1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
|
Network Working Group R. Even
Request for Comments: 4587 Polycom
Obsoletes: 2032 August 2006
Category: Standards Track
RTP Payload Format for H.261 Video Streams
Status of This Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2006).
Abstract
This memo describes a scheme to packetize an H.261 video stream for
transport using the Real-time Transport Protocol, RTP, with any of
the underlying protocols that carry RTP.
The memo also describes the syntax and semantics of the Session
Description Protocol (SDP) parameters needed to support the H.261
video codec. A media type registration is included for this payload
format.
This specification obsoletes RFC 2032.
Even Standards Track [Page 1]
^L
RFC 4587 H.261 RTP payload format August 2006
Table of Contents
1. Introduction ....................................................3
2. Terminology .....................................................3
3. Structure of the Packet Stream ..................................3
3.1. Overview of the ITU-T Recommendation H.261 .................3
3.2. Considerations for Packetization ...........................4
4. Specification of the Packetization Scheme .......................5
4.1. Usage of RTP ...............................................5
4.2. Recommendations for Operation with Hardware Codecs .........8
5. Packet Loss Issues ..............................................9
6. IANA Considerations ............................................10
6.1. Media Type Registrations ..................................10
6.1.1. Registration of MIME Media Type video/H261 .........10
6.2. SDP Parameters ............................................12
6.2.1. Usage with the SDP Offer Answer Model ..............12
7. Backward Compatibility to RFC 2032 .............................13
7.1. Optional H.261-Specific Control Packets ...................13
7.2. New SDP Optional Parameters ...............................13
8. Security Considerations ........................................14
9. Acknowledgements ...............................................14
10. Changes from RFC 2032 .........................................14
11. References ....................................................15
11.1. Normative References .....................................15
11.2. Informative References ...................................15
Even Standards Track [Page 2]
^L
RFC 4587 H.261 RTP payload format August 2006
1. Introduction
ITU-T Recommendation H.261 [H261] specifies the encoding used by
ITU-T-compliant video-conference codecs. Although this encoding was
originally specified for fixed-data rate Integrated Services Digital
Network (ISDN) circuits, experiments [INRIA], [MICE] have shown that
they can also be used over packet-switched networks, such as the
Internet.
The purpose of this memo is to specify the RTP payload format for
encapsulating H.261 video streams in RTP [RFC3550].
This document obsoletes RFC 2032 and updates the "video/h261" media
type that was registered in RFC 3555.
2. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119] and
indicate requirement levels for compliant RTP implementations.
3. Structure of the Packet Stream
3.1. Overview of the ITU-T Recommendation H.261
The H.261 coding is organized as a hierarchy of groupings. The video
stream is composed of a sequence of images, or frames, which are
themselves organized as a set of Groups of Blocks (GOB). Note that
H.261 "pictures" are referred to as "frames" in this document. Each
GOB holds a set of 3 lines of 11 macro blocks (MB). Each MB carries
information on a group of 16x16 pixels: luminance information is
specified for 4 blocks of 8x8 pixels, whereas chrominance information
is given by two "red" and "blue" color difference components at a
resolution of only 8x8 pixels. These components and the codes
representing their sampled values are as defined in ITU-R
Recommendation 601 [BT601].
This grouping is used to specify information at each level of the
hierarchy:
- At the frame level, one specifies information such as the delay
from the previous frame, the image format, and various indicators.
- At the GOB level, one specifies the GOB number and the default
quantifier that will be used for the MBs.
Even Standards Track [Page 3]
^L
RFC 4587 H.261 RTP payload format August 2006
- At the MB level, one specifies which blocks are present and which
did not change, and, optionally, a quantifier and motion vectors.
Blocks that have changed are encoded by computing the discrete cosine
transform (DCT) of their coefficients, which are then quantized and
Huffman encoded (Variable Length Codes).
The H.261 Huffman encoding includes a special "GOB start" pattern,
which is a word of 16 bits, 0000 0000 0000 0001. This pattern is
included at the beginning of each GOB header (and also at the
beginning of each frame header) to mark the separation between two
GOBs and is in fact used as an indicator that the current GOB is
terminated. The encoding also includes a stuffing pattern, composed
of seven zero bits followed by four bits with a value of one; that
stuffing pattern can only be entered between the encoding of MBs, or
just before the GOB separator.
