1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
|
Network Working Group R. Winter
Request for Comments: 515 Computer Corporation of America
NIC 16446 6 June 1973
Specifications for Datalanguage, Version 0/9
Preface
Datalanguage is the language processed by the Datacomputer, a data
utility system being developed for the Arpanet. The Datacomputer
performs data storage and data management functions for the benefit
of computers on the network.
Version 0/9 is currently running at CCA. This version is extremely
primitive; however, it does offer an opportunity for experience with
the Datacomputer and with fundamental Datalanguage concepts.
Subsequent versions will provide greater portions of the full
Datalanguage capability, which has been described earlier
(Datalanguage, Working Paper No. 3, Datacomputer Project, October,
1971, NIC 8028). For example, one of the primary restrictions in
0/9--elementary data items must be fixed-length ASCII strings--will
be eliminated in Version 0/10, which is currently being implemented.
Based on the experience gained in the implementation of these early
versions, and based on the feedback from their use, a revised
specification of the full language will be issued.
1. Introduction
This document presents a precise and complete specification of
Datalanguage, Version 0/9. It is organized into 11 sections, of
which this introduction is the first. Section 2 discusses the
capabilities of Version 0/9 in general terms. Sections 3 and 4 are
concerned with data description and the directory. Sections 5
through 8 cover the expression of data management operations.
Section 9 discusses the recognition of names. Section 10 covers
miscellaneous topics and Section 11 specifies the syntax in BNF.
This specification is to be followed with a user manual, which will
present the language in tutorial form and treat components of the
Datacomputer-user interface other than the language.
Winter [Page 1]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
2. Capabilities of Version 0/9
Version 0/9 of Datalanguage has capabilities for the storage of
files; for addition of data to existing files, and for the deletion
of files. Retrievals can output whole files as well as subsets of
files. Data can be selected from files by content, using expressions
formed from boolean and inequality operators.
At the option of the file creator, an inversion is constructed and
maintained by the Datacomputer. The inversion increases the
efficiency of selective retrieval, at the cost of storage space and
file maintenance effort. Users other than the file creator need not
be aware of the existence of the inversion, or of which fields are
inverted file keys. The language is designed so that they state the
desired result of a retrieval, and the Datacomputer uses the
inversion as much as the request permits.
Elementary data items are fixed-length ASCII strings. Files are a
restricted class of hierarchical structures.
Many of the restrictions mentioned in this memo will be short-lived.
In particular, those statements followed with 3 asterisks (***) refer
to restrictions that will be considerably weakened or eliminated
entirely in the next version of the software.
3. Data Description
A container is a variable whose value is a data object of general
character and arbitrary size (In Version 0/9, size is restricted.
See section 3.4). Examples of containers which are implemented in
other systems are files, records, fields, groups, and entries.
The container is distinct from the data in the container. For
example, space allocation is an operation on a container, while
changing the unit price field from 25 to 50 is an operation on data
in a container.
A container may enclose other containers. When a container is not
enclosed by another container, it is said to be outermost. If
container A encloses container B, and no other container in A also
encloses B, then A immediately encloses B.
A Datalanguage description is a statement of the properties of a
container.
All containers have the attributes ident and type. Ident is a
character string by which users refer to the container. Type
determines the form of the container's value; the value can be
Winter [Page 2]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
elementary, or it can consist of other containers. There are 3
types: LIST, STRUCT, and STRING(***). A LIST contains a group of
containers having the same description. A STRUCT contains a group of
containers, each of which has its own description. A STRING is a
sequence of ASCII characters. While a STRING is not really an
elementary item, it is handled as one in Version 0/9.
Certain containers can have other attributes. An outermost container
has a function. The function attribute specifies whether the
container is to be used for storage or for transmission.
Size is some meaningful dimension of the container, which is type-
dependent. It is used for space allocation and data stream parsing.
An aggregate container (i.e., one that contains other containers) has
as an attribute the description or descriptions of its components.
Thus if S is a STRUCT containing A, B, and C, then the descriptions
of A, B, and C are attributes of S.
A STRING defined in certain contexts can have an inversion attribute.
This is an access property that is not really local to the STRING,
but is associated with it for convenience.
3.1 Ident
The ident of a container is composed of alphanumeric characters,
the first of which is alphabetic. It may not consist of more than
100 characters.
The elements of a STRUCT must have idents unique in the STRUCT.
3.2 Function
The function of a container is either FILE, PORT, or TEMPORARY
PORT. When the function is FILE, then the container is used for
storage of data at the Datacomputer. When the function is PORT,
then the container is used for transmission of data into or out of
the Datacomputer. When the function is TEMPORARY PORT (which may
be abbreviated TEMP PORT), the container behaves like a PORT;
however, its description is not retained in the Datacomputer
beyond the session in which it is created.
Winter [Page 3]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
3.3 Type
Type is one of: LIST, STRUCT, or STRING. These are defined on the
preceding page.
In an occurrence of a STRUCT, the elements appear in the order in
which their descriptions appear in the STRUCT description. All
elements are present in each occurrence of the STRUCT.
An element of a STRUCT or LIST can be a container of any datatype.
However, the outermost container must be a LIST(***).
3.4 Size
The size of a STRING is the number of characters in it. The size
of a STRUCT is not defined (***). The meaning of the size of a
LIST depends upon other properties of the LIST (***).
Ordinarily, the size of a LIST is the number of LIST-members. An
exception is the case of the outermost-LIST. In an outermost-LIST
with a function of FILE, the size is the number of LIST-members
for which space should be allocated. When no size is present in
this case, the system computes a default. In an outermost-LIST
with a function of PORT, the size is ignored (***).
