1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
|
Network Working Group S. Casner
Request for Comments: 4856 Packet Design
Obsoletes: 3555 March 2007
Category: Standards Track
Media Type Registration of Payload Formats in the
RTP Profile for Audio and Video Conferences
Status of This Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The IETF Trust (2007).
Abstract
This document specifies media type registrations for the RTP payload
formats defined in the RTP Profile for Audio and Video Conferences.
Some of these may also be used for transfer modes other than RTP.
Table of Contents
1. Introduction ....................................................2
1.1. IANA Considerations ........................................2
1.2. Terminology ................................................3
2. Registrations for "Audio/Video Profile" .........................3
2.1. Audio Type Registrations ...................................3
2.2. Video Type Registrations ..................................24
3. Changes from RFC 3555 ..........................................25
4. Security Considerations ........................................26
5. References .....................................................27
5.1. Normative References ......................................27
5.2. Informative References ....................................27
Casner Standards Track [Page 1]
^L
RFC 4856 RTP Payload Formats for Audio/Video Profile March 2007
1. Introduction
This document updates the media type registrations initially
specified in RFC 3555 for the Real-time Transport Protocol (RTP)
payload formats defined in the RTP Profile for Audio and Video
Conferences, RFC 3551 [1], as subtypes under the "audio" and "video"
media types. This document does not include media type registrations
for the RTP payload formats that are referenced in RFC 3551 but
defined in other RFCs. The media type registrations for those
payload formats are intended to be updated by including them in
revisions of the individual RFCs defining the payload formats.
The media type registrations specified here conform to the updated
template format and procedures in RFC 4288 [2] and RFC 4855 [3].
This update makes no technical changes in the registrations.
Together with RFC 4855, this document obsoletes RFC 3555.
1.1. IANA Considerations
As a consequence of the generalized applicability of the media types
registry as specified in RFC 4288, some changes in nomenclature are
needed in the RTP Payload Format section of the registry. In the
registry title "RTP Payload Format MIME types" and the introductory
text, "MIME" should be changed to "media". "MIME" should be deleted
from the table headings, leaving just "media type" and "subtype".
This document updates the media type registrations listed below to
conform to the revised registration format specified in RFC 4288 and
RFC 4855, so the reference for these media types should be changed
from RFC 3555 to this document. Some media type registrations
contained in RFC 3555 are omitted from this document; the existing
registrations for those types continue to be valid until updated by
other RFCs. There are no new registrations contained here.
Casner Standards Track [Page 2]
^L
RFC 4856 RTP Payload Formats for Audio/Video Profile March 2007
audio/DVI4
audio/G722
audio/G723
audio/G726-16
audio/G726-24
audio/G726-32
audio/G726-40
audio/G728
audio/G729
audio/G729D
audio/G729E
audio/GSM
audio/GSM-EFR
audio/L8
audio/L16
audio/LPC
audio/PCMA
audio/PCMU
audio/VDVI
video/nv
Media type audio/L16 was initially registered via RFC 2586 for
transports other than RTP. That registration is incorporated here
and augmented with additional information for RTP transport.
1.2. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [4] and
indicate requirement levels for implementations compliant with this
specification.
2. Registrations for "Audio/Video Profile"
In the following sections, the RTP payload formats defined in the RTP
Profile for Audio and Video Conferences, RFC 3551 [1], are registered
as media types.
2.1. Audio Type Registrations
For most audio payload formats, the RTP timestamp clock rate is equal
to the sampling rate. Some payload formats operate only at one fixed
sampling rate, while others are adjustable.
These audio formats also include the optional parameters "ptime" to
specify the recommended length of time in milliseconds represented by
Casner Standards Track [Page 3]
^L
RFC 4856 RTP Payload Formats for Audio/Video Profile March 2007
the media in a packet, and "maxptime" to specify the maximum amount
of media that can be encapsulated in each packet, expressed as time
in milliseconds. The "ptime" and "maxptime" parameters are defined
in the Session Description Protocol (SDP), RFC 4566 [5].
2.1.1. Registration of Media Type audio/DVI4
Type name: audio
Subtype name: DVI4
Required parameters:
rate: The RTP timestamp clock rate, which is equal to the
sampling rate. The typical rate is 8000, but other rates may
be specified.
