1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
|
Network Working Group H. Harney
Request for Comments: 4535 U. Meth
Category: Standards Track A. Colegrove
SPARTA, Inc.
G. Gross
IdentAware
June 2006
GSAKMP: Group Secure Association Key Management Protocol
Status of This Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2006).
Abstract
This document specifies the Group Secure Association Key Management
Protocol (GSAKMP). The GSAKMP provides a security framework for
creating and managing cryptographic groups on a network. It provides
mechanisms to disseminate group policy and authenticate users, rules
to perform access control decisions during group establishment and
recovery, capabilities to recover from the compromise of group
members, delegation of group security functions, and capabilities to
destroy the group. It also generates group keys.
Harney, et al. Standards Track [Page 1]
^L
RFC 4535 GSAKMP June 2006
Table of Contents
1. Introduction ....................................................7
1.1. GSAKMP Overview ............................................7
1.2. Document Organization ......................................9
2. Terminology .....................................................9
3. Security Considerations ........................................12
3.1. Security Assumptions ......................................12
3.2. Related Protocols .........................................13
3.2.1. ISAKMP .............................................13
3.2.2. FIPS Pub 196 .......................................13
3.2.3. LKH ................................................13
3.2.4. Diffie-Hellman .....................................14
3.3. Denial of Service (DoS) Attack ............................14
3.4. Rekey Availability ........................................14
3.5. Proof of Trust Hierarchy ..................................15
4. Architecture ...................................................15
4.1. Trust Model ...............................................15
4.1.1. Components .........................................15
4.1.2. GO .................................................16
4.1.3. GC/KS ..............................................16
4.1.4. Subordinate GC/KS ..................................17
4.1.5. GM .................................................17
4.1.6. Assumptions ........................................18
4.2. Rule-Based Security Policy ................................18
4.2.1. Access Control .....................................19
4.2.2. Authorizations for Security-Relevant Actions .......20
4.3. Distributed Operation .....................................20
4.4. Concept of Operation ......................................22
4.4.1. Assumptions ........................................22
4.4.2. Creation of a Policy Token .........................22
4.4.3. Creation of a Group ................................23
4.4.4. Discovery of GC/KS .................................24
4.4.5. GC/KS Registration Policy Enforcement ..............24
4.4.6. GM Registration Policy Enforcement .................24
4.4.7. Autonomous Distributed GSAKMP Operations ...........24
5. Group Life Cycle ...............................................27
5.1. Group Definition ..........................................27
5.2. Group Establishment .......................................27
5.2.1. Standard Group Establishment .......................28
5.2.1.1. Request to Join ...........................30
5.2.1.2. Key Download ..............................31
5.2.1.3. Request to Join Error .....................33
5.2.1.4. Key Download - Ack/Failure ................34
5.2.1.5. Lack of Ack ...............................35
5.2.2. Cookies: Group Establishment with Denial of
Service Protection .................................36
5.2.3. Group Establishment for Receive-Only Members .......39
Harney, et al. Standards Track [Page 2]
^L
RFC 4535 GSAKMP June 2006
5.3. Group Maintenance .........................................39
5.3.1. Group Management ...................................39
5.3.1.1. Rekey Events ..............................39
5.3.1.2. Policy Updates ............................40
5.3.1.3. Group Destruction .........................40
5.3.2. Leaving a Group ....................................41
5.3.2.1. Eviction ..................................41
5.3.2.2. Voluntary Departure without Notice ........41
5.3.2.3. De-Registration ...........................41
5.3.2.3.1. Request to Depart ..............41
5.3.2.3.2. Departure_Response .............43
5.3.2.3.3. Departure_ACK ..................44
6. Security Suite .................................................45
6.1. Assumptions ...............................................45
6.2. Definition Suite 1 ........................................45
7. GSAKMP Payload Structure .......................................47
7.1. GSAKMP Header .............................................47
7.1.1. GSAKMP Header Structure ............................47
7.1.1.1. GroupID Structure .........................51
7.1.1.1.1. UTF-8 ..........................51
7.1.1.1.2. Octet String ...................52
7.1.1.1.3. IPv4 Group Identifier ..........52
7.1.1.1.4. IPv6 Group Identifier ..........53
7.1.2. GSAKMP Header Processing ...........................53
7.2. Generic Payload Header ....................................55
7.2.1. Generic Payload Header Structure ...................55
7.2.2. Generic Payload Header Processing ..................56
7.3. Policy Token Payload ......................................56
7.3.1. Policy Token Payload Structure .....................56
7.3.2. Policy Token Payload Processing ....................57
7.4. Key Download Payload ......................................58
7.4.1. Key Download Payload Structure .....................58
7.4.1.1. Key Datum Structure .......................61
7.4.1.2. Rekey Array Structure .....................63
7.4.2. Key Download Payload Processing ....................63
7.5. Rekey Event Payload .......................................64
7.5.1. Rekey Event Payload Structure ......................64
7.5.1.1. Rekey Event Header Structure .............66
7.5.1.2. Rekey Event Data Structure ...............67
7.5.1.2.1. Key Package Structure ..........68
7.5.2. Rekey Event Payload Processing .....................69
7.6. Identification Payload ....................................71
7.6.1. Identification Payload Structure ...................71
7.6.1.1. ID_U_NAME Structure .......................74
7.6.2. Identification Payload Processing ..................74
7.6.2.1. ID_U_NAME Processing ......................75
7.7. Certificate Payload .......................................75
7.7.1. Certificate Payload Structure ......................75
Harney, et al. Standards Track [Page 3]
^L
RFC 4535 GSAKMP June 2006
7.7.2. Certificate Payload Processing .....................77
7.8. Signature Payload .........................................78
7.8.1. Signature Payload Structure ........................78
7.8.2. Signature Payload Processing .......................80
7.9. Notification Payload ......................................81
7.9.1. Notification Payload Structure .....................81
7.9.1.1. Notification Data - Acknowledgement
(ACK) Payload Type ........................83
7.9.1.2. Notification Data -
Cookie_Required and Cookie Payload Type ...83
7.9.1.3. Notification Data - Mechanism
Choices Payload Type ......................84
7.9.1.4. Notification Data - IPv4 and IPv6
Value Payload Types .......................85
7.9.2. Notification Payload Processing ....................85
7.10. Vendor ID Payload ........................................86
7.10.1. Vendor ID Payload Structure .......................86
7.10.2. Vendor ID Payload Processing ......................87
7.11. Key Creation Payload .....................................88
7.11.1. Key Creation Payload Structure ....................88
7.11.2. Key Creation Payload Processing ...................89
7.12. Nonce Payload ............................................90
7.12.1. Nonce Payload Structure ...........................90
7.12.2. Nonce Payload Processing ..........................91
8. GSAKMP State Diagram ...........................................92
9. IANA Considerations ............................................95
9.1. IANA Port Number Assignment ...............................95
9.2. Initial IANA Registry Contents ............................95
10. Acknowledgements ..............................................96
11. References ....................................................97
11.1. Normative References .....................................97
11.2. Informative References ...................................98
Appendix A. LKH Information ......................................100
A.1. LKH Overview .............................................100
A.2. LKH and GSAKMP ...........................................101
A.3. LKH Examples .............................................102
A.3.1. LKH Key Download Example ..........................102
A.3.2. LKH Rekey Event Example ..........................103
Harney, et al. Standards Track [Page 4]
^L
RFC 4535 GSAKMP June 2006
List of Figures
1 GSAKMP Ladder Diagram .........................................28
2 GSAKMP Ladder Diagram with Cookies ............................37
3 GSAKMP Header Format ..........................................47
4 GroupID UTF-8 Format ..........................................51
5 GroupID Octet String Format ...................................52
6 GroupID IPv4 Format ...........................................52
7 GroupID IPv6 Format ...........................................53
8 Generic Payload Header ........................................55
9 Policy Token Payload Format ...................................56
10 Key Download Payload Format ...................................58
11 Key Download Data Item Format .................................59
12 Key Datum Format ..............................................61
13 Rekey Array Structure Format ..................................63
14 Rekey Event Payload Format ....................................64
15 Rekey Event Header Format .....................................66
16 Rekey Event Data Format .......................................68
17 Key Package Format ............................................68
18 Identification Payload Format .................................72
19 Unencoded Name (ID-U-NAME) Format .............................74
20 Certificate Payload Format ....................................76
21 Signature Payload Format ......................................78
22 Notification Payload Format ...................................81
23 Notification Data - Acknowledge Payload Type Format ...........83
24 Notification Data - Mechanism Choices Payload Type Format......84
25 Vendor ID Payload Format ......................................86
26 Key Creation Payload Format ...................................88
27 Nonce Payload Format ..........................................90
28 GSAKMP State Diagram ..........................................92
29 LKH Tree .....................................................100
30 GSAKMP LKH Tree ..............................................101
Harney, et al. Standards Track [Page 5]
^L
RFC 4535 GSAKMP June 2006
List of Tables
1 Request to Join (RTJ) Message Definition ......................30
2 Key Download (KeyDL) Message Definition .......................31
3 Request to Join Error (RTJ-Err) Message Definition ............33
4 Key Download - Ack/Failure (KeyDL-A/F) Message Definition .....34
5 Lack of Ack (LOA) Message Definition ..........................35
6 Cookie Download Message Definition ............................37
7 Rekey Event Message Definition ................................40
8 Request_to_Depart (RTD) Message Definition ....................42
9 Departure_Response (DR) Message Definition ....................43
10 Departure_ACK (DA) Message Definition .........................44
11 Group Identification Types ....................................48
12 Payload Types .................................................49
13 Exchange Types ................................................49
14 Policy Token Types ............................................57
15 Key Download Data Item Types ..................................60
16 Cryptographic Key Types .......................................62
17 Rekey Event Types .............................................66
18 Identification Classification .................................72
19 Identification Types ..........................................73
20 Certificate Payload Types .....................................77
21 Signature Types ...............................................79
22 Notification Types ............................................82
23 Acknowledgement Types .........................................83
24 Mechanism Types ...............................................84
25 Nonce Hash Types ..............................................85
26 Types Of Key Creation Information .............................89
27 Nonce Types ...................................................91
28 GSAKMP States .................................................93
29 State Transition Events .......................................94
Harney, et al. Standards Track [Page 6]
^L
RFC 4535 GSAKMP June 2006
1. Introduction
GSAKMP provides policy distribution, policy enforcement, key
distribution, and key management for cryptographic groups.
Cryptographic groups all share a common key (or set of keys) for data
processing. These keys all support a system-level security policy so
that the cryptographic group can be trusted to perform security-
relevant services.
The ability of a group of entities to perform security services
requires that a Group Secure Association (GSA) be established. A GSA
ensures that there is a common "group-level" definition of security
policy and enforcement of that policy. The distribution of
cryptographic keys is a mechanism utilizing the group-level policy
enforcements.
1.1. GSAKMP Overview
Protecting group information requires the definition of a security
policy and the enforcement of that policy by all participating
parties. Controlling dissemination of cryptographic key is the
primary mechanism to enforce the access control policy. It is the
primary purpose of GSAKMP to generate and disseminate a group key in
a secure fashion.
GSAKMP separates group security management functions and
responsibilities into three major roles:1) Group Owner, 2) Group
Controller Key Server, and 3) Group Member. The Group Owner is
responsible for creating the security policy rules for a group and
expressing these in the policy token. The Group Controller Key
Server (GC/KS) is responsible for creating and maintaining the keys
and enforcing the group policy by granting access to potential Group
Members (GMs) in accordance with the policy token. To enforce a
group's policy, the potential Group Members need to have knowledge of
the access control policy for the group, an unambiguous
identification of any party downloading keys to them, and verifiable
chains of authority for key download. In other words, the Group
Members need to know who potentially will be in the group and to
verify that the key disseminator is authorized to act in that
capacity.
In order to establish a Group Secure Association (GSA) to support
these activities, the identity of each party in the process MUST be
unambiguously asserted and authenticated. It MUST also be verified
that each party is authorized, as defined by the policy token, to
function in his role in the protocol (e.g., GM or GC/KS).
Harney, et al. Standards Track [Page 7]
^L
RFC 4535 GSAKMP June 2006
The security features of the establishment protocol for the GSA
include
- Group policy identification
- Group policy dissemination
- GM to GC/KS SA establishment to protect data
- Access control checking
GSAKMP provides mechanisms for cryptographic group creation and
management. Other protocols may be used in conjunction with GSAKMP
to allow various applications to create functional groups according
to their application-specific requirements. For example, in a
small-scale video conference, the organizer might use a session
invitation protocol like SIP [RFC3261] to transmit information about
the time of the conference, the address of the session, and the
formats to be used. For a large-scale video transmission, the
organizer might use a multicast announcement protocol like SAP
[RFC2974].
This document describes a useful default set of security algorithms
and configurations, Security Suite 1. This suite allows an entire
set of algorithms and settings to be described to prospective group
members in a concise manner. Other security suites MAY be defined as
needed and MAY be disseminated during the out-of-band announcement of
a group.
Distributed architectures support large-scale cryptographic groups.
Secure distributed architectures require authorized delegation of GSA
actions to network resources. The fully specified policy token is
the mechanism to facilitate this authorization. Transmission of this
policy token to all joining GMs allows GSAKMP to securely support
distributed architectures and multiple data sources.
Many-to-many group communications require multiple data sources.
Multiple data sources are supported because the inclusion of a policy
token and policy payloads allow group members to review the group
access control and authorization parameters. This member review
process gives each member (each potential source of data) the ability
to determine if the group provides adequate protection for member
data.
Harney, et al. Standards Track [Page 8]
^L
RFC 4535 GSAKMP June 2006
1.2. Document Organization
The remainder of this document is organized as follows:Section 2
presents the terminology and concepts used to present the
requirements of this protocol. Section 3 outlines the security
considerations with respect to GSAKMP. Section 4 defines the
architecture of GSAKMP. Section 5 describes the group management
life cycle. Section 6 describes the Security Suite Definition.
Section 7 presents the message types and formats used during each
phase of the life cycle. Section 8 defines the state diagram for the
protocol.
2. Terminology
The following terminology is used throughout this document.
Requirements Terminology: Keywords "MUST", "MUST NOT", "REQUIRED",
"SHOULD", "SHOULD NOT" and "MAY" that appear in this document are to
be interpreted as described in [RFC2119].
Certificate: A data structure used to verifiably bind an identity to
a cryptographic key (e.g., X.509v3).
Compromise Recovery: The act of recovering a secure operating state
after detecting that a group member cannot be trusted. This can
be accomplished by rekey.
Cryptographic Group: A set of entities sharing or desiring to share a
GSA.
Group Controller Key Server (GC/KS): A group member with authority to
perform critical protocol actions including creating and
distributing keys and building and maintaining the rekey
structures. As the group evolves, it MAY become desirable to have
multiple controllers perform these functions.
Group Member (GM): A Group Member is any entity with access to the
group keys. Regardless of how a member becomes a part of the
group or how the group is structured, GMs will perform the
following actions:
- Authenticate and validate the identities and the authorizations
of entities performing security-relevant actions
- Accept group keys from the GC/KS
- Request group keys from the GC/KS
Harney, et al. Standards Track [Page 9]
^L
RFC 4535 GSAKMP June 2006
- Enforce the cooperative group policies as stated in the group
policy token
- Perform peer review of key management actions
- Manage local key
Group Owner (GO): A Group Owner is the entity authorized for
generating and modifying an authenticatable policy token for the
group, and notifying the GC/KS to start the group.
Group Policy: The Group Policy completely describes the protection
mechanisms and security-relevant behaviors of the group. This
policy MUST be commonly understood and enforced by the group for
coherent secure operations.
Group Secure Association (GSA): A GSA is a logical association of
users or hosts that share cryptographic key(s). This group may be
established to support associations between applications or
communication protocols.
Group Traffic Protection Key (GTPK): The key or keys created for
protecting the group data.
Key Datum: A single key and its associated attributes for its usage.
Key Encryption Key (KEK): Key used in an encryption mechanism for
wrapping another key.
Key Handle: The identifier of a particular instance or version of a
key.
Key ID: The identifier for a key that MUST stay static throughout the
life cycle of this key.
Key Package: Type/Length/Data format containing a Key Datum.
Logical Key Hierarchy (LKH) Array: The group of keys created to
facilitate the LKH compromise recovery methodology.
Policy Token (PT): The policy token is a data structure used to
disseminate group policy and the mechanisms to enforce it. The
policy token is issued and signed by an authorized Group Owner.
Each member of the group MUST verify the token, meet the group
join policy, and enforce the policy of the group (e.g., encrypt
application data with a specific algorithm). The group policy
token will contain a variety of information including:
Harney, et al. Standards Track [Page 10]
^L
RFC 4535 GSAKMP June 2006
- GSAKMP protocol version
- Key creation method
- Key dissemination policy
- Access control policy
- Group authorization policy
- Compromise recovery policy
- Data protection mechanisms
Rekey: The act of changing keys within a group as defined by policy.
Rekey Array: The construct that contains all the rekey information
for a particular member.
Rekey Key: The KEK used to encrypt keys for a subset of the group.
Subordinate Group Controller Key Server (S-GC/KS): Any group member
having the appropriate processing and trust characteristics, as
defined in the group policy, that has the potential to act as a
S-GC/KS. This will allow the group processing and communication
requirements to be distributed equitably throughout the network
(e.g., distribute group key). The optional use of GSAKMP with
Subordinate Group Controller Key Servers will be documented in a
separate paper.
Wrapping KeyID: The Key ID of the key used to wrap a Key Package.
Wrapping Key Handle: The key handle of the key used to wrap the Key
Package.
Harney, et al. Standards Track [Page 11]
^L
RFC 4535 GSAKMP June 2006
3. Security Considerations
In addition to the specification of GSAKMP itself, the security of
an implemented GSAKMP system is affected by supporting factors.
These are discussed here.
3.1. Security Assumptions
The following assumptions are made as the basis for the security
discussion:
1. GSAKMP assumes its supporting platform can provide the process
and data separation services at the appropriate assurance level
to support its groups.
2. The key generation function of the cryptographic engine will only
generate strong keys.
3. The security of this protocol is critically dependent on the
randomness of the randomly chosen parameters. These should be
generated by a strong random or properly seeded pseudo-random
source [RFC4086].
4. The security of a group can be affected by the accuracy of the
system clock. Therefore, GSAKMP assumes that the system clock is
close to correct time. If a GSAKMP host relies on a network time
service to set its local clock, then that protocol must be secure
against attackers. The maximum allowable clock skew across the
group membership is policy configurable, with a default of 5
minutes.
5. As described in the message processing section, the use of the
nonce value used for freshness along with a signature is the
mechanism used to foil replay attacks. In any use of nonces, a
core requirement is unpredictability of the nonce, from an
attacker's viewpoint. The utility of the nonce relies on the
inability of an attacker either to reuse old nonces or to predict
the nonce value.
6. GSAKMP does not provide identity protection.
7. The group's multicast routing infrastructure is not secured by
GSAKMP, and therefore it may be possible to create a multicast
flooding denial of service attack using the multicast
application's data stream. Either an insider (i.e., a rogue GM)
or a non-member could direct the multicast routers to spray data
at a victim system.
Harney, et al. Standards Track [Page 12]
^L
RFC 4535 GSAKMP June 2006
8. The compromise of a S-GC/KS forces the re-registration of all GMs
under its control. The GM recognizes this situation by finding
the S-GC/KS's certificate on a CRL as supplied by a service such
as LDAP.
9. The compromise of the GO forces termination of the group. The GM
recognizes this situation by finding the GO's certificate on a
Certificate Revocation List (CRL) as supplied by a service such
as LDAP.
3.2. Related Protocols
GSAKMP derives from two (2) existing protocols: ISAKMP [RFC2408] and
FIPS Pub 196 [FIPS196]. In accordance with Security Suite 1, GSAKMP
implementations MUST support the use of Diffie-Hellman key exchange
[DH77] for two-party key creation and MAY use Logical Key Hierarchy
(LKH) [RFC2627] for rekey capability. The GSAKMP design was also
influenced by the following protocols: [HHMCD01], [RFC2093],
[RFC2094], [BMS], and [RFC2412].
3.2.1. ISAKMP
ISAKMP provides a flexible structure of chained payloads in support
of authenticated key exchange and security association management for
pairwise communications. GSAKMP builds upon these features to
provide policy enforcement features in support of diverse group
communications.
3.2.2. FIPS Pub 196
FIPS Pub 196 provides a mutual authentication protocol.
3.2.3. LKH
When group policy dictates that a recovery of the group security is
necessary after the discovery of the compromise of a GM, then GSAKMP
relies upon a rekey capability (i.e., LKH) to enable group recovery
after a compromise [RFC2627]. This is optional since in many
instances it may be better to destroy the compromised group and
rebuild a secure group.
