . . 13
A.10. Author/Change Controller . . . . . . . . . . . . . . . . 13
A.11. Applications and/or Protocols which use this URI Scheme
Name . . . . . . . . . . . . . . . . . . . . . . . . . . 13
B. Issues of Interest . . . . . . . . . . . . . . . . . . . . . . 13
B.1. Address Mapping . . . . . . . . . . . . . . . . . . . . 13
B.2. Source-Route Mapping . . . . . . . . . . . . . . . . . . 13
C. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 14
Author's Address . . . . . . . . . . . . . . . . . . . . . . . . . 14
Full Copyright Statement . . . . . . . . . . . . . . . . . . . . . 15
1. Introduction
Presence is defined in RFC2778 [5]. At the time this document was
written, numerous presence protocols are in use (largely as
components of commercial instant messaging services), and little
interoperability between services based on these protocols has been
achieved. This specification defines semantics and data formats for
common services of presence to facilitate the creation of gateways
between presence services: a common profile for presence (CPP).
Service behavior is described abstractly in terms of operations
invoked between the consumer and provider of a service. Accordingly,
each presence service must specify how this behavior is mapped onto
its own protocol interactions. The choice of strategy is a local
matter, providing that there is a clear relation between the abstract
behaviors of the service (as specified in this memo) and how it is
faithfully realized by a particular presence service. For example,
one strategy might transmit presence information as key/value pairs,
another might use a compact binary representation, and a third might
use nested containers.
The parameters for each operation are defined using an abstract
syntax. Although the syntax specifies the range of possible data
values, each presence service must specify how well-formed instances
of the abstract representation are encoded as a concrete series of
bits.
Peterson Standards Track [Page 2]
^L
RFC 3859 Common Profile for Presence August 2004
In order to provide a means for the preservation of end-to-end
features (especially security) to pass through presence
interoperability gateways, this specification also provides
recommendations for presence document formats that could be employed
by presence protocols.
2. Terminology
In this document, the key words "MUST", "MUST NOT", "REQUIRED",
"SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT
RECOMMENDED", "MAY", and "OPTIONAL" are to be interpreted as
described in BCP 14, RFC 2119 [1] and indicate requirement levels for
compliant implementations.
This memos makes use of the vocabulary defined in RFC 2778 [5].
Terms such as CLOSED, INSTANT INBOX, PRESENCE, and OPEN are used in
the same meaning as defined therein.
The term 'gateway' used in this document denotes a network element
responsible for interworking between diverse presence protocols.
Although the presence protocols themselves are diverse, under the
model in this document these protocols can carry a common payload
that is relayed by the gateway. Whether these interworking
intermediaries should be called 'gateways' or 'relays' is therefore
somewhat debatable; for the purposes of this document, they are
called 'CPP gateways'.
The term 'presence service' also derives from RFC 2778, but its
meaning changes slightly due to the existence of gateways in the CPP
model. When a client sends an operation to a presence service, that
service might either be an endpoint or an intermediary such as a CPP
gateway - in fact, the client should not have to be aware which it is
addressing, as responses from either will appear the same.
This document defines operations and attributes of an abstract
presence protocol. In order for a compliant protocol to interface
with a presence gateway, it must support all of the operations
described in this document (i.e., the presence protocol must have
some message or capability that provides the function described by
all given operations). Similarly, the attributes defined for these
operations must correspond to information available in the presence
protocol in order for the protocol to interface with gateways defined
by this specification. Note that these attributes provide only the
minimum possible information that needs to be specified for
interoperability - the functions in a presence protocol that
correspond to the operations described in this document can contain
additional information that will not be mapped by CPP.
Peterson Standards Track [Page 3]
^L
RFC 3859 Common Profile for Presence August 2004
3. Abstract Presence Service
3.1. Overview of the Presence Service
When an application wants to subscriber to the presence information
associated with a PRESENTITY (in order to receive periodic
notifications of presence information), it invokes the subscribe
operation, e.g.,
+-------+ +-------+
| | | |
| appl. | -- subscribe ----> | pres. |
| | | svc. |
+-------+ +-------+
The subscribe operation has the following attributes: watcher,
target, duration, SubscriptID and TransID. The 'watcher' and
'target' identify the WATCHER and PRESENTITY, respectively, using the
identifiers described in Section 3.2. The duration specifies the
maximum number of seconds that the SUBSCRIPTION should be active
(which may be zero, in which case this is a one-time request for
presence information). The SubscriptID creates a reference to the
SUBSCRIPTION that is used when unsubscribing. The TransID is a
unique identifier used to correlate the subscribe operation with a
response operation. Gateways should be capable of handling TransIDs
and SubscriptIDs up to 40 bytes in length.
