1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
|
Network Working Group G. Pelletier
Request for Comments: 5225 K. Sandlund
Category: Standards Track Ericsson
April 2008
RObust Header Compression Version 2 (ROHCv2):
Profiles for RTP, UDP, IP, ESP and UDP-Lite
Status of This Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Abstract
This document specifies ROHC (Robust Header Compression) profiles
that efficiently compress RTP/UDP/IP (Real-Time Transport Protocol,
User Datagram Protocol, Internet Protocol), RTP/UDP-Lite/IP (User
Datagram Protocol Lite), UDP/IP, UDP-Lite/IP, IP and ESP/IP
(Encapsulating Security Payload) headers.
This specification defines a second version of the profiles found in
RFC 3095, RFC 3843 and RFC 4019; it supersedes their definition, but
does not obsolete them.
The ROHCv2 profiles introduce a number of simplifications to the
rules and algorithms that govern the behavior of the compression
endpoints. It also defines robustness mechanisms that may be used by
a compressor implementation to increase the probability of
decompression success when packets can be lost and/or reordered on
the ROHC channel. Finally, the ROHCv2 profiles define their own
specific set of header formats, using the ROHC formal notation.
Pelletier & Sandlund Standards Track [Page 1]
^L
RFC 5225 ROHCv2 Profiles April 2008
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 4
2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 4
3. Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4. Background (Informative) . . . . . . . . . . . . . . . . . . 7
4.1. Classification of Header Fields . . . . . . . . . . . . . 7
4.2. Improvements of ROHCv2 over RFC 3095 Profiles . . . . . . 8
4.3. Operational Characteristics of ROHCv2 Profiles . . . . . 10
5. Overview of the ROHCv2 Profiles (Informative) . . . . . . . . 10
5.1. Compressor Concepts . . . . . . . . . . . . . . . . . . . 11
5.1.1. Optimistic Approach . . . . . . . . . . . . . . . . . 11
5.1.2. Tradeoff between Robustness to Losses and to
Reordering . . . . . . . . . . . . . . . . . . . . . 11
5.1.3. Interactions with the Decompressor Context . . . . . 13
5.2. Decompressor Concepts . . . . . . . . . . . . . . . . . . 14
5.2.1. Decompressor State Machine . . . . . . . . . . . . . 14
5.2.2. Decompressor Context Management . . . . . . . . . . . 17
5.2.3. Feedback Logic . . . . . . . . . . . . . . . . . . . 19
6. ROHCv2 Profiles (Normative) . . . . . . . . . . . . . . . . . 19
6.1. Channel Parameters, Segmentation, and Reordering . . . . 19
6.2. Profile Operation, Per-context . . . . . . . . . . . . . 20
6.3. Control Fields . . . . . . . . . . . . . . . . . . . . . 21
6.3.1. Master Sequence Number (MSN) . . . . . . . . . . . . 21
6.3.2. Reordering Ratio . . . . . . . . . . . . . . . . . . 21
6.3.3. IP-ID Behavior . . . . . . . . . . . . . . . . . . . 22
6.3.4. UDP-Lite Coverage Behavior . . . . . . . . . . . . . 22
6.3.5. Timestamp Stride . . . . . . . . . . . . . . . . . . 22
6.3.6. Time Stride . . . . . . . . . . . . . . . . . . . . . 22
6.3.7. CRC-3 for Control Fields . . . . . . . . . . . . . . 23
6.4. Reconstruction and Verification . . . . . . . . . . . . . 23
6.5. Compressed Header Chains . . . . . . . . . . . . . . . . 24
6.6. Header Formats and Encoding Methods . . . . . . . . . . . 25
6.6.1. baseheader_extension_headers . . . . . . . . . . . . 26
6.6.2. baseheader_outer_headers . . . . . . . . . . . . . . 26
6.6.3. inferred_udp_length . . . . . . . . . . . . . . . . . 26
6.6.4. inferred_ip_v4_header_checksum . . . . . . . . . . . 26
6.6.5. inferred_mine_header_checksum . . . . . . . . . . . . 27
6.6.6. inferred_ip_v4_length . . . . . . . . . . . . . . . . 28
6.6.7. inferred_ip_v6_length . . . . . . . . . . . . . . . . 28
6.6.8. Scaled RTP Timestamp Compression . . . . . . . . . . 29
6.6.9. timer_based_lsb . . . . . . . . . . . . . . . . . . . 30
6.6.10. inferred_scaled_field . . . . . . . . . . . . . . . . 31
6.6.11. control_crc3_encoding . . . . . . . . . . . . . . . . 32
6.6.12. inferred_sequential_ip_id . . . . . . . . . . . . . . 33
6.6.13. list_csrc(cc_value) . . . . . . . . . . . . . . . . . 34
6.7. Encoding Methods with External Parameters as Arguments . 38
6.8. Header Formats . . . . . . . . . . . . . . . . . . . . . 40
Pelletier & Sandlund Standards Track [Page 2]
^L
RFC 5225 ROHCv2 Profiles April 2008
6.8.1. Initialization and Refresh Header Format (IR) . . . . 40
6.8.2. Compressed Header Formats (CO) . . . . . . . . . . . 41
6.9. Feedback Formats and Options . . . . . . . . . . . . . . 100
6.9.1. Feedback Formats . . . . . . . . . . . . . . . . . . 100
6.9.2. Feedback Options . . . . . . . . . . . . . . . . . . 102
7. Security Considerations . . . . . . . . . . . . . . . . . . . 104
8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 105
9. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 105
10. References . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.1. Normative References . . . . . . . . . . . . . . . . . . 106
10.2. Informative References . . . . . . . . . . . . . . . . . 107
Appendix A. Detailed Classification of Header Fields . . . . . 108
A.1. IPv4 Header Fields . . . . . . . . . . . . . . . . . . . 109
A.2. IPv6 Header Fields . . . . . . . . . . . . . . . . . . . 112
A.3. UDP Header Fields . . . . . . . . . . . . . . . . . . . 113
A.4. UDP-Lite Header Fields . . . . . . . . . . . . . . . . . 114
A.5. RTP Header Fields . . . . . . . . . . . . . . . . . . . . 115
A.6. ESP Header Fields . . . . . . . . . . . . . . . . . . . . 117
A.7. IPv6 Extension Header Fields . . . . . . . . . . . . . . 117
A.8. GRE Header Fields . . . . . . . . . . . . . . . . . . . . 118
A.9. MINE Header Fields . . . . . . . . . . . . . . . . . . . 119
A.10. AH Header Fields . . . . . . . . . . . . . . . . . . . . 120
Appendix B. Compressor Implementation Guidelines . . . . . . . 121
B.1. Reference Management . . . . . . . . . . . . . . . . . . 121
B.2. Window-based LSB Encoding (W-LSB) . . . . . . . . . . . 121
B.3. W-LSB Encoding and Timer-based Compression . . . . . . . 122
Pelletier & Sandlund Standards Track [Page 3]
^L
RFC 5225 ROHCv2 Profiles April 2008
1. Introduction
The ROHC WG has developed a header compression framework on top of
which various profiles can be defined for different protocol sets or
compression requirements. The ROHC framework was first documented in
[RFC3095], together with profiles for compression of RTP/UDP/IP
(Real-Time Transport Protocol, User Datagram Protocol, Internet
Protocol), UDP/IP, IP and ESP/IP (Encapsulating Security Payload)
headers. Additional profiles for compression of IP headers [RFC3843]
and UDP-Lite (User Datagram Protocol Lite) headers [RFC4019] were
later specified to complete the initial set of ROHC profiles.
This document defines an updated version for each of the above
mentioned profiles, and the definitions depend on the ROHC framework
as found in [RFC4995]. The framework is required reading to
understand the profile definitions, rules, and their role.
Specifically, this document defines header compression schemes for:
o RTP/UDP/IP : profile 0x0101
o UDP/IP : profile 0x0102
o ESP/IP : profile 0x0103
o IP : profile 0x0104
o RTP/UDP-Lite/IP : profile 0x0107
o UDP-Lite/IP : profile 0x0108
Each of the profiles above can compress the following type of
extension headers:
o AH [RFC4302]
o GRE [RFC2784][RFC2890]
o MINE [RFC2004]
o IPv6 Destination Options header[RFC2460]
o IPv6 Hop-by-hop Options header[RFC2460]
o IPv6 Routing header [RFC2460]
2. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].
Pelletier & Sandlund Standards Track [Page 4]
^L
RFC 5225 ROHCv2 Profiles April 2008
This document is consistent with the terminology found in the ROHC
framework [RFC4995] and in the formal notation for ROHC [RFC4997].
In addition, this document uses or defines the following terms:
Acknowledgment Number
The Acknowledgment Number identifies what packet is being
acknowledged in the RoHCv2 feedback element (See Section 6.9).
The value of this field normally corresponds to the Master
Sequence Number (MSN) of the header that was last successfully
decompressed, for the compression context (CID) for which the
feedback information applies.
Chaining of Items
A chain of items groups fields based on similar characteristics.
ROHCv2 defines chain items for static, dynamic and irregular
fields. Chaining is achieved by appending an item to the chain
for each header in its order of appearance in the uncompressed
packet. Chaining is useful to construct compressed headers from
an arbitrary number of any of the protocol headers for which a
ROHCv2 profile defines a compressed format.
CRC-3 Control Fields Validation
The CRC-3 control fields validation refers to the validation of
the control fields. This validation is performed by the
decompressor when it receives a Compressed (CO) header that
contains a 3-bit Cyclic Redundancy Check (CRC) calculated over
control fields. This 3-bit CRC covers controls fields carried in
the CO header as well as specific control fields in the context.
In the formal definition of the header formats, this 3-bit CRC is
labeled "control_crc3" and uses the control_crc3_encoding (See
also Section 6.6.11).
Delta
The delta refers to the difference in the absolute value of a
field between two consecutive packets being processed by the same
compression endpoint.
Reordering Depth
The number of packets by which a packet is received late within
its sequence due to reordering between the compressor and the
decompressor, i.e., reordering between packets associated with the
same context (CID). See the definition of sequentially late
packet below.
Pelletier & Sandlund Standards Track [Page 5]
^L
RFC 5225 ROHCv2 Profiles April 2008
ROHCv2 Header Types
ROHCv2 profiles use two different header types: the Initialization
and Refresh (IR) header type, and the Compressed (CO) header type.
Sequentially Early Packet
A packet that reaches the decompressor before one or several
packets that were delayed over the channel, where all of the said
packets belong to the same header-compressed flow and are
associated to the same compression context (CID). At the time of
the arrival of a sequentially early packet, the packet(s) delayed
on the link cannot be differentiated from lost packet(s).
Sequentially Late Packet
A packet is late within its sequence if it reaches the
decompressor after one or several other packets belonging to the
same CID have been received, although the sequentially late packet
was sent from the compressor before the other packet(s). How the
decompressor detects a sequentially late packet is outside the
scope of this specification, but it can for example use the MSN
for this purpose.
Timestamp Stride (ts_stride)
The timestamp stride (ts_stride) is the expected increase in the
timestamp value between two RTP packets with consecutive sequence
numbers. For example, for a media encoding with a sample rate of
8 kHz producing one frame every 20 ms, the RTP timestamp will
typically increase by n * 160 (= 8000 * 0.02), for some integer n.
Time Stride (time_stride)
The time stride (time_stride) is the time interval equivalent to
one ts_stride, e.g., 20 ms in the example for the RTP timestamp
increment above.
Pelletier & Sandlund Standards Track [Page 6]
^L
RFC 5225 ROHCv2 Profiles April 2008
3. Acronyms
This section lists most acronyms used for reference, in addition to
those defined in [RFC4995].
AH Authentication Header.
ESP Encapsulating Security Payload.
GRE Generic Routing Encapsulation.
FC Full Context state (decompressor).
IP Internet Protocol.
LSB Least Significant Bits.
MINE Minimal Encapsulation in IP.
MSB Most Significant Bits.
MSN Master Sequence Number.
NC No Context state (decompressor).
OA Optimistic Approach.
RC Repair Context state (decompressor).
ROHC Header compression framework (RFC 4995).
ROHCv2 Set of header compression profiles defined in this document.
RTP Real-time Transport Protocol.
SSRC Synchronization source. Field in RTP header.
CSRC Contributing source. The RTP header contains an optional
list of contributing sources.
TC Traffic Class. Field in the IPv6 header. See also TOS.
TOS Type Of Service. Field in the IPv4 header. See also TC.
TS RTP Timestamp.
TTL Time to Live. Field in the IPv4 header.
UDP User Datagram Protocol.
UDP-Lite User Datagram Protocol Lite.
4. Background (Informative)
This section provides background information on the compression
profiles defined in this document. The fundamentals of general
header compression and of the ROHC framework may be found in sections
3 and 4 of [RFC4995], respectively. The fundamentals of the formal
notation for ROHC are defined in [RFC4997]. [RFC4224] describes the
impacts of out-of-order delivery on profiles based on [RFC3095].
4.1. Classification of Header Fields
Section 3.1 of [RFC4995] explains that header compression is possible
due to the fact that there is much redundancy between field values
within the headers of a packet, especially between the headers of
consecutive packets.
Appendix A lists and classifies in detail all the header fields
relevant to this document. The appendix concludes with
Pelletier & Sandlund Standards Track [Page 7]
^L
RFC 5225 ROHCv2 Profiles April 2008
recommendations on how the various fields should be handled by header
compression algorithms.
The main conclusion is that most of the header fields can easily be
compressed away since they never or seldom change. A small number of
fields however need more sophisticated mechanisms.
These fields are:
- IPv4 Identification (16 bits) - IP-ID
- ESP Sequence Number (32 bits) - ESP SN
- UDP Checksum (16 bits) - Checksum
- UDP-Lite Checksum (16 bits) - Checksum
- UDP-Lite Checksum Coverage (16 bits) - CCov
- RTP Marker ( 1 bit ) - M-bit
- RTP Sequence Number (16 bits) - RTP SN
- RTP Timestamp (32 bits) - TS
In particular, for RTP, the analysis in Appendix A reveals that the
values of the RTP Timestamp (TS) field usually have a strong
correlation to the RTP Sequence Number (SN), which increments by one
for each packet emitted by an RTP source. The RTP M-bit is expected
to have the same value most of the time, but it needs to be
communicated explicitly on occasion.
For UDP, the Checksum field cannot be inferred or recalculated at the
receiving end without violating its end-to-end properties, and is
thus sent as-is when enabled (mandatory with IPv6). The same applies
to the UDP-Lite Checksum (mandatory with both IPv4 and IPv6), while
the UDP-Lite Checksum Coverage may in some cases be compressible.
For IPv4, a similar correlation as that of the RTP TS to the RTP SN
is often observed between the Identifier field (IP-ID) and the master
sequence number (MSN) used for compression (e.g., the RTP SN when
compressing RTP headers).
4.2. Improvements of ROHCv2 over RFC 3095 Profiles
The ROHCv2 profiles can achieve compression efficiency and robustness
that are both at least equivalent to RFC 3095 profiles [RFC3095],
when used under the same operating conditions. In particular, the
size and bit layout of the smallest compressed header (i.e., PT-0
format U/O-0 in RFC 3095, and pt_0_crc3 in ROHCv2) are identical.
There are a number of differences and improvements between profiles
defined in this document and their earlier version defined in RFC
3095. This section provides an overview of some of the most
significant improvements:
Pelletier & Sandlund Standards Track [Page 8]
^L
RFC 5225 ROHCv2 Profiles April 2008
Tolerance to reordering
Profiles defined in RFC 3095 require that the channel between
compressor and decompressor provide in-order delivery between
compression endpoints. ROHCv2 profiles, however, can handle
robustly and efficiently a limited amount of reordering after the
compression point as part of the compression algorithm itself. In
addition, this improved support for reordering makes it possible
for ROHCv2 profiles to handle prelink reordering more efficiently.
Operational logic
Profiles in RFC 3095 define multiple operational modes, each with
different updating logic and compressed header formats. ROHCv2
profiles operate in unidirectional operation until feedback is
first received for a context (CID), at which point bidirectional
operation is used; the formats are independent of what operational
logic is used.
IP extension header
Profiles in RFC 3095 compress IP Extension headers using list
compression. ROHCv2 profiles instead treat extension headers in
the same manner as other protocol headers, i.e., using the
chaining mechanism; it thus assumes that extension headers are not
added or removed during the lifetime of a context (CID), otherwise
compression has to be restarted for this flow.
IP encapsulation
Profiles in RFC 3095 can compress at most two levels of IP
headers. ROHCv2 profiles can compress an arbitrary number of IP
headers.
List compression
ROHCv2 profiles do not support reference-based list compression.
Robustness and repairs
ROHCv2 profiles do not define a format for the IR-DYN packet;
instead, each profile defines a compressed header that can be used
to perform a more robust context repair using a 7-bit CRC
verification. This also implies that only the IR header can
change the association between a CID and the profile it uses.
Pelletier & Sandlund Standards Track [Page 9]
^L
RFC 5225 ROHCv2 Profiles April 2008
Feedback
ROHCv2 profiles mandate a CRC in the format of the FEEDBACK-2,
while this is optional in RFC 3095. A different set of feedback
options is also used in ROHCv2 compared to RFC 3095.
4.3. Operational Characteristics of ROHCv2 Profiles
Robust header compression can be used over different link
technologies. Section 4.4 of [RFC4995] lists the operational
characteristics of the ROHC channel. The ROHCv2 profiles address a
wide range of applications, and this section summarizes some of the
operational characteristics that are specific to these profiles.
Packet length
ROHCv2 profiles assume that the lower layer indicates the length
of a compressed packet. ROHCv2 compressed headers do not contain
length information for the payload.
Out-of-order delivery between compression endpoints
The definition of the ROHCv2 profiles places no strict requirement
on the delivery sequence between the compression endpoints, i.e.,
packets may be received in a different order than the compressor
has sent them and still have a fair probability of being
successfully decompressed.
However, frequent out-of-order delivery and/or significant
reordering depth will negatively impact the compression
efficiency. More specifically, if the compressor can operate
using a proper estimate of the reordering characteristics of the
path between the compression endpoints, larger headers can be sent
more often to increase the robustness against decompression
failures due to out-of-order delivery. Otherwise, the compression
efficiency will be impaired from an increase in the frequency of
decompression failures and recovery attempts.
5. Overview of the ROHCv2 Profiles (Informative)
This section provides an overview of concepts that are important and
useful to the ROHCv2 profiles. These concepts may be used as
guidelines for implementations but they are not part of the normative
definition of the profiles, as these concepts relate to the
compression efficiency of the protocol without impacting the
interoperability characteristics of an implementation.
Pelletier & Sandlund Standards Track [Page 10]
^L
RFC 5225 ROHCv2 Profiles April 2008
5.1. Compressor Concepts
Header compression can be conceptually characterized as the
interaction of a compressor with a decompressor state machine, one
per context. The responsibility of the compressor is to convey the
information needed to successfully decompress a packet, based on a
certain confidence regarding the state of the decompressor context.
This confidence is obtained from the frequency and the type of
information the compressor sends when updating the decompressor
context from the optimistic approach (Section 5.1.1), and optionally
from feedback messages (See Section 6.9), received from the
decompressor.
5.1.1. Optimistic Approach
A compressor always uses the optimistic approach when it performs
context updates. The compressor normally repeats the same type of
update until it is fairly confident that the decompressor has
successfully received the information. If the decompressor
successfully receives any of the headers containing this update, the
state will be available for the decompressor to process smaller
compressed headers.
If field X in the uncompressed header changes value, the compressor
uses a header type that contains an encoding of field X until it has
gained confidence that the decompressor has received at least one
packet containing the new value for X. The compressor normally
selects a compressed format with the smallest header that can convey
the changes needed to achieve confidence.
The number of repetitions that is needed to obtain this confidence is
normally related to the packet loss and out-of-order delivery
characteristics of the link where header compression is used; it is
thus not defined in this document. It is outside the scope of this
specification and is left to implementors to decide.
5.1.2. Tradeoff between Robustness to Losses and to Reordering
The ability of a header compression algorithm to handle sequentially
late packets is mainly limited by two factors: the interpretation
interval offset of the sliding window used for lsb encoded fields
[RFC4997], and the optimistic approach (See Section 5.1.1) for seldom
changing fields.
Pelletier & Sandlund Standards Track [Page 11]
^L
RFC 5225 ROHCv2 Profiles April 2008
lsb encoded fields:
The interpretation interval offset specifies an upper limit for
the maximum reordering depth, by which is it possible for the
decompressor to recover the original value of a dynamically
changing (i.e., sequentially incrementing) field that is encoded
using a window-based lsb encoding. Its value is typically bound
to the number of lsb compressed bits in the compressed header
format, and thus grows with the number of bits transmitted.
However, the offset and the lsb encoding only provide robustness
for the field that it compresses, and (implicitly) for other
sequentially changing fields that are derived from that field.
This is shown in the figure below:
<--- interpretation interval (size is 2^k) ---->
|------------------+---------------------------|
v_ref-p v_ref v_ref + (2^k-1) - p
Lower Upper
Bound Bound
<--- reordering --> <--------- losses --------->
where p is the maximum negative delta, corresponding to the
maximum reordering depth for which the lsb encoding can recover
the original value of the field;
where (2^k-1) - p is the maximum positive delta, corresponding
to the maximum number of consecutive losses for which the lsb
encoding can recover the original value of the field;
where v_ref is the reference value, as defined in the lsb
encoding method in [RFC4997].
There is thus a tradeoff between the robustness against reordering
and the robustness against packet losses, with respect to the
number of MSN bits needed and the distribution of the
interpretation interval between negative and positive deltas in
the MSN.
Seldom changing fields
The optimistic approach (Section 5.1.1) provides the upper limit
for the maximum reordering depth for seldom changing fields.
There is thus a tradeoff between compression efficiency and
robustness. When only information on the MSN needs to be conveyed to
the decompressor, the tradeoff relates to the number of compressed
Pelletier & Sandlund Standards Track [Page 12]
^L
RFC 5225 ROHCv2 Profiles April 2008
MSN bits in the compressed header format. Otherwise, the tradeoff
relates to the implementation of the optimistic approach.
In particular, compressor implementations should adjust their
optimistic approach strategy to match both packet loss and reordering
characteristics of the link over which header compression is applied.
For example, the number of repetitions for each update of a non-lsb
encoded field can be increased. The compressor can ensure that each
update is repeated until it is reasonably confident that at least one
packet containing the change has reached the decompressor before the
first packet sent after this sequence.
5.1.3. Interactions with the Decompressor Context
The compressor normally starts compression with the initial
assumption that the decompressor has no useful information to process
the new flow, and sends Initialization and Refresh (IR) packets.
Initially, when sending the first IR packet for a compressed flow,
the compressor does not expect to receive feedback for that flow,
until such feedback is first received. At this point, the compressor
may then assume that the decompressor will continue to send feedback
in order to repair its context when necessary. The former is
referred to as unidirectional operation, while the latter is called
bidirectional operation.
The compressor can then adjust the compression level (i.e., what
header format it selects) based on its confidence that the
decompressor has the necessary information to successfully process
the compressed headers that it selects.
In other words, the responsibilities of the compressor are to ensure
that the decompressor operates with state information that is
sufficient to successfully decompress the type of compressed
header(s) it receives, and to allow the decompressor to successfully
recover that state information as soon as possible otherwise. The
compressor therefore selects the type of compressed header based on
the following factors:
o the outcome of the encoding method applied to each field;
o the optimistic approach, with respect to the characteristics of
the channel;
o the type of operation (unidirectional or bidirectional), and if in
bidirectional operation, feedback received from the decompressor
(ACKs, NACKs, STATIC-NACK, and options).
Pelletier & Sandlund Standards Track [Page 13]
^L
RFC 5225 ROHCv2 Profiles April 2008
Encoding methods normally use previous value(s) from a history of
packets whose headers it has previously compressed. The optimistic
approach is meant to ensure that at least one compressed header
containing the information to update the state for a field is
received. Finally, feedback indicates what actions the decompressor
has taken with respect to its assumptions regarding the validity of
its context (Section 5.2.2); it indicates what type of compressed
header the decompressor can or cannot decompress.
The decompressor has the means to detect decompression failures for
any compressed (CO) header format, using the CRC verification.
Depending on the frequency and/or on the type of the failure, it
might send a negative acknowledgement (NACK) or an explicit request
for a complete context update (STATIC-NACK). However, the
decompressor does not have the means to identify the cause of the
failure, and in particular the decompression of what field(s) is
responsible for the failure. The compressor is thus always
responsible for determining the most suitable response to a negative
acknowledgement, using the confidence it has in the state of the
decompressor context, when selecting the type of compressed header it
will use when compressing a header.
5.2. Decompressor Concepts
The decompressor normally uses the last received and successfully
validated (IR packets) or verified (CO packets) header as the
reference for future decompression.
The decompressor is responsible for verifying the outcome of every
decompression attempt, to update its context when successful, and
finally to request context repairs by making coherent usage of
feedback once it has started using feedback.
Specifically, the outcome of every decompression attempt is verified
using the CRC present in the compressed header; the decompressor
updates the context information when this outcome is successfully
verified; finally, if the decompressor uses feedback once for a
compressed flow, then it will continue to do so for as long as the
corresponding context is associated with the same profile.
5.2.1. Decompressor State Machine
The decompressor operation may be represented as a state machine
defining three states: No Context (NC), Repair Context (RC), and Full
Context (FC).