Harney, et al. Standards Track [Page 13]
^L
RFC 4535 GSAKMP June 2006
3.2.4. Diffie-Hellman
A Group may rely upon two-party key creation mechanisms, i.e.,
Diffie-Hellman, to protect sensitive data during download.
The information in this section borrows heavily from [IKEv2], as this
protocol has already worked through similar issues and GSAKMP is
using the same security considerations for its purposes. This
section will contain paraphrased sections of [IKEv2] modified for
GSAKMP as appropriate.
The strength of a key derived from a Diffie-Hellman exchange using
specific p and g values depends on the inherent strength of the
values, the size of the exponent used, and the entropy provided by
the random number generator used. A strong random number generator
combined with the recommendations from [RFC3526] on Diffie-Hellman
exponent size is recommended as sufficient. An implementation should
make note of this conservative estimate when establishing policy and
negotiating security parameters.
Note that these limitations are on the Diffie-Hellman values
themselves. There is nothing in GSAKMP that prohibits using stronger
values, nor is there anything that will dilute the strength obtained
from stronger values. In fact, the extensible framework of GSAKMP
encourages the definition of more Security Suites.
It is assumed that the Diffie-Hellman exponents in this exchange are
erased from memory after use. In particular, these exponents MUST
NOT be derived from long-lived secrets such as the seed to a pseudo-
random generator that is not erased after use.
3.3. Denial of Service (DoS) Attack
This GSAKMP specification addresses the mitigation for a distributed
IP spoofing attack (a subset of possible DoS attacks) in Section
5.2.2, "Cookies: Group Establishment with Denial of Service
Protection".
3.4. Rekey Availability
In addition to GSAKMP's capability to do rekey operations, GSAKMP
MUST also have the capability to make this rekey information highly
available to GMs. The necessity of GMs receiving rekey messages
requires the use of methods to increase the likelihood of receipt of
rekey messages. These methods MAY include multiple transmissions of
the rekey message, posting of the rekey message on a bulletin board,
etc. Compliant GSAKMP implementations supporting the optional rekey
capability MUST support retransmission of rekey messages.
Harney, et al. Standards Track [Page 14]
^L
RFC 4535 GSAKMP June 2006
3.5. Proof of Trust Hierarchy
As defined by [HCM], security group policy MUST be defined in a
verifiable manner. GSAKMP anchors its trust in the creator of the
group, the GO.
The policy token explicitly defines all the parameters that create a
secure verifiable infrastructure. The GSAKMP Policy Token is issued
and signed by the GO. The GC/KS will verify it and grant access to
GMs only if they meet the rules of the policy token. The new GMs
will accept access only if 1) the token verifies, 2) the GC/KS is an
authorized disseminator, and 3) the group mechanisms are acceptable
for protecting the GMs data.
4. Architecture
This architecture presents a trust model for GSAKMP and a concept of
operations for establishing a trusted distributed infrastructure for
group key and policy distribution.
GSAKMP conforms to the IETF MSEC architectural concepts as specified
in the MSEC Architecture document [RFC3740]. GSAKMP uses the MSEC
components to create a trust model for operations that implement the
security principles of mutual suspicion and trusted policy creation
authorities.
4.1. Trust Model
4.1.1. Components
The trust model contains four key components:
- Group Owner (GO),
- Group Controller Key Server (GC/KS),
- Subordinate GC/KS (S-GC/KS), and
- Group Member (GM).
The goal of the GSAKMP trust model is to derive trust from a common
trusted policy creation authority for a group. All security-relevant
decisions and actions implemented by GSAKMP are based on information
that ultimately is traceable to and verified by the trusted policy
creation authority. There are two trusted policy creation
authorities for GSAKMP: the GO (policy creation authority) and the
PKI root that allows us to verify the GO.
Harney, et al. Standards Track [Page 15]
^L
RFC 4535 GSAKMP June 2006
4.1.2. GO
The GO is the policy creation authority for the group. The GO has a
well-defined identity that is relevant to the group. That identity
can be of a person or of a group-trusted component. All potential
entities in the group have to recognize the GO as the individual with
authority to specify policy for the group.
The policy reflects the protection requirements of the data in a
group. Ultimately, the data and the application environment drives
the security policy for the group.
The GO has to determine the security rules and mechanisms that are
appropriate for the data being protected by the group keys. All this
information is captured in a policy token (PT). The GO creates the
PT and signs it.
4.1.3. GC/KS
The GC/KS is authorized to perform several functions: key creation,
key distribution, rekey, and group membership management.
As the key creation authority, the GC/KS will create the set of keys
for the group. These keys include the Group Traffic Protection Keys
(GTPKs) and first-tier rekey keys. There may be second-tier rekey
trees if a distributed rekey management structure is required for the
group.
As the key distribution (registration) authority, it has to notify
the group of its location for registration services. The GC/KS will
have to enforce key access control as part of the key distribution
and registration processes.
As the group rekey authority, it performs rekey in order to change
the group's GTPK. Change of the GTPK limits the exposure of data
encrypted with any single GTPK.
Finally, as the group membership management authority, the GC/KS can
manage the group membership (registration, eviction, de-registration,
etc.). This may be done in part by using a key tree approach, such
as Logical Key Hierarchies (LKH), as an optional approach.
Harney, et al. Standards Track [Page 16]
^L
RFC 4535 GSAKMP June 2006
4.1.4. Subordinate GC/KS
A subordinate GC/KS is used to distribute the GC/KS functionality
across multiple entities. The S-GC/KS will have all the authorities
of the GC/KS except one: it will not create the GTPK. It is assumed
here that the group will transmit data with a single GTPK at any one
time. This GTPK comes from the GC/KS.
Note that relative to the GC/KS, the S-GC/KS is responsible for an
additional security check: the S-GC/KS must register as a member with
the GC/KS, and during that process it has to verify the authority of
the GC/KS.
4.1.5. GM
The GM has two jobs: to make sure all security-relevant actions are
authorized and to use the group keys properly. During the
registration process, the GM will verify that the PT is signed by a
recognized GO. In addition, it will verify that the GC/KS or S-GC/KS
engaged in the registration process is authorized, as specified in
the PT. If rekey and new PTs are distributed to the group, the GM
will verify that they are proper and all actions are authorized.
The GM is granted access to group data through receipt of the group
keys This carries along with it a responsibility to protect the key
from unauthorized disclosure.
GSAKMP does not offer any enforcement mechanisms to control which GMs
are multicast speakers at a given moment. This policy and its
enforcement depend on the multicast application and its protocols.
However, GSAKMP does allow a group to have one of three Group
Security Association multicast speaker configurations:
- There is a single GM authorized to be the group's speaker. There
is one multicast application SA allocated by the GO in support of
that speaker. The PT initializes this multicast application SA
and identifies the GM that has been authorized to be speaker. All
GMs share a single TPK with that GM speaker. Sequence number
checking for anti-replay protection is feasible and enabled by
default. This is the default group configuration. GSAKMP
implementations MUST support this configuration.
- The GO authorizes all of the GMs to be group speakers. The GO
allocates one multicast application SA in support of these
speakers. The PT initializes this multicast application SA and
indicates that any GM can be a speaker. All of the GMs share a
single GTPK and other SA state information. Consequently, some SA
security features such as sequence number checking for anti-replay
Harney, et al. Standards Track [Page 17]
^L
RFC 4535 GSAKMP June 2006
protection cannot be supported by this configuration. GSAKMP
implementations MUST support this group configuration.
- The GO authorizes a subset of the GMs to be group speakers (which
may be the subset composed of all GMs). The GO allocates a
distinct multicast application SA for each of these speakers. The
PT identifies the authorized speakers and initializes each of
their multicast application Security Associations. The speakers
still share a common TPK across their SA, but each speaker has a
separate SA state information instance at every peer GM.
Consequently, this configuration supports SA security features,
such as sequence number checking for anti-replay protection, or
source authentication mechanisms that require per-speaker state at
the receiver. The drawback of this configuration is that it does
not scale to a large number of speakers. GSAKMP implementations
MAY support this group configuration.
4.1.6. Assumptions
The assumptions for this trust model are that:
- the GCKS is never compromised,
- the GO is never compromised,
- the PKI, subject to certificate validation, is trustworthy,
- The GO is capable of creating a security policy to meet the
demands of the group,
- the compromises of a group member will be detectable and reported
to the GO in a trusted manner,
- the subsequent recovery from a compromise will deny inappropriate
access to protected data to the compromised member,
- no security-relevant actions depend on a precise network time,
- there are confidentiality, integrity, multicast source
authentication, and anti-replay protection mechanisms for all
GSAKMP control messages.
4.2. Rule-Based Security Policy
The trust model for GSAKMP revolves around the definition and
enforcement of the security policy. In fact, the use of the key is
only relevant, in a security sense, if it represents the successful
enforcement of the group security policy.
Harney, et al. Standards Track [Page 18]
^L
RFC 4535 GSAKMP June 2006
Group operations lend themselves to rule-based security policy. The
need for distribution of data to many endpoints often leads to the
defining of those authorized endpoints based on rules. For example,
all IETF attendees at a given conference could be defined as a single
group.
If the security policy rules are to be relevant, they must be coupled
with validation mechanisms. The core principle here is that the
level of trust one can afford a security policy is exactly equal to
the level of trust one has in the validation mechanism used to prove
that policy. For example, if all IETF attendees are allowed in, then
they could register their identity from their certificate upon
check-in to the meetings. That certificate is issued by a trusted
policy creation authority (PKI root) that is authorized to identify
someone as an IETF attendee. The GO could make admittance rules to
the IETF group based on the identity certificates issued from trusted
PKIs.
In GSAKMP, every security policy rule is coupled with an explicit
validation mechanism. For interoperability considerations, GSAKMP
requires that its supporting PKI implementations MUST be compliant to
RFC 3280.
If a GM's public key certificate is revoked, then the entity that
issues that revocation SHOULD signal the GO, so that the GO can expel
that GM. The method that signals this event to the GO is not
standardized by this specification.
A direct mapping of rule to validation mechanism allows the use of
multiple rules and PKIs to create groups. This allows a GO to define
a group security policy that spans multiple PKI domains, each with
its own Certificate Authority public key certificate.
4.2.1. Access Control
The access control policy for the group keys is equivalent to the
access control policy for the multicast application data the keys are
protecting.
In a group, each data source is responsible for ensuring that the
access to the source's data is appropriate. This implies that every
data source should have knowledge of the access control policy for
the group keys.
In the general case, GSAKMP offers a suite of security services to
its applications and does not prescribe how they use those services.
Harney, et al. Standards Track [Page 19]
^L
RFC 4535 GSAKMP June 2006
GSAKMP supports the creation of GSAs with multiple data sources. It
also supports architectures where the GC/KS is not itself a data
source. In the multiple data source architectures GSAKMP requires
that the access control policy is precisely defined and distributed
to each data source. The reference for this data structure is the
GSAKMP Policy Token [RFC4534].
4.2.2. Authorizations for Security-Relevant Actions
A critical aspect of the GSAKMP trust model is the authorization of
security-relevant actions. These include download of group key,
rekey, and PT creation and updates. These actions could be used to
disrupt the secure group, and all entities in the group must verify
that they were instigated by authorized entities within the group.
4.3. Distributed Operation
Scalability is a core feature of GSAKMP. GSAKMP's approach to
scalable operations is the establishment of S-GC/KSes. This allows
the GSAKMP systems to distribute the workload of setting up and
managing very large groups.
Another aspect of distributed S-GC/KS operations is the enabling of
local management authorities. In very large groups, subordinate
enclaves may be best suited to provide local management of the
enclaves' group membership, due to a direct knowledge of the group
members.
One of the critical issues involved with distributed operation is the
discovery of the security infrastructure location and security suite.
Many group applications that have dynamic interactions must "find"
each other to operate. The discovery of the security infrastructure
is just another piece of information that has to be known by the
group in order to operate securely.
There are several methods for infrastructure discovery:
- Announcements
- Anycast
- Rendezvous points / Registration
One method for distributing the security infrastructure location is
to use announcements. The SAP is commonly used to announce the
existence of a new multicast application or service. If an
Harney, et al. Standards Track [Page 20]
^L
RFC 4535 GSAKMP June 2006
application uses SAP [RFC2974] to announce the existence of a service
on a multicast channel, that service could be extended to include the
security infrastructure location for a particular group.
Announcements can also be used by GSAKMP in one of two modes:
expanding ring searches (ERSes) of security infrastructure and ERSes
for infrastructure discovery. In either case, the GSAKMP would use a
multicast broadcast that would slowly increase in its range by
incremental multicast hops. The multicast source controls the
packet's multicast range by explicitly setting its Time To Live
count.
An expanding ring announcement operates by the GC/KS announcing its
existence for a particular group. The number of hops this
announcement would travel would be a locally configured number. The
GMs would listen on a well-known multicast address for GC/KSes that
provide service for groups of interest. If multiple GC/KSes are
found that provide service, then the GM would pick the closest one
(in terms of multicast hops). The GM would then send a GSAKMP
Request to Join message (RTJ) to the announced GC/KS. If the
announcement is found to be spurious, then that is reported to the
appropriate management authorities. The ERA concept is slightly
different from SAP in that it could occur over the data channel
multicast address, instead of a special multicast address dedicated
for the SAP service.
An expanding ring search operates in the reverse order of the ERA.
In this case, the GM is the announcing entity. The (S-)GC/KSes
listen for the requests for service, specifically the RTJ. The
(S-)GC/KS responds to the RTJ. If the GM receives more than one
response, it would either ignore the responses or send NACKs based on
local configuration.
Anycast is a service that is very similar to ERS. It also can be
used to provide connection to the security infrastructure. In this
case, the GM would send the RTJ to a well-known service request
address. This anycast service would route the RTJ to an appropriate
GC/KS. The anycast service would have security infrastructure and
network connectivity knowledge to facilitate this connection.
Registration points can be used to distribute many group-relevant
data, including security infrastructure. Many group applications
rely on well-known registration points to advertise the availability
of groups. There is no reason that GSAKMP could not use the same
approach for advertising the existence and location of the security
infrastructure. This is a simple process if the application being
supported already supports registration. The GSAKMP infrastructure
can always provide a registration site if the existence of this
Harney, et al. Standards Track [Page 21]
^L
RFC 4535 GSAKMP June 2006
security infrastructure discovery hub is needed. The registration of
S-GC/KSes at this site could be an efficient way to allow GM
registration.
GSAKMP infrastructure discovery can use whatever mechanism suits a
particular multicast application's requirements, including mechanisms
that have not been discussed by this architecture. However, GSAKMP
infrastructure discovery is not standardized by this version of the
GSAKMP specification.
4.4. Concept of Operation
This concept of operation shows how the different roles in GSAKMP
interact to set up a secure group. This particular concept of
operation focuses on a secure group that utilizes the distributed key
dissemination services of the S-GC/KS.
4.4.1. Assumptions
The most basic assumption here is that there is one or more
trustworthy PKIs for the group. That trusted PKI will be used to
create and verify security policy rules.
There is a GO that all GMs recognize as having group policy creation
authority. All GM must be securely pre-configured to know the GO
public key.
All GMs have access to the GO PKI information, both the trusted
anchor public keys and the certificate path validation rules.
There is sufficient connectivity between the GSAKMP entities.
- The registration SA requires that GM can connect to the GC/KS or
S-GC/KS using either TCP or UDP.
- The Rekey SA requires that the data-layer multicast communication
service be available. This can be multicast IP, overlay networks
using TCP, or NAT tunnels.
- GSAKMP can support many different data-layer secure applications,
each with unique connectivity requirements.
4.4.2. Creation of a Policy Token
The GO creates and signs the policy token for a group. The policy
token contains the rules for access control and authorizations for a
particular group.
Harney, et al. Standards Track [Page 22]
^L
RFC 4535 GSAKMP June 2006
The PT consists of the following information:
- Identification: This allows an unambiguous identification of the
PT and the group.
- Access Control Rules: These rules specify who can have access to
the group keys.
- Authorization Rules: These rules specify who can be a S-GC/KS.
- Mechanisms: These rules specify the security mechanisms that will
be used by the group. This is necessary to ensure there is no
weak link in the group security profile. For example, for IPsec,
this could include SPD/SAD configuration data.
- Source authentication of the PT to the GO: The PT is a CMS signed
object, and this allows all GMs to verify the PT.
4.4.3. Creation of a Group
The PT is sent to a potential GC/KS. This can occur in several ways,
and the method of transmittal is outside the scope of GSAKMP. The
potential GC/KS will verify the GO signature on the PT to ensure that
it comes from a trusted GO. Next, the GC/KS will verify that it is
authorized to become the GC/KS, based on the authorization rules in
the PT. Assuming that the GC/KS trusts the PT, is authorized to be a
GC/KS, and is locally configured to become a GC/KS for a given group
and the GO, then the GC/KS will create the keys necessary to start
the group. The GC/KS will take whatever action is necessary (if any)
to advertise its ability to distribute key for the group. The GC/KS
will then listen for RTJs.
The PT has a sequence number. Every time a PT is distributed to the
group, the group members verify that the sequence number on the PT is
increasing. The PT lifetime is not limited to a particular time
interval, other than by the lifetimes imposed by some of its
attributes (e.g., signature key lifetime). The current PT sequence
number is downloaded to the GM in the "Key Download" message. Also,
to avoid replay attacks, this sequence number is never reset to a
lower value (i.e., rollover to zero) as long as the group identifier
remains valid and in use. The GO MUST preserve this sequence number
across re-boots.
Harney, et al. Standards Track [Page 23]
^L
RFC 4535 GSAKMP June 2006
4.4.4. Discovery of GC/KS
Potential GMs will receive notice of the new group via some
mechanism: announcement, Anycast, or registration look-up. The GM
will send an RTJ to the GC/KS.
4.4.5. GC/KS Registration Policy Enforcement
The GC/KS may or may not require cookies, depending on the DoS
environment and the local configuration.
Once the RTJ has been received, the GC/KS will verify that the GM is
allowed to have access to the group keys. The GC/KS will then verify
the signature on the RTJ to ensure it was sent by the claimed
identity. If the checks succeed, the GC/KS will ready a Key Download
message for the GM. If not, the GC/KS can notify the GM of a non-
security-relevant problem.
4.4.6. GM Registration Policy Enforcement
Upon receipt of the Key Download message, the GM will verify the
signature on the message. Then the GM will retrieve the PT from the
Key Download message and verify that the GO created and signed the
PT. Once the PT is verified as valid, the GM will verify that the
GC/KS is authorized to distribute key for this group. Then the GM
will verify that the mechanisms used in the group are available and
acceptable for protection of the GMs data (assuming the GM is a data
source). The GM will then accept membership in this group.
The GM will then check to see if it is allowed to be a S-GC/KS for
this group. If the GM is allowed to be a S-GC/KS AND the local GM
configuration allows the GM to act as a S-GC/KS for this group, then
the GM changes its operating state to S-GC/KS. The GO needs to
assign the authority to become a S-GC/KS in a manner that supports
the overall group integrity and operations.
4.4.7. Autonomous Distributed GSAKMP Operations
In autonomous mode, each S-GC/KS operates a largely self-contained
sub-group for which the Primary-GC/KS delegates the sub-group's
membership management responsibility to the S-GC/KS. In general, the
S-GC/KS locally handles each Group Member's registration and
de-registration without any interaction with the Primary-GC/KS.
Periodically, the Primary-GC/KS multicasts a Rekey Event message
addressed only to its one or more S-GC/KS.
After a S-GC/KS successfully processes a Rekey Event message from the
Primary-GC/KS, the S-GC/KS transmits to its sub-group its own Rekey
Harney, et al. Standards Track [Page 24]
^L
RFC 4535 GSAKMP June 2006
Event message containing a copy of the group's new GTPK and policy
token. The S-GC/KS encrypts its Rekey Event message's sub-group key
management information using Logical Key Hierarchy or a comparable
rekey protocol. The S-GC/KS uses the rekey protocol to realize
forward and backward secrecy, such that only the authorized sub-group
members can decrypt and acquire access to the new GTPK and policy
token. The frequency at which the Primary-GC/KS transmits a Rekey
Event message is a policy token parameter.
For the special case of a S-GC/KS detecting an expelled or
compromised group member, a mechanism is defined to trigger an
immediate group rekey rather than wait for the group's rekey period
to elapse. See below for details.
Each S-GC/KS will be registered by the GC/KS as a management node
with responsibility for GTPK distribution, access control policy
enforcement, LKH tree creation, and distribution of LKH key arrays.
The S-GC/KS will be registered into the primary LKH tree as an
endpoint. Each S-GC/KS will hold an entire LKH key array for the
GC's LKH key tree.
For the purpose of clarity, the process of creating a distributed
GSAKMP group will be explained in chronological order.
