1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
|
Network Working Group A. Morton
Request for Comments: 4737 L. Ciavattone
Category: Standards Track G. Ramachandran
AT&T Labs
S. Shalunov
Internet2
J. Perser
Veriwave
November 2006
Packet Reordering Metrics
Status of This Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The IETF Trust (2006).
Abstract
This memo defines metrics to evaluate whether a network has
maintained packet order on a packet-by-packet basis. It provides
motivations for the new metrics and discusses the measurement issues,
including the context information required for all metrics. The memo
first defines a reordered singleton, and then uses it as the basis
for sample metrics to quantify the extent of reordering in several
useful dimensions for network characterization or receiver design.
Additional metrics quantify the frequency of reordering and the
distance between separate occurrences. We then define a metric
oriented toward assessment of reordering effects on TCP. Several
examples of evaluation using the various sample metrics are included.
An appendix gives extended definitions for evaluating order with
packet fragmentation.
Morton, et al. Standards Track [Page 1]
^L
RFC 4737 Packet Reordering Metrics November 2006
Table of Contents
1. Introduction ....................................................4
1.1. Motivation .................................................4
1.2. Goals and Objectives .......................................5
1.3. Required Context for All Reordering Metrics ................6
2. Conventions Used in this Document ...............................7
3. A Reordered Packet Singleton Metric .............................7
3.1. Metric Name ................................................8
3.2. Metric Parameters ..........................................8
3.3. Definition .................................................8
3.4. Sequence Discontinuity Definition ..........................9
3.5. Evaluation of Reordering in Dimensions of Time or Bytes ...10
3.6. Discussion ................................................10
4. Sample Metrics .................................................11
4.1. Reordered Packet Ratio ....................................11
4.1.1. Metric Name ........................................11
4.1.2. Metric Parameters ..................................11
4.1.3. Definition .........................................12
4.1.4. Discussion .........................................12
4.2. Reordering Extent .........................................12
4.2.1. Metric Name ........................................12
4.2.2. Notation and Metric Parameters .....................12
4.2.3. Definition .........................................13
4.2.4. Discussion .........................................13
4.3. Reordering Late Time Offset ...............................14
4.3.1. Metric Name ........................................14
4.3.2. Metric Parameters ..................................14
4.3.3. Definition .........................................15
4.3.4. Discussion .........................................15
4.4. Reordering Byte Offset ....................................16
4.4.1. Metric Name ........................................16
4.4.2. Metric Parameters ..................................16
4.4.3. Definition .........................................16
4.4.4. Discussion .........................................17
4.5. Gaps between Multiple Reordering Discontinuities ..........17
4.5.1. Metric Names .......................................17
4.5.2. Parameters .........................................17
4.5.3. Definition of Reordering Discontinuity .............17
4.5.4. Definition of Reordering Gap .......................18
4.5.5. Discussion .........................................18
4.6. Reordering-Free Runs ......................................19
4.6.1. Metric Names .......................................19
4.6.2. Parameters .........................................19
4.6.3. Definition .........................................19
4.6.4. Discussion and Illustration ........................20
Morton, et al. Standards Track [Page 2]
^L
RFC 4737 Packet Reordering Metrics November 2006
5. Metrics Focused on Receiver Assessment: A TCP-Relevant Metric ..21
5.1. Metric Name ...............................................21
5.2. Parameter Notation ........................................21
5.3. Definitions ...............................................22
5.4. Discussion ................................................22
6. Measurement and Implementation Issues ..........................23
6.1. Passive Measurement Considerations ........................26
7. Examples of Arrival Order Evaluation ...........................26
7.1. Example with a Single Packet Reordered ....................26
7.2. Example with Two Packets Reordered ........................28
7.3. Example with Three Packets Reordered ......................30
7.4. Example with Multiple Packet Reordering Discontinuities ...31
8. Security Considerations ........................................32
8.1. Denial-of-Service Attacks .................................32
8.2. User Data Confidentiality .................................32
8.3. Interference with the Metric ..............................32
9. IANA Considerations ............................................33
10. Normative References ..........................................35
11. Informative References ........................................36
12. Acknowledgements ..............................................37
Appendix A. Example Implementations in C (Informative) ............38
Appendix B. Fragment Order Evaluation (Informative) ...............41
B.1. Metric Name ...............................................41
B.2. Additional Metric Parameters ..............................41
B.3. Definition ................................................42
B.4. Discussion: Notes on Sample Metrics When Evaluating
Fragments .................................................43
Appendix C. Disclaimer and License ................................43
Morton, et al. Standards Track [Page 3]
^L
RFC 4737 Packet Reordering Metrics November 2006
1. Introduction
Ordered arrival is a property found in packets that transit their
path, where the packet sequence number increases with each new
arrival and there are no backward steps. The Internet Protocol
[RFC791] [RFC2460] has no mechanisms to ensure either packet delivery
or sequencing, and higher-layer protocols (above IP) should be
prepared to deal with both loss and reordering. This memo defines
reordering metrics.
A unique sequence identifier carried in each packet, such as an
incrementing consecutive integer message number, establishes the
source sequence.
The detection of reordering at the destination is based on packet
arrival order in comparison with a non-reversing reference value
[Cia03].
This metric is consistent with [RFC2330] and classifies arriving
packets with sequence numbers smaller than their predecessors as
out-of-order or reordered. For example, if sequentially numbered
packets arrive 1,2,4,5,3, then packet 3 is reordered. This is
equivalent to Paxon's reordering definition in [Pax98], where "late"
packets were declared reordered. The alternative is to emphasize
"premature" packets instead (4 and 5 in the example), but only the
arrival of packet 3 distinguishes this circumstance from packet loss.
Focusing attention on late packets allows us to maintain
orthogonality with the packet loss metric. The metric's construction
is very similar to the sequence space validation for received
segments in [RFC793]. Earlier work to define ordered delivery
includes [Cia00], [Ben99], [Lou01], [Bel02], [Jai02], and [Cia03].
1.1. Motivation
A reordering metric is relevant for most applications, especially
when assessing network support for Real-Time media streams. The
extent of reordering may be sufficient to cause a received packet to
be discarded by functions above the IP layer.
Packet order may change during transfer, and several specific path
characteristics can make reordering more likely.
Examples are:
* When two (or more) paths with slightly differing transfer times
support a single packet stream or flow, packets traversing the
longer path(s) may arrive out-of-order. Multiple paths may be used
to achieve load balancing or may arise from route instability.
Morton, et al. Standards Track [Page 4]
^L
RFC 4737 Packet Reordering Metrics November 2006
* To increase capacity, a network device designed with multiple
processors serving a single port (or parallel links) may reorder as
a byproduct.
* A layer-2 retransmission protocol that compensates for an error-
prone link may cause packet reordering.
* If for any reason the packets in a buffer are not serviced in the
order of their arrival, their order will change.
* If packets in a flow are assigned to multiple buffers (following
evaluation of traffic characteristics, for example), and the
buffers have different occupation levels and/or service rates, then
order will likely change.
When one or more of the above path characteristics are present
continuously, reordering may be present on a steady-state basis. The
steady-state reordering condition typically causes an appreciable
fraction of packets to be reordered. This form of reordering is most
easily detected by minimizing the spacing between test packets.
Transient reordering may occur in response to network instability;
temporary routing loops can cause periods of extreme reordering.
This condition is characterized by long, in-order streams with
occasional instances of reordering, sometimes with extreme
correlation. However, we do not expect packet delivery in a
completely random order, where, for example, the last packet or the
first packet in a sample is equally likely to arrive first at the
destination. Thus, we expect at least a minimal degree of order in
the packet arrivals, as exhibited in real networks.
The ability to restore order at the destination will likely have
finite limits. Practical hosts have receiver buffers with finite
size in terms of packets, bytes, or time (such as de-jitter buffers).
Once the initial determination of reordering is made, it is useful to
quantify the extent of reordering, or lateness, in all meaningful
dimensions.
1.2. Goals and Objectives
The definitions below intend to satisfy the goals of:
1. Determining whether or not packet reordering has occurred.
2. Quantifying the degree of reordering. (We define a number of
metrics to meet this goal, because receiving procedures differ
by protocol or application. Since the effects of packet
reordering vary with these procedures, a metric that quantifies
a key aspect of one receiver's behavior could be irrelevant to
Morton, et al. Standards Track [Page 5]
^L
RFC 4737 Packet Reordering Metrics November 2006
a different receiver. If all the metrics defined below are
reported, they give a wide-ranging view of reordering
conditions.)
Reordering Metrics MUST:
+ have one or more applications, such as receiver design or network
characterization, and a compelling relevance in the view of the
interested community.
+ be computable "on the fly".
+ work even if the stream has duplicate or lost packets.
It is desirable for Reordering Metrics to have one or more of the
following attributes:
+ ability to concatenate results for segments measured separately to
estimate the reordering of an entire path
+ simplicity for easy consumption and understanding
+ relevance to TCP design
+ relevance to real-time application performance
The current set of metrics meets all the requirements above and
provides all but the concatenation attribute (except in the case
where measurements of path segments exhibit no reordering, and one
may estimate that the complete path composed of these segments would
also exhibit no reordering). However, satisfying these goals
restricts the set of metrics to those that provide some clear insight
into network characterization or receiver design. They are not
likely to be exhaustive in their coverage of reordering effects on
applications, and additional measurements may be possible.