The decompressor starts without a valid context, the NC state. Upon
receiving an IR packet, the decompressor validates the integrity of
Pelletier & Sandlund Standards Track [Page 14]
^L
RFC 5225 ROHCv2 Profiles April 2008
its header using the CRC-8 validation. If the IR header is
successfully validated, the decompressor updates the context and uses
this header as the reference header, and moves to the FC state. Once
the decompressor state machine has entered the FC state, it does not
normally leave; only repeated decompression failures will force the
decompressor to transit downwards to a lower state. When context
damage is detected, the decompressor moves to the repair context (RC)
state, where it stays until it successfully verifies a decompression
attempt for a compressed header with a 7-bit CRC or until it
successfully validates an IR header. When static context damage is
detected, the decompressor moves back to the NC state.
Below is the state machine for the decompressor. Details of the
transitions between states and decompression logic are given in the
sub-sections following the figure.
CRC-8(IR) Validation
+----->----->----->----->----->----->----->----->----->----->----+
| CRC-8(IR) |
| !CRC-8(IR) or CRC-7(CO) or or CRC-7(CO) |
| PT not allowed CRC-8(IR) or CRC-3(CO) |
| +--->---+ +--->----->----->----->---+ +--->---->---+ |
| | | | | | | |
| | v | v | v v
+-----------------+ +----------------------+ +--------------------+
| No Context (NC) | | Repair Context (RC) | | Full Context (FC) |
+-----------------+ +----------------------+ +--------------------+
^ ^ Static Context | ^ !CRC-7(CO) or | ^ Context Damage | |
| | Damage Detected | | PT not allowed | | Detected | |
| +--<-----<-----<--+ +----<------<----+ +--<-----<-----<--+ |
| |
| Static Context Damage Detected |
+--<-----<-----<-----<-----<-----<-----<-----<-----<---------+
where:
CRC-8(IR) : Successful CRC-8 validation for the IR header.
!CRC-8(IR) : Unsuccessful CRC-8 validation for the IR header.
CRC-7(CO) and/or
CRC-3(CO) : Successful CRC verification for the decompression
of a CO header, based on the number of CRC bits
carried in the CO header.
!CRC-7(CO) : Failure to CRC verify the decompression of a CO
header carrying a 7-bit CRC.
PT not allowed : The decompressor has received a packet type (PT)
for which the decompressor's current context does
not provide enough valid state information to
decompress the packet.
Pelletier & Sandlund Standards Track [Page 15]
^L
RFC 5225 ROHCv2 Profiles April 2008
Static Context Damage Detected: See definition in Section 5.2.2.
Context Damage Detected: See definition in Section 5.2.2.
5.2.1.1. No Context (NC) State
Initially, while working in the No Context (NC) state, the
decompressor has not yet successfully validated an IR header.
Attempting decompression:
In the NC state, only packets carrying sufficient information on
the static fields (i.e., IR packets) can be decompressed.
Upward transition:
The decompressor can move to the Full Context (FC) state when the
CRC validation of an 8-bit CRC in an IR header is successful.
Feedback logic:
In the NC state, the decompressor should send a STATIC-NACK if a
packet of a type other than IR is received, or if an IR header has
failed the CRC-8 validation, subject to the feedback rate
limitation as described in Section 5.2.3.
5.2.1.2. Repair Context (RC) State
In the Repair Context (RC) state, the decompressor has successfully
decompressed packets for this context, but does not have confidence
that the entire context is valid.
Attempting decompression:
In the RC state, only headers covered by an 8-bit CRC (i.e., IR)
or CO headers carrying a 7-bit CRC can be decompressed.
Upward transition:
The decompressor can move to the Full Context (FC) state when the
CRC verification succeeds for a CO header carrying a 7-bit CRC or
when validation of an 8-bit CRC in an IR header succeeds.
Downward transition:
The decompressor moves back to the NC state if it assumes static
context damage.
Pelletier & Sandlund Standards Track [Page 16]
^L
RFC 5225 ROHCv2 Profiles April 2008
Feedback logic:
In the RC state, the decompressor should send a STATIC-NACK when
CRC-8 validation of an IR header fails, or when a CO header
carrying a 7-bit CRC fails and static context damage is assumed,
subject to the feedback rate limitation as described in
Section 5.2.3. If any other packet type is received, the
decompressor should treat it as a CRC verification failure to
determine if NACK is to be sent.
5.2.1.3. Full Context (FC) State
In the Full Context (FC) state, the decompressor assumes that its
entire context is valid.
Attempting decompression:
In the FC state, decompression can be attempted regardless of the
type of packet received.
Downward transition:
The decompressor moves back to the RC state if it assumes context
damage. If the decompressor assumes static context damage, it
moves directly to the NC state.
Feedback logic:
In the FC state, the decompressor should send a NACK when CRC-8
validation or CRC verification of any header type fails and if
context damage is assumed, or it should send a STATIC-NACK if
static context damage is assumed; this is subject to the feedback
rate limitation described in Section 5.2.3.
5.2.2. Decompressor Context Management
All header formats carry a CRC and are context updating. A packet
for which the CRC succeeds updates the reference values of all header
fields, either explicitly (from the information about a field carried
within the compressed header) or implicitly (fields inferred from
other fields).
The decompressor may assume that some or the entire context is
invalid, when it fails to validate or to verify one or more headers
using the CRC. Because the decompressor cannot know the exact
Pelletier & Sandlund Standards Track [Page 17]
^L
RFC 5225 ROHCv2 Profiles April 2008
reason(s) for a CRC failure or what field caused it, the validity of
the context hence does not refer to what specific part(s) of the
context is deemed valid or not.
Validity of the context rather relates to the detection of a problem
with the context. The decompressor first assumes that the type of
information that most likely caused the failure(s) is the state that
normally changes for each packet, i.e., context damage of the dynamic
part of the context. Upon repeated decompression failures and
unsuccessful repairs, the decompressor then assumes that the entire
context, including the static part, needs to be repaired, i.e.,
static context damage. Failure to validate the 3-bit CRC that
protects control fields should be treated as a decompression failure
when the decompressor asserts the validity of its context.
Context Damage Detection
The assumption of context damage means that the decompressor will
not attempt decompression of a CO header that carries only a 3-bit
CRC, and will only attempt decompression of IR headers or CO
headers protected by a CRC-7.
Static Context Damage Detection
The assumption of static context damage means that the
decompressor refrains from attempting decompression of any type of
header other than the IR header.
How these assumptions are made, i.e., how context damage is detected,
is open to implementations. It can be based on the residual error
rate, where a low error rate makes the decompressor assume damage
more often than on a high rate link.
The decompressor implements these assumptions by selecting the type
of compressed header for which it will attempt decompression. In
other words, validity of the context refers to the ability of a
decompressor to attempt (or not) decompression of specific packet
types.
When ROHCv2 profiles are used over a channel that cannot guarantee
in-order delivery, the decompressor may refrain from updating its
context with the content of a sequentially late packet that is
successfully decompressed. This is to avoid updating the context
with information that is older than what the decompressor already has
in its context.
Pelletier & Sandlund Standards Track [Page 18]
^L
RFC 5225 ROHCv2 Profiles April 2008
5.2.3. Feedback Logic
ROHCv2 profiles may be used in environments with or without feedback
capabilities from decompressor to compressor. ROHCv2 however assumes
that if a ROHC feedback channel is available and if this channel is
used at least once by the decompressor for a specific context, this
channel will be used during the entire compression operation for that
context (i.e., bidirectional operation).
The ROHC framework defines 3 types of feedback messages: ACKs, NACKs,
and STATIC-NACKs. The semantics of each message is defined in
Section 5.2.4.1. of [RFC4995]. What feedback to send is coupled with
the context management of the decompressor, i.e., with the
implementation of the context damage detection algorithms as
described in Section 5.2.2.
The decompressor should send a NACK when it assumes context damage,
and it should send a STATIC-NACK when it assumes static context
damage. The decompressor is not strictly expected to send ACK
feedback upon successful decompression, other than for the purpose of
improving compression efficiency.
When ROHCv2 profiles are used over a channel that cannot guarantee
in-order delivery, the decompressor may refrain from sending ACK
feedback for a sequentially late packet that is successfully
decompressed.
The decompressor should limit the rate at which it sends feedback,
for both ACKs and STATIC-NACK/NACKs, and should avoid sending
unnecessary duplicates of the same type of feedback message that may
be associated with the same event.
6. ROHCv2 Profiles (Normative)
6.1. Channel Parameters, Segmentation, and Reordering
The compressor MUST NOT use ROHC segmentation (see Section 5.2.5 of
[RFC4995]), i.e., the Maximum Reconstructed Reception Unit (MRRU)
MUST be set to 0, if the configuration of the ROHC channel contains
at least one ROHCv2 profile in the list of supported profiles (i.e.,
the PROFILES parameter) and if the channel cannot guarantee in-order
delivery of packets between compression endpoints.
Pelletier & Sandlund Standards Track [Page 19]
^L
RFC 5225 ROHCv2 Profiles April 2008
6.2. Profile Operation, Per-context
ROHCv2 profiles operate differently, per context, depending on how
the decompressor makes use of the feedback channel, if any. Once the
decompressor uses the feedback channel for a context, it establishes
the feedback channel for that CID.
The compressor always starts with the assumption that the
decompressor will not send feedback when it initializes a new context
(see also the definition of a new context in Section 5.1.1. of
[RFC4995], i.e., there is no established feedback channel for the new
context. At this point, despite the use of the optimistic approach,
decompression failure is still possible because the decompressor may
not have received sufficient information to correctly decompress the
packets; therefore, until the decompressor has established a feedback
channel, the compressor SHOULD periodically send IR packets. The
periodicity can be based on timeouts, on the number of compressed
packets sent for the flow, or any other strategy the implementer
chooses.
The reception of either positive feedback (ACKs) or negative feedback
(NACKs or STATIC-NACKs) from the decompressor establishes the
feedback channel for the context (CID) for which the feedback was
received. Once there is an established feedback channel for a
specific context, the compressor can make use of this feedback to
estimate the current state of the decompressor. This helps to
increase the compression efficiency by providing the information
needed for the compressor to achieve the necessary confidence level.
When the feedback channel is established, it becomes superfluous for
the compressor to send periodic refreshes, and instead it can rely
entirely on the optimistic approach and feedback from the
decompressor.
The decompressor MAY send positive feedback (ACKs) to initially
establish the feedback channel for a particular flow. Either
positive feedback (ACKs) or negative feedback (NACKs or STATIC-NACKs)
establishes this channel. Once it has established a feedback channel
for a CID, the decompressor is REQUIRED to continue sending feedback
for the lifetime of the context (i.e., until it receives an IR packet
that associates the CID to a different profile), to send error
recovery requests and (optionally) acknowledgments of significant
context updates.
Compression without an established feedback channel will be less
efficient, because of the periodic refreshes and the lack of feedback
to trigger error recovery; there will also be a slightly higher
probability of loss propagation compared to the case where the
decompressor uses feedback.
Pelletier & Sandlund Standards Track [Page 20]
^L
RFC 5225 ROHCv2 Profiles April 2008
6.3. Control Fields
ROHCv2 defines a number of control fields that are used by the
decompressor in its interpretation of the header formats received
from the compressor. The control fields listed in the following
subsections are defined using the formal notation [RFC4997] in
Section 6.8.2.4 of this document.
6.3.1. Master Sequence Number (MSN)
The Master Sequence Number (MSN) field is either taken from a field
that already exists in one of the headers of the protocol that the
profile compresses (e.g., RTP SN), or alternatively it is created at
the compressor. There is one MSN space per context.
The MSN field has the following two functions:
o Differentiating between reference headers when receiving feedback
data;
o Inferring the value of incrementing fields (e.g., IPv4
Identifier).
There is one MSN field in every ROHCv2 header, i.e., the MSN is
always present in each header type sent by the compressor. The MSN
is sent in full in IR headers, while it can be lsb encoded within CO
header formats. The decompressor always includes LSBs of the MSN in
the Acknowledgment Number field in feedback (see Section 6.9). The
compressor can later use this field to infer what packet the
decompressor is acknowledging.
For profiles for which the MSN is created by the compressor (i.e.,
0x0102, 0x0104, and 0x0108), the following applies:
o The compressor only initializes the MSN for a context when that
context is first created or when the profile associated with a
context changes;
o When the MSN is initialized, it is initialized to a random value;
o The value of the MSN SHOULD be incremented by one for each packet
that the compressor sends for a specific CID.
6.3.2. Reordering Ratio
The control field reorder_ratio specifies how much reordering is
handled by the lsb encoding of the MSN. This is useful when header
compression is performed over links with varying reordering
Pelletier & Sandlund Standards Track [Page 21]
^L
RFC 5225 ROHCv2 Profiles April 2008
characteristics. The reorder_ratio control field provides the means
for the compressor to adjust the robustness characteristics of the
lsb encoding method with respect to reordering and consecutive
losses, as described in Section 5.1.2.
6.3.3. IP-ID Behavior
The IP-ID field of the IPv4 header can have different change
patterns: sequential in network byte order, sequential byte-swapped,
random or constant (a constant value of zero, although not conformant
with [RFC0791], has been observed in practice). There is one IP-ID
behavior control field per IP header. The control field for the
IP-ID behavior of the innermost IP header determines which set of
header formats is used. The IP-ID behavior control field is also
used to determine the contents of the irregular chain item, for each
IP header.
ROHCv2 profiles MUST NOT assign a sequential behavior (network byte
order or byte-swapped) to any IP-ID but the one in the innermost IP
header when compressing more than one level of IP headers. This is
because only the IP-ID of the innermost IP header is likely to have a
sufficiently close correlation with the MSN to compress it as a
sequentially changing field. Therefore, a compressor MUST assign
either the constant zero IP-ID or the random IP-ID behavior to
tunneling headers.
6.3.4. UDP-Lite Coverage Behavior
The control field coverage_behavior specifies how the checksum
coverage field of the UDP-Lite header is compressed with RoHCv2. It
can indicate one of the following encoding methods: irregular,
static, or inferred encoding.
6.3.5. Timestamp Stride
The ts_stride control field is used in scaled RTP timestamp encoding
(see Section 6.6.8). It defines the expected increase in the RTP
timestamp between consecutive RTP sequence numbers.
6.3.6. Time Stride
The time_stride control field is used in timer-based compression
encoding (see Section 6.6.9). When timer-based compression is used,
time_stride should be set to the expected difference in arrival time
between consecutive RTP packets.
Pelletier & Sandlund Standards Track [Page 22]
^L
RFC 5225 ROHCv2 Profiles April 2008
6.3.7. CRC-3 for Control Fields
ROHCv2 profiles define a CRC-3 calculated over a number of control
fields. This 3-bit CRC protecting the control fields is present in
the header format for the co_common and co_repair header types.
The decompressor MUST always validate the integrity of the control
fields covered by this 3-bit CRC when processing a co_common or a
co_repair compressed header.
Failure to validate the control fields using this CRC should be
considered as a decompression failure by the decompressor in the
algorithm that assesses the validity of the context. However, if the
decompression attempt can be verified using either the CRC-3 or the
CRC-7 calculated over the uncompressed header, the decompressor MAY
still forward the decompressed header to upper layers. This is
because the protected control fields are not always used to
decompress the header (i.e., co_common or co_repair) that updates
their respective value.
The CRC polynomial and coverage of this CRC-3 is defined in
Section 6.6.11.
6.4. Reconstruction and Verification
Validation of the IR header (8-bit CRC)
The decompressor MUST always validate the integrity of the IR
header using the 8-bit CRC carried within the IR header. When the
header is validated, the decompressor updates the context with the
information in the IR header. Otherwise, if the IR cannot be
validated, the context MUST NOT be updated and the IR header MUST
NOT be delivered to upper layers.
Verification of CO headers (3-bit CRC or 7-bit CRC)
The decompressor MUST always verify the decompression of a CO
header using the CRC carried within the compressed header. When
the decompression is verified and successful, the decompressor
updates the context with the information received in the CO
header; otherwise, if the reconstructed header fails the CRC
verification, these updates MUST NOT be performed.
A packet for which the decompression attempt cannot be verified
using the CRC MUST NOT be delivered to upper layers.
Pelletier & Sandlund Standards Track [Page 23]
^L
RFC 5225 ROHCv2 Profiles April 2008
Decompressor implementations may attempt corrective or repair
measures on CO headers prior to performing the above actions, and
the result of any decompression attempt MUST be verified using the
CRC.
6.5. Compressed Header Chains
Some header types use one or more chains containing sub-header
information. The function of a chain is to group fields based on
similar characteristics, such as static, dynamic, or irregular
fields.
Chaining is done by appending an item for each header to the chain in
their order of appearance in the uncompressed packet, starting from
the fields in the outermost header.
In the text below, the term <protocol_name> is used to identify
formal notation names corresponding to different protocol headers.
The mapping between these is defined in the following table:
+----------------------------------+---------------+
| Protocol | protocol_name |
+----------------------------------+---------------+
| IPv4 RFC 0791 | ipv4 |
| IPv6 RFC 2460 | ipv6 |
| UDP RFC 0768 | udp |
| RTP RFC 3550 | rtp |
| ESP RFC 4303 | esp |
| UDP-Lite RFC 3828 | udp_lite |
| AH RFC 4302 | ah |
| GRE RFC 2784, RFC 2890 | gre |
| MINE RFC 2004 | mine |
| IPv6 Destination Option RFC 2460 | dest_opt |
| IPv6 Hop-by-hop Options RFC 2460 | hop_opt |
| IPv6 Routing Header RFC 2460 | rout_opt |
+----------------------------------+---------------+
Static chain:
The static chain consists of one item for each header of the chain
of protocol headers that is compressed, starting from the
outermost IP header. In the formal description of the header
formats, this static chain item for each header type is labeled
<protocol_name>_static. The static chain is only used in the IR
header format.
Pelletier & Sandlund Standards Track [Page 24]
^L
RFC 5225 ROHCv2 Profiles April 2008
Dynamic chain:
The dynamic chain consists of one item for each header of the
chain of protocol headers that is compressed, starting from the
outermost IP header. In the formal description of the header
formats, the dynamic chain item for each header type is labeled
<protocol_name>_dynamic. The dynamic chain is only used in the IR
and co_repair header formats.
Irregular chain:
The structure of the irregular chain is analogous to the structure
of the static chain. For each compressed header that uses the
general format of Section 6.8, the irregular chain is appended at
a specific location in the general format of the compressed
headers. In the formal description of the header formats, the
irregular chain item for each header type is a format whose name
is suffixed by "_irregular". The irregular chain is used in all
CO headers, except for the co_repair format.
The format of the irregular chain for the innermost IP header
differs from the format used for the outer IP headers, because the
innermost IP header is part of the compressed base header. In the
definition of the header formats using the formal notation, the
argument "is_innermost", which is passed to the corresponding
encoding method (ipv4 or ipv6), determines what irregular chain
items to use. The format of the irregular chain item for the
outer IP headers is also determined using one flag for TTL/Hop
Limit and TOS/TC. This flag is defined in the format of some of
the compressed base headers.
ROHCv2 profiles compress extension headers as other headers, and thus
extension headers have a static chain, a dynamic chain, and an
irregular chain.
ROHCv2 profiles define chains for all headers that can be compressed,
i.e., RTP [RFC3550], UDP [RFC0768], ESP [RFC4303], UDP-Lite
[RFC3828], IPv4 [RFC0791], IPv6 [RFC2460], AH [RFC4302], GRE
[RFC2784][RFC2890], MINE [RFC2004], IPv6 Destination Options header
[RFC2460], IPv6 Hop-by-hop Options header [RFC2460], and IPv6 Routing
header [RFC2460].
6.6. Header Formats and Encoding Methods
The header formats are defined using the ROHC formal notation. Some
of the encoding methods used in the header formats are defined in
[RFC4997], while other methods are defined in this section.
Pelletier & Sandlund Standards Track [Page 25]
^L
RFC 5225 ROHCv2 Profiles April 2008
6.6.1. baseheader_extension_headers
The baseheader_extension_headers encoding method skips over all
fields of the extension headers of the innermost IP header, without
encoding any of them. Fields in these extension headers are instead
encoded in the irregular chain.
This encoding is used in CO headers (see Section 6.8.2). The
innermost IP header is combined with other header(s) (i.e., UDP, UDP-
Lite, RTP) to create the compressed base header. In this case, there
may be a number of extension headers between the IP headers and the
other headers.
The base header defines a representation of the extension headers, to
comply with the syntax of the formal notation; this encoding method
provides this representation.
6.6.2. baseheader_outer_headers
The baseheader_outer_headers encoding method skips over all the
fields of the extension header(s) that do not belong to the innermost
IP header, without encoding any of them. Changing fields in outer
headers are instead handled by the irregular chain.
This encoding method, similarly to the baseheader_extension_headers
encoding method above, is necessary to keep the definition of the
header formats syntactically correct. It describes tunneling IP
headers and their respective extension headers (i.e., all headers
located before the innermost IP header) for CO headers (see
Section 6.8.2).
6.6.3. inferred_udp_length
The decompressor infers the value of the UDP length field as being
the sum of the UDP header length and the UDP payload length. The
compressor must therefore ensure that the UDP length field is
consistent with the length field(s) of preceding subheaders, i.e.,
there must not be any padding after the UDP payload that is covered
by the IP Length.
This encoding method is also used for the UDP-Lite Checksum Coverage
field when it behaves in the same manner as the UDP length field
(i.e., when the checksum always covers the entire UDP-Lite payload).
6.6.4. inferred_ip_v4_header_checksum
This encoding method compresses the header checksum field of the IPv4
header. This checksum is defined in RFC 791 [RFC0791] as follows:
Pelletier & Sandlund Standards Track [Page 26]
^L
RFC 5225 ROHCv2 Profiles April 2008
Header Checksum: 16 bits
A checksum on the header only. Since some header fields change
(e.g., time to live), this is recomputed and verified at each
point that the internet header is processed.
The checksum algorithm is:
The checksum field is the 16 bit one's complement of the one's
complement sum of all 16 bit words in the header. For purposes
of computing the checksum, the value of the checksum field is
zero.
As described above, the header checksum protects individual hops from
processing a corrupted header. As the data that this checksum
protects is mostly compressed away and is instead taken from state
stored in the context, this checksum becomes cumulative to the ROHC
CRC. When using this encoding method, the checksum is recomputed by
the decompressor.
The inferred_ip_v4_header_checksum encoding method thus compresses
the header checksum field of the IPv4 header down to a size of zero
bits, i.e., no bits are transmitted in compressed headers for this
field. Using this encoding method, the decompressor infers the value
of this field using the computation above.
The compressor MAY use the header checksum to validate the
correctness of the header before compressing it, to avoid processing
a corrupted header.
6.6.5. inferred_mine_header_checksum
This encoding method compresses the minimal encapsulation header
checksum. This checksum is defined in RFC 2004 [RFC2004] as follows:
Header Checksum
The 16-bit one's complement of the one's complement sum of all
16-bit words in the minimal forwarding header. For purposes of
computing the checksum, the value of the checksum field is 0.
The IP header and IP payload (after the minimal forwarding
header) are not included in this checksum computation.
The inferred_mine_header_checksum encoding method compresses the
minimal encapsulation header checksum down to a size of zero bits,
i.e., no bits are transmitted in compressed headers for this field.
Using this encoding method, the decompressor infers the value of this
field using the above computation.
Pelletier & Sandlund Standards Track [Page 27]
^L
RFC 5225 ROHCv2 Profiles April 2008
The motivations for inferring this checksum are similar to the ones
explained above in Section 6.6.4.
The compressor MAY use the minimal encapsulation header checksum to
validate the correctness of the header before compressing it, to
avoid processing a corrupted header.
6.6.6. inferred_ip_v4_length
This encoding method compresses the total length field of the IPv4
header. The total length field of the IPv4 header is defined in RFC
791 [RFC0791] as follows:
Total Length: 16 bits
Total Length is the length of the datagram, measured in octets,
including internet header and data. This field allows the
length of a datagram to be up to 65,535 octets.
The inferred_ip_v4_length encoding method compresses the IPv4 header
checksum down to a size of zero bits, i.e., no bits are transmitted
in compressed headers for this field. Using this encoding method,
the decompressor infers the value of this field by counting in octets
the length of the entire packet after decompression.
6.6.7. inferred_ip_v6_length
This encoding method compresses the payload length field in the IPv6
header. This length field is defined in RFC 2460 [RFC2460] as
follows:
Payload Length: 16-bit unsigned integer
Length of the IPv6 payload, i.e., the rest of the packet
following this IPv6 header, in octets. (Note that any
extension headers present are considered part of the payload,
i.e., included in the length count.)
The "inferred_ip_v6_length" encoding method compresses the payload
length field of the IPv6 header down to a size of zero bits, i.e., no
bits are transmitted in compressed headers for this field. Using
this encoding method, the decompressor infers the value of this field
by counting in octets the length of the entire packet after
decompression.
IPv6 headers using the jumbo payload option of RFC 2675 [RFC2675]
will not be compressible with this encoding method since the value of
the payload length field does not match the length of the packet.
Pelletier & Sandlund Standards Track [Page 28]
^L
RFC 5225 ROHCv2 Profiles April 2008
6.6.8. Scaled RTP Timestamp Compression
This section provides additional details on encodings used to scale
the RTP timestamp, as defined in the formal notation in
Section 6.8.2.4.
The RTP timestamp (TS) usually increases by a multiple of the RTP
Sequence Number's (SN's) increase and is therefore a suitable
candidate for scaled encoding. This scaling factor is labeled
ts_stride in the definition of the profile in the formal notation.
The compressor sets the scaling factor based on the change in TS with
respect to the change in the RTP SN.
The default value of the scaling factor ts_stride is 160, as defined
in Section 6.8.2.4. To use a different value for ts_stride, the
compressor explicitly updates the value of ts_stride to the
decompressor using one of the header formats that can carry this
information.