First, the Group Owner will create a policy token that authorizes a
subset of the group's membership to assume the role of S-GC/KS.
The GO needs to ensure that the S-GC/KS rules in the policy token
will be stringent enough to ensure trust in the S-GC/KSes. This
policy token is handed off to the primary GC.
The GC will create the GTPK and initial LKH key tree. The GC will
then wait for a potential S-GC/KS to send a Request to Join (RTJ)
message.
A potential S-GC/KS will eventually send an RTJ. The GC will enforce
the access control policy as defined in the policy token. The
S-GC/KS will accept the role of S-GC/KS and create its own LKH key
tree for its sub-group membership.
The S-GC/KS will then offer registration services for the group.
There are local management decisions that are optional to control the
scope of group members that can be served by a S-GC/KS. These are
truly local management issues that allow the administrators of an
S-GC/KS to restrict service to potential GMs. These local controls
do not affect the overall group security policy, as defined in the
policy token.
Harney, et al. Standards Track [Page 25]
^L
RFC 4535 GSAKMP June 2006
A potential Group Member will send an RTJ to the S-GC/KS. The
S-GC/KS will enforce the entire access control policy as defined in
the PT. The GM will receive an LKH key array that corresponds to the
LKH tree of the S-GC/KS. The key tree generated by the S-GC/KS is
independent of the key tree generated by the GC/KS; they share no
common keys.
The GM then has the keys it needs to receive group traffic and be
subject to rekey from the S-GC/KS. For the sake of this discussion,
let's assume the GM is to be expelled from the group membership.
The S-GC/KS will receive notification that the GM is to be expelled.
This mechanism is outside the scope of this protocol.
Upon notification that a GM that holds a key array within its LKH
tree is to be expelled, the S-GC/KS does two things. First, the
S-GC/KS initiates a de-registration exchange with the GC/KS
identifying the member to be expelled. (The S-GC/KS proxies a Group
Member's de-registration informing the GC/KS that the Group Member
has been expelled from the group.) Second, the S-GC/KS will wait for
a rekey action by the GC/KS. The immediacy of the rekey action by
the GC/KS is a management decision at the GC/KS. Security is best
served by quick expulsion of untrusted members.
Upon receipt of the de-registration notification from the S-GC/KS,
the GC/KS will register the member to be expelled. The GC/KS will
then follow group procedure for initiating a rekey action (outside
the scope of this protocol). The GC/KS will communicate to the GO
the expelled member's information (outside the scope of this
protocol). With this information, the GO will create a new PT for
the group with the expelled GM identity added to the excluded list in
the group's access control rules. The GO provides this new PT to the
GC/KS for distribution with the Rekey Event Message.
The GC/KS will send out a rekey operation with a new PT. The S-GC/KS
will receive the rekey and process it. At the same time, all other
S-GC/KSes will receive the rekey and note the excluded GM identity.
All S-GC/KSes will review local identities to ensure that the
excluded GM is not a local member. If it is, then the S-GC/KS will
create a rekey message. The S-GC/KSes must always create a rekey
message, whether or not the expelled Group Member is a member of
their subtrees.
The S-GC/KS will then create a local rekey message. The S-GC/KS will
send the wrapped Group TPK to all members of its local LKH tree,
except the excluded member(s).
Harney, et al. Standards Track [Page 26]
^L
RFC 4535 GSAKMP June 2006
5. Group Life Cycle
The management of a cryptographic group follows a life cycle: group
definition, group establishment, and security-relevant group
maintenance. Group definition involves defining the parameters
necessary to support a secure group, including its policy token.
Group establishment is the process of granting access to new members.
Security-relevant group maintenance messages include rekey, policy
changes, member deletions, and group destruction. Each of these life
cycle phases is discussed in the following sections.
The use and processing of the optional Vendor ID payload for all
messages can be found in Section 7.10.
5.1. Group Definition
A cryptographic group is established to support secure communications
among a group of individuals. The activities necessary to create a
policy token in support of a cryptographic group include:
- Determine Access Policy: identify the entities that are authorized
to receive the group key.
- Determine Authorization Policy: identify which entities are
authorized to perform security-relevant actions, including key
dissemination, policy creation, and initiation of security-
management actions.
- Determine Mechanisms: define the algorithms and protocols used by
GSAKMP to secure the group.
- Create Group Policy Token: format the policies and mechanisms into
a policy token, and apply the GO signature.
5.2. Group Establishment
GSAKMP Group Establishment consists of three mandatory-to-implement
messages: the Request to Join, the Key Download, and the Key Download
Ack/Failure. The exchange may also include two OPTIONAL error
messages: the Request to Join Error and the Lack_of_Ack messages.
Operation using the mandatory messages only is referred to as "Terse
Mode", while inclusion of the error messaging is referred to as
"Verbose Mode". GSAKMP implementations MUST support Terse Mode and
MAY support Verbose Mode. Group Establishment is discussed in
Section 5.2.1.
Harney, et al. Standards Track [Page 27]
^L
RFC 4535 GSAKMP June 2006
A group is set in Terse or Verbose Mode by a policy token parameter.
All (S-)GC/KSes in a Verbose Mode group MUST support Verbose Mode.
GSAKMP allows Verbose Mode groups to have GMs that do not support
Verbose Mode. Candidate GMs that do not support Verbose Mode and
receive a RTJ-Error or Lack-of-Ack message must handle these messages
gracefully. Additionally, a GM will not know ahead of time that it
is interacting with the (S-)GC/KS in Verbose or Terse Mode until the
policy token is received.
For denial of service protection, a Cookie Exchange MAY precede the
Group Establishment exchange. The Cookie Exchange is described in
Section 5.2.2.
Regardless of mode, any error message sent between component members
indicates the first error encountered while processing the message.
5.2.1. Standard Group Establishment
After the out-of-band receipt of a policy token, a potential Group
Controller Key Server (GC/KS) verifies the token and its eligibility
to perform GC/KS functionality. It is then permitted to create any
needed group keys and begin to establish the group.
The GSAKMP Ladder Diagram, Figure 1, illustrates the process of
establishing a cryptographic group. The left side of the diagram
represents the actions of the GC/KS. The right side of the diagram
represents the actions of the GMs. The components of each message
shown in the diagram are presented in Sections 5.2.1.1 through
5.2.1.5.
CONTROLLER Mandatory/ MESSAGE MEMBER
Optional
!<-M----------Request to Join-------------!
<Process> ! !
<RTJ> ! !
!--M----------Key Download--------------->!
! !<Process KeyDL>
!--O-------Request to Join Error--------->! or
! ! <Proc RTJ-Err>
!<-M----Key Download - Ack/Failure--------!
<Process >! !
<KeyDL-A/F>! !
!--O------Lack of Acknowledgement-------->!
! ! <Proc LOA>
!<=======SHARED KEYED GROUP SESSION======>!
Figure 1: GSAKMP Ladder Diagram
Harney, et al. Standards Track [Page 28]
^L
RFC 4535 GSAKMP June 2006
The Request to Join message is sent from a potential GM to the GC/KS
to request admission to the cryptographic group. The message
contains key creation material, freshness data, an optional selection
of mechanisms, and the signature of the GM.
The Key Download message is sent from the GC/KS to the GM in response
to an accepted Request to Join. This GC/KS-signed message contains
the identifier of the GM, freshness data, key creation material,
encrypted keys, and the encrypted policy token. The policy token is
used to facilitate well-ordered group creation and MUST include the
group's identification, group permissions, group join policy, group
controller key server identity, group management information, and
digital signature of the GO. This will allow the GM to determine
whether group policy is compatible with local policy.
The Request to Join Error message is sent from the GC/KS to the GM in
response to an unaccepted Request to Join. This message is not
signed by the GC/KS for two reasons: 1) the GM, at this point, has no
knowledge of who is authorized to act as a GC/KS, and so the
signature would thus be meaningless to the GM, and 2) signing
responses to denied join requests would provide a denial of service
potential. The message contains an indication of the error
condition. The possible values for this error condition are:
Invalid-Payload-Type, Invalid-Version, Invalid-Group-ID, Invalid-
Sequence-ID, Payload-Malformed, Invalid-ID-Information, Invalid-
Certificate, Cert-Type-Unsupported, Invalid-Cert-Authority,
Authentication-Failed, Certificate-Unavailable, Unauthorized-Request,
Prohibited-by-Group-Policy, and Prohibited-by-Locally-Configured-
Policy.
The Key Download Ack/Failure message indicates Key Download receipt
status at the GM. It is a GM-signed message containing freshness
data and status.
The Lack_of_Ack message is sent from the GC/KS to the GM in response
to an invalid or absent Key Download Ack/Failure message. The signed
message contains freshness and status data and is used to warn the GM
of impending eviction from the group if a valid Key Download
Ack/Failure is not sent. Eviction means that the member will be
excluded from the group after the next Rekey Event. The policy of
when a particular group needs to rekey itself is stated in the policy
token. Eviction is discussed further in Section 5.3.2.1.
For the following message structure sections, details about payload
format and processing can be found in Section 7. Each message is
identified by its exchange type in the header of the message. Nonces
MUST be present in the messages unless synchronization time is
available to the system.
Harney, et al. Standards Track [Page 29]
^L
RFC 4535 GSAKMP June 2006
5.2.1.1. Request to Join
The exchange type for Request to Join is eight (8).
The components of a Request to Join Message are shown in Table 1.
Table 1: Request to Join (RTJ) Message Definition
Message Name : Request to Join (RTJ)
Dissection : {HDR-GrpID, Key Creation, Nonce_I, [VendorID],
: [Notif_Mechanism_Choices], [Notif_Cookie],
: [Notif_IPValue]} SigM, [Cert]
Payload Types : GSAKMP Header, Key Creation, [Nonce], [Vendor
ID], Signature, [Certificate], [Notifications]
SigM : Signature of Group Member
Cert : Necessary Certificates, zero or more
{}SigX : Indicates fields used in Signature
[] : Indicate an optional data item
As shown by Figure 1, a potential GM MUST generate and send an RTJ
message to request permission to join the group. At a minimum, the
GM MUST be able to manually configure the destination for the RTJ.
As defined in the dissection of the RTJ message, this message MUST
contain a Key Creation payload for KEK determination. A Nonce
payload MUST be included for freshness and the Nonce_I value MUST be
saved for potential later use. The GC/KS will use this supplied
nonce only if the policy token for this group defines the use of
nonces versus synchronization time. An OPTIONAL Notification payload
of type Mechanism Choices MAY be included to identify the mechanisms
the GM wants to use. Absence of this payload will cause the GC/KS to
select appropriate default policy-token-specified mechanisms for the
Key Download.
In response, the GC/KS accepts or denies the request based on local
configuration. <Process RTJ> indicates the GC/KS actions that will
determine if the RTJ will be acted upon. The following checks SHOULD
be performed in the order presented.
In this procedure, the GC/KS MUST verify that the message header is
properly formed and confirm that this message is for this group by
checking the value of the GroupID. If the header checks pass, then
the identity of the sender is extracted from the Signature payload.
This identity MUST be used to perform access control checks and find
the GMs credentials (e.g., certificate) for message verification. It
MUST also be used in the Key Download message. Then, the GC/KS will
verify the signature on the message to ensure its authenticity. The
Harney, et al. Standards Track [Page 30]
^L
RFC 4535 GSAKMP June 2006
GC/KS MUST use verified and trusted authentication material from a
known root. If the message signature verifies, the GC/KS then
confirms that all required payloads are present and properly
formatted based upon the mechanisms announced and/or requested. If
all checks pass, the GC/KS will create and send the Key Download
message as described in Section 5.2.1.2.
If the GM receives no response to the RTJ within the GM's locally
configured timeout value, the GM SHOULD resend the RTJ message up to
three (3) times.
NOTE: At any one time, a GC/KS MUST process no more than one (1)
valid RTJ message from a given GM per group until its pending
registration protocol exchange concludes.
If any error occurs during RTJ message processing, and the GC/KS is
running in Terse Mode, the registration session MUST be terminated,
and all saved state information MUST be cleared.
The OPTIONAL Notification payload of type Cookie is discussed in
Section 5.2.2.
The OPTIONAL Notification payload of type IPValue may be used for the
GM to convey a specific IP value to the GC/KS.
5.2.1.2. Key Download
The exchange type for Key Download is nine (9).
The components of a Key Download Message are shown in Table 2:
Table 2: Key Download (KeyDL) Message Definition
Message Name : Key Download (KeyDL)
Dissection : {HDR-GrpID, Member ID, [Nonce_R, Nonce_C], Key
Creation, (Policy Token)*, (Key Download)*,
[VendorID]} SigC, [Cert]
Payload Types : GSAKMP Header, Identification, [Nonce], Key
Creation, Policy Token, Key Download, [Vendor
ID], Signature, [Certificate]
SigC : Signature of Group Controller Key Server
Cert : Necessary Certificates, zero or more
{}SigX : Indicates fields used in Signature
[] : Indicate an optional data item
(data)* : Indicates encrypted information
Harney, et al. Standards Track [Page 31]
^L
RFC 4535 GSAKMP June 2006
In response to a properly formed and verified RTJ message, the GC/KS
creates and sends the KeyDL message. As defined in the dissection of
the message, this message MUST contain payloads to hold the following
information: GM identification, Key Creation material, encrypted
policy token, encrypted key information, and signature information.
If synchronized time is not available, the Nonce payloads MUST be
included in the message for freshness.
If present, the nonce values transmitted MUST be the GC/KS's
generated Nonce_R value and the combined Nonce_C value that was
generated by using the GC/KS's Nonce_R value and the Nonce_I value
received from the GM in the RTJ.
If two-party key determination is used, the key creation material
supplied by the GM and/or the GC/KS will be used to generate the key.
Generation of this key is dependent on the key exchange, as defined
in Section 7.11, "Key Creation Payload". The policy token and key
material are encrypted in the generated key.
The GM MUST be able to process the Key Download message. <Process
KeyDL> indicates the GM actions that will determine how the Key
Download message will be acted upon. The following checks SHOULD be
performed in the order presented.
In this procedure, the GM will verify that the message header is
properly formed and confirm that this message is for this group by
checking the value of the GroupID. If the header checks pass, the GM
MUST confirm that this message was intended for itself by comparing
the Member ID in the Identification payload to its identity.
After identification confirmation, the freshness values are checked.
If using nonces, the GM MUST use its saved Nonce_I value, extract the
received GC/KS Nonce_R value, compute the combined Nonce_C value, and
compare it to the received Nonce_C value. If not using nonces, the
GM MUST check the timestamp in the Signature payload to determine if
the message is new.
After freshness is confirmed, the signature MUST be verified to
ensure its authenticity. The GM MUST use verified and trusted
authentication material from a known root. If the message signature
verifies, the key creation material is extracted from the Key
Creation payload to generate the KEK. This KEK is then used to
decrypt the policy token data. The signature on the policy token
MUST be verified. Access control checks MUST be performed on both
the GO and the GC/KS to determine both their authorities within this
group. After all these checks pass, the KEK can then be used to
Harney, et al. Standards Track [Page 32]
^L
RFC 4535 GSAKMP June 2006
decrypt and process the key material from the Key Download payload.
If all is successful, the GM will create and send the Key Download -
Ack/Failure message as described in Section 5.2.1.4.
The Policy Token and Key Download Payloads are sent encrypted in the
KEK generated by the Key Creation Payload information using the
mechanisms defined in the group announcement. This guarantees that
the sensitive policy and key data for the group and potential rekey
data for this individual cannot be read by anyone but the intended
recipient.
If any error occurs during KeyDL message processing, regardless of
whether the GM is in Terse or Verbose Mode, the registration session
MUST be terminated, the GM MUST send a Key Download - Ack/Failure
message, and all saved state information MUST be cleared. If in
Terse Mode, the Notification Payload will be of type NACK to indicate
termination. If in Verbose Mode, the Notification Payload will
contain the type of error encountered.
5.2.1.3. Request to Join Error
The exchange type for Request to Join Error is eleven (11).
The components of the Request to Join Error Message are shown in
Table 3:
Table 3: Request to Join Error (RTJ-Err) Message Definition
Message Name : Request to Join Error (RTJ-Err)
Dissection : {HDR-GrpID, [Nonce_I], Notification, [VendorID]}
Payload Types : GSAKMP Header, [Nonce] Notification, [Vendor ID]
In response to an unacceptable RTJ, the GC/KS MAY send a Request to
Join Error (RTJ-Err) message containing an appropriate Notification
payload. Note that the RTJ-Err message is not a signed message for
the following reasons: the lack of awareness on the GM's perspective
of who is a valid GC/KS as well as the need to protect the GC/KS from
signing messages and using valuable resources. Following the sending
of an RTJ-Err, the GC/KS MUST terminate the session, and all saved
state information MUST be cleared.
Upon receipt of an RTJ-Err message, the GM will validate the
following: the GroupID in the header belongs to a group to which the
GM has sent an RTJ, and, if present, the Nonce_I matches a Nonce_I
sent in an RTJ to that group. If the above checks are successful,
the GM MAY terminate the state associated with that GroupID and
Harney, et al. Standards Track [Page 33]
^L
RFC 4535 GSAKMP June 2006
nonce. The GM SHOULD be capable of receiving a valid KeyDownload
message for that GroupID and nonce after receiving an RTJ-Err for a
locally configured amount of time.
5.2.1.4. Key Download - Ack/Failure
The exchange type for Key Download - Ack/Failure is four (4).
The components of the Key Download - Ack/Failure Message are shown in
Table 4:
Table 4: Key Download - Ack/Failure (KeyDL-A/F) Message Definition
Message Name : Key Download - Ack/Failure (KeyDL-A/F)
Dissection : {HDR-GrpID, [Nonce_C], Notif_Ack, [VendorID]}SigM
Payload Types : GSAKMP Header, [Nonce], Notification, [Vendor
ID], Signature
SigM : Signature of Group Member
{}SigX : Indicates fields used in Signature
In response to a properly processed KeyDL message, the GM creates and
sends the KeyDL-A/F message. As defined in the dissection of the
message, this message MUST contain payloads to hold the following
information: Notification payload of type Acknowledgement (ACK) and
signature information. If synchronized time is not available, the
Nonce payload MUST be present for freshness, and the nonce value
transmitted MUST be the GM's generated Nonce_C value. If the GM does
not receive a KeyDL message within a locally configured amount of
time, the GM MAY send a new RTJ. If the GM receives a valid LOA (see
Section 5.2.1.5) message from the GC/KS before receipt of a KeyDL
message, the GM SHOULD send a KeyDL-A/F message of type NACK followed
by a new RTJ.
The GC/KS MUST be able to process the KeyDL-A/F message. <Process
KeyDL-A/F> indicates the GC/KS actions that will determine how the
KeyDL-A/F message will be acted upon. The following checks SHOULD be
performed in the order presented.
In this procedure, the GC/KS will verify that the message header is
properly formed and confirm that this message is for this group by
checking the value of the GroupID. If the header checks pass, the
GC/KS MUST check the message for freshness. If using nonces, the
GC/KS MUST use its saved Nonce_C value and compare it for equality
with the received Nonce_C value. If not using nonces, the GC/KS MUST
check the timestamp in the Signature payload to determine if the
message is new. After freshness is confirmed, the signature MUST be
verified to ensure its authenticity. The GC/KS MUST use verified and
trusted authentication material from a known root. If the message
Harney, et al. Standards Track [Page 34]
^L
RFC 4535 GSAKMP June 2006
signature verifies, the GC/KS processes the Notification payload. If
the notification type is of type ACK, then the registration has
completed successfully, and both parties SHOULD remove state
information associated with this GM's registration.
If the GC/KS does not receive a KeyDL-A/F message of proper form or
is unable to correctly process the KeyDL-A/F message, the
Notification payload type is any value except ACK; or if no KeyDL-A/F
message is received within the locally configured timeout, the GC/KS
MUST evict this GM from the group in the next policy-defined Rekey
Event. The GC/KS MAY send the OPTIONAL Lack_of_Ack message if
running in Verbose Mode as defined in Section 5.2.1.5.
5.2.1.5. Lack of Ack
The exchange type for Lack of Ack is twelve (12).
The components of a Lack of Ack Message are shown in Table 5:
Table 5: Lack of Ack (LOA) Message Definition
Message Name : Lack of Ack (LOA)
Dissection : {HDR-GrpID, Member ID, [Nonce_R, Nonce_C],
Notification, [VendorID]} SigC, [Cert]
Payload Types : GSAKMP Header, Identification, [Nonce],
Notification, [Vendor ID], Signature,
[Certificate]
SigC : Signature of Group Controller Key Server
Cert : Necessary Certificates, zero or more
{}SigX : Indicates fields used in Signature
[] : Indicate an optional data item
If the GC/KS's local timeout value expires prior to receiving a
KeyDL-A/F from the GM, the GC/KS MAY create and send a LOA message to
the GM. As defined in the dissection of the message, this message
MUST contain payloads to hold the following information: GM
identification, Notification of error, and signature information.
