summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc3972.txt
blob: 9c7a7abf3ba02ea4f8f28b4b9f8bd59516c9cb03 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
Network Working Group                                            T. Aura
Request for Comments: 3972                            Microsoft Research
Category: Standards Track                                     March 2005


              Cryptographically Generated Addresses (CGA)

Status of This Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2004).

Abstract

   This document describes a method for binding a public signature key
   to an IPv6 address in the Secure Neighbor Discovery (SEND) protocol.
   Cryptographically Generated Addresses (CGA) are IPv6 addresses for
   which the interface identifier is generated by computing a
   cryptographic one-way hash function from a public key and auxiliary
   parameters.  The binding between the public key and the address can
   be verified by re-computing the hash value and by comparing the hash
   with the interface identifier.  Messages sent from an IPv6 address
   can be protected by attaching the public key and auxiliary parameters
   and by signing the message with the corresponding private key.  The
   protection works without a certification authority or any security
   infrastructure.


















Aura                        Standards Track                     [Page 1]
^L
RFC 3972         Cryptographically Generated Addresses        March 2005


Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  2
   2.  CGA Format . . . . . . . . . . . . . . . . . . . . . . . . . .  3
   3.  CGA Parameters and Hash Values . . . . . . . . . . . . . . . .  5
   4.  CGA Generation . . . . . . . . . . . . . . . . . . . . . . . .  6
   5.  CGA Verification . . . . . . . . . . . . . . . . . . . . . . .  9
   6.  CGA Signatures . . . . . . . . . . . . . . . . . . . . . . . . 10
   7.  Security Considerations  . . . . . . . . . . . . . . . . . . . 12
       7.1.  Security Goals and Limitations . . . . . . . . . . . . . 12
       7.2.  Hash Extension . . . . . . . . . . . . . . . . . . . . . 13
       7.3.  Privacy Considerations . . . . . . . . . . . . . . . . . 15
       7.4.  Related Protocols  . . . . . . . . . . . . . . . . . . . 15
   8.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 16
   9.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 17
       9.1.  Normative References . . . . . . . . . . . . . . . . . . 17
       9.2.  Informative References . . . . . . . . . . . . . . . . . 18
   Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
       A.  Example of CGA Generation. . . . . . . . . . . . . . . . . 20
       B.  Acknowledgements . . . . . . . . . . . . . . . . . . . . . 21
   Author's Address . . . . . . . . . . . . . . . . . . . . . . . . . 21
   Full Copyright Statements. . . . . . . . . . . . . . . . . . . . . 22

1.  Introduction

   This document specifies a method for securely associating a
   cryptographic public key with an IPv6 address in the Secure Neighbor
   Discovery (SEND) protocol [RFC3971].  The basic idea is to generate
   the interface identifier (i.e., the rightmost 64 bits) of the IPv6
   address by computing a cryptographic hash of the public key.  The
   resulting IPv6 address is called a cryptographically generated
   address (CGA).  The corresponding private key can then be used to
   sign messages sent from the address.  An introduction to CGAs and
   their application to SEND can be found in [Aura03] and [AAKMNR02].

   This document specifies:

   o  how to generate a CGA from the cryptographic hash of a public key
      and auxiliary parameters,

   o  how to verify the association between the public key and the CGA,
      and

   o  how to sign a message sent from the CGA, and how to verify the
      signature.






Aura                        Standards Track                     [Page 2]
^L
RFC 3972         Cryptographically Generated Addresses        March 2005


   To verify the association between the address and the public key, the
   verifier needs to know the address itself, the public key, and the
   values of the auxiliary parameters.  The verifier can then go on to
   verify messages signed by the owner of the public key (i.e., the
   address owner).  No additional security infrastructure, such as a
   public key infrastructure (PKI), certification authorities, or other
   trusted servers, is needed.

   Note that because CGAs themselves are not certified, an attacker can
   create a new CGA from any subnet prefix and its own (or anyone
   else's) public key.  However, the attacker cannot take a CGA created
   by someone else and send signed messages that appear to come from the
   owner of that address.

   The address format and the CGA parameter format are defined in
   Sections 2 and 3.  Detailed algorithms for generating addresses and
   for verifying them are given in Sections 4 and 5, respectively.
   Section 6 defines the procedures for generating and verifying CGA
   signatures.  The security considerations in Section 7 include
   limitations of CGA-based security, the reasoning behind the hash
   extension technique that enables effective hash lengths above the
   64-bit limit of the interface identifier, the implications of CGAs on
   privacy, and protection against related-protocol attacks.

   In this document, the key words MUST, MUST NOT, REQUIRED, SHALL,
   SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL are to
   be interpreted as described in [RFC2119].

2.  CGA Format

   When talking about addresses, this document refers to IPv6 addresses
   in which the leftmost 64 bits of a 128-bit address form the subnet
   prefix and the rightmost 64 bits of the address form the interface
   identifier [RFC3513].  We number the bits of the interface identifier
   starting from bit zero on the left.