3.2. Considerations for Packetization
H.261 codecs designed for operation over ISDN circuits produce a bit
stream composed of several levels of encoding specified by H.261 and
companion recommendations. The bits resulting from the Huffman
encoding are arranged in 512-bit frames, containing 2 bits of
synchronization, 492 bits of data and 18 bits of error correcting
code. The 512-bit frames are then interlaced with an audio stream
and transmitted over px 64 kbps circuits according to specification
H.221 [H221].
For transmitting over the Internet, we will directly consider the
output of the Huffman encoding. All the bits produced by the Huffman
encoding stage will be included in the packet. We will not carry the
512-bit frames, as protection against bit errors can be obtained by
other means. Similarly, we will not attempt to multiplex audio and
video signals in the same packets, as UDP and RTP provide a much more
suitable way to achieve multiplexing.
Directly transmitting the result of the Huffman encoding over an
unreliable stream of UDP datagrams would, however, have poor error
resistance characteristics. The result of the hierarchical structure
of the H.261 bit stream is that one needs to receive the information
present in the frame header to decode the GOBs, as well as the
information present in the GOB header to decode the MBs. Without
precautions, this would mean that one has to receive all the packets
that carry an image in order to decode its components properly.
If each image could be carried in a single packet, this requirement
would not create a problem. However, a video image or even one GOB
by itself can sometimes be too large to fit in a single packet.
Even Standards Track [Page 4]
^L
RFC 4587 H.261 RTP payload format August 2006
Therefore, the MB is taken as the unit of fragmentation. Packets
must start and end on an MB boundary; that is, an MB cannot be split
across multiple packets. Multiple MBs may be carried in a single
packet when they will fit within the maximal packet size allowed.
This practice is recommended to reduce the packet send rate and
packet overhead.
To allow each packet to be processed independently for efficient
resynchronization in the presence of packet losses, some state
information from the frame header and GOB header is carried with each
packet to allow the MBs in that packet to be decoded. This state
information includes the GOB number in effect at the start of the
packet, the macroblock address predictor (i.e., the last macroblock
address (MBA) encoded in the previous packet), the quantizer value in
effect prior to the start of this packet (GQUANT, MQUANT, or zero in
the case of a beginning of GOB) and the reference motion vector data
(MVD) for computing the true MVDs contained within this packet. The
bit stream cannot be fragmented between a GOB header and MB 1 of that
GOB.
Moreover, since the compressed MB may not fill an integer number of
octets, the data header contains two 3-bit integers, SBIT and EBIT,
to indicate the number of unused bits in the first and last octets of
the H.261 data, respectively.
4. Specification of the Packetization Scheme
4.1. Usage of RTP
Each RTP packet starts with a fixed RTP header, as explained in RFC
3550 [RFC3550]. The following fields of the RTP fixed header used
for H.261 video streams are further emphasized here:
- Payload type. The assignment of an RTP payload type for this
packet format is outside the scope of this document and will not be
specified here. It is expected that the RTP profile for a
particular class of applications will assign a payload type for
this encoding, or, if that is not done, then a payload type in the
dynamic range shall be chosen.
- The RTP timestamp encodes the sampling instant of the first video
image contained in the RTP data packet. If a video image occupies
more than one packet, the timestamp SHALL be the same on all of
those packets. Packets from different video images MUST have a
different timestamp so that frames may be distinguished by the
timestamp. For H.261 video streams, the RTP timestamp is based on
a 90-kHz clock. This clock rate is a multiple of the natural H.261
frame rate (i.e., 30000/1001 or approximately 29.97 Hz). That way,
Even Standards Track [Page 5]
^L
RFC 4587 H.261 RTP payload format August 2006
for each frame time, the clock is just incremented by the multiple,
and this removes inaccuracy in calculating the timestamp.
Furthermore, the initial value of the timestamp MUST be random
(unpredictable) to make known-plaintext attacks on encryption more
difficult; see RTP [RFC3550]. Note that if multiple frames are
encoded in a packet (e.g., when there are very few changes between
two images), it is necessary to calculate display times for the
frames after the first, using the timing information in the H.261
frame header. This is required because the RTP timestamp only
gives the display time of the first frame in the packet.
- The marker bit of the RTP header MUST be set to one in the last
packet of a video frame; otherwise, it MUST be zero. Thus, it is
not necessary to wait for a following packet (which contains the
start code that terminates the current frame) to detect that a new
frame should be displayed.
The H.261 data SHALL follow the RTP header, as in the following:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. .
. RTP header .