When the compressor uses a scaling factor that is different than the
default value of ts_stride, it can only use the new scaling factor
once it has enough confidence that the decompressor has successfully
calculated the residue (ts_offset) of the scaling function for the
timestamp. The compressor achieves this by sending unscaled
timestamp values, to allow the decompressor to establish the residue
based on the current ts_stride. The compressor MAY send the unscaled
timestamp in the same compressed header(s) used to establish the
value of ts_stride.
Once the compressor has gained enough confidence that both the value
of the scaling factor and the value of the residue have been
established in the decompressor, the compressor can start compressing
packets using the new scaling factor.
When the compressor detects that the residue (ts_offset) value has
changed, it MUST NOT select a compressed header format that uses the
scaled timestamp encoding before it has re-established the residue as
described above.
When the value of the timestamp field wraps around, the value of the
residue of the scaling function is likely to change. When this
occurs, the compressor re-establishes the new residue value as
described above.
If the decompressor receives a compressed header containing scaled
timestamp bits while the ts_stride equals zero, it MUST NOT deliver
the packet to upper layers and it SHOULD treat this as a CRC
verification failure.
Pelletier & Sandlund Standards Track [Page 29]
^L
RFC 5225 ROHCv2 Profiles April 2008
Whether or not the scaling is applied to the RTP TS field is up to
the compressor implementation (i.e., the use of scaling is OPTIONAL),
and is indicated by the tsc_indicator control field. In case scaling
is applied to the RTP TS field, the value of ts_stride used by the
compressor is up to the implementation. A value of ts_stride that is
set to the expected increase in the RTP timestamp between consecutive
unit increases of the RTP SN will provide the most gain for the
scaled encoding. Other values may provide the same gain in some
situations, but may reduce the gain in others.
When scaled timestamp encoding is used for header formats that do not
transmit any lsb-encoded timestamp bits at all, the
inferred_scaled_field encoding of Section 6.6.10 is used for encoding
the timestamp.
6.6.9. timer_based_lsb
The timer-based compression encoding method, timer_based_lsb,
compresses a field whose change pattern approximates a linear
function of the time of day.
This encoding uses the local clock to obtain an approximation of the
value that it encodes. The approximated value is then used as a
reference value together with the num_lsbs_param least-significant
bits received as the encoded value, where num_lsbs_param represents a
number of bits that is sufficient to uniquely represent the encoded
value in the presence of jitter between compression endpoints.
ts_scaled =:= timer_based_lsb(<time_stride_param>,
<num_lsbs_param>, <offset_param>)
The parameters "num_lsbs_param" and "offset_param" are the parameters
to use for the lsb encoding, i.e., the number of least significant
bits and the interpretation interval offset, respectively. The
parameter "time_stride_param" represents the context value of the
control field time_stride.
This encoding method always uses a scaled version of the field it
compresses.
The value of the field is decoded by calculating an approximation of
the scaled value, using:
tsc_ref_advanced = tsc_ref + (a_n - a_ref) / time_stride.
Pelletier & Sandlund Standards Track [Page 30]
^L
RFC 5225 ROHCv2 Profiles April 2008
where:
- tsc_ref is a reference value of the scaled representation
of the field.
- a_n is the arrival time associated with the value to decode.
- a_ref is the arrival time associated with the reference header.
- tsc_ref_advanced is an approximation of the scaled value
of the field.
The lsb encoding is then applied using the num_lsbs_param bits
received in the compressed header and the tsc_ref_advanced as
"ref_value" (as per Section 4.11.5 of [RFC4997]).
Appendix B.3 provides an example of how the compressor can calculate
jitter.
The control field time_stride controls whether or not the
timer_based_lsb method is used in the CO header. The decompressor
SHOULD send the CLOCK_RESOLUTION option with a zero value, if:
o it receives a non-zero time_stride value, and
o it has not previously sent a CLOCK_RESOLUTION feedback with a non-
zero value.
This is to allow compression to recover from the case where a
compressor erroneously activates timer-based compression.
The support and usage of timer-based compression is OPTIONAL for both
the compressor and the decompressor; the compressor is not required
to set the time_stride control field to a non-zero value when it has
received a non-zero value for the CLOCK_RESOLUTION option.
6.6.10. inferred_scaled_field
The inferred_scaled_field encoding method encodes a field that is
defined as changing in relation to the MSN, and for which the
increase with respect to the MSN can be scaled by some scaling
factor. This encoding method is used in compressed header formats
that do not contain any bits for the scaled field. In this case, the
decompressor infers the unscaled value of the scaled field from the
MSN field. The unscaled value is calculated according to the
following formula:
unscaled_value = delta_msn * stride + reference_unscaled_value
where "delta_msn" is the difference in MSN between the reference
value of the MSN in the context and the value of the MSN decompressed
Pelletier & Sandlund Standards Track [Page 31]
^L
RFC 5225 ROHCv2 Profiles April 2008
from this packet, "reference_unscaled_value" is the value of the
field being scaled in the context, and "stride" is the scaling value
for this field.
For example, when this encoding method is applied to the RTP
timestamp in the RTP profile, the calculation above becomes:
timestamp = delta_msn * ts_stride + reference_timestamp
6.6.11. control_crc3_encoding
The control_crc3_encoding method provides a CRC calculated over a
number of control fields. The definition of this encoding method is
the same as for the "crc" encoding method specified in Section 4.11.6
of [RFC4997], with the difference being that the data covered by the
CRC is given by a concatenated list of control fields.
In other words, the definition of the control_crc3_encoding method is
equivalent to the following definition:
control_crc_encoding(ctrl_data_value, ctrl_data_length)
{
UNCOMPRESSED {
}
COMPRESSED {
control_crc3 =:=
crc(3, 0x06, 0x07, ctrl_data_value, ctrl_data_length) [ 3 ];
}
}
where the parameter "ctrl_data_value" binds to the concatenated
values of the following control fields, in the order listed below:
o reorder_ratio, 2 bits padded with 6 MSB of zeroes
o ts_stride, 32 bits (only for profiles 0x0101 and 0x0107)
o time_stride, 32 bits (only for profiles 0x0101 and 0x0107)
o msn, 16 bits (not applicable for profiles 0x0101, 0x0103, and
0x0107)
o coverage_behavior, 2 bits padded with 6 MSB of zeroes (only for
profiles 0x0107 and 0x0108)
Pelletier & Sandlund Standards Track [Page 32]
^L
RFC 5225 ROHCv2 Profiles April 2008
o ip_id_behavior, one octet for each IP header in the compressible
header chain starting from the outermost header. Each octet
consists of 2 bits padded with 6 MSBs of zeroes.
The "ctrl_data_length" binds to the sum of the length of the control
field(s) that are applicable to the specific profile.
The decompressor uses the resulting 3-bit CRC to validate the control
fields that are updated by the co_common and co_repair header
formats; this CRC cannot be used to verify the outcome of a
decompression attempt.
This CRC protects the update of control fields, as the updated values
are not always used to decompress the header that carries them and
thus are not protected by the CRC-7 verification. This prevents
impairments that could occur if the decompression of a co_common or
of a co_repair succeeds and the decompressor sends positive feedback,
while for some reason the control fields are incorrectly updated.
6.6.12. inferred_sequential_ip_id
This encoding method is used with a sequential IP-ID behavior
(sequential or sequential byte-swapped) and when there are no coded
IP-ID bits in the compressed header. In this case, the IP-ID offset
from the MSN is constant, and the IP-ID increases by the same amount
as the MSN (similar to the inferred_scaled_field encoding method).
The decompressor calculates the value for the IP-ID according to the
following formula:
IP-ID = delta_msn + reference_IP_ID_value
where "delta_msn" is the difference between the reference value of
the MSN in the context and the uncompressed value of the MSN
associated to the compressed header, and where
"reference_IP_ID_value" is the value of the IP-ID in the context.
For swapped IP-ID behavior (i.e., when ip_id_behavior_innermost is
set to IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED), "reference_IP_ID_value"
and "IP-ID" are byte-swapped with regard to the corresponding fields
in the context.
If the IP-ID behavior is random or zero, this encoding method does
not update any fields.
Pelletier & Sandlund Standards Track [Page 33]
^L
RFC 5225 ROHCv2 Profiles April 2008
6.6.13. list_csrc(cc_value)
This encoding method compresses the list of RTP CSRC identifiers
using list compression. This encoding establishes a content for the
different CSRC identifiers (items) and a list describing the order in
which they appear.
The compressor passes an argument (cc_value) to this encoding method:
this is the value of the CC field taken from the RTP header. The
decompressor is required to bind the value of this argument to the
number of items in the list, which will allow the decompressor to
correctly reconstruct the CC field.
6.6.13.1. List Compression
The CSRC identifiers in the uncompressed packet can be represented as
an ordered list, whose order and presence are usually constant
between packets. The generic structure of such a list is as follows:
+--------+--------+--...--+--------+
list: | item 1 | item 2 | | item n |
+--------+--------+--...--+--------+
When performing list compression on a CSRC list, each item is the
uncompressed value of one CSRC identifier.
The basic principles of list-based compression are the following:
When initializing the context:
1) The complete representation of the list of CSRC identifiers is
transmitted.
Then, once the context has been initialized:
2) When the list is unchanged, a compressed header that does not
contain information about the list can be used.
3) When the list changes, a compressed list is sent in the compressed
header, including a representation of its structure and order.
Previously unknown items are sent uncompressed in the list, while
previously known items are only represented by an index pointing
to the item stored in the context.
Pelletier & Sandlund Standards Track [Page 34]
^L
RFC 5225 ROHCv2 Profiles April 2008
6.6.13.2. Table-based Item Compression
The table-based item compression compresses individual items sent in
compressed lists. The compressor assigns a unique identifier,
"Index", to each item "Item" of a list.
Compressor Logic
The compressor conceptually maintains an item table containing all
items, indexed using "Index". The (Index, Item) pair is sent
together in compressed lists until the compressor gains enough
confidence that the decompressor has observed the mapping between
items and their respective index. Confidence is obtained from the
reception of an acknowledgment from the decompressor, or by
sending (Index, Item) pairs using the optimistic approach. Once
confidence is obtained, the index alone is sent in compressed
lists to indicate the presence of the item corresponding to this
index.
The compressor MAY reset its item table upon receiving a negative
acknowledgement.
The compressor MAY reassign an existing index to a new item by re-
establishing the mapping using the procedure described above.
Decompressor Logic
The decompressor conceptually maintains an item table that
contains all (Index, Item) pairs received. The item table is
updated whenever an (Index, Item) pair is received and
decompression is successful (CRC verification, or CRC-8
validation). The decompressor retrieves the item from the table
whenever an Index is received without an accompanying Item.
If an index is received without an accompanying Item and the
decompressor does not have any context for this index, the
decompressor MUST NOT deliver the packet to upper layers.
6.6.13.3. Encoding of Compressed Lists
Each item present in a compressed list is represented by:
o an Index into the table of items, and a presence bit indicating if
a compressed representation of the item is present in the list.
o an item (if the presence bit is set).
Pelletier & Sandlund Standards Track [Page 35]
^L
RFC 5225 ROHCv2 Profiles April 2008
If the presence bit is not set, the item must already be known by the
decompressor.
A compressed list of items uses the following encoding:
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| Reserved |PS | m |
+---+---+---+---+---+---+---+---+
| XI_1, ..., XI_m | m octets, or m * 4 bits
/ --- --- --- ---/
| : Padding : if PS = 0 and m is odd
+---+---+---+---+---+---+---+---+
| |
/ Item_1, ..., Item_n / variable
| |
+---+---+---+---+---+---+---+---+
Reserved: MUST be set to zero; otherwise, the decompressor MUST
discard the packet.
PS: Indicates size of XI fields:
PS = 0 indicates 4-bit XI fields;
PS = 1 indicates 8-bit XI fields.
m: Number of XI item(s) in the compressed list. Also, the value
of the cc_value argument of the list_csrc encoding (see
Section 6.6.13).
XI_1, ..., XI_m: m XI items. Each XI represents one item in the
list of items of the uncompressed header, in the same order as
they appear in the uncompressed header.
The format of an XI item is as follows:
0 1 2 3
+---+---+---+---+
PS = 0: | X | Index |
+---+---+---+---+
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
PS = 1: | X | Reserved | Index |
+---+---+---+---+---+---+---+---+
X: Indicates whether the item is present in the list:
Pelletier & Sandlund Standards Track [Page 36]
^L
RFC 5225 ROHCv2 Profiles April 2008
X = 1 indicates that the item corresponding to the Index is
sent in the Item_1, ..., Item_n list;
X = 0 indicates that the item corresponding to the Index is
not sent.
Reserved: MUST be set to zero; otherwise, the decompressor MUST
discard the packet.
Index: An index into the item table. See Section 6.6.13.4
When 4-bit XI items are used, the XI items are placed in octets
in the following manner:
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| XI_k | XI_k + 1 |
+---+---+---+---+---+---+---+---+
Padding: A 4-bit Padding field is present when PS = 0 and the
number of XIs is odd. The Padding field MUST be set to zero;
otherwise, the decompressor MUST discard the packet.
Item 1, ..., item n: Each item corresponds to an XI with X = 1 in
XI 1, ..., XI m. Each entry in the Item list is the uncompressed
representation of one CSRC identifier.
6.6.13.4. Item Table Mappings
The item table for list compression is limited to 16 different items,
since the RTP header can only carry at most 15 simultaneous CSRC
identifiers. The effect of having more than 16 items in the item
table will only cause a slight overhead to the compressor when items
are swapped in/out of the item table.
6.6.13.5. Compressed Lists in Dynamic Chain
A compressed list that is part of the dynamic chain must have all of
its list items present, i.e., all X-bits in the XI list MUST be set.
All items previously established in the item table that are not
present in the list decompressed from this packet MUST also be
retained in the decompressor context.
Pelletier & Sandlund Standards Track [Page 37]
^L
RFC 5225 ROHCv2 Profiles April 2008
6.7. Encoding Methods with External Parameters as Arguments
A number of encoding methods in Section 6.8.2.4 have one or more
arguments for which the derivation of the parameter's value is
outside the scope of the ROHC-FN [RFC4997] specification of the
header formats.
The following is a list of encoding methods with external parameters
as arguments, from Section 6.8.2.4:
o udp(profile_value, reorder_ratio_value)
o udp_lite(profile_value, reorder_ratio_value,
coverage_behavior_value)
o esp(profile_value, reorder_ratio_value)
o rtp(profile_value, ts_stride_value, time_stride_value,
reorder_ratio_value)
o ipv4(profile_value, is_innermost, outer_ip_flag,
ip_id_behavior_value, reorder_ratio_value))
o ipv6(profile_value, is_innermost, outer_ip_flag,
reorder_ratio_value))
o iponly_baseheader(profile_value, outer_ip_flag,
ip_id_behavior_value, reorder_ratio_value)
o udp_baseheader(profile_value, outer_ip_flag, ip_id_behavior_value,
reorder_ratio_value)
o udplite_baseheader(profile_value, outer_ip_flag,
ip_id_behavior_value, reorder_ratio_value)
o esp_baseheader(profile_value, outer_ip_flag, ip_id_behavior_value,
reorder_ratio_value)
o rtp_baseheader(profile_value, ts_stride_value, time_stride_value,
outer_ip_flag, ip_id_behavior_value, reorder_ratio_value)
o udplite_rtp_baseheader(profile_value, ts_stride_value,
time_stride_value, outer_ip_flag, ip_id_behavior_value,
reorder_ratio_value, coverage_behavior_value)
The following applies for all parameters listed below: At the
compressor, the value of the parameter is set according to the
recommendations for each parameter. At the decompressor, the value
Pelletier & Sandlund Standards Track [Page 38]
^L
RFC 5225 ROHCv2 Profiles April 2008
of the parameter is set to undefined and will get bound by encoding
methods, except where otherwise noted.
The following is a list of external arguments with their respective
definition:
o profile_value:
Set to the 16-bit number that identifies the profile used to
compress this packet. When processing the static chain at the
decompressor, this parameter is set to the value of the profile
field in the IR header (see Section 6.8.1).
o reorder_ratio_value:
Set to a 2-bit integer value, using one of the constants whose
name begins with the prefix REORDERING_ and as defined in
Section 6.8.2.4.
o ip_id_behavior_value:
Set to a 2-bit integer value, using one of the constants whose
name begins with the prefix IP_ID_BEHAVIOR_ and as defined in
Section 6.8.2.4.
o coverage_behavior_value:
Set to a 2-bit integer value, using one of the constants whose
name begins with the prefix UDP_LITE_COVERAGE_ and as defined
in Section 6.8.2.4.
o outer_ip_flag:
This parameter is set to 1 if at least one of the TOS/TC or
TTL/Hop Limit fields in outer IP headers has changed compared
to their reference values in the context; otherwise, it is set
to 0. This flag may only be set to 1 for the "co_common"
header format in the different profiles.
o is_innermost:
This boolean flag is set to 1 when processing the innermost of
the compressible IP headers; otherwise, it is set to 0.
Pelletier & Sandlund Standards Track [Page 39]
^L
RFC 5225 ROHCv2 Profiles April 2008
o ts_stride_value
The value of this parameter should be set to the expected
increase in the RTP Timestamp between consecutive RTP sequence
numbers. The value selected is implementation-specific. See
also Section 6.6.8.
o time_stride_value
The value of this parameter should be set to the expected
inter-arrival time between consecutive packets for the flow.
The value selected is implementation-specific. This parameter
MUST be set to zero, unless the compressor has received a
feedback message with the CLOCK_RESOLUTION option set to a non-
zero value. See also Section 6.6.9.
6.8. Header Formats
ROHCv2 profiles use two different header types: the Initialization
and Refresh (IR) header type, and the Compressed header type (CO).
The CO header type defines a number of header formats: there are two
sets of base header formats, with a few additional formats that are
common to both sets.
6.8.1. Initialization and Refresh Header Format (IR)
The IR header format uses the structure of the ROHC IR header as
defined in Section 5.2.2.1 of [RFC4995].
Header type: IR
This header format communicates the static part and the dynamic
part of the context.
Pelletier & Sandlund Standards Track [Page 40]
^L
RFC 5225 ROHCv2 Profiles April 2008
The ROHCv2 IR header has the following format:
0 1 2 3 4 5 6 7
--- --- --- --- --- --- --- ---
: Add-CID octet : if for small CIDs and (CID != 0)
+---+---+---+---+---+---+---+---+
| 1 1 1 1 1 1 0 1 | IR type octet
+---+---+---+---+---+---+---+---+
: :
/ 0-2 octets of CID / 1-2 octets if for large CIDs
: :
+---+---+---+---+---+---+---+---+
| Profile | 1 octet
+---+---+---+---+---+---+---+---+
| CRC | 1 octet
+---+---+---+---+---+---+---+---+
| |
/ Static chain / variable length
| |
- - - - - - - - - - - - - - - -
| |
/ Dynamic chain / variable length
| |
- - - - - - - - - - - - - - - -
CRC: 8-bit CRC over the entire IR-header, including any CID fields
and up until the end of the dynamic chain, using the polynomial
defined in [RFC4995]. For purposes of computing the CRC, the CRC
field is zero.
Static chain: See Section 6.5.
Dynamic chain: See Section 6.5.
6.8.2. Compressed Header Formats (CO)
6.8.2.1. Design Rationale for Compressed Base Headers
The compressed header formats are defined as two separate sets for
each profile: one set for the headers where the innermost IP header
contains a sequential IP-ID (either network byte order or byte-
swapped), and one set for the headers without sequential IP-ID
(either random, zero, or no IP-ID). There are also a number of
common header formats shared between both sets. In the description
below, the naming convention used for header formats that belong to
the sequential set is to include "seq" in the name of the format,
while similarly "rnd" is used for those that belong to the non-
sequential set.
Pelletier & Sandlund Standards Track [Page 41]
^L
RFC 5225 ROHCv2 Profiles April 2008
The design of the header formats is derived from the field behavior
analysis found in Appendix A.
All of the compressed base headers transmit lsb-encoded MSN bits and
a CRC.
The following header formats exist for all profiles defined in this
document, and are common to both the sequential and the random header
format sets:
o co_common: This format can be used to update the context when the
established change pattern of a dynamic field changes, for any of
the dynamic fields. However, not all dynamic fields are updated
by conveying their uncompressed value; some fields can only be
transmitted using a compressed representation. This format is
especially useful when a rarely changing field needs to be
updated. This format contains a set of flags to indicate what
fields are present in the header, and its size can vary
accordingly. This format is protected by a 7-bit CRC. It can
update control fields, and it thus also carries a 3-bit CRC to
protect those fields. This format is similar in purpose to the
UOR-2-extension 3 format of [RFC3095].
o co_repair: This format can be used to update the context of all
the dynamic fields by conveying their uncompressed value. This is
especially useful when context damage is assumed (e.g., from the
reception of a NACK) and a context repair is performed. This
format is protected by a 7-bit CRC. It also carries a 3-bit CRC
over the control fields that it can update. This format is
similar in purpose to the IR-DYN format of [RFC3095] when
performing context repairs.
o pt_0_crc3: This format conveys only the MSN; it can therefore only
update the MSN and fields that are derived from the MSN, such as
IP-ID and the RTP Timestamp (for applicable profiles). It is
protected by a 3-bit CRC. This format is equivalent to the UO-0
header format in [RFC3095].
o pt_0_crc7: This format has the same properties as pt_0_crc3, but
is instead protected by a 7-bit CRC and contains a larger amount
of lsb-encoded MSN bits. This format is useful in environments
where a high amount of reordering or a high-residual error rate
can occur.
Pelletier & Sandlund Standards Track [Page 42]
^L
RFC 5225 ROHCv2 Profiles April 2008
The following header format descriptions apply to profiles 0x0101 and
0x0107.
o pt_1_rnd: This format can convey changes to the MSN and to the RTP
Marker bit, and it can update the RTP timestamp using scaled
timestamp encoding. It is protected by a 3-bit CRC. It is
similar in purpose to the UO-1 format in [RFC3095].
o pt_1_seq_id: This format can convey changes to the MSN and to the
IP-ID. It is protected by a 3-bit CRC. It is similar in purpose
to the UO-1-ID format in [RFC3095].
o pt_1_seq_ts: This format can convey changes to the MSN and to the
RTP Marker bit, and it can update the RTP Timestamp using scaled
timestamp encoding. It is protected by a 3-bit CRC. It is
similar in purpose to the UO-1-TS format in [RFC3095].
o pt_2_rnd: This format can convey changes to the MSN, to the RTP
Marker bit, and to the RTP Timestamp. It is protected by a 7-bit
CRC. It is similar in purpose to the UOR-2 format in [RFC3095].
o pt_2_seq_id: This format can convey changes to the MSN and to the
IP-ID. It is protected by a 7-bit CRC. It is similar in purpose
to the UO-2-ID format in [RFC3095].
o pt_2_seq_ts: This format can convey changes to the MSN, to the RTP
Marker bit and it can update the RTP Timestamp using scaled
timestamp encoding. It is protected by a 7-bit CRC. It is
similar in purpose to the UO-2-TS format in [RFC3095].
o pt_2_seq_both: This format can convey changes to both the RTP
Timestamp and the IP-ID, in addition to the MSN and to the Marker
bit. It is protected by a 7-bit CRC. It is similar in purpose to
the UOR-2-ID extension 1 format in [RFC3095].
The following header format descriptions apply to profiles 0x0102,
0x0103, 0x0104, and 0x0108.
o pt_1_seq_id: This format can convey changes to the MSN and to the
IP-ID. It is protected by a 7-bit CRC. It is similar in purpose
to the UO-1-ID format in [RFC3095].
o pt_2_seq_id: This format can convey changes to the MSN and to the
IP-ID. It is protected by a 7-bit CRC. It is similar in purpose
to the UO-2-ID format in [RFC3095].
Pelletier & Sandlund Standards Track [Page 43]
^L
RFC 5225 ROHCv2 Profiles April 2008
6.8.2.2. co_repair Header Format
The ROHCv2 co_repair header has the following format:
0 1 2 3 4 5 6 7
--- --- --- --- --- --- --- ---
: Add-CID octet : if for small CIDs and CID 1-15
+---+---+---+---+---+---+---+---+
| 1 1 1 1 1 0 1 1 | discriminator
+---+---+---+---+---+---+---+---+
: :
/ 0, 1, or 2 octets of CID / 1-2 octets if large CIDs
: :
+---+---+---+---+---+---+---+---+
|r1 | CRC-7 |
+---+---+---+---+---+---+---+---+
| r2 | CRC-3 |
+---+---+---+---+---+---+---+---+
| |
/ Dynamic chain / variable length
| |
- - - - - - - - - - - - - - - -
r1: MUST be set to zero; otherwise, the decompressor MUST discard
the packet.
CRC-7: A 7-bit CRC over the entire uncompressed header, computed
using the crc7 (data_value, data_length) encoding method defined
in Section 6.8.2.4, where data_value corresponds to the entire
uncompressed header chain and where data_length corresponds to the
length of this header chain.
r2: MUST be set to zero; otherwise, the decompressor MUST discard
the packet.
CRC-3: Encoded using the control_crc3_encoding method defined in
Section 6.6.11.
Dynamic chain: See Section 6.5.
6.8.2.3. General CO Header Format
The CO header format communicates irregularities in the packet
header. All CO formats carry a CRC and can update the context. All
CO header formats use the general format defined in this section,
with the exception of the co_repair format, which is defined in
Section 6.8.2.2.
