1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
|
Independent Submission P. Calhoun
Request for Comments: 5412 R. Suri
Category: Historic N. Cam-Winget
ISSN: 2070-1721 Cisco Systems, Inc.
M. Williams
GWhiz Arts & Sciences
S. Hares
B. O'Hara
S.Kelly
February 2010
Lightweight Access Point Protocol
Abstract
In recent years, there has been a shift in wireless LAN (WLAN)
product architectures from autonomous access points to centralized
control of lightweight access points. The general goal has been to
move most of the traditional wireless functionality such as access
control (user authentication and authorization), mobility, and radio
management out of the access point into a centralized controller.
The IETF's CAPWAP (Control and Provisioning of Wireless Access
Points) WG has identified that a standards-based protocol is
necessary between a wireless Access Controller and Wireless
Termination Points (the latter are also commonly referred to as
Lightweight Access Points). This specification defines the
Lightweight Access Point Protocol (LWAPP), which addresses the
CAPWAP's (Control and Provisioning of Wireless Access Points)
protocol requirements. Although the LWAPP protocol is designed to be
flexible enough to be used for a variety of wireless technologies,
this specific document describes the base protocol and an extension
that allows it to be used with the IEEE's 802.11 wireless LAN
protocol.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for the historical record.
This document defines a Historic Document for the Internet community.
This is a contribution to the RFC Series, independently of any other
RFC stream. The RFC Editor has chosen to publish this document at
its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by
the RFC Editor are not a candidate for any level of Internet
Standard; see Section 2 of RFC 5741.
Calhoun, et al. Historic [Page 1]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc5412.
IESG Note
This RFC documents the LWAPP protocol as it was when submitted to the
IETF as a basis for further work in the CAPWAP Working Group, and
therefore it may resemble the CAPWAP protocol specification in RFC
5415 as well as other IETF work. This RFC is being published solely
for the historical record. The protocol described in this RFC has
not been thoroughly reviewed and may contain errors and omissions.
RFC 5415 documents the standards track solution for the CAPWAP
Working Group and obsoletes any and all mechanisms defined in this
RFC. This RFC is not a candidate for any level of Internet Standard
and should not be used as a basis for any sort of Internet
deployment.
Copyright Notice
Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
Calhoun, et al. Historic [Page 2]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Table of Contents
1. Introduction ....................................................8
1.1. Conventions Used in This Document ..........................9
2. Protocol Overview ..............................................10
2.1. Wireless Binding Definition ...............................11
2.2. LWAPP State Machine Definition ............................12
3. LWAPP Transport Layers .........................................20
3.1. LWAPP Transport Header ....................................21
3.1.1. VER Field ..........................................21
3.1.2. RID Field ..........................................21
3.1.3. C Bit ..............................................21
3.1.4. F Bit ..............................................21
3.1.5. L Bit ..............................................22
3.1.6. Fragment ID ........................................22
3.1.7. Length .............................................22
3.1.8. Status and WLANS ...................................22
3.1.9. Payload ............................................22
3.2. Using IEEE 802.3 MAC as LWAPP Transport ...................22
3.2.1. Framing ............................................23
3.2.2. AC Discovery .......................................23
3.2.3. LWAPP Message Header Format over IEEE 802.3
MAC Transport ......................................23
3.2.4. Fragmentation/Reassembly ...........................24
3.2.5. Multiplexing .......................................24
3.3. Using IP/UDP as LWAPP Transport ...........................24
3.3.1. Framing ............................................24
3.3.2. AC Discovery .......................................25
3.3.3. LWAPP Message Header Format over IP/UDP Transport ..25
3.3.4. Fragmentation/Reassembly for IPv4 ..................26
3.3.5. Fragmentation/Reassembly for IPv6 ..................26
3.3.6. Multiplexing .......................................26
4. LWAPP Packet Definitions .......................................26
4.1. LWAPP Data Messages .......................................27
4.2. LWAPP Control Messages Overview ...........................27
4.2.1. Control Message Format .............................28
4.2.2. Message Element Format .............................29
4.2.3. Quality of Service .................................31
5. LWAPP Discovery Operations .....................................31
5.1. Discovery Request .........................................31
5.1.1. Discovery Type .....................................32
5.1.2. WTP Descriptor .....................................33
5.1.3. WTP Radio Information ..............................34
5.2. Discovery Response ........................................34
5.2.1. AC Address .........................................35
5.2.2. AC Descriptor ......................................35
5.2.3. AC Name ............................................36
5.2.4. WTP Manager Control IPv4 Address ...................37
Calhoun, et al. Historic [Page 3]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
5.2.5. WTP Manager Control IPv6 Address ...................37
5.3. Primary Discovery Request .................................38
5.3.1. Discovery Type .....................................38
5.3.2. WTP Descriptor .....................................38
5.3.3. WTP Radio Information ..............................38
5.4. Primary Discovery Response ................................38
5.4.1. AC Descriptor ......................................39
5.4.2. AC Name ............................................39
5.4.3. WTP Manager Control IPv4 Address ...................39
5.4.4. WTP Manager Control IPv6 Address ...................39
6. Control Channel Management .....................................39
6.1. Join Request ..............................................39
6.1.1. WTP Descriptor .....................................40
6.1.2. AC Address .........................................40
6.1.3. WTP Name ...........................................40
6.1.4. Location Data ......................................41
6.1.5. WTP Radio Information ..............................41
6.1.6. Certificate ........................................41
6.1.7. Session ID .........................................42
6.1.8. Test ...............................................42
6.1.9. XNonce .............................................42
6.2. Join Response .............................................43
6.2.1. Result Code ........................................44
6.2.2. Status .............................................44
6.2.3. Certificate ........................................45
6.2.4. WTP Manager Data IPv4 Address ......................45
6.2.5. WTP Manager Data IPv6 Address ......................45
6.2.6. AC IPv4 List .......................................46
6.2.7. AC IPv6 List .......................................46
6.2.8. ANonce .............................................47
6.2.9. PSK-MIC ............................................48
6.3. Join ACK ..................................................48
6.3.1. Session ID .........................................49
6.3.2. WNonce .............................................49
6.3.3. PSK-MIC ............................................49
6.4. Join Confirm ..............................................49
6.4.1. Session ID .........................................50
6.4.2. PSK-MIC ............................................50
6.5. Echo Request ..............................................50
6.6. Echo Response .............................................50
6.7. Key Update Request ........................................51
6.7.1. Session ID .........................................51
6.7.2. XNonce .............................................51
6.8. Key Update Response .......................................51
6.8.1. Session ID .........................................51
6.8.2. ANonce .............................................51
6.8.3. PSK-MIC ............................................52
6.9. Key Update ACK ............................................52
Calhoun, et al. Historic [Page 4]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
6.9.1. WNonce .............................................52
6.9.2. PSK-MIC ............................................52
6.10. Key Update Confirm .......................................52
6.10.1. PSK-MIC ...........................................52
6.11. Key Update Trigger .......................................52
6.11.1. Session ID ........................................53
7. WTP Configuration Management ...................................53
7.1. Configuration Consistency .................................53
7.2. Configure Request .........................................54
7.2.1. Administrative State ...............................54
7.2.2. AC Name ............................................55
7.2.3. AC Name with Index .................................55
7.2.4. WTP Board Data .....................................56
7.2.5. Statistics Timer ...................................56
7.2.6. WTP Static IP Address Information ..................57
7.2.7. WTP Reboot Statistics ..............................58
7.3. Configure Response ........................................58
7.3.1. Decryption Error Report Period .....................59
7.3.2. Change State Event .................................59
7.3.3. LWAPP Timers .......................................60
7.3.4. AC IPv4 List .......................................60
7.3.5. AC IPv6 List .......................................61
7.3.6. WTP Fallback .......................................61
7.3.7. Idle Timeout .......................................61
7.4. Configuration Update Request ..............................62
7.4.1. WTP Name ...........................................62
7.4.2. Change State Event .................................62
7.4.3. Administrative State ...............................62
7.4.4. Statistics Timer ...................................62
7.4.5. Location Data ......................................62
7.4.6. Decryption Error Report Period .....................62
7.4.7. AC IPv4 List .......................................62
7.4.8. AC IPv6 List .......................................62
7.4.9. Add Blacklist Entry ................................63
7.4.10. Delete Blacklist Entry ............................63
7.4.11. Add Static Blacklist Entry ........................64
7.4.12. Delete Static Blacklist Entry .....................64
7.4.13. LWAPP Timers ......................................65
7.4.14. AC Name with Index ................................65
7.4.15. WTP Fallback ......................................65
7.4.16. Idle Timeout ......................................65
7.5. Configuration Update Response .............................65
7.5.1. Result Code ........................................65
7.6. Change State Event Request ................................65
7.6.1. Change State Event .................................66
7.7. Change State Event Response ...............................66
7.8. Clear Config Indication ...................................66
8. Device Management Operations ...................................66
Calhoun, et al. Historic [Page 5]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
8.1. Image Data Request ........................................66
8.1.1. Image Download .....................................67
8.1.2. Image Data .........................................67
8.2. Image Data Response .......................................68
8.3. Reset Request .............................................68
8.4. Reset Response ............................................68
8.5. WTP Event Request .........................................68
8.5.1. Decryption Error Report ............................69
8.5.2. Duplicate IPv4 Address .............................69
8.5.3. Duplicate IPv6 Address .............................70
8.6. WTP Event Response ........................................70
8.7. Data Transfer Request .....................................71
8.7.1. Data Transfer Mode .................................71
8.7.2. Data Transfer Data .................................71
8.8. Data Transfer Response ....................................72
9. Mobile Session Management ......................................72
9.1. Mobile Config Request .....................................72
9.1.1. Delete Mobile ......................................73
9.2. Mobile Config Response ....................................73
9.2.1. Result Code ........................................74
10. LWAPP Security ................................................74
10.1. Securing WTP-AC Communications ...........................74
10.2. LWAPP Frame Encryption ...................................75
10.3. Authenticated Key Exchange ...............................76
10.3.1. Terminology .......................................76
10.3.2. Initial Key Generation ............................77
10.3.3. Refreshing Cryptographic Keys .....................81
10.4. Certificate Usage ........................................82
11. IEEE 802.11 Binding ...........................................82
11.1. Division of Labor ........................................82
11.1.1. Split MAC .........................................83
11.1.2. Local MAC .........................................85
11.2. Roaming Behavior and 802.11 Security .....................87
11.3. Transport-Specific Bindings ..............................88
11.3.1. Status and WLANS Field ............................88
11.4. BSSID to WLAN ID Mapping .................................89
11.5. Quality of Service .......................................89
11.6. Data Message Bindings ....................................90
11.7. Control Message Bindings .................................90
11.7.1. Mobile Config Request .............................90
11.7.2. WTP Event Request .................................96
11.8. 802.11 Control Messages ..................................97
11.8.1. IEEE 802.11 WLAN Config Request ...................98
11.8.2. IEEE 802.11 WLAN Config Response .................103
11.8.3. IEEE 802.11 WTP Event ............................103
11.9. Message Element Bindings ................................105
11.9.1. IEEE 802.11 WTP WLAN Radio Configuration .........105
11.9.2. IEEE 802.11 Rate Set .............................107
Calhoun, et al. Historic [Page 6]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
11.9.3. IEEE 802.11 Multi-Domain Capability ..............107
11.9.4. IEEE 802.11 MAC Operation ........................108
11.9.5. IEEE 802.11 Tx Power .............................109
11.9.6. IEEE 802.11 Tx Power Level .......................110
11.9.7. IEEE 802.11 Direct Sequence Control ..............110
11.9.8. IEEE 802.11 OFDM Control .........................111
11.9.9. IEEE 802.11 Antenna ..............................112
11.9.10. IEEE 802.11 Supported Rates .....................113
11.9.11. IEEE 802.11 CFP Status ..........................114
11.9.12. IEEE 802.11 WTP Mode and Type ...................114
11.9.13. IEEE 802.11 Broadcast Probe Mode ................115
11.9.14. IEEE 802.11 WTP Quality of Service ..............115
11.9.15. IEEE 802.11 MIC Error Report From Mobile ........117
11.10. IEEE 802.11 Message Element Values .....................117
12. LWAPP Protocol Timers ........................................118
12.1. MaxDiscoveryInterval ....................................118
12.2. SilentInterval ..........................................118
12.3. NeighborDeadInterval ....................................118
12.4. EchoInterval ............................................118
12.5. DiscoveryInterval .......................................118
12.6. RetransmitInterval ......................................119
12.7. ResponseTimeout .........................................119
12.8. KeyLifetime .............................................119
13. LWAPP Protocol Variables .....................................119
13.1. MaxDiscoveries ..........................................119
13.2. DiscoveryCount ..........................................119
13.3. RetransmitCount .........................................119
13.4. MaxRetransmit ...........................................120
14. NAT Considerations ...........................................120
15. Security Considerations ......................................121
15.1. Certificate-Based Session Key Establishment .............122
15.2. PSK-Based Session Key Establishment .....................123
16. Acknowledgements .............................................123
17. References ...................................................123
17.1. Normative References ....................................123
17.2. Informative References ..................................124
Calhoun, et al. Historic [Page 7]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
1. Introduction
Unlike wired network elements, Wireless Termination Points (WTPs)
require a set of dynamic management and control functions related to
their primary task of connecting the wireless and wired mediums.