. .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| H.261 header |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| H.261 stream ... .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The H.261 header is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|SBIT |EBIT |I|V| GOBN | MBAP | QUANT | HMVD | VMVD |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The fields in the H.261 header have the following meanings:
Start bit position (SBIT): 3 bits
Number of most significant bits that should be ignored in the
first data octet.
Even Standards Track [Page 6]
^L
RFC 4587 H.261 RTP payload format August 2006
End bit position (EBIT): 3 bits
Number of least significant bits that should be ignored in the
last data octet.
INTRA-frame encoded data (I): 1 bit
Set to 1 if this stream contains only INTRA-frame coded blocks.
Set to 0 if this stream may or may not contain INTRA-frame coded
blocks. The meaning of this bit should not be changed during the
course of the RTP session.
Motion Vector flag (V): 1 bit
Set to 0 if motion vectors are not used in this stream. Set to 1
if motion vectors may or may not be used in this stream. The
meaning of this bit should not be changed during the course of the
session.
GOB number (GOBN): 4 bits
Encodes the GOB number in effect at the start of the packet. Set
to 0 if the packet begins with a GOB header.
Macroblock address predictor (MBAP): 5 bits
Encodes the macroblock address predictor (i.e., the last MBA
encoded in the previous packet). This predictor ranges from 0 -
32 (to predict the valid MBAs 1 - 33), but because the bit stream
cannot be fragmented between a GOB header and MB 1, the predictor
at the start of the packet shall not be 0. Therefore, the range
is 1 - 32, which is biased by -1 to fit in 5 bits. For example,
if MBAP is 0, the value of the MBA predictor is 1. Set to 0 if
the packet begins with a GOB header.
Quantizer (QUANT): 5 bits
Quantizer value (MQUANT or GQUANT) in effect prior to the start of
this packet. Set to 0 if the packet begins with a GOB header.
Horizontal motion vector data (HMVD): 5 bits
Reference horizontal motion vector data (MVD). Set to 0 if V flag
is 0 or if the packet begins with a GOB header, or when the MTYPE
of the last MB encoded in the previous packet was not motion
compensation (MC). HMVD is encoded as a 2s complement number, and
'10000' corresponding to the value -16 is forbidden (motion vector
fields range from +/-15).
Even Standards Track [Page 7]
^L
RFC 4587 H.261 RTP payload format August 2006
Vertical motion vector data (VMVD): 5 bits
Reference vertical motion vector data (MVD). Set to 0 if V flag
is 0 or if the packet begins with a GOB header, or when the MTYPE
of the last MB encoded in the previous packet was not MC. VMVD is
encoded as a 2s complement number, and '10000' corresponding to
the value -16 SHALL not be used (motion vector fields range from
+/-15).
Note that the I and V flags are hint flags; i.e., they can be
inferred from the bit stream. They are included to allow decoders to
make optimizations that would not be possible if these hints were not
provided before the bit stream was decoded. Therefore, these bits
cannot change for the duration of the stream. A conforming
implementation can always set V=1 and I=0.
The H.261 stream SHALL be used without BCH error correction and
without error correction framing.
4.2. Recommendations for Operation with Hardware Codecs
Packetizers for hardware codecs can trivially figure out GOB
boundaries, using the GOB-start pattern included in the H.261 data.
(Note that software encoders already know the boundaries.) The
cheapest packetization implementation is to packetize at the GOB
level all the GOBs that fit in a packet. But when a GOB is too
large, the packetizer has to parse it to do MB fragmentation. (Note
that only the Huffman encoding must be parsed and that it is not
necessary to decompress the stream fully, so this requires relatively
little processing; examples of implementations can be found in some
public H.261 codecs, such as IVS [IVS] and VIC [VIC].) It is
recommended that MB level fragmentation be used when feasible in
order to obtain more efficient packetization. Using this
fragmentation scheme reduces the output packet rate and therefore
reduces the overhead.
At the receiver, the data stream can be depacketized and directed to
a hardware codec's input. If the hardware decoder operates at a
fixed bit rate, synchronization may be maintained by inserting the
stuffing pattern between MBs (i.e., between packets) when the packet
arrival rate is slower than the bit rate.
Even Standards Track [Page 8]
^L
RFC 4587 H.261 RTP payload format August 2006
5. Packet Loss Issues
On the Internet, most packet losses are due to network congestion
rather than to transmission errors. Using UDP, no mechanism is
available at the sender to know whether a packet has been
successfully received. It is up to the application (i.e., coder and
decoder) to handle the packet loss. Each RTP packet includes a
sequence number field that can be used to detect packet loss.