   A cryptographically generated address (CGA) has a security parameter
   (Sec) that determines its strength against brute-force attacks.  The
   security parameter is a three-bit unsigned integer, and it is encoded
   in the three leftmost bits (i.e., bits 0 - 2) of the interface
   identifier.  This can be written as follows:

      Sec = (interface identifier & 0xe000000000000000) >> 61








Aura                        Standards Track                     [Page 3]
^L
RFC 3972         Cryptographically Generated Addresses        March 2005


   The CGA is associated with a set of parameters that consist of a
   public key and auxiliary parameters.  Two hash values Hash1 (64 bits)
   and Hash2 (112 bits) are computed from the parameters.  The formats
   of the public key and auxiliary parameters, and the way to compute
   the hash values, are defined in Section 3.

   A cryptographically generated address is defined as an IPv6 address
   that satisfies the following two conditions:

   o  The first hash value, Hash1, equals the interface identifier of
      the address.  Bits 0, 1, 2, 6, and 7 (i.e., the bits that encode
      the security parameter Sec and the "u" and "g" bits from the
      standard IPv6 address architecture format of interface identifiers
      [RFC3513]) are ignored in the comparison.

   o  The 16*Sec leftmost bits of the second hash value, Hash2, are
      zero.

   The above definition can be stated in terms of the following two bit
   masks:

      Mask1 (64 bits)  = 0x1cffffffffffffff

      Mask2 (112 bits) = 0x0000000000000000000000000000  if Sec=0,
                         0xffff000000000000000000000000  if Sec=1,
                         0xffffffff00000000000000000000  if Sec=2,
                         0xffffffffffff0000000000000000  if Sec=3,
                         0xffffffffffffffff000000000000  if Sec=4,
                         0xffffffffffffffffffff00000000  if Sec=5,
                         0xffffffffffffffffffffffff0000  if Sec=6, and
                         0xffffffffffffffffffffffffffff  if Sec=7

   A cryptographically generated address is an IPv6 address for which
   the following two equations hold:

      Hash1 & Mask1  ==  interface identifier & Mask1
      Hash2 & Mask2  ==  0x0000000000000000000000000000














Aura                        Standards Track                     [Page 4]
^L
RFC 3972         Cryptographically Generated Addresses        March 2005


3.  CGA Parameters and Hash Values

   Each CGA is associated with a CGA Parameters data structure, which
   has the following format:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   +                                                               +
   |                                                               |
   +                      Modifier (16 octets)                     +
   |                                                               |
   +                                                               +
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   +                    Subnet Prefix (8 octets)                   +
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Collision Count|                                               |
   +-+-+-+-+-+-+-+-+                                               |
   |                                                               |
   ~                  Public Key (variable length)                 ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ~           Extension Fields (optional, variable length)        ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Modifier

      This field contains a 128-bit unsigned integer, which can be any
      value.  The modifier is used during CGA generation to implement
      the hash extension and to enhance privacy by adding randomness to
      the address.

   Subnet Prefix

      This field contains the 64-bit subnet prefix of the CGA.

   Collision Count

      This is an eight-bit unsigned integer that MUST be 0, 1, or 2.
      The collision count is incremented during CGA generation to
      recover from an address collision detected by duplicate address
      detection.



Aura                        Standards Track                     [Page 5]
^L
RFC 3972         Cryptographically Generated Addresses        March 2005


   Public Key

      This is a variable-length field containing the public key of the
      address owner.  The public key MUST be formatted as a DER-encoded
      [ITU.X690.2002] ASN.1 structure of the type SubjectPublicKeyInfo,
      defined in the Internet X.509 certificate profile [RFC3280].  SEND
      SHOULD use an RSA public/private key pair.  When RSA is used, the
      algorithm identifier MUST be rsaEncryption, which is
      1.2.840.113549.1.1.1, and the RSA public key MUST be formatted by
      using the RSAPublicKey type as specified in Section 2.3.1 of RFC
      3279 [RFC3279].  The RSA key length SHOULD be at least 384 bits.
      Other public key types are undesirable in SEND, as they may result
      in incompatibilities between implementations.  The length of this
      field is determined by the ASN.1 encoding.

   Extension Fields

      This is an optional variable-length field that is not used in the
      current specification.  Future versions of this specification may
      use this field for additional data items that need to be included
      in the CGA Parameters data structure.  IETF standards action is
      required to specify the use of the extension fields.
      Implementations MUST ignore the value of any unrecognized
      extension fields.

   The two hash values MUST be computed as follows.  The SHA-1 hash
   algorithm [FIPS.180-1.1995] is applied to the CGA Parameters.  When
   Hash1 is computed, the input to the SHA-1 algorithm is the CGA
   Parameters data structure.  The 64-bit Hash1 is obtained by taking
   the leftmost 64 bits of the 160-bit SHA-1 hash value.  When Hash2 is
   computed, the input is the same CGA Parameters data structure except
   that the subnet prefix and collision count are set to zero.  The
   112-bit Hash2 is obtained by taking the leftmost 112 bits of the
   160-bit SHA-1 hash value.  Note that the hash values are computed
   over the entire CGA Parameters data structure, including any
   unrecognized extension fields.

4.  CGA Generation

   The process of generating a new CGA takes three input values: a
   64-bit subnet prefix, the public key of the address owner as a
   DER-encoded ASN.1 structure of the type SubjectPublicKeyInfo, and the
   security parameter Sec, which is an unsigned three-bit integer.  The
   cost of generating a new CGA depends exponentially on the security
   parameter Sec, which can have values from 0 to 7.