1.3. Required Context for All Reordering Metrics
A critical aspect of all reordering metrics is their inseparable bond
with the measurement conditions. Packet reordering is not well
defined unless the full measurement context is reported. Therefore,
all reordering metric definitions include the following parameters:
1. The "Packet of Type-P" [RFC2330] identifiers for the packet
stream, including the transport addresses for source and
destination, and any other information that may result in
different packet treatments.
Morton, et al. Standards Track [Page 6]
^L
RFC 4737 Packet Reordering Metrics November 2006
2. The stream parameter set for the sending discipline, such as the
parameters unique to periodic streams (as in [RFC3432]), TCP-like
streams (as in [RFC3148]), or Poisson streams (as in [RFC2330]).
The stream parameters include the packet size, specified either as
a fixed value or as a pattern of sizes (as applicable).
Whenever a metric is reported, it MUST include a description of these
parameters to provide a context for the results.
2. Conventions Used in this Document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119]. Although
RFC 2119 was written with protocols in mind, the key words are used
in this document for similar reasons. They are used to ensure the
results of measurements from two different implementations are
comparable, and to note instances when an implementation could
perturb the network.
In this memo, the characters "<=" should be read as "less than or
equal to" and ">=" as "greater than or equal to".
3. A Reordered Packet Singleton Metric
The IPPM framework [RFC2330] describes the notions of singletons,
samples, and statistics. For easy reference:
By a 'singleton' metric, we refer to metrics that are, in a
sense, atomic. For example, a single instance of "bulk
throughput capacity" from one host to another might be defined
as a singleton metric, even though the instance involves
measuring the timing of a number of Internet packets.
The evaluation of packet order requires several supporting concepts.
The first is an algorithm (function) that produces a series of
strictly monotonically increasing identifiers applied to packets at
the source to uniquely establish the order of packet transmission
(where a function, g(x), is strictly monotonically increasing if for
any x>y, g(x)>g(y) ). The unique sequence identifier may simply be
an incrementing consecutive integer message number, or a sequence
number as used below. The prospect of sequence number rollover is
discussed in Section 6.
The second supporting concept is a stored value that is the "next
expected" packet number. Under normal conditions, the value of Next
Expected (NextExp) is the sequence number of the previous packet plus
1 for message numbering. (In general, the receiver reproduces the
Morton, et al. Standards Track [Page 7]
^L
RFC 4737 Packet Reordering Metrics November 2006
sender's algorithm and the sequence of identifiers so that the "next
expected" can be determined.)
Each packet within a packet stream can be evaluated with this order
singleton metric.
3.1. Metric Name
Type-P-Reordered
3.2. Metric Parameters
+ Src, the IP address of a host.
+ Dst, the IP address of a host.
+ SrcTime, the time of packet emission from the source (or wire
time).
+ s, the unique packet sequence number applied at the source, in
units of messages.
+ NextExp, the next expected sequence number at the destination, in
units of messages. The stored value in NextExp is determined from
a previously arriving packet.
And optionally:
+ PayloadSize, the number of bytes contained in the information
field and referred to when the SrcByte sequence is based on bytes
transferred.
+ SrcByte, the packet sequence number applied at the source, in
units of payload bytes.
3.3. Definition
If a packet s (sent at time, SrcTime) is found to be reordered by
comparison with the NextExp value, its Type-P-Reordered = TRUE;
otherwise, Type-P-Reordered = FALSE, as defined below:
The value of Type-P-Reordered is defined as TRUE if s < NextExp (the
packet is reordered). In this case, the NextExp value does not
change.
The value of Type-P-Reordered is defined as FALSE if s >= NextExp
(the packet is in-order). In this case, NextExp is set to s+1 for
comparison with the next packet to arrive.
Morton, et al. Standards Track [Page 8]
^L
RFC 4737 Packet Reordering Metrics November 2006
Since the NextExp value cannot decrease, it provides a non-reversing
order criterion to identify reordered packets.
This definition can also be specified in pseudo-code.
On successful arrival of a packet with sequence number s:
if s >= NextExp then /* s is in-order */
NextExp = s + 1;
Type-P-Reordered = False;
else /* when s < NextExp */
Type-P-Reordered = True
3.4. Sequence Discontinuity Definition
Packets with s > NextExp are a special case of in-order delivery.
This condition indicates a sequence discontinuity, because of either
packet loss or reordering. Reordered packets must arrive for the
sequence discontinuity to be defined as a reordering discontinuity
(see Section 4).
We define two different states for in-order packets.
When s = NextExp, the original sequence has been maintained, and
there is no discontinuity present.
When s > NextExp, some packets in the original sequence have not yet
arrived, and there is a sequence discontinuity associated with packet
s. The size of the discontinuity is s - NextExp, equal to the number
of packets presently missing, either reordered or lost.
In pseudo-code:
On successful arrival of a packet with sequence number s:
if s >= NextExp, then /* s is in-order */
if s > NextExp then
SequenceDiscontinuty = True;
SeqDiscontinutySize = s - NextExp;
else
SequenceDiscontinuty = False;
NextExp = s + 1;
Type-P-Reordered = False;
else /* when s < NextExp */
Type-P-Reordered = True;
SequenceDiscontinuty = False;
Morton, et al. Standards Track [Page 9]
^L
RFC 4737 Packet Reordering Metrics November 2006
Whether any sequence discontinuities occur (and their size) is
determined by the conditions causing loss and/or reordering along the
measurement path. Note that a packet could be reordered at one point
and subsequently lost elsewhere on the path, but this cannot be known
from observations at the destination.
3.5. Evaluation of Reordering in Dimensions of Time or Bytes
It is possible to use alternate dimensions of time or payload bytes
to test for reordering in the definition of Section 3.3, as long as
the SrcTimes and SrcBytes are unique and reliable. Sequence
Discontinuities are easily defined and detected with message
numbering; however, this is not so simple in the dimensions of time
or bytes. This is a detractor for the alternate dimensions because
the sequence discontinuity definition plays a key role in the sample
metrics that follow.
It is possible to detect sequence discontinuities with payload byte
numbering, but only when the test device knows exactly what value to
assign as NextExp in response to any packet arrival. This is
possible when the complete pattern of payload sizes is stored at the
destination, or if the size pattern can be generated using a pseudo-
random number generator and a shared seed. If payload size is
constant, byte numbering adds needless complexity over message
numbering.
It may be possible to detect sequence discontinuities with periodic
streams and source time numbering, but there are practical pitfalls
with sending exactly on-schedule and with clock reliability.
The dimensions of time and bytes remain an important basis for
characterizing the extent of reordering, as described in Sections 4.3
and 4.4.
3.6. Discussion
Any arriving packet bearing a sequence number from the sequence that
establishes the NextExp value can be evaluated to determine whether
it is in-order or reordered, based on a previous packet's arrival.
In the case where NextExp is Undefined (because the arriving packet
is the first successful transfer), the packet is designated in-order
(Type-P-Reordered=FALSE).
This metric assumes reassembly of packet fragments before evaluation.
In principle, it is possible to use the Type-P-Reordered metric to
evaluate reordering among packet fragments, but each fragment must
contain source sequence information. See Appendix B, "Fragment Order
Evaluation", for more detail.
Morton, et al. Standards Track [Page 10]
^L
RFC 4737 Packet Reordering Metrics November 2006
If duplicate packets (multiple non-corrupt copies) arrive at the
destination, they MUST be noted, and only the first to arrive is
considered for further analysis (copies would be declared reordered
according to the definition above). This requirement has the same
storage implications as earlier IPPM metrics and follows the
precedent of [RFC2679]. We provide a suggestion to minimize storage
size needed in Section 6 on Measurement and Implementation Issues.
4. Sample Metrics
In this section, we define metrics applicable to a sample of packets
from a single source sequence number system. When reordering occurs,
it is highly desirable to assert the degree to which a packet is
out-of-order or reordered with respect other packets. This section
defines several metrics that quantify the extent of reordering in
various units of measure. Each metric highlights a relevant use.
The metrics in the sub-sections below have a network characterization
orientation, but also have relevance to receiver design where
reordering compensation is of interest. We begin with a simple ratio
metric indicating the reordered portion of the sample.
4.1. Reordered Packet Ratio
4.1.1. Metric Name
Type-P-Reordered-Ratio-Stream
4.1.2. Metric Parameters
The parameter set includes Type-P-Reordered singleton parameters; the
parameters unique to Poisson streams (as in [RFC2330]), periodic
streams (as in [RFC3432]), or TCP-like streams (as in [RFC3148]);
packet size or size patterns; and the following:
+ T0, a start time
+ Tf, an end time
+ dT, a waiting time for each packet to arrive, in seconds
+ K, the total number of packets in the stream sent from source to
destination
+ L, the total number of packets received (arriving between T0 and
Tf+dT) out of the K packets sent. Recall that identical copies
(duplicates) have been removed, so L <= K.
Morton, et al. Standards Track [Page 11]
^L
RFC 4737 Packet Reordering Metrics November 2006
+ R, the ratio of reordered packets to received packets, defined
below
Note that parameter dT is effectively the threshold for declaring a
packet as lost. The IPPM Packet Loss Metric [RFC2680] declines to
recommend a value for this threshold, saying instead that "good
engineering, including an understanding of packet lifetimes, will be
needed in practice."
4.1.3. Definition
Given a stream of packets sent from a source to a destination, the
ratio of reordered packets in the sample is
R = (Count of packets with Type-P-Reordered=TRUE) / ( L )
This fraction may be expressed as a percentage (multiply by 100).