H.261 uses the temporal redundancy of video to perform compression.
This differential coding (or INTER-frame coding) is sensitive to
packet loss. After a packet loss, parts of the image may remain
corrupt until all corresponding MBs have been encoded in INTRA-frame
mode (i.e., encoded independently of past frames). There are several
ways to mitigate packet loss:
(1) One way is to use only INTRA-frame encoding and MB-level
conditional replenishment. That is, only MBs that change
(beyond some threshold) are transmitted.
(2) Another way is to adjust the INTRA-frame encoding refreshment
rate according to the packet loss observed by the receivers.
The H.261 recommendation specifies that an MB be INTRA-frame
encoded at least every 132 times it is transmitted. However,
the INTRA-frame refreshment rate can be raised in order to speed
the recovery when the measured loss rate is significant.
(3) The fastest way to repair a corrupted image is to request an
INTRA-frame coded image refreshment after a packet loss is
detected. One means to accomplish this is for the decoder to
send to the coder a list of packets lost. The coder can decide
to encode every MB of every GOB of the following video frame in
INTRA-frame mode (i.e., full INTRA-frame encoded). If the coder
can deduce from the packet sequence numbers which MBs were
affected by the loss, it can save bandwidth by sending only
those MBs in INTRA-frame mode. This mode is particularly
efficient in point-to-point connection or when the number of
decoders is low.
The H.261-specific control packets FIR and NACK, as described in RFC
2032, SHALL NOT be used to request image refreshment. Old
implementations are encouraged to use the methods described in this
section. Image refreshment may be needed due to packet loss or due
to application requirements. An example of application requirement
may be the change of the speaker in a voice-activated multipoint
video switching conference. There are two methods that can be used
for requesting image refreshment. The first method is by using the
Extended RTP Profile for RTCP-based Feedback and sending RTCP generic
Even Standards Track [Page 9]
^L
RFC 4587 H.261 RTP payload format August 2006
control packets, as described in RFC 4585 [RFC4585]. The second
method is by using application protocol-specific commands, such as
H.245 [ITU.H245] FastUpdateRequest.
6. IANA Considerations
This section updates the H.261 media type described in RFC 3555
[RFC3555].
This section specifies optional parameters that MAY be used to select
optional features of the payload format. The parameters are
specified here as part of the MIME subtype registration for the ITU-T
H.261 codec. A mapping of the parameters into the Session
Description Protocol (SDP) [RFC4566] is also provided for those
applications that use SDP. Multiple parameters SHOULD be expressed
as a media type string, in the form of a semicolon-separated list of
parameters.
6.1. Media Type Registrations
This section describes the media types and names associated with this
payload format. The section updates the previous registered version
in RFC 3555 [RFC3555]. This registration uses the template defined
in RFC 4288 [RFC4288]
6.1.1. Registration of MIME Media Type video/H261
MIME media type name: video
MIME subtype name: H261
Required parameters: None
Optional parameters:
CIF. This parameter has the format of parameter=value. It
describes the maximum supported frame rate for CIF resolution.
Permissible values are integer values 1 to 4, and it means that
the maximum rate is 29.97/specified value.
QCIF. This parameter has the format of parameter=value. It
describes the maximum supported frame rate for QCIF resolution.
Permissible values are integer values 1 to 4, and it means that
the maximum rate is 29.97/specified value.
Even Standards Track [Page 10]
^L
RFC 4587 H.261 RTP payload format August 2006
D. Specifies support for still image graphics according to H.261,
annex D. If supported, the parameter value SHALL be "1". If not
supported, the parameter SHOULD NOT be used or SHALL have the
value "0".
Encoding considerations:
This media type is framed and binary, see Section 4.8 in
[RFC4288].
Security considerations: See Section 8
Interoperability considerations:
These are receiver options; current implementations will not send
any optional parameters in their SDP. They will ignore the
optional parameters and will encode the H.261 stream without annex
D. Most decoders support at least QCIF resolutions, and they are
expected to be available in almost every H.261-based video
application.
Published specification: RFC 4587
Applications that use this media type:
Audio and video streaming and conferencing applications.
Additional information: None
Person and email address to contact for further information:
Roni Even: roni.even@polycom.co.il
Intended usage: COMMON
Restrictions on usage:
This media type depends on RTP framing and thus is only defined
for transfer via RTP [RFC3550]. Transport within other framing
protocols is not defined at this time.
Author: Roni Even
Change controller:
IETF Audio/Video Transport working group, delegated from the IESG.