Today, protocols for managing WTPs are either manual static
configuration via HTTP, proprietary Layer 2-specific, or non-existent
(if the WTPs are self-contained). The emergence of simple 802.11
WTPs that are managed by a WLAN appliance or switch (also known as an
Access Controller, or AC) suggests that having a standardized,
interoperable protocol could radically simplify the deployment and
management of wireless networks. In many cases, the overall control
and management functions themselves are generic and could apply to an
AP for any wireless Layer 2 (L2) protocol. Being independent of
specific wireless Layer 2 technologies, such a protocol could better
support interoperability between Layer 2 devices and enable smoother
intertechnology handovers.
The details of how these functions would be implemented are dependent
on the particular Layer 2 wireless technology. Such a protocol would
need provisions for binding to specific technologies.
LWAPP assumes a network configuration that consists of multiple WTPs
communicating either via Layer 2 (Medium Access Control (MAC)) or
Layer 3 (IP) to an AC. The WTPs can be considered as remote radio
frequency (RF) interfaces, being controlled by the AC. The AC
forwards all L2 frames it wants to transmit to a WTP via the LWAPP
protocol. Packets from mobile nodes are forwarded by the WTP to the
AC, also via this protocol. Figure 1 illustrates this arrangement as
applied to an IEEE 802.11 binding.
+-+ 802.11 frames +-+
| |--------------------------------| |
| | +-+ | |
| |--------------| |---------------| |
| | 802.11 PHY/ | | LWAPP | |
| | MAC sublayer | | | |
+-+ +-+ +-+
STA WTP AC
Figure 1: LWAPP Architecture
Calhoun, et al. Historic [Page 8]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Security is another aspect of Wireless Termination Point management
that is not well served by existing solutions. Provisioning WTPs
with security credentials, and managing which WTPs are authorized to
provide service are today handled by proprietary solutions. Allowing
these functions to be performed from a centralized AC in an
interoperable fashion increases manageability and allows network
operators to more tightly control their wireless network
infrastructure.
This document describes the Lightweight Access Point Protocol
(LWAPP), allowing an AC to manage a collection of WTPs. The protocol
is defined to be independent of Layer 2 technology, but an 802.11
binding is provided for use in growing 802.11 wireless LAN networks.
Goals:
The following are goals for this protocol:
1. Centralization of the bridging, forwarding, authentication, and
policy enforcement functions for a wireless network. Optionally,
the AC may also provide centralized encryption of user traffic.
This will permit reduced cost and higher efficiency when applying
the capabilities of network processing silicon to the wireless
network, as it has already been applied to wired LANs.
2. Permit shifting of the higher-level protocol processing burden
away from the WTP. This leaves the computing resource of the WTP
to the timing-critical applications of wireless control and
access. This makes the most efficient use of the computing power
available in WTPs that are the subject of severe cost pressure.
3. Providing a generic encapsulation and transport mechanism, the
protocol may be applied to other access point types in the future
by adding the binding.
The LWAPP protocol concerns itself solely with the interface between
the WTP and the AC. Inter-AC, or mobile-to-AC communication is
strictly outside the scope of this document.
1.1. Conventions Used in This Document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [1].
Calhoun, et al. Historic [Page 9]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
2. Protocol Overview
LWAPP is a generic protocol defining how Wireless Termination Points
communicate with Access Controllers. Wireless Termination Points and
Access Controllers may communicate either by means of Layer 2
protocols or by means of a routed IP network.
LWAPP messages and procedures defined in this document apply to both
types of transports unless specified otherwise. Transport
independence is achieved by defining formats for both MAC-level and
IP-level transport (see Section 3). Also defined are framing,
fragmentation/reassembly, and multiplexing services to LWAPP for each
transport type.
The LWAPP Transport layer carries two types of payload. LWAPP data
messages are forwarded wireless frames. LWAPP control messages are
management messages exchanged between a WTP and an AC. The LWAPP
transport header defines the "C-bit", which is used to distinguish
data and control traffic. When used over IP, the LWAPP data and
control traffic are also sent over separate UDP ports. Since both
data and control frames can exceed Path Maximum Transmission Unit
(PMTU), the payload of an LWAPP data or control message can be
fragmented. The fragmentation behavior is highly dependent upon the
lower-layer transport and is defined in Section 3.
The Lightweight Access Protocol (LWAPP) begins with a discovery
phase. The WTPs send a Discovery Request frame, causing any Access
Controller (AC), receiving that frame to respond with a Discovery
Response. From the Discovery Responses received, a WTP will select
an AC with which to associate, using the Join Request and Join
Response. The Join Request also provides an MTU discovery mechanism,
to determine whether there is support for the transport of large
frames between the WTP and its AC. If support for large frames is
not present, the LWAPP frames will be fragmented to the maximum
length discovered to be supported by the network.
Once the WTP and the AC have joined, a configuration exchange is
accomplished that will cause both devices to agree on version
information. During this exchange, the WTP may receive provisioning
settings. For the 802.11 binding, this information would typically
include a name (802.11 Service Set Identifier, SSID), and security
parameters, the data rates to be advertised, as well as the radio
channel (channels, if the WTP is capable of operating more than one
802.11 MAC and Physical Layer (PHY) simultaneously) to be used.
Finally, the WTPs are enabled for operation.
Calhoun, et al. Historic [Page 10]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
When the WTP and AC have completed the version and provision exchange
and the WTP is enabled, the LWAPP encapsulates the wireless frames
sent between them. LWAPP will fragment its packets, if the size of
the encapsulated wireless user data (Data) or protocol control
(Management) frames cause the resultant LWAPP packet to exceed the
MTU supported between the WTP and AC. Fragmented LWAPP packets are
reassembled to reconstitute the original encapsulated payload.
In addition to the functions thus far described, LWAPP also provides
for the delivery of commands from the AC to the WTP for the
management of devices that are communicating with the WTP. This may
include the creation of local data structures in the WTP for the
managed devices and the collection of statistical information about
the communication between the WTP and the 802.11 devices. LWAPP
provides the ability for the AC to obtain any statistical information
collected by the WTP.
LWAPP also provides for a keepalive feature that preserves the
communication channel between the WTP and AC. If the AC fails to
appear alive, the WTP will try to discover a new AC to communicate
through.
This document uses terminology defined in [5].
2.1. Wireless Binding Definition
This draft standard specifies a protocol independent of a specific
wireless access point radio technology. Elements of the protocol are
designed to accommodate specific needs of each wireless technology in
a standard way. Implementation of this standard for a particular
wireless technology must follow the binding requirements defined for
that technology. This specification includes a binding for the IEEE
802.11 (see Section 11).
When defining a binding for other technologies, the authors MUST
include any necessary definitions for technology-specific messages
and all technology-specific message elements for those messages. At
a minimum, a binding MUST provide the definition for a binding-
specific Statistics message element, which is carried in the WTP
Event Request message, and Add Mobile message element, which is
carried in the Mobile Configure Request. If any technology-specific
message elements are required for any of the existing LWAPP messages
defined in this specification, they MUST also be defined in the
technology-binding document.
The naming of binding-specific message elements MUST begin with the
name of the technology type, e.g., the binding for IEEE 802.11,
provided in this standard, begins with "IEEE 802.11".
Calhoun, et al. Historic [Page 11]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
2.2. LWAPP State Machine Definition
The following state diagram represents the life cycle of a WTP-AC
session:
/-------------\
| v
| +------------+
| C| Idle |<-----------------------------------\
| +------------+<-----------------------\ |
| ^ |a ^ | |
| | | \----\ | |
| | | | +------------+ |
| | | | -------| Key Confirm| |
| | | | w/ +------------+ |
| | | | | ^ |
| | | |t V |5 |
| | | +-----------+ +------------+ |
| / | C| Run | | Key Update | |
| / | r+-----------+------>+------------+ |
| / | ^ |s u x| |
| | v | | | |
| | +--------------+ | | v |y
| | C| Discovery | q| \--------------->+-------+
| | b+--------------+ +-------------+ | Reset |
| | |d f| ^ | Configure |------->+-------+
| | | | | +-------------+p ^
| |e v | | ^ |
| +---------+ v |i 2| |
| C| Sulking | +------------+ +--------------+ |
| +---------+ C| Join |--->| Join-Confirm | |
| g+------------+z +--------------+ |
| |h m| 3| |4 |
| | | | v |o
|\ | | | +------------+
\\-----------------/ \--------+---->| Image Data |C
\------------------------------------/ +------------+n
Figure 2: LWAPP State Machine
The LWAPP state machine, depicted above, is used by both the AC and
the WTP. For every state defined, only certain messages are
permitted to be sent and received. In all of the LWAPP control
messages defined in this document, the state for which each command
is valid is specified.
Calhoun, et al. Historic [Page 12]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Note that in the state diagram figure above, the 'C' character is
used to represent a condition that causes the state to remain the
same.
The following text discusses the various state transitions, and the
events that cause them.
Idle to Discovery (a): This is the initialization state.
WTP: The WTP enters the Discovery state prior to transmitting the
first Discovery Request (see Section 5.1). Upon entering
this state, the WTP sets the DiscoveryInterval timer (see
Section 12). The WTP resets the DiscoveryCount counter to
zero (0) (see Section 13). The WTP also clears all
information from ACs (e.g., AC Addresses) it may have
received during a previous discovery phase.
AC: The AC does not need to maintain state information for the
WTP upon reception of the Discovery Request, but it MUST
respond with a Discovery Response (see Section 5.2).
Discovery to Discovery (b): This is the state the WTP uses to
determine to which AC it wishes to connect.
WTP: This event occurs when the DiscoveryInterval timer expires.
The WTP transmits a Discovery Request to every AC to which
the WTP hasn't received a response. For every transition to
this event, the WTP increments the DisoveryCount counter.
See Section 5.1 for more information on how the WTP knows to
which ACs it should transmit the Discovery Requests. The
WTP restarts the DiscoveryInterval timer.
AC: This is a noop.
Discovery to Sulking (d): This state occurs on a WTP when Discovery
or connectivity to the AC fails.
WTP: The WTP enters this state when the DiscoveryInterval timer
expires and the DiscoveryCount variable is equal to the
MaxDiscoveries variable (see Section 13). Upon entering
this state, the WTP will start the SilentInterval timer.
While in the Sulking state, all LWAPP messages received are
ignored.
AC: This is a noop.
Sulking to Idle (e): This state occurs on a WTP when it must restart
the discovery phase.
Calhoun, et al. Historic [Page 13]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
WTP: The WTP enters this state when the SilentInterval timer (see
Section 12) expires.
AC: This is a noop.
Discovery to Join (f): This state is used by the WTP to confirm its
commitment to an AC that it wishes to be provided service.
WTP: The WTP selects the best AC based on the information it
gathered during the discovery phase. It then transmits a
Join Request (see Section 6.1) to its preferred AC. The WTP
starts the WaitJoin timer (see Section 12).
AC: The AC enters this state for the given WTP upon reception of
a Join Request. The AC processes the request and responds
with a Join Response.
Join to Join (g): This state transition occurs during the join
phase.
WTP: The WTP enters this state when the WaitJoin timer expires,
and the underlying transport requires LWAPP MTU detection
(Section 3).
AC: This state occurs when the AC receives a retransmission of a
Join Request. The WTP processes the request and responds
with the Join Response.
Join to Idle (h): This state is used when the join process has
failed.
WTP: This state transition occurs if the WTP is configured to use
pre-shared key (PSK) security and receives a Join Response
that includes an invalid PSK-MIC (Message Integrity Check)
message element.
AC: The AC enters this state when it transmits an unsuccessful
Join Response.
Join to Discovery (i): This state is used when the join process has
failed.
WTP: The WTP enters this state when it receives an unsuccessful
Join Response. Upon entering this state, the WTP sets the
DiscoveryInterval timer (see Section 12). The WTP resets
the DiscoveryCount counter to zero (0) (see Section 13).
This state transition may also occur if the PSK-MIC (see
Section 6.2.9) message element is invalid.
Calhoun, et al. Historic [Page 14]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
AC: This state transition is invalid.
Join to Join-Confirm (z): This state is used to provide key
confirmation during the join process.
WTP: This state is entered when the WTP receives a Join Response.
In the event that certificate-based security is utilized,
this transition will occur if the Certificate message
element is present and valid in the Join Response. For pre-
shared key security, the Join Response must include a valid
and authenticated PSK-MIC message element. The WTP MUST
respond with a Join ACK, which is used to provide key
confirmation.
