summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc4586.txt
blob: 13e918300adc1c0ca5514adf67f2efbac3e5adb2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
Network Working Group                                      C. Burmeister
Request for Comments: 4586                                  R. Hakenberg
Category: Informational                                      A. Miyazaki
                                                               Panasonic
                                                                  J. Ott
                                       Helsinki University of Technology
                                                                 N. Sato
                                                             S. Fukunaga
                                                                     Oki
                                                               July 2006


                        Extended RTP Profile for
      Real-time Transport Control Protocol (RTCP)-Based Feedback:
                Results of the Timing Rule Simulations

Status of This Memo

   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2006).

Abstract

   This document describes the results achieved when simulating the
   timing rules of the Extended RTP Profile for Real-time Transport
   Control Protocol (RTCP)-Based Feedback, denoted AVPF.  Unicast and
   multicast topologies are considered as well as several protocol and
   environment configurations.  The results show that the timing rules
   result in better performance regarding feedback delay and still
   preserve the well-accepted RTP rules regarding allowed bit rates for
   control traffic.















Burmeister, et al.           Informational                      [Page 1]
^L
RFC 4586            Timing Rules Simulation Results            July 2006


Table of Contents

   1. Introduction ....................................................3
   2. Timing Rules of the Extended RTP Profile for RTCP-Based
      Feedback ........................................................4
   3. Simulation Environment ..........................................5
      3.1. Network Simulator Version 2 ................................5
      3.2. RTP Agent ..................................................5
      3.3. Scenarios ..................................................5
      3.4. Topologies .................................................6
   4. RTCP Bit Rate Measurements ......................................6
      4.1. Unicast ....................................................7
      4.2. Multicast .................................................10
      4.3. Summary of the RTCP Bit Rate Measurements .................10
   5. Feedback Measurements ..........................................11
      5.1. Unicast ...................................................11
      5.2. Multicast .................................................12
           5.2.1. Shared Losses vs. Distributed Losses ...............13
   6. Investigations on "l" ..........................................14
      6.1. Feedback Suppression Performance ..........................16
      6.2. Loss Report Delay .........................................18
      6.3. Summary of "l" Investigations .............................18
   7. Applications Using AVPF ........................................19
      7.1. NEWPRED Implementation in NS2 .............................19
      7.2. Simulation ................................................21
           7.2.1. Simulation A - Constant Packet Loss Rate ...........21
           7.2.2. Simulation B - Packet Loss Due to Congestion .......23
      7.3. Summary of Application Simulations ........................24
   8. Summary ........................................................24
   9. Security Considerations ........................................25
   10. Normative References ..........................................26
   11. Informative References ........................................26



















Burmeister, et al.           Informational                      [Page 2]
^L
RFC 4586            Timing Rules Simulation Results            July 2006


1.  Introduction

   The Real-time Transport Protocol (RTP) is widely used for the
   transmission of real-time or near real-time media data over the
   Internet.  While it was originally designed to work well for
   multicast groups in very large scales, its scope is not limited to
   that.  More and more applications use RTP for small multicast groups
   (e.g., video conferences) or even unicast (e.g., IP telephony and
   media streaming applications).

   RTP comes together with its companion protocol Real-time Transport
   Control Protocol (RTCP), which is used to monitor the transmission of
   the media data and provide feedback of the reception quality.
   Furthermore, it can be used for loose session control.  Having the
   scope of large multicast groups in mind, the rules regarding when to
   send feedback were carefully restricted to avoid feedback explosion
   or feedback-related congestion in the network.  RTP and RTCP have
   proven to work well in the Internet, especially in large multicast
   groups, which is shown by their widespread usage today.

   However, the applications that transmit the media data only to small
   multicast groups or unicast may benefit from more frequent feedback.
   The source of the packets may be able to react to changes in the
   reception quality, which may be due to varying network utilization
   (e.g., congestion) or other changes.  Possible reactions include
   transmission rate adaptation according to a congestion control
   algorithm or the invocation of error resilience features for the
   media stream (e.g., retransmissions, reference picture selection,
   NEWPRED, etc.).

   As mentioned before, more frequent feedback may be desirable to
   increase the reception quality, but RTP restricts the use of RTCP
   feedback.  Hence it was decided to create a new extended RTP profile,
   which redefines some of the RTCP timing rules, but keeps most of the
   algorithms for RTP and RTCP, which have proven to work well.  The new
   rules should scale from unicast to multicast, where unicast or small
   multicast applications have the most gain from it.  A detailed
   description of the new profile and its timing rules can be found in
   [1].

   This document investigates the new algorithms by the means of
   simulations.  We show that the new timing rules scale well and behave
   in a network-friendly manner.  Firstly, the key features of the new
   RTP profile that are important for our simulations are roughly
   described in Section 2.  After that, we describe in Section 3 the
   environment that is used to conduct the simulations.  Section 4
   describes simulation results that show the backwards compatibility to
   RTP and that the new profile is network-friendly in terms of used



Burmeister, et al.           Informational                      [Page 3]
^L
RFC 4586            Timing Rules Simulation Results            July 2006


   bandwidth for RTCP traffic.  In Section 5, we show the benefit that
   applications could get from implementing the new profile.  In Section
   6, we investigated the effect of the parameter "l" (used to calculate
   the T_dither_max value) upon the algorithm performance, and finally,
   in Section 7, we show the performance gain we could get for a special
   application, namely, NEWPRED in [6] and [7].

2.  Timing Rules of the Extended RTP Profile for RTCP-Based Feedback

   As said above, RTP restricts the usage of RTCP feedback.  The main
   restrictions on RTCP are as follows:

   - RTCP messages are sent in compound packets, i.e., every RTCP packet
     contains at least one sender report (SR) or receiver report (RR)
     message and a source description (SDES) message.

   - The RTCP compound packets are sent in time intervals (T_rr), which
     are computed as a function of the average packet size, the number
     of senders and receivers in the group, and the session bandwidth
     (5% of the session bandwidth is used for RTCP messages; this
     bandwidth is shared between all session members, where the senders
     may get a larger share than the receivers.)

   - The average minimum interval between two RTCP packets from the same
     source is 5 seconds.

   We see that these rules prevent feedback explosion and scale well to
   large multicast groups.  However, they do not allow timely feedback
   at all.  While the second rule scales also to small groups or unicast
   (in this cases the interval might be as small as a few milliseconds),
   the third rule may prevent the receivers from sending feedback
   timely.

   The timing rules to send RTCP feedback from the new RTP profile [1]
   consist of two key components.  First, the minimum interval of 5
   seconds is abolished.  Second, receivers get one chance during every
   other of their (now quite small) RTCP intervals to send an RTCP
   packet "early", i.e., not according to the calculated interval, but
   virtually immediately.  It is important to note that the RTCP
   interval calculation is still inherited from the original RTP
   specification.

   The specification and all the details of the extended timing rules
   can be found in [1].  Rather than describing the algorithms here, we
   reference the original specification [1].  Therefore, we use also the
   same variable names and abbreviations as in [1].





Burmeister, et al.           Informational                      [Page 4]
^L
RFC 4586            Timing Rules Simulation Results            July 2006


3.  Simulation Environment

   This section describes the simulation testbed that was used for the
   investigations and its key features.  The extensions to the simulator
   that were necessary are roughly described in the following sections.