Note that in the case of duplicate packets, only the first copy is
used.
4.1.4. Discussion
When the Type-P-Reordered-Ratio-Stream is zero, no further reordering
metrics need be examined for that sample. Therefore, the value of
this metric is its simple ability to summarize the results for a
reordering-free sample.
4.2. Reordering Extent
This section defines the extent to which packets are reordered and
associates a specific sequence discontinuity with each reordered
packet. This section inherits the Parameters defined above.
4.2.1. Metric Name
Type-P-Packet-Reordering-Extent-Stream
4.2.2. Notation and Metric Parameters
Recall that K is the number of packets in the stream at the source,
and L is the number of packets received at the destination.
Each packet has been assigned a sequence number, s, a consecutive
integer from 1 to K in the order of packet transmission (at the
source).
Let s[1], s[2], ..., s[L] represent the original sequence numbers
associated with the packets in order of arrival.
Morton, et al. Standards Track [Page 12]
^L
RFC 4737 Packet Reordering Metrics November 2006
s[i] can be thought of as a vector, where the index i is the arrival
position of the packet with sequence number s. In theory, any source
sequence number could appear in any arrival position, but this is
unlikely in reality.
Consider a reordered packet (Type-P-Reordered=TRUE) with arrival
index i and source sequence number s[i]. There exists a set of
indexes j (1 <= j < i) such that s[j] > s[i].
The new parameters are:
+ i, the index for arrival position, where i-1 represents an arrival
earlier than i.
+ j, a set of one or more arrival indexes, where 1 <= j < i.
+ s[i], the original sequence numbers, s, in order of arrival.
+ e, the Reordering Extent, in units of packets, defined below.
4.2.3. Definition
The reordering extent, e, of packet s[i] is defined to be i-j for the
smallest value of j where s[j] > s[i].
Informally, the reordering extent is the maximum distance, in
packets, from a reordered packet to the earliest packet received that
has a larger sequence number. If a packet is in-order, its
reordering extent is undefined. The first packet to arrive is
in-order by definition and has undefined reordering extent.
Comment on the definition of extent: For some arrival orders, the
assignment of a simple position/distance as the reordering extent
tends to overestimate the receiver storage needed to restore order.
A more accurate and complex procedure to calculate packet storage
would be to subtract any earlier reordered packets that the receiver
could pass on to the upper layers (see the Byte Offset metric). With
the bias understood, this definition is deemed sufficient, especially
for those who demand "on the fly" calculations.
4.2.4. Discussion
The packet with index j (s[j], identified in the Definition above) is
the reordering discontinuity associated with packet s at index i
(s[i]). This definition is formalized below.
Morton, et al. Standards Track [Page 13]
^L
RFC 4737 Packet Reordering Metrics November 2006
Note that the K packets in the stream could be some subset of a
larger stream, but L is still the total number of packets received
out of the K packets sent in that subset.
If a receiver intends to restore order, then its buffer capacity
determines its ability to handle packets that are reordered. For
cases with single reordered packets, the extent e gives the number of
packets that must be held in the receiver's buffer while waiting for
the reordered packet to complete the sequence. For more complex
scenarios, the extent may be an overestimate of required storage (see
Section 4.4 on Reordering Byte Offset and the examples in Section 7).
Also, if the receiver purges its buffer for any reason, the extent
metric would not reflect this behavior, assuming instead that the
receiver would exhaustively attempt to restore order.
Although reordering extent primarily quantifies the offset in terms
of arrival position, it may also be useful for determining the
portion of reordered packets that can or cannot be restored to order
in a typical receiver buffer based on their arrival order alone (and
without the aid of retransmission).
A sample's reordering extents may be expressed as a histogram to
easily summarize the frequency of various extents.
4.3. Reordering Late Time Offset
Reordered packets can be assigned offset values indicating their
lateness in terms of buffer time that a receiver must possess to
accommodate them. Offset metrics are calculated only on reordered
packets, as identified by the reordered packet singleton metric in
Section 3.
4.3.1. Metric Name
Type-P-Packet-Late-Time-Stream
4.3.2. Metric Parameters
In addition to the parameters defined for Type-P-Reordered-Ratio-
Stream, we specify:
+ DstTime, the time that each packet in the stream arrives at the
destination, and may be associated with index i, or packet s[i]
+ LateTime(s[i]), the offset of packet s[i] in units of seconds,
defined below
Morton, et al. Standards Track [Page 14]
^L
RFC 4737 Packet Reordering Metrics November 2006
4.3.3. Definition
Lateness in time is calculated using destination times. When
received packet s[i] is reordered and has a reordering extent e,
then:
LateTime(s[i]) = DstTime(i)-DstTime(i-e)
Alternatively, using similar notation to that of Section 4.2, an
equivalent definition is:
LateTime(s[i]) = DstTime(i)-DstTime(j), for min{j|1<=j<i} that
satisfies s[j]>s[i].
4.3.4. Discussion
The offset metrics can help predict whether reordered packets will be
useful in a general receiver buffer system with finite limits. The
limit may be the time of storage prior to a cyclic play-out instant
(as with de-jitter buffers).
Note that the one-way IP Packet Delay Variation (IPDV) [RFC3393]
gives the delay variation for a packet with respect to the preceding
packet in the source sequence. Lateness and IPDV give an indication
of whether a buffer at the destination has sufficient storage to
accommodate the network's behavior and restore order. When an
earlier packet in the source sequence is lost, IPDV will necessarily
be undefined for adjacent packets, and LateTime may provide the only
way to evaluate the usefulness of a packet.
In the case of de-jitter buffers, there are circumstances where the
receiver employs loss concealment at the intended play-out time of a
late packet. However, if this packet arrives out of order, the Late
Time determines whether the packet is still useful. IPDV no longer
applies, because the receiver establishes a new play-out schedule
with additional buffer delay to accommodate similar events in the
future (this requires very minimal processing).
The combination of loss and reordering influences the LateTime
metric. If presented with the arrival sequence 1, 10, 5 (where
packets 2, 3, 4, and 6 through 9 are lost), LateTime would not
indicate exactly how "late" packet 5 is from its intended arrival
position. IPDV [RFC3393] would not capture this either, because of
the lack of adjacent packet pairs. Assuming a periodic stream
[RFC3432], an expected arrival time could be defined for all packets,
but this is essentially a single-point delay variation metric (as
defined in ITU-T Recommendations [I.356] and [Y.1540]), and not a
reordering metric.
Morton, et al. Standards Track [Page 15]
^L
RFC 4737 Packet Reordering Metrics November 2006
A sample's LateTime results may be expressed as a histogram to
summarize the frequency of buffer times needed to accommodate
reordered packets and permit buffer tuning on that basis. A
cumulative distribution function (CDF) with buffer time vs. percent
of reordered packets accommodated may be informative.
4.4. Reordering Byte Offset
Reordered packets can be assigned offset values indicating the
storage in bytes that a receiver must possess to accommodate them.
Offset metrics are calculated only on reordered packets, as
identified by the reordered packet singleton metric in Section 3.
4.4.1. Metric Name
Type-P-Packet-Byte-Offset-Stream
4.4.2. Metric Parameters
We use the same parameters defined earlier, including the optional
parameters of SrcByte and PayloadSize, and define:
+ ByteOffset(s[i]), the offset of packet s[i] in bytes
4.4.3. Definition
The Byte stream offset for reordered packet s[i] is the sum of the
payload sizes of packets qualified by the following criteria:
* The arrival is prior to the reordered packet, s[i], and
* The send sequence number, s, is greater than s[i].
Packets that meet both these criteria are normally buffered until the
sequence beneath them is complete. Note that these criteria apply to
both in-order and reordered packets.
For reordered packet s[i] with a reordering extent e:
ByteOffset(s[i]) = Sum[qualified packets]
= Sum[PayloadSize(packet at i-1 if qualified),
PayloadSize(packet at i-2 if qualified), ...
PayloadSize(packet at i-e always qualified)]
Using our earlier notation:
ByteOffset(s[i]) =
Sum[payloads of s[j] where s[j]>s[i] and i > j >= i-e]
Morton, et al. Standards Track [Page 16]
^L
RFC 4737 Packet Reordering Metrics November 2006
4.4.4. Discussion
We note that estimates of buffer size due to reordering depend
greatly on the test stream, in terms of the spacing between test
packets and their size, especially when packet size is variable. In
these and other circumstances, it may be most useful to characterize
offset in terms of the payload size(s) of stored packets, using the
Type-P-packet-Byte-Offset-Stream metric.
The byte offset metric can help predict whether reordered packets
will be useful in a general receiver buffer system with finite
limits. The limit is expressed as the number of bytes the buffer can
store.
A sample's ByteOffset results may be expressed as a histogram to
summarize the frequency of buffer lengths needed to accommodate
reordered packets and permit buffer tuning on that basis. A CDF with
buffer size vs. percent of reordered packets accommodated may be
informative.
4.5. Gaps between Multiple Reordering Discontinuities
4.5.1. Metric Names
Type-P-Packet-Reordering-Gap-Stream
Type-P-Packet-Reordering-GapTime-Stream
4.5.2. Parameters
We use the same parameters defined earlier, but add the convention
that index i' is greater than i, likewise j' > j, and define:
+ Gap(s[j']), the Reordering Gap of packet s[j'] in units of integer
messages
and the OPTIONAL parameter:
+ GapTime(s[j']), the Reordering Gap of packet s[j'] in units of
seconds
4.5.3. Definition of Reordering Discontinuity
All reordered packets are associated with a packet at a reordering
discontinuity, defined as the in-order packet s[j] that arrived at
the minimum value of j (1<=j<i) for which s[j]> s[i].