Optional parameters: ptime, maxptime (see RFC 4566)
Encoding considerations:
This media type is framed binary data (see Section 4.8 in RFC
4288).
Security considerations:
This media type does not carry active content. It does
transfer compressed data. See Section 4 of RFC 4856.
Interoperability considerations: none
Published specification: RFC 3551
Applications that use this media type:
Audio and video streaming and conferencing tools.
Additional information: none
Person & email address to contact for further information:
Stephen Casner <casner@acm.org>
Intended usage: COMMON
Restrictions on usage:
This media type depends on RTP framing, and hence is only
defined for transfer via RTP (RFC 3550 [6]). Transfer within
other framing protocols is not defined at this time.
Author:
Stephen Casner
Casner Standards Track [Page 4]
^L
RFC 4856 RTP Payload Formats for Audio/Video Profile March 2007
Change controller:
IETF Audio/Video Transport working group delegated from the
IESG.
2.1.2. Registration of Media Type audio/G722
Type name: audio
Subtype name: G722
Required parameters: none
Optional parameters: ptime, maxptime (see RFC 4566)
Encoding considerations:
This media type is framed binary data (see Section 4.8 in RFC
4288).
Security considerations:
This media type does not carry active content. It does
transfer compressed data. See Section 4 of RFC 4856.
Interoperability considerations: none
Published specification: RFC 3551
Applications that use this media type:
Audio and video streaming and conferencing tools.
Additional information: none
Person & email address to contact for further information:
Stephen Casner <casner@acm.org>
Intended usage: COMMON
Restrictions on usage:
This media type depends on RTP framing, and hence is only
defined for transfer via RTP (RFC 3550). Transfer within
other framing protocols is not defined at this time.
Author:
Stephen Casner
Change controller:
IETF Audio/Video Transport working group delegated from the
IESG.
Casner Standards Track [Page 5]
^L
RFC 4856 RTP Payload Formats for Audio/Video Profile March 2007
2.1.3. Registration of Media Type audio/G723
Type name: audio
Subtype name: G723
Required parameters: none
Optional parameters:
ptime, maxptime: see RFC 4566
bitrate: the data rate in kb/s used or preferred for the audio
bit stream, with permissible values 5.3 or 6.3. If
unspecified, the bitrate may change from frame to frame as
indicated inband.
annexa: indicates that Annex A, voice activity detection, is
used or preferred. Permissible values are "yes" and "no"
(without the quotes); "yes" is implied if this parameter is
omitted.
Encoding considerations:
This media type is framed binary data (see Section 4.8 in RFC
4288).
Security considerations:
This media type does not carry active content. It does
transfer compressed data. See Section 4 of RFC 4856.
Interoperability considerations: none
Published specification: RFC 3551
Applications that use this media type:
Audio and video streaming and conferencing tools.
Additional information: none
Person & email address to contact for further information:
Stephen Casner <casner@acm.org>
Intended usage: COMMON
Restrictions on usage:
This media type depends on RTP framing, and hence is only
defined for transfer via RTP (RFC 3550). Transfer within
other framing protocols is not defined at this time.
Casner Standards Track [Page 6]
^L
RFC 4856 RTP Payload Formats for Audio/Video Profile March 2007
Author:
Stephen Casner
Change controller:
IETF Audio/Video Transport working group delegated from the
IESG.
2.1.4. Registration of Media Type audio/G726-16
Type name: audio
Subtype name: G726-16
Required parameters: none
Optional parameters: ptime, maxptime (see RFC 4566)
Encoding considerations:
This media type is framed binary data (see Section 4.8 in RFC
4288).
Security considerations:
This media type does not carry active content. It does
transfer compressed data. See Section 4 of RFC 4856.
Interoperability considerations: none
Published specification: RFC 3551
Applications that use this media type:
Audio and video streaming and conferencing tools.
Additional information: none
Person & email address to contact for further information:
Stephen Casner <casner@acm.org>
Intended usage: COMMON
Restrictions on usage:
This media type depends on RTP framing, and hence is only
defined for transfer via RTP (RFC 3550). Transfer within
other framing protocols is not defined at this time.
Author:
Stephen Casner
Casner Standards Track [Page 7]
^L
RFC 4856 RTP Payload Formats for Audio/Video Profile March 2007
Change controller:
IETF Audio/Video Transport working group delegated from the
IESG.