3.1.  Network Simulator Version 2

   The simulations were conducted using the network simulator version 2
   (ns2).  ns2 is an open source project, written in a combination of
   Tool Command Language (TCL) and C++.  The scenarios are set up using
   TCL.  Using the scripts, it is possible to specify the topologies
   (nodes and links, bandwidths, queue sizes, or error rates for links)
   and the parameters of the "agents", i.e., protocol configurations.
   The protocols themselves are implemented in C++ in the agents, which
   are connected to the nodes.  The documentation for ns2 and the newest
   version can be found in [4].

3.2.  RTP Agent

   We implemented a new agent, based on RTP/RTCP.  RTP packets are sent
   at a constant packet rate with the correct header sizes.  RTCP
   packets are sent according to the timing rules of [2] and [3], and
   also its algorithms for group membership maintenance are implemented.
   Sender and receiver reports are sent.

   Further, we extended the agent to support the extended profile [1].
   The use of the new timing rules can be turned on and off via
   parameter settings in TCL.

3.3.  Scenarios

   The scenarios that are simulated are defined in TCL scripts.  We set
   up several different topologies, ranging from unicast with two
   session members to multicast with up to 25 session members.
   Depending on the sending rates used and the corresponding link
   bandwidths, congestion losses may occur.  In some scenarios, bit
   errors are inserted on certain links.  We simulated groups with
   RTP/AVP agents, RTP/AVPF agents, and mixed groups.

   The feedback messages are generally NACK messages as defined in [1]
   and are triggered by packet loss.









Burmeister, et al.           Informational                      [Page 5]
^L
RFC 4586            Timing Rules Simulation Results            July 2006


3.4.  Topologies

   Mainly, four different topologies are simulated to show the key
   features of the extended profile.  However, for some specific
   simulations we used different topologies.  This is then indicated in
   the description of the simulation results.  The main four topologies
   are named after the number of participating RTP agents, i.e., T-2,
   T-4, T-8, and T-16, where T-2 is a unicast scenario, T-4 contains
   four agents, etc.  Figure 1 below illustrates the main topologies.

                                                   A5
                                     A5            |   A6
                                    /              |  /
                                   /               | /--A7
                                  /                |/
                    A2          A2-----A6          A2--A8
                   /           /                  /        A9
                  /           /                  /        /
                 /           /                  /        /---A10
   A1-----A2   A1-----A3   A1-----A3-----A7   A1------A3<
                 \           \                  \        \---A11
                  \           \                  \        \
                   \           \                  \        A12
                    A4          A4-----A8          A4--A13
                                                   |\
                                                   | \--A14
                                                   |  \
                                                   |  A15
                                                  A16

       T-2         T-4            T-8               T-16

                      Figure 1: Simulated topologies

4.  RTCP Bit Rate Measurements

   The new timing rules allow more frequent RTCP feedback for small
   multicast groups.  In large groups, the algorithm behaves similarly
   to the normal RTCP timing rules.  While it is generally good to
   have more frequent feedback, it cannot be allowed at all to
   increase the bit rate used for RTCP above a fixed limit, i.e., 5%
   of the total RTP bandwidth according to RTP.  This section shows
   that the new timing rules keep RTCP bandwidth usage under the 5%
   limit for all investigated scenarios, topologies, and group sizes.
   Furthermore, we show that mixed groups (some members using
   AVP, some AVPF) can be allowed and that each session member behaves





Burmeister, et al.           Informational                      [Page 6]
^L
RFC 4586            Timing Rules Simulation Results            July 2006


   fairly according to its corresponding specification.  Note that
   other values for the RTCP bandwidth limit may be specified using
   the RTCP bandwidth modifiers as in [10].

4.1.  Unicast

   First we measured the RTCP bandwidth share in the unicast topology
   T-2.  Even for a fixed topology and group size, there are several
   protocol parameters that are varied to simulate a large range of
   different scenarios.  We varied the configurations of the agents
   in the sense that the agents may use AVP or AVPF.  Thereby it
   is possible that one agent uses AVP and the other AVPF in one RTP
   session.  This is done to test the backwards compatibility of the
   AVPF profile.

   Next, we consider scenarios where no losses occur.  In this case,
   both RTP session members transmit the RTCP compound packets at
   regular intervals, calculated as T_rr, if they use AVPF, and
   use a minimum interval of 5 seconds (on average) if they implement
   AVP.  No early packets are sent, because the need to send early
   feedback is not given.  Still it is important to see that not more
   than 5% of the session bandwidth is used for RTCP and that AVP and
   AVPF members can coexist without interference.  The results can
   be found in Table 1.



























Burmeister, et al.           Informational                      [Page 7]
^L
RFC 4586            Timing Rules Simulation Results            July 2006


       |         |      |      |      |      | Used RTCP Bit Rate |
       | Session | Send | Rec. | AVP  | AVPF | (% of session bw)  |
       |Bandwidth|Agents|Agents|Agents|Agents|  A1  |  A2  | sum  |
       +---------+------+------+------+------+------+------+------+
       |  2 Mbps |  1   |  2   |  -   | 1,2  | 2.42 | 2.56 | 4.98 |
       |  2 Mbps | 1,2  |  -   |  -   | 1,2  | 2.49 | 2.49 | 4.98 |
       |  2 Mbps |  1   |  2   |  1   |  2   | 0.01 | 2.49 | 2.50 |
       |  2 Mbps | 1,2  |  -   |  1   |  2   | 0.01 | 2.48 | 2.49 |
       |  2 Mbps |  1   |  2   | 1,2  |  -   | 0.01 | 0.01 | 0.02 |
       |  2 Mbps | 1,2  |  -   | 1,2  |  -   | 0.01 | 0.01 | 0.02 |
       |200 kbps |  1   |  2   |  -   | 1,2  | 2.42 | 2.56 | 4.98 |
       |200 kbps | 1,2  |  -   |  -   | 1,2  | 2.49 | 2.49 | 4.98 |
       |200 kbps |  1   |  2   |  1   |  2   | 0.06 | 2.49 | 2.55 |
       |200 kbps | 1,2  |  -   |  1   |  2   | 0.08 | 2.50 | 2.58 |
       |200 kbps |  1   |  2   | 1,2  |  -   | 0.06 | 0.06 | 0.12 |
       |200 kbps | 1,2  |  -   | 1,2  |  -   | 0.08 | 0.08 | 0.16 |
       | 20 kbps |  1   |  2   |  -   | 1,2  | 2.44 | 2.54 | 4.98 |
       | 20 kbps | 1,2  |  -   |  -   | 1,2  | 2.50 | 2.51 | 5.01 |
       | 20 kbps |  1   |  2   |  1   |  2   | 0.58 | 2.48 | 3.06 |
       | 20 kbps | 1,2  |  -   |  1   |  2   | 0.77 | 2.51 | 3.28 |
       | 20 kbps |  1   |  2   | 1,2  |  -   | 0.58 | 0.61 | 1.19 |
       | 20 kbps | 1,2  |  -   | 1,2  |  -   | 0.77 | 0.79 | 1.58 |

             Table 1: Unicast simulations without packet loss

   We can see that in configurations where both agents use the new
   timing rules each of them uses, at most, about 2.5% of the session
   bandwidth for RTP, which sums up to 5% of the session bandwidth for
   both.  This is achieved regardless of the agent being a sender or a
   receiver.  In the cases where agent A1 uses AVP and agent A2 AVPF,
   the total RTCP session bandwidth decreases.  This is because agent A1
   can send RTCP packets only with an average minimum interval of 5
   seconds.  Thus, only a small fraction of the session bandwidth is
   used for its RTCP packets.  For a high-bit-rate session (session
   bandwidth = 2 Mbps), the fraction of the RTCP packets from agent A1
   is as small as 0.01%.  For smaller session bandwidths, the fraction
   increases because the same amount of RTCP data is sent.  The
   bandwidth share that is used by RTCP packets from agent A2 is not
   different from what was used, when both agents implemented the AVPF.
   Thus, the interaction of AVP and AVPF agents is not problematic in
   these scenarios at all.