Morton, et al. Standards Track [Page 17]
^L
RFC 4737 Packet Reordering Metrics November 2006
Note that s[j] will have been found to cause a sequence
discontinuity, where s > NextExp when evaluated with the reordered
singleton metric as described in Section 3.4.
Recall that i - e = min(j). Subsequent reordered packets may be
associated with the same s[j], or with a different discontinuity.
This fact is used in the definition of the Reordering Gap, below.
4.5.4. Definition of Reordering Gap
A reordering gap is the distance between successive reordering
discontinuities. The Type-P-Packet-Reordering-Gap-Stream metric
assigns a value for Gap(s[j']) to (all) packets in a stream (and a
value for GapTime(s[j']), when reported).
If:
the packet s[j'] is found to be a reordering discontinuity, based
on the arrival of reordered packet s[i'] with extent e', and
an earlier reordering discontinuity s[j], based on the arrival of
reordered packet s[i] with extent e was already detected, and
i' > i, and
there are no reordering discontinuities between j and j',
then the Reordering Gap for packet s[j'] is the difference between
the arrival positions the reordering discontinuities, as shown below:
Gap(s[j']) = (j') - (j)
Gaps MAY also be expressed in time:
GapTime(s[j']) = DstTime(j') - DstTime(j)
Otherwise:
Gap(s[j']) (and GapTime(s[j']) ) for packet s[j'] is 0.
4.5.5. Discussion
When separate reordering discontinuities can be distinguished, a
count may also be reported (along with the discontinuity description,
such as the number of reordered packets associated with that
discontinuity and their extents and offsets). The Gaps between a
Morton, et al. Standards Track [Page 18]
^L
RFC 4737 Packet Reordering Metrics November 2006
sample's reordering discontinuities may be expressed as a histogram
to easily summarize the frequency of various gaps. Reporting the
mode, average, range, etc., may also summarize the distributions.
The Gap metric may help to correlate the frequency of reordering
discontinuities with their cause. Gap lengths are also informative
to receiver designers, revealing the period of reordering
discontinuities. The combination of reordering gaps and extent
reveals whether receivers will be required to handle cases of
overlapping reordered packets.
4.6. Reordering-Free Runs
This section defines a metric based on a count of consecutive
in-order packets between reordered packets.
4.6.1. Metric Names
Type-P-Packet-Reordering-Free-Run-x-numruns-Stream
Type-P-Packet-Reordering-Free-Run-q-squruns-Stream
Type-P-Packet-Reordering-Free-Run-p-numpkts-Stream
Type-P-Packet-Reordering-Free-Run-a-accpkts-Stream
4.6.2. Parameters
We use the same parameters defined earlier and define the following:
+ r, the run counter
+ x, the number of runs, also the number of reordered packets
+ a, the accumulator of in-order packets
+ p, the number of packets (when the stream is complete, p=(x+a)=L)
+ q, the sum of the squares of the runs counted
4.6.3. Definition
As packets in a sample arrive at the destination, the count of in-
order packets between reordered packets is a Reordering-Free run.
Note that the minimum run-length is zero according to this
definition. A pseudo-code example follows:
r = 0; /* r is the run counter */
x = 0; /* x is the number of runs */
a = 0; /* a is the accumulator of in-order packets */
p = 0; /* p is the number of packets */
Morton, et al. Standards Track [Page 19]
^L
RFC 4737 Packet Reordering Metrics November 2006
q = 0; /* q is the sum of the squares of the runs counted */
while(packets arrive with sequence number s)
{
p++;
if (s >= NextExp) /* s is in-order */
then r++;
a++;
else /* s is reordered */
q+= r*r;
r = 0;
x++;
}
Each in-order arrival increments the run counter and the accumulator
of in-order packets; each reordered packet resets the run counter
after adding it to the sum of the squared lengths.
Each arrival of a reordered packet yields a new run count. Long runs
accompany periods where order was maintained, while short runs
indicate frequent or multi-packet reordering.
The percent of packets in-order is 100*a/p
The average Reordering-Free run length is a/x
The q counter gives an indication of variation of the Reordering-Free
runs from the average by comparing q/a to a/x ((q/a)/(a/x)).
4.6.4. Discussion and Illustration
Type-P-packet-Reordering-Free-Run-Stream parameters give a brief
summary of the stream's reordering characteristics including the
average reordering-free run length, and the variation of run lengths;
therefore, a key application of this metric is network evaluation.
For 36 packets with 3 runs of 11 in-order packets, we have:
p = 36
x = 3
a = 33
q = 3 * (11*11) = 363
ave. reordering-free run = 11
q/a = 11
(q/a)/(a/x) = 1.0
For 36 packets with 3 runs, 2 runs of length 1, and one of length 31,
we have:
Morton, et al. Standards Track [Page 20]
^L
RFC 4737 Packet Reordering Metrics November 2006
p = 36
x = 3
a = 33
q = 1 + 1 + 961 = 963
ave. reordering-free run = 11
q/a = 29.18
(q/a)/(a/x) = 2.65
The variability in run length is prominent in the difference between
the q values (sum of the squared run lengths) and in comparing
average run length to the (q/a)/(a/x) ratios (equals 1 when all runs
are the same length).
5. Metrics Focused on Receiver Assessment: A TCP-Relevant Metric
This section describes a metric that conveys information associated
with the effect of reordering on TCP. However, in order to infer
anything about TCP performance, the test stream MUST bear a close
resemblance to the TCP sender of interest. [RFC3148] lists the
specific aspects of congestion control algorithms that must be
specified. Further, RFC 3148 recommends that Bulk Transfer Capacity
metrics SHOULD have instruments to distinguish three cases of packet
reordering (in Section 3.3). The sample metrics defined above
satisfy the requirements to classify packets that are slightly or
grossly out-of-order. The metric in this section adds the capability
to estimate whether reordering might cause the DUP-ACK threshold to
be exceeded causing the Fast Retransmit algorithm to be invoked.
Additional TCP Kernel Instruments are summarized in [Mat03].
5.1. Metric Name
Type-P-Packet-n-Reordering-Stream
5.2. Parameter Notation
Let n be a positive integer (a parameter). Let k be a positive
integer equal to the number of packets sent (sample size). Let l be
a non-negative integer representing the number of packets that were
received out of the k packets sent. (Note that there is no
relationship between k and l: on one hand, losses can make l less
than k; on the other hand, duplicates can make l greater than k.)
Assign each sent packet a sequence number, 1 to k, in order of packet
emission.
Let s[1], s[2], ..., s[l] be the original sequence numbers of the
received packets, in the order of arrival.
Morton, et al. Standards Track [Page 21]
^L
RFC 4737 Packet Reordering Metrics November 2006
5.3. Definitions
Definition 1: Received packet number i (n < i <= l), with source
sequence number s[i], is n-reordered if and only if for all j such
that i-n <= j < i, s[j] > s[i].
Claim: If, by this definition, a packet is n-reordered and 0 < n' <
n, then the packet is also n'-reordered.
Note: This definition is illustrated by C code in Appendix A. The
code determines and reports the n-reordering for n from 1 to a
specified parameter (MAXN in the code, set to 100). The value of n
conjectured to be relevant for TCP is the TCP duplicate ACK threshold
(set to the value of 3 by paragraph 2 of Section 3.2 of [RFC 2581]).
This definition does not assign an n to all reordered packets as
defined by the singleton metric, in particular when blocks of
successive packets are reordered. (In the arrival sequence
s={1,2,3,7,8,9,4,5,6}, packets 4, 5, and 6 are reordered, but only
packet 4 is n-reordered, with n=3.)
Definition 2: The degree of n-reordering of a sample is m/l, where m
is the number of n-reordered packets in the sample.
Definition 3: The degree of monotonic reordering of a sample is its
degree of 1-reordering.
Definition 4: A sample is said to have no reordering if its degree of
monotonic reordering is 0.
Note: As follows from the claim above, if monotonic reordering of a
sample is 0, then the n-reordering of the sample is 0 for all n.
5.4. Discussion
The degree of n-reordering may be expressed as a percentage, in which
case the number from Definition 2 is multiplied by 100.
The n-reordering metric is helpful for matching the duplicate ACK
threshold setting to a given path. For example, if a path exhibits
no more than 5-reordering, a DUP-ACK threshold of 6 may avoid
unnecessary retransmissions.
Important special cases are n=1 and n=3:
- For n=1, absence of 1-reordering means the sequence numbers that
the receiver sees are monotonically increasing with respect to the
previous arriving packet.
Morton, et al. Standards Track [Page 22]
^L
RFC 4737 Packet Reordering Metrics November 2006
- For n=3, a NewReno TCP sender would retransmit 1 packet in response
to an instance of 3-reordering and therefore consider this packet
lost for the purposes of congestion control (the sender will halve
its congestion window, see [RFC2581]). Three is the default
threshold for Stream Control Transport Protocol (SCTP) [RFC2960],
and the Datagram Congestion Control Protocol (DCCP) [RFC4340] when
used with Congestion Control ID 2: TCP-like Congestion Control
[RFC4341].
A sample's n-reordering may be expressed as a histogram to summarize
the frequency for each value of n.