Only outermost containers may be larger than a TENEX page (2560
ASCII characters)(***).
3.5 Inversion
An inversion is an auxiliary data structure used to facilitate
retrieval by content.
Its basic application is the fast retrieval of sets of outermost-
LIST-members (this can be extended to other container sets, and
will be after release 1). Consider a list of weather
observations, stored as a file on the Datacomputer. If quick
retrieval of observations by COUNTRY is desired, then this is
indicated in the description of the COUNTRY container. According
to common usage in information retrieval, this makes COUNTRY a key
in the retrieval of observations.
Note that the inversion option only affects the efficiency of
retrieval by COUNTRY, not the ability to retrieve by COUNTRY.
Winter [Page 4]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
There are restrictions on use of the inversion option. First, it
can be applied only to STRINGs. Second a STRING having the
inversion option must occur only once in each
outermost-LIST-member. Third, it is ignored when applied to
STRINGs in PORT descriptions.
Eventually there will be several types of inversion option; in
Version 0/9 there is only the 'D' option (for distinct).
3.6 Syntax
The description is simply an enumeration of properties; these
properties are specified in the order:
<ident> <function> <type> <size> <other>
Properties which do not apply are omitted. An example:
F FILE LIST (25) A STR (10)
Here 'F' is the <ident>, 'FILE' is the <function>, 'LIST' is the
<type>, '(25)' is the size, and 'A STR (10)' is the <other> of one
description. Of course, 'A STR (10)' is itself another
description: the description for members of the LIST named F.
An example of a complete description for a file of weather
observations keyed on location:
WEATHER FILE LIST
OBSERVATION STRUCT
LOCATION STRUCT
CITY STR (10), I=D
COUNTRY STR (10), I=D
END
TIME STRUCT
YEAR STR (2)
DAY STR (3)
HOUR STR (2)
END
DATE STRUCT
TEMPERATURE STR (3)
RAINFALL STR (3)
HUMIDITY STR (2)
END
END
The ENDs are needed to delimit the list of elements of a STRUCT.
`, I=D' indicates that the string is to be an inversion key for
the retrieval of outermost-LIST-members.
Winter [Page 5]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
4. Directory
The directory is a system file in which the names and descriptions of
all user-defined containers are kept.
The directory is structured as a tree. Each node has an ident, which
need not be unique. There is a single path from the root of the tree
to any node. The idents of the nodes along this path are
concatenated, separated by periods, to form a pathname, which
unambiguously identifies the node (e.g., A.B.C could be a pathname
for node with an ident of C).
In a later version of the software, the directory will be generalized
to provide for links between nodes, so that it will not properly be a
tree. For now, however, the tree model is convenient and adequate.
A node may represent a container, or it may simply hold a place in
the space of pathnames. When it represents a container, it cannot
(currently) have subordinate nodes.
Eventually, it is planned to model the directory as a structure of
containers, with its description distributed throughout the
structure. Most operations defined on the directory will be defined
on user data, and vice versa. Access privileges and privacy locks
will be part of the data description and will likewise be applicable
both to directory nodes and data structures below the node level.
4.1 CREATE
A CREATE-request either; (a) adds a node to the directory,
optionally associating the description of either a PORT or a FILE
with the node, or (b) creates a temporary container which is not
entered in the directory, but has a description and can be
referenced in requests. If the description defines a file, CREATE
causes space to be allocated for the file.
To create a node with a description:
CREATE <pathname> <description> ;
To create a node with no description:
CREATE <pathname> ;
Note that the description determines whether or not the container
is temporary (see section 3.2 for details).
Winter [Page 6]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
A CREATE-request adds a single node to the directory. Thus to add
CCA.RAW.F to an empty directory, three requests are needed:
CREATE CCA ;
CREATE CCA.RAW ;
CREATE CCA.RAW.F ;
Notice that the last ident of the pathname doubles as the first
ident of the description:
CREATE CCA.RAW.G FILE LIST A STR (5) ;
That is, G is both the ident of a node and the ident of an
outermost container of type LIST.
4.2 DELETE
A DELETE-request deletes a tree of nodes and any associated
descriptions or data. The syntax is:
DELETE <pathname> ;
The named node and any subordinates are deleted.
Note that to delete data while retaining the directory entry and
description, DELETE should not be used (see section 6.3 for the
proper method).
4.3 LIST
The LIST-request is used to display system data of interest to a
user. It causes the data specified to be transmitted through the
Datalanguage output port.
Several arguments of LIST apply to the directory. LIST %ALL
transmits all pathnames in the directory. LIST %ALL.%SOURCE
transmits all descriptions in the directory. Instead of %ALL, a
pathname can be used:
LIST <pn>.%ALL
Lists pathnames subordinate to <pn>.
LIST <pn>.%SOURCE
lists descriptions subordinate to the node represented by <pn>.
For details about the LIST-request, see section 10.1.
5. Opening and closing containers
Containers must be open before they can be operated on.
A container is open when it is first created. It remains open until
closed explicitly by a CLOSE-request or implicitly by a DELETE-
request or by session end.
Winter [Page 7]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
A closed container is opened by an OPEN-request. A temporary
container is always open; a CLOSE-request deletes it.
5.1 Modes
An open container has a mode, which is one of: READ, WRITE, or
APPEND. The mode determines the meaning and/or legitimacy of
certain operations on the container.
The mode is established by the operation which opens the
container. It can be changed at any time by a MODE-request. A
CREATE leaves the container in WRITE mode. An OPEN either
specifies the mode explicitly or implicitly sets the mode to READ.