   In our second unicast experiment, we show that the allowed RTCP
   bandwidth share is not exceeded, even if packet loss occurs.  We
   simulated a constant byte error rate (BYER) on the link.  The byte
   errors are inserted randomly according to a uniform distribution.





Burmeister, et al.           Informational                      [Page 8]
^L
RFC 4586            Timing Rules Simulation Results            July 2006


   Packets with byte errors are discarded on the link; hence the
   receiving agents will not see the loss immediately.  The agents
   detect packet loss by a gap in the sequence number.

   When an AVPF agent detects a packet loss, the early feedback
   procedure is started.  As described in AVPF [1], in unicast
   T_dither_max is always zero, hence an early packet can be sent
   immediately if allow_early is true.  If the last packet was already
   an early one (i.e., allow_early = false), the feedback might be
   appended to the next regularly scheduled receiver report.  The
   max_feedback_delay parameter (which we set to 1 second in our
   simulations) determines if that is allowed.

   The results are shown in Table 2, where we can see that there is no
   difference in the RTCP bandwidth share, whether or not losses occur.
   This is what we expected, because even though the RTCP packet size
   grows and early packets are sent, the interval between the packets
   increases and thus the RTCP bandwidth stays the same.  Only the RTCP
   bandwidth of the agents that use the AVP increases slightly.  This is
   because the interval between the packets is still 5 seconds (in
   average), but the packet size increased because of the feedback that
   is appended.

       |         |      |      |      |      | Used RTCP Bit Rate |
       | Session | Send | Rec. | AVP  | AVPF | (% of session bw)  |
       |Bandwidth|Agents|Agents|Agents|Agents|  A1  |  A2  | sum  |
       +---------+------+------+------+------+------+------+------+
       |  2 Mbps |  1   |  2   |  -   | 1,2  | 2.42 | 2.56 | 4.98 |
       |  2 Mbps | 1,2  |  -   |  -   | 1,2  | 2.49 | 2.49 | 4.98 |
       |  2 Mbps |  1   |  2   |  1   |  2   | 0.01 | 2.49 | 2.50 |
       |  2 Mbps | 1,2  |  -   |  1   |  2   | 0.01 | 2.48 | 2.49 |
       |  2 Mbps |  1   |  2   | 1,2  |  -   | 0.01 | 0.02 | 0.03 |
       |  2 Mbps | 1,2  |  -   | 1,2  |  -   | 0.01 | 0.01 | 0.02 |
       |200 kbps |  1   |  2   |  -   | 1,2  | 2.42 | 2.56 | 4.98 |
       |200 kbps | 1,2  |  -   |  -   | 1,2  | 2.50 | 2.49 | 4.99 |
       |200 kbps |  1   |  2   |  1   |  2   | 0.06 | 2.50 | 2.56 |
       |200 kbps | 1,2  |  -   |  1   |  2   | 0.08 | 2.49 | 2.57 |
       |200 kbps |  1   |  2   | 1,2  |  -   | 0.06 | 0.07 | 0.13 |
       |200 kbps | 1,2  |  -   | 1,2  |  -   | 0.09 | 0.08 | 0.17 |
       | 20 kbps |  1   |  2   |  -   | 1,2  | 2.42 | 2.57 | 4.99 |
       | 20 kbps | 1,2  |  -   |  -   | 1,2  | 2.52 | 2.51 | 5.03 |
       | 20 kbps |  1   |  2   |  1   |  2   | 0.58 | 2.54 | 3.12 |
       | 20 kbps | 1,2  |  -   |  1   |  2   | 0.83 | 2.43 | 3.26 |
       | 20 kbps |  1   |  2   | 1,2  |  -   | 0.58 | 0.73 | 1.31 |
       | 20 kbps | 1,2  |  -   | 1,2  |  -   | 0.86 | 0.84 | 1.70 |

               Table 2: Unicast simulations with packet loss




Burmeister, et al.           Informational                      [Page 9]
^L
RFC 4586            Timing Rules Simulation Results            July 2006


4.2.  Multicast

   Next, we investigated the RTCP bandwidth share in multicast
   scenarios; i.e., we simulated the topologies T-4, T-8, and T-16 and
   measured the fraction of the session bandwidth that was used for RTCP
   packets.  Again we considered different situations and protocol
   configurations (e.g., with or without bit errors, groups with AVP
   and/or AVPF agents, etc.).  For reasons of readability, we present
   only selected results.  For a documentation of all results, see [5].

   The simulations of the different topologies in scenarios where no
   losses occur (neither through bit errors nor through congestion) show
   a similar behavior as in the unicast case.  For all group sizes, the
   maximum RTCP bit rate share used is 5.06% of the session bandwidth in
   a simulation of 16 session members in a low-bit-rate scenario
   (session bandwidth = 20 kbps) with several senders.  In all other
   scenarios without losses, the RTCP bit rate share used is below that.
   Thus, the requirement that not more than 5% of the session bit rate
   should be used for RTCP is fulfilled with reasonable accuracy.

   Simulations where bit errors are randomly inserted in RTP and RTCP
   packets and the corrupted packets are discarded give the same
   results.  The 5% rule is kept (at maximum 5.07% of the session
   bandwidth is used for RTCP).

   Finally, we conducted simulations where we reduced the link bandwidth
   and thereby caused congestion-related losses.  These simulations are
   different from the previous bit error simulations, in that the losses
   occur more in bursts and are more correlated, also between different
   agents.  The correlation and "burstiness" of the packet loss is due
   to the queuing discipline in the routers we simulated; we used simple
   FIFO queues with a drop-tail strategy to handle congestion.  Random
   Early Detection (RED) queues may enhance the performance, because the
   burstiness of the packet loss might be reduced; however, this is not
   the subject of our investigations, but is left for future study.  The
   delay between the agents, which also influences RTP and RTCP packets,
   is much more variable because of the added queuing delay.  Still the
   RTCP bit rate share used does not increase beyond 5.09% of the
   session bandwidth.  Thus, also for these special cases the
   requirement is fulfilled.

4.3.  Summary of the RTCP Bit Rate Measurements

   We have shown that for unicast and reasonable multicast scenarios,
   feedback implosion does not happen.  The requirement that at maximum
   5% of the session bandwidth is used for RTCP is fulfilled for all
   investigated scenarios.