Aura                        Standards Track                     [Page 6]
^L
RFC 3972         Cryptographically Generated Addresses        March 2005


   A CGA and associated parameters SHOULD be generated as follows:

   1. Set the modifier to a random or pseudo-random 128-bit value.

   2. Concatenate from left to right the modifier, 9 zero octets, the
      encoded public key, and any optional extension fields.  Execute
      the SHA-1 algorithm on the concatenation.  Take the 112 leftmost
      bits of the SHA-1 hash value.  The result is Hash2.

   3. Compare the 16*Sec leftmost bits of Hash2 with zero.  If they are
      all zero (or if Sec=0), continue with step 4.  Otherwise,
      increment the modifier by one and go back to step 2.

   4. Set the 8-bit collision count to zero.

   5. Concatenate from left to right the final modifier value, the
      subnet prefix, the collision count, the encoded public key, and
      any optional extension fields.  Execute the SHA-1 algorithm on the
      concatenation.  Take the 64 leftmost bits of the SHA-1 hash value.
      The result is Hash1.

   6. Form an interface identifier from Hash1 by writing the value of
      Sec into the three leftmost bits and by setting bits 6 and 7
      (i.e., the "u" and "g" bits) to zero.

   7. Concatenate the 64-bit subnet prefix and the 64-bit interface
      identifier to form a 128-bit IPv6 address with the subnet prefix
      to the left and interface identifier to the right, as in a
      standard IPv6 address [RFC3513].

   8. Perform duplicate address detection if required, as per [RFC3971].
      If an address collision is detected, increment the collision count
      by one and go back to step 5.  However, after three collisions,
      stop and report the error.

   9. Form the CGA Parameters data structure by concatenating from left
      to right the final modifier value, the subnet prefix, the final
      collision count value, the encoded public key, and any optional
      extension fields.

   The output of the address generation algorithm is a new CGA and a CGA
   Parameters data structure.

   The initial value of the modifier in step 1 SHOULD be chosen randomly
   to make addresses generated from the same public key unlinkable,
   which enhances privacy (see Section 7.3).  The quality of the random
   number generator does not affect the strength of the binding between




Aura                        Standards Track                     [Page 7]
^L
RFC 3972         Cryptographically Generated Addresses        March 2005


   the address and the public key.  Implementations that have no strong
   random numbers available MAY use a non-cryptographic pseudo-random
   number generator initialized with the current time of day.

   For Sec=0, the above algorithm is deterministic and relatively fast.
   Nodes that implement CGA generation MAY always use the security
   parameter value Sec=0.  If Sec=0, steps 2 - 3 of the generation
   algorithm can be skipped.

   For Sec values greater than zero, the above algorithm is not
   guaranteed to terminate after a certain number of iterations.  The
   brute-force search in steps 2 - 3 takes O(2^(16*Sec)) iterations to
   complete.  The algorithm has been intentionally designed so that the
   generation of CGAs with high Sec values is infeasible with current
   technology.

   Implementations MAY use optimized or otherwise modified versions of
   the above algorithm for CGA generation.  However, the output of any
   modified versions MUST fulfill the following two requirements.
   First, the resulting CGA and CGA Parameters data structure MUST be
   formatted as specified in Sections 2 - 3.  Second, the CGA
   verification procedure defined in Section 5 MUST succeed when invoked
   on the output of the CGA generation algorithm.  Note that some
   optimizations involve trade-offs between privacy and the cost of
   address generation.

   One optimization is particularly important.  If the subnet prefix of
   the address changes but the address owner's public key does not, the
   old modifier value MAY be reused.  If it is reused, the algorithm
   SHOULD be started from step 4.  This optimization avoids repeating
   the expensive search for an acceptable modifier value but may, in
   some situations, make it easier for an observer to link two addresses
   to each other.

   Note that this document does not specify whether duplicate address
   detection should be performed and how the detection is done.  Step 8
   only defines what to do if some form of duplicate address detection
   is performed and an address collision is detected.

   Future versions of this specification may specify additional inputs
   to the CGA generation algorithm that are concatenated as extension
   fields to the end of the CGA Parameters data structure.  No such
   extension fields are defined in this document.








Aura                        Standards Track                     [Page 8]
^L
RFC 3972         Cryptographically Generated Addresses        March 2005


5.  CGA Verification

   CGA verification takes an IPv6 address and a CGA Parameters data
   structure as input.  The CGA Parameters consist of the concatenated
   modifier, subnet prefix, collision count, public key, and optional
   extension fields.  The verification either succeeds or fails.

   The CGA MUST be verified with the following steps:

   1. Check that the collision count in the CGA Parameters data
      structure is 0, 1, or 2.  The CGA verification fails if the
      collision count is out of the valid range.

   2. Check that the subnet prefix in the CGA Parameters data structure
      is equal to the subnet prefix (i.e., the leftmost 64 bits) of the
      address.  The CGA verification fails if the prefix values differ.

   3. Execute the SHA-1 algorithm on the CGA Parameters data structure.
      Take the 64 leftmost bits of the SHA-1 hash value.  The result is
      Hash1.

   4. Compare Hash1 with the interface identifier (i.e., the rightmost
      64 bits) of the address.  Differences in the three leftmost bits
      and in bits 6 and 7 (i.e., the "u" and "g" bits) are ignored.  If
      the 64-bit values differ (other than in the five ignored bits),
      the CGA verification fails.