2.1.5. Registration of Media Type audio/G726-24
Type name: audio
Subtype name: G726-24
Required parameters: none
Optional parameters: ptime, maxptime (see RFC 4566)
Encoding considerations:
This media type is framed binary data (see Section 4.8 in RFC
4288).
Security considerations:
This media type does not carry active content. It does
transfer compressed data. See Section 4 of RFC 4856.
Interoperability considerations: none
Published specification: RFC 3551
Applications that use this media type:
Audio and video streaming and conferencing tools.
Additional information: none
Person & email address to contact for further information:
Stephen Casner <casner@acm.org>
Intended usage: COMMON
Restrictions on usage:
This media type depends on RTP framing, and hence is only
defined for transfer via RTP (RFC 3550). Transfer within
other framing protocols is not defined at this time.
Author:
Stephen Casner
Change controller:
IETF Audio/Video Transport working group delegated from the
IESG.
Casner Standards Track [Page 8]
^L
RFC 4856 RTP Payload Formats for Audio/Video Profile March 2007
2.1.6. Registration of Media Type audio/G726-32
Type name: audio
Subtype name: G726-32
Required parameters: none
Optional parameters: ptime, maxptime (see RFC 4566)
Encoding considerations:
This media type is framed binary data (see Section 4.8 in RFC
4288).
Security considerations:
This media type does not carry active content. It does
transfer compressed data. See Section 4 of RFC 4856.
Interoperability considerations: none
Published specification: RFC 3551
Applications that use this media type:
Audio and video streaming and conferencing tools.
Additional information: none
Person & email address to contact for further information:
Stephen Casner <casner@acm.org>
Intended usage: COMMON
Restrictions on usage:
This media type depends on RTP framing, and hence is only
defined for transfer via RTP (RFC 3550). Transfer within
other framing protocols is not defined at this time.
Author:
Stephen Casner
Change controller:
IETF Audio/Video Transport working group delegated from the
IESG.
Casner Standards Track [Page 9]
^L
RFC 4856 RTP Payload Formats for Audio/Video Profile March 2007
2.1.7. Registration of Media Type audio/G726-40
Type name: audio
Subtype name: G726-40
Required parameters: none
Optional parameters: ptime, maxptime (see RFC 4566)
Encoding considerations:
This media type is framed binary data (see Section 4.8 in RFC
4288).
Security considerations:
This media type does not carry active content. It does
transfer compressed data. See Section 4 of RFC 4856.
Interoperability considerations: none
Published specification: RFC 3551
Applications that use this media type:
Audio and video streaming and conferencing tools.
Additional information: none
Person & email address to contact for further information:
Stephen Casner <casner@acm.org>
Intended usage: COMMON
Restrictions on usage:
This media type depends on RTP framing, and hence is only
defined for transfer via RTP (RFC 3550). Transfer within
other framing protocols is not defined at this time.
Author:
Stephen Casner
Change controller:
IETF Audio/Video Transport working group delegated from the
IESG.
Casner Standards Track [Page 10]
^L
RFC 4856 RTP Payload Formats for Audio/Video Profile March 2007
2.1.8. Registration of Media Type audio/G728
Type name: audio
Subtype name: G728
Required parameters: none
Optional parameters: ptime, maxptime (see RFC 4566)
Encoding considerations:
This media type is framed binary data (see Section 4.8 in RFC
4288).
Security considerations:
This media type does not carry active content. It does
transfer compressed data. See Section 4 of RFC 4856.
Interoperability considerations: none
Published specification: RFC 3551
Applications that use this media type:
Audio and video streaming and conferencing tools.
Additional information: none
Person & email address to contact for further information:
Stephen Casner <casner@acm.org>
Intended usage: COMMON
Restrictions on usage:
This media type depends on RTP framing, and hence is only
defined for transfer via RTP (RFC 3550). Transfer within
other framing protocols is not defined at this time.
Author:
Stephen Casner
Change controller:
IETF Audio/Video Transport working group delegated from the
IESG.