5.2 Syntax
To open a container:
OPEN <pathname> <mode> ;
or:
OPEN <pathname> ;
where <mode> is defaulted to READ.
To close a container:
CLOSE <ident> ;
where <ident> is the name of an outermost container.
Two containers with the same outermost <ident> can not be
opened at the same time (***).
To change the mode of an open container:
MODE <ident> <newmode> ;
5.3 LIST
LIST %OPEN transmits name, mode and connection status of each open
outermost container through the Datalanguage output port. (The
Datalanguage output port is the destination to which all
Datacomputer diagnostics and replies are sent. It is established
when the user initially connects to the Datacomputer.) For
details of the LIST-request, see section 10.1.
6. Assignment
Assignment transfers data from one container to another.
The equal sign ('=') is the symbol for assignment. The value of the
operand on the right of the equal sign is transferred to the operand
on the left. (Eventually, both operands will be weakly-restricted
Winter [Page 8]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
Datalanguage expressions, which may evaluate to sets as well as to
single containers. Now, the left must be a container name, the right
may be a container name or a constant.)
Assignment is defined for all types of containers. When the
containers are aggregates, their elements are paired and data is
transferred between paired elements. Elements of the target
container that do not pair with some source element are handled with
a default operation (currently they are filled with blanks).
The operands of an assignment must have descriptions that match. The
idea of matching is that the descriptions must be similar enough so
that it is obvious how to map one into the other.
6.1 Conditions for legitimate assignment
Assignment must reference objects, not sets. An object is:
(a) an outermost container, or
(b) a constant, or
(c) in the body of a FOR-loop, either
(c1) a member of a set defined by a FOR-OPERAND, or
(c2) a container which occurs once in such a member
In the case of a reference of type (c1), the object referenced is
taken to be the current member. In the case of (c2), the object
referenced is that which occurs in the current member. This is
explained further in section 7.
The left operand of an assignment is subject to further
restriction. If it is an outermost container, it must be open in
either WRITE- or APPEND-mode. If it is not an outermost
container, then the reference is of type (c), which means that
some FOR-operand has established a context in which the assign-
operand is an object. The FOR-operand which establishes this
context must be the output-operand of the FOR.
When the assign-operand is an outermost container, it must be
open. Such an operand must be referenced by its simple container
ident(***), not its directory pathname.
In the body of a loop nested in one or more other loops,
assignments are further restricted, due to a 0/9 implementation
problem. See section 7.2 for details.
Winter [Page 9]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
Finally, the descriptions of the operands must match. If one is a
constant, then the other must be a STRING(***). If both are
containers, then in the expression:
A = B;
the descriptions of containers A and B match if:
1. A and B have the same type
2. If A and B are LISTs, then they have equal numbers of
LIST-members, or else A is an outermost-LIST.
3. If A and B are aggregates, then at least one container
immediately enclosed in A matches, and has the same ident as, one
container immediately enclosed in B.
6.2 Result of assignment
If the operands are STRINGs, then the value of B, left-justified,
replaces the value of A. If B is longer than A, the value is
truncated. If B is shorter than A, then A is filled on the right
with blanks as necessary.
If the operands are STRUCTs, then assignment is defined in terms
of the STRUCT members. If a member of A, mA, matches and has the
same name as a member of B, mB, then mB is assigned to mA. If no
such mB exists, then mA is filled with blanks.
If the operands are LISTs, the result depends on several factors.
First, notice that the descriptions of the LIST-members must
match; otherwise the assignment would not be legitimate by the
matching rules of 6.1.
If A is an outermost-LIST, then it can be in either of two modes:
WRITE or APPEND. If A is in WRITE-mode, its previous contents are
first discarded; it is then handled as though it were in APPEND-
mode.
If A is not an outermost-LIST, then it is always effectively in
WRITE-mode.
After taking the mode of A into account, as described above, the
procedure is:
for each member of LIST B
(a) add a new member to the end of A
(b) assign the current number of B to the new member of A
Winter [Page 10]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
6.3 Deletion of Data Through Assignment
If A is an outermost container in WRITE-mode, and B is a container
with description that matches A, and if B contains no data, then
A=B has the effect of deleting all data from A. Note that if A is
in APPEND-mode in these circumstances, then A=B is a no-operation
(i.e., has no effect).
7. FOR
FOR <output set spec>, <input set spec> <body> END ;
The output set is optional: that is, FOR need not produce output.
When the output set is omitted, the syntax is:
FOR <input set spec> <body> END ;
The operations specified in the body are performed once for each
member of the input set. References in the body to the input set
member are treated as references to the current input set member.
When an output set is present, a new member is created and added to
the output set for each iteration (i.e., for each input set member).
References to the output set member, similarly, are treated as
references to the current output set member.
The output set spec must be the name of a LIST member. Each
iteration of the FOR will create one such member, and add it to its
LIST (hereafter called the output LIST). The body terminates the
value that the new member receives. Any STRING in the new member
which is not given a value by the body receives he default value of
all blanks.
The input set spec must be an expression evaluating to a set of
LIST-members (see section 7.1 for details of input set
specification). Each iteration for the FOR will input one such
member; the FOR will terminate when each member of the set has been
processed. The LIST from which the input set members are drawn is
called the input LIST.
FOR is effectively a means of accomplishing variants of assignment
between a pair of LISTS. FOR is less concise than assignment, but
offers more flexibility. Its advantages are:
(a) not all the input LIST-members need be transferred to the
output LIST. A subset can be selected by content.
(b) the user has explicit control over the assignment of values to
output LIST-members.