   5. Read the security parameter Sec from the three leftmost bits of
      the 64-bit interface identifier of the address.  (Sec is an
      unsigned 3-bit integer.)

   6. Concatenate from left to right the modifier, 9 zero octets, the
      public key, and any extension fields that follow the public key in
      the CGA Parameters data structure.  Execute the SHA-1 algorithm on
      the concatenation.  Take the 112 leftmost bits of the SHA-1 hash
      value.  The result is Hash2.

   7. Compare the 16*Sec leftmost bits of Hash2 with zero.  If any one
      of them is not zero, the CGA verification fails.  Otherwise, the
      verification succeeds.  (If Sec=0, the CGA verification never
      fails at this step.)

   If the verification fails at any step, the execution of the algorithm
   MUST be stopped immediately.  On the other hand, if the verification
   succeeds, the verifier knows that the public key in the CGA
   Parameters is the authentic public key of the address owner.  The





Aura                        Standards Track                     [Page 9]
^L
RFC 3972         Cryptographically Generated Addresses        March 2005


   verifier can extract the public key by removing 25 octets from the
   beginning of the CGA Parameters and by decoding the following
   SubjectPublicKeyInfo data structure.

   Note that the values of bits 6 and 7 (the "u" and "g" bits) of the
   interface identifier are ignored during CGA verification.  In the
   SEND protocol, after the verification succeeds, the verifier SHOULD
   process all CGAs in the same way regardless of the Sec, modifier, and
   collision count values.  In particular, the verifier in the SEND
   protocol SHOULD NOT have any security policy that differentiates
   between addresses based on the value of Sec.  That way, the address
   generator is free to choose any value of Sec.

   All nodes that implement CGA verification MUST be able to process all
   security parameter values Sec = 0, 1, 2, 3, 4, 5, 6, 7.  The
   verification procedure is relatively fast and always requires at most
   two computations of the SHA-1 hash function.  If Sec=0, the
   verification never fails in steps 6 - 7 and these steps can be
   skipped.

   Nodes that implement CGA verification for SEND SHOULD be able to
   process RSA public keys that have the algorithm identifier
   rsaEncryption and, key length between 384 and 2,048 bits.
   Implementations MAY support longer keys.  Future versions of this
   specification may recommend support for longer keys.

   Implementations of CGA verification MUST ignore the value of any
   unrecognized extension fields that follow the public key in the CGA
   Parameters data structure.  However, implementations MUST include any
   such unrecognized data in the hash input when computing Hash1 in step
   3 and Hash2 in step 6 of the CGA verification algorithm.  This is
   important to ensure upward compatibility with future extensions.

6.  CGA Signatures

   This section defines the procedures for generating and verifying CGA
   signatures.  To sign a message, a node needs the CGA, the associated
   CGA Parameters data structure, the message, and the private
   cryptographic key that corresponds to the public key in the CGA
   Parameters.  The node also must have a 128-bit type tag for the
   message from the CGA Message Type name space.

   To sign a message, a node SHOULD do the following:

   o  Concatenate the 128-bit type tag (in network byte order) and the
      message with the type tag to the left and the message to the
      right.  The concatenation is the message to be signed in the next
      step.



Aura                        Standards Track                    [Page 10]
^L
RFC 3972         Cryptographically Generated Addresses        March 2005


   o  Generate the RSA signature by using the RSASSA-PKCS1-v1_5
      [RFC3447] signature algorithm with the SHA-1 hash algorithm.  The
      private key and the concatenation created above are the inputs to
      the generation operation.

   The SEND protocol specification [RFC3971] defines several messages
   that contain a signature in the Signature Option.  The SEND protocol
   specification also defines a type tag from the CGA Message Type name
   space.  The same type tag is used for all the SEND messages that have
   the Signature Option.  This type tag is an IANA-allocated 128 bit
   integer that has been chosen at random to prevent an accidental type
   collision with messages of other protocols that use the same public
   key but that may or may not use IANA-allocated type tags.

   The CGA, the CGA Parameters data structure, the message, and the
   signature are sent to the verifier.  The SEND protocol specification
   defines how these data items are sent in SEND protocol messages.
   Note that the 128-bit type tag is not included in the SEND protocol
   messages because the verifier knows its value implicitly from the
   ICMP message type field in the SEND message.  See the SEND
   specification [RFC3971] for precise information about how SEND
   handles the type tag.

   To verify a signature, the verifier needs the CGA, the associated CGA
   Parameters data structure, the message, and the signature.  The
   verifier also needs to have the 128-bit type tag for the message.

   To verify the signature, a node SHOULD do the following:

   o  Verify the CGA as defined in Section 5.  The inputs to the CGA
      verification are the CGA and the CGA Parameters data structure.

   o  Concatenate the 128-bit type tag and the message with the type tag
      to the left and the message to the right.  The concatenation is
      the message whose signature is to be verified in the next step.

   o  Verify the RSA signature by using the RSASSA-PKCS1-v1_5 [RFC3447]
      algorithm with the SHA-1 hash algorithm.  The inputs to the
      verification operation are the public key (i.e., the RSAPublicKey
      structure from the SubjectPublicKeyInfo structure that is a part
      of the CGA Parameters data structure), the concatenation created
      above, and the signature.