Pelletier & Sandlund Standards Track [Page 44]
^L
RFC 5225 ROHCv2 Profiles April 2008
The general format for a compressed header is as follows:
0 1 2 3 4 5 6 7
--- --- --- --- --- --- --- ---
: Add-CID octet : if for small CIDs and CID 1-15
+---+---+---+---+---+---+---+---+
| first octet of base header | (with type indication)
+---+---+---+---+---+---+---+---+
: :
/ 0, 1, or 2 octets of CID / 1-2 octets if large CIDs
: :
+---+---+---+---+---+---+---+---+
/ remainder of base header / variable length
+---+---+---+---+---+---+---+---+
: :
/ Irregular Chain / variable length
: :
--- --- --- --- --- --- --- ---
The base header in the figure above is the compressed representation
of the innermost IP header and other header(s), if any, in the
uncompressed packet. The base header formats are defined in
Section 6.8.2.4. In the formal description of the header formats,
the base header for each profile is labeled
<profile_name>_baseheader, where <profile_name> is defined in the
following table:
+------------------+----------------+
| Profile number | profile_name |
+------------------+----------------+
| 0x0101 | rtp |
| 0x0102 | udp |
| 0x0103 | esp |
| 0x0104 | ip |
| 0x0107 | udplite_rtp |
| 0x0108 | udplite |
+------------------+----------------+
6.8.2.4. Header Formats in ROHC-FN
This section defines the complete set of base header formats for
ROHCv2 profiles. The base header formats are defined using the ROHC
Formal Notation [RFC4997].
Pelletier & Sandlund Standards Track [Page 45]
^L
RFC 5225 ROHCv2 Profiles April 2008
// NOTE: The irregular, static, and dynamic chains (see Section 6.5)
// are defined across multiple encoding methods and are embodied
// in the correspondingly named formats within those encoding
// methods. In particular, note that the static and dynamic
// chains ordinarily go together. The uncompressed fields are
// defined across these two formats combined, rather than in one
// or the other of them. The irregular chain items are likewise
// combined with a baseheader format.
////////////////////////////////////////////
// Constants
////////////////////////////////////////////
// IP-ID behavior constants
IP_ID_BEHAVIOR_SEQUENTIAL = 0;
IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED = 1;
IP_ID_BEHAVIOR_RANDOM = 2;
IP_ID_BEHAVIOR_ZERO = 3;
// UDP-lite checksum coverage behavior constants
UDP_LITE_COVERAGE_INFERRED = 0;
UDP_LITE_COVERAGE_STATIC = 1;
UDP_LITE_COVERAGE_IRREGULAR = 2;
// The value 3 is reserved and cannot be used for coverage behavior
// Variable reordering offset
REORDERING_NONE = 0;
REORDERING_QUARTER = 1;
REORDERING_HALF = 2;
REORDERING_THREEQUARTERS = 3;
// Profile names and versions
PROFILE_RTP_0101 = 0x0101;
PROFILE_UDP_0102 = 0x0102;
PROFILE_ESP_0103 = 0x0103;
PROFILE_IP_0104 = 0x0104;
PROFILE_RTP_0107 = 0x0107; // With UDP-LITE
PROFILE_UDPLITE_0108 = 0x0108; // Without RTP
// Default values for RTP timestamp encoding
TS_STRIDE_DEFAULT = 160;
TIME_STRIDE_DEFAULT = 0;
////////////////////////////////////////////
// Global control fields
////////////////////////////////////////////
CONTROL {
Pelletier & Sandlund Standards Track [Page 46]
^L
RFC 5225 ROHCv2 Profiles April 2008
profile [ 16 ];
msn [ 16 ];
reorder_ratio [ 2 ];
// ip_id fields are for innermost IP header only
ip_id_offset [ 16 ];
ip_id_behavior_innermost [ 2 ];
// The following are only used in RTP-based profiles
ts_stride [ 32 ];
time_stride [ 32 ];
ts_scaled [ 32 ];
ts_offset [ 32 ];
// UDP-lite-based profiles only
coverage_behavior [ 2 ];
}
///////////////////////////////////////////////
// Encoding methods not specified in FN syntax:
///////////////////////////////////////////////
baseheader_extension_headers "defined in Section 6.6.1";
baseheader_outer_headers "defined in Section 6.6.2";
control_crc3_encoding "defined in Section 6.6.11";
inferred_ip_v4_header_checksum "defined in Section 6.6.4";
inferred_ip_v4_length "defined in Section 6.6.6";
inferred_ip_v6_length "defined in Section 6.6.7";
inferred_mine_header_checksum "defined in Section 6.6.5";
inferred_scaled_field "defined in Section 6.6.10";
inferred_sequential_ip_id "defined in Section 6.6.12";
inferred_udp_length "defined in Section 6.6.3";
list_csrc(cc_value) "defined in Section 6.6.13";
timer_based_lsb(time_stride, k, p) "defined in Section 6.6.9";
////////////////////////////////////////////
// General encoding methods
////////////////////////////////////////////
static_or_irreg(flag, width)
{
UNCOMPRESSED {
field [ width ];
}
COMPRESSED irreg_enc {
ENFORCE(flag == 1);
field =:= irregular(width) [ width ];
}
COMPRESSED static_enc {
Pelletier & Sandlund Standards Track [Page 47]
^L
RFC 5225 ROHCv2 Profiles April 2008
ENFORCE(flag == 0);
field =:= static [ 0 ];
}
}
optional_32(flag)
{
UNCOMPRESSED {
item [ 0, 32 ];
}
COMPRESSED present {
ENFORCE(flag == 1);
item =:= irregular(32) [ 32 ];
}
COMPRESSED not_present {
ENFORCE(flag == 0);
item =:= compressed_value(0, 0) [ 0 ];
}
}
// Send the entire value, or keep previous value
sdvl_or_static(flag)
{
UNCOMPRESSED {
field [ 32 ];
}
COMPRESSED present_7bit {
ENFORCE(flag == 1);
ENFORCE(field.UVALUE < 2^7);
ENFORCE(field.CVALUE == field.UVALUE);
discriminator =:= '0' [ 1 ];
field [ 7 ];
}
COMPRESSED present_14bit {
ENFORCE(flag == 1);
ENFORCE(field.UVALUE < 2^14);
ENFORCE(field.CVALUE == field.UVALUE);
discriminator =:= '10' [ 2 ];
field [ 14 ];
}
COMPRESSED present_21bit {
ENFORCE(flag == 1);
ENFORCE(field.UVALUE < 2^21);
Pelletier & Sandlund Standards Track [Page 48]
^L
RFC 5225 ROHCv2 Profiles April 2008
ENFORCE(field.CVALUE == field.UVALUE);
discriminator =:= '110' [ 3 ];
field [ 21 ];
}
COMPRESSED present_28bit {
ENFORCE(flag == 1);
ENFORCE(field.UVALUE < 2^28);
ENFORCE(field.CVALUE == field.UVALUE);
discriminator =:= '1110' [ 4 ];
field [ 28 ];
}
COMPRESSED present_32bit {
ENFORCE(flag == 1);
ENFORCE(field.CVALUE == field.UVALUE);
discriminator =:= '11111111' [ 8 ];
field [ 32 ];
}
COMPRESSED not_present {
ENFORCE(flag == 0);
field =:= static;
}
}
// Send the entire value, or revert to default value
sdvl_or_default(flag, default_value)
{
UNCOMPRESSED {
field [ 32 ];
}
COMPRESSED present_7bit {
ENFORCE(flag == 1);
ENFORCE(field.UVALUE < 2^7);
ENFORCE(field.CVALUE == field.UVALUE);
discriminator =:= '0' [ 1 ];
field [ 7 ];
}
COMPRESSED present_14bit {
ENFORCE(flag == 1);
ENFORCE(field.UVALUE < 2^14);
ENFORCE(field.CVALUE == field.UVALUE);
discriminator =:= '10' [ 2 ];
field [ 14 ];
}
Pelletier & Sandlund Standards Track [Page 49]
^L
RFC 5225 ROHCv2 Profiles April 2008
COMPRESSED present_21bit {
ENFORCE(flag == 1);
ENFORCE(field.UVALUE < 2^21);
ENFORCE(field.CVALUE == field.UVALUE);
discriminator =:= '110' [ 3 ];
field [ 21 ];
}
COMPRESSED present_28bit {
ENFORCE(flag == 1);
ENFORCE(field.UVALUE < 2^28);
ENFORCE(field.CVALUE == field.UVALUE);
discriminator =:= '1110' [ 4 ];
field [ 28 ];
}
COMPRESSED present_32bit {
ENFORCE(flag == 1);
ENFORCE(field.CVALUE == field.UVALUE);
discriminator =:= '11111111' [ 8 ];
field [ 32 ];
}
COMPRESSED not_present {
ENFORCE(flag == 0);
field =:= uncompressed_value(32, default_value);
}
}
lsb_7_or_31
{
UNCOMPRESSED {
item [ 32 ];
}
COMPRESSED lsb_7 {
discriminator =:= '0' [ 1 ];
item =:= lsb(7, ((2^7) / 4) - 1) [ 7 ];
}
COMPRESSED lsb_31 {
discriminator =:= '1' [ 1 ];
item =:= lsb(31, ((2^31) / 4) - 1) [ 31 ];
}
}
crc3(data_value, data_length)
{
Pelletier & Sandlund Standards Track [Page 50]
^L
RFC 5225 ROHCv2 Profiles April 2008
UNCOMPRESSED {
}
COMPRESSED {
crc_value =:= crc(3, 0x06, 0x07, data_value, data_length) [ 3 ];
}
}
crc7(data_value, data_length)
{
UNCOMPRESSED {
}
COMPRESSED {
crc_value =:= crc(7, 0x79, 0x7f, data_value, data_length) [ 7 ];
}
}
// Encoding method for updating a scaled field and its associated
// control fields. Should be used both when the value is scaled
// or unscaled in a compressed format.
// Does not have an uncompressed side.
field_scaling(stride_value, scaled_value, unscaled_value, residue_value)
{
UNCOMPRESSED {
// Nothing
}
COMPRESSED no_scaling {
ENFORCE(stride_value == 0);
ENFORCE(residue_value == unscaled_value);
ENFORCE(scaled_value == 0);
}
COMPRESSED scaling_used {
ENFORCE(stride_value != 0);
ENFORCE(residue_value == (unscaled_value % stride_value));
ENFORCE(unscaled_value ==
scaled_value * stride_value + residue_value);
}
}
////////////////////////////////////////////
// IPv6 Destination options header
////////////////////////////////////////////
ip_dest_opt
{
UNCOMPRESSED {
Pelletier & Sandlund Standards Track [Page 51]
^L
RFC 5225 ROHCv2 Profiles April 2008
next_header [ 8 ];
length [ 8 ];
value [ length.UVALUE * 64 + 48 ];
}
DEFAULT {
length =:= static;
next_header =:= static;
value =:= static;
}
COMPRESSED dest_opt_static {
next_header =:= irregular(8) [ 8 ];
length =:= irregular(8) [ 8 ];
}
COMPRESSED dest_opt_dynamic {
value =:=
irregular(length.UVALUE * 64 + 48) [ length.UVALUE * 64 + 48 ];
}
COMPRESSED dest_opt_irregular {
}
}
////////////////////////////////////////////
// IPv6 Hop-by-Hop options header
////////////////////////////////////////////
ip_hop_opt
{
UNCOMPRESSED {
next_header [ 8 ];
length [ 8 ];
value [ length.UVALUE * 64 + 48 ];
}
DEFAULT {
length =:= static;
next_header =:= static;
value =:= static;
}
COMPRESSED hop_opt_static {
next_header =:= irregular(8) [ 8 ];
length =:= irregular(8) [ 8 ];
}
Pelletier & Sandlund Standards Track [Page 52]
^L
RFC 5225 ROHCv2 Profiles April 2008
COMPRESSED hop_opt_dynamic {
value =:=
irregular(length.UVALUE*64+48) [ length.UVALUE * 64 + 48 ];
}
COMPRESSED hop_opt_irregular {
}
}
////////////////////////////////////////////
// IPv6 Routing header
////////////////////////////////////////////
ip_rout_opt
{
UNCOMPRESSED {
next_header [ 8 ];
length [ 8 ];
value [ length.UVALUE * 64 + 48 ];
}
DEFAULT {
length =:= static;
next_header =:= static;
value =:= static;
}
COMPRESSED rout_opt_static {
next_header =:= irregular(8) [ 8 ];
length =:= irregular(8) [ 8 ];
value =:=
irregular(length.UVALUE*64+48) [ length.UVALUE * 64 + 48 ];
}
COMPRESSED rout_opt_dynamic {
}
COMPRESSED rout_opt_irregular {
}
}
////////////////////////////////////////////
// GRE Header
////////////////////////////////////////////
optional_lsb_7_or_31(flag)
{
Pelletier & Sandlund Standards Track [Page 53]
^L
RFC 5225 ROHCv2 Profiles April 2008
UNCOMPRESSED {
item [ 0, 32 ];
}
COMPRESSED present {
ENFORCE(flag == 1);
item =:= lsb_7_or_31 [ 8, 32 ];
}
COMPRESSED not_present {
ENFORCE(flag == 0);
item =:= compressed_value(0, 0) [ 0 ];
}
}
optional_checksum(flag_value)
{
UNCOMPRESSED {
value [ 0, 16 ];
reserved1 [ 0, 16 ];
}
COMPRESSED cs_present {
ENFORCE(flag_value == 1);
value =:= irregular(16) [ 16 ];
reserved1 =:= uncompressed_value(16, 0) [ 0 ];
}
COMPRESSED not_present {
ENFORCE(flag_value == 0);
value =:= compressed_value(0, 0) [ 0 ];
reserved1 =:= compressed_value(0, 0) [ 0 ];
}
}
gre_proto
{
UNCOMPRESSED {
protocol [ 16 ];
}
COMPRESSED ether_v4 {
discriminator =:= '0' [ 1 ];
protocol =:= uncompressed_value(16, 0x0800) [ 0 ];
}
COMPRESSED ether_v6 {
discriminator =:= '1' [ 1 ];
Pelletier & Sandlund Standards Track [Page 54]
^L
RFC 5225 ROHCv2 Profiles April 2008
protocol =:= uncompressed_value(16, 0x86DD) [ 0 ];
}
}
gre
{
UNCOMPRESSED {
c_flag [ 1 ];
r_flag =:= uncompressed_value(1, 0) [ 1 ];
k_flag [ 1 ];
s_flag [ 1 ];
reserved0 =:= uncompressed_value(9, 0) [ 9 ];
version =:= uncompressed_value(3, 0) [ 3 ];
protocol [ 16 ];
checksum_and_res [ 0, 32 ];
key [ 0, 32 ];
sequence_number [ 0, 32 ];
}
DEFAULT {
c_flag =:= static;
k_flag =:= static;
s_flag =:= static;
protocol =:= static;
key =:= static;
sequence_number =:= static;
}
COMPRESSED gre_static {
ENFORCE((c_flag.UVALUE == 1 && checksum_and_res.ULENGTH == 32)
|| checksum_and_res.ULENGTH == 0);
ENFORCE((s_flag.UVALUE == 1 && sequence_number.ULENGTH == 32)
|| sequence_number.ULENGTH == 0);
protocol =:= gre_proto [ 1 ];
c_flag =:= irregular(1) [ 1 ];
k_flag =:= irregular(1) [ 1 ];
s_flag =:= irregular(1) [ 1 ];
padding =:= compressed_value(4, 0) [ 4 ];
key =:= optional_32(k_flag.UVALUE) [ 0, 32 ];
}
COMPRESSED gre_dynamic {
checksum_and_res =:=
optional_checksum(c_flag.UVALUE) [ 0, 16 ];
sequence_number =:= optional_32(s_flag.UVALUE) [ 0, 32 ];
}
COMPRESSED gre_irregular {
Pelletier & Sandlund Standards Track [Page 55]
^L
RFC 5225 ROHCv2 Profiles April 2008
checksum_and_res =:= optional_checksum(c_flag.UVALUE) [ 0, 16 ];
sequence_number =:=
optional_lsb_7_or_31(s_flag.UVALUE) [ 0, 8, 32 ];
}
}
/////////////////////////////////////////////
// MINE header
/////////////////////////////////////////////
mine
{
UNCOMPRESSED {
next_header [ 8 ];
s_bit [ 1 ];
res_bits [ 7 ];
checksum [ 16 ];
orig_dest [ 32 ];
orig_src [ 0, 32 ];
}
DEFAULT {
next_header =:= static;
s_bit =:= static;
res_bits =:= static;
checksum =:= inferred_mine_header_checksum;
orig_dest =:= static;
orig_src =:= static;
}
COMPRESSED mine_static {
next_header =:= irregular(8) [ 8 ];
s_bit =:= irregular(1) [ 1 ];
// Reserved bits are included to achieve byte-alignment
res_bits =:= irregular(7) [ 7 ];
orig_dest =:= irregular(32) [ 32 ];
orig_src =:= optional_32(s_bit.UVALUE) [ 0, 32 ];
}
COMPRESSED mine_dynamic {
}
COMPRESSED mine_irregular {
}
}
/////////////////////////////////////////////
Pelletier & Sandlund Standards Track [Page 56]
^L
RFC 5225 ROHCv2 Profiles April 2008
// Authentication Header (AH)
/////////////////////////////////////////////
ah
{
UNCOMPRESSED {
next_header [ 8 ];
length [ 8 ];
res_bits =:= uncompressed_value(16, 0) [ 16 ];
spi [ 32 ];
sequence_number [ 32 ];
icv [ length.UVALUE*32-32 ];
}
DEFAULT {
next_header =:= static;
length =:= static;
spi =:= static;
sequence_number =:= static;
}
COMPRESSED ah_static {
next_header =:= irregular(8) [ 8 ];
length =:= irregular(8) [ 8 ];
spi =:= irregular(32) [ 32 ];
}
COMPRESSED ah_dynamic {
sequence_number =:= irregular(32) [ 32 ];
icv =:=
irregular(length.UVALUE*32-32) [ length.UVALUE*32-32 ];
}
COMPRESSED ah_irregular {
sequence_number =:= lsb_7_or_31 [ 8, 32 ];
icv =:=
irregular(length.UVALUE*32-32) [ length.UVALUE*32-32 ];
}
}
/////////////////////////////////////////////
// IPv6 Header
/////////////////////////////////////////////
fl_enc
{
UNCOMPRESSED {
Pelletier & Sandlund Standards Track [Page 57]
^L
RFC 5225 ROHCv2 Profiles April 2008
flow_label [ 20 ];
}
COMPRESSED fl_zero {
discriminator =:= '0' [ 1 ];
flow_label =:= uncompressed_value(20, 0) [ 0 ];
reserved =:= '0000' [ 4 ];
}
COMPRESSED fl_non_zero {
discriminator =:= '1' [ 1 ];
flow_label =:= irregular(20) [ 20 ];
}
}
ipv6(profile_value, is_innermost, outer_ip_flag, reorder_ratio_value)
{
UNCOMPRESSED {
version =:= uncompressed_value(4, 6) [ 4 ];
tos_tc [ 8 ];
flow_label [ 20 ];
payload_length [ 16 ];
next_header [ 8 ];
ttl_hopl [ 8 ];
src_addr [ 128 ];
dst_addr [ 128 ];
}
CONTROL {
ENFORCE(profile == profile_value);
ENFORCE(reorder_ratio.UVALUE == reorder_ratio_value);
ENFORCE(innermost_ip.UVALUE == is_innermost);
innermost_ip [ 1 ];
}
DEFAULT {
tos_tc =:= static;
flow_label =:= static;
payload_length =:= inferred_ip_v6_length;
next_header =:= static;
ttl_hopl =:= static;
src_addr =:= static;
dst_addr =:= static;
}
COMPRESSED ipv6_static {
version_flag =:= '1' [ 1 ];
innermost_ip =:= irregular(1) [ 1 ];
Pelletier & Sandlund Standards Track [Page 58]
^L
RFC 5225 ROHCv2 Profiles April 2008
reserved =:= '0' [ 1 ];
flow_label =:= fl_enc [ 5, 21 ];
next_header =:= irregular(8) [ 8 ];
src_addr =:= irregular(128) [ 128 ];
dst_addr =:= irregular(128) [ 128 ];
}
COMPRESSED ipv6_endpoint_dynamic {
ENFORCE((is_innermost == 1) &&
(profile_value == PROFILE_IP_0104));
tos_tc =:= irregular(8) [ 8 ];
ttl_hopl =:= irregular(8) [ 8 ];
reserved =:= compressed_value(6, 0) [ 6 ];
reorder_ratio =:= irregular(2) [ 2 ];
msn =:= irregular(16) [ 16 ];
}
COMPRESSED ipv6_regular_dynamic {
ENFORCE((is_innermost == 0) ||
(profile_value != PROFILE_IP_0104));
tos_tc =:= irregular(8) [ 8 ];
ttl_hopl =:= irregular(8) [ 8 ];
}
COMPRESSED ipv6_outer_irregular {
ENFORCE(is_innermost == 0);
tos_tc =:=
static_or_irreg(outer_ip_flag, 8) [ 0, 8 ];
ttl_hopl =:=
static_or_irreg(outer_ip_flag, 8) [ 0, 8 ];
}
COMPRESSED ipv6_innermost_irregular {
ENFORCE(is_innermost == 1);
}
}
/////////////////////////////////////////////
// IPv4 Header
/////////////////////////////////////////////
ip_id_enc_dyn(behavior)
{
UNCOMPRESSED {
ip_id [ 16 ];
}
Pelletier & Sandlund Standards Track [Page 59]
^L
RFC 5225 ROHCv2 Profiles April 2008
COMPRESSED ip_id_seq {
ENFORCE((behavior == IP_ID_BEHAVIOR_SEQUENTIAL) ||
(behavior == IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
ENFORCE(ip_id_offset.UVALUE == ip_id.UVALUE - msn.UVALUE);
ip_id =:= irregular(16) [ 16 ];
}
COMPRESSED ip_id_random {
ENFORCE(behavior == IP_ID_BEHAVIOR_RANDOM);
ip_id =:= irregular(16) [ 16 ];
}
COMPRESSED ip_id_zero {
ENFORCE(behavior == IP_ID_BEHAVIOR_ZERO);
ip_id =:= uncompressed_value(16, 0) [ 0 ];
}
}
ip_id_enc_irreg(behavior)
{
UNCOMPRESSED {
ip_id [ 16 ];
}
COMPRESSED ip_id_seq {
ENFORCE(behavior == IP_ID_BEHAVIOR_SEQUENTIAL);
}
COMPRESSED ip_id_seq_swapped {
ENFORCE(behavior == IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED);
}
COMPRESSED ip_id_rand {
ENFORCE(behavior == IP_ID_BEHAVIOR_RANDOM);
ip_id =:= irregular(16) [ 16 ];
}
COMPRESSED ip_id_zero {
ENFORCE(behavior == IP_ID_BEHAVIOR_ZERO);
ip_id =:= uncompressed_value(16, 0) [ 0 ];
}
}
ipv4(profile_value, is_innermost, outer_ip_flag, ip_id_behavior_value,
reorder_ratio_value)
{
UNCOMPRESSED {
version =:= uncompressed_value(4, 4) [ 4 ];
Pelletier & Sandlund Standards Track [Page 60]
^L
RFC 5225 ROHCv2 Profiles April 2008
hdr_length =:= uncompressed_value(4, 5) [ 4 ];
tos_tc [ 8 ];
length =:= inferred_ip_v4_length [ 16 ];
ip_id [ 16 ];
rf =:= uncompressed_value(1, 0) [ 1 ];
df [ 1 ];
mf =:= uncompressed_value(1, 0) [ 1 ];
frag_offset =:= uncompressed_value(13, 0) [ 13 ];
ttl_hopl [ 8 ];
protocol [ 8 ];
checksum =:= inferred_ip_v4_header_checksum [ 16 ];
src_addr [ 32 ];
dst_addr [ 32 ];
}
CONTROL {
ENFORCE(profile == profile_value);
ENFORCE(reorder_ratio.UVALUE == reorder_ratio_value);
ENFORCE(innermost_ip.UVALUE == is_innermost);
ip_id_behavior_outer [ 2 ];
innermost_ip [ 1 ];
}
DEFAULT {
tos_tc =:= static;
df =:= static;
ttl_hopl =:= static;
protocol =:= static;
src_addr =:= static;
dst_addr =:= static;
ip_id_behavior_outer =:= static;
}
COMPRESSED ipv4_static {
version_flag =:= '0' [ 1 ];
innermost_ip =:= irregular(1) [ 1 ];
reserved =:= '000000' [ 6 ];
protocol =:= irregular(8) [ 8 ];
src_addr =:= irregular(32) [ 32 ];
dst_addr =:= irregular(32) [ 32 ];
}
COMPRESSED ipv4_endpoint_innermost_dynamic {
ENFORCE((is_innermost == 1) && (profile_value == PROFILE_IP_0104));
ENFORCE(ip_id_behavior_innermost.UVALUE == ip_id_behavior_value);
reserved =:= '000' [ 3 ];
reorder_ratio =:= irregular(2) [ 2 ];
df =:= irregular(1) [ 1 ];
Pelletier & Sandlund Standards Track [Page 61]
^L
RFC 5225 ROHCv2 Profiles April 2008
ip_id_behavior_innermost =:= irregular(2) [ 2 ];
tos_tc =:= irregular(8) [ 8 ];
ttl_hopl =:= irregular(8) [ 8 ];
ip_id =:= ip_id_enc_dyn(ip_id_behavior_innermost.UVALUE) [ 0, 16 ];
msn =:= irregular(16) [ 16 ];
}
COMPRESSED ipv4_regular_innermost_dynamic {
ENFORCE((is_innermost == 1) && (profile_value != PROFILE_IP_0104));
ENFORCE(ip_id_behavior_innermost.UVALUE == ip_id_behavior_value);
reserved =:= '00000' [ 5 ];
df =:= irregular(1) [ 1 ];
ip_id_behavior_innermost =:= irregular(2) [ 2 ];
tos_tc =:= irregular(8) [ 8 ];
ttl_hopl =:= irregular(8) [ 8 ];
ip_id =:= ip_id_enc_dyn(ip_id_behavior_innermost.UVALUE) [ 0, 16 ];
}
COMPRESSED ipv4_outer_dynamic {
ENFORCE(is_innermost == 0);
ENFORCE(ip_id_behavior_outer.UVALUE == ip_id_behavior_value);