Casner Standards Track [Page 11]
^L
RFC 4856 RTP Payload Formats for Audio/Video Profile March 2007
2.1.9. Registration of Media Type audio/G729
Type name: audio
Subtype name: G729
Required parameters: none
Optional parameters:
ptime, maxptime: see RFC 4566
annexb: indicates that Annex B, voice activity detection, is
used or preferred. Permissible values are "yes" and "no"
(without the quotes); "yes" is implied if this parameter is
omitted.
Encoding considerations:
This media type is framed binary data (see Section 4.8 in RFC
4288).
Security considerations:
This media type does not carry active content. It does
transfer compressed data. See Section 4 of RFC 4856.
Interoperability considerations: none
Published specification: RFC 3551
Applications that use this media type:
Audio and video streaming and conferencing tools.
Additional information: none
Person & email address to contact for further information:
Stephen Casner <casner@acm.org>
Intended usage: COMMON
Restrictions on usage:
This media type depends on RTP framing, and hence is only
defined for transfer via RTP (RFC 3550). Transfer within
other framing protocols is not defined at this time.
Author:
Stephen Casner
Casner Standards Track [Page 12]
^L
RFC 4856 RTP Payload Formats for Audio/Video Profile March 2007
Change controller:
IETF Audio/Video Transport working group delegated from the
IESG.
2.1.10. Registration of Media Type audio/G729D
Type name: audio
Subtype name: G729D
Required parameters: none
Optional parameters:
ptime, maxptime: see RFC 4566
annexb: indicates that Annex B, voice activity detection, is
used or preferred. Permissible values are "yes" and "no"
(without the quotes); "yes" is implied if this parameter is
omitted.
Encoding considerations:
This media type is framed binary data (see Section 4.8 in RFC
4288).
Security considerations:
This media type does not carry active content. It does
transfer compressed data. See Section 4 of RFC 4856.
Interoperability considerations: none
Published specification: RFC 3551
Applications that use this media type:
Audio and video streaming and conferencing tools.
Additional information: none
Person & email address to contact for further information:
Stephen Casner <casner@acm.org>
Intended usage: COMMON
Restrictions on usage:
This media type depends on RTP framing, and hence is only
defined for transfer via RTP (RFC 3550). Transfer within
other framing protocols is not defined at this time.
Casner Standards Track [Page 13]
^L
RFC 4856 RTP Payload Formats for Audio/Video Profile March 2007
Author:
Stephen Casner
Change controller:
IETF Audio/Video Transport working group delegated from the
IESG.
2.1.11. Registration of Media Type audio/G729E
Type name: audio
Subtype name: G729E
Required parameters: none
Optional parameters:
ptime, maxptime: see RFC 4566
annexb: indicates that Annex B, voice activity detection, is
used or preferred. Permissible values are "yes" and "no"
(without the quotes); "yes" is implied if this parameter is
omitted.
Encoding considerations:
This media type is framed binary data (see Section 4.8 in RFC
4288).
Security considerations:
This media type does not carry active content. It does
transfer compressed data. See Section 4 of RFC 4856.
Interoperability considerations: none
Published specification: RFC 3551
Applications that use this media type:
Audio and video streaming and conferencing tools.
Additional information: none
Person & email address to contact for further information:
Stephen Casner <casner@acm.org>
Intended usage: COMMON
Casner Standards Track [Page 14]
^L
RFC 4856 RTP Payload Formats for Audio/Video Profile March 2007
Restrictions on usage:
This media type depends on RTP framing, and hence is only
defined for transfer via RTP (RFC 3550). Transfer within
other framing protocols is not defined at this time.
Author:
Stephen Casner
Change controller:
IETF Audio/Video Transport working group delegated from the
IESG.
2.1.12. Registration of Media Type audio/GSM
Type name: audio
Subtype name: GSM
Required parameters: none
Optional parameters: ptime, maxptime (see RFC 4566)
Encoding considerations:
This media type is framed binary data (see Section 4.8 in RFC
4288).
Security considerations:
This media type does not carry active content. It does
transfer compressed data. See Section 4 of RFC 4856.
Interoperability considerations: none
Published specification: RFC 3551
Applications that use this media type:
Audio and video streaming and conferencing tools.
Additional information: none
Person & email address to contact for further information:
Stephen Casner <casner@acm.org>
Intended usage: COMMON
Restrictions on usage:
This media type depends on RTP framing, and hence is only
defined for transfer via RTP (RFC 3550). Transfer within
other framing protocols is not defined at this time.