   The verifier MUST accept the signature as authentic only if both the
   CGA verification and the signature verification succeed.






Aura                        Standards Track                    [Page 11]
^L
RFC 3972         Cryptographically Generated Addresses        March 2005


7.  Security Considerations

7.1.  Security Goals and Limitations

   The purpose of CGAs is to prevent stealing and spoofing of existing
   IPv6 addresses.  The public key of the address owner is bound
   cryptographically to the address.  The address owner can use the
   corresponding private key to assert its ownership and to sign SEND
   messages sent from the address.

   It is important to understand that an attacker can create a new
   address from an arbitrary subnet prefix and its own (or someone
   else's) public key because CGAs are not certified.  However, the
   attacker cannot impersonate somebody else's address.  This is because
   the attacker would have to find a collision of the cryptographic hash
   value Hash1.  (The property of the hash function needed here is
   called second pre-image resistance [MOV97].)

   For each valid CGA Parameters data structure, there are 4*(Sec+1)
   different CGAs that match the value.  This is because decrementing
   the Sec value in the three leftmost bits of the interface identifier
   does not invalidate the address, and the verifier ignores the values
   of the "u" and "g" bits.  In SEND, this does not have any security or
   implementation implications.

   Another limitation of CGAs is that there is no mechanism for proving
   that an address is not a CGA.  Thus, an attacker could take someone
   else's CGA and present it as a non-cryptographically generated
   address (e.g., as an RFC 3041 address [RFC3041]).  An attacker does
   not benefit from this because although SEND nodes accept both signed
   and unsigned messages from every address, they give priority to the
   information in the signed messages.

   The minimum RSA key length required for SEND is only 384 bits.  So
   short keys are vulnerable to integer-factoring attacks and cannot be
   used for strong authentication or secrecy.  On the other hand, the
   cost of factoring 384-bit keys is currently high enough to prevent
   most denial-of-service attacks.  Implementations that initially use
   short RSA keys SHOULD be prepared to switch to longer keys when
   denial-of-service attacks arising from integer factoring become a
   problem.

   The impact of a key compromise on CGAs depends on the application for
   which they are used.  In SEND, it is not a major concern.  If the
   private signature key is compromised because the SEND node has itself
   been compromised, the attacker does not need to spoof SEND messages
   from the node.  When it is discovered that a node has been
   compromised, a new signature key and a new CGA SHOULD be generated.



Aura                        Standards Track                    [Page 12]
^L
RFC 3972         Cryptographically Generated Addresses        March 2005


   On the other hand, if the RSA key is compromised because integer-
   factoring attacks for the chosen key length have become practical,
   the key has to be replaced with a longer one, as explained above.  In
   either case, the address change effectively revokes the old public
   key.  It is not necessary to have any additional key revocation
   mechanism or to limit the lifetimes of the signature keys.

7.2.  Hash Extension

   As computers become faster, the 64 bits of the interface identifier
   will not be sufficient to prevent attackers from searching for hash
   collisions.  It helps somewhat that we include the subnet prefix of
   the address in the hash input.  This prevents the attacker from using
   a single pre-computed database to attack addresses with different
   subnet prefixes.  The attacker needs to create a separate database
   for each subnet prefix.  Link-local addresses are, however, left
   vulnerable because the same prefix is used by all IPv6 nodes.

   To prevent the CGA technology from becoming outdated as computers
   become faster, the hash technique used to generate CGAs must be
   extended somehow.  The chosen extension technique is to increase the
   cost of both address generation and brute-force attacks by the same
   parameterized factor while keeping the cost of address use and
   verification constant.  This also provides protection for link-local
   addresses.  Introduction of the hash extension is the main difference
   between this document and earlier CGA proposals [OR01][Nik01][MC02].

   To achieve the effective extension of the hash length, the input to
   the second hash function, Hash2, is modified (by changing the
   modifier value) until the leftmost 16*Sec bits of the hash value are
   zero.  This increases the cost of address generation approximately by
   a factor of 2^(16*Sec).  It also increases the cost of brute-force
   attacks by the same factor.  That is, the cost of creating a CGA
   Parameters data structure that binds the attacker's public key with
   somebody else's address is increased from O(2^59) to
   O(2^(59+16*Sec)).  The address generator may choose the security
   parameter Sec depending on its own computational capacity, the
   perceived risk of attacks, and the expected lifetime of the address.
   Currently, Sec values between 0 and 2 are sufficient for most IPv6
   nodes.  As computers become faster, higher Sec values will slowly
   become useful.

   Theoretically, if no hash extension is used (i.e., Sec=0) and a
   typical attacker is able to tap into N local networks at the same
   time, an attack against link-local addresses is N times as efficient
   as an attack against addresses of a specific network.  The effect
   could be countered by using a slightly higher Sec value for link-




Aura                        Standards Track                    [Page 13]
^L
RFC 3972         Cryptographically Generated Addresses        March 2005


   local addresses.  When higher Sec values (such that 2^(16*Sec) > N)
   are used for all addresses, the relative advantage of attacking
   link-local addresses becomes insignificant.