Upon receiving a subscribe operation, the service immediately
responds by invoking the response operation containing the same
TransID, e.g.,
+-------+ +-------+
| | | |
| appl. | <----- response -- | pres. |
| | | svc. |
+-------+ +-------+
The response operation has the following attributes: status, TransID,
and duration. 'status' indicates whether the subscribe operation has
succeeded or failed. The TransID of the response operation
corresponds to the TransID of the subscription operation to which it
is responding. The 'duration' attribute specifies the number of
seconds for which the subscription will be active (which may differ
from the value requested in the subscribe operation).
Peterson Standards Track [Page 4]
^L
RFC 3859 Common Profile for Presence August 2004
If the response operation indicates success, the service immediately
invokes the notify operation to communicate the presence information
to the WATCHER, e.g.,
+-------+ +-------+
| | | |
| appl. | <------- notify -- | pres. |
| | | svc. |
+-------+ +-------+
The notify operation has the following attributes: watcher, target,
and TransID. The values of 'watcher' and 'target' are identical to
those given in the subscribe operation that triggered this notify
operation. The TransID is a unique identifier for this notification.
The notify operation also has content, namely PRESENCE INFORMATION.
Content details are specified in Section 3.3.
If the duration parameter is non-zero, then for up to the specified
duration, the service invokes the notify operation whenever there are
any changes to the PRESENTITY's presence information. Otherwise,
exactly one notify operation is invoked, achieving a one-time poll of
the presence information. Regardless, there is no application
response to the notify operation (i.e., the application does not
invoke a response operation when a notify operation occurs) defined
in CPP.
The application may prematurely cancel a subscription by re-invoking
the subscribe operation (as described above) with a duration of 0 and
the same SubscriptID as the original subscribe operation , e.g.,
+-------+ +-------+
| | | |
| appl. | -- subscribe 0 --> | pres. |
| | | svc. |
+-------+ +-------+
Note that a notify operation will be invoked when a subscription is
prematurely canceled in this fashion; this notification may be
discarded by the watcher.
Peterson Standards Track [Page 5]
^L
RFC 3859 Common Profile for Presence August 2004
The service immediately responds by invoking the response operation
containing the same TransID; e.g.,
+-------+ +-------+
| | | |
| appl. | <----- response -- | pres. |
| | | svc. |
+-------+ +-------+
Note that this specification assumes that CPP-compliant presence
protocols provide reliable message delivery; there are no
application-layer message delivery assurance provisions in this
specification.
3.2. Identification of PRESENTITIES and WATCHERS
A PRESENTITY is specified using the PRES URI scheme, which is further
described in Appendix A. An example would be:
"pres:fred@example.com"
WATCHERs identify themselves in the same manner as PRESENTITIES; that
is, with a pres URI.
3.2.1. Address Resolution
A presence service client determines the next hop to forward an
operation to by resolving the domain name portion of the service
destination. Compliant implementations SHOULD follow the guidelines
for dereferencing URIs given in [2].
3.3. Format of Presence Information
This specification defines an abstract interoperability mechanism for
presence protocols; the message content definition given here
pertains to semantics rather than syntax. However, some important
properties for interoperability can only be provided if a common
end-to-end format for presence is employed by the interoperating
presence protocols, especially with respect to security. In order to
maintain end-to-end security properties, applications that send
notification operations through a CPP gateway MUST support the format
defined in PIDF [4]. Applications MAY support other content formats.
CPP gateways MUST be capable of relaying the body of a notification
operation between supported presence protocols without needing to
modify or inspect the content.
Peterson Standards Track [Page 6]
^L
RFC 3859 Common Profile for Presence August 2004
3.4. The Presence Service
An implementation of the service must maintain information about both
presence information and continual operations (like periodic
notification) in persistent storage.
Note that the subscription-identifier attribute used by the subscribe
operation is potentially long-lived. Accordingly, the values
generated for this parameter should be unique across a significant
duration of time. The SubscriptID parameter should be intrinsically
globally unique over time, not merely unique among operations sent to
or from a particular WATCHER and PRESENTITY.
3.4.1. The Subscribe Operation
When an application wants to subscribe to the presence information
associated with a PRESENTITY, it invokes the subscribe operation.
When the service is informed of the subscribe operation, it performs
these steps:
1. If the watcher or target parameter does not refer to a valid
PRESENTITY, a response operation having status "failure" is
invoked.
2. If access control does not permit the application to request this
operation, a response operation having status "failure" is
invoked.
3. If the duration parameter is non-zero, and if the watcher and
target parameters refer to an in-progress subscribe operation for
the application, a response operation having status "failure" is
invoked.
4. Otherwise, if the service is able to successfully deliver the
message:
A response operation having status "success" is immediately
invoked. (If the service chooses a different duration for the
subscription then it conveys this information in the response
operation.)
A notify operation, corresponding to the target's presence
information, is immediately invoked for the watcher.