Casner Standards Track [Page 15]
^L
RFC 4856 RTP Payload Formats for Audio/Video Profile March 2007
Author:
Stephen Casner
Change controller:
IETF Audio/Video Transport working group delegated from the
IESG.
2.1.13. Registration of Media Type audio/GSM-EFR
Type name: audio
Subtype name: GSM-EFR
Required parameters: none
Optional parameters: ptime, maxptime (see RFC 4566)
Encoding considerations:
This media type is framed binary data (see Section 4.8 in RFC
4288).
Security considerations:
This media type does not carry active content. It does
transfer compressed data. See Section 4 of RFC 4856.
Interoperability considerations: none
Published specification: RFC 3551
Applications that use this media type:
Audio and video streaming and conferencing tools.
Additional information: none
Person & email address to contact for further information:
Stephen Casner <casner@acm.org>
Intended usage: COMMON
Restrictions on usage:
This media type depends on RTP framing, and hence is only
defined for transfer via RTP (RFC 3550). Transfer within
other framing protocols is not defined at this time.
Author:
Stephen Casner
Casner Standards Track [Page 16]
^L
RFC 4856 RTP Payload Formats for Audio/Video Profile March 2007
Change controller:
IETF Audio/Video Transport working group delegated from the
IESG.
2.1.14. Registration of Media Type audio/L8
Type name: audio
Subtype name: L8
Required parameters:
rate: the RTP timestamp clock rate
Optional parameters:
channels: how many audio streams are interleaved -- defaults
to 1; stereo would be 2, etc. Interleaving takes place
between individual one-byte samples. The channel order is as
specified in RFC 3551.
ptime, maxptime: see RFC 4566
Encoding considerations:
This media type is framed binary data (see Section 4.8 in RFC
4288).
Security considerations:
This media type does not carry active content. It does
transfer compressed data. See Section 4 of RFC 4856.
Interoperability considerations: none
Published specification: RFC 3551
Applications that use this media type:
Audio and video streaming and conferencing tools.
Additional information: none
Person & email address to contact for further information:
Stephen Casner <casner@acm.org>
Intended usage: COMMON
Restrictions on usage:
This media type depends on RTP framing, and hence is only
defined for transfer via RTP (RFC 3550). Transfer within
other framing protocols is not defined at this time.
Casner Standards Track [Page 17]
^L
RFC 4856 RTP Payload Formats for Audio/Video Profile March 2007
Author:
Stephen Casner
Change controller:
IETF Audio/Video Transport working group delegated from the
IESG.
2.1.15. Registration of Media Type audio/L16
Media type audio/L16 was initially registered via RFC 2586 [10] for
transports other than RTP. That registration is incorporated here
and augmented with additional information for RTP transport.
Type name: audio
Subtype name: L16
Required parameters:
rate: number of samples per second -- For non-RTP transport,
the permissible values for rate are 8000, 11025, 16000, 22050,
24000, 32000, 44100, and 48000 samples per second. For RTP
transport, other values are permissible but the aforementioned
values are RECOMMENDED. For RTP, the rate parameter indicates
the RTP timestamp clock rate, which is equal to the sample
rate.
Optional parameters:
channels: how many audio streams are interleaved -- defaults
to 1; stereo would be 2, etc. Interleaving takes place
between individual two-byte samples. The channel order is as
specified in RFC 3551 unless a channel-order parameter is also
present.
emphasis: analog preemphasis applied to the signal before
quantization. The only emphasis value defined here is
emphasis=50-15 to indicate the 50/15 microsecond preemphasis
used with Compact Discs. This parameter MUST be omitted if no
analog preemphasis was applied. Note that this is a stream
property parameter, not a receiver configuration parameter.
Thus, if parameters are negotiated, it may not be possible for
the sender to comply with a receiver request for a particular
setting.
channel-order: specifies the sample interleaving order for
multiple-channel audio streams (see RFC 3190 [7], Section 7).
Permissible values are DV.LRLsRs, DV.LRCS, DV.LRCWo,
DV.LRLsRsC, DV.LRLsRsCS, DV.LmixRmixTWoQ1Q2,
DV.LRCWoLsRsLmixRmix, DV.LRCWoLs1Rs1Ls2Rs2, DV.LRCWoLsRsLcRc.