Burmeister, et al.           Informational                     [Page 10]
^L
RFC 4586            Timing Rules Simulation Results            July 2006


5.  Feedback Measurements

   In this section we describe the results of feedback delay
   measurements, which we conducted in the simulations.  Therefore, we
   use two metrics for measuring the performance of the algorithms;
   these are the "mean waiting time" (MWT) and the number of feedback
   packets that are sent, suppressed, or not allowed.  The waiting time
   is the time, measured at a certain agent, between the detection of a
   packet loss event and the time when the corresponding feedback is
   sent.  Assuming that the value of the feedback decreases with its
   delay, we think that the mean waiting time is a good metric to
   measure the performance gain we could get by using AVPF instead of
   AVP.

   The feedback an RTP/AVPF agent wants to send can be either sent or
   not sent.  If it was not sent, this could be due to feedback
   suppression (i.e., another receiver already sent the same feedback)
   or because the feedback was not allowed (i.e., the max_feedback_delay
   was exceeded).  We traced for every detected loss, if the agent sent
   the corresponding feedback or not and if not, why.  The more feedback
   was not allowed, the worse the performance of the algorithm.
   Together with the waiting times, this gives us a good hint of the
   overall performance of the scheme.

5.1.  Unicast

   In the unicast case, the maximum dithering interval T_dither_max is
   fixed and set to zero.  This is because it does not make sense for a
   unicast receiver to wait for other receivers if they have the same
   feedback to send.  But still feedback can be delayed or might not be
   permitted to be sent at all.  The regularly scheduled packets are
   spaced according to T_rr, which depends in the unicast case mainly on
   the session bandwidth.

   Table 3 shows the mean waiting times (MWTs) measured in seconds for
   some configurations of the unicast topology T-2.  The number of
   feedback packets that are sent or discarded is listed also (feedback
   sent (sent) or feedback discarded (disc)).  We do not list suppressed
   packets, because for the unicast case feedback suppression does not
   apply.  In the simulations, agent A1 was a sender and agent A2 was a
   pure receiver.










Burmeister, et al.           Informational                     [Page 11]
^L
RFC 4586            Timing Rules Simulation Results            July 2006


       |         |       |          Feedback Statistics          |
       | Session |       |       AVP         |       AVPF        |
       |Bandwidth|  PLR  | sent |disc| MWT   | sent |disc| MWT   |
       +---------+-------+------+----+-------+------+----+-------+
       |  2 Mbps | 0.001 |  781 |  0 | 2.604 |  756 |  0 | 0.015 |
       |  2 Mbps | 0.01  | 7480 |  0 | 2.591 | 7548 |  2 | 0.006 |
       |  2 Mbps | cong. |   25 |  0 | 2.557 | 1741 |  0 | 0.001 |
       | 20 kbps | 0.001 |   79 |  0 | 2.472 |   74 |  2 | 0.034 |
       | 20 kbps | 0.01  |  780 |  0 | 2.605 |  709 | 64 | 0.163 |
       | 20 kbps | cong. |  780 |  0 | 2.590 |  687 | 70 | 0.162 |

         Table 3: Feedback statistics for the unicast simulations

   From the table above we see that the mean waiting time can be
   decreased dramatically by using AVPF instead of AVP.  While the
   waiting times for agents using AVP is always around 2.5 seconds (half
   the minimum interval average), it can be decreased to a few ms for
   most of the AVPF configurations.

   In the configurations with high session bandwidth, normally all
   triggered feedback is sent.  This is because more RTCP bandwidth is
   available.  There are only very few exceptions, which are probably
   due to more than one packet loss within one RTCP interval, where the
   first loss was by chance sent quite early.  In this case, it might be
   possible that the second feedback is triggered after the early packet
   was sent, but possibly too early to append it to the next regularly
   scheduled report, because of the limitation of the
   max_feedback_delay.  This is different for the cases with a small
   session bandwidth, where the RTCP bandwidth share is quite low and
   T_rr thus larger.  After an early packet was sent, the time to the
   next regularly scheduled packet can be very high.  We saw that in
   some cases the time was larger than the max_feedback_delay, and in
   these cases the feedback is not allowed to be sent at all.

   With a different setting of max_feedback_delay, it is possible to
   have either more feedback that is not allowed and a decreased mean
   waiting time or more feedback that is sent but an increased waiting
   time.  Thus, the parameter should be set with care according to the
   application's needs.

5.2.  Multicast

   In this section, we describe some measurements of feedback statistics
   in the multicast simulations.  We picked out certain characteristic
   and representative results.  We considered the topology T-16.
   Different scenarios and applications are simulated for this topology.
   The parameters of the different links are set as follows.  The agents
   A2, A3, and A4 are connected to the middle node of the multicast



Burmeister, et al.           Informational                     [Page 12]
^L
RFC 4586            Timing Rules Simulation Results            July 2006


   tree, i.e., agent A1, via high bandwidth and low-delay links.  The
   other agents are connected to the nodes 2, 3, and 4 via different
   link characteristics.  The agents connected to node 2 represent
   mobile users.  They suffer in certain configurations from a certain
   byte error rate on their access links and the delays are high.  The
   agents that are connected to node 3 have low-bandwidth access links,
   but do not suffer from bit errors.  The last agents, which are
   connected to node 4, have high bandwidth and low delay.

5.2.1.  Shared Losses vs. Distributed Losses

   In our first investigation, we wanted to see the effect of the loss
   characteristic on the algorithm's performance.  We investigate the
   cases where packet loss occurs for several users simultaneously
   (shared losses) or totally independently (distributed losses).  We
   first define agent A1 to be the sender.  In the case of shared
   losses, we inserted a constant byte error rate on one of the middle
   links, i.e., the link between A1 and A2.  In the case of distributed
   losses, we inserted the same byte error rate on all links downstream
   of A2.

   These scenarios are especially interesting because of the feedback
   suppression algorithm.  When all receivers share the same loss, it is
   only necessary for one of them to send the loss report.  Hence if a
   member receives feedback with the same content that it has scheduled
   to be sent, it suppresses the scheduled feedback.  Of course, this
   suppressed feedback does not contribute to the mean waiting times.
   So we expect reduced waiting times for shared losses, because the
   probability is high that one of the receivers can send the feedback
   more or less immediately.  The results are shown in the following
   table.

       |     |                Feedback Statistics                |
       |     |  Shared Losses          |  Distributed Losses     |
       |Agent|sent|fbsp|disc|sum | MWT |sent|fbsp|disc|sum | MWT |
       +-----+----+----+----+----+-----+----+----+----+----+-----+
       |  A2 | 274| 351|  25| 650|0.267|   -|   -|   -|   -|    -|
       |  A5 | 231| 408|  11| 650|0.243| 619|   2|  32| 653|0.663|
       |  A6 | 234| 407|   9| 650|0.235| 587|   2|  32| 621|0.701|
       |  A7 | 223| 414|  13| 650|0.253| 594|   6|  41| 641|0.658|
       |  A8 | 188| 443|  19| 650|0.235| 596|   1|  32| 629|0.677|

          Table 4: Feedback statistics for multicast simulations

   Table 4 shows the feedback statistics for the simulation of a large
   group size.  All 16 agents of topology T-16 joined the RTP session.
   However, only agent A1 acts as an RTP sender; the other agents are
   pure receivers.  Only 4 or 5 agents suffer from packet loss, i.e.,



Burmeister, et al.           Informational                     [Page 13]
^L
RFC 4586            Timing Rules Simulation Results            July 2006


   A2, A5, A6, A7, and A8 for the case of shared losses and A5, A6, A7,
   and A8 in the case of distributed losses.  Since the number of
   session members is the same for both cases, T_rr is also the same on
   the average.  Still the mean waiting times are reduced by more than
   50% in the case of shared losses.  This proves our assumption that
   shared losses enhance the performance of the algorithm, regardless of
   the loss characteristic.