Peterson Standards Track [Page 7]
^L
RFC 3859 Common Profile for Presence August 2004
For up to the amount of time indicated by the duration
parameter of the notify operation (measured from the time that
the subscribe operation was received), if the target's presence
information changes, and if access control allows, a notify
operation is invoked for the watcher.
Note that if the duration parameter is zero-valued, then the
subscribe operation is making a one-time poll of the presence
information. Accordingly, the final step above (continued
notifications for the duration of the subscription) does not occur.
When the service invokes a response operation as a result of this
processing, the transID parameter is identical to the value found in
the subscribe operation invoked by the application.
3.4.2. The Notify Operation
The service invokes the notify operation whenever the presence
information associated with a PRESENTITY changes and there are
subscribers requesting notifications for that PRESENTITY.
There is no application response to the notify operation.
3.4.3. Subscribe Operation (with Zero Duration)
When an application wants to terminate a subscription, it issues a
SUBSCRIBE 0 with the SubscriptID of an existing subscription. Note
that a notify operation will be invoked by the presentity when a
subscription is canceled in this fashion; this notification can be
discarded by the watcher. There is no independent UNSUBSCRIBE
operation.
When an application wants to directly request presence information to
be supplied immediately without initiating any persistent
subscription, it issues a SUBSCRIBE 0 with a new SubscriptID. There
is no independent FETCH operation.
4. Security Considerations
Detailed security considerations for presence protocols given in RFC
2779 [6] (in particular, requirements are given in sections 5.1
through 5.3 with some motivating discussion in 8.2).
CPP defines an interoperability function that is employed by gateways
between presence protocols. CPP gateways MUST be compliant with the
minimum security requirements of the presence protocols with which
they interface.
Peterson Standards Track [Page 8]
^L
RFC 3859 Common Profile for Presence August 2004
The introduction of gateways to the security model of presence in RFC
2779 also introduces some new risks. End-to-end security properties
(especially confidentiality and integrity) between presentities and
watchers that interface through a CPP gateway can only be provided if
a common presence format (such as the format described in [4]) is
supported by the protocols interfacing with the CPP gateway.
When end-to-end security is required, the notify operation MUST use
PIDF, and MUST secure the PIDF MIME body with S/MIME [8], with
encryption (CMS EnvelopeData) and/or S/MIME signatures (CMS
SignedData).
The S/MIME algorithms are set by CMS [9]. The AES [11] algorithm
should be preferred, as it is expected that AES best suits the
capabilities of many platforms. Implementations MAY use AES as an
encryption algorithm, but are REQUIRED to support only the baseline
algorithms mandated by S/MIME and CMS.
When PRES URIs are used in presence protocols, they convey the
identity of watchers and/or presentities. Certificates that are used
for S/MIME presence operations SHOULD, for the purposes of reference
integrity, contain a subjectAltName field containing the PRES URI of
their subject. Note that such certificates may also contain other
identifiers, including those specific to particular presence
protocols. In order to further facilitate interoperability of secure
presence services through CPP gateways, users and service providers
are encouraged to employ trust anchors for certificates that are
widely accepted rather than trust anchors specific to any particular
presence service or provider.
In some cases, anonymous presence services may be desired. Such a
capability is beyond the scope of this specification.
5. IANA Considerations
The IANA has assigned the "pres" URI scheme.
5.1. The PRES URI Scheme
The Presence (PRES) URI scheme designates an Internet resource,
namely a PRESENTITY or WATCHER.
The syntax of a PRES URI is given in Appendix A.
Peterson Standards Track [Page 9]
^L
RFC 3859 Common Profile for Presence August 2004
6. Contributors
Dave Crocker edited earlier versions of this document.
The following individuals made substantial textual contributions to
this document:
Athanassios Diacakis (thanos.diacakis@openwave.com)
Florencio Mazzoldi (flo@networkprojects.com)
Christian Huitema (huitema@microsoft.com)
Graham Klyne (gk@ninebynine.org)
Jonathan Rosenberg (jdrosen@dynamicsoft.com)
Robert Sparks (rsparks@dynamicsoft.com)
Hiroyasu Sugano (suga@flab.fujitsu.co.jp)
7. References
7.1. Normative References
[1] Bradner, S., "Key words for use in RFCs to indicate requirement
levels", BCP 14, RFC 2119, March 1997.
[2] Peterson, J., "Address Resolution for Instant Messaging and
Presence", RFC 3861, August 2004.
[3] Resnick, P., "Internet Message Format", STD 11, RFC 2822, April
2001.
[4] Sugano, H., Fujimoto, S., Klyne, G., Bateman, A., Carr, W., and
J. Peterson, "Presence Information Data Format (PIDF)", RFC
3863, August 2004.
[5] Day, M., Rosenberg, J., and H. Sugano, "A Model for Presence and
Instant Messaging", RFC 2778, February 2000.