AC: The AC enters this state when it receives a valid Join ACK.
For certificate-based security, the Join ACK MUST include
the WNonce message element. For pre-shared key security,
the message must include a valid PSK-MIC message element.
The AC MUST respond with a Join Confirm message, which
includes the Session Key message element.
Join-Confirm to Idle (3): This state is used when the join process
has failed.
WTP: This state transition occurs when the WTP receives an
invalid Join Confirm.
AC: The AC enters this state when it receives an invalid Join
ACK.
Join-Confirm to Configure (2): This state is used by the WTP and the
AC to exchange configuration information.
WTP: The WTP enters this state when it receives a successful Join
Confirm and determines that its version number and the
version number advertised by the AC are the same. The WTP
transmits the Configure Request (see Section 7.2) message to
the AC with a snapshot of its current configuration. The
WTP also starts the ResponseTimeout timer (see Section 12).
AC: This state transition occurs when the AC receives the
Configure Request from the WTP. The AC must transmit a
Configure Response (see Section 7.3) to the WTP, and may
include specific message elements to override the WTP's
configuration.
Calhoun, et al. Historic [Page 15]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Join-Confirm to Image Data (4): This state is used by the WTP and
the AC to download executable firmware.
WTP: The WTP enters this state when it receives a successful Join
Confirm, and determines that its version number and the
version number advertised by the AC are different. The WTP
transmits the Image Data Request (see Section 8.1) message
requesting that the AC's latest firmware be initiated.
AC: This state transition occurs when the AC receives the Image
Data Request from the WTP. The AC must transmit an Image
Data Response (see Section 8.2) to the WTP, which includes a
portion of the firmware.
Image Data to Image Data (n): This state is used by the WTP and the
AC during the firmware download phase.
WTP: The WTP enters this state when it receives an Image Data
Response that indicates that the AC has more data to send.
AC: This state transition occurs when the AC receives the Image
Data Request from the WTP while already in this state, and
it detects that the firmware download has not completed.
Image Data to Reset (o): This state is used when the firmware
download is completed.
WTP: The WTP enters this state when it receives an Image Data
Response that indicates that the AC has no more data to
send, or if the underlying LWAPP transport indicates a link
failure. At this point, the WTP reboots itself.
AC: This state transition occurs when the AC receives the Image
Data Request from the WTP while already in this state, and
it detects that the firmware download has completed or if
the underlying LWAPP transport indicates a link failure.
Note that the AC itself does not reset, but it places the
specific WTP's context it is communicating with in the reset
state: meaning that it clears all state associated with the
WTP.
Configure to Reset (p): This state transition occurs if the
configure phase fails.
WTP: The WTP enters this state when the reliable transport fails
to deliver the Configure Request, or if the ResponseTimeout
timer (see Section 12) expires.
Calhoun, et al. Historic [Page 16]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
AC: This state transition occurs if the AC is unable to transmit
the Configure Response to a specific WTP. Note that the AC
itself does not reset, but it places the specific WTP's
context it is communicating with in the reset state: meaning
that it clears all state associated with the WTP.
Configure to Run (q): This state transition occurs when the WTP and
AC enter their normal state of operation.
WTP: The WTP enters this state when it receives a successful
Configure Response from the AC. The WTP initializes the
HeartBeat timer (see Section 12), and transmits the Change
State Event Request message (see Section 7.6).
AC: This state transition occurs when the AC receives the Change
State Event Request (see Section 7.6) from the WTP. The AC
responds with a Change State Event Response (see Section
7.7) message. The AC must start the Session ID and
NeighborDead timers (see Section 12).
Run to Run (r): This is the normal state of operation.
WTP: This is the WTP's normal state of operation, and there are
many events that cause this to occur:
Configuration Update: The WTP receives a Configuration Update
Request (see Section 7.4). The WTP MUST respond with a
Configuration Update Response (see Section 7.5).
Change State Event: The WTP receives a Change State Event
Response, or determines that it must initiate a Change State
Event Request, as a result of a failure or change in the state
of a radio.
Echo Request: The WTP receives an Echo Request message
(Section 6.5), to which it MUST respond with an Echo Response
(see Section 6.6).
Clear Config Indication: The WTP receives a Clear Config
Indication message (Section 7.8). The WTP MUST reset its
configuration back to manufacturer defaults.
WTP Event: The WTP generates a WTP Event Request to send
information to the AC (Section 8.5). The WTP receives a WTP
Event Response from the AC (Section 8.6).
Calhoun, et al. Historic [Page 17]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Data Transfer: The WTP generates a Data Transfer Request to
the AC (Section 8.7). The WTP receives a Data Transfer
Response from the AC (Section 8.8).
WLAN Config Request: The WTP receives a WLAN Config Request
message (Section 11.8.1), to which it MUST respond with a WLAN
Config Response (see Section 11.8.2).
Mobile Config Request: The WTP receives an Mobile Config
Request message (Section 9.1), to which it MUST respond with a
Mobile Config Response (see Section 9.2).
AC: This is the AC's normal state of operation, and there are
many events that cause this to occur:
Configuration Update: The AC sends a Configuration Update
Request (see Section 7.4) to the WTP to update its
configuration. The AC receives a Configuration Update Response
(see Section 7.5) from the WTP.
Change State Event: The AC receives a Change State Event
Request (see Section 7.6), to which it MUST respond with the
Change State Event Response (see Section 7.7).
Echo: The AC sends an Echo Request message (Section 6.5) or
receives the associated Echo Response (see Section 6.6) from
the WTP.
Clear Config Indication: The AC sends a Clear Config
Indication message (Section 7.8).
WLAN Config: The AC sends a WLAN Config Request message
(Section 11.8.1) or receives the associated WLAN Config
Response (see Section 11.8.2) from the WTP.
Mobile Config: The AC sends a Mobile Config Request message
(Section 9.1) or receives the associated Mobile Config Response
(see Section 9.2) from the WTP.
Data Transfer: The AC receives a Data Transfer Request from
the AC (see Section 8.7) and MUST generate the associated Data
Transfer Response message (see Section 8.8).
WTP Event: The AC receives a WTP Event Request from the AC
(see Section 8.5) and MUST generate the associated WTP Event
Response message (see Section 8.6).
Calhoun, et al. Historic [Page 18]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Run to Reset (s): This event occurs when the AC wishes for the WTP
to reboot.
WTP: The WTP enters this state when it receives a Reset Request
(see Section 8.3). It must respond with a Reset Response
(see Section 8.4), and once the reliable transport
acknowledgement has been received, it must reboot itself.
AC: This state transition occurs either through some
administrative action, or via some internal event on the AC
that causes it to request that the WTP disconnect. Note
that the AC itself does not reset, but it places the
specific WTPs context it is communicating with in the reset
state.
Run to Idle (t): This event occurs when an error occurs in the
communication between the WTP and the AC.
WTP: The WTP enters this state when the underlying reliable
transport is unable to transmit a message within the
RetransmitInterval timer (see Section 12), and the maximum
number of RetransmitCount counter has reached the
MaxRetransmit variable (see Section 13).
AC: The AC enters this state when the underlying reliable
transport in unable to transmit a message within the
RetransmitInterval timer (see Section 12), and the maximum
number of RetransmitCount counter has reached the
MaxRetransmit variable (see Section 13).
Run to Key Update (u): This event occurs when the WTP and the AC are
to exchange new keying material, with which it must use to protect
all future messages.
WTP: This state transition occurs when the KeyLifetime timer
expires (see Section 12).
AC: The WTP enters this state when it receives a Key Update
Request (see Section 6.7).
Key Update to Key Confirm (w): This event occurs during the rekey
phase and is used to complete the loop.
WTP: This state transition occurs when the WTP receives the Key
Update Response. The WTP MUST only accept the message if it
is authentic. The WTP responds to this response with a Key
Update ACK.
Calhoun, et al. Historic [Page 19]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
AC: The AC enters this state when it receives an authenticated
Key Update ACK message.
Key Confirm to Run (5): This event occurs when the rekey exchange
phase is completed.
WTP: This state transition occurs when the WTP receives the Key
Update Confirm. The newly derived encryption key and
Initialization Vector (IV) must be plumbed into the crypto
module after validating the message's authentication.
AC: The AC enters this state when it transmits the Key Update
Confirm message. The newly derived encryption key and IV
must be plumbed into the crypto module after transmitting a
Key Update Confirm message.
Key Update to Reset (x): This event occurs when the key exchange
phase times out.
WTP: This state transition occurs when the WTP does not receive a
Key Update Response from the AC.
AC: The AC enters this state when it is unable to process a Key
Update Request.
Reset to Idle (y): This event occurs when the state machine is
restarted.
WTP: The WTP reboots itself. After rebooting, the WTP will start
its LWAPP state machine in the Idle state.
AC: The AC clears out any state associated with the WTP. The AC
generally does this as a result of the reliable link layer
timing out.
3. LWAPP Transport Layers
The LWAPP protocol can operate at Layer 2 or 3. For Layer 2 support,
the LWAPP messages are carried in a native Ethernet frame. As such,
the protocol is not routable and depends upon Layer 2 connectivity
between the WTP and the AC. Layer 3 support is provided by
encapsulating the LWAPP messages within UDP.
Calhoun, et al. Historic [Page 20]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
3.1. LWAPP Transport Header
All LWAPP protocol packets are encapsulated using a common header
format, regardless of the transport used to carry the frames.
However, certain flags are not applicable for a given transport, and
it is therefore necessary to refer to the specific transport section
in order to determine which flags are valid.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|VER| RID |C|F|L| Frag ID | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Status/WLANs | Payload... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
3.1.1. VER Field
A 2-bit field that contains the version of LWAPP used in this packet.
The value for this document is 0.
3.1.2. RID Field
A 3-bit field that contains the Radio ID number for this packet.
WTPs with multiple radios but a single MAC address use this field to
indicate which radio is associated with the packet.
3.1.3. C Bit
The control message 'C' bit indicates whether this packet carries a
data or control message. When this bit is zero (0), the packet
carries an LWAPP data message in the payload (see Section 4.1). When
this bit is one (1), the packet carries an LWAPP control message as
defined in Section 4.2 for consumption by the addressed destination.
3.1.4. F Bit
The Fragment 'F' bit indicates whether this packet is a fragment.
When this bit is one (1), the packet is a fragment and MUST be
combined with the other corresponding fragments to reassemble the
complete information exchanged between the WTP and AC.
Calhoun, et al. Historic [Page 21]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
3.1.5. L Bit
The Not Last 'L' bit is valid only if the 'F' bit is set and
indicates whether the packet contains the last fragment of a
fragmented exchange between the WTP and AC. When this bit is 1, the
packet is not the last fragment. When this bit is 0, the packet is
the last fragment.
3.1.6. Fragment ID
An 8-bit field whose value is assigned to each group of fragments
making up a complete set. The Fragment ID space is managed
individually for every WTP/AC pair. The value of Fragment ID is
incremented with each new set of fragments. The Fragment ID wraps to
zero after the maximum value has been used to identify a set of
fragments. LWAPP only supports up to 2 fragments per frame.
3.1.7. Length
The 16-bit length field contains the number of bytes in the Payload.
The field is encoded as an unsigned number. If the LWAPP packet is
encrypted, the length field includes the Advanced Encryption Standard
Counter with CBC-MAC (AES-CCM) MIC (see Section 10.2 for more
information).
3.1.8. Status and WLANS
The interpretation of this 16-bit field is binding-specific. Refer
to the transport portion of the binding for a wireless technology for
the specification.
3.1.9. Payload
This field contains the header for an LWAPP data message or LWAPP
control message, followed by the data associated with that message.
3.2. Using IEEE 802.3 MAC as LWAPP Transport
This section describes how the LWAPP protocol is provided over native
Ethernet frames. An LWAPP packet is formed from the MAC frame
header, followed by the LWAPP message header. The following figure
provides an example of the frame formats used when LWAPP is used over
the IEEE 802.3 transport.
Calhoun, et al. Historic [Page 22]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Layer 2 LWAPP Data Frame
+-----------------------------------------------------------+
| MAC Header | LWAPP Header [C=0] | Forwarded Data ... |
+-----------------------------------------------------------+
Layer 2 LWAPP Control Frame
+---------------------------------------------------+
| MAC Header | LWAPP Header [C=1] | Control Message |
+---------------------------------------------------+
| Message Elements ... |
+----------------------+
3.2.1. Framing
Source Address
A MAC address belonging to the interface from which this message is
sent. If multiple source addresses are configured on an interface,
then the one chosen is implementation-dependent.
Destination Address
A MAC address belonging to the interface to which this message is to
be sent. This destination address MAY be either an individual
address or a multicast address, if more than one destination
interface is intended.
Ethertype
The Ethertype field is set to 0x88bb.