Even Standards Track [Page 11]
^L
RFC 4587 H.261 RTP payload format August 2006
6.2. SDP Parameters
The MIME media type video/H261 string is mapped to fields in the
Session Description Protocol (SDP) as follows:
o The media name in the "m=" line of SDP MUST be video.
o The encoding name in the "a=rtpmap" line of SDP MUST be H261 (the
MIME subtype).
o The clock rate in the "a=rtpmap" line MUST be 90000.
o The optional parameters "CIF", "QCIF", and "D", if any, SHALL be
included in the "a=fmtp" line of SDP. These parameters are
expressed as a MIME media type string, in the form of as a
semicolon-separated list of parameters
6.2.1. Usage with the SDP Offer Answer Model
When H.261 is offered over RTP using SDP in an Offer/Answer model
[RFC3264] the following considerations are necessary.
Codec options: (D) This option MUST NOT appear unless the sender of
this SDP message is able to decode this option. This option SHALL be
considered a receiver's capability even when it is sent in a
"sendonly" offer.
Picture sizes and MPI:
Supported picture sizes and their corresponding minimum picture
interval (MPI) information for H.261 can be combined. All picture
sizes may be advertised to the other party, or only a subset of it.
Using the recvonly or sendrev direction attribute, a terminal SHOULD
announce those picture sizes (with their MPIs) that it is willing to
receive. For example, CIF=2 means that receiver can receive a CIF
picture and that the frame rate SHALL be less then 15 frames per
second.
When the direction attribute is sendonly, the parameters describe the
capabilities of the stream that the sender can produce.
Implementations following this specification SHALL specify at least
one supported picture size.
If the receiver does not specify the picture size/MPI parameter, then
it is safe to assume that it is an implementation that follows RFC
2032. In that case, it is RECOMMENDED to assume that such a receiver
is able to support reception of QCIF resolution with MPI=1.
Even Standards Track [Page 12]
^L
RFC 4587 H.261 RTP payload format August 2006
Parameters offered first are the most preferred picture mode to be
received.
An example of media representation in SDP is as follows CIF at 15
frames per second, QCIF at 30 frames per second and annex D
m=video 49170/2 RTP/AVP 31
a=rtpmap:31 H261/90000
a=fmtp:31 CIF=2;QCIF=1;D=1
This means that the sender of this message can decode an H.261 bit
stream with the following options and parameters: preferred
resolution is CIF (its MPI is 2), but if that is not possible, then
QCIF size is also supported. Still image using annex D MAY be used.
7. Backward Compatibility to RFC 2032
The current document replaces RFC 2032. This section will address
the major backward compatibility issues.
7.1. Optional H.261-Specific Control Packets
RFC 2032 defined two H.261-specific RTCP control packets, "Full
INTRA-frame Request" and "Negative Acknowledgement". Support of
these control packets was optional. The H.261-specific control
packets differ from normal RTCP packets in that they are not
transmitted to the normal RTCP destination transport address for the
RTP session (which is often a multicast address). Instead, these
control packets are sent directly via unicast from the decoder to the
encoder. The destination port for these control packets is the same
port that the encoder uses as a source port for transmitting RTP
(data) packets. Therefore, these packets may be considered "reverse"
control packets. This memo suggests generic methods to address the
same requirement. The authors of the documents are not aware of
products that support these control packets. Since these are
optional features, new implementations SHALL ignore them, and they
SHALL NOT be used by new implementations.
7.2. New SDP Optional Parameters
The document adds new optional parameters to the H261 payload type.
Since these are optional parameters, we expect that old
implementations ignore these parameters, whereas new implementations
that receive the H261 payload type capabilities with no parameters
will assume that it is an old implementation and will send H.261 at
QCIF resolution and 30 frames per second.
Even Standards Track [Page 13]
^L
RFC 4587 H.261 RTP payload format August 2006
8. Security Considerations
RTP packets using the payload format defined in this specification
are subject to the security considerations discussed in the RTP
specification [RFC3550], and in any appropriate RTP profile (e.g.,
[RFC3551]). This implies that confidentiality of the media streams
is achieved by encryption. SRTP [RFC3711] may be used to provide
both encryption and integrity protection of RTP flow. Because the
data compression used with this payload format is applied end to end,
encryption will be performed after compression, so there is no
conflict between the two operations.