reserved =:= '00000' [ 5 ];
df =:= irregular(1) [ 1 ];
ip_id_behavior_outer =:= irregular(2) [ 2 ];
tos_tc =:= irregular(8) [ 8 ];
ttl_hopl =:= irregular(8) [ 8 ];
ip_id =:= ip_id_enc_dyn(ip_id_behavior_outer.UVALUE) [ 0, 16 ];
}
COMPRESSED ipv4_outer_irregular {
ENFORCE(is_innermost == 0);
ip_id =:=
ip_id_enc_irreg(ip_id_behavior_outer.UVALUE) [ 0, 16 ];
tos_tc =:= static_or_irreg(outer_ip_flag, 8) [ 0, 8 ];
ttl_hopl =:= static_or_irreg(outer_ip_flag, 8) [ 0, 8 ];
}
COMPRESSED ipv4_innermost_irregular {
ENFORCE(is_innermost == 1);
ip_id =:=
ip_id_enc_irreg(ip_id_behavior_innermost.UVALUE) [ 0, 16 ];
}
}
/////////////////////////////////////////////
// UDP Header
/////////////////////////////////////////////
Pelletier & Sandlund Standards Track [Page 62]
^L
RFC 5225 ROHCv2 Profiles April 2008
udp(profile_value, reorder_ratio_value)
{
UNCOMPRESSED {
ENFORCE((profile_value == PROFILE_RTP_0101) ||
(profile_value == PROFILE_UDP_0102));
src_port [ 16 ];
dst_port [ 16 ];
udp_length =:= inferred_udp_length [ 16 ];
checksum [ 16 ];
}
CONTROL {
ENFORCE(profile == profile_value);
ENFORCE(reorder_ratio.UVALUE == reorder_ratio_value);
checksum_used [ 1 ];
}
DEFAULT {
src_port =:= static;
dst_port =:= static;
checksum_used =:= static;
}
COMPRESSED udp_static {
src_port =:= irregular(16) [ 16 ];
dst_port =:= irregular(16) [ 16 ];
}
COMPRESSED udp_endpoint_dynamic {
ENFORCE(profile_value == PROFILE_UDP_0102);
ENFORCE(profile == PROFILE_UDP_0102);
ENFORCE(checksum_used.UVALUE == (checksum.UVALUE != 0));
checksum =:= irregular(16) [ 16 ];
msn =:= irregular(16) [ 16 ];
reserved =:= compressed_value(6, 0) [ 6 ];
reorder_ratio =:= irregular(2) [ 2 ];
}
COMPRESSED udp_regular_dynamic {
ENFORCE(profile_value == PROFILE_RTP_0101);
ENFORCE(checksum_used.UVALUE == (checksum.UVALUE != 0));
checksum =:= irregular(16) [ 16 ];
}
COMPRESSED udp_zero_checksum_irregular {
ENFORCE(checksum_used.UVALUE == 0);
checksum =:= uncompressed_value(16, 0) [ 0 ];
}
Pelletier & Sandlund Standards Track [Page 63]
^L
RFC 5225 ROHCv2 Profiles April 2008
COMPRESSED udp_with_checksum_irregular {
ENFORCE(checksum_used.UVALUE == 1);
checksum =:= irregular(16) [ 16 ];
}
}
/////////////////////////////////////////////
// RTP Header
/////////////////////////////////////////////
csrc_list_dynchain(presence, cc_value)
{
UNCOMPRESSED {
csrc_list;
}
COMPRESSED no_list {
ENFORCE(cc_value == 0);
ENFORCE(presence == 0);
csrc_list =:= uncompressed_value(0, 0) [ 0 ];
}
COMPRESSED list_present {
ENFORCE(presence == 1);
csrc_list =:= list_csrc(cc_value) [ VARIABLE ];
}
}
rtp(profile_value, ts_stride_value, time_stride_value,
reorder_ratio_value)
{
UNCOMPRESSED {
ENFORCE((profile_value == PROFILE_RTP_0101) ||
(profile_value == PROFILE_RTP_0107));
rtp_version =:= uncompressed_value(2, 0) [ 2 ];
pad_bit [ 1 ];
extension [ 1 ];
cc [ 4 ];
marker [ 1 ];
payload_type [ 7 ];
sequence_number [ 16 ];
timestamp [ 32 ];
ssrc [ 32 ];
csrc_list [ cc.UVALUE * 32 ];
}
CONTROL {
Pelletier & Sandlund Standards Track [Page 64]
^L
RFC 5225 ROHCv2 Profiles April 2008
ENFORCE(profile == profile_value);
ENFORCE(reorder_ratio.UVALUE == reorder_ratio_value);
ENFORCE(time_stride_value == time_stride.UVALUE);
ENFORCE(ts_stride_value == ts_stride.UVALUE);
dummy_field =:= field_scaling(ts_stride.UVALUE,
ts_scaled.UVALUE, timestamp.UVALUE, ts_offset.UVALUE) [ 0 ];
}
INITIAL {
ts_stride =:= uncompressed_value(32, TS_STRIDE_DEFAULT);
time_stride =:= uncompressed_value(32, TIME_STRIDE_DEFAULT);
}
DEFAULT {
ENFORCE(msn.UVALUE == sequence_number.UVALUE);
pad_bit =:= static;
extension =:= static;
cc =:= static;
marker =:= static;
payload_type =:= static;
sequence_number =:= static;
timestamp =:= static;
ssrc =:= static;
csrc_list =:= static;
ts_stride =:= static;
time_stride =:= static;
ts_scaled =:= static;
ts_offset =:= static;
}
COMPRESSED rtp_static {
ssrc =:= irregular(32) [ 32 ];
}
COMPRESSED rtp_dynamic {
reserved =:= compressed_value(1, 0) [ 1 ];
reorder_ratio =:= irregular(2) [ 2 ];
list_present =:= irregular(1) [ 1 ];
tss_indicator =:= irregular(1) [ 1 ];
tis_indicator =:= irregular(1) [ 1 ];
pad_bit =:= irregular(1) [ 1 ];
extension =:= irregular(1) [ 1 ];
marker =:= irregular(1) [ 1 ];
payload_type =:= irregular(7) [ 7 ];
sequence_number =:= irregular(16) [ 16 ];
timestamp =:= irregular(32) [ 32 ];
ts_stride =:= sdvl_or_default(tss_indicator.CVALUE,
TS_STRIDE_DEFAULT) [ VARIABLE ];
Pelletier & Sandlund Standards Track [Page 65]
^L
RFC 5225 ROHCv2 Profiles April 2008
time_stride =:= sdvl_or_default(tis_indicator.CVALUE,
TIME_STRIDE_DEFAULT) [ VARIABLE ];
csrc_list =:= csrc_list_dynchain(list_present.CVALUE,
cc.UVALUE) [ VARIABLE ];
}
COMPRESSED rtp_irregular {
}
}
/////////////////////////////////////////////
// UDP-Lite Header
/////////////////////////////////////////////
checksum_coverage_dynchain(behavior)
{
UNCOMPRESSED {
checksum_coverage [ 16 ];
}
COMPRESSED inferred_coverage {
ENFORCE(behavior == UDP_LITE_COVERAGE_INFERRED);
checksum_coverage =:= inferred_udp_length [ 0 ];
}
COMPRESSED static_coverage {
ENFORCE(behavior == UDP_LITE_COVERAGE_STATIC);
checksum_coverage =:= irregular(16) [ 16 ];
}
COMPRESSED irregular_coverage {
ENFORCE(behavior == UDP_LITE_COVERAGE_IRREGULAR);
checksum_coverage =:= irregular(16) [ 16 ];
}
}
checksum_coverage_irregular(behavior)
{
UNCOMPRESSED {
checksum_coverage [ 16 ];
}
COMPRESSED inferred_coverage {
ENFORCE(behavior == UDP_LITE_COVERAGE_INFERRED);
checksum_coverage =:= inferred_udp_length [ 0 ];
}
COMPRESSED static_coverage {
Pelletier & Sandlund Standards Track [Page 66]
^L
RFC 5225 ROHCv2 Profiles April 2008
ENFORCE(behavior == UDP_LITE_COVERAGE_STATIC);
checksum_coverage =:= static [ 0 ];
}
COMPRESSED irregular_coverage {
ENFORCE(behavior == UDP_LITE_COVERAGE_IRREGULAR);
checksum_coverage =:= irregular(16) [ 16 ];
}
}
udp_lite(profile_value, reorder_ratio_value, coverage_behavior_value)
{
UNCOMPRESSED {
ENFORCE((profile_value == PROFILE_RTP_0107) ||
(profile_value == PROFILE_UDPLITE_0108));
src_port [ 16 ];
dst_port [ 16 ];
checksum_coverage [ 16 ];
checksum [ 16 ];
}
CONTROL {
ENFORCE(profile == profile_value);
ENFORCE(coverage_behavior.UVALUE == coverage_behavior_value);
ENFORCE(reorder_ratio.UVALUE == reorder_ratio_value);
}
DEFAULT {
src_port =:= static;
dst_port =:= static;
coverage_behavior =:= static;
}
COMPRESSED udp_lite_static {
src_port =:= irregular(16) [ 16 ];
dst_port =:= irregular(16) [ 16 ];
}
COMPRESSED udp_lite_endpoint_dynamic {
ENFORCE(profile_value == PROFILE_UDPLITE_0108);
reserved =:= compressed_value(4, 0) [ 4 ];
coverage_behavior =:= irregular(2) [ 2 ];
reorder_ratio =:= irregular(2) [ 2 ];
checksum_coverage =:=
checksum_coverage_dynchain(coverage_behavior.UVALUE) [ 16 ];
checksum =:= irregular(16) [ 16 ];
msn =:= irregular(16) [ 16 ];
}
Pelletier & Sandlund Standards Track [Page 67]
^L
RFC 5225 ROHCv2 Profiles April 2008
COMPRESSED udp_lite_regular_dynamic {
ENFORCE(profile_value == PROFILE_RTP_0107);
coverage_behavior =:= irregular(2) [ 2 ];
reserved =:= compressed_value(6, 0) [ 6 ];
checksum_coverage =:=
checksum_coverage_dynchain(coverage_behavior.UVALUE) [ 16 ];
checksum =:= irregular(16) [ 16 ];
}
COMPRESSED udp_lite_irregular {
checksum_coverage =:=
checksum_coverage_irregular(coverage_behavior.UVALUE) [ 0, 16 ];
checksum =:= irregular(16) [ 16 ];
}
}
/////////////////////////////////////////////
// ESP Header
/////////////////////////////////////////////
esp(profile_value, reorder_ratio_value)
{
UNCOMPRESSED {
ENFORCE(profile_value == PROFILE_ESP_0103);
ENFORCE(msn.UVALUE == sequence_number.UVALUE % 65536);
spi [ 32 ];
sequence_number [ 32 ];
}
CONTROL {
ENFORCE(profile == profile_value);
ENFORCE(reorder_ratio.UVALUE == reorder_ratio_value);
}
DEFAULT {
spi =:= static;
sequence_number =:= static;
}
COMPRESSED esp_static {
spi =:= irregular(32) [ 32 ];
}
COMPRESSED esp_dynamic {
sequence_number =:= irregular(32) [ 32 ];
reserved =:= compressed_value(6, 0) [ 6 ];
reorder_ratio =:= irregular(2) [ 2 ];
}
Pelletier & Sandlund Standards Track [Page 68]
^L
RFC 5225 ROHCv2 Profiles April 2008
COMPRESSED esp_irregular {
}
}
///////////////////////////////////////////////////
// Encoding methods used in the profiles' CO headers
///////////////////////////////////////////////////
// Variable reordering offset used for MSN
msn_lsb(k)
{
UNCOMPRESSED {
master [ VARIABLE ];
}
COMPRESSED none {
ENFORCE(reorder_ratio.UVALUE == REORDERING_NONE);
master =:= lsb(k, 1);
}
COMPRESSED quarter {
ENFORCE(reorder_ratio.UVALUE == REORDERING_QUARTER);
master =:= lsb(k, ((2^k) / 4) - 1);
}
COMPRESSED half {
ENFORCE(reorder_ratio.UVALUE == REORDERING_HALF);
master =:= lsb(k, ((2^k) / 2) - 1);
}
COMPRESSED threequarters {
ENFORCE(reorder_ratio.UVALUE == REORDERING_THREEQUARTERS);
master =:= lsb(k, (((2^k) * 3) / 4) - 1);
}
}
ip_id_lsb(behavior, k)
{
UNCOMPRESSED {
ip_id [ 16 ];
}
CONTROL {
ip_id_nbo [ 16 ];
}
COMPRESSED nbo {
ENFORCE(behavior == IP_ID_BEHAVIOR_SEQUENTIAL);
Pelletier & Sandlund Standards Track [Page 69]
^L
RFC 5225 ROHCv2 Profiles April 2008
ENFORCE(ip_id_offset.UVALUE == ip_id.UVALUE - msn.UVALUE);
ip_id_offset =:= lsb(k, ((2^k) / 4) - 1) [ k ];
}
COMPRESSED non_nbo {
ENFORCE(behavior == IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED);
ENFORCE(ip_id_nbo.UVALUE ==
(ip_id.UVALUE / 256) + (ip_id.UVALUE % 256) * 256);
ENFORCE(ip_id_nbo.ULENGTH == 16);
ENFORCE(ip_id_offset.UVALUE == ip_id_nbo.UVALUE - msn.UVALUE);
ip_id_offset =:= lsb(k, ((2^k) / 4) - 1) [ k ];
}
}
ip_id_sequential_variable(behavior, indicator)
{
UNCOMPRESSED {
ip_id [ 16 ];
}
COMPRESSED short {
ENFORCE((behavior == IP_ID_BEHAVIOR_SEQUENTIAL) ||
(behavior == IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
ENFORCE(indicator == 0);
ip_id =:= ip_id_lsb(behavior, 8) [ 8 ];
}
COMPRESSED long {
ENFORCE((behavior == IP_ID_BEHAVIOR_SEQUENTIAL) ||
(behavior == IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
ENFORCE(indicator == 1);
ENFORCE(ip_id_offset.UVALUE == ip_id.UVALUE - msn.UVALUE);
ip_id =:= irregular(16) [ 16 ];
}
COMPRESSED not_present {
ENFORCE((behavior == IP_ID_BEHAVIOR_RANDOM) ||
(behavior == IP_ID_BEHAVIOR_ZERO));
}
}
dont_fragment(version)
{
UNCOMPRESSED {
df [ 0, 1 ];
}
COMPRESSED v4 {
Pelletier & Sandlund Standards Track [Page 70]
^L
RFC 5225 ROHCv2 Profiles April 2008
ENFORCE(version == 4);
df =:= irregular(1) [ 1 ];
}
COMPRESSED v6 {
ENFORCE(version == 6);
unused =:= compressed_value(1, 0) [ 1 ];
}
}
pt_irr_or_static(flag)
{
UNCOMPRESSED {
payload_type [ 7 ];
}
COMPRESSED not_present {
ENFORCE(flag == 0);
payload_type =:= static [ 0 ];
}
COMPRESSED present {
ENFORCE(flag == 1);
reserved =:= compressed_value(1, 0) [ 1 ];
payload_type =:= irregular(7) [ 7 ];
}
}
csrc_list_presence(presence, cc_value)
{
UNCOMPRESSED {
csrc_list;
}
COMPRESSED no_list {
ENFORCE(presence == 0);
csrc_list =:= static [ 0 ];
}
COMPRESSED list_present {
ENFORCE(presence == 1);
csrc_list =:= list_csrc(cc_value) [ VARIABLE ];
}
}
scaled_ts_lsb(time_stride_value, k)
{
UNCOMPRESSED {
Pelletier & Sandlund Standards Track [Page 71]
^L
RFC 5225 ROHCv2 Profiles April 2008
timestamp [ 32 ];
}
COMPRESSED timerbased {
ENFORCE(time_stride_value != 0);
timestamp =:= timer_based_lsb(time_stride_value, k,
((2^k) / 2) - 1);
}
COMPRESSED regular {
ENFORCE(time_stride_value == 0);
timestamp =:= lsb(k, ((2^k) / 4) - 1);
}
}
// Self-describing variable length encoding with reordering offset
sdvl_sn_lsb(field_width)
{
UNCOMPRESSED {
field [ field_width ];
}
COMPRESSED lsb7 {
discriminator =:= '0' [ 1 ];
field =:= msn_lsb(7) [ 7 ];
}
COMPRESSED lsb14 {
discriminator =:= '10' [ 2 ];
field =:= msn_lsb(14) [ 14 ];
}
COMPRESSED lsb21 {
discriminator =:= '110' [ 3 ];
field =:= msn_lsb(21) [ 21 ];
}
COMPRESSED lsb28 {
discriminator =:= '1110' [ 4 ];
field =:= msn_lsb(28) [ 28 ];
}
COMPRESSED lsb32 {
discriminator =:= '11111111' [ 8 ];
field =:= irregular(field_width) [ field_width ];
}
}
Pelletier & Sandlund Standards Track [Page 72]
^L
RFC 5225 ROHCv2 Profiles April 2008
// Self-describing variable length encoding
sdvl_lsb(field_width)
{
UNCOMPRESSED {
field [ field_width ];
}
COMPRESSED lsb7 {
discriminator =:= '0' [ 1 ];
field =:= lsb(7, ((2^7) / 4) - 1) [ 7 ];
}
COMPRESSED lsb14 {
discriminator =:= '10' [ 2 ];
field =:= lsb(14, ((2^14) / 4) - 1) [ 14 ];
}
COMPRESSED lsb21 {
discriminator =:= '110' [ 3 ];
field =:= lsb(21, ((2^21) / 4) - 1) [ 21 ];
}
COMPRESSED lsb28 {
discriminator =:= '1110' [ 4 ];
field =:= lsb(28, ((2^28) / 4) - 1) [ 28 ];
}
COMPRESSED lsb32 {
discriminator =:= '11111111' [ 8 ];
field =:= irregular(field_width) [ field_width ];
}
}
sdvl_scaled_ts_lsb(time_stride)
{
UNCOMPRESSED {
field [ 32 ];
}
COMPRESSED lsb7 {
discriminator =:= '0' [ 1 ];
field =:= scaled_ts_lsb(time_stride, 7) [ 7 ];
}
COMPRESSED lsb14 {
discriminator =:= '10' [ 2 ];
field =:= scaled_ts_lsb(time_stride, 14) [ 14 ];
}
Pelletier & Sandlund Standards Track [Page 73]
^L
RFC 5225 ROHCv2 Profiles April 2008
COMPRESSED lsb21 {
discriminator =:= '110' [ 3 ];
field =:= scaled_ts_lsb(time_stride, 21) [ 21 ];
}
COMPRESSED lsb28 {
discriminator =:= '1110' [ 4 ];
field =:= scaled_ts_lsb(time_stride, 28) [ 28 ];
}
COMPRESSED lsb32 {
discriminator =:= '11111111' [ 8 ];
field =:= irregular(32) [ 32 ];
}
}
variable_scaled_timestamp(tss_flag, tsc_flag, ts_stride, time_stride)
{
UNCOMPRESSED {
scaled_value [ 32 ];
}
COMPRESSED present {
ENFORCE((tss_flag == 0) && (tsc_flag == 1));
ENFORCE(ts_stride != 0);
scaled_value =:= sdvl_scaled_ts_lsb(time_stride) [ VARIABLE ];
}
COMPRESSED not_present {
ENFORCE(((tss_flag == 1) && (tsc_flag == 0)) ||
((tss_flag == 0) && (tsc_flag == 0)));
}
}
variable_unscaled_timestamp(tss_flag, tsc_flag)
{
UNCOMPRESSED {
timestamp [ 32 ];
}
COMPRESSED present {
ENFORCE(((tss_flag == 1) && (tsc_flag == 0)) ||
((tss_flag == 0) && (tsc_flag == 0)));
timestamp =:= sdvl_lsb(32);
}
COMPRESSED not_present {
ENFORCE((tss_flag == 0) && (tsc_flag == 1));
Pelletier & Sandlund Standards Track [Page 74]
^L
RFC 5225 ROHCv2 Profiles April 2008
}
}
profile_1_7_flags1_enc(flag, ip_version)
{
UNCOMPRESSED {
ip_outer_indicator [ 1 ];
ttl_hopl_indicator [ 1 ];
tos_tc_indicator [ 1 ];
df [ 0, 1 ];
ip_id_behavior [ 2 ];
reorder_ratio [ 2 ];
}
COMPRESSED not_present {
ENFORCE(flag == 0);
ENFORCE(ip_outer_indicator.CVALUE == 0);
ENFORCE(ttl_hopl_indicator.CVALUE == 0);
ENFORCE(tos_tc_indicator.CVALUE == 0);
df =:= static;
ip_id_behavior =:= static;
reorder_ratio =:= static;
}
COMPRESSED present {
ENFORCE(flag == 1);
ip_outer_indicator =:= irregular(1) [ 1 ];
ttl_hopl_indicator =:= irregular(1) [ 1 ];
tos_tc_indicator =:= irregular(1) [ 1 ];
df =:= dont_fragment(ip_version) [ 1 ];
ip_id_behavior =:= irregular(2) [ 2 ];
reorder_ratio =:= irregular(2) [ 2 ];
}
}
profile_1_flags2_enc(flag)
{
UNCOMPRESSED {
list_indicator [ 1 ];
pt_indicator [ 1 ];
time_stride_indicator [ 1 ];
pad_bit [ 1 ];
extension [ 1 ];
}
COMPRESSED not_present{
ENFORCE(flag == 0);
ENFORCE(list_indicator.UVALUE == 0);
Pelletier & Sandlund Standards Track [Page 75]
^L
RFC 5225 ROHCv2 Profiles April 2008
ENFORCE(pt_indicator.UVALUE == 0);
ENFORCE(time_stride_indicator.UVALUE == 0);
pad_bit =:= static;
extension =:= static;
}
COMPRESSED present {
ENFORCE(flag == 1);
list_indicator =:= irregular(1) [ 1 ];
pt_indicator =:= irregular(1) [ 1 ];
time_stride_indicator =:= irregular(1) [ 1 ];
pad_bit =:= irregular(1) [ 1 ];
extension =:= irregular(1) [ 1 ];
reserved =:= compressed_value(3, 0) [ 3 ];
}
}
profile_2_3_4_flags_enc(flag, ip_version)
{
UNCOMPRESSED {
ip_outer_indicator [ 1 ];
df [ 0, 1 ];
ip_id_behavior [ 2 ];
}
COMPRESSED not_present {
ENFORCE(flag == 0);
ENFORCE(ip_outer_indicator.CVALUE == 0);
df =:= static;
ip_id_behavior =:= static;
}
COMPRESSED present {
ENFORCE(flag == 1);
ip_outer_indicator =:= irregular(1) [ 1 ];
df =:= dont_fragment(ip_version) [ 1 ];
ip_id_behavior =:= irregular(2) [ 2 ];
reserved =:= compressed_value(4, 0) [ 4 ];
}
}
profile_8_flags_enc(flag, ip_version)
{
UNCOMPRESSED {
ip_outer_indicator [ 1 ];
df [ 0, 1 ];
ip_id_behavior [ 2 ];
coverage_behavior [ 2 ];
Pelletier & Sandlund Standards Track [Page 76]
^L
RFC 5225 ROHCv2 Profiles April 2008
}
COMPRESSED not_present {
ENFORCE(flag == 0);
ENFORCE(ip_outer_indicator.CVALUE == 0);
df =:= static;
ip_id_behavior =:= static;
coverage_behavior =:= static;
}
COMPRESSED present {
ENFORCE(flag == 1);
reserved =:= compressed_value(2, 0) [ 2 ];
ip_outer_indicator =:= irregular(1) [ 1 ];
df =:= dont_fragment(ip_version) [ 1 ];
ip_id_behavior =:= irregular(2) [ 2 ];
coverage_behavior =:= irregular(2) [ 2 ];
}
}
profile_7_flags2_enc(flag)
{
UNCOMPRESSED {
list_indicator [ 1 ];
pt_indicator [ 1 ];
time_stride_indicator [ 1 ];
pad_bit [ 1 ];
extension [ 1 ];
coverage_behavior [ 2 ];
}
COMPRESSED not_present{
ENFORCE(flag == 0);
ENFORCE(list_indicator.CVALUE == 0);
ENFORCE(pt_indicator.CVALUE == 0);
ENFORCE(time_stride_indicator.CVALUE == 0);
pad_bit =:= static;
extension =:= static;
coverage_behavior =:= static;
}
COMPRESSED present {
ENFORCE(flag == 1);
reserved =:= compressed_value(1, 0) [ 1 ];
list_indicator =:= irregular(1) [ 1 ];
pt_indicator =:= irregular(1) [ 1 ];
time_stride_indicator =:= irregular(1) [ 1 ];
pad_bit =:= irregular(1) [ 1 ];
Pelletier & Sandlund Standards Track [Page 77]
^L
RFC 5225 ROHCv2 Profiles April 2008
extension =:= irregular(1) [ 1 ];
coverage_behavior =:= irregular(2) [ 2 ];
}
}
////////////////////////////////////////////
// RTP profile
////////////////////////////////////////////
rtp_baseheader(profile_value, ts_stride_value, time_stride_value,
outer_ip_flag, ip_id_behavior_value,
reorder_ratio_value)
{
UNCOMPRESSED v4 {
ENFORCE(msn.UVALUE == sequence_number.UVALUE);
outer_headers =:= baseheader_outer_headers [ VARIABLE ];
ip_version =:= uncompressed_value(4, 4) [ 4 ];
header_length =:= uncompressed_value(4, 5) [ 4 ];
tos_tc [ 8 ];
length =:= inferred_ip_v4_length [ 16 ];
ip_id [ 16 ];
rf =:= uncompressed_value(1, 0) [ 1 ];
df [ 1 ];
mf =:= uncompressed_value(1, 0) [ 1 ];
frag_offset =:= uncompressed_value(13, 0) [ 13 ];
ttl_hopl [ 8 ];
next_header [ 8 ];
ip_checksum =:= inferred_ip_v4_header_checksum [ 16 ];
src_addr [ 32 ];
dest_addr [ 32 ];
extension_headers =:= baseheader_extension_headers [ VARIABLE ];
src_port [ 16 ];
dst_port [ 16 ];
udp_length =:= inferred_udp_length [ 16 ];
udp_checksum [ 16 ];
rtp_version =:= uncompressed_value(2, 2) [ 2 ];
pad_bit [ 1 ];
extension [ 1 ];
cc [ 4 ];
marker [ 1 ];
payload_type [ 7 ];
sequence_number [ 16 ];
timestamp [ 32 ];
ssrc [ 32 ];
csrc_list [ VARIABLE ];
}
UNCOMPRESSED v6 {
Pelletier & Sandlund Standards Track [Page 78]
^L
RFC 5225 ROHCv2 Profiles April 2008
ENFORCE(ip_id_behavior_innermost.UVALUE == IP_ID_BEHAVIOR_RANDOM);
ENFORCE(msn.UVALUE == sequence_number.UVALUE);
outer_headers =:= baseheader_outer_headers [ VARIABLE ];
ip_version =:= uncompressed_value(4, 6) [ 4 ];
tos_tc [ 8 ];
flow_label [ 20 ];
payload_length =:= inferred_ip_v6_length [ 16 ];
next_header [ 8 ];
ttl_hopl [ 8 ];
src_addr [ 128 ];
dest_addr [ 128 ];
extension_headers =:= baseheader_extension_headers [ VARIABLE ];
src_port [ 16 ];
dst_port [ 16 ];
udp_length =:= inferred_udp_length [ 16 ];
udp_checksum [ 16 ];
rtp_version =:= uncompressed_value(2, 2) [ 2 ];
pad_bit [ 1 ];
extension [ 1 ];
cc [ 4 ];
marker [ 1 ];
payload_type [ 7 ];
sequence_number [ 16 ];
timestamp [ 32 ];
ssrc [ 32 ];
csrc_list [ VARIABLE ];
df =:= uncompressed_value(0,0) [ 0 ];
ip_id =:= uncompressed_value(0,0) [ 0 ];
}
CONTROL {
ENFORCE(profile_value == PROFILE_RTP_0101);
ENFORCE(profile == profile_value);
ENFORCE(time_stride.UVALUE == time_stride_value);
ENFORCE(ts_stride.UVALUE == ts_stride_value);