If synchronized time is not available, the Nonce payloads MUST be
present for freshness, and the nonce values transmitted MUST be the
GC/KS's generated Nonce_R value and the combined Nonce_C value which
was generated by using the GC/KS's Nonce_R value and the Nonce_I
value received from the GM in the RTJ. These values were already
generated during the Key Download message phase.
Harney, et al. Standards Track [Page 35]
^L
RFC 4535 GSAKMP June 2006
The GM MAY be able to process the LOA message based upon local
configuration. <Process LOA> indicates the GM actions that will
determine how the LOA message will be acted upon. The following
checks SHOULD be performed in the order presented.
In this procedure, the GM MUST verify that the message header is
properly formed and confirm that this message is for this group by
checking the value of the GroupID. If the header checks pass, the GM
MUST confirm that this message was intended for itself by comparing
the Member ID in the Identification payload to its identity. After
identification confirmation, the freshness values are checked. If
using nonces, the GM MUST use its save Nonce_I value, extract the
received GC/KS Nonce_R value, compute the combined Nonce_C value, and
compare it to the received Nonce_C value. If not using nonces, the
GM MUST check the timestamp in the Signature payload to determine if
the message is new. After freshness is confirmed, access control
checks MUST be performed on the GC/KS to determine its authority
within this group. Then signature MUST be verified to ensure its
authenticity, The GM MUST use verified and trusted authentication
material from a known root.
If the checks succeed, the GM SHOULD resend a KeyDL-A/F for that
session.
5.2.2. Cookies: Group Establishment with Denial of Service Protection
This section defines an OPTIONAL capability that MAY be implemented
into GSAKMP when using IP-based groups. The information in this
section borrows heavily from [IKEv2] as this protocol has already
worked through this issue and GSAKMP is copying this concept. This
section will contain paraphrased sections of [IKEv2] modified for
GSAKMP to define the purpose of Cookies.
An optional Cookie mode is being defined for the GSAKMP to help
against DoS attacks.
The term "cookies" originates with Karn and Simpson [RFC2522] in
Photuris, an early proposal for key management with IPSec. The
ISAKMP fixed message header includes two eight-octet fields titled
"cookies". Instead of placing this cookie data in the header, in
GSAKMP this data is moved into a Notification payload.
An expected attack against GSAKMP is state and CPU exhaustion, where
the target GC/KS is flooded with Request to Join requests from forged
IP addresses. This attack can be made less effective if a GC/KS
implementation uses minimal CPU and commits no state to the
communication until it knows the initiator potential GM can receive
packets at the address from which it claims to be sending them. To
Harney, et al. Standards Track [Page 36]
^L
RFC 4535 GSAKMP June 2006
accomplish this, the GC/KS (when operating in Cookie mode) SHOULD
reject initial Request to Join messages unless they contain a
Notification payload of type "cookie". It SHOULD instead send a
Cookie Download message as a response to the RTJ and include a cookie
in a notify payload of type Cookie_Required. Potential GMs who
receive such responses MUST retry the Request to Join message with
the responder-GC/KS-supplied cookie in its notification payload of
type Cookie, as defined by the optional Notification payload of the
Request to Join Msg in Section 5.2.1.1. This initial exchange will
then be as shown in Figure 2 with the components of the new message
Cookie Download shown in Table 6. The exchange type for Cookie
Download is ten (10).
CONTROLLER MESSAGE MEMBER
in Cookie Mode
!<--Request to Join without Cookie Info---!
<Gen Cookie>! !
<Response >! !
!----------Cookie Download--------------->!
! ! <Process CD>
!<----Request to Join with Cookie Info----!
<Process> ! !
<RTJ > ! !
!-------------Key Download--------------->!
! ! <Proc KeyDL>
!<-----Key Download - Ack/Failure--------!
<Process >! !
<KeyDL-A/F>! !
!<=======SHARED KEYED GROUP SESSION======>!
Figure 2: GSAKMP Ladder Diagram with Cookies
Table 6: Cookie Download Message Definition
Message Name : Cookie Download
Dissection : {HDR-GrpID, Notif_COOKIE_REQUIRED, [VendorID]}
Payload Types : GSAKMP Header, Notification, [Vendor ID]
The first two messages do not affect any GM or GC/KS state except for
communicating the cookie.
A GSAKMP implementation SHOULD implement its GC/KS cookie generation
in such a way as not to require any saved state to recognize its
valid cookie when the second Request to Join message arrives. The
exact algorithms and syntax they use to generate cookies does not
affect interoperability and hence is not specified here.
Harney, et al. Standards Track [Page 37]
^L
RFC 4535 GSAKMP June 2006
The following is an example of how an endpoint could use cookies to
implement limited DoS protection.
A good way to do this is to set the cookie to be:
Cookie = <SecretVersionNumber> | Hash(Ni | IPi | <secret>)
where <secret> is a randomly generated secret known only to the
responder GC/KS and periodically changed, Ni is the nonce value taken
from the initiator potential GM, and IPi is the asserted IP address
of the candidate GM. The IP address is either the IP header's source
IP address or else the IP address contained in the optional
Notification "IPvalue" payload (if it is present).
<SecretVersionNumber> should be changed whenever <secret> is
regenerated. The cookie can be recomputed when the "Request to Join
with Cookie Info" arrives and compared to the cookie in the received
message. If it matches, the responder GC/KS knows that all values
have been computed since the last change to <secret> and that IPi
MUST be the same as the source address it saw the first time.
Incorporating Ni into the hash assures that an attacker who sees only
the Cookie_Download message cannot successfully forge a "Request to
Join with Cookie Info" message. This Ni value MUST be the same Ni
value from the original "Request to Join" message for the calculation
to be successful.
If a new value for <secret> is chosen while connections are in the
process of being initialized, a "Request to Join with Cookie Info"
might be returned with a <SecretVersionNumber> other than the current
one. The responder GC/KS in that case MAY reject the message by
sending another response with a new cookie, or it MAY keep the old
value of <secret> around for a short time and accept cookies computed
from either one. The responder GC/KS SHOULD NOT accept cookies
indefinitely after <secret> is changed, since that would defeat part
of the denial of service protection. The responder GC/KS SHOULD
change the value of <secret> frequently, especially if under attack.
An alternative example for Cookie value generation in a NAT
environment is to substitute the IPi value with the IPValue received
in the Notification payload in the RTJ message. This scenario is
indicated by the presence of the Notification payload of type
IPValue. With this substitution, a calculation similar to that
described above can be used.
Harney, et al. Standards Track [Page 38]
^L
RFC 4535 GSAKMP June 2006
5.2.3. Group Establishment for Receive-Only Members
This section describes an OPTIONAL capability that may be implemented
in a structured system where the authorized (S-)GC/KS is known in
advance through out-of-band means and where synchronized time is
available.
Unlike Standard Group Establishment, in the Receive-Only system, the
GMs and (S-)GC/KSes operate in Terse Mode and exchange one message
only: the Key Download. Potential new GMs do not send an RTJ.
(S-)GC/KSes do not expect Key Download - ACK/Failure messages and do
not remove GMs for lack or receipt of the message.
Operation is as follows: upon notification via an authorized out-of-
band event, the (S-)GC/KS forms and sends a Key Download message to
the new member with the Nonce payloads ABSENT. The GM verifies
- the ID payload identifies that GM
- the timestamp in the message is fresh
- the message is signed by an authorized (S-)GC/KS
- the signature on the message verifies
When using a Diffie-Hellman Key Creation Type for receive-only
members, a static-ephemeral model is assumed: the Key Creation
payload in the Key Download message contains the (S-)GC/KS's public
component. The member's public component is assumed to be obtained
through secure out-of-band means.
5.3. Group Maintenance
The Group Maintenance phase includes member joins and leaves, group
rekey activities, policy updates, and group destruction. These
activities are presented in the following sections.
5.3.1. Group Management
5.3.1.1. Rekey Events
A Rekey Event is any action, including a compromise report or key
expiration, that requires the creation of a new group key and/or
rekey information.
Once an event has been identified (as defined in the group security
policy token), the GC/KS MUST create and provide a signed message
containing the GTPK and rekey information to the group.
Harney, et al. Standards Track [Page 39]
^L
RFC 4535 GSAKMP June 2006
Each GM who receives this message MUST verify the signature on the
message to ensure its authenticity. If the message signature does
not verify, the message MUST be discarded. Upon verification, the GM
will find the appropriate rekey download packet and decrypt the
information with a stored rekey key(s). If a new Policy Token is
distributed with the message, it MUST be encrypted in the old GTPK.
The exchange type for Rekey Event is five (5).
The components of a Rekey Event message are shown in Table 7:
Table 7: Rekey Event Message Definition
Message Name : Rekey Event
Dissection : {HDR-GrpID, ([Policy Token])*, Rekey Array,
[VendorID]}SigC, [Cert]
Payload Types : GSAKMP Header, [Policy Token], Rekey Event,
[Vendor ID], Signature, [Certificate],
SigC : Signature of Group Controller Key Server
Cert : Necessary Certificates, zero or more
{}SigX : Indicates fields used in Signature
(data)* : Indicates encrypted information
[] : Indicate an optional data item
5.3.1.2. Policy Updates
New policy tokens are sent via the Rekey Event message. These policy
updates may be coupled with an existing rekey event or may be sent in
a message with the Rekey Event Type of the Rekey Event Payload set to
None(0) (see Section 7.5.1).
A policy token MUST NOT be processed if the processing of the Rekey
Event message carrying it fails. Policy token processing is type
dependent and is beyond the scope of this document.
5.3.1.3. Group Destruction
Group destruction is also accomplished via the Rekey Event message.
In a Rekey Event message for group destruction, the Sequence ID is
set to 0xFFFFFFFF. Upon receipt of this authenticated Rekey Event
message, group components MUST terminate processing of information
associated with the indicated group.
Harney, et al. Standards Track [Page 40]
^L
RFC 4535 GSAKMP June 2006
5.3.2. Leaving a Group
There are several conditions under which a member will leave a group:
eviction, voluntary departure without notice, and voluntary departure
with notice (de-registration). Each of these is discussed in this
section.
5.3.2.1. Eviction
At some point in the group's lifetime, it may be desirable to evict
one or more members from a group. From a key management viewpoint,
this involves revoking access to the group's protected data by
"disabling" the departing members' keys. This is accomplished with a
Rekey Event, which is discussed in more detail in Section 5.3.1.1.
If future access to the group is also to be denied, the members MUST
be added to a denied access control list, and the policy token's
authorization rules MUST be appropriately updated so that they will
exclude the expelled GM(s). After receipt of a new PT, GMs SHOULD
evaluate the trustworthiness of any recent application data
originating from the expelled GM(s).
5.3.2.2. Voluntary Departure without Notice
If a member wishes to leave a group for which membership imposes no
cost or responsibility to that member, then the member MAY merely
delete local copies of group keys and cease group activities.
5.3.2.3. De-Registration
If the membership in the group does impose cost or responsibility to
the departing member, then the member SHOULD de-register from the
group when that member wishes to leave. De-registration consists of
a three-message exchange between the GM and the member's GC/KS: the
Request_to_Depart, Departure_Response, and the Departure_Ack.
Compliant GSAKMP implementations for GMs SHOULD support the de-
registration messages. Compliant GSAKMP implementations for GC/KSes
MUST support the de-registration messages.
5.3.2.3.1. Request to Depart
The Exchange Type for a Request_to_Depart Message is thirteen (13).
The components of a Request_to_Depart Message are shown in Table 8.
Any GM desiring to initiate the de-registration process MUST generate
and send an RTD message to notify the GC/KS of its intent. As
defined in the dissection of the RTD message, this message MUST
contain payloads to hold the following information: the GC/KS
identification and Notification of the desire to leave the group.
Harney, et al. Standards Track [Page 41]
^L
RFC 4535 GSAKMP June 2006
When synchronization time is not available to the system as defined
by the Policy Token, a Nonce payload MUST be included for freshness,
and the Nonce_I value MUST be saved for later use. This message MUST
then be signed by the GM.
Table 8: Request_to_Depart (RTD) Message Definition
Message Name : Request_to_Depart (RTD)
Dissection : {HDR-GrpID, GC/KS_ID, [Nonce_I], Notif_Leave_Group,
[VendorID]} SigM, [Cert]
Payload Types : GSAKMP Header, Identification, [Nonce],
Notification, [Vendor ID], Signature,
[Certificate]
SigM : Signature of Group Member
Cert : Necessary Certificates, zero or more
{}SigX : Indicates fields used in Signature
[] : Indicate an optional data item
Upon receipt of the RTD message, the GC/KS MUST verify that the
message header is properly formed and confirm that this message is
for this group by checking the value of the GroupID. If the header
checks pass, then the identifier value in Identification payload is
compared to its own, the GC/KS's identity, to confirm that the GM
intended to converse with this GC/KS, the GC/KS who registered this
member into the group. Then the identity of the sender is extracted
from the Signature payload. This identity MUST be used to confirm
that this GM is a member of the group serviced by this GC/KS. Then
the GC/KS will confirm from the Notification payload that the GM is
requesting to leave the group. Then the GC/KS will verify the
signature on the message to ensure its authenticity. The GC/KS MUST
use verified and trusted authentication material from a known root.
If all checks pass and the message is successfully processed, then
the GC/KS MUST form a Departure_Response message as defined in
Section 5.3.2.3.2.
If the processing of the message fails, the de-registration session
MUST be terminated, and all state associated with this session is
removed. If the GC/KS is operating in Terse Mode, then no error
message is sent to the GM. If the GC/KS is operating in Verbose
Mode, then the GC/KS sends a Departure_Response Message with a
Notification Payload of type Request_to_Depart_Error.
Harney, et al. Standards Track [Page 42]
^L
RFC 4535 GSAKMP June 2006
5.3.2.3.2. Departure_Response
The Exchange Type for a Departure_Response Message is fourteen (14).
The components of a Departure_Response Message are shown in Table 9.
In response to a properly formed and verified RTD message, the GC/KS
MUST create and send the DR message. As defined in the dissection of
the message, this message MUST contain payloads to hold the following
information: GM identification, Notification for acceptance of
departure, and signature information. If synchronization time is not
available, the Nonce payloads MUST be included in the message for
freshness.
Table 9: Departure_Response (DR) Message Definition
Message Name : Departure_Response (DR)
Dissection : {HDR-GrpID, Member_ID, [Nonce_R, Nonce_C],
Notification, [VendorID]} SigC, [Cert]
Payload Types : GSAKMP Header, Identification, [Nonce],
Notification, [Vendor ID], Signature,
[Certificate]
SigC : Signature of Group Member
Cert : Necessary Certificates, zero or more
{}SigX : Indicates fields used in Signature
[] : Indicate an optional data item
If present, the nonce values transmitted MUST be the GC/KS's
generated Nonce_R value and the combined Nonce_C value that was
generated by using the GC/KS's Nonce_R value and the Nonce_I value
received from the GM in the RTD. This Nonce_C value MUST be saved
relative to this departing GM's ID.
The GM MUST be able to process the Departure_Response message. The
following checks SHOULD be performed in the order presented.
The GM MUST verify that the message header is properly formed and
confirm that this message is for this group by checking the value of
the GroupID. If the header checks pass, the GM MUST confirm that
this message was intended for itself by comparing the Member ID in
the Identification payload to its identity. After identification
confirmation, the freshness values are checked. If using nonces, the
GM MUST use its saved Nonce_I value, extract the received GC/KS
Nonce_R value, compute the combined Nonce_C value, and compare it for
equality with the received Nonce_C value. If not using nonces, the
GM MUST check the timestamp in the signature payload to determine if
the message is new. After freshness is confirmed, confirmation of
the identity of the signer of the DR message is the GMs authorized
Harney, et al. Standards Track [Page 43]
^L
RFC 4535 GSAKMP June 2006
GC/KS is performed. Then, the signature MUST be verified to ensure
its authenticity. The GM MUST use verified and trusted
authentication material from a known root. If the message signature
verifies, then the GM MUST verify that the Notification is of Type
Departure_Accepted or Request_to_Depart_Error.
If the processing is successful, and the Notification payload is of
type Departure_Accepted, the member MUST form the Departure_ACK
message as defined in Section 5.3.2.3.3. If the processing is
successful, and the Notification payload is of type
Request_to_Depart_Error, the member MUST remove all state associated
with the de-registration session. If the member still desires to
De-Register from the group, the member MUST restart the de-
registration process.
If the processing of the message fails, the de-registration session
MUST be terminated, and all state associated with this session is
removed. If the GM is operating in Terse Mode, then a Departure_Ack
Message with Notification Payload of type NACK is sent to the GC/KS.
If the GM is operating in Verbose Mode, then the GM sends a
Departure_Ack Message with a Notification Payload of the appropriate
failure type.
5.3.2.3.3. Departure_ACK
The Exchange Type for a Departure_ACK Message is fifteen (15). The
components of the Departure_ACK Message are shown in Table 10:
Table 10: Departure_ACK (DA) Message Definition
Message Name : Departure_ACK (DA)
Dissection : {HDR-GrpID, [Nonce_C], Notif_Ack, [VendorID]}SigM
Payload Types : GSAKMP Header, [Nonce], Notification, [Vendor
ID], Signature
SigM : Signature of Group Member
{}SigX : Indicates fields used in Signature
In response to a properly processed Departure_Response message, the
GM MUST create and send the Departure_ACK message. As defined in the
dissection of the message, this message MUST contain payloads to hold
the following information: Notification payload of type
Acknowledgement (ACK) and signature information. If synchronization
time is not available, the Nonce payload MUST be present for
freshness, and the nonce value transmitted MUST be the GM's generated
Nonce_C value.
Harney, et al. Standards Track [Page 44]
^L
RFC 4535 GSAKMP June 2006
Upon receipt of the Departure_ACK, the GC/KS MUST perform the
following checks. These checks SHOULD be performed in the order
presented.
In this procedure, the GC/KS MUST verify that the message header is
properly formed and confirm that this message is for this group by
checking the value of the GroupID. If the header checks pass, the
GC/KS MUST check the message for freshness. If using nonces, the
GC/KS MUST use its saved Nonce_C value and compare it to the received
Nonce_C value. If not using nonces, the GC/KS MUST check the
timestamp in the signature payload to determine if the message is
new. After freshness is confirmed, the signature MUST be verified to
ensure its authenticity. The GC/KS MUST use verified and trusted
authentication material from a known root. If the message signature
verifies, the GC/KS processes the Notification payload. If the
notification type is of type ACK, this is considered a successful
processing of this message.
If the processing of the message is successful, the GC/KS MUST remove
the member from the group. This MAY involve initiating a Rekey Event
for the group.
If the processing of the message fails or if no Departure_Ack is
received, the GC/KS MAY issue a LOA message.
6. Security Suite
The Security Definition Suite 1 MUST be supported. Other security
suite definitions MAY be defined in other Internet specifications.
6.1. Assumptions
All potential GMs will have enough information available to them to
use the correct Security Suite to join the group. This can be
accomplished by a well-known default suite, 'Security Suite 1', or by
announcing/posting another suite.
6.2. Definition Suite 1
GSAKMP implementations MUST support the following suite of algorithms
and configurations. The following definition of Suite 1 borrows
heavily from IKE's Oakley group 2 definition and Oakley itself.
The GSAKMP Suite 1 definition gives all the algorithm and
cryptographic definitions required to process group establishment
messages. It is important to note that GSAKMP does not negotiate
Harney, et al. Standards Track [Page 45]
^L
RFC 4535 GSAKMP June 2006
these cryptographic mechanisms. This definition is set by the Group
Owner via the Policy Token (passed during the GSAKMP exchange for
member verification purposes).
The GSAKMP Suite 1 definition is:
Key download and Policy Token encryption algorithm definition:
Algorithm: AES
Mode: CBC
Key Length: 128 bits
Policy Token digital signature algorithm is:
DSS-ASN1-DER
Hash algorithm is:
SHA-1
Nonce Hash algorithm is:
SHA-1
The Key Creation definition is:
Algorithm type is Diffie Hellman
MODP group definition
g: 2
p: "FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1"
"29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD"
"EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245"
"E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED"
"EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE65381"
"FFFFFFFF FFFFFFFF"
NOTE: The p and g values come from IKE [RFC2409], Section 6.2,
"Second Oakley Group", and p is 1024 bits long.