Casner Standards Track [Page 18]
^L
RFC 4856 RTP Payload Formats for Audio/Video Profile March 2007
For interoperation with DV video systems, only a subset of
these channel combinations is specified for use with 20-bit
linear encoding in the DV video specification [9]; those are
DV.LRLsRs, DV.LRCS, DV.LmixRmixTWoQ1Q2. This parameter MUST
be omitted when the AIFF-C channel order convention (see RFC
3551) is in use.
For RTP, ptime: RECOMMENDED duration of each packet in
milliseconds.
For RTP, maxptime: maximum duration of each packet in
milliseconds.
Encoding considerations:
Audio data is binary data, and must be encoded for non-binary
transport; the Base64 encoding is suitable for Email. Note
that audio data does not compress easily using lossless
compression.
Security considerations:
Audio/L16 data is believed to offer no security risks. This
media type does not carry active content. The encoding is not
compressed. See Section 4 of RFC 4856.
Interoperability considerations:
This type is compatible with the encoding used in the WAV
(Microsoft Windows RIFF) and Apple AIFF union types, and with
the public domain "sox" and "rateconv" programs.
Published specification:
RFC 2586 for non-RTP transports, RFC 3551 for RTP
Applications that use this media type:
The public domain "sox" and "rateconv" programs accept this
type.
Additional information:
Magic number(s): none
File extension(s): WAV L16
Macintosh file type code: AIFF
Person to contact for further information:
James Salsman <jps-L16@bovik.org>
Casner Standards Track [Page 19]
^L
RFC 4856 RTP Payload Formats for Audio/Video Profile March 2007
Intended usage:
Common
It is expected that many audio and speech applications will
use this type. Already the most popular platforms provide
this type with the rate=11025 parameter, referred to as "radio
quality speech".
Restrictions on usage:
In addition to file-based transfer methods, this type is also
defined for transfer via RTP (RFC 3550).
Author:
James Salsman for non-RTP transports.
Stephen Casner for RTP transport.
Change controller:
James Salsman for non-RTP transports.
For RTP transport, IETF Audio/Video Transport working group
delegated from the IESG.
2.1.16. Registration of Media Type audio/LPC
Type name: audio
Subtype name: LPC
Required parameters: none
Optional parameters: ptime, maxptime (see RFC 4566)
Encoding considerations:
This media type is framed binary data (see Section 4.8 in RFC
4288).
Security considerations:
This media type does not carry active content. It does
transfer compressed data. See Section 4 of RFC 4856.
Interoperability considerations: none
Published specification: RFC 3551
Applications that use this media type:
Audio and video streaming and conferencing tools.
Additional information: none
Casner Standards Track [Page 20]
^L
RFC 4856 RTP Payload Formats for Audio/Video Profile March 2007
Person & email address to contact for further information:
Stephen Casner <casner@acm.org>
Intended usage: COMMON
Restrictions on usage:
This media type depends on RTP framing, and hence is only
defined for transfer via RTP (RFC 3550). Transfer within
other framing protocols is not defined at this time.
Author:
Stephen Casner
Change controller:
IETF Audio/Video Transport working group delegated from the
IESG.
2.1.17. Registration of Media Type audio/PCMA
Type name: audio
Subtype name: PCMA
Required parameters:
rate: The RTP timestamp clock rate, which is equal to the
sampling rate. The typical rate is 8000, but other rates may
be specified.
Optional parameters:
channels: how many audio streams are interleaved -- defaults
to 1; stereo would be 2, etc. Interleaving takes place
between individual one-byte samples. The channel order is as
specified in RFC 3551.
ptime, maxptime: see RFC 4566
Encoding considerations:
This media type is framed binary data (see Section 4.8 in RFC
4288).
Security considerations:
This media type does not carry active content. It does
transfer compressed data. See Section 4 of RFC 4856.
Interoperability considerations: none
Published specification: RFC 3551
Casner Standards Track [Page 21]
^L
RFC 4856 RTP Payload Formats for Audio/Video Profile March 2007
Applications that use this media type:
Audio and video streaming and conferencing tools.