   The feedback suppression mechanism seems to be working quite well.
   Even though some feedback is sent from different receivers (i.e.,
   1150 loss reports are sent in total and only 650 packets were lost,
   resulting in loss reports being received on the average 1.8 times),
   most of the redundant feedback was suppressed.  That is, 2023 loss
   reports were suppressed from 3250 individual detected losses, which
   means that more than 60% of the feedback was actually suppressed.

6.  Investigations on "l"

   In this section, we want to investigate the effect of the parameter
   "l" on the T_dither_max calculation in RTP/AVPF agents.  We
   investigate the feedback suppression performance as well as the
   report delay for three sample scenarios.

   For all receivers, the T_dither_max value is calculated as
   T_dither_max = l * T_rr, with l = 0.5.  The rationale for this is
   that, in general, if the receiver has no round-trip time (RTT)
   estimation, it does not know how long it should wait for other
   receivers to send feedback.  The feedback suppression algorithm would
   certainly fail if the time selected is too short.  However, the
   waiting time is increased unnecessarily (and thus the value of the
   feedback is decreased) in case the chosen value is too large.
   Ideally, the optimum time value could be found for each case, but
   this is not always feasible.  On the other hand, it is not dangerous
   if the optimum time is not used.  A decreased feedback value and a
   failure of the feedback suppression mechanism do not hurt the network
   stability.  We have shown for the cases of distributed losses that
   the overall bandwidth constraints are kept in any case and thus we
   could only lose some performance by choosing the wrong time value.
   On the other hand, a good measure for T_dither_max is the RTCP
   interval T_rr.  This value increases with the number of session
   members.  Also, we know that we can send feedback at least every
   T_rr.  Thus, increasing T_dither max beyond T_rr would certainly make
   no sense.  So by choosing T_rr/2, we guarantee that at least
   sometimes (i.e., when a loss is detected in the first half of the
   interval between two regularly scheduled RTCP packets) we are allowed
   to send early packets.  Because of the randomness of T_dither, we
   still have a good chance of sending the early packet in time.




Burmeister, et al.           Informational                     [Page 14]
^L
RFC 4586            Timing Rules Simulation Results            July 2006


   The AVPF profile specifies that the calculation of T_dither_max, as
   given above, is common to session members having an RTT estimation
   and to those not having it.  If this were not so, participants using
   different calculations for T_dither_max might also have very
   different mean waiting times before sending feedback, which
   translates into different reporting priorities.  For example, in a
   scenario where T_rr = 1 s and the RTT = 100 ms, receivers using the
   RTT estimation would, on average, send more feedback than those not
   using it.  This might partially cancel out the feedback suppression
   mechanism and even cause feedback implosion.  Also note that, in a
   general case where the losses are shared, the feedback suppression
   mechanism works if the feedback packets from each receiver have
   enough time to reach each of the other ones before the calculated
   T_dither_max seconds.  Therefore, in scenarios of very high bandwidth
   (small T_rr), the calculated T_dither_max could be much smaller than
   the propagation delay between receivers, which would translate into a
   failure of the feedback suppression mechanism.  In these cases, one
   solution could be to limit the bandwidth available to receivers (see
   [10]) such that this does not happen.  Another solution could be to
   develop a mechanism for feedback suppression based on the RTT
   estimation between senders.  This will not be discussed here and may
   be the subject of another document.  Note, however, that a really
   high bandwidth media stream is not that likely to rely on this kind
   of error repair in the first place.

   In the following, we define three representative sample scenarios.
   We use the topology from the previous section, T-16.  Most of the
   agents contribute only little to the simulations, because we
   introduced an error rate only on the link between the sender A1 and
   the agent A2.

   The first scenario represents those cases, where losses are shared
   between two agents.  One agent is located upstream on the path
   between the other agent and the sender.  Therefore, agent A2 and
   agent A5 see the same losses that are introduced on the link between
   the sender and agent A2.  Agents A6, A7, and A8 do not join the RTP
   session.  From the other agents, only agents A3 and A9 join.  All
   agents are pure receivers, except A1, which is the sender.

   The second scenario also represents cases where losses are shared
   between two agents, but this time the agents are located on different
   branches of the multicast tree.  The delays to the sender are roughly
   of the same magnitude.  Agents A5 and A6 share the same losses.
   Agents A3 and A9 join the RTP session, but are pure receivers and do
   not see any losses.

   Finally, in the third scenario, the losses are shared between two
   agents, A5 and A6.  The same agents as in the second scenario are



Burmeister, et al.           Informational                     [Page 15]
^L
RFC 4586            Timing Rules Simulation Results            July 2006


   active.  However, the delays of the links are different.  The delay
   of the link between agents A2 and A5 is reduced to 20 ms and between
   A2 and A6 to 40 ms.

   All agents beside agent A1 are pure RTP receivers.  Thus, these
   agents do not have an RTT estimation to the source.  T_dither_max is
   calculated with the above given formula, depending only on T_rr and
   l, which means that all agents should calculate roughly the same
   T_dither_max.

6.1.  Feedback Suppression Performance

   The feedback suppression rate for an agent is defined as the ratio of
   the total number of feedback packets not sent out of the total number
   of feedback packets the agent intended to send (i.e., the sum of sent
   and not sent).  The reasons for not sending a packet include: the
   receiver already saw the same loss reported in a receiver report
   coming from another session member or the max_feedback_delay
   (application-specific) was surpassed.

   The results for the feedback suppression rate of the agent Af that is
   further away from the sender are depicted in Table 5.  In general, it
   can be seen that the feedback suppression rate increases as l
   increases.  However there is a threshold, depending on the
   environment, from which the additional gain is not significant
   anymore.

                  |      |  Feedback Suppression Rate  |
                  |  l   | Scen. 1 | Scen. 2 | Scen. 3 |
                  +------+---------+---------+---------+
                  | 0.10 |  0.671  |  0.051  |  0.089  |
                  | 0.25 |  0.582  |  0.060  |  0.210  |
                  | 0.50 |  0.524  |  0.114  |  0.361  |
                  | 0.75 |  0.523  |  0.180  |  0.370  |
                  | 1.00 |  0.523  |  0.204  |  0.369  |
                  | 1.25 |  0.506  |  0.187  |  0.372  |
                  | 1.50 |  0.536  |  0.213  |  0.414  |
                  | 1.75 |  0.526  |  0.215  |  0.424  |
                  | 2.00 |  0.535  |  0.216  |  0.400  |
                  | 3.00 |  0.522  |  0.220  |  0.405  |
                  | 4.00 |  0.522  |  0.220  |  0.405  |

    Table 5: Fraction of feedback that was suppressed at agent (Af) of
      the total number of feedback messages the agent wanted to send

   Similar results can be seen in Table 6 for the agent An that is
   nearer to the sender.