ENFORCE(reorder_ratio.UVALUE == reorder_ratio_value);
ENFORCE(ip_id_behavior_innermost.UVALUE == ip_id_behavior_value);
dummy_field =:= field_scaling(ts_stride.UVALUE,
ts_scaled.UVALUE, timestamp.UVALUE, ts_offset.UVALUE) [ 0 ];
}
INITIAL {
ts_stride =:= uncompressed_value(32, TS_STRIDE_DEFAULT);
time_stride =:= uncompressed_value(32, TIME_STRIDE_DEFAULT);
}
DEFAULT {
ENFORCE(outer_ip_flag == 0);
Pelletier & Sandlund Standards Track [Page 79]
^L
RFC 5225 ROHCv2 Profiles April 2008
tos_tc =:= static;
dest_addr =:= static;
ttl_hopl =:= static;
src_addr =:= static;
df =:= static;
flow_label =:= static;
next_header =:= static;
src_port =:= static;
dst_port =:= static;
pad_bit =:= static;
extension =:= static;
cc =:= static;
// When marker not present in packets, it is assumed 0
marker =:= uncompressed_value(1, 0);
payload_type =:= static;
sequence_number =:= static;
timestamp =:= static;
ssrc =:= static;
csrc_list =:= static;
ts_stride =:= static;
time_stride =:= static;
ts_scaled =:= static;
ts_offset =:= static;
reorder_ratio =:= static;
ip_id_behavior_innermost =:= static;
}
// Replacement for UOR-2-ext3
COMPRESSED co_common {
ENFORCE(outer_ip_flag == outer_ip_indicator.CVALUE);
discriminator =:= '11111010' [ 8 ];
marker =:= irregular(1) [ 1 ];
header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [ 7 ];
flags1_indicator =:= irregular(1) [ 1 ];
flags2_indicator =:= irregular(1) [ 1 ];
tsc_indicator =:= irregular(1) [ 1 ];
tss_indicator =:= irregular(1) [ 1 ];
ip_id_indicator =:= irregular(1) [ 1 ];
control_crc3 =:= control_crc3_encoding [ 3 ];
outer_ip_indicator : ttl_hopl_indicator :
tos_tc_indicator : df : ip_id_behavior_innermost : reorder_ratio
=:= profile_1_7_flags1_enc(flags1_indicator.CVALUE,
ip_version.UVALUE) [ 0, 8 ];
list_indicator : pt_indicator : tis_indicator : pad_bit :
extension =:= profile_1_flags2_enc(
flags2_indicator.CVALUE) [ 0, 8 ];
tos_tc =:= static_or_irreg(tos_tc_indicator.CVALUE, 8) [ 0, 8 ];
Pelletier & Sandlund Standards Track [Page 80]
^L
RFC 5225 ROHCv2 Profiles April 2008
ttl_hopl =:= static_or_irreg(ttl_hopl_indicator.CVALUE,
ttl_hopl.ULENGTH) [ 0, 8 ];
payload_type =:= pt_irr_or_static(pt_indicator) [ 0, 8 ];
sequence_number =:=
sdvl_sn_lsb(sequence_number.ULENGTH) [ VARIABLE ];
ip_id =:= ip_id_sequential_variable(
ip_id_behavior_innermost.UVALUE,
ip_id_indicator.CVALUE) [ 0, 8, 16 ];
ts_scaled =:= variable_scaled_timestamp(tss_indicator.CVALUE,
tsc_indicator.CVALUE, ts_stride.UVALUE,
time_stride.UVALUE) [ VARIABLE ];
timestamp =:= variable_unscaled_timestamp(tss_indicator.CVALUE,
tsc_indicator.CVALUE) [ VARIABLE ];
ts_stride =:= sdvl_or_static(tss_indicator.CVALUE) [ VARIABLE ];
time_stride =:= sdvl_or_static(tis_indicator.CVALUE) [ VARIABLE ];
csrc_list =:= csrc_list_presence(list_indicator.CVALUE,
cc.UVALUE) [ VARIABLE ];
}
// UO-0
COMPRESSED pt_0_crc3 {
discriminator =:= '0' [ 1 ];
msn =:= msn_lsb(4) [ 4 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
timestamp =:= inferred_scaled_field [ 0 ];
ip_id =:= inferred_sequential_ip_id [ 0 ];
}
// New format, Type 0 with strong CRC and more SN bits
COMPRESSED pt_0_crc7 {
discriminator =:= '1000' [ 4 ];
msn =:= msn_lsb(5) [ 5 ];
header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [ 7 ];
timestamp =:= inferred_scaled_field [ 0 ];
ip_id =:= inferred_sequential_ip_id [ 0 ];
}
// UO-1 replacement
COMPRESSED pt_1_rnd {
ENFORCE(ts_stride.UVALUE != 0);
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_RANDOM) ||
(ip_id_behavior_innermost.UVALUE == IP_ID_BEHAVIOR_ZERO));
discriminator =:= '101' [ 3 ];
marker =:= irregular(1) [ 1 ];
msn =:= msn_lsb(4) [ 4 ];
ts_scaled =:= scaled_ts_lsb(time_stride.UVALUE, 5) [ 5 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
Pelletier & Sandlund Standards Track [Page 81]
^L
RFC 5225 ROHCv2 Profiles April 2008
}
// UO-1-ID replacement
COMPRESSED pt_1_seq_id {
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL) ||
(ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
discriminator =:= '1001' [ 4 ];
ip_id =:= ip_id_lsb(ip_id_behavior_innermost.UVALUE, 4) [ 4 ];
msn =:= msn_lsb(5) [ 5 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
timestamp =:= inferred_scaled_field [ 0 ];
}
// UO-1-TS replacement
COMPRESSED pt_1_seq_ts {
ENFORCE(ts_stride.UVALUE != 0);
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL) ||
(ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
discriminator =:= '101' [ 3 ];
marker =:= irregular(1) [ 1 ];
msn =:= msn_lsb(4) [ 4 ];
ts_scaled =:= scaled_ts_lsb(time_stride.UVALUE, 5) [ 5 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
ip_id =:= inferred_sequential_ip_id [ 0 ];
}
// UOR-2 replacement
COMPRESSED pt_2_rnd {
ENFORCE(ts_stride.UVALUE != 0);
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_RANDOM) ||
(ip_id_behavior_innermost.UVALUE == IP_ID_BEHAVIOR_ZERO));
discriminator =:= '110' [ 3 ];
msn =:= msn_lsb(7) [ 7 ];
ts_scaled =:= scaled_ts_lsb(time_stride.UVALUE, 6) [ 6 ];
marker =:= irregular(1) [ 1 ];
header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [ 7 ];
}
// UOR-2-ID replacement
COMPRESSED pt_2_seq_id {
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL) ||
(ip_id_behavior_innermost.UVALUE ==
Pelletier & Sandlund Standards Track [Page 82]
^L
RFC 5225 ROHCv2 Profiles April 2008
IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
discriminator =:= '11000' [ 5 ];
msn =:= msn_lsb(7) [ 7 ];
ip_id =:= ip_id_lsb(ip_id_behavior_innermost.UVALUE, 5) [ 5 ];
header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [ 7 ];
timestamp =:= inferred_scaled_field [ 0 ];
}
// UOR-2-ID-ext1 replacement (both TS and IP-ID)
COMPRESSED pt_2_seq_both {
ENFORCE(ts_stride.UVALUE != 0);
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL) ||
(ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
discriminator =:= '11001' [ 5 ];
msn =:= msn_lsb(7) [ 7 ];
ip_id =:= ip_id_lsb(ip_id_behavior_innermost.UVALUE, 5) [ 5 ];
header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [ 7 ];
ts_scaled =:= scaled_ts_lsb(time_stride.UVALUE, 7) [ 7 ];
marker =:= irregular(1) [ 1 ];
}
// UOR-2-TS replacement
COMPRESSED pt_2_seq_ts {
ENFORCE(ts_stride.UVALUE != 0);
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL) ||
(ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
discriminator =:= '1101' [ 4 ];
msn =:= msn_lsb(7) [ 7 ];
ts_scaled =:= scaled_ts_lsb(time_stride.UVALUE, 5) [ 5 ];
marker =:= irregular(1) [ 1 ];
header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [ 7 ];
ip_id =:= inferred_sequential_ip_id [ 0 ];
}
}
////////////////////////////////////////////
// UDP profile
////////////////////////////////////////////
udp_baseheader(profile_value, outer_ip_flag, ip_id_behavior_value,
reorder_ratio_value)
{
UNCOMPRESSED v4 {
outer_headers =:= baseheader_outer_headers [ VARIABLE ];
Pelletier & Sandlund Standards Track [Page 83]
^L
RFC 5225 ROHCv2 Profiles April 2008
ip_version =:= uncompressed_value(4, 4) [ 4 ];
header_length =:= uncompressed_value(4, 5) [ 4 ];
tos_tc [ 8 ];
length =:= inferred_ip_v4_length [ 16 ];
ip_id [ 16 ];
rf =:= uncompressed_value(1, 0) [ 1 ];
df [ 1 ];
mf =:= uncompressed_value(1, 0) [ 1 ];
frag_offset =:= uncompressed_value(13, 0) [ 13 ];
ttl_hopl [ 8 ];
next_header [ 8 ];
ip_checksum =:= inferred_ip_v4_header_checksum [ 16 ];
src_addr [ 32 ];
dest_addr [ 32 ];
extension_headers =:= baseheader_extension_headers [ VARIABLE ];
src_port [ 16 ];
dst_port [ 16 ];
udp_length =:= inferred_udp_length [ 16 ];
udp_checksum [ 16 ];
}
UNCOMPRESSED v6 {
ENFORCE(ip_id_behavior.UVALUE == IP_ID_BEHAVIOR_RANDOM);
outer_headers =:= baseheader_outer_headers [ VARIABLE ];
ip_version =:= uncompressed_value(4, 6) [ 4 ];
tos_tc [ 8 ];
flow_label [ 20 ];
payload_length =:= inferred_ip_v6_length [ 16 ];
next_header [ 8 ];
ttl_hopl [ 8 ];
src_addr [ 128 ];
dest_addr [ 128 ];
extension_headers =:= baseheader_extension_headers [ VARIABLE ];
src_port [ 16 ];
dst_port [ 16 ];
udp_length =:= inferred_udp_length [ 16 ];
udp_checksum [ 16 ];
df =:= uncompressed_value(0,0) [ 0 ];
ip_id =:= uncompressed_value(0,0) [ 0 ];
}
CONTROL {
ENFORCE(profile_value == PROFILE_UDP_0102);
ENFORCE(profile == profile_value);
ENFORCE(reorder_ratio.UVALUE == reorder_ratio_value);
ENFORCE(ip_id_behavior_innermost.UVALUE == ip_id_behavior_value);
}
Pelletier & Sandlund Standards Track [Page 84]
^L
RFC 5225 ROHCv2 Profiles April 2008
DEFAULT {
ENFORCE(outer_ip_flag == 0);
tos_tc =:= static;
dest_addr =:= static;
ip_version =:= static;
ttl_hopl =:= static;
src_addr =:= static;
df =:= static;
flow_label =:= static;
next_header =:= static;
src_port =:= static;
dst_port =:= static;
reorder_ratio =:= static;
ip_id_behavior_innermost =:= static;
}
// Replacement for UOR-2-ext3
COMPRESSED co_common {
ENFORCE(outer_ip_flag == outer_ip_indicator.CVALUE);
discriminator =:= '11111010' [ 8 ];
ip_id_indicator =:= irregular(1) [ 1 ];
header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [ 7 ];
flags_indicator =:= irregular(1) [ 1 ];
ttl_hopl_indicator =:= irregular(1) [ 1 ];
tos_tc_indicator =:= irregular(1) [ 1 ];
reorder_ratio =:= irregular(2) [ 2 ];
control_crc3 =:= control_crc3_encoding [ 3 ];
outer_ip_indicator : df : ip_id_behavior_innermost =:=
profile_2_3_4_flags_enc(
flags_indicator.CVALUE, ip_version.UVALUE) [ 0, 8 ];
tos_tc =:= static_or_irreg(tos_tc_indicator.CVALUE, 8) [ 0, 8 ];
ttl_hopl =:= static_or_irreg(ttl_hopl_indicator.CVALUE,
ttl_hopl.ULENGTH) [ 0, 8 ];
msn =:= msn_lsb(8) [ 8 ];
ip_id =:= ip_id_sequential_variable(ip_id_behavior_innermost.UVALUE,
ip_id_indicator.CVALUE) [ 0, 8, 16 ];
}
// UO-0
COMPRESSED pt_0_crc3 {
discriminator =:= '0' [ 1 ];
msn =:= msn_lsb(4) [ 4 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
ip_id =:= inferred_sequential_ip_id [ 0 ];
}
// New format, Type 0 with strong CRC and more SN bits
COMPRESSED pt_0_crc7 {
Pelletier & Sandlund Standards Track [Page 85]
^L
RFC 5225 ROHCv2 Profiles April 2008
discriminator =:= '100' [ 3 ];
msn =:= msn_lsb(6) [ 6 ];
header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [ 7 ];
ip_id =:= inferred_sequential_ip_id [ 0 ];
}
// UO-1-ID replacement (PT-1 only used for sequential)
COMPRESSED pt_1_seq_id {
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL) ||
(ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
discriminator =:= '101' [ 3 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
msn =:= msn_lsb(6) [ 6 ];
ip_id =:= ip_id_lsb(ip_id_behavior_innermost.UVALUE, 4) [ 4 ];
}
// UOR-2-ID replacement
COMPRESSED pt_2_seq_id {
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL) ||
(ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
discriminator =:= '110' [ 3 ];
ip_id =:= ip_id_lsb(ip_id_behavior_innermost.UVALUE, 6) [ 6 ];
header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [ 7 ];
msn =:= msn_lsb(8) [ 8 ];
}
}
////////////////////////////////////////////
// ESP profile
////////////////////////////////////////////
esp_baseheader(profile_value, outer_ip_flag, ip_id_behavior_value,
reorder_ratio_value)
{
UNCOMPRESSED v4 {
ENFORCE(msn.UVALUE == sequence_number.UVALUE % 65536);
outer_headers =:= baseheader_outer_headers [ VARIABLE ];
ip_version =:= uncompressed_value(4, 4) [ 4 ];
header_length =:= uncompressed_value(4, 5) [ 4 ];
tos_tc [ 8 ];
length =:= inferred_ip_v4_length [ 16 ];
ip_id [ 16 ];
rf =:= uncompressed_value(1, 0) [ 1 ];
df [ 1 ];
Pelletier & Sandlund Standards Track [Page 86]
^L
RFC 5225 ROHCv2 Profiles April 2008
mf =:= uncompressed_value(1, 0) [ 1 ];
frag_offset =:= uncompressed_value(13, 0) [ 13 ];
ttl_hopl [ 8 ];
next_header [ 8 ];
ip_checksum =:= inferred_ip_v4_header_checksum [ 16 ];
src_addr [ 32 ];
dest_addr [ 32 ];
extension_headers =:= baseheader_extension_headers [ VARIABLE ];
spi [ 32 ];
sequence_number [ 32 ];
}
UNCOMPRESSED v6 {
ENFORCE(msn.UVALUE == (sequence_number.UVALUE % 65536));
ENFORCE(ip_id_behavior_innermost.UVALUE == IP_ID_BEHAVIOR_RANDOM);
outer_headers =:= baseheader_outer_headers [ VARIABLE ];
ip_version =:= uncompressed_value(4, 6) [ 4 ];
tos_tc [ 8 ];
flow_label [ 20 ];
payload_length =:= inferred_ip_v6_length [ 16 ];
next_header [ 8 ];
ttl_hopl [ 8 ];
src_addr [ 128 ];
dest_addr [ 128 ];
extension_headers =:= baseheader_extension_headers [ VARIABLE ];
spi [ 32 ];
sequence_number [ 32 ];
df =:= uncompressed_value(0,0) [ 0 ];
ip_id =:= uncompressed_value(0,0) [ 0 ];
}
CONTROL {
ENFORCE(profile_value == PROFILE_ESP_0103);
ENFORCE(profile == profile_value);
ENFORCE(ip_id_behavior_innermost.UVALUE == ip_id_behavior_value);
ENFORCE(reorder_ratio.UVALUE == reorder_ratio_value);
}
DEFAULT {
ENFORCE(outer_ip_flag == 0);
tos_tc =:= static;
dest_addr =:= static;
ttl_hopl =:= static;
src_addr =:= static;
df =:= static;
flow_label =:= static;
next_header =:= static;
spi =:= static;
Pelletier & Sandlund Standards Track [Page 87]
^L
RFC 5225 ROHCv2 Profiles April 2008
sequence_number =:= static;
reorder_ratio =:= static;
ip_id_behavior_innermost =:= static;
}
// Replacement for UOR-2-ext3
COMPRESSED co_common {
ENFORCE(outer_ip_flag == outer_ip_indicator.CVALUE);
discriminator =:= '11111010' [ 8 ];
ip_id_indicator =:= irregular(1) [ 1 ];
header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [ 7 ];
flags_indicator =:= irregular(1) [ 1 ];
ttl_hopl_indicator =:= irregular(1) [ 1 ];
tos_tc_indicator =:= irregular(1) [ 1 ];
reorder_ratio =:= irregular(2) [ 2 ];
control_crc3 =:= control_crc3_encoding [ 3 ];
outer_ip_indicator : df : ip_id_behavior_innermost =:=
profile_2_3_4_flags_enc(
flags_indicator.CVALUE, ip_version.UVALUE) [ 0, 8 ];
tos_tc =:= static_or_irreg(tos_tc_indicator.CVALUE, 8) [ 0, 8 ];
ttl_hopl =:= static_or_irreg(ttl_hopl_indicator.CVALUE,
ttl_hopl.ULENGTH) [ 0, 8 ];
sequence_number =:=
sdvl_sn_lsb(sequence_number.ULENGTH) [ VARIABLE ];
ip_id =:= ip_id_sequential_variable(ip_id_behavior_innermost.UVALUE,
ip_id_indicator.CVALUE) [ 0, 8, 16 ];
}
// Sequence number sent instead of MSN due to field length
// UO-0
COMPRESSED pt_0_crc3 {
discriminator =:= '0' [ 1 ];
sequence_number =:= msn_lsb(4) [ 4 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
ip_id =:= inferred_sequential_ip_id [ 0 ];
}
// New format, Type 0 with strong CRC and more SN bits
COMPRESSED pt_0_crc7 {
discriminator =:= '100' [ 3 ];
sequence_number =:= msn_lsb(6) [ 6 ];
header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [ 7 ];
ip_id =:= inferred_sequential_ip_id [ 0 ];
}
// UO-1-ID replacement (PT-1 only used for sequential)
COMPRESSED pt_1_seq_id {
Pelletier & Sandlund Standards Track [Page 88]
^L
RFC 5225 ROHCv2 Profiles April 2008
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL) ||
(ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
discriminator =:= '101' [ 3 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
sequence_number =:= msn_lsb(6) [ 6 ];
ip_id =:= ip_id_lsb(ip_id_behavior_innermost.UVALUE, 4) [ 4 ];
}
// UOR-2-ID replacement
COMPRESSED pt_2_seq_id {
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL) ||
(ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
discriminator =:= '110' [ 3 ];
ip_id =:= ip_id_lsb(ip_id_behavior_innermost.UVALUE, 6) [ 6 ];
header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [ 7 ];
sequence_number =:= msn_lsb(8) [ 8 ];
}
}
////////////////////////////////////////////
// IP-only profile
////////////////////////////////////////////
iponly_baseheader(profile_value, outer_ip_flag, ip_id_behavior_value,
reorder_ratio_value)
{
UNCOMPRESSED v4 {
outer_headers =:= baseheader_outer_headers [ VARIABLE ];
ip_version =:= uncompressed_value(4, 4) [ 4 ];
header_length =:= uncompressed_value(4, 5) [ 4 ];
tos_tc [ 8 ];
length =:= inferred_ip_v4_length [ 16 ];
ip_id [ 16 ];
rf =:= uncompressed_value(1, 0) [ 1 ];
df [ 1 ];
mf =:= uncompressed_value(1, 0) [ 1 ];
frag_offset =:= uncompressed_value(13, 0) [ 13 ];
ttl_hopl [ 8 ];
next_header [ 8 ];
ip_checksum =:= inferred_ip_v4_header_checksum [ 16 ];
src_addr [ 32 ];
dest_addr [ 32 ];
extension_headers =:= baseheader_extension_headers [ VARIABLE ];
}
Pelletier & Sandlund Standards Track [Page 89]
^L
RFC 5225 ROHCv2 Profiles April 2008
UNCOMPRESSED v6 {
ENFORCE(ip_id_behavior_innermost.UVALUE == IP_ID_BEHAVIOR_RANDOM);
outer_headers =:= baseheader_outer_headers [ VARIABLE ];
ip_version =:= uncompressed_value(4, 6) [ 4 ];
tos_tc [ 8 ];
flow_label [ 20 ];
payload_length =:= inferred_ip_v6_length [ 16 ];
next_header [ 8 ];
ttl_hopl [ 8 ];
src_addr [ 128 ];
dest_addr [ 128 ];
extension_headers =:= baseheader_extension_headers [ VARIABLE ];
df =:= uncompressed_value(0,0) [ 0 ];
ip_id =:= uncompressed_value(0,0) [ 0 ];
}
CONTROL {
ENFORCE(profile_value == PROFILE_IP_0104);
ENFORCE(profile == profile_value);
ENFORCE(reorder_ratio.UVALUE == reorder_ratio_value);
ENFORCE(ip_id_behavior_innermost.UVALUE == ip_id_behavior_value);
}
DEFAULT {
ENFORCE(outer_ip_flag == 0);
tos_tc =:= static;
dest_addr =:= static;
ttl_hopl =:= static;
src_addr =:= static;
df =:= static;
flow_label =:= static;
next_header =:= static;
reorder_ratio =:= static;
ip_id_behavior_innermost =:= static;
}
// Replacement for UOR-2-ext3
COMPRESSED co_common {
ENFORCE(outer_ip_flag == outer_ip_indicator.CVALUE);
discriminator =:= '11111010' [ 8 ];
ip_id_indicator =:= irregular(1) [ 1 ];
header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [ 7 ];
flags_indicator =:= irregular(1) [ 1 ];
ttl_hopl_indicator =:= irregular(1) [ 1 ];
tos_tc_indicator =:= irregular(1) [ 1 ];
reorder_ratio =:= irregular(2) [ 2 ];
control_crc3 =:= control_crc3_encoding [ 3 ];
outer_ip_indicator : df : ip_id_behavior_innermost =:=
Pelletier & Sandlund Standards Track [Page 90]
^L
RFC 5225 ROHCv2 Profiles April 2008
profile_2_3_4_flags_enc(
flags_indicator.CVALUE, ip_version.UVALUE) [ 0, 8 ];
tos_tc =:= static_or_irreg(tos_tc_indicator.CVALUE, 8) [ 0, 8 ];
ttl_hopl =:= static_or_irreg(ttl_hopl_indicator.CVALUE,
ttl_hopl.ULENGTH) [ 0, 8 ];
msn =:= msn_lsb(8) [ 8 ];
ip_id =:= ip_id_sequential_variable(ip_id_behavior_innermost.UVALUE,
ip_id_indicator.CVALUE) [ 0, 8, 16 ];
}
// UO-0
COMPRESSED pt_0_crc3 {
discriminator =:= '0' [ 1 ];
msn =:= msn_lsb(4) [ 4 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
ip_id =:= inferred_sequential_ip_id [ 0 ];
}
// New format, Type 0 with strong CRC and more SN bits
COMPRESSED pt_0_crc7 {
discriminator =:= '100' [ 3 ];
msn =:= msn_lsb(6) [ 6 ];
header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [ 7 ];
ip_id =:= inferred_sequential_ip_id [ 0 ];
}
// UO-1-ID replacement (PT-1 only used for sequential)
COMPRESSED pt_1_seq_id {
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL) ||
(ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
discriminator =:= '101' [ 3 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
msn =:= msn_lsb(6) [ 6 ];
ip_id =:= ip_id_lsb(ip_id_behavior_innermost.UVALUE, 4) [ 4 ];
}
// UOR-2-ID replacement
COMPRESSED pt_2_seq_id {
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL) ||
(ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
discriminator =:= '110' [ 3 ];
ip_id =:= ip_id_lsb(ip_id_behavior_innermost.UVALUE, 6) [ 6 ];
header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [ 7 ];
msn =:= msn_lsb(8) [ 8 ];
Pelletier & Sandlund Standards Track [Page 91]
^L
RFC 5225 ROHCv2 Profiles April 2008
}
}
////////////////////////////////////////////
// UDP-lite/RTP profile
////////////////////////////////////////////
udplite_rtp_baseheader(profile_value, ts_stride_value,
time_stride_value, outer_ip_flag,
ip_id_behavior_value, reorder_ratio_value,
coverage_behavior_value)
{
UNCOMPRESSED v4 {
ENFORCE(msn.UVALUE == sequence_number.UVALUE);
outer_headers =:= baseheader_outer_headers [ VARIABLE ];