Additional information: none
Person & email address to contact for further information:
Stephen Casner <casner@acm.org>
Intended usage: COMMON
Restrictions on usage:
This media type depends on RTP framing, and hence is only
defined for transfer via RTP (RFC 3550). Transfer within
other framing protocols is not defined at this time.
Author:
Stephen Casner
Change controller:
IETF Audio/Video Transport working group delegated from the
IESG.
2.1.18. Registration of Media Type audio/PCMU
Type name: audio
Subtype name: PCMU
Required parameters:
rate: The RTP timestamp clock rate, which is equal to the
sampling rate. The typical rate is 8000, but other rates may
be specified.
Optional parameters:
channels: how many audio streams are interleaved -- defaults
to 1; stereo would be 2, etc. Interleaving takes place
between individual one-byte samples. The channel order is as
specified in RFC 3551.
ptime, maxptime: see RFC 4566
Encoding considerations:
This media type is framed binary data (see Section 4.8 in RFC
4288).
Security considerations:
This media type does not carry active content. It does
transfer compressed data. See Section 4 of RFC 4856.
Casner Standards Track [Page 22]
^L
RFC 4856 RTP Payload Formats for Audio/Video Profile March 2007
Interoperability considerations: none
Published specification: RFC 3551
Applications that use this media type:
Audio and video streaming and conferencing tools.
Additional information: none
Person & email address to contact for further information:
Stephen Casner <casner@acm.org>
Intended usage: COMMON
Restrictions on usage:
This media type depends on RTP framing, and hence is only
defined for transfer via RTP (RFC 3550). Transfer within
other framing protocols is not defined at this time.
Author:
Stephen Casner
Change controller:
IETF Audio/Video Transport working group delegated from the
IESG.
2.1.19. Registration of Media Type audio/VDVI
Type name: audio
Subtype name: VDVI
Required parameters: none
Optional parameters: ptime, maxptime (see RFC 4566)
Encoding considerations:
This media type is framed binary data (see Section 4.8 in RFC
4288).
Security considerations:
This media type does not carry active content. It does
transfer compressed data. See Section 4 of RFC 4856.
Interoperability considerations: none
Published specification: RFC 3551
Casner Standards Track [Page 23]
^L
RFC 4856 RTP Payload Formats for Audio/Video Profile March 2007
Applications that use this media type:
Audio and video streaming and conferencing tools.
Additional information: none
Person & email address to contact for further information:
Stephen Casner <casner@acm.org>
Intended usage: COMMON
Restrictions on usage:
This media type depends on RTP framing, and hence is only
defined for transfer via RTP (RFC 3550). Transfer within
other framing protocols is not defined at this time.
Author:
Stephen Casner
Change controller:
IETF Audio/Video Transport working group delegated from the
IESG.
2.2. Video Type Registrations
For most video payload formats, including the one registered here,
the RTP timestamp clock rate is always 90000 Hz, so the "rate"
parameter is not applicable. Likewise, the "channel" parameter is
not used with video, while "ptime" and "maxptime" could be but
typically are not.
2.2.1. Registration of Media Type video/nv
Type name: video
Subtype name: nv
Required parameters: none
Optional parameters: none
Encoding considerations:
This media type is framed binary data (see Section 4.8 in RFC
4288).
Security considerations:
This media type does not carry active content. It does
transfer compressed data. See Section 4 of RFC 4856.
Casner Standards Track [Page 24]
^L
RFC 4856 RTP Payload Formats for Audio/Video Profile March 2007
Interoperability considerations: none
Published specification: RFC 3551
Applications that use this media type:
Audio and video streaming and conferencing tools.
Additional information: none
Person & email address to contact for further information:
Stephen Casner <casner@acm.org>
Intended usage: COMMON
Restrictions on usage:
This media type depends on RTP framing, and hence is only
defined for transfer via RTP (RFC 3550). Transfer within
other framing protocols is not defined at this time.
Author:
Stephen Casner
Change controller:
IETF Audio/Video Transport working group delegated from the
IESG.
3. Changes from RFC 3555
RFC 3555 is obsoleted by the combination of RFC 4855 [3] and this
document. RFC 4855 retains the specification of procedures and
requirements from RFC 3555, while the media type registrations from
RFC 3555 were extracted into this document. The media type
registrations for the RTP payload formats that are referenced in RFC
3551 [1], but defined in other RFCs, have been elided from this
document because those registrations are intended to be updated by
including them in revisions of the individual RFCs defining the
payload formats.