Burmeister, et al.           Informational                     [Page 16]
^L
RFC 4586            Timing Rules Simulation Results            July 2006


                  |      |  Feedback Suppression Rate  |
                  |  l   | Scen. 1 | Scen. 2 | Scen. 3 |
                  +------+---------+---------+---------+
                  | 0.10 |  0.056  |  0.056  |  0.090  |
                  | 0.25 |  0.063  |  0.055  |  0.166  |
                  | 0.50 |  0.116  |  0.099  |  0.255  |
                  | 0.75 |  0.141  |  0.141  |  0.312  |
                  | 1.00 |  0.179  |  0.175  |  0.352  |
                  | 1.25 |  0.206  |  0.176  |  0.361  |
                  | 1.50 |  0.193  |  0.193  |  0.337  |
                  | 1.75 |  0.197  |  0.204  |  0.341  |
                  | 2.00 |  0.207  |  0.207  |  0.368  |
                  | 3.00 |  0.196  |  0.203  |  0.359  |
                  | 4.00 |  0.196  |  0.203  |  0.359  |

    Table 6: Fraction of feedback that was suppressed at agent (An) of
      the total number of feedback messages the agent wanted to send

   The rate of feedback suppression failure is depicted in Table 7.  The
   trend of additional performance increase is not significant beyond a
   certain threshold.  Dependence on the scenario is noticeable here as
   well.

                  |      |Feedback Suppr. Failure Rate |
                  |  l   | Scen. 1 | Scen. 2 | Scen. 3 |
                  +------+---------+---------+---------+
                  | 0.10 |  0.273  |  0.893  |  0.822  |
                  | 0.25 |  0.355  |  0.885  |  0.624  |
                  | 0.50 |  0.364  |  0.787  |  0.385  |
                  | 0.75 |  0.334  |  0.679  |  0.318  |
                  | 1.00 |  0.298  |  0.621  |  0.279  |
                  | 1.25 |  0.289  |  0.637  |  0.267  |
                  | 1.50 |  0.274  |  0.595  |  0.249  |
                  | 1.75 |  0.274  |  0.580  |  0.235  |
                  | 2.00 |  0.258  |  0.577  |  0.233  |
                  | 3.00 |  0.282  |  0.577  |  0.236  |
                  | 4.00 |  0.282  |  0.577  |  0.236  |

           Table 7: The ratio of feedback suppression failures.

   Summarizing the feedback suppression results, it can be said that in
   general the feedback suppression performance increases as l
   increases.  However, beyond a certain threshold, depending on
   environment parameters such as propagation delays or session
   bandwidth, the additional increase is not significant anymore.  This
   threshold is not uniform across all scenarios; a value of l=0.5 seems
   to produce reasonable results with acceptable (though not optimal)
   overhead.



Burmeister, et al.           Informational                     [Page 17]
^L
RFC 4586            Timing Rules Simulation Results            July 2006


6.2.  Loss Report Delay

   In this section, we show the results for the measured report delay
   during the simulations of the three sample scenarios.  This
   measurement is a metric of the performance of the algorithms, because
   the value of the feedback for the sender typically decreases with the
   delay of its reception.  The loss report delay is measured as the
   time at the sender between sending a packet and receiving the first
   corresponding loss report.

                  |      |   Mean Loss Report Delay    |
                  |  l   | Scen. 1 | Scen. 2 | Scen. 3 |
                  +------+---------+---------+---------+
                  | 0.10 |  0.124  |  0.282  |  0.210  |
                  | 0.25 |  0.168  |  0.266  |  0.234  |
                  | 0.50 |  0.243  |  0.264  |  0.284  |
                  | 0.75 |  0.285  |  0.286  |  0.325  |
                  | 1.00 |  0.329  |  0.305  |  0.350  |
                  | 1.25 |  0.351  |  0.329  |  0.370  |
                  | 1.50 |  0.361  |  0.363  |  0.388  |
                  | 1.75 |  0.360  |  0.387  |  0.392  |
                  | 2.00 |  0.367  |  0.412  |  0.400  |
                  | 3.00 |  0.368  |  0.507  |  0.398  |
                  | 4.00 |  0.368  |  0.568  |  0.398  |

       Table 8: The mean loss report delay, measured at the sender.

   As can be seen from Table 8, the delay increases, in general, as l
   increases.  Also, a similar effect as for the feedback suppression
   performance is present: beyond a certain threshold, the additional
   increase in delay is not significant anymore.  The threshold is
   environment dependent and seems to be related to the threshold, where
   the feedback suppression gain would not increase anymore.

6.3.  Summary of "l" Investigations

   We have shown experimentally that the performance of the feedback
   suppression mechanisms increases as l increases.  The same applies
   for the report delay, which also increases as l increases.  This
   leads to a threshold where both the performance and the delay do not
   increase any further.  The threshold is dependent upon the
   environment.

   So finding an optimum value of l is not possible because it is always
   a trade-off between delay and feedback suppression performance.  With
   l=0.5, we think that a trade-off was found that is acceptable for
   typical applications and environments.




Burmeister, et al.           Informational                     [Page 18]
^L
RFC 4586            Timing Rules Simulation Results            July 2006


7.  Applications Using AVPF

   NEWPRED is one of the error resilience tools, which is defined in
   both ISO/IEC MPEG-4 visual part and ITU-T H.263.  NEWPRED achieves
   fast error recovery using feedback messages.  We simulated the
   behavior of NEWPRED in the network simulator environment as described
   above and measured the waiting time statistics, in order to verify
   that the extended RTP profile for RTCP-based feedback (AVPF) [1] is
   appropriate for the NEWPRED feedback messages.  Simulation results,
   which are presented in the following sections, show that the waiting
   time is small enough to get the expected performance of NEWPRED.

7.1.  NEWPRED Implementation in NS2

   The agent that performs the NEWPRED functionality, called NEWPRED
   agent, is different from the RTP agent we described above.  Some of
   the added features and functionalities are described in the following
   points:

   Application Feedback
      The "Application Layer Feedback Messages" format is used to
      transmit the NEWPRED feedback messages.  Thereby the NEWPRED
      functionality is added to the RTP agent.  The NEWPRED agent
      creates one NACK message for each lost segment of a video frame,
      and then assembles multiple NACK messages corresponding to the
      segments in the same video frame into one Application Layer
      Feedback Message.  Although there are two modes, namely, NACK mode
      and ACK mode, in NEWPRED [6][7], only NACK mode is used in these
      simulations.  In this simulation, the RTP layer doesn't generate
      feedback messages.  Instead, the decoder (NEWPRED) generates a
      NACK message when the segment cannot be decoded because the data
      hasn't arrived or loss of reference picture has occurred.  Those
      conditions are detected in the decoder with frame number, segment
      number, and existence of reference pictures in the decoder.

   The parameters of NEWPRED agent are as follows:

        f: Frame Rate(frames/sec)
      seg: Number of segments in one video frame
       bw: RTP session bandwidth(kbps)

   Generation of NEWPRED's NACK Messages
      The NEWPRED agent generates NACK messages when segments are lost.