   The effectiveness of the hash extension depends on the assumption
   that the computational capacities of the attacker and the address
   generator will grow at the same (potentially exponential) rate.  This
   is not necessarily true if the addresses are generated on low-end
   mobile devices, for which the main design goals are to lower cost and
   decrease size, rather than increase computing power.  But there is no
   reason for doing so.  The expensive part of the address generation
   (steps 1 - 3 of the generation algorithm) may be delegated to a more
   powerful computer.  Moreover, this work can be done in advance or
   offline, rather than in real time, when a new address is needed.

   To make it possible for mobile nodes whose subnet prefixes change
   frequently to use Sec values greater than zero, we have decided not
   to include the subnet prefix in the input of Hash2.  The result is
   weaker than it would be if the subnet prefix were included in the
   input of both hashes.  On the other hand, our scheme is at least as
   strong as using the hash extension technique without including the
   subnet prefix in either hash.  It is also at least as strong as not
   using the hash extension but including the subnet prefix.  This
   trade-off was made because mobile nodes frequently move to insecure
   networks, where they are at the risk of denial-of-service (DoS)
   attacks (for example, during the duplicate address detection
   procedure).

   In most networks, the goal of Secure Neighbor Discovery and CGA
   signatures is to prevent denial-of-service attacks.  Therefore, it is
   usually sensible to start by using a low Sec value and to replace
   addresses with stronger ones only when denial-of-service attacks
   based on brute-force search become a significant problem.  If CGAs
   were used as a part of a strong authentication or secrecy mechanism,
   it might be necessary to start with higher Sec values.

   The collision count value is used to modify the input to Hash1 if
   there is an address collision.  It is important not to allow
   collision count values higher than 2.  First, it is extremely
   unlikely that three collisions would occur and the reason is certain
   to be either a configuration or implementation error or a denial-of-
   service attack.  (When the SEND protocol is used, deliberate
   collisions caused by a DoS attacker are detected and ignored.)
   Second, an attacker doing a brute-force search to match a given CGA
   can try all different values of a collision count without repeating
   the brute-force search for the modifier value.  Thus, if higher
   values are allowed for the collision count, the hash extension
   technique becomes less effective in preventing brute force attacks.



Aura                        Standards Track                    [Page 14]
^L
RFC 3972         Cryptographically Generated Addresses        March 2005


7.3.  Privacy Considerations

   CGAs can give the same level of pseudonymity as the IPv6 address
   privacy extensions defined in RFC 3041 [RFC3041].  An IP host can
   generate multiple pseudo-random CGAs by executing the CGA generation
   algorithm of Section 4 multiple times and by using a different random
   or pseudo-random initial value for the modifier every time.  The host
   should change its address periodically as in [RFC3041].  When privacy
   protection is needed, the (pseudo)random number generator used in
   address generation SHOULD be strong enough to produce unpredictable
   and unlinkable values.  Advice on random number generation can be
   found in [RFC1750].

   There are two apparent limitations to this privacy protection.
   However, as will be explained below, neither is very serious.

   First, the high cost of address generation may prevent hosts that use
   a high Sec value from changing their address frequently.  This
   problem is mitigated because the expensive part of the address
   generation may be done in advance or offline, as explained in the
   previous section.  It should also be noted that the nodes that
   benefit most from high Sec values (e.g., DNS servers, routers, and
   data servers) usually do not require pseudonymity, and the nodes that
   have high privacy requirements (e.g., client PCs and mobile hosts)
   are unlikely targets for expensive brute-force DoS attacks and can
   make do with lower Sec values.

   Second, the public key of the address owner is revealed in the signed
   SEND messages.  This means that if the address owner wants to be
   pseudonymous toward the nodes in the local links that it accesses, it
   should generate not only a new address but also a new public key.
   With typical local-link technologies, however, a node's link-layer
   address is a unique identifier for the node.  As long as the node
   keeps using the same link-layer address, it makes little sense to
   change the public key for privacy reasons.

7.4.  Related Protocols

   Although this document defines CGAs only for the purposes of Secure
   Neighbor Discovery, other protocols could be defined elsewhere that
   use the same addresses and public keys.  This raises the possibility
   of related-protocol attacks in which a signed message from one
   protocol is replayed in another protocol.  This means that other
   protocols (perhaps even those designed without an intimate knowledge
   of SEND) could endanger the security of SEND.  What makes this threat
   even more significant is that the attacker could create a CGA from
   someone else's public key and then replay signed messages from a
   protocol that has nothing to do with CGAs or IP addresses.



Aura                        Standards Track                    [Page 15]
^L
RFC 3972         Cryptographically Generated Addresses        March 2005


   To prevent the related-protocol attacks, a type tag is prepended to
   every message before it is signed.  The type tags are 128-bit
   randomly chosen values, which prevents accidental type collisions
   with even poorly designed protocols that do not use any type tags.
   Moreover, the SEND protocol includes the sender's CGA address in all
   signed messages.  This makes it even more difficult for an attacker
   to take signed messages from some other context and to replay them as
   SEND messages.