3.2.2. AC Discovery
When run over IEEE 802.3, LWAPP messages are distributed to a
specific MAC-level broadcast domain. The AC discovery mechanism used
with this transport is for a WTP to transmit a Discovery Request
message to a broadcast destination MAC address. The ACs will receive
this message and reply based on their policy.
3.2.3. LWAPP Message Header Format over IEEE 802.3 MAC Transport
All of the fields described in Section 3.1 are used when LWAPP uses
the IEEE 802.3 MAC transport.
Calhoun, et al. Historic [Page 23]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
3.2.4. Fragmentation/Reassembly
Fragmentation at the MAC layer is managed using the F, L, and Frag ID
fields of the LWAPP message header. The LWAPP protocol only allows a
single packet to be fragmented into 2, which is sufficient for a
frame that exceeds MTU due to LWAPP encapsulation. When used with
Layer 2 (Ethernet) transport, both fragments MUST include the LWAPP
header.
3.2.5. Multiplexing
LWAPP control messages and data messages are distinguished by the 'C'
bit in the LWAPP message header.
3.3. Using IP/UDP as LWAPP Transport
This section defines how LWAPP makes use of IP/UDP transport between
the WTP and the AC. When this transport is used, the MAC layer is
controlled by the IP stack, and there are therefore no special MAC-
layer requirements. The following figure provides an example of the
frame formats used when LWAPP is used over the IP/UDP transport. IP
stacks can be either IPv4 or IPv6.
Layer 3 LWAPP Data Frame
+--------------------------------------------+
| MAC Header | IP | UDP | LWAPP Header [C=0] |
+--------------------------------------------+
|Forwarded Data ... |
+-------------------+
Layer 3 LWAPP Control Frame
+--------------------------------------------+
| MAC Header | IP | UDP | LWAPP Header [C=1] |
+--------------------------------------------+
| Control Message | Message Elements ... |
+-----------------+----------------------+
3.3.1. Framing
Communication between the WTP and AC is established according to the
standard UDP client/server model. The connection is initiated by the
WTP (client) to the well-known UDP port of the AC (server) used for
control messages. This UDP port number of the AC is 12222 for LWAPP
data and 12223 for LWAPP control frames.
Calhoun, et al. Historic [Page 24]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
3.3.2. AC Discovery
When LWAPP is run over routed IP networks, the WTP and the AC do not
need to reside in the same IP subnet (broadcast domain). However, in
the event the peers reside on separate subnets, there must exist a
mechanism for the WTP to discover the AC.
As the WTP attempts to establish communication with the AC, it sends
the Discovery Request message and receives the corresponding response
message from the AC. The WTP must send the Discovery Request message
to either the limited broadcast IP address (255.255.255.255), a well
known multicast address, or the unicast IP address of the AC. Upon
receipt of the message, the AC issues a Discovery Response message to
the unicast IP address of the WTP, regardless of whether a Discovery
Request was sent as a broadcast, multicast, or unicast message.
Whether the WTP uses a limited IP broadcast, multicast or unicast IP
address is implementation-dependent.
In order for a WTP to transmit a Discovery Request to a unicast
address, the WTP must first obtain the IP address of the AC. Any
static configuration of an AC's IP address on the WTP non-volatile
storage is implementation-dependent. However, additional dynamic
schemes are possible: for example:
DHCP: A comma-delimited, ASCII-encoded list of AC IP addresses is
embedded inside a DHCP vendor-specific option 43 extension.
An example of the actual format of the vendor-specific payload
for IPv4 is of the form "10.1.1.1, 10.1.1.2".
DNS: The DNS name "LWAPP-AC-Address" MAY be resolvable to one or
more AC addresses.
3.3.3. LWAPP Message Header Format over IP/UDP Transport
All of the fields described in Section 3.1 are used when LWAPP uses
the IPv4/UDP or IPv6/UDP transport, with the following exceptions.
3.3.3.1. F Bit
This flag field is not used with this transport, and MUST be set to
zero.
3.3.3.2. L Bit
This flag field is not used with this transport, and MUST be set to
zero.
Calhoun, et al. Historic [Page 25]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
3.3.3.3. Frag ID
This field is not used with this transport, and MUST be set to zero.
3.3.4. Fragmentation/Reassembly for IPv4
When LWAPP is implemented at L3, the transport layer uses IP
fragmentation to fragment and reassemble LWAPP messages that are
longer than the MTU size used by either the WTP or AC. The details
of IP fragmentation are covered in [8]. When used with the IP
transport, only the first fragment would include the LWAPP header.
3.3.5. Fragmentation/Reassembly for IPv6
IPv6 does MTU discovery so fragmentation and re-assembly is not
necessary for UDP packets.
3.3.6. Multiplexing
LWAPP messages convey control information between WTP and AC, as well
as binding specific data frames or binding specific management
frames. As such, LWAPP messages need to be multiplexed in the
transport sub-layer and be delivered to the proper software entities
in the endpoints of the protocol. However, the 'C' bit is still used
to differentiate between data and control frames.
In case of Layer 3 connection, multiplexing is achieved by use of
different UDP ports for control and data packets (see Section 3.3.1).
As part of the Join procedure, the WTP and AC may negotiate different
IP Addresses for data or control messages. The IP address returned
in the AP Manager Control IP Address message element is used to
inform the WTP with the IP address to which it must send all control
frames. The AP Manager Data IP Address message element MAY be
present only if the AC has a different IP address that the WTP is to
use to send its data LWAPP frames.
In the event the WTP and AC are separated by a NAT, with the WTP
using private IP address space, it is the responsibility of the NAT
to manage appropriate UDP port mapping.
4. LWAPP Packet Definitions
This section contains the packet types and format. The LWAPP
protocol is designed to be transport-agnostic by specifying packet
formats for both MAC frames and IP packets. An LWAPP packet consists
of an LWAPP Transport Layer packet header followed by an LWAPP
message.
Calhoun, et al. Historic [Page 26]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Transport details can be found in Section 3.
4.1. LWAPP Data Messages
An LWAPP data message is a forwarded wireless frame. When forwarding
wireless frames, the sender simply encapsulates the wireless frame in
an LWAPP data packet, using the appropriate transport rules defined
in Section 3.
In the event that the encapsulated frame would exceed the transport
layer's MTU, the sender is responsible for the fragmentation of the
frame, as specified in the transport-specific section of Section 3.
The actual format of the encapsulated LWAPP data frame is subject to
the rules defined under the specific wireless technology binding.
4.2. LWAPP Control Messages Overview
The LWAPP Control protocol provides a control channel between the WTP
and the AC. The control channel is the series of control messages
between the WTP and AC, associated with a session ID and key.
Control messages are divided into the following distinct message
types:
Discovery: LWAPP Discovery messages are used to identify potential
ACs, their load and capabilities.
Control Channel Management: Messages that fall within this
classification are used for the discovery of ACs by the WTPs as
well as the establishment and maintenance of an LWAPP control
channel.
WTP Configuration: The WTP Configuration messages are used by the AC
to push a specific configuration to the WTPs with which it has a
control channel. Messages that deal with the retrieval of
statistics from the WTP also fall in this category.
Mobile Session Management: Mobile Session Management messages are
used by the AC to push specific mobile policies to the WTP.
Firmware Management: Messages in this category are used by the AC to
push a new firmware image down to the WTP.
Control Channel, WTP Configuration, and Mobile Session Management
MUST be implemented. Firmware Management MAY be implemented.
In addition, technology-specific bindings may introduce new control
channel commands that depart from the above list.
Calhoun, et al. Historic [Page 27]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
4.2.1. Control Message Format
All LWAPP control messages are sent encapsulated within the LWAPP
header (see Section 3.1). Immediately following the header is the
LWAPP control header, which has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Message Type | Seq Num | Msg Element Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Session ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Msg Element [0..N] |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
4.2.1.1. Message Type
The Message Type field identifies the function of the LWAPP control
message. The valid values for a Message Type are the following:
Description Value
Discovery Request 1
Discovery Response 2
Join Request 3
Join Response 4
Join ACK 5
Join Confirm 6
Unused 7-9
Configure Request 10
Configure Response 11
Configuration Update Request 12
Configuration Update Response 13
WTP Event Request 14
WTP Event Response 15
Change State Event Request 16
Change State Event Response 17
Unused 18-21
Echo Request 22
Echo Response 23
Image Data Request 24
Image Data Response 25
Reset Request 26
Reset Response 27
Unused 28-29
Key Update Request 30
Key Update Response 31
Primary Discovery Request 32
Calhoun, et al. Historic [Page 28]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Primary Discovery Response 33
Data Transfer Request 34
Data Transfer Response 35
Clear Config Indication 36
WLAN Config Request 37
WLAN Config Response 38
Mobile Config Request 39
Mobile Config Response 40
4.2.1.2. Sequence Number
The Sequence Number field is an identifier value to match request/
response packet exchanges. When an LWAPP packet with a request
message type is received, the value of the Sequence Number field is
copied into the corresponding response packet.
When an LWAPP control frame is sent, its internal sequence number
counter is monotonically incremented, ensuring that no two requests
pending have the same sequence number. This field will wrap back to
zero.
4.2.1.3. Message Element Length
The length field indicates the number of bytes following the Session
ID field. If the LWAPP packet is encrypted, the length field
includes the AES-CCM MIC (see Section 10.2 for more information).
4.2.1.4. Session ID
The Session ID is a 32-bit unsigned integer that is used to identify
the security context for encrypted exchanges between the WTP and the
AC. Note that a Session ID is a random value that MUST be unique
between a given AC and any of the WTPs with which it may be
communicating.
4.2.1.5. Message Element [0..N]
The message element(s) carry the information pertinent to each of the
control message types. Every control message in this specification
specifies which message elements are permitted.
4.2.2. Message Element Format
The message element is used to carry information pertinent to a
control message. Every message element is identified by the Type
field, whose numbering space is managed via IANA (see Section 16).
The total length of the message elements is indicated in the Message
Element Length field.
Calhoun, et al. Historic [Page 29]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
All of the message element definitions in this document use a diagram
similar to the one below in order to depict their formats. Note that
in order to simplify this specification, these diagrams do not
include the header fields (Type and Length). However, in each
message element description, the header's field values will be
defined.
Note that additional message elements may be defined in separate IETF
documents.
The format of a message element uses the TLV format shown here:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | Value ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
where Type (8 bits) identifies the character of the information
carried in the Value field and Length (16 bits) indicates the number
of bytes in the Value field.
4.2.2.1. Generic Message Elements
This section includes message elements that are not bound to a
specific control message.
4.2.2.1.1. Vendor Specific
The Vendor-Specific Payload is used to communicate vendor-specific
information between the WTP and the AC. The value contains the
following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Vendor Identifier |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Element ID | Value... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 104 for Vendor Specific
Length: >= 7
Vendor Identifier: A 32-bit value containing the IANA-assigned "SMI
Network Management Private Enterprise Codes" [13].
Calhoun, et al. Historic [Page 30]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Element ID: A 16-bit Element Identifier that is managed by the
vendor.
Value: The value associated with the vendor-specific element.
4.2.3. Quality of Service
It is recommended that LWAPP control messages be sent by both the AC
and the WTP with an appropriate Quality-of-Service precedence value,
ensuring that congestion in the network minimizes occurrences of
LWAPP control channel disconnects. Therefore, a Quality-of-Service-
enabled LWAPP device should use:
802.1P: The precedence value of 7 SHOULD be used.
DSCP: The Differentiated Services Code Point (DSCP) tag value of 46
SHOULD be used.
5. LWAPP Discovery Operations
The Discovery messages are used by a WTP to determine which ACs are
available to provide service, as well as the capabilities and load of
the ACs.
5.1. Discovery Request
The Discovery Request is used by the WTP to automatically discover
potential ACs available in the network. A WTP must transmit this
command even if it has a statically configured AC, as it is a
required step in the LWAPP state machine.
Discovery Requests MUST be sent by a WTP in the Discover state after
waiting for a random delay less of than MaxDiscoveryInterval, after a
WTP first comes up or is (re)initialized. A WTP MUST send no more
than a maximum of MaxDiscoveries discoveries, waiting for a random
delay less than MaxDiscoveryInterval between each successive
discovery.
This is to prevent an explosion of WTP Discoveries. An example of
this occurring would be when many WTPs are powered on at the same
time.
Discovery Requests MUST be sent by a WTP when no Echo Responses are
received for NeighborDeadInterval and the WTP returns to the Idle
state. Discovery Requests are sent after NeighborDeadInterval, they
MUST be sent after waiting for a random delay less than
Calhoun, et al. Historic [Page 31]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
MaxDiscoveryInterval. A WTP MAY send up to a maximum of
MaxDiscoveries discoveries, waiting for a random delay less than
MaxDiscoveryInterval between each successive discovery.