ip_version =:= uncompressed_value(4, 4) [ 4 ];
header_length =:= uncompressed_value(4, 5) [ 4 ];
tos_tc [ 8 ];
length =:= inferred_ip_v4_length [ 16 ];
ip_id [ 16 ];
rf =:= uncompressed_value(1, 0) [ 1 ];
df [ 1 ];
mf =:= uncompressed_value(1, 0) [ 1 ];
frag_offset =:= uncompressed_value(13, 0) [ 13 ];
ttl_hopl [ 8 ];
next_header [ 8 ];
ip_checksum =:= inferred_ip_v4_header_checksum [ 16 ];
src_addr [ 32 ];
dest_addr [ 32 ];
extension_headers =:= baseheader_extension_headers [ VARIABLE ];
src_port [ 16 ];
dst_port [ 16 ];
checksum_coverage [ 16 ];
udp_checksum [ 16 ];
rtp_version =:= uncompressed_value(2, 2) [ 2 ];
pad_bit [ 1 ];
extension [ 1 ];
cc [ 4 ];
marker [ 1 ];
payload_type [ 7 ];
sequence_number [ 16 ];
timestamp [ 32 ];
ssrc [ 32 ];
csrc_list [ VARIABLE ];
}
UNCOMPRESSED v6 {
ENFORCE(ip_id_behavior_innermost.UVALUE == IP_ID_BEHAVIOR_RANDOM);
Pelletier & Sandlund Standards Track [Page 92]
^L
RFC 5225 ROHCv2 Profiles April 2008
outer_headers =:= baseheader_outer_headers [ VARIABLE ];
ip_version =:= uncompressed_value(4, 6) [ 4 ];
tos_tc [ 8 ];
flow_label [ 20 ];
payload_length =:= inferred_ip_v6_length [ 16 ];
next_header [ 8 ];
ttl_hopl [ 8 ];
src_addr [ 128 ];
dest_addr [ 128 ];
extension_headers =:= baseheader_extension_headers [ VARIABLE ];
src_port [ 16 ];
dst_port [ 16 ];
checksum_coverage [ 16 ];
udp_checksum [ 16 ];
rtp_version =:= uncompressed_value(2, 2) [ 2 ];
pad_bit [ 1 ];
extension [ 1 ];
cc [ 4 ];
marker [ 1 ];
payload_type [ 7 ];
sequence_number [ 16 ];
timestamp [ 32 ];
ssrc [ 32 ];
csrc_list [ VARIABLE ];
df =:= uncompressed_value(0,0) [ 0 ];
ip_id =:= uncompressed_value(0,0) [ 0 ];
}
CONTROL {
ENFORCE(profile_value == PROFILE_RTP_0107);
ENFORCE(profile == profile_value);
ENFORCE(time_stride.UVALUE == time_stride_value);
ENFORCE(ts_stride.UVALUE == ts_stride_value);
ENFORCE(coverage_behavior.UVALUE == coverage_behavior_value);
ENFORCE(reorder_ratio.UVALUE == reorder_ratio_value);
ENFORCE(ip_id_behavior_innermost.UVALUE == ip_id_behavior_value);
dummy_field =:= field_scaling(ts_stride.UVALUE,
ts_scaled.UVALUE, timestamp.UVALUE, ts_offset.UVALUE) [ 0 ];
}
INITIAL {
ts_stride =:= uncompressed_value(32, TS_STRIDE_DEFAULT);
time_stride =:= uncompressed_value(32, TIME_STRIDE_DEFAULT);
}
DEFAULT {
ENFORCE(outer_ip_flag == 0);
tos_tc =:= static;
Pelletier & Sandlund Standards Track [Page 93]
^L
RFC 5225 ROHCv2 Profiles April 2008
dest_addr =:= static;
ttl_hopl =:= static;
src_addr =:= static;
df =:= static;
flow_label =:= static;
next_header =:= static;
src_port =:= static;
dst_port =:= static;
pad_bit =:= static;
extension =:= static;
cc =:= static;
// When marker not present in packets, it is assumed 0
marker =:= uncompressed_value(1, 0);
payload_type =:= static;
sequence_number =:= static;
timestamp =:= static;
ssrc =:= static;
csrc_list =:= static;
ts_stride =:= static;
time_stride =:= static;
ts_scaled =:= static;
ts_offset =:= static;
reorder_ratio =:= static;
ip_id_behavior_innermost =:= static;
}
// Replacement for UOR-2-ext3
COMPRESSED co_common {
ENFORCE(outer_ip_flag == outer_ip_indicator.CVALUE);
discriminator =:= '11111010' [ 8 ];
marker =:= irregular(1) [ 1 ];
header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [ 7 ];
flags1_indicator =:= irregular(1) [ 1 ];
flags2_indicator =:= irregular(1) [ 1 ];
tsc_indicator =:= irregular(1) [ 1 ];
tss_indicator =:= irregular(1) [ 1 ];
ip_id_indicator =:= irregular(1) [ 1 ];
control_crc3 =:= control_crc3_encoding [ 3 ];
outer_ip_indicator : ttl_hopl_indicator :
tos_tc_indicator : df : ip_id_behavior_innermost : reorder_ratio
=:= profile_1_7_flags1_enc(flags1_indicator.CVALUE,
ip_version.UVALUE) [ 0, 8 ];
list_indicator : pt_indicator : tis_indicator : pad_bit :
extension : coverage_behavior =:=
profile_7_flags2_enc(flags2_indicator.CVALUE) [ 0, 8 ];
tos_tc =:= static_or_irreg(tos_tc_indicator.CVALUE, 8) [ 0, 8 ];
ttl_hopl =:=
Pelletier & Sandlund Standards Track [Page 94]
^L
RFC 5225 ROHCv2 Profiles April 2008
static_or_irreg(ttl_hopl_indicator.CVALUE, 8) [ 0, 8 ];
payload_type =:= pt_irr_or_static(pt_indicator.CVALUE) [ 0, 8 ];
sequence_number =:=
sdvl_sn_lsb(sequence_number.ULENGTH) [ VARIABLE ];
ip_id =:= ip_id_sequential_variable(ip_id_behavior_innermost.UVALUE,
ip_id_indicator.CVALUE) [ 0, 8, 16 ];
ts_scaled =:= variable_scaled_timestamp(tss_indicator.CVALUE,
tsc_indicator.CVALUE, ts_stride.UVALUE,
time_stride.UVALUE) [ VARIABLE ];
timestamp =:= variable_unscaled_timestamp(tss_indicator.CVALUE,
tsc_indicator.CVALUE) [ VARIABLE ];
ts_stride =:= sdvl_or_static(tss_indicator.CVALUE) [ VARIABLE ];
time_stride =:= sdvl_or_static(tis_indicator.CVALUE) [ VARIABLE ];
csrc_list =:=
csrc_list_presence(list_indicator.CVALUE,
cc.UVALUE) [ VARIABLE ];
}
// UO-0
COMPRESSED pt_0_crc3 {
discriminator =:= '0' [ 1 ];
msn =:= msn_lsb(4) [ 4 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
timestamp =:= inferred_scaled_field [ 0 ];
ip_id =:= inferred_sequential_ip_id [ 0 ];
}
// New format, Type 0 with strong CRC and more SN bits
COMPRESSED pt_0_crc7 {
discriminator =:= '1000' [ 4 ];
msn =:= msn_lsb(5) [ 5 ];
header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [ 7 ];
timestamp =:= inferred_scaled_field [ 0 ];
ip_id =:= inferred_sequential_ip_id [ 0 ];
}
// UO-1 replacement
COMPRESSED pt_1_rnd {
ENFORCE(ts_stride.UVALUE != 0);
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_RANDOM) ||
(ip_id_behavior_innermost.UVALUE == IP_ID_BEHAVIOR_ZERO));
discriminator =:= '101' [ 3 ];
marker =:= irregular(1) [ 1 ];
msn =:= msn_lsb(4) [ 4 ];
ts_scaled =:= scaled_ts_lsb(time_stride.UVALUE, 5) [ 5 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
}
Pelletier & Sandlund Standards Track [Page 95]
^L
RFC 5225 ROHCv2 Profiles April 2008
// UO-1-ID replacement
COMPRESSED pt_1_seq_id {
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL) ||
(ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
discriminator =:= '1001' [ 4 ];
ip_id =:= ip_id_lsb(ip_id_behavior_innermost.UVALUE, 4) [ 4 ];
msn =:= msn_lsb(5) [ 5 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
timestamp =:= inferred_scaled_field [ 0 ];
}
// UO-1-TS replacement
COMPRESSED pt_1_seq_ts {
ENFORCE(ts_stride.UVALUE != 0);
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL) ||
(ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
discriminator =:= '101' [ 3 ];
marker =:= irregular(1) [ 1 ];
msn =:= msn_lsb(4) [ 4 ];
ts_scaled =:= scaled_ts_lsb(time_stride.UVALUE, 5) [ 5 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
ip_id =:= inferred_sequential_ip_id [ 0 ];
}
// UOR-2 replacement
COMPRESSED pt_2_rnd {
ENFORCE(ts_stride.UVALUE != 0);
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_RANDOM) ||
(ip_id_behavior_innermost.UVALUE == IP_ID_BEHAVIOR_ZERO));
discriminator =:= '110' [ 3 ];
msn =:= msn_lsb(7) [ 7 ];
ts_scaled =:= scaled_ts_lsb(time_stride.UVALUE, 6) [ 6 ];
marker =:= irregular(1) [ 1 ];
header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [ 7 ];
}
// UOR-2-ID replacement
COMPRESSED pt_2_seq_id {
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL) ||
(ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
discriminator =:= '11000' [ 5 ];
Pelletier & Sandlund Standards Track [Page 96]
^L
RFC 5225 ROHCv2 Profiles April 2008
msn =:= msn_lsb(7) [ 7 ];
ip_id =:= ip_id_lsb(ip_id_behavior_innermost.UVALUE, 5) [ 5 ];
header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [ 7 ];
timestamp =:= inferred_scaled_field [ 0 ];
}
// UOR-2-ID-ext1 replacement (both TS and IP-ID)
COMPRESSED pt_2_seq_both {
ENFORCE(ts_stride.UVALUE != 0);
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL) ||
(ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
discriminator =:= '11001' [ 5 ];
msn =:= msn_lsb(7) [ 7 ];
ip_id =:= ip_id_lsb(ip_id_behavior_innermost.UVALUE, 5) [ 5 ];
header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [ 7 ];
ts_scaled =:= scaled_ts_lsb(time_stride.UVALUE, 7) [ 7 ];
marker =:= irregular(1) [ 1 ];
}
// UOR-2-TS replacement
COMPRESSED pt_2_seq_ts {
ENFORCE(ts_stride.UVALUE != 0);
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL) ||
(ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
discriminator =:= '1101' [ 4 ];
msn =:= msn_lsb(7) [ 7 ];
ts_scaled =:= scaled_ts_lsb(time_stride.UVALUE, 5) [ 5 ];
marker =:= irregular(1) [ 1 ];
header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [ 7 ];
ip_id =:= inferred_sequential_ip_id [ 0 ];
}
}
////////////////////////////////////////////
// UDP-lite profile
////////////////////////////////////////////
udplite_baseheader(profile_value, outer_ip_flag, ip_id_behavior_value,
reorder_ratio_value, coverage_behavior_value)
{
UNCOMPRESSED v4 {
outer_headers =:= baseheader_outer_headers [ VARIABLE ];
ip_version =:= uncompressed_value(4, 4) [ 4 ];
header_length =:= uncompressed_value(4, 5) [ 4 ];
Pelletier & Sandlund Standards Track [Page 97]
^L
RFC 5225 ROHCv2 Profiles April 2008
tos_tc [ 8 ];
length =:= inferred_ip_v4_length [ 16 ];
ip_id [ 16 ];
rf =:= uncompressed_value(1, 0) [ 1 ];
df [ 1 ];
mf =:= uncompressed_value(1, 0) [ 1 ];
frag_offset =:= uncompressed_value(13, 0) [ 13 ];
ttl_hopl [ 8 ];
next_header [ 8 ];
ip_checksum =:= inferred_ip_v4_header_checksum [ 16 ];
src_addr [ 32 ];
dest_addr [ 32 ];
extension_headers =:= baseheader_extension_headers [ VARIABLE ];
src_port [ 16 ];
dst_port [ 16 ];
checksum_coverage [ 16 ];
udp_checksum [ 16 ];
}
UNCOMPRESSED v6 {
ENFORCE(ip_id_behavior_innermost.UVALUE == IP_ID_BEHAVIOR_RANDOM);
outer_headers =:= baseheader_outer_headers [ VARIABLE ];
ip_version =:= uncompressed_value(4, 6) [ 4 ];
tos_tc [ 8 ];
flow_label [ 20 ];
payload_length =:= inferred_ip_v6_length [ 16 ];
next_header [ 8 ];
ttl_hopl [ 8 ];
src_addr [ 128 ];
dest_addr [ 128 ];
extension_headers =:= baseheader_extension_headers [ VARIABLE ];
src_port [ 16 ];
dst_port [ 16 ];
checksum_coverage [ 16 ];
udp_checksum [ 16 ];
df =:= uncompressed_value(0,0) [ 0 ];
ip_id =:= uncompressed_value(0,0) [ 0 ];
}
CONTROL {
ENFORCE(profile_value == PROFILE_UDPLITE_0108);
ENFORCE(profile == profile_value);
ENFORCE(coverage_behavior.UVALUE == coverage_behavior_value);
ENFORCE(reorder_ratio.UVALUE == reorder_ratio_value);
ENFORCE(ip_id_behavior_innermost.UVALUE == ip_id_behavior_value);
}
DEFAULT {
Pelletier & Sandlund Standards Track [Page 98]
^L
RFC 5225 ROHCv2 Profiles April 2008
ENFORCE(outer_ip_flag == 0);
tos_tc =:= static;
dest_addr =:= static;
ttl_hopl =:= static;
src_addr =:= static;
df =:= static;
flow_label =:= static;
next_header =:= static;
src_port =:= static;
dst_port =:= static;
reorder_ratio =:= static;
ip_id_behavior_innermost =:= static;
}
// Replacement for UOR-2-ext3
COMPRESSED co_common {
ENFORCE(outer_ip_flag == outer_ip_indicator.CVALUE);
discriminator =:= '11111010' [ 8 ];
ip_id_indicator =:= irregular(1) [ 1 ];
header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [ 7 ];
flags_indicator =:= irregular(1) [ 1 ];
ttl_hopl_indicator =:= irregular(1) [ 1 ];
tos_tc_indicator =:= irregular(1) [ 1 ];
reorder_ratio =:= irregular(2) [ 2 ];
control_crc3 =:= control_crc3_encoding [ 3 ];
outer_ip_indicator : df : ip_id_behavior_innermost :
coverage_behavior =:=
profile_8_flags_enc(flags_indicator.CVALUE,
ip_version.UVALUE) [ 0, 8 ];
tos_tc =:= static_or_irreg(tos_tc_indicator.CVALUE, 8) [ 0, 8 ];
ttl_hopl =:= static_or_irreg(ttl_hopl_indicator.CVALUE,
ttl_hopl.ULENGTH) [ 0, 8 ];
msn =:= msn_lsb(8) [ 8 ];
ip_id =:= ip_id_sequential_variable(ip_id_behavior_innermost.UVALUE,
ip_id_indicator.CVALUE) [ 0, 8, 16 ];
}
// UO-0
COMPRESSED pt_0_crc3 {
discriminator =:= '0' [ 1 ];
msn =:= msn_lsb(4) [ 4 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
ip_id =:= inferred_sequential_ip_id [ 0 ];
}
// New format, Type 0 with strong CRC and more SN bits
COMPRESSED pt_0_crc7 {
discriminator =:= '100' [ 3 ];
Pelletier & Sandlund Standards Track [Page 99]
^L
RFC 5225 ROHCv2 Profiles April 2008
msn =:= msn_lsb(6) [ 6 ];
header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [ 7 ];
ip_id =:= inferred_sequential_ip_id [ 0 ];
}
// UO-1-ID replacement (PT-1 only used for sequential)
COMPRESSED pt_1_seq_id {
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL) ||
(ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
discriminator =:= '101' [ 3 ];
header_crc =:= crc3(THIS.UVALUE, THIS.ULENGTH) [ 3 ];
msn =:= msn_lsb(6) [ 6 ];
ip_id =:= ip_id_lsb(ip_id_behavior_innermost.UVALUE, 4) [ 4 ];
}
// UOR-2-ID replacement
COMPRESSED pt_2_seq_id {
ENFORCE((ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL) ||
(ip_id_behavior_innermost.UVALUE ==
IP_ID_BEHAVIOR_SEQUENTIAL_SWAPPED));
discriminator =:= '110' [ 3 ];
ip_id =:= ip_id_lsb(ip_id_behavior_innermost.UVALUE, 6) [ 6 ];
header_crc =:= crc7(THIS.UVALUE, THIS.ULENGTH) [ 7 ];
msn =:= msn_lsb(8) [ 8 ];
}
}
6.9. Feedback Formats and Options
6.9.1. Feedback Formats
This section describes the feedback format for ROHCv2 profiles, using
the formats described in Section 5.2.3 of [RFC4995].
The Acknowledgment Number field of the feedback formats contains the
least significant bits of the MSN (see Section 6.3.1) that
corresponds to the reference header that is being acknowledged. A
reference header is a header that has been successfully CRC-8
validated or CRC verified. If there is no reference header
available, the feedback MUST carry an ACKNUMBER-NOT-VALID option.
FEEDBACK-1
Pelletier & Sandlund Standards Track [Page 100]
^L
RFC 5225 ROHCv2 Profiles April 2008
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| Acknowledgment Number |
+---+---+---+---+---+---+---+---+
Acknowledgment Number: The eight least significant bits of the
MSN.
A FEEDBACK-1 is an ACK. In order to send a NACK or a STATIC-NACK,
FEEDBACK-2 must be used.
FEEDBACK-2
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
|Acktype| Acknowledgment Number |
+---+---+---+---+---+---+---+---+
| Acknowledgment Number |
+---+---+---+---+---+---+---+---+
| CRC |
+---+---+---+---+---+---+---+---+
/ Feedback options /
+---+---+---+---+---+---+---+---+
Acktype:
0 = ACK
1 = NACK
2 = STATIC-NACK
3 is reserved (MUST NOT be used for parsability)
Acknowledgment Number: The least significant bits of the MSN.
CRC: 8-bit CRC computed over the entire feedback payload including
any CID fields but excluding the feedback type, the 'Size' field,
and the 'Code' octet, using the polynomial defined in Section
5.3.1.1 of [RFC4995]. If the CID is given with an Add-CID octet,
the Add-CID octet immediately precedes the FEEDBACK-1 or
FEEDBACK-2 format. For purposes of computing the CRC, the CRC
field is zero.
Feedback options: A variable number of feedback options, see
Section 6.9.2. Options may appear in any order.
Pelletier & Sandlund Standards Track [Page 101]
^L
RFC 5225 ROHCv2 Profiles April 2008
A FEEDBACK-2 of type NACK or STATIC-NACK is always implicitly an
acknowledgment for a successfully decompressed packet, which
corresponds to a packet whose LSBs match the Acknowledgment Number of
the feedback element, unless the ACKNUMBER-NOT-VALID option (see
Section 6.9.2.2) appears in the feedback element.
The FEEDBACK-2 format always carries a CRC and is thus more robust
than the FEEDBACK-1 format. When receiving FEEDBACK-2, the
compressor MUST verify the information by computing the CRC and
comparing the result with the CRC carried in the feedback format. If
the two are not identical, the feedback element MUST be discarded.
6.9.2. Feedback Options
A feedback option has variable length and the following general
format:
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| Opt Type | Opt Len |
+---+---+---+---+---+---+---+---+
/ Option Data / Opt Len (octets)
+---+---+---+---+---+---+---+---+
Opt Type: Unsigned integer that represents the type of the
feedback option. Section 6.9.2.1 through Section 6.9.2.4
describes the ROHCv2 feedback options.
Opt Len: Unsigned integer that represents the length of the Option
Data field, in octets.
Option Data: Feedback type specific data. Present if the value of
the Opt Len field is set to a non-zero value.
6.9.2.1. The REJECT Option
The REJECT option informs the compressor that the decompressor does
not have sufficient resources to handle the flow.
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| Opt Type = 2 | Opt Len = 0 |
+---+---+---+---+---+---+---+---+
When receiving a REJECT option, the compressor MUST stop compressing
the packet flow, and SHOULD refrain from attempting to increase the
number of compressed packet flows for some time. The REJECT option
Pelletier & Sandlund Standards Track [Page 102]
^L
RFC 5225 ROHCv2 Profiles April 2008
MUST NOT appear more than once in the FEEDBACK-2 format; otherwise,
the compressor MUST discard the entire feedback element.
6.9.2.2. The ACKNUMBER-NOT-VALID Option
The ACKNUMBER-NOT-VALID option indicates that the Acknowledgment
Number field of the feedback is not valid.
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| Opt Type = 3 | Opt Len = 0 |
+---+---+---+---+---+---+---+---+
A compressor MUST NOT use the Acknowledgment Number of the feedback
to find the corresponding sent header when this option is present.
When this option is used, the Acknowledgment Number field of the
FEEDBACK-2 format is set to zero. Consequently, a NACK or a STATIC-
NACK feedback type sent with the ACKNUMBER-NOT-VALID option is
equivalent to a STATIC-NACK with respect to the type of context
repair requested by the decompressor.
The ACKNUMBER-NOT-VALID option MUST NOT appear more than once in the
FEEDBACK-2 format; otherwise, the compressor MUST discard the entire
feedback element.
6.9.2.3. The CONTEXT_MEMORY Option
The CONTEXT_MEMORY option informs the compressor that the
decompressor does not have sufficient memory resources to handle the
context of the packet flow, as the flow is currently compressed.
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| Opt Type = 9 | Opt Len = 0 |
+---+---+---+---+---+---+---+---+
When receiving a CONTEXT_MEMORY option, the compressor SHOULD take
actions to compress the packet flow in a way that requires less
decompressor memory resources or stop compressing the packet flow.
The CONTEXT_MEMORY option MUST NOT appear more than once in the
FEEDBACK-2 format; otherwise, the compressor MUST discard the entire
feedback element.
6.9.2.4. The CLOCK_RESOLUTION Option
The CLOCK_RESOLUTION option informs the compressor of the clock
resolution of the decompressor. It also informs whether or not the
decompressor supports timer-based compression of the RTP TS timestamp
Pelletier & Sandlund Standards Track [Page 103]
^L
RFC 5225 ROHCv2 Profiles April 2008
(see Section 6.6.9). The CLOCK_RESOLUTION option is applicable per
channel, i.e., it applies to any context associated with a profile
for which the option is relevant between a compressor and
decompressor pair.
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| Opt Type = 10 | Opt Len = 1 |
+---+---+---+---+---+---+---+---+
| Clock resolution (ms) |
+---+---+---+---+---+---+---+---+
Clock resolution: Unsigned integer that represents the clock
resolution of the decompressor expressed in milliseconds.
The smallest clock resolution that can be indicated is 1 millisecond.
The value zero has a special meaning: it indicates that the
decompressor cannot do timer-based compression of the RTP Timestamp.
The CLOCK_RESOLUTION option MUST NOT appear more than once in the
FEEDBACK-2 format; otherwise, the compressor MUST discard the entire
feedback element.
6.9.2.5. Unknown Option Types
If an option type other than those defined in this document is
encountered, the compressor MUST discard the entire feedback element.