Winter [Page 11]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
This is most easily understood by an example:
P PORT LIST F FILE LIST
R STRUCT R STRUCT
B STR A STRUCT
C STR A1 STR
END A2 STR
B STR
C STR
END
(1) P = F ;
(2) FOR P.R, F.R
P.R = F.R ;
END ;
(3) FOR P.R, F.R WITH A1 EQ 'XY' OR A2 GE 'AB'
B = C ;
C = A2 ;
END
Here, (1) and (2) are entirely equivalent requests. However, (3) is
quite different and is not expressible as assignment. It selects a
subset of F.Rs. The values it gives to the P.Rs could not result
from application of the matching rules to F and P.
Because FOR is effectively assignment between a pair of LISTs, the
LISTs referenced by a legitimate FOR-operation are largely subject to
the same restrictions as LISTs referenced in an assignment. One
exception is that the descriptions of the LIST-members need not
match.
These restrictions are:
(a) both LISTs must be objects in the context in which the FOR
appears.
(b) both LISTs must be open or contained in open outermost
containers.
(c) if the output LIST is an outermost container, it must be in
WRITE- or APPEND-mode.
(d) If the output LIST is not outermost, the LIST which most
immediately encloses it must be the output LIST of an enclosing
FOR.
The mode of the output LIST of the FOR affects the result much as it
would in an assignment: that is, a FOR outputting to a LIST in
WRITE-mode overwrites previous contents, while a FOR outputting to a
LIST in APPEND-mode adds to previous contents.
Winter [Page 12]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
CAUTION TO THE READER: For convenience, these specifications use
phrases such as 'LISTs referenced by a FOR'. Recall that such a
phrase is not literally correct, in the sense that the operands of a
FOR are always LIST members, not LISTs.
7.1 Details of input set specification
The input set is specified by a Datalanguage expression that
evaluates to a set of LIST-members. Such an expression can be
simply the set of all members of a LIST, or it can be a subset of
the members of a LIST, specified by content. For example, with
the description:
F FILE LIST
R STRUCT
A STR (1)
B STR (2)
END
the expression:
F.R
references all R's on the LIST F. However:
F.R WITH A EQ '5'
references only those R's containing an A having the value '5'.
The expressions permitted as input set specifications are of the
form:
<list-member-name> WITH <boolexp>
The <boolexp> is constructed of comparison expressions joined by
the Boolean operators AND and OR. Any expression can be negated
with NOT.
Comparison operators have the highest precedence. Next highest is
AND, then OR, then NOT.
The comparison expressions are restricted to the form:
<container name> <comop> <constant>
where:
(a) <constant> is a string constant enclosed in single quotes
(see section 10.2 for a discussion of constants)
(b) <comop> is one of six operators:
EQ equal
NE not equal
LT less than
GT greater than
LE less than or equal to
GE greater than or equal to
(c) <container name> is the name of a STRING that appears once
in each LIST-member.
Winter [Page 13]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
The constant is truncated or padded with blanks on the right to
make it equal in size to the container to which it is being
compared. Notice that padding on the right is not always
desirable (users will have control over the padding in a future
release). In particular, care must be exercised when using
numbers in Version 0/9. (A number represented as a STRING should
actually be described as a number; eventually it will be possible
to do this).
7.2 FOR-body
Two operations are legitimate in a FOR-body: FOR and assignment.
These are subject to the restrictions discussed in Section 6.1 and
in the introduction to Section 7. The restrictions are related to
three requirements: (1) that the names be recognizable (see
Section 9 for details), (2) that a request be consistent regarding
direction of data transfer between containers, both within itself
and with the MODE of outermost containers, and (3) that transfers
occur between objects, not sets of objects. The first two
requirements are permanent, but will become weaker in later
versions of the language. The last requirement is temporary and
will be present only in early versions.
Due to an implementation problem associated with Version 0/9,
there is a somewhat bizarre restriction applied to references made
in the body of a loop nested in another loop. This restriction is
not expected to pose any practical problems for users, and is not
part of the language design, but is discussed here for
completeness.
The restriction is most easily understood by example:
given the description
F LIST
R STRUCT
A STR (3)
BL LIST (3)
B STR (3)
C STR (3)
END
and the request fragment:
FOR ...,R
FOR ...,B
... = A ;
... = C ;
END
END
Winter [Page 14]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
observe:
(a) The outer loop processes the set of R's in F.
(b) For each R in F, the inner loop processes the set of B's in
the BL contained in that R.
(c) In the body of the inner loop, there are references to A and
C, which do not occur in B, but do occur in R. That is, the
objects referenced in the inner loop body are defined by the
outer loop, not the inner loop. In general, this is fine;
in the case of C, however, we have a problem.
(d) C occurs beyond the end of BL.
The 0/9 compiler is capable of neither (1) looking ahead enough to
locate C before it compiles code for the loop, nor (2) while
generating code to loop on the B's in BL, generating a separate
body of code that skips to the end of BL to locate C. Thus it can
handle A, which has been located before it begins loop generation,
but it cannot handle C, which requires a little foresight.
The request fragment shown would not cause problems if the
description were changed to:
F LIST
R STRUCT
A STR (3)
C STR (3)
BL LIST (3)
B STR (3)
END
Then both A and C would have been found before code for the inner
loop was generated.
8. Data Transmission
Data is transferred from container to container by execution of
assignment and FOR operations. The outermost containers involved in
transfers can be files or ports. If both are files, then the
transfer is internal to the Datacomputer. If either is a port, then
an address in the external world is needed to accomplish the data
transmission.