   Finally, a strong cautionary note has to be made about using CGA
   signatures for purposes other than SEND.  First, the other protocols
   MUST include a type tag and the sender address in all signed messages
   in the same way that SEND does.  Each protocol MUST define its own
   type tag values as explained in Section 8.  Moreover, because of the
   possibility of related-protocol attacks, the public key MUST be used
   only for signing, and it MUST NOT be used for encryption.  Second,
   the minimum RSA key length of 384 bits may be too short for many
   applications and the impact of key compromise on the particular
   protocol must be evaluated.  Third, CGA-based authorization is
   particularly suitable for securing neighbor discovery [RFC2461] and
   duplicate address detection [RFC2462] because these are network-layer
   signaling protocols for which IPv6 addresses are natural endpoint
   identifiers.  In any protocol that uses other identifiers, such as
   DNS names, CGA signatures alone are not a sufficient security
   mechanism.  There must also be a secure way of mapping the other
   identifiers to IPv6 addresses.  If the goal is not to verify claims
   about IPv6 addresses, CGA signatures are probably not the right
   solution.

8.  IANA Considerations

   This document defines a new CGA Message Type name space for use as
   type tags in messages that may be signed by using CGA signatures.
   The values in this name space are 128-bit unsigned integers.  Values
   in this name space are allocated on a First Come First Served basis
   [RFC2434].  IANA assigns new 128-bit values directly without a
   review.

   The requester SHOULD generate the new values with a strong random-
   number generator.  Continuous ranges of at most 256 values can be
   requested provided that the 120 most significant bits of the values
   have been generated with a strong random-number generator.

   IANA does not generate random values for the requester.  IANA
   allocates requested values without verifying the way in which they
   have been generated.  The name space is essentially unlimited, and
   any number of individual values and ranges of at most 256 values can
   be allocated.



Aura                        Standards Track                    [Page 16]
^L
RFC 3972         Cryptographically Generated Addresses        March 2005


   CGA Message Type values for private use MAY be generated with a
   strong random-number generator without IANA allocation.

   This document does not define any new values in any name space.

9.  References

9.1.  Normative References

   [RFC3971]         Arkko, J., Ed., Kempf, J., Sommerfeld, B., Zill,
                     B., and P. Nikander, "SEcure Neighbor Discovery
                     (SEND)", RFC 3971, March 2005.

   [RFC3279]         Bassham, L., Polk, W., and R. Housley, "Algorithms
                     and Identifiers for the Internet X.509 Public Key
                     Infrastructure Certificate and Certificate
                     Revocation List (CRL) Profile", RFC 3279, April
                     2002.

   [RFC2119]         Bradner, S., "Key words for use in RFCs to Indicate
                     Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC3513]         Hinden, R. and S. Deering, "Internet Protocol
                     Version 6 (IPv6) Addressing Architecture", RFC
                     3513, April 2003.

   [RFC3280]         Housley, R., Polk, W., Ford, W., and D. Solo,
                     "Internet X.509 Public Key Infrastructure
                     Certificate and Certificate Revocation List (CRL)
                     Profile", RFC 3280, April 2002.

   [ITU.X690.2002]   International Telecommunications Union,
                     "Information Technology - ASN.1 encoding rules:
                     Specification of Basic Encoding Rules (BER),
                     Canonical Encoding Rules (CER) and Distinguished
                     Encoding Rules (DER)", ITU-T Recommendation X.690,
                     July 2002.

   [RFC3447]         Jonsson, J. and B. Kaliski, "Public-Key
                     Cryptography Standards (PKCS) #1: RSA Cryptography
                     Specifications Version 2.1", RFC 3447, February
                     2003.

   [RFC2434]         Narten, T. and H. Alvestrand, "Guidelines for
                     Writing an IANA Considerations Section in RFCs",
                     BCP 26, RFC 2434, October 1998.





Aura                        Standards Track                    [Page 17]
^L
RFC 3972         Cryptographically Generated Addresses        March 2005


   [FIPS.180-1.1995] National Institute of Standards and Technology,
                     "Secure Hash Standard", Federal Information
                     Processing Standards Publication FIPS PUB 180-1,
                     April 1995,
                     <http://www.itl.nist.gov/fipspubs/fip180-1.htm>.

9.2.  Informative References

   [AAKMNR02]        Arkko, J., Aura, T., Kempf, J., Mantyla, V.,
                     Nikander, P., and M. Roe, "Securing IPv6 neighbor
                     discovery and router discovery", ACM Workshop on
                     Wireless Security (WiSe 2002), Atlanta, GA USA ,
                     September 2002.

   [Aura03]          Aura, T., "Cryptographically Generated Addresses
                     (CGA)", 6th Information Security Conference
                     (ISC'03), Bristol, UK, October 2003.

   [RFC1750]         Eastlake, D., Crocker, S., and J. Schiller,
                     "Randomness Recommendations for Security", RFC
                     1750, December 1994.

   [MOV97]           Menezes, A., van Oorschot, P., and S. Vanstone,
                     "Handbook of Applied Cryptography", CRC Press ,
                     1997.

   [MC02]            Montenegro, G. and C. Castelluccia, "Statistically
                     unique and cryptographically verifiable identifiers
                     and addresses", ISOC Symposium on Network and
                     Distributed System Security (NDSS 2002), San Diego,
                     CA USA , February 2002.

   [RFC3041]         Narten, T. and R. Draves, "Privacy Extensions for
                     Stateless Address Autoconfiguration in IPv6", RFC
                     3041, January 2001.

   [RFC2461]         Narten, T., Nordmark, E., and W. Simpson, "Neighbor
                     Discovery for IP Version 6 (IPv6)", RFC 2461,
                     December 1998.