If a Discovery Response is not received after sending the maximum
number of Discovery Requests, the WTP enters the Sulking state and
MUST wait for an interval equal to SilentInterval before sending
further Discovery Requests.
The Discovery Request message may be sent as a unicast, broadcast, or
multicast message.
Upon receiving a Discovery Request, the AC will respond with a
Discovery Response sent to the address in the source address of the
received Discovery Request.
The following subsections define the message elements that MUST be
included in this LWAPP operation.
5.1.1. Discovery Type
The Discovery message element is used to configure a WTP to operate
in a specific mode.
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| Discovery Type|
+-+-+-+-+-+-+-+-+
Type: 58 for Discovery Type
Length: 1
Discovery Type: An 8-bit value indicating how the AC was
discovered. The following values are supported:
0 - Broadcast
1 - Configured
Calhoun, et al. Historic [Page 32]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
5.1.2. WTP Descriptor
The WTP Descriptor message element is used by the WTP to communicate
its current hardware/firmware configuration. The value contains the
following fields.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Hardware Version |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Software Version |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Boot Version |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max Radios | Radios in use | Encryption Capabilities |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 3 for WTP Descriptor
Length: 16
Hardware Version: A 32-bit integer representing the WTP's hardware
version number.
Software Version: A 32-bit integer representing the WTP's Firmware
version number.
Boot Version: A 32-bit integer representing the WTP's boot loader's
version number.
Max Radios: An 8-bit value representing the number of radios (where
each radio is identified via the RID field) supported by the WTP.
Radios in Use: An 8-bit value representing the number of radios
present in the WTP.
Encryption Capabilities: This 16-bit field is used by the WTP to
communicate its capabilities to the AC. Since most WTPs support
link-layer encryption, the AC may make use of these services.
There are binding-dependent encryption capabilites. A WTP that
does not have any encryption capabilities would set this field to
zero (0). Refer to the specific binding for the specification.
Calhoun, et al. Historic [Page 33]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
5.1.3. WTP Radio Information
The WTP Radio Information message element is used to communicate the
radio information in a specific slot. The Discovery Request MUST
include one such message element per radio in the WTP. The Radio-
Type field is used by the AC in order to determine which technology-
specific binding is to be used with the WTP.
The value contains two fields, as shown:
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Radio Type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 4 for WTP Radio Information
Length: 2
Radio ID: The Radio Identifier, typically refers to some interface
index on the WTP.
Radio Type: The type of radio present. The following values are
supported:
1 - 802.11bg: An 802.11bg radio.
2 - 802.11a: An 802.11a radio.
3 - 802.16: An 802.16 radio.
4 - Ultra Wideband: A UWB radio.
7 - all: Used to specify all radios in the WTP.
5.2. Discovery Response
The Discovery Response is a mechanism by which an AC advertises its
services to requesting WTPs.
Discovery Responses are sent by an AC after receiving a Discovery
Request.
Calhoun, et al. Historic [Page 34]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
When a WTP receives a Discovery Response, it MUST wait for an
interval not less than DiscoveryInterval for receipt of additional
Discovery Responses. After the DiscoveryInterval elapses, the WTP
enters the Joining state and will select one of the ACs that sent a
Discovery Response and send a Join Request to that AC.
The following subsections define the message elements that MUST be
included in this LWAPP operation.
5.2.1. AC Address
The AC Address message element is used to communicate the identity of
the AC. The value contains two fields, as shown:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved | MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 2 for AC Address
Length: 7
Reserved: MUST be set to zero
MAC Address: The MAC address of the AC
5.2.2. AC Descriptor
The AC Descriptor message element is used by the AC to communicate
its current state. The value contains the following fields:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved | Hardware Version ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| HW Ver | Software Version ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SW Ver | Stations | Limit |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Limit | Radios | Max Radio |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max Radio | Security |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Calhoun, et al. Historic [Page 35]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Type: 6 for AC Descriptor
Length: 17
Reserved: MUST be set to zero
Hardware Version: A 32-bit integer representing the AC's hardware
version number.
Software Version: A 32-bit integer representing the AC's Firmware
version number.
Stations: A 16-bit integer representing the number of mobile
stations currently associated with the AC.
Limit: A 16-bit integer representing the maximum number of stations
supported by the AC.
Radios: A 16-bit integer representing the number of WTPs currently
attached to the AC.
Max Radio: A 16-bit integer representing the maximum number of WTPs
supported by the AC.
Security: An 8-bit bitmask specifying the security schemes
supported by the AC. The following values are supported (see
Section 10):
1 - X.509 Certificate-Based
2 - Pre-Shared Secret
5.2.3. AC Name
The AC Name message element contains an ASCII representation of the
AC's identity. The value is a variable-length byte string. The
string is NOT zero terminated.
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| Name ...
+-+-+-+-+-+-+-+-+
Type: 31 for AC Name
Length: > 0
Calhoun, et al. Historic [Page 36]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Name: A variable-length ASCII string containing the AC's name.
5.2.4. WTP Manager Control IPv4 Address
The WTP Manager Control IPv4 Address message element is sent by the
AC to the WTP during the discovery process and is used by the AC to
provide the interfaces available on the AC, and their current load.
This message element is useful for the WTP to perform load balancing
across multiple interfaces.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WTP Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 99 for WTP Manager Control IPv4 Address
Length: 6
IP Address: The IP address of an interface.
WTP Count: The number of WTPs currently connected to the interface.
5.2.5. WTP Manager Control IPv6 Address
The WTP Manager Control IPv6 Address message element is sent by the
AC to the WTP during the discovery process and is used by the AC to
provide the interfaces available on the AC, and their current load.
This message element is useful for the WTP to perform load balancing
across multiple interfaces.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WTP Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Calhoun, et al. Historic [Page 37]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Type: 137 for WTP Manager Control IPv6 Address
Length: 6
IP Address: The IP address of an interface.
WTP Count: The number of WTPs currently connected to the interface.
5.3. Primary Discovery Request
The Primary Discovery Request is sent by the WTP in order to
determine whether its preferred (or primary) AC is available.
Primary Discovery Requests are sent by a WTP when it has a primary AC
configured, and is connected to another AC. This generally occurs as
a result of a failover, and is used by the WTP as a means to discover
when its primary AC becomes available. As a consequence, this
message is only sent by a WTP when it is in the Run state.
The frequency of the Primary Discovery Requests should be no more
often than the sending of the Echo Request message.
Upon receiving a Discovery Request, the AC will respond with a
Primary Discovery Response sent to the address in the source address
of the received Primary Discovery Request.
The following subsections define the message elements that MUST be
included in this LWAPP operation.
5.3.1. Discovery Type
The Discovery Type message element is defined in Section 5.1.1.
5.3.2. WTP Descriptor
The WTP Descriptor message element is defined in Section 5.1.2.
5.3.3. WTP Radio Information
A WTP Radio Information message element must be present for every
radio in the WTP. This message element is defined in Section 5.1.3.
5.4. Primary Discovery Response
The Primary Discovery Response is a mechanism by which an AC
advertises its availability and services to requesting WTPs that are
configured to have the AC as its primary AC.
Calhoun, et al. Historic [Page 38]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Primary Discovery Responses are sent by an AC after receiving a
Primary Discovery Request.
When a WTP receives a Primary Discovery Response, it may opt to
establish an LWAPP connection to its primary AC, based on the
configuration of the WTP Fallback Status message element on the WTP.
The following subsections define the message elements that MUST be
included in this LWAPP operation.
5.4.1. AC Descriptor
The Discovery Type message element is defined in Section 5.2.2.
5.4.2. AC Name
The AC Name message element is defined in Section 5.2.3.
5.4.3. WTP Manager Control IPv4 Address
A WTP Radio Information message element MAY be present for every
radio in the WTP that is reachable via IPv4. This message element is
defined in Section 5.2.4.
5.4.4. WTP Manager Control IPv6 Address
A WTP Radio Information message element must be present for every
radio in the WTP that is reachable via IPv6. This message element is
defined in Section 5.2.5.
6. Control Channel Management
The Control Channel Management messages are used by the WTP and AC to
create and maintain a channel of communication on which various other
commands may be transmitted, such as configuration, firmware update,
etc.
6.1. Join Request
The Join Request is used by a WTP to inform an AC that it wishes to
provide services through it.
Join Requests are sent by a WTP in the Joining state after receiving
one or more Discovery Responses. The Join Request is also used as an
MTU discovery mechanism by the WTP. The WTP issues a Join Request
with a Test message element, bringing the total size of the message
to exceed MTU.
Calhoun, et al. Historic [Page 39]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
If the transport used does not provide MTU path discovery, the
initial Join Request is padded with the Test message element to 1596
bytes. If a Join Response is received, the WTP can forward frames
without requiring any fragmentation. If no Join Response is
received, it issues a second Join Request padded with the Test
payload to a total of 1500 bytes. The WTP continues to cycle from
large (1596) to small (1500) packets until a Join Response has been
received, or until both packets' sizes have been retransmitted 3
times. If the Join Response is not received after the maximum number
of retransmissions, the WTP MUST abandon the AC and restart the
discovery phase.
When an AC receives a Join Request, it will respond with a Join
Response. If the certificate-based security mechanism is used, the
AC validates the certificate found in the request. If valid, the AC
generates a session key that will be used to secure the control
frames it exchanges with the WTP. When the AC issues the Join
Response, the AC creates a context for the session with the WTP.
If the pre-shared session key security mechanism is used, the AC
saves the WTP's nonce, found in the WNonce message element, and
creates its own nonce, which it includes in the ANonce message
element. Finally, the AC creates the PSK-MIC, which is computed
using a key that is derived from the PSK.
A Join Request that includes both a WNonce and a Certificate message
element MUST be considered invalid.
Details on the key generation are found in Section 10.
The following subsections define the message elements that MUST be
included in this LWAPP operation.
6.1.1. WTP Descriptor
The WTP Descriptor message element is defined in Section 5.1.2.
6.1.2. AC Address
The AC Address message element is defined in Section 5.2.1.
6.1.3. WTP Name
The WTP Name message element value is a variable-length byte string.
The string is NOT zero terminated.
Calhoun, et al. Historic [Page 40]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| Name ...
+-+-+-+-+-+-+-+-+
Type: 5 for WTP Name
Length: > 0
Name: A non-zero-terminated string containing the WTP's name.
6.1.4. Location Data
The Location Data message element is a variable-length byte string
containing user-defined location information (e.g., "Next to
Fridge"). The string is NOT zero terminated.
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| Location ...
+-+-+-+-+-+-+-+-+
Type: 35 for Location Data
Length: > 0
Location: A non-zero-terminated string containing the WTP's
location.
6.1.5. WTP Radio Information
A WTP Radio Information message element must be present for every
radio in the WTP. This message element is defined in Section 5.1.3.
6.1.6. Certificate
The Certificate message element value is a byte string containing a
DER-encoded x.509v3 certificate. This message element is only
included if the LWAPP security type used between the WTP and the AC
makes use of certificates (see Section 10 for more information).
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| Certificate...
+-+-+-+-+-+-+-+-+
Calhoun, et al. Historic [Page 41]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Type: 44 for Certificate
Length: > 0
Certificate: A non-zero-terminated string containing the device's
certificate.
6.1.7. Session ID
The Session ID message element value contains a randomly generated
[4] unsigned 32-bit integer.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Session ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 45 for Session ID
Length: 4
Session ID: 32-bit random session identifier.
6.1.8. Test
The Test message element is used as padding to perform MTU discovery,
and it MAY contain any value, of any length.
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| Padding ...
+-+-+-+-+-+-+-+-+
Type: 18 for Test
Length: > 0
Padding: A variable-length pad.
6.1.9. XNonce
The XNonce is used by the WTP to communicate its random nonce during
the join or rekey phase. See Section 10 for more information.
Calhoun, et al. Historic [Page 42]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Nonce |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Nonce |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Nonce |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Nonce |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 111 for XNonce
Length: 16
Nonce: 1 16-octet random nonce.
6.2. Join Response
The Join Response is sent by the AC to indicate to a WTP whether it
is capable and willing to provide service to it.
Join Responses are sent by the AC after receiving a Join Request.
Once the Join Response has been sent, the Heartbeat timer is
initiated for the session to EchoInterval. Expiration of the timer
will result in deletion of the AC-WTP session. The timer is
refreshed upon receipt of the Echo Request.
If the security method used is certificate-based, when a WTP receives
a Join Response, it enters the Joined state and initiates either a
Configure Request or Image Data to the AC to which it is now joined.
Upon entering the Joined state, the WTP begins timing an interval
equal to NeighborDeadInterval. Expiration of the timer will result
in the transmission of the Echo Request.
If the security method used is pre-shared-secret-based, when a WTP
receives a Join Response that includes a valid PSK-MIC message
element, it responds with a Join ACK that also MUST include a locally
computed PSK-MIC message element.