7. Security Considerations
Impairments such as bit errors on the received compressed headers,
missing packets, and reordering between packets could cause the
header decompressor to reconstitute erroneous packets, i.e., packets
that do not match the original packet, but still have a valid IP, UDP
(or UDP-Lite), and RTP headers, and possibly also valid UDP (or UDP-
Lite) checksums.
The header compression profiles defined herein use an internal
checksum for verification of reconstructed headers. This reduces the
probability that a header decompressor delivers erroneous packets to
upper layers without the error being noticed. In particular, the
probability that consecutive erroneous packets are not detected by
the internal checksum is close to zero.
This small but non-zero probability remains unchanged when integrity
protection is applied after compression and verified before
decompression, in the case where an attacker could discard or reorder
packets between the compression endpoints.
Pelletier & Sandlund Standards Track [Page 104]
^L
RFC 5225 ROHCv2 Profiles April 2008
The impairments mentioned above could be caused by a malfunctioning
or malicious header compressor. Such corruption may be detected with
end-to-end integrity mechanisms that will not be affected by the
compression. Moreover, the internal checksum can also be useful in
the case of malfunctioning compressors.
Denial-of-service attacks are possible if an intruder can introduce
(for example) bogus IR or FEEDBACK packets onto the link and thereby
cause compression efficiency to be reduced. However, an intruder
having the ability to inject arbitrary packets at the link layer in
this manner raises additional security issues that dwarf those
related to the use of header compression.
8. IANA Considerations
The following ROHC profile identifiers have been assigned by the IANA
for the profiles defined in this document:
Identifier Profile
---------- -------
0x0101 ROHCv2 RTP
0x0102 ROHCv2 UDP
0x0103 ROHCv2 ESP
0x0104 ROHCv2 IP
0x0107 ROHCv2 RTP/UDP-Lite
0x0108 ROHCv2 UDP-Lite
9. Acknowledgements
The authors would like to thank Mark West, Robert Finking, Haipeng
Jin, and Rohit Kapoor for serving as committed document reviewers,
and also for constructive discussions during the development of this
document. Thanks to Carl Knutsson for his extensive contribution to
this specification, as well as to Jani Juvan and Anders Edqvist for
useful comments and feedback. Thanks also to Elwyn Davies for his
review as the General Area Review Team (Gen-ART) reviewer, and to
Stephen Kent for his review on behalf of the IETF security
directorate, during IETF last-call. Finally, thanks to the many
people who have contributed to previous ROHC specifications and
supported this effort.
Pelletier & Sandlund Standards Track [Page 105]
^L
RFC 5225 ROHCv2 Profiles April 2008
10. References
10.1. Normative References
[RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
August 1980.
[RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
September 1981.
[RFC2004] Perkins, C., "Minimal Encapsulation within IP", RFC 2004,
October 1996.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
(IPv6) Specification", RFC 2460, December 1998.
[RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
Traina, "Generic Routing Encapsulation (GRE)", RFC 2784,
March 2000.
[RFC2890] Dommety, G., "Key and Sequence Number Extensions to GRE",
RFC 2890, September 2000.
[RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
Jacobson, "RTP: A Transport Protocol for Real-Time
Applications", STD 64, RFC 3550, July 2003.
[RFC3828] Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-E., and
G. Fairhurst, "The Lightweight User Datagram Protocol
(UDP-Lite)", RFC 3828, July 2004.
[RFC4019] Pelletier, G., "RObust Header Compression (ROHC): Profiles
for User Datagram Protocol (UDP) Lite", RFC 4019,
April 2005.
[RFC4302] Kent, S., "IP Authentication Header", RFC 4302,
December 2005.
[RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
RFC 4303, December 2005.
[RFC4995] Jonsson, L-E., Pelletier, G., and K. Sandlund, "The RObust
Header Compression (ROHC) Framework", RFC 4995, July 2007.
Pelletier & Sandlund Standards Track [Page 106]
^L
RFC 5225 ROHCv2 Profiles April 2008
[RFC4997] Finking, R. and G. Pelletier, "Formal Notation for RObust
Header Compression (ROHC-FN)", RFC 4997, July 2007.
10.2. Informative References
[RFC2675] Borman, D., Deering, S., and R. Hinden, "IPv6 Jumbograms",
RFC 2675, August 1999.
[RFC3095] Bormann, C., Burmeister, C., Degermark, M., Fukushima, H.,
Hannu, H., Jonsson, L-E., Hakenberg, R., Koren, T., Le,
K., Liu, Z., Martensson, A., Miyazaki, A., Svanbro, K.,
Wiebke, T., Yoshimura, T., and H. Zheng, "RObust Header
Compression (ROHC): Framework and four profiles: RTP, UDP,
ESP, and uncompressed", RFC 3095, July 2001.
[RFC3843] Jonsson, L-E. and G. Pelletier, "RObust Header Compression
(ROHC): A Compression Profile for IP", RFC 3843,
June 2004.
[RFC4224] Pelletier, G., Jonsson, L-E., and K. Sandlund, "RObust
Header Compression (ROHC): ROHC over Channels That Can
Reorder Packets", RFC 4224, January 2006.
Pelletier & Sandlund Standards Track [Page 107]
^L
RFC 5225 ROHCv2 Profiles April 2008
Appendix A. Detailed Classification of Header Fields
Header compression is possible due to the fact that most header
fields do not vary randomly from packet to packet. Many of the
fields exhibit static behavior or change in a more or less
predictable way. When designing a header compression scheme, it is
of fundamental importance to understand the behavior of the fields in
detail.
In this appendix, all fields in the headers compressible by these
profiles are classified and analyzed. The analysis is based on
behavior for the types of traffic that are expected to be the most
frequently compressed (e.g., RTP field behavior is based on voice
and/or video traffic behavior).
Fields are classified as belonging to one of the following classes:
INFERRED - These fields contain values that can be inferred from
other values, for example the size of the frame carrying the packet,
and thus do not have to be included in compressed packets.
STATIC - These fields are expected to be constant throughout the
lifetime of the flow; in general, it is sufficient to design a
compressed format so that these fields are only updated by IR
packets.
STATIC-DEF - These fields are expected to be constant throughout the
lifetime of the flow and their values can be used to define a flow.
They are only sent in IR packets.
STATIC-KNOWN - These fields are expected to have well-known values
and therefore do not need to be communicated at all.
SEMISTATIC - These fields are unchanged most of the time. However,
occasionally the value changes but will revert to its original value.
For ROHCv2, the values of such fields do not need to be possible to
change with the smallest compressed packet formats, but should be
possible to change via slightly larger compressed packets.
RARELY CHANGING (RACH) - These are fields that change their values
occasionally and then keep their new values. For ROHCv2, the values
of such fields do not need to be possible to change with the smallest
compressed packet formats, but should be possible to change via
slightly larger compressed packets.
IRREGULAR - These are the fields for which no useful change pattern
can be identified and should be transmitted uncompressed in all
compressed packets.
Pelletier & Sandlund Standards Track [Page 108]
^L
RFC 5225 ROHCv2 Profiles April 2008
PATTERN - These are fields that change between each packet, but
change in a predictable pattern.
A.1. IPv4 Header Fields
+------------------------+----------------+
| Field | Class |
+------------------------+----------------+
| Version | STATIC-KNOWN |
| Header Length | STATIC-KNOWN |
| Type Of Service | RACH |
| Packet Length | INFERRED |
| Identification | |
| Sequential | PATTERN |
| Seq. swap | PATTERN |
| Random | IRREGULAR |
| Zero | STATIC |
| Reserved flag | STATIC-KNOWN |
| Don't Fragment flag | RACH |
| More Fragments flag | STATIC-KNOWN |
| Fragment Offset | STATIC-KNOWN |
| Time To Live | RACH |
| Protocol | STATIC-DEF |
| Header Checksum | INFERRED |
| Source Address | STATIC-DEF |
| Destination Address | STATIC-DEF |
+------------------------+----------------+
Version
The version field states which IP version is used and is set to
the value four.
Header Length
As long as no options are present in the IP header, the header
length is constant with the value five. If there are options, the
field could be RACH or STATIC-DEF, but only option-less headers
are compressed by ROHCv2 profiles. The field is therefore
classified as STATIC-KNOWN.
Type Of Service
For the type of flows compressed by the ROHCv2 profiles, the DSCP
(Differentiated Services Code Point) and ECN (Explicit Congestion
Notification) fields are expected to change relatively seldom.
Pelletier & Sandlund Standards Track [Page 109]
^L
RFC 5225 ROHCv2 Profiles April 2008
Packet Length
Information about packet length is expected to be provided by the
link layer. The field is therefore classified as INFERRED.
IPv4 Identification
The Identification field (IP-ID) is used to identify what
fragments constitute a datagram when reassembling fragmented
datagrams. The IPv4 specification does not specify exactly how
this field is to be assigned values, only that each packet should
get an IP-ID that is unique for the source-destination pair and
protocol for the time the datagram (or any of its fragments) could
be alive in the network. This means that assignment of IP-ID
values can be done in various ways, but the expected behaviors
have been separated into four classes.
Sequential
In this behavior, the IP-ID is expected to increment by one for
most packets, but may increment by a value larger than one,
depending on the behavior of the transmitting IPv4 stack.
Sequential Swapped
When using this behavior, the IP-ID behaves as in the
Sequential behavior, but the two bytes of IP-ID are byte-
swapped. Therefore, the IP-ID can be swapped before
compression to make it behave exactly as the Sequential
behavior.
Random
Some IP stacks assign IP-ID values using a pseudo-random number
generator. There is thus no correlation between the ID values
of subsequent datagrams, and therefore there is no way to
predict the IP-ID value for the next datagram. For header
compression purposes, this means that the IP-ID field needs to
be sent uncompressed with each datagram, resulting in two extra
octets of header.
Zero
This behavior, although not a legal implementation of IPv4, is
sometimes seen in existing IPv4 stacks. When this behavior is
used, all IP packets have the IP-ID value set to zero.
Pelletier & Sandlund Standards Track [Page 110]
^L
RFC 5225 ROHCv2 Profiles April 2008
Flags
The Reserved flag must be set to zero and is therefore classified
as STATIC-KNOWN. The Don't Fragment (DF) flag changes rarely and
is therefore classified as RACH. Finally, the More Fragments (MF)
flag is expected to be zero because IP fragments will not be
compressed by ROHC and is therefore classified as STATIC-KNOWN.
Fragment Offset
Under the assumption that no fragmentation occurs, the fragment
offset is always zero and is therefore classified as STATIC-KNOWN.
Time To Live
The Time To Live field is expected to be constant during the
lifetime of a flow or to alternate between a limited number of
values due to route changes.
Protocol
This field will have the same value in all packets of a flow and
is therefore classified as STATIC-DEF.
Header Checksum
The header checksum protects individual hops from processing a
corrupted header. When almost all IP header information is
compressed away, there is no point in having this additional
checksum; instead, it can be regenerated at the decompressor side.
The field is therefore classified as INFERRED.
Source and Destination addresses
These fields are part of the definition of a flow and must thus be
constant for all packets in the flow.
Pelletier & Sandlund Standards Track [Page 111]
^L
RFC 5225 ROHCv2 Profiles April 2008
A.2. IPv6 Header Fields
+----------------------+----------------+
| Field | Class |
+----------------------+----------------+
| Version | STATIC-KNOWN |
| Traffic Class | RACH |
| Flow Label | STATIC-DEF |
| Payload Length | INFERRED |
| Next Header | STATIC-DEF |
| Hop Limit | RACH |
| Source Address | STATIC-DEF |
| Destination Address | STATIC-DEF |
+----------------------+----------------+
Version
The version field states which IP version is used and is set to
the value six.
Traffic Class
For the type of flows compressed by the ROHCv2 profiles, the DSCP
and ECN fields are expected to change relatively seldom.
Flow Label
This field may be used to identify packets belonging to a specific
flow. If it is not used, the value should be set to zero.
Otherwise, all packets belonging to the same flow must have the
same value in this field. The field is therefore classified as
STATIC-DEF.
Payload Length
Information about packet length (and, consequently, payload
length) is expected to be provided by the link layer. The field
is therefore classified as INFERRED.
Next Header
This field will have the same value in all packets of a flow and
is therefore classified as STATIC-DEF.
Pelletier & Sandlund Standards Track [Page 112]
^L
RFC 5225 ROHCv2 Profiles April 2008
Hop Limit
The Hop Limit field is expected to be constant during the lifetime
of a flow or to alternate between a limited number of values due
to route changes.
Source and Destination addresses
These fields are part of the definition of a flow and must thus be
constant for all packets in the flow. The fields are therefore
classified as STATIC-DEF.
A.3. UDP Header Fields
+------------------+-------------+
| Field | Class |
+------------------+-------------+
| Source Port | STATIC-DEF |
| Destination Port | STATIC-DEF |
| Length | INFERRED |
| Checksum | |
| Disabled | STATIC |
| Enabled | IRREGULAR |
+------------------+-------------+
Source and Destination ports
These fields are part of the definition of a flow and must thus be
constant for all packets in the flow.
Length
Information about packet length is expected to be provided by the
link layer. The field is therefore classified as INFERRED.
Checksum
The checksum can be optional. If disabled, its value is
constantly zero and can be compressed away. If enabled, its value
depends on the payload, which for compression purposes is
equivalent to it changing randomly with every packet.
Pelletier & Sandlund Standards Track [Page 113]
^L
RFC 5225 ROHCv2 Profiles April 2008
A.4. UDP-Lite Header Fields
+--------------------+-------------+
| Field | Class |
+--------------------+-------------+
| Source Port | STATIC-DEF |
| Destination Port | STATIC-DEF |
| Checksum Coverage | |
| Zero | STATIC-DEF |
| Constant | INFERRED |
| Variable | IRREGULAR |
| Checksum | IRREGULAR |
+--------------------+-------------+
Source and Destination Port
These fields are part of the definition of a flow and must thus be
constant for all packets in the flow.
Checksum Coverage
The Checksum Coverage field may behave in different ways: it may
have a value of zero, it may be equal to the datagram length, or
it may have any value between eight octets and the length of the
datagram. From a compression perspective, this field is expected
to either be entirely predictable (for the cases where it follows
the same behavior as the UDP Length field or where it takes on a
constant value) or to change randomly for each packet (making the
value unpredictable from a header-compression perspective). For
all cases, the behavior itself is not expected to change for this
field during the lifetime of a packet flow, or to change
relatively seldom.
Checksum
The information used for the calculation of the UDP-Lite checksum
is governed by the value of the checksum coverage and minimally
includes the UDP-Lite header. The checksum is a changing field
that must always be sent as-is.
Pelletier & Sandlund Standards Track [Page 114]
^L
RFC 5225 ROHCv2 Profiles April 2008
A.5. RTP Header Fields
+----------------+----------------+
| Field | Class |
+----------------+----------------+
| Version | STATIC-KNOWN |
| Padding | RACH |
| Extension | RACH |
| CSRC Counter | RACH |
| Marker | SEMISTATIC |
| Payload Type | RACH |
| Sequence Number| PATTERN |
| Timestamp | PATTERN |
| SSRC | STATIC-DEF |
| CSRC | RACH |
+----------------+----------------+
Version
This field is expected to have the value two and the field is
therefore classified as STATIC-KNOWN.
Padding
The use of this field is application-dependent, but when payload
padding is used, it is likely to be present in most or all
packets. The field is classified as RACH to allow for the case
where the value of this field changes.
Extension
If RTP extensions are used by the application, these extensions
are often present in all packets, although the use of extensions
is infrequent. To allow efficient compression of a flow using
extensions in only a few packets, this field is classified as
RACH.
CSRC Count
This field indicates the number of CSRC items present in the CSRC
list. This number is expected to be mostly constant on a packet-
to-packet basis and when it changes, change by small amounts. As
long as no RTP mixer is used, the value of this field will be
zero.
Pelletier & Sandlund Standards Track [Page 115]
^L
RFC 5225 ROHCv2 Profiles April 2008
Marker
For audio, the marker bit should be set only in the first packet
of a talkspurt, while for video, it should be set in the last
packet of every picture. This means that in both cases the RTP
marker is classified as SEMISTATIC.
Payload Type
Applications could adapt to congestion by changing payload type
and/or frame sizes, but that is not expected to happen frequently,
so this field is classified as RACH.
RTP Sequence Number
The RTP Sequence Number will be incremented by one for each packet
sent.
Timestamp
In the audio case:
As long as there are no pauses in the audio stream, the RTP
Timestamp will be incremented by a constant value, which
corresponds to the number of samples in the speech frame. It
will thus mostly follow the RTP Sequence Number. When there
has been a silent period and a new talkspurt begins, the
timestamp will jump in proportion to the length of the silent
period. However, the increment will probably be within a
relatively limited range.
In the video case:
Between two consecutive packets, the timestamp will either be
unchanged or increase by a multiple of a fixed value
corresponding to the picture clock frequency. The timestamp
can also decrease by a multiple of the fixed value for certain
coding schemes. The change in timestamp value, expressed as a
multiple of the picture clock frequency, is in most cases
within a limited range.
SSRC
This field is part of the definition of a flow and must thus be
constant for all packets in the flow. The field is therefore
classified as STATIC-DEF.
Pelletier & Sandlund Standards Track [Page 116]
^L
RFC 5225 ROHCv2 Profiles April 2008
Contributing Sources (CSRC)
The participants in a session, who are identified by the CSRC
fields, are usually expected to be unchanged on a packet-to-packet
basis, but will infrequently change by a few additions and/or
removals.
A.6. ESP Header Fields
+------------------+-------------+
| Field | Class |
+------------------+-------------+
| SPI | STATIC-DEF |
| Sequence Number | PATTERN |
+------------------+-------------+
SPI
This field is used to identify a distinct flow between two IPsec
peers and it changes rarely; therefore, it is classified as
STATIC-DEF.
ESP Sequence Number
The ESP Sequence Number will be incremented by one for each packet
sent.
A.7. IPv6 Extension Header Fields
+-----------------------+---------------+
| Field | Class |
+-----------------------+---------------+
| Next Header | STATIC-DEF |
| Ext Hdr Len | |
| Routing | STATIC-DEF |
| Hop-by-hop | STATIC |
| Destination | STATIC |
| Options | |
| Routing | STATIC-DEF |
| Hop-by-hop | RACH |
| Destination | RACH |
+-----------------------+---------------+
Next Header
This field will have the same value in all packets of a flow and
is therefore classified as STATIC-DEF.
Pelletier & Sandlund Standards Track [Page 117]
^L
RFC 5225 ROHCv2 Profiles April 2008
Ext Hdr Len
For the Routing header, it is expected that the length will remain
constant for the duration of the flow, and that a change in the
length should be classified as a new flow by the ROHC compressor.
For Hop-by-hop and Destination options headers, the length is
expected to remain static, but can be updated by an IR packet.
Options
For the Routing header, it is expected that the option content
will remain constant for the duration of the flow, and that a
change in the routing information should be classified as a new
flow by the ROHC compressor. For Hop-by-hop and Destination
options headers, the options are expected to remain static, but
can be updated by an IR packet.
A.8. GRE Header Fields
+--------------------+---------------+
| Field | Class |
+--------------------+---------------+
| C flag | STATIC |
| K flag | STATIC |
| S flag | STATIC |
| R flag | STATIC-KNOWN |
| Reserved0, Version | STATIC-KNOWN |
| Protocol | STATIC-DEF |
| Checksum | IRREGULAR |
| Reserved | STATIC-KNOWN |
| Sequence Number | PATTERN |
| Key | STATIC-DEF |
+--------------------+---------------+
Flags
The four flag bits are not expected to change for the duration of
the flow, and the R flag is expected to always be set to zero.
Reserved0, Version
Both of these fields are expected to be set to zero for the
duration of any flow.
Protocol
This field will have the same value in all packets of a flow and
is therefore classified as STATIC-DEF.
Pelletier & Sandlund Standards Track [Page 118]
^L
RFC 5225 ROHCv2 Profiles April 2008
Checksum
When the checksum field is present, it is expected to behave
unpredictably.
Reserved
When present, this field is expected to be set to zero.
Sequence Number
When present, the Sequence Number increases by one for each
packet.
Key
When present, the Key field is used to define the flow and does
not change.
A.9. MINE Header Fields
+---------------------+----------------+
| Field | Class |
+---------------------+----------------+
| Protocol | STATIC-DEF |
| S bit | STATIC-DEF |
| Reserved | STATIC-KNOWN |
| Checksum | INFERRED |
| Source Address | STATIC-DEF |
| Destination Address | STATIC-DEF |
+---------------------+----------------+
Protocol
This field will have the same value in all packets of a flow and
is therefore classified as STATIC-DEF.
S bit
The S bit is not expected to change during a flow.
Reserved
The reserved field is expected to be set to zero.
Pelletier & Sandlund Standards Track [Page 119]
^L
RFC 5225 ROHCv2 Profiles April 2008
Checksum
The header checksum protects individual routing hops from
processing a corrupted header. Since all fields of this header
are compressed away, there is no need to include this checksum in
compressed packets and it can be regenerated at the decompressor
side.
Source and Destination Addresses
These fields can be used to define the flow and are not expected
to change.
A.10. AH Header Fields
+---------------------+----------------+
| Field | Class |
+---------------------+----------------+
| Next Header | STATIC-DEF |
| Payload Length | STATIC |
| Reserved | STATIC-KNOWN |
| SPI | STATIC-DEF |
| Sequence Number | PATTERN |
| ICV | IRREGULAR |
+---------------------+----------------+
Next Header
This field will have the same value in all packets of a flow and
is therefore classified as STATIC-DEF.
Payload Length
It is expected that the length of the header is constant for the
duration of the flow.
Reserved
The value of this field will be set to zero.
SPI
This field is used to identify a specific flow and only changes
when the sequence number wraps around, and is therefore classified
as STATIC-DEF.
Pelletier & Sandlund Standards Track [Page 120]
^L
RFC 5225 ROHCv2 Profiles April 2008
Sequence Number
The Sequence Number will be incremented by one for each packet
sent.
ICV
The ICV is expected to behave unpredictably and is therefore
classified as IRREGULAR.
Appendix B. Compressor Implementation Guidelines
This section describes some guiding principles for implementing a
ROHCv2 compressor with focus on how to efficiently select appropriate
packet formats. The text in this appendix should be considered
guidelines; it does not define any normative requirement on how
ROHCv2 profiles are implemented.
B.1. Reference Management
The compressor usually maintains a sliding window of reference
headers, which contains as many references as needed for the
optimistic approach. Each reference contains a description of which
changes occurred in the flow between two consecutive headers in the
flow, and a new reference is inserted into the window each time a
packet is compressed by this context. A reference may for example be
implemented as a stored copy of the uncompressed header being
represented. When the compressor is confident that a specific
reference is no longer used by the decompressor (for example by using
the optimistic approach or feedback received), the reference is
removed from the sliding window.
B.2. Window-based LSB Encoding (W-LSB)
Section 5.1.1 describes how the optimistic approach impacts the
packet format selection for the compressor. Exactly how the
compressor selects a packet format is up to the implementation to
decide, but the following is an example of how this process can be
performed for lsb-encoded fields through the use of Window-based LSB
encoding (W-LSB).
With W-LSB encoding, the compressor uses a number of references (a
window) from its context. What references to use is determined by
its optimistic approach. The compressor extracts the value of the
field to be W-LSB encoded from each reference in the window, and
finds the maximum and minimum values. Once it determines these
values, the compressor uses the assumption that the decompressor has
a value for this field within the range given by these boundaries
Pelletier & Sandlund Standards Track [Page 121]
^L
RFC 5225 ROHCv2 Profiles April 2008
(inclusively) as its reference. The compressor can then select a
number of LSBs from the value to be compressed, so that the LSBs can
be decompressed regardless of whether the decompressor uses the
minimum value, the maximum value or any other value in the range of
possible references.
B.3. W-LSB Encoding and Timer-based Compression
Section 6.6.9 defines decompressor behavior for timer-based RTP
timestamp compression. This section gives guidelines on how the
compressor should determine the number of LSB bits it should send for
the timestamp field. When using timer-based compression, this number
depends on the sum of the jitter before the compressor and the jitter
between the compressor and decompressor.
The jitter before the compressor can be estimated using the following
computation:
Max_Jitter_BC =
max {|(T_n - T_j) - ((a_n - a_j) / time_stride)|,
for all headers j in the sliding window}
where (T_n - T_j) is the difference in the timestamp between the
currently compressed header and a reference header and (a_n - a_j) is
the difference in arrival time between those same two headers.
In addition to this, the compressor needs to estimate an upper bound
for the jitter between the compressor and decompressor
(Max_Jitter_CD). This information may for example come from lower
layers.
A compressor implementation can determine whether the difference in
clock resolution between the compressor and decompressor induces an
error when performing integer arithmetics; it can then treat this
error as additional jitter.
After obtaining estimates for the jitters, the number of bits needed
to transmit is obtained using the following calculation:
ceiling(log2(2 * (Max_Jitter_BC + Max_Jitter_CD + 2) + 1))
This number is then used to select a packet format that contains at
least this many scaled timestamp bits.
Pelletier & Sandlund Standards Track [Page 122]
^L
RFC 5225 ROHCv2 Profiles April 2008
Authors' Addresses
Ghyslain Pelletier
Ericsson
Box 920
Lulea SE-971 28
Sweden
Phone: +46 (0) 8 404 29 43
EMail: ghyslain.pelletier@ericsson.com
Kristofer Sandlund
Ericsson
Box 920
Lulea SE-971 28
Sweden
Phone: +46 (0) 8 404 41 58
EMail: kristofer.sandlund@ericsson.com
Pelletier & Sandlund Standards Track [Page 123]
^L
RFC 5225 ROHCv2 Profiles April 2008
Full Copyright Statement
Copyright (C) The IETF Trust (2008).
This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Pelletier & Sandlund Standards Track [Page 124]
^L
|