The GSAKMP message digital signature algorithm is:
DSS-SHA1-ASN1-DER
The digital signature ID type is:
ID-DN-STRING
Harney, et al. Standards Track [Page 46]
^L
RFC 4535 GSAKMP June 2006
7. GSAKMP Payload Structure
A GSAKMP Message is composed of a GSAKMP Header (Section 7.1)
followed by at least one GSAKMP Payload. All GSAKMP Payloads are
composed of the Generic Payload Header (Section 7.2) followed by the
specific payload data. The message is chained by a preceding payload
defining its succeeding payload. Payloads are not required to be in
the exact order shown in the message dissection in Section 5,
provided that all required payloads are present. Unless it is
explicitly stated in a dissection that multiple payloads of a single
type may be present, no more than one payload of each type allowed by
the message may appear. The final payload in a message will point to
no succeeding payload.
All fields of type integer in the Header and Payload structure that
are larger than one octet MUST be converted into Network Byte Order
prior to data transmission.
Padding of fields MUST NOT be done as this leads to processing
errors.
When a message contains a Vendor ID payload, the processing of the
payloads of that message is modified as defined in Section 7.10.
7.1. GSAKMP Header
7.1.1. GSAKMP Header Structure
The GSAKMP Header fields are shown in Figure 3 and defined as:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! GroupID Type ! GroupID Length! Group ID Value ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ! Next Payload ! Version ! Exchange Type !
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Sequence ID !
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Length !
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: GSAKMP Header Format
Harney, et al. Standards Track [Page 47]
^L
RFC 4535 GSAKMP June 2006
Group Identification Type (1 octet) - Table 11 presents the group
identification types. This field is treated as an unsigned
value.
Table 11: Group Identification Types
Grp ID Type Value Description
_____________________________________________________________________
Reserved 0
UTF-8 1 Format defined in Section 7.1.1.1.1.
Octet String 2 This type MUST be implemented.
Format defined in Section 7.1.1.1.2.
IPv4 3 Format defined in Section 7.1.1.1.3.
IPv6 4 Format defined in Section 7.1.1.1.4.
Reserved to IANA 5 - 192
Private Use 193 - 255
Group Identification Length (1 octet) - Length of the Group
Identification Value field in octets. This value MUST NOT be
zero (0). This field is treated as an unsigned value.
Group Identification Value (variable length) - Indicates the
name/title of the group. All GroupID types should provide unique
naming across groups. GroupID types SHOULD provide this
capability by including a random element generated by the creator
(owner) of the group of at least eight (8) octets, providing
extremely low probability of collision in group names. The
GroupID value is static throughout the life of the group.
Next Payload (1 octet) - Indicates the type of the next payload in
the message. The format for each payload is defined in the
following sections. Table 12 presents the payload types. This
field is treated as an unsigned value.
Harney, et al. Standards Track [Page 48]
^L
RFC 4535 GSAKMP June 2006
Table 12: Payload Types
Next_Payload_Type Value
___________________________________
None 0
Policy Token 1
Key Download Packet 2
Rekey Event 3
Identification 4
Reserved 5
Certificate 6
Reserved 7
Signature 8
Notification 9
Vendor ID 10
Key Creation 11
Nonce 12
Reserved to IANA 13 - 192
Private Use 193 - 255
Version (1 octet) - Indicates the version of the GSAKMP protocol in
use. The current value is one (1). This field is treated as an
unsigned value.
Exchange Type (1 octet) - Indicates the type of exchange (also known
as the message type). Table 13 presents the exchange type
values. This field is treated as an unsigned value.
Table 13: Exchange Types
Exchange_Type Value
________________________________________
Reserved 0 - 3
Key Download Ack/Failure 4
Rekey Event 5
Reserved 6 - 7
Request to Join 8
Key Download 9
Cookie Download 10
Request to Join Error 11
Lack of Ack 12
Request to Depart 13
Departure Response 14
Departure Ack 15
Reserved to IANA 16 - 192
Private Use 193 - 255
Harney, et al. Standards Track [Page 49]
^L
RFC 4535 GSAKMP June 2006
Sequence ID (4 octets) - The Sequence ID is used for replay
protection of group management messages. If the message is not a
group management message, this value MUST be set to zero (0).
The first value used by a (S-)GC/KS MUST be one (1). For each
distinct group management message that this (S-)GC/KS transmits,
this value MUST be incremented by one (1). Receivers of this
group management message MUST confirm that the value received is
greater than the value of the sequence ID received with the last
group management message from this (S-)GC/KS. Group Components
(e.g., GMs, S-GC/KSes) MUST terminate processing upon receipt of
an authenticated group management message containing a Sequence
ID of 0xFFFFFFFF. This field is treated as an unsigned integer
in network byte order.
Length (4 octets) - Length of total message (header + payloads) in
octets. This field is treated as an unsigned integer in network
byte order.
Harney, et al. Standards Track [Page 50]
^L
RFC 4535 GSAKMP June 2006
7.1.1.1. GroupID Structure
This section defines the formats for the defined GroupID types.
7.1.1.1.1. UTF-8
The format for type UTF-8 [RFC3629] is shown in Figure 4.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Random Value ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ !
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! UTF-8 String ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 4: GroupID UTF-8 Format
Random Value (16 octets) - For the UTF-8 GroupID type, the Random
Value is represented as a string of exactly 16 hexadecimal digits
converted from its octet values in network-byte order. The
leading zero hexadecimal digits and the trailing zero hexadecimal
digits are always included in the string, rather than being
truncated.
UTF-8 String (variable length) - This field contains the human
readable portion of the GroupID in UTF-8 format. Its length is
calculated as the (GroupID Length - 16) for the Random Value
field. The minimum length for this field is one (1) octet.
Harney, et al. Standards Track [Page 51]
^L
RFC 4535 GSAKMP June 2006
7.1.1.1.2. Octet String
The format for type Octet String is shown in Figure 5.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Random Value ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ !
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Octet String ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 5: GroupID Octet String Format
Random Value (8 octets) - The 8-octet unsigned random value in
network byte order format.
Octet String (variable length) - This field contains the Octet String
portion of the GroupID. Its length is calculated as the (GroupID
Length - 8) for the Random Value field. The minimum length for
this field is one (1) octet.
7.1.1.1.3. IPv4 Group Identifier
The format for type IPv4 Group Identifier is shown in Figure 6.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Random Value ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ !
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! IPv4 Value !
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 6: GroupID IPv4 Format
Random Value (8 octets) - The 8-octet unsigned random value in
network byte order format.
IPv4 Value (4 octets) - The IPv4 value in network byte order format.
This value MAY contain the multicast address of the group.
Harney, et al. Standards Track [Page 52]
^L
RFC 4535 GSAKMP June 2006
7.1.1.1.4. IPv6 Group Identifier
The format for type IPv6 Group Identifier is shown in Figure 7.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Random Value ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ !
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! IPv6 Value ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ !
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 7: GroupID IPv6 Format
Random Value (8 octets) - The 8-octet unsigned random value in
network byte order format.
IPv6 Value (16 octets) - The IPv6 value in network byte order format.
This value MAY contain the multicast address of the group.
7.1.2. GSAKMP Header Processing
When processing the GSAKMP Header, the following fields MUST be
checked for correct values:
1. Group ID Type - The Group ID Type value MUST be checked to be a
valid group identification payload type as defined by Table 11.
If the value is not valid, then an error is logged. If in
Verbose Mode, an appropriate message containing notification
value Payload-Malformed will be sent.
2. GroupID - The GroupID of the received message MUST be checked
against the valid GroupIDs of the Group Component. If no match
is found, then an error is logged; in addition, if in Verbose
Mode, an appropriate message containing notification value
Invalid-Group-ID will be sent.
Harney, et al. Standards Track [Page 53]
^L
RFC 4535 GSAKMP June 2006
3. Next Payload - The Next Payload value MUST be checked to be a
valid payload type as defined by Table 12. If the value is not
valid, then an error is logged. If in Verbose Mode, an
appropriate message containing notification value Invalid-
Payload-Type will be sent.
4. Version - The GSAKMP version number MUST be checked that its
value is one (1). For other values, see below for processing.
The GSAKMP version number MUST be checked that it is consistent
with the group's policy as specified in its Policy Token. If the
version is not supported or authorized, then an error is logged.
If in Verbose Mode, an appropriate message containing
notification value Invalid-Version will be sent.
5. Exchange Type - The Exchange Type MUST be checked to be a valid
exchange type as defined by Table 13 and MUST be of the type
expected to be received by the GSAKMP state machine. If the
exchange type is not valid, then an error is logged. If in
Verbose Mode, an appropriate message containing notification
value Invalid-Exchange-Type will be sent.
6. Sequence ID - The Sequence ID value MUST be checked for
correctness. For negotiation messages, this value MUST be zero
(0). For group management messages, this value MUST be greater
than the last sequence ID received from this (S-)GC/KS. Receipt
of incorrect Sequence ID on group management messages MUST NOT
cause a reply message to be generated. Upon receipt of incorrect
Sequence ID on non-group management messages, an error is logged.
If in Verbose Mode, an appropriate message containing
notification value Invalid-Sequence-ID will be sent.
The length fields in the GSAKMP Header (Group ID Length and Length)
are used to help process the message. If any field is found to be
incorrect, then an error is logged. If in Verbose Mode, an
appropriate message containing notification value Payload-Malformed
will be sent.
In order to allow a GSAKMP version one (v1) implementation to
interoperate with future versions of the protocol, some ideas will be
discussed here to this effect.
A (S-)GC/KS that is operating in a multi-versioned group as defined
by the Policy Token can take many approaches on how to interact with
the GMs in this group for a rekey message.
Harney, et al. Standards Track [Page 54]
^L
RFC 4535 GSAKMP June 2006
One possible solution is for the (S-)GC/KS to send out multiple rekey
messages, one per version level that it supports. Then each GM would
only process the message that has the version at which it is
operating.
An alternative approach that all GM v1 implementations MUST support
is the embedding of a v1 message inside a version two (v2) message.
If a GM running at v1 receives a GSAKMP message that has a version
value greater than one (1), the GM will attempt to process the
information immediately after the Group Header as a Group Header for
v1 of the protocol. If this is in fact a v1 Group Header, then the
remainder of this v1 message will be processed in place. After
processing this v1 embedded message, the data following the v1
message should be the payload as identified by the Next Payload field
in the original header of the message and will be ignored by the v1
member. However, if the payload following the initial header is not
a v1 Group Header, then the GM will gracefully handle the
unrecognized message.
7.2. Generic Payload Header
7.2.1. Generic Payload Header Structure
Each GSAKMP payload defined in the following sections begins with a
generic header, shown in Figure 8, that provides a payload "chaining"
capability and clearly defines the boundaries of a payload. The
Generic Payload Header fields are defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Next Payload ! RESERVED ! Payload Length !
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 8: Generic Payload Header
Next Payload (1 octet) - Identifier for the payload type of the next
payload in the message. If the current payload is the last in
the message, then this field will be 0. This field provides the
"chaining" capability. Table 12 identifies the payload types.
This field is treated as an unsigned value.
RESERVED (1 octet) - Unused, set to 0.
Payload Length (2 octets) - Length in octets of the current payload,
including the generic payload header. This field is treated as
an unsigned integer in network byte order format.
Harney, et al. Standards Track [Page 55]
^L
RFC 4535 GSAKMP June 2006
7.2.2. Generic Payload Header Processing
When processing the Generic Payload Header, the following fields MUST
be checked for correct values:
1. Next Payload - The Next Payload value MUST be checked to be a
valid payload type as defined by Table 12. If the payload type
is not valid, then an error is logged. If in Verbose Mode, an
appropriate message containing notification value Invalid-
Payload-Type will be sent.
2. RESERVED - This field MUST contain the value zero (0). If the
value of this field is not zero (0), then an error is logged. If
in Verbose Mode, an appropriate message containing notification
value Payload-Malformed will be sent.
The length field in the Generic Payload Header is used to process the
remainder of the payload. If this field is found to be incorrect,
then an error is logged. If in Verbose Mode, an appropriate message
containing notification value Payload-Malformed will be sent.
7.3. Policy Token Payload
7.3.1. Policy Token Payload Structure
The Policy Token Payload contains authenticatable group-specific
information that describes the group security-relevant behaviors,
access control parameters, and security mechanisms. Figure 9 shows
the format of the payload.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Next Payload ! RESERVED ! Payload Length !
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Policy Token Type ! Policy Token Data ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 9: Policy Token Payload Format
The Policy Token Payload fields are defined as follows:
Next Payload (1 octet) - Identifier for the payload type of the next
payload in the message. If the current payload is the last in
the message, then this field will be 0. This field provides the
"chaining" capability. Table 12 identifies the payload types.
This field is treated as an unsigned value.
Harney, et al. Standards Track [Page 56]
^L
RFC 4535 GSAKMP June 2006
RESERVED (1 octet) - Unused, set to 0.
Payload Length (2 octets) - Length in octets of the current payload,
including the generic payload header. This field is treated as
an unsigned integer in network byte order format.
Policy Token Type (2 octets) - Specifies the type of Policy Token
being used. Table 14 identifies the types of policy tokens.
This field is treated as an unsigned integer in network byte
order format.
Table 14: Policy Token Types
Policy_Token_Type Value Definition/Defined In
____________________________________________________________________
Reserved 0
GSAKMP_ASN.1_PT_V1 1 All implementations of GSAKMP
MUST support this PT format.
Format specified in [RFC4534].
Reserved to IANA 2 - 49152
Private Use 49153 - 65535
Policy Token Data (variable length) - Contains Policy Token
information. The values for this field are token specific, and
the format is specified by the PT Type field.
If this payload is encrypted, only the Policy Token Data field is
encrypted.
The payload type for the Policy Token Payload is one (1).
7.3.2. Policy Token Payload Processing
When processing the Policy Token Payload, the following fields MUST
be checked for correct values:
1. Next Payload, RESERVED, Payload Length - These fields are
processed as defined in Section 7.2.2, "Generic Payload Header
Processing".
2. Policy Token Type - The Policy Token Type value MUST be checked
to be a valid policy token type as defined by Table 14. If the
value is not valid, then an error is logged. If in Verbose Mode,
an appropriate message containing notification value Payload-
Malformed will be sent.
Harney, et al. Standards Track [Page 57]
^L
RFC 4535 GSAKMP June 2006
3. Policy Token Data - This Policy Token Data MUST be processed
according to the Policy Token Type specified. The type will
define the format of the data.
7.4. Key Download Payload
Refer to the terminology section for the different terms relating to
keys used within this section.
7.4.1. Key Download Payload Structure
The Key Download Payload contains group keys (e.g., group keys,
initial rekey keys, etc.). These key download payloads can have
several security attributes applied to them based upon the security
policy of the group. Figure 10 shows the format of the payload.
The security policy of the group dictates that the key download
payload MUST be encrypted with a key encryption key (KEK). The
encryption mechanism used is specified in the Policy Token. The
group members MUST create the KEK using the key creation method
identified in the Key Creation Payload.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Next Payload ! RESERVED ! Payload Length !
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Number of Items ! Key Download Data Items ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 10: Key Download Payload Format
The Key Download Payload fields are defined as follows:
Next Payload (1 octet) - Identifier for the payload type of the next
payload in the message. If the current payload is the last in
the message, then this field will be 0. This field provides the
"chaining" capability. Table 12 identifies the payload types.
This field is treated as an unsigned value.
RESERVED (1 octet) - Unused, set to 0.
Payload Length (2 octets) - Length in octets of the current payload,
including the generic payload header. This field is treated as
an unsigned integer in network byte order format.
Harney, et al. Standards Track [Page 58]
^L
RFC 4535 GSAKMP June 2006
Number of Items (2 octets) - Contains the total number of group
traffic protection keys and Rekey Arrays being passed in this
data block. This field is treated as an unsigned integer in
network byte order format.
Key Download Data Items (variable length) - Contains Key Download
information. The Key Download Data is a sequence of
Type/Length/Data of the Number of Items. The format for each
item is defined in Figure 11.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! KDD Item Type ! Key Download Data Item Length! ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Data for Key Download Data Item (Key Datum/Rekey Array) ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 11: Key Download Data Item Format
For each Key Download Data Item, the data format is as follows:
Key Download Data (KDD) Item Type (1 octet) - Identifier for the
type of data contained in this Key Download Data Item. See
Table 15 for the possible values of this field. This field
is treated as an unsigned value.
Key Download Data Item Length (2 octets) - Length in octets of
the Data for the Key Download Data Item following this field.
This field is treated as an unsigned integer in network byte
order format.
Data for Key Download Data Item (variable length) - Contains Keys
and related information. The format of this field is
specific depending on the value of the Key Download Data Item
Type field. For KDD Item Type of GTPK, this field will
contain a Key Datum as defined in Section 7.4.1.1. For KDD
Item Type Rekey - LKH, this field will contain a Rekey Array
as defined in Section 7.4.1.2.
Harney, et al. Standards Track [Page 59]
^L
RFC 4535 GSAKMP June 2006
Table 15: Key Download Data Item Types
Key Download Data Value Definition
Item Type
_________________________________________________________________
GTPK 0 This type MUST be implemented.
This type identifies that the
data contains group traffic
protection key information.
Rekey - LKH 1 Optional
Reserved to IANA 2 - 192
Private Use 193 - 255
The encryption of this payload only covers the data subsequent to the
Generic Payload header (Number of Items and Key Download Data Items
fields).
The payload type for the Key Download Packet is two (2).
Harney, et al. Standards Track [Page 60]
^L
RFC 4535 GSAKMP June 2006
7.4.1.1. Key Datum Structure
A Key Datum contains all the information for a key. Figure 12 shows
the format for this structure.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Key Type ! Key ID ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ! Key Handle ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ! Key Creation Date ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! ! Key Expiration Date ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ !
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ !
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ! ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Key Data ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 12: Key Datum Format
Key Type (2 octets) - This is the cryptographic algorithm for which
this key data is to be used. This value is specified in the
Policy Token. See Table 16 for the possible values of this
field. This field is treated as an unsigned value.
Harney, et al. Standards Track [Page 61]
^L
RFC 4535 GSAKMP June 2006
Table 16: Cryptographic Key Types
Cryptographic_Key_Types Value Description/Defined In
____________________________________________________________________
Reserved 0 - 2
3DES_CBC64_192 3 See [RFC2451].
Reserved 4 - 11
AES_CBC_128 12 This type MUST be
supported. See [IKEv2].
AES_CTR 13 See [IKEv2].
Reserved to IANA 14 - 49152
Private Use 49153 - 65535
Key ID (4 octets) - This is the permanent ID of all versions of the
key. This value MAY be defined by the Policy Token. This field
is treated as an octet string.
Key Handle (4 octets) - This is the value to uniquely identify a
version (particular instance) of a key. This field is treated as
an octet string.
Key Creation Date (15 octets) - This is the time value of when this
key data was originally generated. This field contains the
timestamp in UTF-8 format YYYYMMDDHHMMSSZ, where YYYY is the year
(0000 - 9999), MM is the numerical value of the month (01 - 12),
DD is the day of the month (01 - 31), HH is the hour of the day
(00 - 23), MM is the minute within the hour (00 - 59), SS is the
seconds within the minute (00 - 59), and the letter Z indicates
that this is Zulu time. This format is loosely based on
[RFC3161].
Key Expiration Date (15 octets) - This is the time value of when this
key is no longer valid for use. This field contains the
timestamp in UTF-8 format YYYYMMDDHHMMSSZ, where YYYY is the year
(0000 - 9999), MM is the numerical value of the month (01 - 12),
DD is the day of the month (01 - 31), HH is the hour of the day
(00 - 23), MM is the minute within the hour (00 - 59), SS is the
seconds within the minute (00 - 59), and the letter Z indicates
that this is Zulu time. This format is loosely based on
[RFC3161].
Key Data (variable length) - This is the actual key data, which is
dependent on the Key Type algorithm for its format.
NOTE: The combination of the Key ID and the Key Handle MUST be unique
within the group. This combination will be used to uniquely identify
a key.
Harney, et al. Standards Track [Page 62]
^L
RFC 4535 GSAKMP June 2006
7.4.1.2. Rekey Array Structure
A Rekey Array contains the information for the set of KEKs that is
associated with a Group Member. Figure 13 shows the format for this
structure.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Rekey Version#! Member ID ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ! Number of KEK Keys ! ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Key Datum(s) ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 13: Rekey Array Structure Format
Rekey Version (1 octet) - Contains the version of the Rekey protocol
in which the data is formatted. For Key Download Data Item Type
of Rekey - LKH, refer to Section A.2 for a description of this
value. This field is treated as an unsigned value.
Member ID (4 octets) - This is the Member ID of the Rekey sequence
contained in this Rekey Array. This field is treated as an octet
string. For Key Download Data Item Type of Rekey - LKH, refer to
Section A.2 for a description of this value.
Number of KEK Keys (2 octets) - This value is the number of distinct
KEK keys in this sequence. This value is treated as an unsigned
integer in network byte order format.
Key Datum(s) (variable length) - The sequence of KEKs in Key Datum
format. The format for each Key Datum in this sequence is
defined in section 7.4.1.1.