The following subsections define the message elements that MUST be
included in this LWAPP operation.
Calhoun, et al. Historic [Page 43]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
6.2.1. Result Code
The Result Code message element value is a 32-bit integer value,
indicating the result of the request operation corresponding to the
sequence number in the message. The Result Code is included in a
successful Join Response.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Result Code |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 2 for Result Code
Length: 4
Result Code: The following values are defined:
0 Success
1 Failure (AC List message element MUST be present)
6.2.2. Status
The Status message element is sent by the AC to the WTP in a non-
successful Join Response message. This message element is used to
indicate the reason for the failure and should only be accompanied
with a Result Code message element that indicates a failure.
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| Status |
+-+-+-+-+-+-+-+-+
Type: 60 for Status
Length: 1
Status: The Status field indicates the reason for an LWAPP failure.
The following values are supported:
Calhoun, et al. Historic [Page 44]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
1 - Reserved - do not use
2 - Resource Depletion
3 - Unknown Source
4 - Incorrect Data
6.2.3. Certificate
The Certificate message element is defined in Section 6.1.6. Note
this message element is only included if the WTP and the AC make use
of certificate-based security as defined in Section 10.
6.2.4. WTP Manager Data IPv4 Address
The WTP Manager Data IPv4 Address message element is optionally sent
by the AC to the WTP during the join phase. If present, the IP
Address contained in this message element is the address the WTP is
to use when sending any of its LWAPP data frames.
Note that this message element is only valid when LWAPP uses the
IP/UDP Layer 3 transport.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 138 for WTP Manager Data IPv4 Address
Length: 4
IP Address: The IP address of an interface.
6.2.5. WTP Manager Data IPv6 Address
The WTP Manager Data IPv6 Address message element is optionally sent
by the AC to the WTP during the join phase. If present, the IP
Address contained in this message element is the address the WTP is
to use when sending any of its LWAPP data frames.
Note that this message element is only valid when LWAPP uses the
IP/UDP Layer 3 transport.
Calhoun, et al. Historic [Page 45]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 139 for WTP Manager Data IPv6 Address
Length: 4
IP Address: The IP address of an interface.
6.2.6. AC IPv4 List
The AC List message element is used to configure a WTP with the
latest list of ACs in a cluster. This message element MUST be
included if the Join Response returns a failure indicating that the
AC cannot handle the WTP at this time, allowing the WTP to find an
alternate AC to which to connect.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AC IP Address[] |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 59 for AC List
Length: >= 4
AC IP Address: An array of 32-bit integers containing an AC's IPv4
Address.
6.2.7. AC IPv6 List
The AC List message element is used to configure a WTP with the
latest list of ACs in a cluster. This message element MUST be
included if the Join Response returns a failure indicating that the
AC cannot handle the WTP at this time, allowing the WTP to find an
alternate AC to which to connect.
Calhoun, et al. Historic [Page 46]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AC IP Address[] |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AC IP Address[] |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AC IP Address[] |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AC IP Address[] |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 141 for AC List
Length: >= 4
AC IP Address: An array of 32-bit integers containing an AC's IPv6
Address.
6.2.8. ANonce
The ANonce message element is sent by an AC during the join or rekey
phase. The contents of the ANonce are encrypted as described in
Section 10 for more information.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Nonce |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Nonce |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Nonce |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Nonce |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 108 for ANonce
Length: 16
Nonce: An encrypted, 16-octet random nonce.
Calhoun, et al. Historic [Page 47]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
6.2.9. PSK-MIC
The PSK-MIC message element includes a message integrity check, whose
purpose is to provide confirmation to the peer that the sender has
the proper session key. This message element is only included if the
security method used between the WTP and the AC is the pre-shared
secret mechanism. See Section 10 for more information.
When present, the PSK-MIC message element MUST be the last message
element in the message. The MIC is computed over the complete LWAPP
packet, from the LWAPP control header as defined in Section 4.2.1 to
the end of the packet (which MUST be this PSK-MIC message element).
The MIC field in this message element and the Sequence Number field
in the LWAPP control header MUST be set to zeroes prior to computing
the MIC. The length field in the LWAPP control header must already
include this message element prior to computing the MIC.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SPI | MIC ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 109 for PSK-MIC
Length: > 1
SPI: The Security Parameter Index (SPI) field specifies the
cryptographic algorithm used to create the message integrity
check. The following values are supported:
0 - Unused
1 - HMAC-SHA-1 (RFC 2104 [15])
MIC: A 20-octet Message Integrity Check.
6.3. Join ACK
The Join ACK message is sent by the WTP upon receiving a Join
Response, which has a valid PSK-MIC message element, as a means of
providing key confirmation to the AC. The Join ACK is only used in
the case where the WTP makes use of the pre-shared key LWAPP mode
(see Section 10 for more information).
Note that the AC should never receive this message unless the
security method used between the WTP and the AC is pre-shared-secret-
based.
Calhoun, et al. Historic [Page 48]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
The following subsections define the message elements that MUST be
included in this LWAPP operation.
6.3.1. Session ID
The Session ID message element is defined in Section 6.1.7.
6.3.2. WNonce
The WNonce message element is sent by a WTP during the join or rekey
phase. The contents of the ANonce are encrypted as described in
Section 10 for more information.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Nonce |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Nonce |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Nonce |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Nonce |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 107 for WNonce
Length: 16
Nonce: An encrypted, 16-octet random nonce.
6.3.3. PSK-MIC
The PSK-MIC message element is defined in Section 6.2.9.
6.4. Join Confirm
The Join Confirm message is sent by the AC upon receiving a Join ACK,
which has a valid PSK-MIC message element, as a means of providing
key confirmation to the WTP. The Join Confirm is only used in the
case where the WTP makes use of the pre-shared key LWAPP mode (see
Section 10 for more information).
If the security method used is pre-shared-key-based, when a WTP
receives a Join Confirm, it enters the Joined state and initiates
either a Configure Request or Image Data to the AC to which it is now
Calhoun, et al. Historic [Page 49]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
joined. Upon entering the Joined state, the WTP begins timing an
interval equal to NeighborDeadInterval. Expiration of the timer will
result in the transmission of the Echo Request.
This message is never received, or sent, when the security type used
between the WTP and the AC is certificated-based.
The following subsections define the message elements that MUST be
included in this LWAPP operation.
6.4.1. Session ID
The Session ID message element is defined in Section 6.1.7.
6.4.2. PSK-MIC
The PSK-MIC message element is defined in Section 6.2.9.
6.5. Echo Request
The Echo Request message is a keepalive mechanism for the LWAPP
control message.
Echo Requests are sent periodically by a WTP in the Run state (see
Figure 2) to determine the state of the connection between the WTP
and the AC. The Echo Request is sent by the WTP when the Heartbeat
timer expires, and it MUST start its NeighborDeadInterval timer.
The Echo Request carries no message elements.
When an AC receives an Echo Request, it responds with an Echo
Response.
6.6. Echo Response
The Echo Response acknowledges the Echo Request, and is only accepted
while in the Run state (see Figure 2).
Echo Responses are sent by an AC after receiving an Echo Request.
After transmitting the Echo Response, the AC should reset its
Heartbeat timer to expire in the value configured for EchoInterval.
If another Echo request is not received by the AC when the timer
expires, the AC SHOULD consider the WTP to no longer be reachable.
The Echo Response carries no message elements.
Calhoun, et al. Historic [Page 50]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
When a WTP receives an Echo Response it stops the
NeighborDeadInterval timer, and starts the Heartbeat timer to
EchoInterval.
If the NeighborDeadInterval timer expires prior to receiving an Echo
Response, the WTP enters the Idle state.
6.7. Key Update Request
The Key Update Request is used by the WTP to initiate the rekeying
phase. This message is sent by a WTP when in the Run state and MUST
include a new unique Session Identifier. This message MUST also
include a unique nonce in the XNonce message element, which is used
to protect against replay attacks (see Section 10).
The following subsections define the message elements that MUST be
included in this LWAPP operation.
6.7.1. Session ID
The Session ID message element is defined in Section 6.1.7.
6.7.2. XNonce
The XNonce message element is defined in Section 6.1.9.
6.8. Key Update Response
The Key Update Response is sent by the AC in response to the request
message, and includes an encrypted ANonce, which is used to derive
new session keys. This message MUST include a Session Identifier
message element, whose value MUST be identical to the one found in
the Key Update Request.
The AC MUST include a PSK-MIC message element, which provides message
integrity over the whole message.
The following subsections define the message elements that MUST be
included in this LWAPP operation.
6.8.1. Session ID
The Session ID message element is defined in Section 6.1.7.
6.8.2. ANonce
The ANonce message element is defined in Section 6.2.8.
Calhoun, et al. Historic [Page 51]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
6.8.3. PSK-MIC
The PSK-MIC message element is defined in Section 6.2.9.
6.9. Key Update ACK
The Key Update ACK is sent by the WTP and includes an encrypted
version of the WTP's nonce, which is used in the key derivation
process. The session keys derived are then used as new LWAPP control
message encryption keys (see Section 10).
The WTP MUST include a PSK-MIC message element, which provides
message integrity over the whole message.
The following subsections define the message elements that MUST be
included in this LWAPP operation.
6.9.1. WNonce
The WNonce message element is defined in Section 6.3.2.
6.9.2. PSK-MIC
The PSK-MIC message element is defined in Section 6.2.9.
6.10. Key Update Confirm
The Key Update Confirm closes the rekeying loop, and allows the WTP
to recognize that the AC has received and processed the Key Update
messages. At this point, the WTP updates its session key in its
crypto engine, and the associated Initialization Vector, ensuring
that all future LWAPP control frames are encrypted with the newly
derived encryption key.
The WTP MUST include a PSK-MIC message element, which provides
message integrity over the whole message.
The following subsections define the message elements that MUST be
included in this LWAPP operation.
6.10.1. PSK-MIC
The PSK-MIC message element is defined in Section 6.2.9.
6.11. Key Update Trigger
The Key Update Trigger is used by the AC to request that a Key Update
Request be initiated by the WTP.
Calhoun, et al. Historic [Page 52]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Key Update Triggers are sent by an AC in the Run state to inform the
WTP to initiate a Key Update Request message.
When a WTP receives a Key Update Trigger, it generates a Key Update
Request.
The following subsections define the message elements that MUST be
included in this LWAPP operation.
6.11.1. Session ID
The Session ID message element is defined in Section 6.1.7.
7. WTP Configuration Management
The Wireless Termination Point Configuration messages are used to
exchange configuration between the AC and the WTP.
7.1. Configuration Consistency
The LWAPP protocol provides flexibility in how WTP configuration is
managed. To put it simply, a WTP has one of two options:
1. The WTP retains no configuration and simply abides by the
configuration provided by the AC.
2. The WTP retains the configuration of parameters provided by the AC
that are non-default values.
If the WTP opts to save configuration locally, the LWAPP protocol
state machine defines the "Configure" state, which is used during the
initial binding WTP-AC phase, which allows for configuration
exchange. During this period, the WTP sends its current
configuration overrides to the AC via the Configure Request message.
A configuration override is a parameter that is non-default. One
example is that in the LWAPP protocol, the default antenna
configuration is an internal-omni antenna. However, a WTP that
either has no internal antennas, or has been explicitely configured
by the AC to use external antennas would send its antenna
configuration during the configure phase, allowing the AC to become
aware of the WTP's current configuration.
Once the WTP has provided its configuration to the AC, the AC sends
down its own configuration. This allows the WTP to inherit the
configuration and policies on the AC.
Calhoun, et al. Historic [Page 53]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
An LWAPP AC maintains a copy of each active WTP's configuration.
There is no need for versioning or other means to identify
configuration changes. If a WTP becomes inactive, the AC MAY delete
the configuration associated with it. If a WTP were to fail, and
connect to a new AC, it would provide its overridden configuration
parameters, allowing the new AC to be aware of the WTP's
configuration.
As a consequence, this model allows for resiliency, whereby in light
of an AC failure, another AC could provide service to the WTP. In
this scenario, the new AC would be automatically updated on any
possible WTP configuration changes -- eliminating the need for Inter-
AC communication or the need for all ACs to be aware of the
configuration of all WTPs in the network.
Once the LWAPP protocol enters the Run state, the WTPs begin to
provide service. However, it is quite common for administrators to
require that configuration changes be made while the network is
operational. Therefore, the Configuration Update Request is sent by
the AC to the WTP in order to make these changes at run-time.
7.2. Configure Request
The Configure Request message is sent by a WTP to send its current
configuration to its AC.
Configure Requests are sent by a WTP after receiving a Join Response,
while in the Configure state.
The Configure Request carries binding-specific message elements.
Refer to the appropriate binding for the definition of this
structure.
When an AC receives a Configure Request, it will act upon the content
of the packet and respond to the WTP with a Configure Response.