We note that the definition of n-reordering cannot predict the exact
number of packets unnecessarily retransmitted by a TCP sender under
some circumstances, such as cases with closely-spaced reordered
singletons. Both time and position influence the sender's behavior.
A packet's n-reordering designation is sometimes equal to its
reordering extent, e. n-reordering is different in the following
ways:
1. n is a count of early packets with consecutive arrival positions
at the receiver.
2. Reordered packets (Type-P-Reordered=TRUE) may not be n-reordered,
but will have an extent, e (see the examples).
6. Measurement and Implementation Issues
The results of tests will be dependent on the time interval between
measurement packets (both at the source, and during transport where
spacing may change). Clearly, packets launched infrequently (e.g., 1
per 10 seconds) are unlikely to be reordered.
In order to gauge the reordering for an application according to the
metrics defined in this memo, it is RECOMMENDED to use the same
sending pattern as the application of interest. In any case, the
exact method of packet generation MUST be reported with the
measurement results, including all stream parameters.
+ To make inferences about applications that use TCP, it is REQUIRED
to use TCP-like Streams as in [RFC3148]
+ For real-time applications, it is RECOMMENDED to use periodic
streams as in [RFC3432]
Morton, et al. Standards Track [Page 23]
^L
RFC 4737 Packet Reordering Metrics November 2006
It is acceptable to report the metrics of Sections 3 and 4 with other
IPPM metrics using Poisson streams [RFC2330]. Poisson streams
represent an "unbiased sample" of network performance for packet loss
and delay metrics. However, it would be incorrect to make inferences
about the application categories above using reordering metrics
measured with Poisson streams.
Test stream designers may prefer to use a periodic sending interval
in order to maintain a known temporal bias and allow simplified
results analysis (as described in [RFC3432]). In this case, it is
RECOMMENDED that the periodic sending interval be chosen to reproduce
the closest source packet spacing expected. Testers must recognize
that streams sent at the link speed serialization limit MUST have
limited duration and MUST consider packet loss an indication that the
stream has caused congestion, and suspend further testing.
When intending to compare independent measurements of reordering, it
is RECOMMENDED to use the same test stream parameters in each
measurement system.
Packet lengths might also be varied to attempt to detect instances of
parallel processing (they may cause steady state reordering). For
example, a line-speed burst of the longest (MTU-length) packets
followed by a burst of the shortest possible packets may be an
effective detecting pattern. Other size patterns are possible.
The non-reversing order criterion and all metrics described above
remain valid and useful when a stream of packets experiences packet
loss, or both loss and reordering. In other words, losses alone do
not cause subsequent packets to be declared reordered.
Since this metric definition may use sequence numbers with finite
range, it is possible that the sequence numbers could reach end-of-
range and roll over to zero during a measurement. By definition, the
NextExp value cannot decrease, and all packets received after a
rollover would be declared reordered. Sequence number rollover can
be avoided by using combinations of counter size and test duration
where rollover is impossible (and sequence is reset to zero at the
start). Also, message-based numbering results in slower sequence
consumption. There may still be cases where methodological
mitigation of this problem is desirable (e.g., long-term testing).
The elements of mitigation are:
1. There must be a test to detect if a rollover has occurred. It
would be nearly impossible for the sequence numbers of successive
packets to jump by more than half the total range, so these large
discontinuities are designated as rollover.
Morton, et al. Standards Track [Page 24]
^L
RFC 4737 Packet Reordering Metrics November 2006
2. All sequence numbers used in computations are represented in a
sufficiently large precision. The numbers have a correction
applied (equivalent to adding a significant digit) whenever
rollover is detected.
3. Reordered packets coincident with sequence numbers reaching end-
of-range must also be detected for proper application of
correction factor.
Ideally, the test instrument would have the ability to use all
earlier packets at any point in the test stream. In practice, there
will be limited ability to determine the extent of reordering, due to
the storage requirements for previous packets. Saving only packets
that indicate discontinuities (and their arrival positions) will
reduce storage volume.
Another solution is to use a sliding history window of packets, where
the window size would be determined by an upper bound on the useful
reordering extent. This bound could be several packets or several
seconds worth of packets, depending on the intended analysis. When
discarding all stream information beyond the window, the reordering
extent or degree of n-reordering may need to be expressed as greater
than the window length if the reordering discontinuity information
has been discarded, and Gap calculations would not be possible.
The requirement to ignore duplicate packets also mandates storage.
Here, tracking the sequence numbers of missing packets may minimize
storage size. Missing packets may eventually be declared lost or be
reordered if they arrive. The missing packet list and the largest
sequence number received thus far (NextExp - 1) are sufficient
information to determine if a packet is a duplicate (assuming a
manageable storage size for packets that are missing due to loss).
It is important to note that practical IP networks also have limited
ability to "store" packets, even when routing loops appear
temporarily. Therefore, the maximum storage for reordering metrics
(and their complexity) would only approach the number packets in the
sample, K, when the sending time for K packets is small with respect
to the network's largest possible transfer time. Another possible
limitation on storage is the maximum length of the sequence number
field, assuming that most test streams do not exhaust this length in
practice.
Last, we note that determining reordering extents and gaps is tricky
when there are overlapped or nested events. Test instrument
complexity and reordering complexity are directly correlated.
Morton, et al. Standards Track [Page 25]
^L
RFC 4737 Packet Reordering Metrics November 2006
6.1. Passive Measurement Considerations
As with other IPPM metrics, the definitions have been constructed
primarily for Active measurements.
Assuming that the necessary sequence information (message number) is
included in the packet payload (possibly in application headers such
as RTP), reordering metrics may be evaluated in a passive measurement
arrangement. Also, it is possible to evaluate order at any point
along a source-destination path, recognizing that intermediate
measurements may differ from those made at the destination (where the
reordering effect on applications can be inferred).
It is possible to apply these metrics to evaluate reordering in a TCP
sender's stream. In this case, the source sequence numbers would be
based on byte stream or segment numbering. Since the stream may
include retransmissions due to loss or reordering, care must be taken
to avoid declaring retransmitted packets reordered. The additional
sequence reference of s or SrcTime helps avoid this ambiguity in
active measurement, or the optional TCP timestamp field [RFC1323] in
passive measurement.
7. Examples of Arrival Order Evaluation
This section provides some examples to illustrate how the non-
reversing order criterion works, how n-reordering works in
comparison, and the value of quantifying reordering in all the
dimensions of time, bytes, and position.
Throughout this section, we will refer to packets by their source
sequence number, except where noted. So "Packet 4" refers to the
packet with source sequence number 4, and the reader should refer to
the tables in each example to determine packet 4's arrival index
number, if needed.
7.1. Example with a Single Packet Reordered
Table 1 gives a simple case of reordering, where one packet is
reordered, Packet 4. Packets are listed according to their arrival,
and message numbering is used. All packets contain PayloadSize=100
bytes, with SrcByte=(s x 100)-99 for s=1,2,3,4,...
Morton, et al. Standards Track [Page 26]
^L
RFC 4737 Packet Reordering Metrics November 2006
Table 1: Example with Packet 4 Reordered,
Sending order( s @Src): 1,2,3,4,5,6,7,8,9,10
s Src Dst Dst Byte Late
@Dst NextExp Time Time Delay IPDV Order Offset Time
-----------------------------------------------------------------
1 1 0 68 68 1
2 2 20 88 68 0 2
3 3 40 108 68 0 3
5 4 80 148 68 -82 4
6 6 100 168 68 0 5
7 7 120 188 68 0 6
8 8 140 208 68 0 7
4 9 60 210 150 82 8 400 62
9 9 160 228 68 0 9
10 10 180 248 68 0 10
Each column gives the following information:
s Packet sequence number at the source.
NextExp The value of NextExp when the packet arrived (before
update).
SrcTime Packet time stamp at the source, ms.
DstTime Packet time stamp at the destination, ms.
Delay 1-way delay of the packet, ms.
IPDV IP Packet Delay Variation, ms
IPDV = Delay(SrcNum)-Delay(SrcNum-1)
DstOrder Order in which the packet arrived at the destination.
Byte Offset The byte offset of a reordered packet, in bytes.
LateTime The lateness of a reordered packet, in ms.
We can see that when Packet 4 arrives, NextExp=9, and it is declared
reordered. We compute the extent of reordering as follows:
Using the notation <s[1], ..., s[i], ..., s[L]>, the received packets
are represented as:
\/
s = 1, 2, 3, 5, 6, 7, 8, 4, 9, 10
i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
/\
Applying the definition of Type-P-Packet-Reordering-Extent-Stream:
when j=7, 8 > 4, so the reordering extent is 1 or more.
when j=6, 7 > 4, so the reordering extent is 2 or more.
when j=5, 6 > 4, so the reordering extent is 3 or more.
when j=4, 5 > 4, so the reordering extent is 4 or more.
Morton, et al. Standards Track [Page 27]
^L
RFC 4737 Packet Reordering Metrics November 2006
when j=3, but 3 < 4, and 4 is the maximum extent, e=4 (assuming
there are no earlier sequence discontinuities, as in this example).
Further, we can compute the Late Time (210-148=62ms using DstTime)
compared to Packet 5's arrival. If the receiver has a de-jitter
buffer that holds more than 4 packets, or at least 62 ms storage,
Packet 4 may be useful. Note that 1-way delay and IPDV indicate
unusual behavior for Packet 4. Also, if Packet 4 had arrived at
least 62ms earlier, it would have been in-order in this example.