Winter [Page 15]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
Such an address is supplied through a CONNECT-request, which
associates a container (having a function of PORT) with an external
address:
CONNECT <ident> TO <address> ;
Here <address> is either a specifications of host and socket number,
or a TENEX file designator (for CCA's TENEX) enclosed in single
quotes. The host and socket form is:
<socket> AT <host>
where <socket> is a decimal number, and <host> is either a decimal
number or a standard host name (since standard host names don't exist
right now, it has to be the TENEX 'standard' name for the host.
Contact the author for the latest list.) If <host> is omitted, it is
taken to be the host from which the Datalanguage is being
transmitted.
The address associated with a port can be changed by issuing another
CONNECT-request.
A DISCONNECT-request simply breaks an existing port/address
association without establishing a new one. (A CLOSE-request that
references an open port executes a DISCONNECT.) The syntax of
DISCONNECT is:
DISCONNECT <ident> ;
A port is disconnected when: (a) no successful CONNECT-request has
ever been issued for it, or (b) a DISCONNECT for the port has been
executed since the last successful CONNECT.
When a disconnected port is referenced in an assignment, it is
connected by default either to:
(a) the connection used for the transmission of Datalanguage to the
Datacomputer, or
(b) the connection used for the transmission of Datacomputer
diagnostics to the user
The choice between (a) and (b), of course, depends on whether the
reference is for input or output. These connections are established
by the network user's ICP to the Datacomputer at the beginning of the
session.
Note that CONNECT and DISCONNECT do not open files or network
connections. They simply make address associations within the
Datacomputer. The files and connections are opened before each
request and closed after each request.
Winter [Page 16]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
9. Names in Datalanguage
A name is recognized when it has been associated with a particular
data container or set of containers.
Datalanguage has mechanisms for the recognition of names in contexts.
That is, the meaning of the name is related to where it appears.
This makes it possible to attach natural meanings to partially
qualified names.
For example:
WEATHER FILE LIST
STATION STRUCT
CITY STR (15)
STATE STR (15)
DATA LIST (24)
OBSERVATION STRUCT
HOUR STR (2)
TEMPERATURE STR (3)
HUMIDITY STR (2)
PRESSURE STR (4)
END
END
RESULTS PORT LIST
RESULT STRUCT
CITY STR (15)
HOUR STR (2)
TEMPERATURE STR (3)
END
FOR STATION WITH STATE EQ 'CALIFORNIA'
FOR RESULT, OBSERVATION WITH HOUR GT '12'
AND HUMIDITY LT '75'
CITY = CITY ;
HOUR = HOUR ;
TEMPERATURE = TEMPERATURE ;
END ;
END ;
in the assignment 'CITY = CITY', the first CITY is understood to be
RESULT.CITY and the second is understood to be STATION.CITY.
Winter [Page 17]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
9.1 Informal Presentation of Recognition Rules
'Ident' is used in the sense of section 3. For example, in the
description:
F FILE LIST R STRUCT A STR (1) B STR (1) END
F, R, A and B are idents.
A context is a tree whose nodes are idents. In such a tree, the
terminal nodes are idents of STRINGs. The ident of a LIST is
superior to the ident of the LIST-member. The ident of a STRUCT
is superior to the idents of the STRUCT elements. The context
whose top node is F is said to be the context of F.
+-----+
! F !
+-----+
!
!
+-----+
! R !
+-----+
!
!
+----------+----------+
! !
! !
+-----+ +-----+
! A ! ! B !
+-----+ +-----+
Figure 9.1-1 The context of F
A pathname is a sequence of idents, naming nodes along a path from
one node to another. A full pathname in the context starts at the
topmost node. Thus F.R.B is a full pathname in the context of F.
A partial pathname starts at a node other than the topmost node
(e.g. R.B, B).
In Datalanguage, pathnames omitting intermediate nodes, such as
F.B (which omits 'R'), are not permitted. Thus partial pathnames
are partial only in that additional names are implied on the left.
Winter [Page 18]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
Three attempts at recognition of a pathname, PN, in a context, CX,
are made:
(a) recognition of PN as a full pathname in CX
(b) recognition of PN as a partial pathname in which only the
topmost node of CX is omitted
(c) recognition of PN as an arbitrary partial pathname occurring
only once in CX.
The attempts are made in the above order, and the recognition
process halts with the first successful attempt.
As an example, consider the description:
F FILE LIST
R STRUCT
A STR
B STR
S STRUCT
R STR
which defines the context in Figure 9.1-2.
+-----+
! F !
+-----+
!
!
+-----+
! R !
+-----+
!
!
+----------------+----------------+
! ! !
! ! !
+-----+ +-----+ +-----+
! A ! ! B ! ! S !
+-----+ +-----+ +-----+
!
!
+-----+
! R !
+-----+
Figure 9.1-2 Example Context
Winter [Page 19]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
In this context, F.R.A is a full pathname. Thus, F.R.A is
recognized in attempt (a). R is a partial pathname in which only
the topmost node is omitted. Thus R is recognized in attempt (b).
Note carefully that R is recognized as a reference to F.R, not to
F.R.S.R. Finally, B is an arbitrary partial pathname occurring
only once in the context. Thus B is recognized in attempt (c).
Two stacks of contexts are maintained: one for names used in an
input sense, and one for names used in an output sense. When a
name is to be recognized, it is first decided whether the
reference is an input reference or an output reference. An input
reference is (a) the right hand operand of an assign, or (b) a
name in the input set spec of a FOR. An output reference is (a)
the left operand of an assign, or (b) the output operand of a FOR.
The first context on the appropriate context stack is then
searched, according to the procedure outlined on the previous
page. If the name is neither recognized nor ambiguous in that
context, search continues in the next context on the stack. If
the name can be recognized in none of the contexts on the
appropriate stack, it is unrecognizable.