   [Nik01]           Nikander, P., "A scaleable architecture for IPv6
                     address ownership", draft-nikander-addr-ownership-
                     00 (work in progress), March 2001.

   [OR01]            O'Shea, G. and M. Roe, "Child-proof authentication
                     for MIPv6 (CAM)", ACM Computer Communications
                     Review 31(2), April 2001.




Aura                        Standards Track                    [Page 18]
^L
RFC 3972         Cryptographically Generated Addresses        March 2005


   [RFC2462]         Thomson, S. and T. Narten, "IPv6 Stateless Address
                     Autoconfiguration", RFC 2462, December 1998.

















































Aura                        Standards Track                    [Page 19]
^L
RFC 3972         Cryptographically Generated Addresses        March 2005


Appendix A.  Example of CGA Generation

   We generate a CGA with Sec=1 from the subnet prefix fe80:: and the
   following public key:

   305c 300d 0609 2a86 4886 f70d 0101 0105 0003 4b00 3048 0241
   00c2 c2f1 3730 5454 f10b d9ce a368 44b5 30e9 211a 4b26 2b16
   467c b7df ba1f 595c 0194 f275 be5a 4d38 6f2c 3c23 8250 8773
   c786 7f9b 3b9e 63a0 9c7b c48f 7a54 ebef af02 0301 0001

   The modifier is initialized to a random value 89a8 a8b2 e858 d8b8
   f263 3f44 d2d4 ce9a.  The input to Hash2 is:

   89a8 a8b2 e858 d8b8 f263 3f44 d2d4 ce9a 0000 0000 0000 0000 00
   305c 300d 0609 2a86 4886 f70d 0101 0105 0003 4b00 3048 0241
   00c2 c2f1 3730 5454 f10b d9ce a368 44b5 30e9 211a 4b26 2b16
   467c b7df ba1f 595c 0194 f275 be5a 4d38 6f2c 3c23 8250 8773
   c786 7f9b 3b9e 63a0 9c7b c48f 7a54 ebef af02 0301 0001

   The 112 first bits of the SHA-1 hash value computed from the above
   input are Hash2=436b 9a70 dbfd dbf1 926e 6e66 29c0.  This does not
   begin with 16*Sec=16 zero bits.  Thus, we must increment the modifier
   by one and recompute the hash.  The new input to Hash2 is:

   89a8 a8b2 e858 d8b8 f263 3f44 d2d4 ce9b 0000 0000 0000 0000 00
   305c 300d 0609 2a86 4886 f70d 0101 0105 0003 4b00 3048 0241
   00c2 c2f1 3730 5454 f10b d9ce a368 44b5 30e9 211a 4b26 2b16
   467c b7df ba1f 595c 0194 f275 be5a 4d38 6f2c 3c23 8250 8773
   c786 7f9b 3b9e 63a0 9c7b c48f 7a54 ebef af02 0301 0001

   The new hash value is Hash2=0000 01ca 680b 8388 8d09 12df fcce.  The
   16 leftmost bits of Hash2 are all zero.  Thus, we found a suitable
   modifier.  (We were very lucky to find it so soon.)

   The input to Hash1 is:

   89a8 a8b2 e858 d8b8 f263 3f44 d2d4 ce9b fe80 0000 0000 0000 00
   305c 300d 0609 2a86 4886 f70d 0101 0105 0003 4b00 3048 0241
   00c2 c2f1 3730 5454 f10b d9ce a368 44b5 30e9 211a 4b26 2b16
   467c b7df ba1f 595c 0194 f275 be5a 4d38 6f2c 3c23 8250 8773
   c786 7f9b 3b9e 63a0 9c7b c48f 7a54 ebef af02 0301 0001

   The 64 first bits of the SHA-1 hash value of the above input are
   Hash1=fd4a 5bf6 ffb4 ca6c.  We form an interface identifier from this
   by writing Sec=1 into the three leftmost bits and by setting bits 6
   and 7 (the "u" and "g" bits) to zero.  The new interface identifier
   is 3c4a:5bf6:ffb4:ca6c.




Aura                        Standards Track                    [Page 20]
^L
RFC 3972         Cryptographically Generated Addresses        March 2005


   Finally, we form the IPv6 address fe80::3c4a:5bf6:ffb4:ca6c.  This is
   the new CGA.  No address collisions were detected this time.
   (Collisions are very rare.)  The CGA Parameters data structure
   associated with the address is the same as the input to Hash1 above.

Appendix B.  Acknowledgements

   The author gratefully acknowledges the contributions of Jari Arkko,
   Francis Dupont, Pasi Eronen, Christian Huitema, James Kempf, Pekka
   Nikander, Michael Roe, Dave Thaler, and other participants of the
   SEND working group.

Author's Address

   Tuomas Aura
   Microsoft Research
   Roger Needham Building
   7 JJ Thomson Avenue
   Cambridge  CB3 0FB
   United Kingdom

   Phone: +44 1223 479708
   EMail: tuomaura@microsoft.com




























Aura                        Standards Track                    [Page 21]
^L
RFC 3972         Cryptographically Generated Addresses        March 2005


Full Copyright Statement

   Copyright (C) The Internet Society (2005).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at ietf-
   ipr@ietf.org.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.







Aura                        Standards Track                    [Page 22]
^L