If all packets contained 100 byte payloads, then Byte Offset is equal
to 400 bytes.
Following the definitions of Section 5.1, Packet 4 is designated
4-reordered.
7.2. Example with Two Packets Reordered
Table 2 Example with Packets 5 and 6 Reordered,
Sending order(s @Src): 1,2,3,4,5,6,7,8,9,10
s Src Dst Dst Byte Late
@Dst NextExp Time Time Delay IPDV Order Offset Time
-----------------------------------------------------------------
1 1 0 68 68 1
2 2 20 88 68 0 2
3 3 40 108 68 0 3
4 4 60 128 68 0 4
7 5 120 188 68 -22 5
5 8 80 189 109 41 6 100 1
6 8 100 190 90 -19 7 100 2
8 8 140 208 68 0 8
9 9 160 228 68 0 9
10 10 180 248 68 0 10
Table 2 shows a case where Packets 5 and 6 arrive just behind Packet
7, so both 5 and 6 are reordered. The Late times (189-188=1,
190-188=2) are small.
Using the notation <s[1], ..., s[i], ..., s[l]>, the received packets
are represented as:
\/ \/
s = 1, 2, 3, 4, 7, 5, 6, 8, 9, 10
i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
/\ /\
Morton, et al. Standards Track [Page 28]
^L
RFC 4737 Packet Reordering Metrics November 2006
Considering Packet 5 first:
when j=5, 7 > 5, so the reordering extent is 1 or more.
when j=4, we have 4 < 5, so 1 is its maximum extent, and e=1.
Considering Packet 6 next:
when j=6, 5 < 6, the extent is not yet defined.
when j=5, 7 > 6, so the reordering extent is i-j=2 or more.
when j=4, 4 < 6, and we find 2 is its maximum extent, and e=2.
We can also associate each of these reordered packets with a
reordering discontinuity. We find the minimum j=5 (for both packets)
according to Section 4.2.3. So Packet 6 is associated with the same
reordering discontinuity as Packet 5, the Reordering Discontinuity at
Packet 7.
This is a case where reordering extent e would over-estimate the
packet storage required to restore order. Only one packet storage is
required (to hold Packet 7), but e=2 for Packet 6.
Following the definitions of Section 5, Packet 5 is designated
1-reordered, but Packet 6 is not designated n-reordered.
A hypothetical sender/receiver pair may retransmit Packet 5
unnecessarily, since it is 1-reordered (in agreement with the
singleton metric). Though Packet 6 may not be unnecessarily
retransmitted, the receiver cannot advance Packet 7 to the higher
layers until after Packet 6 arrives. Therefore, the singleton metric
correctly determined that Packet 6 is reordered.
Morton, et al. Standards Track [Page 29]
^L
RFC 4737 Packet Reordering Metrics November 2006
7.3. Example with Three Packets Reordered
Table 3 Example with Packets 4, 5, and 6 reordered
Sending order(s @Src): 1,2,3,4,5,6,7,8,9,10,11
s Src Dst Dst Byte Late
@Dst NextExp Time Time Delay IPDV Order Offset Time
-----------------------------------------------------------------
1 1 0 68 68 1
2 2 20 88 68 0 2
3 3 40 108 68 0 3
7 4 120 188 68 -88 4
8 8 140 208 68 0 5
9 9 160 228 68 0 6
10 10 180 248 68 0 7
4 11 60 250 190 122 8 400 62
5 11 80 252 172 -18 9 400 64
6 11 100 256 156 -16 10 400 68
11 11 200 268 68 0 11
The case in Table 3 is where three packets in sequence have long
transit times (Packets with s = 4, 5, and 6). Delay, Late time, and
Byte Offset capture this very well, and indicate variation in
reordering extent, while IPDV indicates that the spacing between
packets 4,5,and 6 has changed.
The histogram of Reordering extents (e) would be:
Bin 1 2 3 4 5 6 7
Frequency 0 0 0 1 1 1 0
Using the notation <s[1], ..., s[i], ..., s[l]>, the received packets
are represented as:
s = 1, 2, 3, 7, 8, 9,10, 4, 5, 6, 11
i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11
We first calculate the n-reordering. Considering Packet 4 first:
when n=1, 7<=j<8, and 10> 4, so the packet is 1-reordered.
when n=2, 6<=j<8, and 9 > 4, so the packet is 2-reordered.
when n=3, 5<=j<8, and 8 > 4, so the packet is 3-reordered.
when n=4, 4<=j<8, and 7 > 4, so the packet is 4-reordered.
when n=5, 3<=j<8, but 3 < 4, and 4 is the maximum n-reordering.
Morton, et al. Standards Track [Page 30]
^L
RFC 4737 Packet Reordering Metrics November 2006
Considering packet 5[9] next:
when n=1, 8<=j<9, but 4 < 5, so the packet at i=9 is not designated
as n-reordered. We find the same result for Packet 6.
We now consider whether reordered Packets 5 and 6 are associated with
the same reordering discontinuity as Packet 4. Using the test of
Section 4.2.3, we find that the minimum j=4 for all three packets.
They are all associated with the reordering discontinuity at Packet
7.
This example shows again that the n-reordering definition identifies
a single Packet (4) with a sufficient degree of n-reordering that
might cause one unnecessary packet retransmission by the New Reno TCP
sender (with DUP-ACK threshold=3 or 4). Also, the reordered arrival
of Packets 5 and 6 will allow the receiver process to pass Packets 7
through 10 up the protocol stack (the singleton Type-P-Reordered =
TRUE for Packets 5 and 6, and they are all associated with a single
reordering discontinuity).
7.4. Example with Multiple Packet Reordering Discontinuities
Table 4 Example with Multiple Packet Reordering Discontinuities
Sending order(s @Src): 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
Discontinuity Discontinuity
|---------Gap---------|
s = 1, 2, 3, 6, 7, 4, 5, 8, 9, 10, 12, 13, 11, 14, 15, 16
i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
r = 1, 2, 3, 4, 5, 0, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, ...
number of runs,n = 1 2 3
end r counts = 5 0 5
(These values are computed after the packet arrives.)
Packet 4 has extent e=2, Packet 5 has extent e=3, and Packet 11 has
e=2. There are two different reordering discontinuities, one at
Packet 6 (where j=4) and one at Packet 12 (where j'=11).
According to the definition of Reordering Gap
Gap(s[j']) = (j') - (j)
Gap(Packet 12) = (11) - (4) = 7
We also have three reordering-free runs of lengths 5, 0, and 5.
The differences between these two multiple-event metrics are evident
here. Gaps are the distance between sequence discontinuities that
are subsequently defined as reordering discontinuities, while
reordering-free runs capture the distance between reordered packets.
Morton, et al. Standards Track [Page 31]
^L
RFC 4737 Packet Reordering Metrics November 2006
8. Security Considerations
8.1. Denial-of-Service Attacks
This metric requires a stream of packets sent from one host (source)
to another host (destination) through intervening networks. This
method could be abused for denial-of-service attacks directed at
destination and/or the intervening network(s).
Administrators of the source, destination, and intervening network(s)
should establish bilateral or multilateral agreements regarding the
timing, size, and frequency of collection of sample metrics. Use of
this method in excess of the terms agreed between the participants
may be cause for immediate rejection or discard of packets or other
escalation procedures defined between the affected parties.
8.2. User Data Confidentiality
Active use of this method generates packets for a sample, rather than
taking samples based on user data, and does not threaten user data
confidentiality. Passive measurement must restrict attention to the
headers of interest. Since user payloads may be temporarily stored
for length analysis, suitable precautions MUST be taken to keep this
information safe and confidential. In most cases, a hashing function
will produce a value suitable for payload comparisons.
8.3. Interference with the Metric
It may be possible to identify that a certain packet or stream of
packets is part of a sample. With that knowledge at the destination
and/or the intervening networks, it is possible to change the
processing of the packets (e.g., increasing or decreasing delay) that
may distort the measured performance. It may also be possible to
generate additional packets that appear to be part of the sample
metric. These additional packets are likely to perturb the results
of the sample measurement. The likely consequences of packet
injection are that the additional packets would be declared
duplicates, or that the original packets would be seen as duplicates
(if they arrive after the corresponding injected packets), causing
invalid measurements on the injected packets.
The requirements for data collection resistance to interference by
malicious parties and mechanisms to achieve such resistance are
available in other IPPM memos. A set of requirements for a data
collection protocol can be found in [RFC3763], and a protocol
specification for the One-Way Active Measurement Protocol (OWAMP) is
Morton, et al. Standards Track [Page 32]
^L
RFC 4737 Packet Reordering Metrics November 2006
in [RFC4656]. The security considerations sections of the two OWAMP
documents are extensive and should be consulted for additional
details.
9. IANA Considerations
Metrics defined in this memo have been registered in the IANA IPPM
METRICS REGISTRY as described in initial version of the registry
[RFC4148].