The Configure Request includes multiple Administrative State message
elements. There is one such message element for the WTP, and then
one per radio in the WTP.
The following subsections define the message elements that MUST be
included in this LWAPP operation.
7.2.1. Administrative State
The Administrative Event message element is used to communicate the
state of a particular radio. The value contains the following
fields.
Calhoun, et al. Historic [Page 54]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Admin State |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 27 for Administrative State
Length: 2
Radio ID: An 8-bit value representing the radio to configure. The
Radio ID field may also include the value of 0xff, which is used
to identify the WTP itself. Therefore, if an AC wishes to change
the administrative state of a WTP, it would include 0xff in the
Radio ID field.
Admin State: An 8-bit value representing the administrative state
of the radio. The following values are supported:
1 - Enabled
2 - Disabled
7.2.2. AC Name
The AC Name message element is defined in Section 5.2.3.
7.2.3. AC Name with Index
The AC Name with Index message element is sent by the AC to the WTP
to configure preferred ACs. The number of instances where this
message element would be present is equal to the number of ACs
configured on the WTP.
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Index | AC Name...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 90 for AC Name with Index
Length: 5
Index: The index of the preferred server (e.g., 1=primary,
2=secondary).
AC Name: A variable-length ASCII string containing the AC's name.
Calhoun, et al. Historic [Page 55]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
7.2.4. WTP Board Data
The WTP Board Data message element is sent by the WTP to the AC and
contains information about the hardware present.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Card ID | Card Revision |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WTP Model |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WTP Model |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WTP Serial Number ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ethernet MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ethernet MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 50 for WTP Board Data
Length: 26
Card ID: A hardware identifier.
Card Revision: 4-byte Revision of the card.
WTP Model: 8-byte WTP Model Number.
WTP Serial Number: 24-byte WTP Serial Number.
Reserved: A 4-byte reserved field that MUST be set to zero (0).
Ethernet MAC Address: MAC address of the WTP's Ethernet interface.
7.2.5. Statistics Timer
The Statistics Timer message element value is used by the AC to
inform the WTP of the frequency that it expects to receive updated
statistics.
Calhoun, et al. Historic [Page 56]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Statistics Timer |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 37 for Statistics Timer
Length: 2
Statistics Timer: A 16-bit unsigned integer indicating the time, in
seconds.
7.2.6. WTP Static IP Address Information
The WTP Static IP Address Information message element is used by an
AC to configure or clear a previously configured static IP address on
a WTP.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Netmask |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Gateway |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Static |
+-+-+-+-+-+-+-+-+
Type: 82 for WTP Static IP Address Information
Length: 13
IP Address: The IP address to assign to the WTP.
Netmask: The IP Netmask.
Gateway: The IP address of the gateway.
Netmask: The IP Netmask.
Static: An 8-bit Boolean stating whether or not the WTP should use
a static IP address. A value of zero disables the static IP
address, while a value of one enables it.
Calhoun, et al. Historic [Page 57]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
7.2.7. WTP Reboot Statistics
The WTP Reboot Statistics message element is sent by the WTP to the
AC to communicate information about reasons why reboots have
occurred.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Crash Count | LWAPP Initiated Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Failure Count | Failure Type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 67 for WTP Reboot Statistics
Length: 7
Crash Count: The number of reboots that have occurred due to a WTP
crash.
LWAPP Initiated Count: The number of reboots that have occurred at
the request of some LWAPP message, such as a change in
configuration that required a reboot or an explicit LWAPP reset
request.
Link Failure Count: The number of times that an LWAPP connection
with an AC has failed.
Failure Type: The last WTP failure. The following values are
supported:
0 - Link Failure
1 - LWAPP Initiated
2 - WTP Crash
7.3. Configure Response
The Configure Response message is sent by an AC and provides an
opportunity for the AC to override a WTP's requested configuration.
Configure Responses are sent by an AC after receiving a Configure
Request.
Calhoun, et al. Historic [Page 58]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
The Configure Response carries binding-specific message elements.
Refer to the appropriate binding for the definition of this
structure.
When a WTP receives a Configure Response, it acts upon the content of
the packet, as appropriate. If the Configure Response message
includes a Change State Event message element that causes a change in
the operational state of one of the Radios, the WTP will transmit a
Change State Event to the AC as an acknowledgement of the change in
state.
The following subsections define the message elements that MUST be
included in this LWAPP operation.
7.3.1. Decryption Error Report Period
The Decryption Error Report Period message element value is used by
the AC to inform the WTP of how frequently it should send decryption
error report messages.
0 1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Report Interval |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 38 for Decryption Error Report Period
Length: 3
Radio ID: The Radio Identifier: typically refers to some interface
index on the WTP.
Report Interval: A 16-bit, unsigned integer indicating the time, in
seconds.
7.3.2. Change State Event
The WTP Radio Information message element is used to communicate the
operational state of a radio. The value contains two fields, as
shown.
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | State | Cause |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Calhoun, et al. Historic [Page 59]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Type: 26 for Change State Event
Length: 3
Radio ID: The Radio Identifier: typically refers to some interface
index on the WTP.
State: An 8-bit Boolean value representing the state of the radio.
A value of one disables the radio, while a value of two enables
it.
Cause: In the event of a radio being inoperable, the Cause field
would contain the reason the radio is out of service. The
following values are supported:
0 - Normal
1 - Radio Failure
2 - Software Failure
7.3.3. LWAPP Timers
The LWAPP Timers message element is used by an AC to configure LWAPP
timers on a WTP.
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Discovery | Echo Request |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 68 for LWAPP Timers
Length: 2
Discovery: The number of seconds between LWAPP Discovery packets
when the WTP is in the discovery mode.
Echo Request: The number of seconds between WTP Echo Request LWAPP
messages.
7.3.4. AC IPv4 List
The AC List message element is defined in Section 6.2.6.
Calhoun, et al. Historic [Page 60]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
7.3.5. AC IPv6 List
The AC List message element is defined in Section 6.2.7.
7.3.6. WTP Fallback
The WTP Fallback message element is sent by the AC to the WTP to
enable or disable automatic LWAPP fallback in the event that a WTP
detects its preferred AC, and is not currently connected to it.
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| Mode |
+-+-+-+-+-+-+-+-+
Type: 91 for WTP Fallback
Length: 1
Mode: The 8-bit Boolean value indicates the status of automatic
LWAPP fallback on the WTP. A value of zero disables the fallback
feature, while a value of one enables it. When enabled, if the
WTP detects that its primary AC is available, and it is not
connected to it, it SHOULD automatically disconnect from its
current AC and reconnect to its primary. If disabled, the WTP
will only reconnect to its primary through manual intervention
(e.g., through the Reset Request command).
7.3.7. Idle Timeout
The Idle Timeout message element is sent by the AC to the WTP to
provide it with the idle timeout that it should enforce on its active
mobile station entries.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timeout |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 97 for Idle Timeout
Length: 4
Timeout: The current idle timeout to be enforced by the WTP.
Calhoun, et al. Historic [Page 61]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
7.4. Configuration Update Request
Configure Update Requests are sent by the AC to provision the WTP
while in the Run state. This is used to modify the configuration of
the WTP while it is operational.
When an AC receives a Configuration Update Request it will respond
with a Configuration Update Response, with the appropriate Result
Code.
The following subsections define the message elements introduced by
this LWAPP operation.
7.4.1. WTP Name
The WTP Name message element is defined in Section 6.1.3.
7.4.2. Change State Event
The Change State Event message element is defined in Section 7.3.2.
7.4.3. Administrative State
The Administrative State message element is defined in Section 7.2.1.
7.4.4. Statistics Timer
The Statistics Timer message element is defined in Section 7.2.5.
7.4.5. Location Data
The Location Data message element is defined in Section 6.1.4.
7.4.6. Decryption Error Report Period
The Decryption Error Report Period message element is defined in
Section 7.3.1.
7.4.7. AC IPv4 List
The AC List message element is defined in Section 6.2.6.
7.4.8. AC IPv6 List
The AC List message element is defined in Section 6.2.7.
Calhoun, et al. Historic [Page 62]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
7.4.9. Add Blacklist Entry
The Add Blacklist Entry message element is used by an AC to add a
blacklist entry on a WTP, ensuring that the WTP no longer provides
any service to the MAC addresses provided in the message. The MAC
addresses provided in this message element are not expected to be
saved in non-volative memory on the WTP.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Num of Entries| MAC Address[] |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address[] |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 65 for Add Blacklist Entry
Length: >= 7
Num of Entries: The number of MAC addresses in the array.
MAC Address: An array of MAC addresses to add to the blacklist
entry.
7.4.10. Delete Blacklist Entry
The Delete Blacklist Entry message element is used by an AC to delete
a previously added blacklist entry on a WTP, ensuring that the WTP
provides service to the MAC addresses provided in the message.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Num of Entries| MAC Address[] |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address[] |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 66 for Delete Blacklist Entry
Length: >= 7
Num of Entries: The number of MAC addresses in the array.
MAC Address: An array of MAC addresses to delete from the blacklist
entry.
Calhoun, et al. Historic [Page 63]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
7.4.11. Add Static Blacklist Entry
The Add Static Blacklist Entry message element is used by an AC to
add a permanent Blacklist Entry on a WTP, ensuring that the WTP no
longer provides any service to the MAC addresses provided in the
message. The MAC addresses provided in this message element are
expected to be saved in non-volative memory on the WTP.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Num of Entries| MAC Address[] |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address[] |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 70 for Delete Blacklist Entry
Length: >= 7
Num of Entries: The number of MAC addresses in the array.
MAC Address: An array of MAC addresses to add to the permanent
blacklist entry.
7.4.12. Delete Static Blacklist Entry
The Delete Static Blacklist Entry message element is used by an AC to
delete a previously added static blacklist entry on a WTP, ensuring
that the WTP provides service to the MAC addresses provided in the
message.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Num of Entries| MAC Address[] |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address[] |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 71 for Delete Blacklist Entry
Length: >= 7
Num of Entries: The number of MAC addresses in the array.
MAC Address: An array of MAC addresses to delete from the static
blacklist entry.
Calhoun, et al. Historic [Page 64]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
7.4.13. LWAPP Timers
The LWAPP Timers message element is defined in Section 7.3.3.
7.4.14. AC Name with Index
The AC Name with Index message element is defined in Section 7.2.3.
7.4.15. WTP Fallback
The WTP Fallback message element is defined in Section 7.3.6.
7.4.16. Idle Timeout
The Idle Timeout message element is defined in Section 7.3.7.
7.5. Configuration Update Response
The Configuration Update Response is the acknowledgement message for
the Configuration Update Request.
Configuration Update Responses are sent by a WTP after receiving a
Configuration Update Request.
When an AC receives a Configure Update Response, the result code
indicates if the WTP successfully accepted the configuration.
The following subsections define the message elements that must be
present in this LWAPP operation.
7.5.1. Result Code
The Result Code message element is defined in Section 6.2.1.
7.6. Change State Event Request
The Change State Event is used by the WTP to inform the AC of a
change in the operational state.
The Change State Event message is sent by the WTP when it receives a
Configuration Response that includes a Change State Event message
element. It is also sent in the event that the WTP detects an
operational failure with a radio. The Change State Event may be sent
in either the Configure or Run state (see Figure 2).
When an AC receives a Change State Event it will respond with a
Change State Event Response and make any necessary modifications to
internal WTP data structures.
Calhoun, et al. Historic [Page 65]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
The following subsections define the message elements that must be
present in this LWAPP operation.
7.6.1. Change State Event
The Change State Event message element is defined in Section 7.3.2.
7.7. Change State Event Response
The Change State Event Response acknowledges the Change State Event.
Change State Event Responses are sent by a WTP after receiving a
Change State Event.
The Change State Event Response carries no message elements. Its
purpose is to acknowledge the receipt of the Change State Event.
The WTP does not need to perform any special processing of the Change
State Event Response message.
7.8. Clear Config Indication
The Clear Config Indication is used to reset a WTP's configuration.
The Clear Config Indication is sent by an AC to request that a WTP
reset its configuration to manufacturing defaults. The Clear Config
Indication message is sent while in the Run LWAPP state.
The Reset Request carries no message elements.
When a WTP receives a Clear Config Indication, it will reset its
configuration to manufacturing defaults.
8. Device Management Operations
This section defines LWAPP operations responsible for debugging,
gathering statistics, logging, and firmware management.
8.1. Image Data Request
The Image Data Request is used to update firmware on the WTP. This
message and its companion response are used by the AC to ensure that
the image being run on each WTP is appropriate.
Image Data Requests are exchanged between the WTP and the AC to
download a new program image to a WTP.
When a WTP or AC receives an Image Data Request, it will respond with
Calhoun, et al. Historic [Page 66]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
an Image Data Response.
The format of the Image Data and Image Download message elements are
described in the following subsections.