When a stack is empty, the recognition procedure is different.
The search is carried on in a special context: The context of
%OPEN. Its top node, %OPEN, is a built in system ident.
Subordinate to %OPEN is a context for each open directory node.
Each such context represents all the idents defined in the
directory nodes having data descriptions:
F FILE LIST R STRUCT A STR (1) B STR (1)
and:
P PORT LIST R STRUCT A STR (1) B STR (1)
then the context of %OPEN would be as in Figure 9.1-3.
Winter [Page 20]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
+-------+
! %OPEN !
+-------+
!
!
+-----------+-----------+
! !
! !
+-----+ +-----+
! A ! ! S !
+-----+ +-----+
! !
! !
+-----+ +-----+
! R ! ! R !
+-----+ +-----+
! !
! !
+-----+-----+ +-----+-----+
! ! ! !
! ! ! !
+-----+ +-----+ +-----+ +-----+
! A ! ! B ! ! A ! ! B !
+-----+ +-----+ +-----+ +-----+
Figure 9.1-3 The Context of %OPEN
When a directory node is closed, the corresponding context is
removed from the context of %OPEN. When a node is opened, the
associated context is added as the rightmost context subordinate
to %OPEN.
9.2 Context Stack Maintenance
The context stacks are always empty between requests. The FOR-
operator adds entries to the stacks. FOR A adds the context of A
to the input context stack. FOR A, B ... adds the context of A to
the output stack and the context of B to the input stack.
When adding to an empty stack, FOR adds two contexts instead of
one. The second addition to the stack is the context of the
looparg; the first addition is the context of the outermost
container which encloses the looparg.
Winter [Page 21]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
For example, given a context of %OPEN as in Figure 9.1-3, and
empty context stacks, the fragment 'FOR F.R ...' adds two
contexts: (1) the context of F, and (2) the context of F.R.
Contexts are removed from the stacks by the END matching the FOR
which added them.
10. Miscellaneous Topics
10.1 The LIST-request
The LIST-request provides a means for the user to inspect system
data of interest to him. The user can determine the contents of
the directory, the source or parsed form of any data description
in the system, and the mode and connection status of any open file
or port.
The LIST operator has a single operand, which can have any of
several forms. The action of the operator is to output a list of
values on the Datalanguage output port.
To output a list of pathnames, the operand used is '%ALL'. When
'%ALL' appears alone, all pathnames in the directory are listed.
When '%ALL' appears after the last ident in a directory pathname,
the full pathnames of all nodes subordinate to the named node are
listed.
To output one or more source descriptions, the operand '.%SOURCE'
is used. '.%SOURCE' is preceded with one of (a) '%ALL', (b)
'%OPEN', or (c) the ident of an open outermost container. The
output is either (a) all descriptions, (b) all open descriptions,
or (c) a particular open description.
To output a parsed description, the operand '.%DESC' is used
('%DESCRIPTION' is also accepted). This operand is preceded
either with (a) '%OPEN', or (b) the ident of an open outermost
container.
Winter [Page 22]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
Examples:
Let P be the ident of an open PORT. Let A.B.C be a
directory pathname.
LIST %ALL
LIST A.B.C.%ALL
LIST %OPEN
LIST %ALL.%SOURCE
LIST %OPEN.%SOURCE
LIST P.%SOURCE
LIST %OPEN.%DESC
LIST P.%DESC
Note that 'LIST A.B.C.%SOURCE' is not legal - '.%SOURCE'
must be preceded with the ident of an open container, not a
pathname. A similar restriction applies to '.%DESC'.
10.2 Constants in Datalanguage
A constant of type STRING can be included in a Datalanguage
request by enclosing it in single quotes:
'ABC'
A single quote is included in a constant by preceding it with a
double quote:
'FATHER"'S'
Likewise, a double quote is included by preceding it with a double
quote:
'JOHN SAID ""HELLO""'
Such constants can be used on the right of comparison operators
and of assignment operators which reference strings.
Eventually, Datalanguage will contain facilities for the inclusion
of constants of all datatypes; such constants are simply a special
case of the Datalanguage expression and will be permitted wherever
such expressions are permitted.
10.3 Character Set
Internally, Version 0/9 of the Datacomputer software operates in
7-bit ASCII characters. Its output to the ARPANET is converted to
8-bit ASCII. On input from the ARPANET, it expects 8-bit
characters, which it converts to 7-bit characters.
Winter [Page 23]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
To convert from 7- to 8-bit characters, a '0' bit is prefixed. To
convert from 8- to 7-bit characters, the high-order bit is
checked. If the high-order bit is a '0', the bit is discarded and
the character is accepted as a 7-bit character. If the high-order
bit is a '1', then the character is discarded.
(In the following discussion, as elsewhere in this memo, all
references to numerical character codes are in decimal).
The remainder of this section discusses treatment of codes 0
through 127, when they appear in Datalanguage requests.
In general, printing characters are acceptable in requests, while
control characters are not. There are some exceptions, which are
detailed below. The printing characters are codes 32-126. The
control characters are codes 0-31 and 127.
Certain control characters are accepted:
Tab(9) is accepted freely in requests. It functions as a
separator (explained below).
EOL(31), meaning end-of-line, is accepted in requests,
functioning both as a separator and an activator (a). EOL has
a special meaning in data, and should not be introduced into
STRING constants(***).
Control-L(12) is an activator and a high-level request
delimiter. It terminates the test of any request being
processed when it is encounter in the input stream. It is
useful in Datacomputer-user program synchronization.