Burmeister, et al.           Informational                     [Page 19]
^L
RFC 4586            Timing Rules Simulation Results            July 2006


      a. The NEWPRED agent generates multiple NACK messages per one
         video frame when multiple segments are lost.  These are
         assembled into one Feedback Control Information (FCI) message
         per video frame.  If there is no lost segment, no message is
         generated and sent.

      b. The length of one NACK message is 4 bytes.  Let num be the
         number of NACK messages in one video frame (1 <= num <= seg).
         Thus, 12+4*num bytes is the size of the low-delay RTCP feedback
         message in a compound RTCP packet.

   Measurements
      We defined two values to be measured:

      - Recovery time
        The recovery time is measured as the time between the detection
        of a lost segment and reception of a recovered segment.  We
        measured this "recovery time" for each lost segment.

      - Waiting time
        The waiting time is the additional delay due to the feedback
        limitation of RTP.

   Figure 2 depicts the behavior of a NEWPRED agent when a loss occurs.

   The recovery time is approximated as follows:

      (Recovery time) = (Waiting time) +
                        (Transmission time for feedback message) +
                        (Transmission time for media data)

   Therefore, the waiting time is derived as follows:

      (Waiting time) = (Recovery time) - (Round-trip delay), where

      (Round-trip delay ) = (Transmission time for feedback message) +
                            (Transmission time for media data)














Burmeister, et al.           Informational                     [Page 20]
^L
RFC 4586            Timing Rules Simulation Results            July 2006


        Picture Reference                            |: Picture Segment
                 ____________________                %: Lost Segment
                /_    _    _    _    \
               v/ \  / \  / \  / \    \
               v   \v   \v   \v   \    \
   Sender   ---|----|----|----|----|----|---|------------->
                    \    \                 ^ \
                     \    \               /   \
                      \    \             /     \
                       \    v           /       \
                        \    x         /         \
                         \   Lost     /           \
                          \    x     /             \
   _____
                           v    x   / NACK          v
   Receiver ---------------|----%===-%----%----%----|----->
                                |-a-|               |
                                |-------  b  -------|

                          a: Waiting time
                          b: Recover time (%: Video segments are lost)

   Figure 2: Relation between the measured values at the NEWPRED agent

7.2.  Simulation

   We conducted two simulations (Simulation A and Simulation B).  In
   Simulation A, the packets are dropped with a fixed packet loss rate
   on a link between two NEWPRED agents.  In Simulation B, packet loss
   occurs due to congestion from other traffic sources, i.e., ftp
   sessions.

7.2.1.  Simulation A - Constant Packet Loss Rate

   The network topology used for this simulation is shown in Figure 3.

                  Link 1         Link 2        Link 3
        +--------+      +------+       +------+      +--------+
        | Sender |------|Router|-------|Router|------|Receiver|
        +--------+      +------+       +------+      +--------+
                 10(msec)       x(msec)       10(msec)

         Figure 3: Network topology that is used for Simulation A

   Link1 and link3 are error free, and each link delay is 10 msec.
   Packets may get dropped on link2.  The packet loss rates (Plr) and
   link delay (D) are as follows:




Burmeister, et al.           Informational                     [Page 21]
^L
RFC 4586            Timing Rules Simulation Results            July 2006


      D [ms] = {10, 50, 100, 200, 500}
      Plr    = {0.005, 0.01, 0.02, 0.03, 0.05, 0.1, 0.2}

   Session bandwidth, frame rate, and the number of segments are shown
   in Table 9.

               +------------+----------+-------------+-----+
               |Parameter ID| bw(kbps) |f (frame/sec)| seg |
               +------------+----------+-------------+-----+
               | 32k-4-3    |     32   |      4      |  3  |
               | 32k-5-3    |     32   |      5      |  3  |
               | 64k-5-3    |     64   |      5      |  3  |
               | 64k-10-3   |     64   |     10      |  3  |
               | 128k-10-6  |    128   |     10      |  6  |
               | 128k-15-6  |    128   |     15      |  6  |
               | 384k-15-6  |    384   |     15      |  6  |
               | 384k-30-6  |    384   |     30      |  6  |
               | 512k-30-6  |    512   |     30      |  6  |
               | 1000k-30-9 |   1000   |     30      |  9  |
               | 2000k-30-9 |   2000   |     30      |  9  |
               +------------+----------+-------------+-----+

              Table 9: Parameter sets of the NEWPRED agents

   Figure 4 shows the key values of the result (packet loss rate vs.
   mean of waiting time).

   When the packet loss rate is 5% and the session bandwidth is 32 kbps,
   the waiting time is around 400 msec, which is just allowable for
   reasonable NEWPRED performance.

   When the packet loss rate is less than 1%, the waiting time is less
   than 200 msec.  In such a case, the NEWPRED allows as much as
   200-msec additional link delay.

   When the packet loss rate is less than 5% and the session bandwidth
   is 64 kbps, the waiting time is also less than 200 msec.

   In 128-kbps cases, the result shows that when the packet loss rate is
   20%, the waiting time is around 200 msec.  In cases with more than
   512-kbps session bandwidth, there is no significant delay.  This
   means that the waiting time due to the feedback limitation of RTCP is
   negligible for the NEWPRED performance.








Burmeister, et al.           Informational                     [Page 22]
^L
RFC 4586            Timing Rules Simulation Results            July 2006


      +------------------------------------------------------------+
      |           | Packet Loss Rate =                             |
      | Bandwidth | 0.005| 0.01 | 0.02 | 0.03 | 0.05 |0.10  |0.20  |
      |-----------+------+------+------+------+------+------+------|
      |       32k |130-  |200-  |230-  |280-  |350-  |470-  |560-  |
      |           |   180|   250|   320|   390|   430|   610|   780|
      |       64k | 80-  |100-  |120-  |150-  |180-  |210-  |290-  |
      |           |   130|   150|   180|   190|   210|   300|   400|
      |      128k | 60-  | 70-  | 90-  |110-  |130-  |170-  |190-  |
      |           |    70|    80|   100|   120|   140|   190|   240|
      |      384k | 30-  | 30-  | 30-  | 40-  | 50-  | 50-  | 50-  |
      |           |    50|    50|    50|    50|    60|    70|    90|
      |      512k | < 50 | < 50 | < 50 | < 50 | < 50 | < 50 | < 60 |
      |           |      |      |      |      |      |      |      |
      |     1000k | < 50 | < 50 | < 50 | < 50 | < 50 | < 50 | < 55 |
      |           |      |      |      |      |      |      |      |
      |     2000k | < 30 | < 30 | < 30 | < 30 | < 30 | < 35 | < 35 |
      +------------------+------+------+------+------+------+------+

                   Figure 4: The result of simulation A

7.2.2.  Simulation B - Packet Loss Due to Congestion

   The configurations of link1, link2, and link3 are the same as in
   Simulation A except that link2 is also error-free, regarding bit
   errors.  However, in addition, some FTP agents are deployed to
   overload link2.  See Figure 5 for the simulation topology.