[6] Day, M., Aggarwal, S., and J. Vincent, "Instant Messaging /
Presence Protocol Requirements", RFC 2779, February 2000.
[7] Allocchio, C., "GSTN Address Element Extensions in Email
Services", RFC 2846, June 2000.
Peterson Standards Track [Page 10]
^L
RFC 3859 Common Profile for Presence August 2004
[8] Ramsdell, B., "Secure/Multipurpose Internet Mail Extensions
(S/MIME) Version 3.1 Message Specification", RFC 3851, July
2004.
[9] Housley, R., "Cryptographic Message Syntax (CMS)", RFC 3852,
July 2004.
[10] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifiers (URI): Generic Syntax", RFC 2396, August
1998.
7.2. Informative References
[11] Schaad, J., "Use of the Advanced Encryption Standard (AES)
Encryption Algorithm and in Cryptographic Message Syntax (CMS)",
RFC 3565, July 2003.
Peterson Standards Track [Page 11]
^L
RFC 3859 Common Profile for Presence August 2004
Appendix A. PRES URI IANA Registration Template
This section provides the information to register the pres: presence
URI .
A.1. URI Scheme Name
pres
A.2. URI Scheme Syntax
The syntax follows the existing mailto: URI syntax specified in RFC
2368. The ABNF is:
PRES-URI = "pres:" [ to ] [ headers ]
to = mailbox
headers = "?" header *( "&" header )
header = hname "=" hvalue
hname = *uric
hvalue = *uric
Here the symbol "mailbox" represents an encoded mailbox name as
defined in RFC 2822 [3], and the symbol "uric" denotes any character
that is valid in a URL (defined in RFC 2396 [10]).
A.3. Character Encoding Considerations
Representation of non-ASCII character sets in local-part strings is
limited to the standard methods provided as extensions to RFC 2822
[3].
A.4. Intended Usage
Use of the pres: URI follows closely usage of the mailto: URI. That
is, invocation of an PRES URI will cause the user's instant messaging
application to start, with destination address and message headers
fill-in according to the information supplied in the URI.
A.5. Applications and/or Protocols which use this URI Scheme Name
It is anticipated that protocols compliant with RFC 2779, and meeting
the interoperability requirements specified here, will make use of
this URI scheme name.
Peterson Standards Track [Page 12]
^L
RFC 3859 Common Profile for Presence August 2004
A.6. Interoperability Considerations
The underlying exchange protocol used to send an instant message may
vary from service to service. Therefore complete, Internet-scale
interoperability cannot be guaranteed. However, a service conforming
to this specification permits gateways to achieve interoperability
sufficient to the requirements of RFC 2779.
A.7. Security Considerations
See Section 4.
A.8. Relevant Publications
RFC 2779, RFC 2778
A.9. Person & Email Address to Contact for Further Information
Jon Peterson [mailto:jon.peterson@neustar.biz]
A.10. Author/Change Controller
This scheme is registered under the IETF tree. As such, IETF
maintains change control.
A.11. Applications and/or Protocols which use this URI Scheme Name
Instant messaging service; presence service
Appendix B. Issues of Interest
This appendix briefly discusses issues that may be of interest when
designing an interoperation gateway.
B.1. Address Mapping
When mapping the service described in this memo, mappings that place
special information into the im: address local-part MUST use the
meta-syntax defined in RFC2846 [7].
B.2. Source-Route Mapping
The easiest mapping technique is a form of source-routing and usually
is the least friendly to humans having to type the string. Source-
routing also has a history of operational problems.
Peterson Standards Track [Page 13]
^L
RFC 3859 Common Profile for Presence August 2004
Use of source-routing for exchanges between different services is by
a transformation that places the entire, original address string into
the im: address local part and names the gateway in the domain part.
For example, if the destination INSTANT INBOX is "pepp://example.com/
fred", then, after performing the necessary character conversions,
the resulting mapping is:
im:pepp=example.com/fred@relay-domain
where "relay-domain" is derived from local configuration information.
Experience shows that it is vastly preferable to hide this mapping
from end-users - if possible, the underlying software should perform
the mapping automatically.
Appendix C. Acknowledgments
The author would like to acknowledge John Ramsdell for his comments,
suggestions and enthusiasm. Thanks to Derek Atkins for editorial
fixes.
Author's Address
Jon Peterson
NeuStar, Inc.
1800 Sutter St
Suite 570
Concord, CA 94520
US
Phone: +1 925/363-8720
EMail: jon.peterson@neustar.biz
Peterson Standards Track [Page 14]
^L
RFC 3859 Common Profile for Presence August 2004
Full Copyright Statement
Copyright (C) The Internet Society (2004). This document is subject
to the rights, licenses and restrictions contained in BCP 78, and
except as set forth therein, the authors retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at ietf-
ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Peterson Standards Track [Page 15]
^L
|