Control-Z(26) means end-of-session when encountered in
Datalanguage. It has the properties of control-L, and in
addition, causes the Datacomputer to execute an end-of-session
procedure, which results in closing the Datalanguage
connections, closing any open files or ports, etc. The effect
is equivalent to a [LOGOUT(which] does not exist yet).
The two-character sequence <carriage return(13), line feed(10)>
is equivalent to EOL (and is translated to EOL on input from
the network). The reverse sequence, as well as either
character alone, is treated simply as other control characters
(ignored).
All other control characters are ignored.
Winter [Page 24]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
The printing characters are further divided into four groups:
special characters, uppercase letters, lower case letters, and
digits (the membership of these groups is defined in section 11).
Corresponding upper and lower case letters are equivalent in
requests, except with quoted strings.
Certain special characters have a lexical function, which is
either break or separator. A break character terminates the
current lexical item and returned itself as the next item. A
separator character terminates the current item but does not begin
a new item (i.e., its only function is to separate items).
Multiple separators are equivalent to a single separator. A
separator can always be inserted before or after a break
character, without altering the meaning of the request.
The separators are tab(9), space(32), and end-of-line(31).
The break characters are left parenthesis(40), right
parenthesis(41), equals(61), semicolon(59), period(46), comma(44),
quote(39), and slash(47).
(a) An activator character causes the Datacomputer to process
whatever has been received since the previous activator or
the beginning of the request. The meaning of a request is
independent of the presence/absence of activators. However,
a request will not be executed until an activator beyond the
end of the request is received.
While Version 0/9 defines (carriage return, linefeed) in terms of
EOL, network users should not think in terms of sending EOL's to
the Datacomputer over the network. EOL is not part of the network
ASCII character set, and has no definite permanent place in
Datacomputer implementation plans.
10.4 Comments
Comments can be included in Datalanguage requests. A comment is
begun with the two-character sequence '/*', and ended with the
two-character sequence '*/'. Since slash is a break character, a
comment does cause a lexical break; its overall effect is that of
a separator.
Winter [Page 25]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
10.5 Reserved Identifiers
Certain identifiers are reserved in Datalanguage, and should not
be used to name containers or directory nodes. These are:
AND
APPEND
AT
CLOSE
CONNECT
CREATE
DELETE
DISCONNECT
END
EQ
FILE
FOR
GE
GT
LE
LIST
LT
NODE
NE
NOT
OPEN
OR
PORT
READ
STR
STRUCT
TO
WITH
WRITE
More reserved identifiers will be added in Version 0/10.
Winter [Page 26]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
11. Datalanguage Syntax Expressed in BNF
11.1 Requests
11.1.01 <request> ::= ;
11.1.02 <request> ::= <create>
11.1.03 <request> ::= OPEN <pn> ;
11.1.04 <request> ::= OPEN <pn> <mode> ;
11.1.05 <request> ::= CLOSE <ident> ;
11.1.06 <request> ::= CONNECT <ident> TO <address> ;
11.1.07 <request> ::= DISCONNECT <ident> ;
11.1.08 <request> ::= MODE <ident> <mode> ;
11.1.09 <request> ::= DELETE <pn> ;
11.1.10 <request> ::= LIST <listarg> ;
11.1.11 <request> ::= <sr-request> ;
11.2 Data Description and Creation
11.2.01 <create> ::= CREATE <pn>
11.2.02 <create> ::= CREATE <pn> <ftn> LIST <desc>
11.2.03 <create> ::= CREATE <pn> <ftn> LIST <size> <desc>
11.2.04 <desc> ::= <ident> <attributes>
11.2.05 <attributes> ::= LIST <size> <desc>
11.2.06 <attributes> ::= STRUCT <descs> END
11.2.07 <attributes> ::= STR <size>
11.2.08 <attributes> ::= STR <size> ,I=D
11.2.09 <descs> ::= <desc>
11.2.10 <descs> ::= <descs> <desc>
11.2.11 <ftn> ::= PORT
11.2.12 <ftn> ::= FILE
11.2.13 <ftn> ::= TEMP PORT
11.2.14 <ftn> ::= TEMPORARY PORT
11.2.15 <size> ::= ( <integer constant> )
Winter [Page 27]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
11.3 Data Storage and Retrieval
11.3.01 <sr-request> ::= <assign>
11.3.01 <sr-request> ::= <loop>
11.3.03 <assign> ::= <pn> = <object>
11.3.04 <loop> ::= FOR <looparg> <loopbody> END
11.3.05 <looparg> ::= <exp>