IANA has registered the following metrics in the IANA-IPPM-METRICS-
REGISTRY-MIB:
ietfReorderedSingleton OBJECT-IDENTITY
STATUS current
DESCRIPTION
"Type-P-Reordered"
REFERENCE
"Reference RFC 4737, Section 3"
::= { ianaIppmMetrics 34 }
ietfReorderedPacketRatio OBJECT-IDENTITY
STATUS current
DESCRIPTION
"Type-P-Reordered-Ratio-Stream"
REFERENCE
"Reference RFC 4737, Section 4.1"
::= { ianaIppmMetrics 35 }
ietfReorderingExtent OBJECT-IDENTITY
STATUS current
DESCRIPTION
"Type-P-Packet-Reordering-Extent-Stream"
REFERENCE
"Reference RFC 4737, Section 4.2"
::= { ianaIppmMetrics 36 }
ietfReorderingLateTimeOffset OBJECT-IDENTITY
STATUS current
DESCRIPTION
"Type-P-Packet-Late-Time-Stream"
REFERENCE
"Reference RFC 4737, Section 4.3"
::= { ianaIppmMetrics 37 }
ietfReorderingByteOffset OBJECT-IDENTITY
STATUS current
DESCRIPTION
Morton, et al. Standards Track [Page 33]
^L
RFC 4737 Packet Reordering Metrics November 2006
"Type-P-Packet-Byte-Offset-Stream"
REFERENCE
"Reference RFC 4737, Section 4.4"
::= { ianaIppmMetrics 38 }
ietfReorderingGap OBJECT-IDENTITY
STATUS current
DESCRIPTION
"Type-P-Packet-Reordering-Gap-Stream"
REFERENCE
"Reference RFC 4737, Section 4.5"
::= { ianaIppmMetrics 39 }
ietfReorderingGapTime OBJECT-IDENTITY
STATUS current
DESCRIPTION
"Type-P-Packet-Reordering-GapTime-Stream"
REFERENCE
"Reference RFC 4737, Section 4.5"
::= { ianaIppmMetrics 40 }
ietfReorderingFreeRunx OBJECT-IDENTITY
STATUS current
DESCRIPTION
"Type-P-Packet-Reordering-Free-Run-x-numruns-Stream"
REFERENCE
"Reference RFC 4737, Section 4.6"
::= { ianaIppmMetrics 41 }
ietfReorderingFreeRunq OBJECT-IDENTITY
STATUS current
DESCRIPTION
"Type-P-Packet-Reordering-Free-Run-q-squruns-Stream"
REFERENCE
"Reference RFC 4737, Section 4.6"
::= { ianaIppmMetrics 42 }
ietfReorderingFreeRunp OBJECT-IDENTITY
STATUS current
DESCRIPTION
"Type-P-Packet-Reordering-Free-Run-p-numpkts-Stream"
REFERENCE
"Reference RFC 4737, Section 4.6"
::= { ianaIppmMetrics 43 }
ietfReorderingFreeRuna OBJECT-IDENTITY
STATUS current
DESCRIPTION
Morton, et al. Standards Track [Page 34]
^L
RFC 4737 Packet Reordering Metrics November 2006
"Type-P-Packet-Reordering-Free-Run-a-accpkts-Stream"
REFERENCE
"Reference RFC 4737, Section 4.6"
::= { ianaIppmMetrics 44 }
ietfnReordering OBJECT-IDENTITY
STATUS current
DESCRIPTION
"Type-P-Packet-n-Reordering-Stream"
REFERENCE
"Reference RFC 4737, Section 5"
::= { ianaIppmMetrics 45 }
10. Normative References
[RFC791] Postel, J., "Internet Protocol", STD 5, RFC 791, September
1981.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2330] Paxson, V., Almes, G., Mahdavi, J., and M. Mathis,
"Framework for IP Performance Metrics", RFC 2330, May
1998.
[RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
(IPv6) Specification", RFC 2460, December 1998.
[RFC3148] Mathis, M. and M. Allman, "A Framework for Defining
Empirical Bulk Transfer Capacity Metrics", RFC 3148, July
2001.
[RFC3432] Raisanen, V., Grotefeld, G., and A. Morton, "Network
performance measurement with periodic streams", RFC 3432,
November 2002.
[RFC3763] Shalunov, S. and B. Teitelbaum, "One-way Active
Measurement Protocol (OWAMP) Requirements", RFC 3763,
April 2004.
[RFC4148] Stephan, E., "IP Performance Metrics (IPPM) Metrics
Registry", BCP 108, RFC 4148, August 2005.
[RFC4656] Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., and M.
Zeckauskas, "A One-way Active Measurement Protocol
(OWAMP)", RFC 4656, September 2006.
Morton, et al. Standards Track [Page 35]
^L
RFC 4737 Packet Reordering Metrics November 2006
11. Informative References
[Bel02] J. Bellardo and S. Savage, "Measuring Packet Reordering,"
Proceedings of the ACM SIGCOMM Internet Measurement
Workshop 2002, November 6-8, Marseille, France.
[Ben99] J.C.R. Bennett, C. Partridge, and N. Shectman, "Packet
Reordering is Not Pathological Network Behavior," IEEE/ACM
Transactions on Networking, vol. 7, no. 6, pp. 789-798,
December 1999.
[Cia00] L. Ciavattone and A. Morton, "Out-of-Sequence Packet
Parameter Definition (for Y.1540)", Contribution number
T1A1.3/2000-047, October 30, 2000,
http://home.comcast.net/~acmacm/IDcheck/0A130470.doc.
[Cia03] L. Ciavattone, A. Morton, and G. Ramachandran,
"Standardized Active Measurements on a Tier 1 IP
Backbone," IEEE Communications Mag., pp. 90-97, June 2003.
[I.356] ITU-T Recommendation I.356, "B-ISDN ATM layer cell
transfer performance", March 2000.
[Jai02] S. Jaiswal et al., "Measurement and Classification of Out-
of-Sequence Packets in a Tier-1 IP Backbone," Proceedings
of the ACM SIGCOMM Internet Measurement Workshop 2002,
November 6-8, Marseille, France.
[Lou01] D. Loguinov and H. Radha, "Measurement Study of Low-
bitrate Internet Video Streaming", Proceedings of the ACM
SIGCOMM Internet Measurement Workshop 2001 November 1-2,
2001, San Francisco, USA.
[Mat03] M. Mathis, J. Heffner, and R. Reddy, "Web100: Extended TCP
Instrumentation for Research, Education and Diagnosis",
ACM Computer Communications Review, Vol 33, Num 3, July
2003, http://www.web100.org/docs/mathis03web100.pdf.
[Pax98] V. Paxson, "Measurements and Analysis of End-to-End
Internet Dynamics," Ph.D. dissertation, U.C. Berkeley,
1997, ftp://ftp.ee.lbl.gov/papers/vp-thesis/dis.ps.gz.
[RFC793] Postel, J., "Transmission Control Protocol", STD 7, RFC
793, September 1981.
[RFC1323] Jacobson, V., Braden, R., and D. Borman, "TCP Extensions
for High Performance", RFC 1323, May 1992.
Morton, et al. Standards Track [Page 36]
^L
RFC 4737 Packet Reordering Metrics November 2006
[RFC2581] Allman, M., Paxson, V., and W. Stevens, "TCP Congestion
Control ", RFC 2581, April 1999.
[RFC2679] Almes, G., Kalidindi, S., and M. Zekauskas, "A One-way
Delay Metric for IPPM", RFC 2679, September 1999.
[RFC2680] Almes, G., Kalidindi, S., and M. Zekauskas, "A One-way
Packet Loss Metric for IPPM", RFC 2680, September 1999.
[RFC2960] Stewart, R., Xie, Q., Morneault, K., Sharp, C.,
Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M.,
Zhang, L., and V. Paxson, "Stream Control Transmission
Protocol", RFC 2960, October 2000.
[RFC3393] Demichelis, C. and P. Chimento, "IP Packet Delay Variation
Metric for IP Performance Metrics (IPPM)", RFC 3393,
November 2002.
[RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram
Congestion Control Protocol (DCCP)", RFC 4340, March 2006.
[RFC4341] Floyd, S. and E. Kohler, "Profile for Datagram Congestion
Control Protocol (DCCP) Congestion Control ID 2: TCP-like
Congestion Control", RFC 4341, March 2006.
[TBABAJ02] T. Banka, A. Bare, A. P. Jayasumana, "Metrics for Degree
of Reordering in Packet Sequences", Proc. 27th IEEE
Conference on Local Computer Networks, Tampa, FL, Nov.
2002.
[Y.1540] ITU-T Recommendation Y.1540, "Internet protocol data
communication service - IP packet transfer and
availability performance parameters", December 2002.
12. Acknowledgements
The authors would like to acknowledge many helpful discussions with
Matt Zekauskas, Jon Bennett (who authored the sections on
Reordering-Free Runs), and Matt Mathis. We thank David Newman, Henk
Uijterwaal, Mark Allman, Vern Paxson, and Phil Chimento for their
reviews and suggestions, and Michal Przybylski for sharing
implementation experiences with us on the ippm-list. Anura
Jayasumana and Nischal Piratla brought in recent work-in-progress
[TBABAJ02]. We gratefully acknowledge the foundation laid by the
authors of the IP performance framework [RFC2330].
Morton, et al. Standards Track [Page 37]
^L
RFC 4737 Packet Reordering Metrics November 2006
Appendix A. Example Implementations in C (Informative)
Two example c-code implementations of reordering definitions follow:
Example 1 n-reordering ============================================
#include <stdio.h>
#define MAXN 100
#define min(a, b) ((a) < (b)? (a): (b))
#define loop(x) ((x) >= 0? x: x + MAXN)
/*
* Read new sequence number and return it. Return a sentinel value
* of EOF (at least once) when there are no more sequence numbers.
* In this example, the sequence numbers come from stdin;
* in an actual test, they would come from the network.