Key ID (for Key ID within the Rekey) - LKH space, refer to Section
A.2 for a description of this value.
7.4.2. Key Download Payload Processing
Prior to processing its data, the payload contents MUST be decrypted.
When processing the Key Download Payload, the following fields MUST
be checked for correct values:
Harney, et al. Standards Track [Page 63]
^L
RFC 4535 GSAKMP June 2006
1. Next Payload, RESERVED, Payload Length - These fields are
processed as defined in Section 7.2.2, "Generic Payload Header
Processing".
2. KDD Item Type - All KDD Item Type fields MUST be checked to be a
valid Key Download Data Item type as defined by Table 15. If the
value is not valid, then an error is logged. If in Verbose Mode,
an appropriate message containing notification value Payload-
Malformed will be sent.
3. Key Type - All Key Type fields MUST be checked to be a valid
encryption type as defined by Table 16. If the value is not
valid, then an error is logged. If in Verbose Mode, an
appropriate message containing notification value Invalid-Key-
Information will be sent.
4. Key Expiration Date - All Key Expiration Date fields MUST be
checked confirm that their values represent a future and not a
past time value. If the value is not valid, then an error is
logged. If in Verbose Mode, an appropriate message containing
notification value Invalid-Key-Information will be sent.
The length and counter fields in the payload are used to help process
the payload. If any field is found to be incorrect, then an error is
logged. If in Verbose Mode, an appropriate message containing
notification value Payload-Malformed will be sent.
7.5. Rekey Event Payload
Refer to the terminology section for the different terms relating to
keys used within this section.
7.5.1. Rekey Event Payload Structure
The Rekey Event Payload MAY contain multiple keys encrypted in
Wrapping KEKs. Figure 14 shows the format of the payload. If the
data to be contained within a Rekey Event Payload is too large for
the payload, the sequence can be split across multiple Rekey Event
Payloads at a Rekey Event Data boundary.
Harney, et al. Standards Track [Page 64]
^L
RFC 4535 GSAKMP June 2006
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Next Payload ! RESERVED ! Payload Length !
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! RekeyEvnt Type! Rekey Event Header ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Rekey Event Data(s) ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 14: Rekey Event Payload Format
The Rekey Event Payload fields are defined as follows:
Next Payload (1 octet) - Identifier for the payload type of the next
payload in the message. If the current payload is the last in
the message, then this field will be 0. This field provides the
"chaining" capability. Table 12 identifies the payload types.
This field is treated as an unsigned value.
RESERVED (1 octet) - Unused, set to 0.
Payload Length (2 octets) - Length in octets of the current payload,
including the generic payload header. This field is treated as
an unsigned integer in network byte order format.
Rekey Event Type (1 octet) - Specifies the type of Rekey Event being
used. Table 17 presents the types of Rekey events. This field
is treated as an unsigned value.
Rekey Event Header (variable length) - This is the header information
for the Rekey Event. The format for this is defined in Section
7.5.1.1, "Rekey Event Header Structure".
Rekey Event Data(s) (variable length) - This is the rekey information
for the Rekey Event. The format for this is defined in Section
7.5.1.2, "Rekey Event Data Structure".
The Rekey Event payload type is three (3).
Harney, et al. Standards Track [Page 65]
^L
RFC 4535 GSAKMP June 2006
Table 17: Rekey Event Types
Rekey_Event_Type Value Definition/Defined In
_____________________________________________________________________
None 0 This type MUST be implemented.
In this case, the size of the Rekey
Event Data field will be zero bytes
long. The purpose of a Rekey Event
Payload with type None is when it is
necessary to send out a new token
with no rekey information. GSAKMP
rekey msg requires a Rekey Event
Payload, and in this instance it
would have rekey data of type None.
GSAKMP_LKH 1 The rekey data will be of
type LKH formatted according to
GSAKMP. The format for this field
is defined in Section 7.5.1.2.
Reserved to IANA 2 - 192
Private Use 193 - 255
7.5.1.1. Rekey Event Header Structure
The format for the Rekey Event Header is shown in Figure 15.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Group ID Value ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Group ID Value !
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Time/Date Stamp ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ! RekeyEnt Type ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Algorithm Ver ! # of Rekey Event Data(s) !
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 15: Rekey Event Header Format
Harney, et al. Standards Track [Page 66]
^L
RFC 4535 GSAKMP June 2006
Group Identification Value (variable length) - Indicates the
name/title of the group to be rekeyed. This is the same format,
length, and value as the Group Identification Value in Section
7.1, "GSAKMP Header".
Time/Date Stamp (15 octets) - This is the time value when the Rekey
Event Data was generated. This field contains the timestamp in
UTF-8 format YYYYMMDDHHMMSSZ, where YYYY is the year (0000 -
9999), MM is the numerical value of the month (01 - 12), DD is
the day of the month (01 - 31), HH is the hour of the day (00 -
23), MM is the minute within the hour (00 - 59), SS is the
seconds within the minute (00 - 59), and the letter Z indicates
that this is Zulu time. This format is loosely based on
[RFC3161].
Rekey Event Type (1 octet) - This is the Rekey algorithm being used
for this group. The values for this field can be found in Table
17. This field is treated as an unsigned value.
Algorithm Version (1 octet) - Indicates the version of the Rekey Type
being used. For Rekey Event Type of GSAKMP_LKH, refer to Section
A.2 for a description of this value. This field is treated as an
unsigned value.
# of Rekey Event Data(s) (2 octets) - The number of Rekey Event
Data(s) contained in the Rekey Data. This value is treated as an
unsigned integer in network byte order.
7.5.1.2. Rekey Event Data Structure
As defined in the Rekey Event Header, # of Rekey Data(s) field,
multiple pieces of information are sent in a Rekey Event Data. Each
end user, will be interested in only one Rekey Event Data among all
of the information sent. Each Rekey Event Data will contain all the
Key Packages that a user requires. For each Rekey Event Data, the
data following the Wrapping fields is encrypted with the key
identified in the Wrapping Header. Figure 16 shows the format of
each Rekey Event Data.
Harney, et al. Standards Track [Page 67]
^L
RFC 4535 GSAKMP June 2006
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Packet Length ! Wrapping KeyID ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ! Wrapping Key Handle ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ! # of Key Packages !
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Key Packages(s) ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 16: Rekey Event Data Format
Packet Length (2 octets) - Length in octets of the Rekey Event Data,
which consists of the # of Key Packages and the Key Packages(s).
This value is treated as an unsigned integer in network byte
order.
Wrapping KeyID (4 octets) - This is the Key ID of the KEK that is
being used for encryption/decryption of the new (rekeyed) keys.
For Rekey Event Type of Rekey - LKH, refer to Section A.2 for a
description of this value.
Wrapping Key Handle (4 octets) - This is a Key Handle of the KEK that
is being used for encryption/decryption of the new (rekeyed)
keys. Refer to Section 7.4.1.1 for the values of this field.
# of Key Packages (2 octets) - The number of key packages contained
in this Rekey Event Data. This value is treated as an unsigned
integer in network byte order.
Key Package(s) (variable length) - The type/length/value format of a
Key Datum. The format for this is defined in Section 7.5.1.2.1.
7.5.1.2.1. Key Package Structure
Each Key Package contains all the information about the key. Figure
17 shows the format for a Key Package.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! KeyPkg Type ! Key Package Length ! Key Datum ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 17: Key Package Format
Harney, et al. Standards Track [Page 68]
^L
RFC 4535 GSAKMP June 2006
Key Package Type (1 octet) - The type of key in this key package.
Legal values for this field are defined in Table 15, Key Download
Data Types. This field is treated as an unsigned value.
Key Package Length (2 octets) - The length of the Key Datum. This
field is treated as an unsigned integer in network byte order
format.
Key Datum (variable length) - The actual data of the key. The format
for this field is defined in Section 7.4.1.1, "Key Datum
Structure".
7.5.2. Rekey Event Payload Processing
When processing the Rekey Event Payload, the following fields MUST be
checked for correct values:
1. Next Payload, RESERVED, Payload Length - These fields are
processed as defined in Section 7.2.2, "Generic Payload Header
Processing".
2. Rekey Event Type field within "Rekey Event" payload header - The
Rekey Event Type MUST be checked to be a valid rekey event type
as defined by Table 17. If the Rekey Event Type is not valid,
then regardless of mode (e.g., Terse or Verbose) an error is
logged. No response error message is generated for receipt of a
Group Management Message.
3. Group ID Value - The Group ID value of the Rekey Event Header
received message MUST be checked against the GroupID of the Group
Component. If no match is found, the payload is discarded, then
regardless of mode (e.g., Terse or Verbose) an error is logged.
No response error message is generated for receipt of a Group
Management Message.
4. Date/Time Stamp - The Date/Time Stamp value of the Rekey Event
Header MAY be checked to determine if the Rekey Event generation
time is recent relative to network delay and processing times.
If the TimeStamp is judged not to be recent, an error is logged.
No response error message is generated for receipt of a Group
Management Message.
5. Rekey Event Type field within the "Rekey Event Header" - The
Rekey Event Type of the Rekey Event Header received message MUST
be checked to be a valid rekey event type, as defined by Table
17, and the same value of the Rekey Event Type earlier in this
payload. If the Rekey Event Type is not valid or not equal to
the previous value of the Rekey Event Type, then regardless of
Harney, et al. Standards Track [Page 69]
^L
RFC 4535 GSAKMP June 2006
mode (e.g., Terse or Verbose) an error is logged. No response
error message is generated for receipt of a Group Management
Message.
6. Algorithm Version - The Rekey Algorithm Version number MUST be
checked to ensure that the version indicated is supported. If it
is not supported, then regardless of mode (e.g., Terse or
Verbose) an error is logged. No response error message is
generated for receipt of a Group Management Message.
The length and counter fields are used to help process the message.
If any field is found to be incorrect, then termination processing
MUST be initiated.
A GM MUST process all the Rekey Event Datas as based on the rekey
method used there is a potential that multiple Rekey Event Datas are
for this GM. The Rekey Event Datas are processed in order until all
Rekey Event Datas are consumed.
1. Wrapping KeyID - The Wrapping KeyID MUST be checked against the
list of stored KEKs that this GM holds. If a match is found,
then continue processing this Rekey Event Data. Otherwise, skip
to the next Rekey Event Data.
2. Wrapping Handle - If a matching Wrapping KeyID was found, then
the Wrapping Handle MUST be checked against the handle of the KEK
for which the KeyID was a match. If the handles match, then the
GM will process the Key Packages associated with this Rekey Event
Data. Otherwise, skip to the next Rekey Event Data.
If a GM has found a matching Wrapping KeyID and Wrapping Handle, the
GM decrypts the remaining data in this Rekey Event Data according to
policy using the KEK defined by the Wrapping KeyID and Handle. After
decrypting the data, the GM extracts the # of Key Packages field to
help process the subsequent Key Packages. The Key Packages are
processed as follows:
1. Key Package Type - The Key Package Type MUST be checked to be a
valid key package type as defined by Table 15. If the Key
Package Type is not valid, then regardless of mode (e.g., Terse
or Verbose) an error is logged. No response error message is
generated for receipt of a Group Management Message.
2. Key Package Length - The Key Package Length is used to process
the subsequent Key Datum information.
Harney, et al. Standards Track [Page 70]
^L
RFC 4535 GSAKMP June 2006
3. Key Type - The Key Type MUST be checked to be a valid key type as
defined by Table 16. If the Key Package Type is not valid, then
regardless of mode (e.g., Terse or Verbose) an error is logged.
No response error message is generated for receipt of a Group
Management Message.
4. Key ID - The Key ID MUST be checked against the set of Key IDs
that this user maintains for this Key Type. If no match is
found, then regardless of mode (e.g., Terse or Verbose) an error
is logged. No response error message is generated for receipt of
a Group Management Message.
5. Key Handle - The Key Handle is extracted as is and is used to be
the new Key Handle for the Key currently associated with the Key
Package's Key ID.
6. Key Creation Date - The Key Creation Date MUST be checked that it
is subsequent to the Key Creation Date for the currently held
key. If this date is prior to the currently held key, then
regardless of mode (e.g., Terse or Verbose) an error is logged.
No response error message is generated for receipt of a Group
Management Message.
7. Key Expiration Date - The Key Expiration Date MUST be checked
that it is subsequent to the Key Creation Date just received and
that the time rules conform with policy. If the expiration date
is not subsequent to the creation date or does not conform with
policy, then regardless of mode (e.g., Terse or Verbose) an error
is logged. No response error message is generated for receipt of
a Group Management Message.
8. Key Data - The Key Data is extracted based on the length
information in the key package.
If there were no errors when processing the Key Package, the key
represented by the KeyID will have all of its data updated based upon
the received information.
7.6. Identification Payload
7.6.1. Identification Payload Structure
The Identification Payload contains entity-specific data used to
exchange identification information. This information is used to
verify the identities of members. Figure 18 shows the format of the
Identification Payload.
Harney, et al. Standards Track [Page 71]
^L
RFC 4535 GSAKMP June 2006
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Next Payload ! RESERVED ! Payload Length !
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! ID Classif ! ID Type ! Identification Data ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 18: Identification Payload Format
The Identification Payload fields are defined as follows:
Next Payload (1 octet) - Identifier for the payload type of the next
payload in the message. If the current payload is the last in
the message, then this field will be 0. This field provides the
"chaining" capability. Table 12 identifies the payload types.
This field is treated as an unsigned value.
RESERVED (1 octet) - Unused, set to 0.
Payload Length (2 octets) - Length in octets of the current payload,
including the generic payload header. This field is treated as
an unsigned integer in network byte order format.
Identification (ID) Classification (1 octet) - Classifies the
ownership of the Identification Data. Table 18 identifies
possible values for this field. This field is treated as an
unsigned value.
Table 18: Identification Classification
ID_Classification Value
_______________________________
Sender 0
Receiver 1
Third Party 2
Reserved to IANA 3 - 192
Private Use 193 - 255
Identification (ID) Type (1 octet) - Specifies the type of
Identification being used. Table 19 identifies possible values
for this type. This field is treated as an unsigned value. All
defined types are OPTIONAL unless otherwise stated.
Harney, et al. Standards Track [Page 72]
^L
RFC 4535 GSAKMP June 2006
Identification Data (variable length) - Contains identity
information. The values for this field are group specific, and
the format is specified by the ID Type field. The format for
this field is stated in conjunction with the type in Table 19.
The payload type for the Identification Payload is four (4).
Table 19: Identification Types
ID_Type Value PKIX Cert Description
Field Defined In
_____________________________________________________________________
Reserved 0
ID_IPV4_ADDR 1 SubjAltName See [IKEv2]
iPAddress Section 3.5.
ID_FQDN 2 SubjAltName See [IKEv2]
dNSName Section 3.5.
ID_RFC822_ADDR 3 SubjAltName See [IKEv2]
rfc822Name Section 3.5.
Reserved 4
ID_IPV6_ADDR 5 SubjAltName See [IKEv2]
iPAddress Section 3.5.
Reserved 6 - 8
ID_DER_ASN1_DN 9 Entire Subject, See [IKEv2]
bitwise Compare Section 3.5.
Reserved 10
ID_KEY_ID 11 N/A See [IKEv2]
Reserved 12 - 29 Section 3.5.
Unencoded Name 30 Subject The format for
(ID_U_NAME) this type is
defined in
Section 7.6.1.1.
ID_DN_STRING 31 Subject See [RFC4514].
This type MUST
be implemented.
Reserved to IANA 32 - 192
Private Use 193 - 255
Harney, et al. Standards Track [Page 73]
^L
RFC 4535 GSAKMP June 2006
7.6.1.1. ID_U_NAME Structure
The format for type Unencoded Name (ID_U_NAME) is shown in Figure 19.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Serial Number ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ !
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Length !
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! DN Data ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 19: Unencoded Name (ID-U-NAME) Format
Serial Number (20 octets) - The certificate serial number. This
field is treated as an unsigned integer in network byte order
format.
Length (4 octets) - Length in octets of the DN Data field. This
field is treated as an unsigned integer in network byte order
format.
DN Data (variable length) - The actual UTF-8 DN value (Subject field)
using the slash (/) character for field delimiters (e.g.,
"/C=US/ST=MD/L=Somewhere/O=ACME, Inc./OU=DIV1/CN=user1/
Email=user1@acme.com" without the surrounding quotes).
7.6.2. Identification Payload Processing
When processing the Identification Payload, the following fields MUST
be checked for correct values:
1. Next Payload, RESERVED, Payload Length - These fields are
processed as defined in Section 7.2.2, "Generic Payload Header
Processing".
Harney, et al. Standards Track [Page 74]
^L
RFC 4535 GSAKMP June 2006
2. Identification Classification - The Identification Classification
value MUST be checked to be a valid identification classification
type as defined by Table 18. If the value is not valid, then an
error is logged. If in Verbose Mode, an appropriate message
containing notification value Payload-Malformed will be sent.
3. Identification Type - The Identification Type value MUST be
checked to be a valid identification type as defined by Table 19.
If the value is not valid, then an error is logged. If in
Verbose Mode, an appropriate message containing notification
value Payload-Malformed will be sent.
4. Identification Data - This Identification Data MUST be processed
according to the identification type specified. The type will
define the format of the data. If the identification data is
being used to find a match and no match is found, then an error
is logged. If in Verbose Mode, an appropriate message containing
notification value Invalid-ID-Information will be sent.
7.6.2.1. ID_U_NAME Processing
When processing the Identification Data of type ID_U_NAME, the
following fields MUST be checked for correct values:
1. Serial Number - The serial number MUST be a greater than or equal
to one (1) to be a valid serial number from a conforming CA
[RFC3280]. If the value is not valid, then an error is logged.
If in Verbose Mode, an appropriate message containing
notification value Payload-Malformed will be sent.
2. DN Data - The DN data is processed as a UTF-8 string.
3. The CA MUST be a valid trusted policy creation authority as
defined by the Policy Token.
These 2 pieces of information, Serial Number and DN Data, in
conjunction, will then be used for party identification. These
values are also used to help identify the certificate when necessary.
7.7. Certificate Payload
7.7.1. Certificate Payload Structure
The Certificate Payload provides a means to transport certificates or
other certificate-related information via GSAKMP and can appear in
any GSAKMP message. Certificate payloads SHOULD be included in an
exchange whenever an appropriate directory service (e.g., LDAP
[RFC4523]) is not available to distribute certificates. Multiple
Harney, et al. Standards Track [Page 75]
^L
RFC 4535 GSAKMP June 2006
certificate payloads MAY be sent to enable verification of
certificate chains. Conversely, zero (0) certificate payloads may be
sent, and the receiving GSAKMP MUST rely on some other mechanism to
retrieve certificates for verification purposes. Figure 20 shows the
format of the Certificate Payload.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Next Payload ! RESERVED ! Payload Length !
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Cert Type ! Certificate Data ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 20: Certificate Payload Format
The Certificate Payload fields are defined as follows:
Next Payload (1 octet) - Identifier for the payload type of the next
payload in the message. If the current payload is the last in
the message, then this field will be 0. This field provides the
"chaining" capability. Table 12 identifies the payload types.
This field is treated as an unsigned value.
RESERVED (1 octet) - Unused, set to 0.
Payload Length (2 octets) - Length in octets of the current payload,
including the generic payload header. This field is treated as
an unsigned integer in network byte order format.
Certificate Type (2 octets) - This field indicates the type of
certificate or certificate-related information contained in the
Certificate Data field. Table 20 presents the types of
certificate payloads. This field is treated as an unsigned
integer in network byte order format.
Certificate Data (variable length) - Actual encoding of certificate
data. The type of certificate is indicated by the Certificate
Type/Encoding field.
The payload type for the Certificate Payload is six (6).
Harney, et al. Standards Track [Page 76]
^L
RFC 4535 GSAKMP June 2006
Table 20: Certificate Payload Types
Certificate_Type Value Description/
Defined In
_____________________________________________________________________
None 0
Reserved 1 - 3
X.509v3 Certificate 4 This type MUST be
-- Signature implemented.
-- DER Encoding Contains a DER
encoded X.509
certificate.
Reserved 5 - 6
Certificate Revocation List 7 Contains a BER
(CRL) encoded X.509 CRL.
Reserved 8 - 9
X.509 Certificate 10 See [IKEv2], Sec 3.6.
-- Attribute
Raw RSA Key 11 See [IKEv2], Sec 3.6.
Hash and URL of X.509 12 See [IKEv2], Sec 3.6.
Certificate
Hash and URL of X.509 13 See [IKEv2], Sec 3.6.
bundle
Reserved to IANA 14 -- 49152
Private Use 49153 -- 65535
7.7.2. Certificate Payload Processing
When processing the Certificate Payload, the following fields MUST be
checked for correct values:
1. Next Payload, RESERVED, Payload Length - These fields are
processed as defined in Section 7.2.2, "Generic Payload Header
Processing".