11.3.06 <looparg> ::= <pn> , <exp>
11.3.07 <loopbody> ::= <sr-request>
11.3.08 <loopbody> ::= <loopbody1> <sr-request>
11.3.09 <loopbody> ::= <loopbody1>
11.3.10 <loopbody1> ::= <sr-request> ;
11.3.11 <loopbody1> ::= <loopbody1> <sr-request> ;
11.4 Expressions
11.4.01 <exp> ::= <pn>
11.4.02 <exp> ::= <pn> WITH <boolexp>
11.4.03 <boolexp> ::= <pn> <comop> <string constant>
11.4.04 <boolexp> ::= ( <boolexp> )
11.4.05 <boolexp> ::= NOT <boolexp>
11.4.06 <boolexp> ::= <boolexp> AND <boolexp>
11.4.07 <boolexp> ::= <boolexp> OR <boolexp>
11.4.08 <comop> ::= EQ
11.4.09 <comop> ::= NE
11.4.10 <comop> ::= GT
11.4.11 <comop> ::= LT
11.4.12 <comop> ::= GE
11.4.13 <comop> ::= LE
Winter [Page 28]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
11.5 Miscellaneous
11.5.01 <address> ::= <quote> <TENEX file designator>
<quote>
11.5.02 <address> ::= <socket> AT <host>
11.5.03 <address> ::= <socket>
11.5.04 <socket> ::= <integer constant> //INTERPRETED AS
DECIMAL
11.5.05 <host> ::= <integer constant> //INTERPRETED AS
DECIMAL
11.5.06 <host> ::= ***** TENEX host names *****
11.5.07 <object> ::= <pn>
11.5.08 <object> ::= <string constant>
11.5.09 <mode> ::= READ
11.5.10 <mode> ::= APPEND
11.5.11 <mode> ::= WRITE
11.5.12 <listarg> ::= %ALL
11.5.13 <listarg> ::= <pn>.%ALL
11.5.14 <listarg> ::= %OPEN
11.5.15 <listarg> ::= %ALL.%SOURCE
11.5.16 [<LISTARG>] ::= <IDENT>.%SOURCE
11.5.17 <listarg> ::= %OPEN.%SOURCE
11.5.18 <listarg> ::= %OPEN.%DESC
11.5.19 <listarg> ::= <ident>.%DESC
11.5.20 <pn> ::= <ident>
11.5.21 <pn> ::= <pn>.<ident>
11.5.22 <ident> ::= <letter>
11.5.23 <ident> ::= <ident> <letter>
11.5.24 <ident> ::= <ident> <digit>
11.5.25 <integer constant> ::= <digit>
11.5.26 <integer constant> ::= <integer constant> <digit>
11.5.27 <string constant> ::= <quote> <string conbody>
<quote>
11.5.28 <string conbody> ::= <nonquote>
11.5.28 <string conbody> ::= <string conbody> <nonquote>
Winter [Page 29]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
11.6 Character Set
11.6.01 <separator> ::= //SPACE(32)
11.6.02 <separator> ::= //TAB(9)
11.6.03 <separator> ::= <eol>
11.6.04 <special> ::= <quote>
11.6.05 <special> ::= <superquote>
11.6.06 <special> ::= <special1>
11.6.07 <letter> ::= A
11.6.08 <letter> ::= B
...............
11.6.09 <letter> ::= Z
11.6.10 <letter> ::= a
11.6.11 <letter> ::= b
...............
11.6.12 <letter> ::= z
11.6.13 <digit> ::= 0
11.6.14 <digit> ::= 1
...............
11.6.15 <digit> ::= 9
11.6.16 <nonquote> ::= <letter>
11.6.17 <nonquote> ::= <digit>
11.6.18 <nonquote> ::= <superquote> <quote>
11.6.19 <nonquote> ::= <superquote> <superquote>
11.6.20 <nonquote> ::= <special1>
11.6.21 <nonquote> ::= <separator>
11.6.22 <eol> ::= //EOL (31)
11.6.23 <eol> ::= <carriage return> <line feed>
11.6.24 <carriage return> ::= //CARRIAGE RETURN (13)
11.6.25 <line feed> ::= //LINE FEED (10)
11.6.26 <quote> ::= ' //SINGLE QUOTE(44)
11.6.27 <superquote> ::= " //DOUBLE QUOTE(34)
11.6.28 <special1> ::= ! //EXCLAMATION POINT(33)
11.6.29 <special1> ::= # //NUMBER SIGN(35)
11.6.30 <special1> ::= $ //DOLLAR SIGN(36)
11.6.31 <special1> ::= % //PERCENT SIGN(37)
11.6.32 <special1> ::= & //AMPERSAND(38)
11.6.33 <special1> ::= ( //LEFT PARENTHESIS(40)
Winter [Page 30]
^L
RFC 515 Specifications for Datalanguage, Version 0/9 6 June 1973
11.6.34 <special1> ::= ) //RIGHT PARENTHESIS(41)
11.6.35 <special1> ::= * //ASTERISK(42)
11.6.36 <special1> ::= + //PLUS SIGN(43)
11.6.37 <special1> ::= , //COMMA(44)
11.6.38 <special1> ::= - //MINUS SIGN(45)
11.6.39 <special1> ::= . //PERIOD(46)
11.6.40 <special1> ::= / //SLASH(47)
11.6.41 <special1> ::= : //COLON(58)
11.6.42 <special1> ::= ; //SEMICOLON(59)
11.6.43 <special1> ::= < //LEFT ANGLE BRACKET(60)
11.6.44 <special1> ::= = //EQUAL SIGN(61)
11.6.45 <special1> ::= > //RIGHT ANGLE BRACKET(62)
11.6.46 <special1> ::= ? //QUESTION MARK(63)
11.6.47 <special1> ::= @ //AT-SIGN(64)
11.6.48 <special1> ::= [ //LEFT SQUARE BRACKET(91)
11.6.49 <special1> ::= //BACK SLASH(92)
11.6.50 <special1> ::= ] //RIGHT SQUARE BRACKET(93)
11.6.51 <special1> ::= ^ //CIRCUMFLEX(94)
11.6.52 <special1> ::= _ //UNDERBAR(95)
11.6.53 <special1> ::= ` //ACCENT GRAVE(96)
11.6.54 <special1> ::= { //LEFT BRACE(123)
11.6.55 <special1> ::= | //VERTICAL BAR(124)
11.6.56 <special1> ::= } //RIGHT BRACE(125)
11.6.57 <special1> ::= ~ //TILDE(126)
<EOF>
[ This RFC was put into machine readable form for entry ]
[ into the online RFC archives by Walter Benton 12/98 ]
Winter [Page 31]
^L
|