The media type registrations in this document have been updated to
conform to the revised media type registration procedures in RFC 4288
[2] and RFC 4855. Whereas RFC 3555 required the encoding
considerations to specify transfer via RTP, that is now specified
under restrictions on usage. The encoding considerations now warn
that these types are framed binary data. The change controller is
also now identified according to current conventions. The optional
parameter "channels" was clarified for audio subtypes L8, PCMA, and
PCMU. Finally, reference [9], which was missing from RFC 3555, has
been corrected.
Casner Standards Track [Page 25]
^L
RFC 4856 RTP Payload Formats for Audio/Video Profile March 2007
4. Security Considerations
This memo specifies media type registrations for the transfer of
several compressed audio and video data encodings via RTP, so
implementations using these media types are subject to the security
considerations discussed in the RTP specification [8].
None of these media types carry "active content" that could impose
malicious side-effects upon the receiver. The content consists
solely of compressed audio or video data to be decoded and presented
as sound or images. However, several audio and video encodings are
perfect for hiding data using steganography.
A potential denial-of-service threat exists for data encodings using
compression techniques that have non-uniform receiver-end
computational load. The attacker can inject pathological datagrams
into the stream, which are complex to decode and cause the receiver
to be overloaded. However, none of the encodings registered here has
an expansion factor greater than about 20, and all are considered
relatively simple by modern standards (some are implemented on
handheld devices and most were implemented on general-purpose
computers ten years ago).
As with any IP-based protocol, in some circumstances a receiver may
be overloaded simply by the receipt of too many packets, either
desired or undesired. Network-layer authentication MAY be used to
discard packets from undesired sources, but the processing cost of
the authentication itself may be too high.
RTP may be sent via IP multicast, which provides no direct means for
a sender to know all the receivers of the data sent and therefore no
measure of privacy. Rightly or not, users may be more sensitive to
privacy concerns with audio and video communication than they have
been with more traditional forms of network communication.
Therefore, the use of security mechanisms with RTP to provide
confidentiality and integrity of the data is important. Because the
data compression used with these media types is applied end-to-end,
encryption may be performed after compression so there is no conflict
between the two operations.
Casner Standards Track [Page 26]
^L
RFC 4856 RTP Payload Formats for Audio/Video Profile March 2007
5. References
5.1. Normative References
[1] Schulzrinne, H. and S. Casner, "RTP Profile for Audio and Video
Conferences with Minimal Control", RFC 3551, July 2003.
[2] Freed, N. and J. Klensin, "Media Type Specifications and
Registration Procedures", BCP 13, RFC 4288, December 2005.
[3] Casner, S., "Media Type Registration of RTP Payload Types", RFC
4855, January 2007.
[4] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.
[5] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
Description Protocol", RFC 4566, July 2006.
[6] Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson,
"RTP: A Transport Protocol for Real-Time Applications", RFC
3550, July 2003.
[7] Kobayashi, K., Ogawa, A., Casner, S. and C. Bormann, "RTP
Payload Format for 12-bit DAT Audio and 20- and 24-bit Linear
Sampled Audio", RFC 3190, January 2002.
[8] Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson,
"RTP: A Transport Protocol for Real-Time Applications", RFC
3550, July 2003.
5.2. Informative References
[9] IEC 61834, Helical-scan digital video cassette recording system
using 6,35 mm magnetic tape for consumer use (525-60, 625-50,
1125-60, and 1250-50 systems), August 1998.
[10] Salsman, J. and H. Alvestrand, "The Audio/L16 MIME content
type", RFC 2586, May 1999.
Casner Standards Track [Page 27]
^L
RFC 4856 RTP Payload Formats for Audio/Video Profile March 2007
Author's Address
Stephen L. Casner
Packet Design
3400 Hillview Avenue, Building 3
Palo Alto, CA 94304
United States
Phone: +1 650 739-1843
EMail: casner@acm.org
Casner Standards Track [Page 28]
^L
RFC 4856 RTP Payload Formats for Audio/Video Profile March 2007
Full Copyright Statement
Copyright (C) The IETF Trust (2007).
This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Casner Standards Track [Page 29]
^L
|