2. Certificate Type - The Certificate Type value MUST be checked to
be a valid certificate type as defined by Table 20. If the value
is not valid, then an error is logged. If in Verbose Mode, an
appropriate message containing notification value Cert-Type-
Unsupported will be sent.
3. Certificate Data - This Certificate Data MUST be processed
according to the certificate type specified. The type will
define the format of the data. Receipt of a certificate of the
trusted policy creation authority in a Certificate payload causes
Harney, et al. Standards Track [Page 77]
^L
RFC 4535 GSAKMP June 2006
the payload to be discarded. This received certificate MUST NOT
be used to verify the message. The certificate of the trusted
policy creation authority MUST be retrieved by other means.
7.8. Signature Payload
7.8.1. Signature Payload Structure
The Signature Payload contains data generated by the digital
signature function. The digital signature, as defined by the
dissection of each message, covers the message from the GSAKMP
Message Header through the Signature Payload, up to but not
including the Signature Data Length. Figure 21 shows the format
of the Signature Payload.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Next Payload ! RESERVED ! Payload Length !
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Signature Type ! Sig ID Type ! ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Signature Timestamp ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ! Signer ID Length !
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Signer ID Data ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Signature Length ! Signature Data ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 21: Signature Payload Format
The Signature Payload fields are defined as follows:
Next Payload (1 octet) - Identifier for the payload type of the next
payload in the message. If the current payload is the last in
the message, then this field will be 0. This field provides the
"chaining" capability. Table 12 identifies the payload types.
This field is treated as an unsigned value.
RESERVED (1 octet) - Unused, set to 0.
Harney, et al. Standards Track [Page 78]
^L
RFC 4535 GSAKMP June 2006
Payload Length (2 octets) - Length in octets of the current payload,
including the generic payload header. This field is treated as
an unsigned integer in network byte order format.
Signature Type (2 octets) - Indicates the type of signature. Table
21 presents the allowable signature types. This field is treated
as an unsigned integer in network byte order format.
Table 21: Signature Types
Signature Type Value Description/
Defined In
_____________________________________________________________________
DSS/SHA1 with ASN.1/DER encoding 0 This type MUST
(DSS-SHA1-ASN1-DER) be supported.
RSA1024-MD5 1 See [RFC3447].
ECDSA-P384-SHA3 2 See [FIPS186-2].
Reserved to IANA 3 - 41952
Private Use 41953 - 65536
Signature ID Type (1 octet) - Indicates the format for the Signature
ID Data. These values are the same as those defined for the
Identification Payload Identification types, which can be found
in Table 19. This field is treated as an unsigned value.
Signature Timestamp (15 octets) - This is the time value when the
digital signature was applied. This field contains the timestamp
in UTF-8 format YYYYMMDDHHMMSSZ, where YYYY is the year (0000 -
9999), MM is the numerical value of the month (01 - 12), DD is
the day of the month (01 - 31), HH is the hour of the day (00 -
23), MM is the minute within the hour (00 - 59), SS is the
seconds within the minute (00 - 59), and the letter Z indicates
that this is Zulu time. This format is loosely based on
[RFC3161].
Signer ID Length (2 octets) - Length in octets of the Signer's ID.
This field is treated as an unsigned integer in network byte
order format.
Signer ID Data (variable length) - Data identifying the Signer's ID
(e.g., DN). The format for this field is based on the Signature
ID Type field and is shown where that type is defined. The
contents of this field MUST be checked against the Policy Token
to determine the authority and access of the Signer within the
context of the group.
Harney, et al. Standards Track [Page 79]
^L
RFC 4535 GSAKMP June 2006
Signature Length (2 octets) - Length in octets of the Signature Data.
This field is treated as an unsigned integer in network byte
order format.
Signature Data (variable length) - Data that results from applying
the digital signature function to the GSAKMP message and/or
payload.
The payload type for the Signature Payload is eight (8).
7.8.2. Signature Payload Processing
When processing the Signature Payload, the following fields MUST be
checked for correct values:
1. Next Payload, RESERVED, Payload Length - These fields are
processed as defined in Section 7.2.2, "Generic Payload Header
Processing".
2. Signature Type - The Signature Type value MUST be checked to be a
valid signature type as defined by Table 21. If the value is not
valid, then an error is logged. If in Verbose Mode, an
appropriate message containing notification value Payload-
Malformed will be sent.
3. Signature ID Type - The Signature ID Type value MUST be checked
to be a valid signature ID type as defined by Table 19. If the
value is not valid, then an error is logged. If in Verbose Mode,
an appropriate message containing notification value Payload-
Malformed will be sent.
4. Signature Timestamp - This field MAY be checked to determine if
the transaction signing time is fresh relative to expected
network delays. Such a check is appropriate for systems in which
archived sequences of events are desired.
NOTE: The maximum acceptable age of a signature timestamp
relative to the local system clock is a locally configured
parameter that can be tuned by its GSAKMP management interface.
5. Signature ID Data - This field will be used to identify the
sending party. This information MUST then be used to confirm
that the correct party sent this information. This field is also
used to retrieve the appropriate public key of the certificate to
verify the message.
Harney, et al. Standards Track [Page 80]
^L
RFC 4535 GSAKMP June 2006
6. Signature Data - This value MUST be compared to the recomputed
signature to verify the message. Information on how to verify
certificates used to ascertain the validity of the signature can
be found in [RFC3280]. Only after the certificate identified by
the Signature ID Data is verified can the signature be computed
to compare to the signature data for signature verification. A
potential error that can occur during signature verification is
Authentication-Failed. Potential errors that can occur while
processing certificates for signature verification are: Invalid-
Certificate, Invalid-Cert-Authority, Cert-Type-Unsupported, and
Certificate-Unavailable.
The length fields in the Signature Payload are used to process the
remainder of the payload. If any field is found to be incorrect,
then termination processing MUST be initiated.
7.9. Notification Payload
7.9.1. Notification Payload Structure
The Notification Payload can contain both GSAKMP and group-specific
data and is used to transmit informational data, such as error
conditions, to a GSAKMP peer. It is possible to send multiple
independent Notification payloads in a single GSAKMP message. Figure
22 shows the format of the Notification Payload.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Next Payload ! RESERVED ! Payload Length !
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Notification Type ! Notification Data ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 22: Notification Payload Format
The Notification Payload fields are defined as follows:
Next Payload (1 octet) - Identifier for the payload type of the next
payload in the message. If the current payload is the last in
the message, then this field will be 0. This field provides the
"chaining" capability. Table 12 identifies the payload types.
This field is treated as an unsigned value.
RESERVED (1 octet) - Unused, set to 0.
Harney, et al. Standards Track [Page 81]
^L
RFC 4535 GSAKMP June 2006
Payload Length (2 octets) - Length in octets of the current payload,
including the generic payload header. This field is treated as
an unsigned integer in network byte order format.
Notification Type (2 octets) - Specifies the type of notification
message. Table 22 presents the Notify Payload Types. This field
is treated as an unsigned integer in network byte order format.
Notification Data (variable length) - Informational or error data
transmitted in addition to the Notify Payload Type. Values for
this field are Domain of Interpretation (DOI) specific.
The payload type for the Notification Payload is nine (9).
Table 22: Notification Types
Notification Type Value
__________________________________________________________
None 0
Invalid-Payload-Type 1
Reserved 2 - 3
Invalid-Version 4
Invalid-Group-ID 5
Invalid-Sequence-ID 6
Payload-Malformed 7
Invalid-Key-Information 8
Invalid-ID-Information 9
Reserved 10 - 11
Cert-Type-Unsupported 12
Invalid-Cert-Authority 13
Authentication-Failed 14
Reserved 15 - 16
Certificate-Unavailable 17
Reserved 18
Unauthorized-Request 19
Reserved 20 - 22
Acknowledgement 23
Reserved 24 - 25
Nack 26
Cookie-Required 27
Cookie 28
Mechanism Choices 29
Leave Group 30
Departure Accepted 31
Request to Depart Error 32
Invalid Exchange Type 33
IPv4 Value 34
Harney, et al. Standards Track [Page 82]
^L
RFC 4535 GSAKMP June 2006
IPv6 Value 35
Prohibited by Group Policy 36
Prohibited by Locally Configured Policy 37
Reserved to IANA 38 - 49152
Private Use 49153 -- 65535
7.9.1.1. Notification Data - Acknowledgement (ACK) Payload Type
The data portion of the Notification payload of type ACK either
serves as confirmation of correct receipt of the Key Download message
or, when needed, provides other receipt information when included in
a signed message. Figure 23 shows the format of the Notification
Data - Acknowledge Payload Type.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Ack Type ! Acknowledgement Data ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 23: Notification Data - Acknowledge Payload Type Format
The Notification Data - Acknowledgement Payload Type data fields are
defined as follows:
Ack Type (1 octet) - Specifies the type of acknowledgement. Table 23
presents the Notify Acknowledgement Payload Types. This field is
treated as an unsigned value.
Table 23: Acknowledgement Types
ACK_Type Value Definition
_____________________________________________________
Simple 0 Data portion null.
Reserved to IANA 1 - 192
Private Use 193 - 255
7.9.1.2. Notification Data - Cookie_Required and Cookie Payload Type
The data portion of the Notification payload of types Cookie_Required
and Cookie contain the Cookie value. The value for this field will
have been computed by the responder GC/KS and sent to the GM. The GM
will take the value received and copy it into the Notification
payload Notification Data field of type Cookie that is transmitted in
the "Request to Join with Cookie Info" back to the GC/KS. The cookie
value MUST NOT be modified.
Harney, et al. Standards Track [Page 83]
^L
RFC 4535 GSAKMP June 2006
The format for this is already described in the discussion on cookies
in Section 5.2.2.
7.9.1.3. Notification Data - Mechanism Choices Payload Type
The data portion of the Notification payload of type Mechanism
Choices contains the mechanisms the GM is requesting to use for the
negotiation with the GC/KS. This information will be supplied by the
GM in a RTJ message. Figure 24 shows the format of the Notification
Data - Mechanism Choices Payload Type. Multiple type|length|data
choices are strung together in one notification payload to allow a
user to transmit all relevant information within one Notification
Payload. The length of the payload will control the parsing of the
Notification Data Mechanism Choices field.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Mech Type ! Mechanism Choice Data !
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+..
Figure 24: Notification Data - Mechanism Choices Payload Type Format
The Notification Data - Mechanism Choices Payload Type data fields
are defined as follows:
Mechanism Type (1 octet) - Specifies the type of mechanism. Table 24
presents the Notify Mechanism Choices Mechanism Types. This
field is treated as an unsigned value.
Table 24: Mechanism Types
Mechanism_Type Value Mechanism Choice
Data Value Table Reference
___________________________________________________________________
Key Creation Algorithm 0 Table 26
Encryption Algorithm 1 Table 16
Nonce Hash Algorithm 2 Table 25
Reserved to IANA 3 - 192
Private Use 193 - 255
Mechanism Choice Data (2 octets) - The data value for the mechanism
type being selected. The values are specific to each Mechanism
Type defined. All tables necessary to define the values that are
not defined elsewhere (in this specification or others) are
defined here. This field is treated as an unsigned integer in
network byte order format.
Harney, et al. Standards Track [Page 84]
^L
RFC 4535 GSAKMP June 2006
Table 25: Nonce Hash Types
Nonce_Hash_Type Value Description
__________________________________________________________________
Reserved 0
SHA-1 1 This type MUST be supported.
Reserved to IANA 2 - 49152
Private Use 49153 - 65535
7.9.1.4. Notification Data - IPv4 and IPv6 Value Payload Types
The data portion of the Notification payload of type IPv4 and IPv6
value contains the appropriate IP value in network byte order. This
value will be set by the creator of the message for consumption by
the receiver of the message.
7.9.2. Notification Payload Processing
When processing the Notification Payload, the following fields MUST
be checked for correct values:
1. Next Payload, RESERVED, Payload Length - These fields are
processed as defined in Section 7.2.2, "Generic Payload Header
Processing".
2. Notification Type - The Notification type value MUST be checked
to be a notification type as defined by Table 22. If the value
is not valid, then an error is logged. If in Verbose Mode, an
appropriate message containing notification value Payload-
Malformed will be sent.
3. Notification Data - This Notification Data MUST be processed
according to the notification type specified. The type will
define the format of the data. When processing this data, any
type field MUST be checked against the appropriate table for
correct values. If the contents of the Notification Data are not
valid, then an error is logged. If in Verbose Mode, an
appropriate message containing notification value Payload-
Malformed will be sent.
Harney, et al. Standards Track [Page 85]
^L
RFC 4535 GSAKMP June 2006
7.10. Vendor ID Payload
7.10.1. Vendor ID Payload Structure
The Vendor ID Payload contains a vendor-defined constant. The
constant is used by vendors to identify and recognize remote
instances of their implementations. This mechanism allows a
vendor to experiment with new features while maintaining
backwards compatibility. Figure 25 shows the format of the
payload.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Next Payload ! RESERVED ! Payload Length !
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Vendor ID (VID) ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 25: Vendor ID Payload Format
A Vendor ID payload MAY announce that the sender is capable of
accepting certain extensions to the protocol, or it MAY simply
identify the implementation as an aid in debugging. A Vendor ID
payload MUST NOT change the interpretation of any information defined
in this specification. Multiple Vendor ID payloads MAY be sent. An
implementation is NOT REQUIRED to send any Vendor ID payload at all.
A Vendor ID payload may be sent as part of any message. Receipt of a
familiar Vendor ID payload allows an implementation to make use of
Private Use numbers described throughout this specification --
private payloads, private exchanges, private notifications, etc.
This implies that all the processing rules defined for all the
payloads are now modified to recognize all values defined by this
Vendor ID for all fields of all payloads. Unfamiliar Vendor IDs MUST
be ignored.
Writers of Internet-Drafts who wish to extend this protocol MUST
define a Vendor ID payload to announce the ability to implement the
extension in the Internet-Draft. It is expected that Internet-Drafts
that gain acceptance and are standardized will be given assigned
values out of the Reserved to IANA range, and the requirement to use
a Vendor ID payload will go away.
The Vendor ID payload fields are defined as follows:
Harney, et al. Standards Track [Page 86]
^L
RFC 4535 GSAKMP June 2006
Next Payload (1 octet) - Identifier for the payload type of the next
payload in the message. If the current payload is the last in
the message, then this field will be 0. This field provides the
"chaining" capability. Table 12 identifies the payload types.
This field is treated as an unsigned value.
RESERVED (1 octet) - Unused, set to 0.
Payload Length (2 octets) - Length in octets of the current payload,
including the generic payload header. This field is treated as
an unsigned integer in network byte order format.
Vendor ID (variable length) - The Vendor ID value. The minimum
length for this field is four (4) octets. It is the
responsibility of the person choosing the Vendor ID to assure its
uniqueness in spite of the absence of any central registry for
IDs. Good practice is to include a company name, a person name,
or similar type data. A message digest of a long unique string
is preferable to the long unique string itself.
The payload type for the Vendor ID Payload is ten (10).
7.10.2. Vendor ID Payload Processing
When processing the Vendor ID Payload, the following fields MUST be
checked for correct values:
1. Next Payload, RESERVED, Payload Length - These fields are
processed as defined in Section 7.2.2, "Generic Payload Header
Processing".
2. Vendor ID - The Vendor ID Data MUST be processed to determine if
the Vendor ID value is recognized by the implementation. If the
Vendor ID value is not recognized, then regardless of mode (e.g.,
Terse or Verbose) this information is logged. Processing of the
message MUST continue regardless of recognition of this value.
It is recommended that implementations that want to use Vendor-ID-
specific information attempt to process the Vendor ID payloads of an
incoming message prior to the remainder of the message processing.
This will allow the implementation to recognize that when processing
other payloads it can use the larger set of values for payload fields
(Private Use values, etc.) as defined by the recognized Vendor IDs.
Harney, et al. Standards Track [Page 87]
^L
RFC 4535 GSAKMP June 2006
7.11. Key Creation Payload
7.11.1. Key Creation Payload Structure
The Key Creation Payload contains information used to create key
encryption keys. The security attributes for this payload are
provided in the Policy Token. Figure 26 shows the format of the
payload.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Next Payload ! RESERVED ! Payload Length !
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Key Creation Type ! Key Creation Data ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 26: Key Creation Payload Format
The Key Creation Payload fields are defined as follows:
Next Payload (1 octet) - Identifier for the payload type of the next
payload in the message. If the current payload is the last in
the message, then this field will be 0. This field provides the
"chaining" capability. Table 12 identifies the payload types.
This field is treated as an unsigned value.
RESERVED (1 octet) - Unused, set to 0.
Payload Length (2 octets) - Length in octets of the current payload,
including the generic payload header. This field is treated as
an unsigned integer in network byte order format.
Key Creation Type (2 octets) - Specifies the type of Key Creation
being used. Table 26 identifies the types of key creation
information. This field is treated as an unsigned integer in
network byte order format.
Key Creation Data (variable length) - Contains Key Creation
information. The values for this field are group specific, and
the format is specified by the key creation type field.
The payload type for the Key Creation Packet is eleven (11).
Harney, et al. Standards Track [Page 88]
^L
RFC 4535 GSAKMP June 2006
Table 26: Types of Key Creation Information
Key Creation Type Value Definition/Defined In
_____________________________________________________________________
Reserved 0 - 1
Diffie-Hellman 2 This type MUST be supported.
1024-bit MODP Group Defined in [IKEv2] B.2.
Truncated If the output of the process
is longer than needed for
the defined mechanism, use
the first X low order bits
and truncate the remainder.
Reserved 3 - 13
Diffie-Hellman 14 Defined in [RFC3526].
2048-bit MODP Group If the output of the process
Truncated is longer than needed for
the defined mechanism, use
the first X low order bits
and truncate the remainder.
Reserved to IANA 15 - 49152
Private Use 49153 - 65535
7.11.2. Key Creation Payload Processing
The specifics of the Key Creation Payload are defined in Section
7.11.
When processing the Key Creation Payload, the following fields MUST
be checked for correct values:
1. Next Payload, RESERVED, Payload Length - These fields are
processed as defined in Section 7.2.2, "Generic Payload Header
Processing".
2. Key Creation Type - The Key Creation Type value MUST be checked
to be a valid key creation type as defined by Table 26. If the
value is not valid, then an error is logged. If in Verbose Mode,
an appropriate message containing notification value Payload-
Malformed will be sent.
3. Key Creation Data - This Key Creation Data MUST be processed
according to the key creation type specified to generate the KEK
to protect the information to be sent in the appropriate message.
The type will define the format of the data.
Harney, et al. Standards Track [Page 89]
^L
RFC 4535 GSAKMP June 2006
Implementations that want to derive other keys from the initial Key
Creation keying material (for example, DH Secret keying material)
MUST define a Key Creation Type other than one of those shown in
Table 26. The new Key Creation Type must specify that derivation's
algorithm, for which the KEK MAY be one of the keys derived.
7.12. Nonce Payload
7.12.1. Nonce Payload Structure
The Nonce Payload contains random data used to guarantee freshness
during an exchange and protect against replay attacks. Figure 27
shows the format of the Nonce Payload.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Next Payload ! RESERVED ! Payload Length !
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Nonce Type ! Nonce Data ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 27: Nonce Payload Format
The Nonce Payload fields are defined as follows:
Next Payload (1 octet) - Identifier for the payload type of the next
payload in the message. If the current payload is the last in
the message, then this field will be 0. This field provides the
"chaining" capability. Table 12 identifies the payload types.
This field is treated as an unsigned value.
RESERVED (1 octet) - Unused, set to 0.
Payload Length (2 octets) - Length in octets of the current payload,
including the generic payload header. This field is treated as
an unsigned integer in network byte order format.
Nonce Type (1 octet) - Specifies the type of nonce being used. Table
27 identifies the types of nonces. This field is treated as an
unsigned value.
Harney, et al. Standards Track [Page 90]
^L
RFC 4535 GSAKMP June 2006
Table 27: Nonce Types
Nonce_Type Value Definition
_____________________________________________________________________
None 0
Initiator (Nonce_I) 1
Responder (Nonce_R) 2
Combined (Nonce_C) 3 Hash (Append
(Initiator_Value,Responder_Value))
The hash type comes from the
Policy (e.g., Security Suite
Definition of Policy Token).
Reserved to IANA 4 - 192
Private Use 192 - 255
Nonce Data (variable length) - Contains the nonce information. The
values for this field are group specific, and the format is
specified by the Nonce Type field. If no group-specific
information is provided, the minimum length for this field is 4
bytes.
The payload type for the Nonce Payload is twelve (12).