A potential denial-of-service threat exists for data encoding using
compression techniques that have non-uniform receiver-end
computational load. The attacker can inject pathological datagrams
into the stream that are complex to decode and cause the receiver to
be overloaded. The usage of authentication of at least the RTP
packet is RECOMMENDED. H.261 is vulnerable to such attacks because
it is possible for an attacker to generate RTP packets containing
frames that affect the decoding process of future frames. Therefore,
the usage of data origin authentication and data integrity protection
of at least the RTP packet is RECOMMENDED; for example, with SRTP.
Note that the appropriate mechanism to ensure confidentiality and
integrity of RTP packets and their payloads is very dependent on the
application and on the transport and signaling protocols employed.
Thus, although SRTP is given as an example above, other possible
choices exist.
9. Acknowledgements
This is to acknowledge the authors of RFC 2032, Thierry Turletti and
Christian Huitema. Special thanks for the work done by Petri
Koskelainen from Nokia and Nermeen Ismail from Cisco, who helped with
drafting the text for the new MIME types.
10. Changes from RFC 2032
The changes from the RFC 2032 are:
1. The H.261 MIME type is now in the payload specification.
2. Added optional parameters to the H.261 MIME type
3. Deprecated the H.261 specific control packets
4. Editorial changes to be in line with RFC editing procedures
Even Standards Track [Page 14]
^L
RFC 4587 H.261 RTP payload format August 2006
11. References
11.1. Normative References
[H261] International Telecommunications Union, "Video codec for
audiovisual services at px 64 kbit/s", ITU Recommendation
H.261, March 1993.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
Jacobson, "RTP: A Transport Protocol for Real-Time
Applications", STD 64, RFC 3550, July 2003.
[RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
with Session Description Protocol (SDP)", RFC 3264,
June 2002.
[RFC3551] Schulzrinne, H. and S. Casner, "RTP Profile for Audio and
Video Conferences with Minimal Control", STD 65,
RFC 3551, July 2003.
[RFC3555] Casner, S. and P. Hoschka, "MIME Type Registration of RTP
Payload Formats", RFC 3555, July 2003.
[RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
Description Protocol", RFC 4566, July 2006.
11.2. Informative References
[RFC4288] Freed, N. and J. Klensin, "Media Type Specifications and
Registration Procedures", BCP 13, RFC 4288,
December 2005.
[RFC4585] Ott, J., Wenger, S., Sato, N., Burmeister, C., and J.
Rey, "Extended RTP Profile for Real-time Transport
Control Protocol (RTCP)-based Feedback (RTP/AVPF)", RFC
4585, July 2006.
[ITU.H245] International Telecommunications Union, "CONTROL PROTOCOL
FOR MULTIMEDIA COMMUNICATION", ITU Recommendation H.245,
2003.
[INRIA] Turletti, T., "H.261 software codec for videoconferencing
over the Internet", INRIA Research Report 1834,
January 1993.
Even Standards Track [Page 15]
^L
RFC 4587 H.261 RTP payload format August 2006
[IVS] Turletti, T., "INRIA Videoconferencing tool (IVS)",
available by anonymous ftp from zenon.inria.fr in the
"rodeo/ivs/last_version" directory. See also URL
<http://www.inria.fr/rodeo/ivs.html>.
[BT601] International Telecommunications Union, "Studio encoding
parameters of digital television for standard 4:3 and
wide-screen 16:9 aspect ratios", ITU-R Recommendation
BT.601-5, October 1995.
[MICE] Sasse, MA., Bilting, U., Schultz, CD., and T. Turletti,
"Remote Seminars through MultiMedia Conferencing:
Experiences from the MICE project", Proc. INET'94/JENC5,
Prague pp. 251/1-251/8, June 1994.
[VIC] MacCanne, S., "VIC Videoconferencing tool, available by
anonymous ftp from ee.lbl.gov in the "conferencing/vic"
directory".
[RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
Norrman, "The Secure Real-time Transport Protocol
(SRTP)", RFC 3711, March 2004.
[H221] International Telecommunications Union, "Frame structure
for a 64 to 1920 kbit/s channel in audiovisual
teleservices", ITU Recommendation H.221, May 1999.
Author's Address
Roni Even
Polycom
94 Derech Em Hamoshavot
Petach Tikva 49130
Israel
EMail: roni.even@polycom.co.il
Even Standards Track [Page 16]
^L
RFC 4587 H.261 RTP payload format August 2006
Full Copyright Statement
Copyright (C) The Internet Society (2006).
This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is provided by the IETF
Administrative Support Activity (IASA).
Even Standards Track [Page 17]
^L
|