                   Link1         Link2          Link3
        +--------+      +------+       +------+      +--------+
        | Sender |------|Router|-------|Router|------|Receiver|
        +--------+    /|+------+       +------+|\    +--------+
                +---+/ |                       | \+---+
              +-|FTP|+---+                   +---+|FTP|-+
              | +---+|FTP| ...               |FTP|+---+ | ...
              +---+  +---+                   +---+  +---+

               FTP Agents                      FTP Agents

                Figure 5: Network Topology of Simulation B

   The parameters are defined as for Simulation A with the following
   values assigned:

      D[ms] ={10, 50, 100, 200, 500} 32 FTP agents are deployed at each
      edge, for a total of 64 FTP agents active.





Burmeister, et al.           Informational                     [Page 23]
^L
RFC 4586            Timing Rules Simulation Results            July 2006


   The sets of session bandwidth, frame rate, and the number of segments
   are the same as in Simulation A (Table 9).

   We provide the results for the cases with 64 FTP agents, because
   these are the cases where packet losses could be detected to be
   stable.  The results are similar to those for Simulation A except for
   a constant additional offset of 50..100 ms.  This is due to the delay
   incurred by the routers' buffers.

7.3.  Summary of Application Simulations

   We have shown that the limitations of RTP AVPF profile do not
   generate such high delay in the feedback messages that the
   performance of NEWPRED is degraded for sessions from 32 kbps to 2
   Mbps.  We could see that the waiting time increases with a decreasing
   session bandwidth and/or an increasing packet loss rate.  The cause
   of the packet loss is not significant; congestion and constant packet
   loss rates behave similarly.  Still we see that for reasonable
   conditions and parameters the AVPF is well suited to support the
   feedback needed for NEWPRED.  For more information about NEWPRED, see
   [8] and [9].

8.  Summary

   The new RTP profile AVPF was investigated regarding performance and
   potential risks to the network stability.  Simulations were conducted
   using the network simulator ns2, simulating unicast and several
   differently sized multicast topologies.  The results were shown in
   this document.

   Regarding the network stability, it was important to show that the
   new profile does not lead to any feedback implosion or use more
   bandwidth than it is allowed.  We measured the bandwidth that was
   used for RTCP in relation to the RTP session bandwidth.  We have
   shown that, more or less exactly, 5% of the session bandwidth is used
   for RTCP, in all considered scenarios.  Other RTCP bandwidth values
   could be set using the RTCP bandwidth modifiers [10].  The scenarios
   included unicast with and without errors, differently sized multicast
   groups, with and without errors or congestion on the links.  Thus, we
   can say that the new profile behaves in a network-friendly manner in
   the sense that it uses only the allowed RTCP bandwidth, as defined by
   RTP.

   Secondly, we have shown that receivers using the new profile
   experience a performance gain.  This was measured by capturing the
   delay that the sender sees for the received feedback.  Using the new
   profile, this delay can be decreased by orders of magnitude.




Burmeister, et al.           Informational                     [Page 24]
^L
RFC 4586            Timing Rules Simulation Results            July 2006


   In the third place, we investigated the effect of the parameter "l"
   on the new algorithms.  We have shown that there does not exist an
   optimum value for it but only a trade-off can be achieved.  The
   influence of this parameter is highly environment-specific and a
   trade-off between performance of the feedback suppression algorithm
   and the experienced delay has to be met.  The recommended value of
   l=0.5 given in this document seems to be reasonable for most
   applications and environments.

9.  Security Considerations

   This document describes the simulation work carried out to verify the
   correct working of the RTCP timing rules specified in the AVPF
   profile [1].  Consequently, security considerations concerning these
   timing rules are described in that document.




































Burmeister, et al.           Informational                     [Page 25]
^L
RFC 4586            Timing Rules Simulation Results            July 2006


10.  Normative References

   [1]  Ott, J., Wenger, S., Sato, N., Burmeister, C., and J. Rey,
        "Extended RTP Profile for Real-time Transport Control Protocol
        (RTCP)-Based Feedback (RTP/AVPF)", RFC 4585, July 2006.

11.  Informative References

   [2]  Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson,
        "RTP: A Transport Protocol for Real-Time Applications", STD 64,
        RFC 3550, July 2003.

   [3]  Schulzrinne, H. and S. Casner, "RTP Profile for Audio and Video
        Conferences with Minimal Control", STD 65, RFC 3551, July 2003.

   [4]  Network Simulator Version 2 - ns-2, available from
        http://www.isi.edu/nsnam/ns.

   [5]  C. Burmeister, T. Klinner, "Low Delay Feedback RTCP - Timing
        Rules Simulation Results".  Technical Report of the Panasonic
        European Laboratories, September 2001, available from:
        http://www.informatik.uni-bremen.de/~jo/misc/
        SimulationResults-A.pdf.

   [6]  ISO/IEC 14496-2:1999/Amd.1:2000, "Information technology -
        Coding of audio-visual objects - Part2: Visual", July 2000.

   [7]  ITU-T Recommendation, H.263.  Video encoding for low bitrate
        communication.  1998.

   [8]  S. Fukunaga, T. Nakai, and H. Inoue, "Error Resilient Video
        Coding by Dynamic Replacing of Reference Pictures", IEEE Global
        Telecommunications Conference (GLOBECOM), pp.1503-1508, 1996.

   [9]  H. Kimata, Y. Tomita, H. Yamaguchi, S. Ichinose, T. Ichikawa,
        "Receiver-Oriented Real-Time Error Resilient Video Communication
        System: Adaptive Recovery from Error Propagation in Accordance
        with Memory Size at Receiver", Electronics and Communications in
        Japan, Part 1, vol. 84, no. 2, pp.8-17, 2001.

   [10] Casner, S., "Session Description Protocol (SDP) Bandwidth
        Modifiers for RTP Control Protocol (RTCP) Bandwidth", RFC 3556,
        July 2003.








Burmeister, et al.           Informational                     [Page 26]
^L
RFC 4586            Timing Rules Simulation Results            July 2006


Authors' Addresses

   Carsten Burmeister
   Panasonic R&D Center Germany GmbH
   Monzastr. 4c
   D-63225 Langen, Germany

   EMail: carsten.burmeister@eu.panasonic.com


   Rolf Hakenberg
   Panasonic R&D Center Germany GmbH
   Monzastr. 4c
   D-63225 Langen, Germany

   EMail: rolf.hakenberg@eu.panasonic.com


   Akihiro Miyazaki
   Matsushita Electric Industrial Co., Ltd
   1006, Kadoma, Kadoma City, Osaka, Japan

   EMail: miyazaki.akihiro@jp.panasonic.com


   Joerg Ott
   Helsinki University of Technology, Networking Laboratory
   PO Box 3000, 02015 TKK, Finland

   EMail: jo@acm.org


   Noriyuki Sato
   Oki Electric Industry Co., Ltd.
   1-16-8 Chuo, Warabi, Saitama 335-8510 Japan

   EMail: sato652@oki.com


   Shigeru Fukunaga
   Oki Electric Industry Co., Ltd.
   2-5-7 Hommachi, Chuo-ku, Osaka 541-0053 Japan

   EMail: fukunaga444@oki.com







Burmeister, et al.           Informational                     [Page 27]
^L
RFC 4586            Timing Rules Simulation Results            July 2006


Full Copyright Statement

   Copyright (C) The Internet Society (2006).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.

Acknowledgement

   Funding for the RFC Editor function is provided by the IETF
   Administrative Support Activity (IASA).







Burmeister, et al.           Informational                     [Page 28]
^L