7.12.2. Nonce Payload Processing
When processing the Nonce Payload, the following fields MUST be
checked for correct values:
1. Next Payload, RESERVED, Payload Length - These fields are
processed as defined in Section 7.2.2, "Generic Payload Header
Processing".
2. Nonce Type - The Nonce Type value MUST be checked to be a valid
nonce type as defined by Table 27. If the value is not valid,
then an error is logged. If in Verbose Mode, an appropriate
message containing notification value Payload-Malformed will be
sent.
3. Nonce Data - This is the nonce data and it must be checked
according to its content. The size of this field is defined in
Section 7.12, "Nonce Payload". Refer to Section 5.2, "Group
Establishment", for interpretation of this field.
Harney, et al. Standards Track [Page 91]
^L
RFC 4535 GSAKMP June 2006
8. GSAKMP State Diagram
Figure 28 presents the states encountered in the use of this
protocol. Table 28 defines the states. Table 29 defines the
transitions.
!-----------------> ( )
! !-------------> ( Idle ) <------------------!
! ! ( ) !
! ! ! ! !
! ! ! ! !
! ! (1a) (1) !
! ! ! ! !
! ! ! ! !
! ! V V !
! !---(5a)--- (Wait for ) (Wait for ) ----(5)-----!
! (Group ) (GC/KS Event) <---
! (Membership) ^ ! \ \
! ! ! ! \ \
! ! ! ! \--(2)---\
! (2a) (4)(3)
! ! ! !
! ! ! !
! V ! V
!-------(4a)--- (Wait for ) (Wait for )
(Group ) (Response )
(Membership) (from Key )
/--> (Event ) (Download )
/ /
/ /
/--(3a)---/
Figure 28: GSAKMP State Diagram
Harney, et al. Standards Track [Page 92]
^L
RFC 4535 GSAKMP June 2006
Table 28: GSAKMP States
______________________________________________________________________
Idle : GSAKMP Application waiting for input
______________________________________________________________________
Wait for GC/KS Event : GC/KS up and running, waiting for events
______________________________________________________________________
Wait for Response : GC/KS has sent Key Download,
from Key Download : waiting for response from GM
______________________________________________________________________
Wait for Group : GM in process of joining group
Membership :
______________________________________________________________________
Wait for Group : GM has group key, waiting for
Membership Event : group management messages.
______________________________________________________________________
Harney, et al. Standards Track [Page 93]
^L
RFC 4535 GSAKMP June 2006
Table 29: State Transition Events
____________________________________________________________________
Transition 1 : Create group command
______________:_____________________________________________________
:
Transition 2 : Receive bad RTJ
: Receive valid command to change group membership
: Send Compromise message x times
: Member Deregistration
______________:_____________________________________________________
:
Transition 3 : Receive valid RTJ
______________:_____________________________________________________
:
Transition 4 : Timeout
: Receive Ack
: Receive Nack
______________:_____________________________________________________
:
Transition 5 : Delete group command
______________:_____________________________________________________
:
Transition 1a : Join group command
______________:_____________________________________________________
:
Transition 2a : Send Ack
______________:_____________________________________________________
:
Transition 3a : Receipt of group management messages
______________:_____________________________________________________
:
Transition 4a : Delete group command
: Deregistration command
______________:_____________________________________________________
:
Transition 5a : Time out
: Msg failure
: errors
:
____________________________________________________________________
Harney, et al. Standards Track [Page 94]
^L
RFC 4535 GSAKMP June 2006
9. IANA Considerations
9.1. IANA Port Number Assignment
IANA has provided GSAKMP port number 3761 in both the UDP and TCP
spaces. All implementations MUST use this port assignment in the
appropriate manner.
9.2. Initial IANA Registry Contents
The following registry entries have been created:
GSAKMP Group Identification Types (Section 7.1.1)
GSAKMP Payload Types (Section 7.1.1)
GSAKMP Exchange Types (Section 7.1.1)
GSAKMP Policy Token Types (Section 7.3.1)
GSAKMP Key Download Data Item Types (Section 7.4.1)
GSAKMP Cryptographic Key Types (Section 7.4.1.1)
GSAKMP Rekey Event Types (Section 7.5.1)
GSAKMP Identification Classification (Section 7.6.1)
GSAKMP Identification Types (Section 7.6.1)
GSAKMP Certificate Types (Section 7.7.1)
GSAKMP Signature Types (Section 7.8.1)
GSAKMP Notification Types (Section 7.9.1)
GSAKMP Acknowledgement Types (Section 7.9.1.1)
GSAKMP Mechanism Types (Section 7.9.1.3)
GSAKMP Nonce Hash Types (Section 7.9.1.3)
GSAKMP Key Creation Types (Section 7.11.1)
GSAKMP Nonce Types (Section 7.12.1)
Changes and additions to the following registries are by IETF
Standards Action:
GSAKMP Group Identification Types
GSAKMP Payload Types
GSAKMP Exchange Types
GSAKMP Policy Token Types
GSAKMP Key Download Data Item Types
GSAKMP Rekey Event Types
GSAKMP Identification Classification
GSAKMP Notification Types
GSAKMP Acknowledgement Types
GSAKMP Mechanism Types
GSAKMP Nonce Types
Harney, et al. Standards Track [Page 95]
^L
RFC 4535 GSAKMP June 2006
Changes and additions to the following registries are by Expert
Review:
GSAKMP Cryptographic Key Types
GSAKMP Identification Types
GSAKMP Certificate Types
GSAKMP Signature Types
GSAKMP Nonce Hash Types
GSAKMP Key Creation Types
10. Acknowledgements
This document is the collaborative effort of many individuals. If
there were no limit to the number of authors that could appear on an
RFC, the following, in alphabetical order, would have been listed:
Haitham S. Cruickshank of University of Surrey, Sunil Iyengar of
University Of Surrey Gavin Kenny of LogicaCMG, Patrick McDaniel of
AT&T Labs Research, and Angela Schuett of NSA.
The following individuals deserve recognition and thanks for their
contributions, which have greatly improved this protocol: Eric Harder
is an author to the Tunneled-GSAKMP, whose concepts are found in
GSAKMP as well. Rod Fleischer, also a Tunneled-GSAKMP author, and
Peter Lough were both instrumental in coding a prototype of the
GSAKMP software and helped define many areas of the protocol that
were vague at best. Andrew McFarland and Gregory Bergren provided
critical analysis of early versions of the specification. Ran
Canetti analyzed the security of the protocol and provided denial of
service suggestions leading to optional "cookie protection".
Harney, et al. Standards Track [Page 96]
^L
RFC 4535 GSAKMP June 2006
11. References
11.1. Normative References
[DH77] Diffie, W., and M. Hellman, "New Directions in
Cryptography", IEEE Transactions on Information Theory,
June 1977.
[FIPS186-2] NIST, "Digital Signature Standard", FIPS PUB 186-2,
National Institute of Standards and Technology, U.S.
Department of Commerce, January 2000.
[FIPS196] "Entity Authentication Using Public Key Cryptography,"
Federal Information Processing Standards Publication 196,
NIST, February 1997.
[IKEv2] Kaufman, C., "Internet Key Exchange (IKEv2) Protocol",
RFC 4306, December 2005.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2409] Harkins, D. and D. Carrel, "The Internet Key Exchange
(IKE)", RFC 2409, November 1998.
[RFC2412] Orman, H., "The OAKLEY Key Determination Protocol", RFC
2412, November 1998.
[RFC2627] Wallner, D., Harder, E., and R. Agee, "Key Management for
Multicast: Issues and Architectures", RFC 2627, June
1999.
[RFC3280] Housley, R., Polk, W., Ford, W., and D. Solo, "Internet
X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile", RFC 3280,
April 2002.
[RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
10646", STD 63, RFC 3629, November 2003.
[RFC4514] Zeilenga, K., Ed., "Lightweight Directory Access Protocol
(LDAP): String Representation of Distinguished Names",
RFC 4514, June 2006.
[RFC4534] Colegrove, A. and H. Harney, "Group Security Policy Token
v1", RFC 4534, June 2006.
Harney, et al. Standards Track [Page 97]
^L
RFC 4535 GSAKMP June 2006
11.2. Informative References
[BMS] Balenson, D., McGrew, D., and A. Sherman, "Key Management
for Large Dynamic Groups: One-Way Function Trees and
Amortized Initialization", Work in Progress, February
1999.
[HCM] H. Harney, A. Colegrove, P. McDaniel, "Principles of
Policy in Secure Groups", Proceedings of Network and
Distributed Systems Security 2001 Internet Society, San
Diego, CA, February 2001.
[HHMCD01] Hardjono, T., Harney, H., McDaniel, P., Colegrove, A.,
and P. Dinsmore, "Group Security Policy Token:
Definition and Payloads", Work in Progress, August 2003.
[RFC2093] Harney, H. and C. Muckenhirn, "Group Key Management
Protocol (GKMP) Specification", RFC 2093, July 1997.
[RFC2094] Harney, H. and C. Muckenhirn, "Group Key Management
Protocol (GKMP) Architecture", RFC 2094, July 1997.
[RFC2408] Maughan D., Schertler M., Schneider M., and Turner J.,
"Internet Security Association and Key Management
Protocol (ISAKMP)", RFC 2408, Proposed Standard, November
1998
[RFC2451] Pereira, R. and R. Adams, "The ESP CBC-Mode Cipher
Algorithms", RFC 2451, November 1998.
[RFC2522] Karn, P. and W. Simpson, "Photuris: Session-Key
Management Protocol", RFC 2522, March 1999.
[RFC4523] Zeilenga, K., "Lightweight Directory Access Protocol
(LDAP) Schema Definitions for X.509 Certificates", RFC
4523, June 2006.
[RFC2974] Handley, M., Perkins, C., and E. Whelan, "Session
Announcement Protocol", RFC 2974, October 2000.
[RFC3161] Adams, C., Cain, P., Pinkas, D., and R. Zuccherato,
"Internet X.509 Public Key Infrastructure Time-Stamp
Protocol (TSP)", RFC 3161, August 2001.
[RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
A., Peterson, J., Sparks, R., Handley, M., and E.
Schooler, "SIP: Session Initiation Protocol", RFC 3261,
June 2002.
Harney, et al. Standards Track [Page 98]
^L
RFC 4535 GSAKMP June 2006
[RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
Standards (PKCS) #1: RSA Cryptography Specifications
Version 2.1", RFC 3447, February 2003.
[RFC3526] Kivinen, T. and M. Kojo, "More Modular Exponential (MODP)
Diffie-Hellman groups for Internet Key Exchange (IKE)",
RFC 3526, May 2003.
[RFC3740] Hardjono, T. and B. Weis, "The Multicast Group Security
Architecture", RFC 3740, March 2004.
[RFC4086] Eastlake, D., 3rd, Schiller, J., and S. Crocker,
"Randomness Requirements for Security", BCP 106, RFC
4086, June 2005.
Harney, et al. Standards Track [Page 99]
^L
RFC 4535 GSAKMP June 2006
Appendix A. LKH Information
This appendix will give an overview of LKH, define the values for
fields within GSAKMP messages that are specific to LKH, and give an
example of a Rekey Event Message using the LKH scheme.
A.1. LKH Overview
LKH provides a topology for handling key distribution for a group
rekey. It rekeys a group based upon a tree structure and subgroup
keys. In the LKH tree shown in Figure 29, members are represented by
the leaf nodes on the tree, while intermediate tree nodes represent
abstract key groups. A member will possess multiple keys: the group
traffic protection key (GTPK), subgroup keys for every node on its
path to the root of the tree, and a personal key. For example, the
member labeled as #3 will have the GTPK, Key A, Key D, and Key 3.
root
/ \
/ \
A B
/ \ / \
/ \ / \
C D E F
/ \ / \ / \ / \
/ \ / \ / \ / \
1 2 3 4 5 6 7 8
Figure 29: LKH Tree
This keying topology provides for a rapid rekey to all but a
compromised member of the group. If Member 3 were compromised, the
new GTPK (GTPK') would need to be distributed to the group under a
key not possessed by Member 3. Additionally, new Keys A and D (Key
A' and Key D') would also need to be securely distributed to the
other members of those subtrees. Encrypting the GTPK' with Key B
would securely distribute that key to Members 5, 6, 7, and 8. Key C
can be used to encrypt both the GTPK' and Key A' for Members 1 and 2.
Member 3's nearest neighbor, Member 4, can obtain GTPK', Key D', and
Key A' encrypted under its personal key, Key 4. At the end of this
process, the group is securely rekeyed with Member 3 fully excluded.
Harney, et al. Standards Track [Page 100]
^L
RFC 4535 GSAKMP June 2006
A.2. LKH and GSAKMP
When using LKH with GSAKMP, the following issues require attention:
1. Rekey Version # - The Rekey Version # in the Rekey Array of the
Key Download Payload MUST contain the value one (1).
2. Algorithm Version - The Algorithm Version in the Rekey Event
Payload MUST contain the value one (1).
3. Degree of Tree - The LKH tree used can be of any degree; it need
not be binary.
4. Node Identification - Each node in the tree is treated as a KEK.
A KEK is just a special key. As the rule stated for all keys in
GSAKMP, the set of the KeyID and the KeyHandle MUST be unique. A
suggestion on how to do this will be given in this section.
5. Wrapping KeyID and Handle - This is the KeyID and Handle of the
LKH node used to wrap/encrypt the data in a Rekey Event Data.
For the following discussion, refer to Figure 30.
Key:
o: a node in the LKH tree
N: this line contains the KeyID node number
L: this line contains the MemberID number for all leaves ONLY
LEVEL
----
root o
N: / 1 \
/ \
1 o o
N: / 2 \ / 3 \
/ \ / \
2 o o o o
N: /4\ /5\ /6\ /7\
/ \ / \ / \ / \
3 o o o o o o o o
N: 8 9 10 11 12 13 14 15
L: 1 2 3 4 5 6 7 8
Figure 30: GSAKMP LKH Tree
Harney, et al. Standards Track [Page 101]
^L
RFC 4535 GSAKMP June 2006
To guarantee uniqueness of KeyID, the Rekey Controller SHOULD build a
virtual tree and label the KeyID of each node, doing a breadth-first
search of a fully populated tree regardless of whether or not the
tree is actually full. For simplicity of this example, the root of
the tree was given KeyID value of one (1). These KeyID values will
be static throughout the life of this tree. Additionally, the rekey
arrays distributed to GMs requires a MemberID value associated with
them to be distributed with the KeyDownload Payload. These MemberID
values MUST be unique. Therefore, the set associated with each leaf
node (the nodes from that leaf back to the root) are given a
MemberID. In this example, the leftmost leaf node is given MemberID
value of one (1). These 2 sets of values, the KeyIDs (represented on
lines N) and the MemberIDs (represented on line L), will give
sufficient information in the KeyDownload and RekeyEvent Payloads to
disseminate information. The KeyHandle associated with these keys is
regenerated each time the key is replaced in the tree due to
compromise.
A.3. LKH Examples
Definition of values:
0xLLLL - length value
0xHHHHHHH# - handle value
YYYYMMDDHHMMSSZ - time value
A.3.1. LKH Key Download Example
This section will give an example of the data for the Key Download
payload. The GM will be given MemberID 1 and its associated keys.
The data shown will be subsequent to the Generic Payload Header.
| GTPK | MemberID 1 | KeyID 2 | KeyID 4 | KeyID 8
Number of Items - 0x0002
Item #1:
Key Download Data Item Type - 0x00 (GTPK)
Key Download Data Item Length - 0xLLLL
Key Type - 0x03 (3DES`CBC64`192)
Key ID - KEY1
Key Handle - 0xHHHHHHH0
Key Creation Date - YYYYMMDDHHMMSSZ
Key Expiration Date - YYYYMMDDHHMMSSZ
Key Data - variable, based on key definition
Item #2:
Key Download Data Item Type - 0x01 (Rekey - LKH)
Key Download Data Item Length - 0xLLLL
Rekey Version Number - 0x01
Member ID - 0x00000001
Harney, et al. Standards Track [Page 102]
^L
RFC 4535 GSAKMP June 2006
Number of KEK Keys - 0x0003
KEK #1:
Key Type - 0x03 (3DES`CBC64`192)
Key ID - 0x00000002
Key Handle - 0xHHHHHHH2
Key Creation Date - YYYYMMDDHHMMSSZ
Key Expiration Date - YYYYMMDDHHMMSSZ
Key Data - variable, based on key definition
KEK #2:
Key Type - 0x03 (3DES`CBC64`192)
Key ID - 0x00000004
Key Handle - 0xHHHHHHH4
Key Creation Date - YYYYMMDDHHMMSSZ
Key Expiration Date - YYYYMMDDHHMMSSZ
Key Data - variable, based on key definition
KEK #3:
Key Type - 0x03 (3DES`CBC64`192)
Key ID - 0x00000008
Key Handle - 0xHHHHHHH8
Key Creation Date - YYYYMMDDHHMMSSZ
Key Expiration Date - YYYYMMDDHHMMSSZ
Key Data - variable, based on key definition
A.3.2. LKH Rekey Event Example
This section will give an example of the data for the Rekey Event
payload. The GM with MemberID 6 will be keyed out of the group. The
data shown will be subsequent to the Generic Payload Header.
| Rekey Event Type | GroupID | Date/Time | Rekey Type |
Algorithm Ver | # of Packets |
{ (GTPK)2, (GTPK, 3', 6')12, (GTPK, 3')7 }
This data shows that three packets are being transmitted. Read each
packet as:
a) GTPK wrapped in LKH KeyID 2
b) GTPK, LKH KeyIDs 3' & 6', all wrapped in LKH KeyID 12
c) GTPK and LKH KeyID 3', all wrapped in LKH KeyID 7
NOTE: Although in this example multiple keys are encrypted under one
key, alternative pairings are legal (e.g., (GTPK)2, (GTPK)3', (3')6',
(3')7', (6')12).
We will show the format for all header data and packet (b).
Harney, et al. Standards Track [Page 103]
^L
RFC 4535 GSAKMP June 2006
Rekey Event Type - 0x01 (GSAKMP`LKH)
GroupID - 0xAABBCCDD
0x12345678
Time/Date Stamp - YYYYMMDDHHMMSSZ
Rekey Event Type - 0x01 (GSAKMP`LKH)
Algorithm Vers - 0x01
# of RkyEvt Pkts - 0x0003
For Packet (b):
Packet Length - 0xLLLL
Wrapping KeyID - 0x000C
Wrapping Key Handle - 0xHHHHHHHD
# of Key Packages - 0x0003
Key Package 1:
Key Pkg Type - 0x00 (GTPK)
Pack Length - 0xLLLL
Key Type - 0x03 (3DES`CBC64`192)
Key ID - KEY1
Key Handle - 0xHHHHHHH0
Key Creation Date - YYYYMMDDHHMMSSZ
Key Expiration Date - YYYYMMDDHHMMSSZ
Key Data - variable, based on key definition
Key Package 2:
Key Pkg Type - 0x01 (Rekey - LKH)
Pack Length - 0xLLLL
Key Type - 0x03 (3DES`CBC64`192)
Key ID - 0x00000003
Key Handle - 0xHHHHHHH3
Key Creation Date - YYYYMMDDHHMMSSZ
Key Expiration Date - YYYYMMDDHHMMSSZ
Key Data - variable, based on key definition
Key Package 3:
Key Pkg Type - 0x01 (Rekey - LKH)
Pack Length - 0xLLLL
Key Type - 0x03 (3DES`CBC64`192)
Key ID - 0x00000006
Key Handle - 0xHHHHHHH6
Key Creation Date - YYYYMMDDHHMMSSZ
Key Expiration Date - YYYYMMDDHHMMSSZ
Key Data - variable, based on key definition
Harney, et al. Standards Track [Page 104]
^L
RFC 4535 GSAKMP June 2006
Authors' Addresses
Hugh Harney (point-of-contact)
SPARTA, Inc.
7110 Samuel Morse Drive
Columbia, MD 21046
Phone: (443) 430-8032
Fax: (443) 430-8181
EMail: hh@sparta.com
Uri Meth
SPARTA, Inc.
7110 Samuel Morse Drive
Columbia, MD 21046
Phone: (443) 430-8058
Fax: (443) 430-8207
EMail: umeth@sparta.com
Andrea Colegrove
SPARTA, Inc.
7110 Samuel Morse Drive
Columbia, MD 21046
Phone: (443) 430-8014
Fax: (443) 430-8163
EMail: acc@sparta.com
George Gross
IdentAware Security
82 Old Mountain Road
Lebanon, NJ 08833
Phone: (908) 268-1629
EMail: gmgross@identaware.com
Harney, et al. Standards Track [Page 105]
^L
RFC 4535 GSAKMP June 2006
Full Copyright Statement
Copyright (C) The Internet Society (2006).
This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is provided by the IETF
Administrative Support Activity (IASA).
Harney, et al. Standards Track [Page 106]
^L
|