*
*/
int
read_sequence_number()
{
int res, rc;
rc = scanf("%d\n", &res);
if (rc == 1) return res;
else return EOF;
}
int
main()
{
int m[MAXN]; /* We have m[j-1] == number of
* j-reordered packets. */
int ring[MAXN]; /* Last sequence numbers seen. */
int r = 0; /* Ring pointer for next write. */
int l = 0; /* Number of sequence numbers read. */
int s; /* Last sequence number read. */
int j;
for (j = 0; j < MAXN; j++) m[j] = 0;
for (;(s = read_sequence_number())!= EOF;l++,r=(r+1)%MAXN) {
for (j=0; j<min(l, MAXN)&&s<ring[loop(r-j-1)];j++) m[j]++;
ring[r] = s;
}
Morton, et al. Standards Track [Page 38]
^L
RFC 4737 Packet Reordering Metrics November 2006
for (j = 0; j < MAXN && m[j]; j++)
printf("%d-reordering = %f%%\n", j+1, 100.0*m[j]/(l-j-1));
if (j == 0) printf("no reordering\n");
else if (j < MAXN) printf("no %d-reordering\n", j+1);
else printf("only up to %d-reordering is handled\n", MAXN);
exit(0);
}
/* Example 2 singleton and n-reordering comparison =======
Author: Jerry Perser 7-2002 (mod by acm 12-2004)
Compile: $ gcc -o jpboth file.c
Usage: $ jpboth 1 2 3 7 8 4 5 6 (pkt sequence given on cmdline)
Note to cut/pasters: line 59 may need repair
*/
#include <stdio.h>
#define MAXN 100
#define min(a, b) ((a) < (b)? (a): (b))
#define loop(x) ((x) >= 0? x: x + MAXN)
/* Global counters */
int receive_packets=0; /* number of received */
int reorder_packets_Al=0; /* num reordered pkts (singleton) */
int reorder_packets_Stas=0; /* num reordered pkts(n-reordering)*/
/* function to test if current packet has been reordered
* returns 0 = not reordered
* 1 = reordered
*/
int testorder1(int seqnum) // Al
{
static int NextExp = 1;
int iReturn = 0;
if (seqnum >= NextExp) {
NextExp = seqnum+1;
} else {
iReturn = 1;
}
return iReturn;
}
int testorder2(int seqnum) // Stanislav
{
static int ring[MAXN]; /* Last sequence numbers seen. */
static int r = 0; /* Ring pointer for next write */
Morton, et al. Standards Track [Page 39]
^L
RFC 4737 Packet Reordering Metrics November 2006
int l = 0; /* Number of sequence numbers read. */
int j;
int iReturn = 0;
l++;
r = (r+1) % MAXN;
for (j=0; j<min(l, MAXN) && seqnum<ring[loop(r-j-1)]; j++)
iReturn = 1;
ring[r] = seqnum;
return iReturn;
}
int main(int argc, char *argv[])
{
int i, packet;
for (i=1; i< argc; i++) {
receive_packets++;
packet = atoi(argv[i]);
reorder_packets_Al += testorder1(packet); // singleton
reorder_packets_Stas += testorder2(packet); //n-reord.
}
printf("Received packets = %d, Singleton Reordered = %d, n-
reordered = %d\n", receive_packets, reorder_packets_Al,
reorder_packets_Stas );
exit(0);
}
Reference
ISO/IEC 9899:1999 (E), as amended by ISO/IEC 9899:1999/Cor.1:2001
(E). Also published as:
The C Standard: Incorporating Technical Corrigendum 1, British
Standards Institute, ISBN: 0-470-84573-2, Hardcover, 558 pages,
September 2003.
Morton, et al. Standards Track [Page 40]
^L
RFC 4737 Packet Reordering Metrics November 2006
Appendix B. Fragment Order Evaluation (Informative)
Section 3 stated that fragment reassembly is assumed prior to order
evaluation, but that similar procedures could be applied prior to
reassembly. This appendix gives definitions and procedures to
identify reordering in a packet stream that includes fragmentation.
B.1. Metric Name
The Metric retains the same name, Type-P-Reordered, but additional
parameters are required.
This appendix assumes that the device that divides a packet into
fragments sends them according to ascending fragment offset. Early
Linux OS sent fragments in reverse order, so this possibility is
worth checking.
B.2. Additional Metric Parameters
+ MoreFrag, the state of the More Fragments Flag in the IP header.
+ FragOffset, the offset from the beginning of a fragmented packet,
in 8 octet units (also from the IP header).
+ FragSeq#, the sequence number from the IP header of a fragmented
packet currently under evaluation for reordering. When set to
zero, fragment evaluation is not in progress.
+ NextExpFrag, the next expected fragment offset at the destination,
in 8 octet units. Set to zero when fragment evaluation is not in
progress.
The packet sequence number, s, is assumed to be the same as the IP
header sequence number. Also, the value of NextExp does not change
with the in-order arrival of fragments. NextExp is only updated when
a last fragment or a complete packet arrives.
Note that packets with missing fragments MUST be declared lost, and
the Reordering status of any fragments that do arrive MUST be
excluded from sample metrics.
Morton, et al. Standards Track [Page 41]
^L
RFC 4737 Packet Reordering Metrics November 2006
B.3. Definition
The value of Type-P-Reordered is typically false (the packet is
in-order) when
* the sequence number s >= NextExp, AND
* the fragment offset FragOffset >= NextExpFrag
However, it is more efficient to define reordered conditions exactly
and designate Type-P-Reordered as False otherwise.
The value of Type-P-Reordered is defined as True (the packet is
reordered) under the conditions below. In these cases, the NextExp
value does not change.
Case 1: if s < NextExp
Case 2: if s < FragSeq#
Case 3: if s>= NextExp AND s = FragSeq# AND FragOffset < NextExpFrag
This definition can also be illustrated in pseudo-code. A version of
the code follows, and some simplification may be possible.
Housekeeping for the new parameters will be challenging.
NextExp=0;
NextExpFrag=0;
FragSeq#=0;
while(packets arrive with s, MoreFrag, FragOffset)
{
if (s>=NextExp AND MoreFrag==0 AND s>=FragSeq#){
/* a normal packet or last frag of an in-order packet arrived */
NextExp = s+1;
FragSeq# = 0;
NextExpFrag = 0;
Reordering = False;
}
if (s>=NextExp AND MoreFrag==1 AND s>FragSeq#>=0){
/* a fragment of a new packet arrived, possibly with a
higher sequence number than the current fragmented packet */
FragSeq# = s;
NextExpFrag = FragOffset+1;
Reordering = False;
}
if (s>=NextExp AND MoreFrag==1 AND s==FragSeq#){
/* a fragment of the "current packet s" arrived */
Morton, et al. Standards Track [Page 42]
^L
RFC 4737 Packet Reordering Metrics November 2006
if (FragOffset >= NextExpFrag){
NextExpFrag = FragOffset+1;
Reordering = False;
}
else{
Reordering = True; /* fragment reordered */
}
}
if (s>=NextExp AND MoreFrag==1 AND s < FragSeq#){
/* case where a late fragment arrived,
for illustration only, redundant with else below */
Reordering = True;
}
else { /* when s < NextExp, or MoreFrag==0 AND s < FragSeq# */
Reordering = True;
}
}
A working version of the code would include a check to ensure that
all fragments of a packet arrive before using the Reordered status
further, such as in sample metrics.
B.4. Discussion: Notes on Sample Metrics When Evaluating Fragments
All fragments with the same source sequence number are assigned the
same source time.
Evaluation with byte stream numbering may be simplified if the
fragment offset is simply added to the SourceByte of the first packet
(with fragment offset = 0), keeping the 8 octet units of the offset
in mind.
Appendix C. Disclaimer and License
Regarding this entire document or any portion of it (including the
pseudo-code and C code), the authors make no guarantees and are not
responsible for any damage resulting from its use. The authors grant
irrevocable permission to anyone to use, modify, and distribute it in
any way that does not diminish the rights of anyone else to use,
modify, and distribute it, provided that redistributed derivative
works do not contain misleading author or version information.
Derivative works need not be licensed under similar terms.
Morton, et al. Standards Track [Page 43]
^L
RFC 4737 Packet Reordering Metrics November 2006
Authors' Addresses
Al Morton
AT&T Labs
Room D3 - 3C06
200 Laurel Ave. South
Middletown, NJ 07748 USA
Phone +1 732 420 1571
EMail: acmorton@att.com
Len Ciavattone
AT&T Labs
Room A2 - 4G06
200 Laurel Ave. South
Middletown, NJ 07748 USA
Phone +1 732 420 1239
EMail: lencia@att.com
Gomathi Ramachandran
AT&T Labs
Room C4 - 3D22
200 Laurel Ave. South
Middletown, NJ 07748 USA
Phone +1 732 420 2353
EMail: gomathi@att.com
Stanislav Shalunov
Internet2
1000 Oakbrook DR STE 300
Ann Arbor, MI 48104
Phone: +1 734 995 7060
EMail: shalunov@internet2.edu
Jerry Perser
Veriwave
8770 SW Nimbus Ave.
Suite B
Beaverton, OR 97008 USA
Phone: +1 818 338 4112
EMail: jperser@veriwave.com
Morton, et al. Standards Track [Page 44]
^L
RFC 4737 Packet Reordering Metrics November 2006
Full Copyright Statement
Copyright (C) The IETF Trust (2006).
This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST,
AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Morton, et al. Standards Track [Page 45]
^L
|