8.1.1. Image Download
The Image Download message element is sent by the WTP to the AC and
contains the image filename. The value is a variable-length byte
string. The string is NOT zero terminated.
8.1.2. Image Data
The Image Data message element is present when sent by the AC and
contains the following fields.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Opcode | Checksum | Image Data |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Image Data ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 33 for Image Data
Length: >= 5
Opcode: An 8-bit value representing the transfer opcode. The
following values are supported:
3 - Image Data is included.
5 - An error occurred. Transfer is aborted.
Checksum: A 16-bit value containing a checksum of the Image Data
that follows.
Image Data: The Image Data field contains 1024 characters, unless
the payload being sent is the last one (end of file).
Calhoun, et al. Historic [Page 67]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
8.2. Image Data Response
The Image Data Response acknowledges the Image Data Request.
An Image Data Responses is sent in response to an Image Data Request.
Its purpose is to acknowledge the receipt of the Image Data Request
packet.
The Image Data Response carries no message elements.
No action is necessary on receipt.
8.3. Reset Request
The Reset Request is used to cause a WTP to reboot.
Reset Requests are sent by an AC to cause a WTP to reinitialize its
operation.
The Reset Request carries no message elements.
When a WTP receives a Reset Request it will respond with a Reset
Response and then reinitialize itself.
8.4. Reset Response
The Reset Response acknowledges the Reset Request.
Reset Responses are sent by a WTP after receiving a Reset Request.
The Reset Response carries no message elements. Its purpose is to
acknowledge the receipt of the Reset Request.
When an AC receives a Reset Response, it is notified that the WTP
will now reinitialize its operation.
8.5. WTP Event Request
The WTP Event Request is used by a WTP to send information to its AC.
These types of events may be periodical, or some asynchronous event
on the WTP. For instance, a WTP collects statistics and uses the WTP
Event Request to transmit this information to the AC.
When an AC receives a WTP Event Request, it will respond with a WTP
Event Request.
Calhoun, et al. Historic [Page 68]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
The WTP Event Request message MUST contain one of the following
message element described in the next subsections, or a message
element that is defined for a specific technology.
8.5.1. Decryption Error Report
The Decryption Error Report message element value is used by the WTP
to inform the AC of decryption errors that have occurred since the
last report.
0 1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID |Num Of Entries | Mobile MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Mobile MAC Address[] |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 39 for Decryption Error Report
Length: >= 8
Radio ID: The Radio Identifier, typically refers to some interface
index on the WTP.
Num Of Entries: An 8-bit unsigned integer indicating the number of
mobile MAC addresses.
Mobile MAC Address: An array of mobile station MAC addresses that
have caused decryption errors.
8.5.2. Duplicate IPv4 Address
The Duplicate IPv4 Address message element is used by a WTP to inform
an AC that it has detected another host using the same IP address it
is currently using.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 77 for Duplicate IPv4 Address
Calhoun, et al. Historic [Page 69]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Length: 10
IP Address: The IP address currently used by the WTP.
MAC Address: The MAC address of the offending device.
8.5.3. Duplicate IPv6 Address
The Duplicate IPv6 Address message element is used by a WTP to inform
an AC that it has detected another host using the same IP address it
is currently using.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 77 for Duplicate IPv6 Address
Length: 10
IP Address: The IP address currently used by the WTP.
MAC Address: The MAC address of the offending device.
8.6. WTP Event Response
The WTP Event Response acknowledges the WTP Event Request.
WTP Event Responses are sent by an AC after receiving a WTP Event
Request.
The WTP Event Response carries no message elements.
Calhoun, et al. Historic [Page 70]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
8.7. Data Transfer Request
The Data Transfer Request is used to upload debug information from
the WTP to the AC.
Data Transfer Requests are sent by the WTP to the AC when it
determines that it has important information to send to the AC. For
instance, if the WTP detects that its previous reboot was caused by a
system crash, it would want to send the crash file to the AC. The
remote debugger function in the WTP also uses the Data Transfer
Request in order to send console output to the AC for debugging
purposes.
When an AC receives a Data Transfer Request, it will respond with a
Data Transfer Response. The AC may log the information received as
it sees fit.
The Data Transfer Request message MUST contain ONE of the following
message element described in the next subsection.
8.7.1. Data Transfer Mode
The Data Transfer Mode message element is used by the AC to request
information from the WTP for debugging purposes.
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| Data Type |
+-+-+-+-+-+-+-+-+
Type: 52 for Data Transfer Mode
Length: 1
Data Type: An 8-bit value describing the type of information being
requested. The following values are supported:
1 - WTP Crash Data
2 - WTP Memory Dump
8.7.2. Data Transfer Data
The Data Transfer Data message element is used by the WTP to provide
information to the AC for debugging purposes.
Calhoun, et al. Historic [Page 71]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data Type | Data Length | Data ....
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 53 for Data Transfer Data
Length: >= 3
Data Type: An 8-bit value describing the type of information being
sent. The following values are supported:
1 - WTP Crash Data
2 - WTP Memory Dump
Data Length: Length of data field.
Data: Debug information.
8.8. Data Transfer Response
The Data Transfer Response acknowledges the Data Transfer Request.
A Data Transfer Response is sent in response to a Data Transfer
Request. Its purpose is to acknowledge the receipt of the Data
Transfer Request packet.
The Data Transfer Response carries no message elements.
Upon receipt of a Data Transfer Response, the WTP transmits more
information, if any is available.
9. Mobile Session Management
Messages in this section are used by the AC to create, modify, or
delete mobile station session state on the WTPs.
9.1. Mobile Config Request
The Mobile Config Request message is used to create, modify, or
delete mobile session state on a WTP. The message is sent by the AC
to the WTP, and may contain one or more message elements. The
Calhoun, et al. Historic [Page 72]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
message elements for this LWAPP control message include information
that is generally highly technology-specific. Therefore, please
refer to the appropriate binding section or document for the
definitions of the messages elements that may be used in this control
message.
This section defines the format of the Delete Mobile message element,
since it does not contain any technology-specific information.
9.1.1. Delete Mobile
The Delete Mobile message element is used by the AC to inform a WTP
that it should no longer provide service to a particular mobile
station. The WTP must terminate service immediately upon receiving
this message element.
The transmission of a Delete Mobile message element could occur for
various reasons, including administrative reasons, as a result of the
fact that the mobile has roamed to another WTP, etc.
Once access has been terminated for a given station, any future
packets received from the mobile must result in a deauthenticate
message, as specified in [6].
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 30 for Delete Mobile
Length: 7
Radio ID: An 8-bit value representing the radio
MAC Address: The mobile station's MAC address
9.2. Mobile Config Response
The Mobile Configuration Response is used to acknowledge a previously
received Mobile Configuration Request, and includes a Result Code
message element that indicates whether an error occurred on the WTP.
This message requires no special processing and is only used to
acknowledge the Mobile Configuration Request.
Calhoun, et al. Historic [Page 73]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
The Data Transfer Request message MUST contain the message elements
described in the next subsection.
9.2.1. Result Code
The Result Code message element is defined in Section 6.2.1.
10. LWAPP Security
Note: This version only defines a certificate and a shared-secret-
based mechanism to secure control LWAPP traffic exchanged between the
WTP and the AC.
10.1. Securing WTP-AC Communications
While it is generally straightforward to produce network
installations in which the communications medium between the WTP and
AC is not accessible to the casual user (e.g., these LAN segments are
isolated, and no RJ45 or other access ports exist between the WTP and
the AC), this will not always be the case. Furthermore, a determined
attacker may resort to various, more sophisticated monitoring and/or
access techniques, thereby compromising the integrity of this
connection.
In general, a certain level of threat on the local (wired) LAN is
expected and accepted in most computing environments. That is, it is
expected that in order to provide users with an acceptable level of
service and maintain reasonable productivity levels, a certain amount
of risk must be tolerated. It is generally believed that a certain
perimeter is maintained around such LANs, that an attacker must have
access to the building(s) in which such LANs exist, and that they
must be able to "plug in" to the LAN in order to access the network.
With these things in mind, we can begin to assess the general
security requirements for AC-WTP communications. While an in-depth
security analysis of threats and risks to these communications is
beyond the scope of this document, some discussion of the motivation
for various security-related design choices is useful. The
assumptions driving the security design thus far include the
following:
o WTP-AC communications take place over a wired connection that may
be accessible to a sophisticated attacker.
o access to this connection is not trivial for an outsider (i.e.,
someone who does not "belong" in the building) to access.
Calhoun, et al. Historic [Page 74]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
o if authentication and/or privacy of end-to-end traffic for which
the WTP and AC are intermediaries is required, this may be
provided via IPsec [14].
o privacy and authentication for at least some WTP-AC control
traffic is required (e.g., Wired Equivalent Privacy (WEP) keys for
user sessions, passed from the AC to the WTP).
o the AC can be trusted to generate strong cryptographic keys.
The AC-WTP traffic can be considered to consist of two types: data
traffic (e.g., to or from an end user), and control traffic, which is
strictly between the AC and WTP. Since data traffic may be secured
using IPsec (or some other end-to-end security mechanism), we confine
our solution to control traffic. The resulting security consists of
two components: an authenticated key exchange and control traffic
security encapsulation. The security encapsulation is accomplished
using AES-CCM, described in [3]. This encapsulation provides for
strong AES-based authentication and encryption [2]. The exchange of
cryptographic keys used for CCM is described below.
10.2. LWAPP Frame Encryption
While the LWAPP protocol uses AES-CCM to encrypt control traffic, it
is important to note that not all control frames are encrypted. The
LWAPP discovery and join phase are not encrypted. The Discovery
messages are sent in the clear since there does not exist a security
association between the WTP and the AC during the discovery phase.
The join phase is an authenticated exchange used to negotiate
symmetric session keys (see Section 10.3).
Once the join phase has been successfully completed, the LWAPP state
machine Figure 2 will move to the Configure state, at which time all
LWAPP control frames are encrypted using AES-CCM.
Encryption of a control message begins at the Message Element field:
meaning the Msg Type, Seq Num, Msg Element Length, and Session ID
fields are left intact (see Section 4.2.1).
The AES-CCM 12-byte authentication data is appended to the end of the
message. The authentication data is calculated from the start of the
LWAPP packet and includes the complete LWAPP control header (see
Section 4.2.1).
Calhoun, et al. Historic [Page 75]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
The AES-CCM block cipher protocol requires an initialization vector.
The LWAPP protocol requires that the WTP and the AC maintain two
separate IVs, one for transmission and one for reception. The IV
derived during the key exchange phase by both the WTP and the AC is
used as the base for all encrypted packets with a new key.
10.3. Authenticated Key Exchange
This section describes the key management component of the LWAPP
protocol. There are two modes supported by LWAPP: certificate and
pre-shared key.
10.3.1. Terminology
This section details the key management protocol that makes use of
pre-shared secrets.
The following notations are used throughout this section:
o PSK - the pre-shared key shared between the WTP and the AC.
o Kpriv - the private key of a public-private key pair.
o Kpub - the public key of the pair.
o SessionID - a randomly generated LWAPP session identifier,
provided by the WTP in the Join Request.
o E-x{Kpub, M} - RSA encryption of M using X's public key.
o D-x{Kpriv, C} - RSA decryption of C using X's private key.
o AES-CMAC(key, packet) - A message integrity check, using AES-CMAC
and key, of the complete LWAPP packet, with the Sequence Number
field and the payload of the PSK-MIC message element set to zero.
o AES-E(key, plaintext) - Plaintext is encrypted with key, using
AES.
o AES-D(key, ciphertext) - ciphertext is decrypted with key, using
AES.
o Certificate-AC - AC's Certificate.
o Certificate-WTP - WTP's Certificate.
o WTP-MAC - The WTP's MAC address.
Calhoun, et al. Historic [Page 76]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
o AC-MAC - The AC's MAC address.
o RK0 - the root key, which is created through a Key Derivation
Function (KDF) function.
o RK0E - the root Encryption key, derived from RK0.
o RK0M - the root MIC key, derived from RK0.
o SK1 - the session key.
o SK1C - the session confirmation key, derived from SK.
o SK1E - the session encryption key, derived from SK.
o SK1W - the session keywrap key, derived from SK (see RFC 3394
[9]).
o WNonce - The WTP's randomly generated nonce.
o ANonce - The AC's randomly generated nonce.
o EWNonce - The payload of the WNonce message element, which
includes the WNonce.
o EANonce - The payload of the ANonce message element, which
includes the ANonce.
10.3.2. Initial Key Generation
The AC and WTP accomplish mutual authentication and a cryptographic
key exchange in a dual round trip using the Join Request, Join
Response, Join ACK, and Join Confirm (see Section 6.1).
The following text describes the exchange between the WTP and the AC
that creates a session key, which is used to secure LWAPP control
messages.
o The WTP creates a Join Request using the following process:
o If certificate-based security is used, the WTP adds the
Certificate message element (see Section 6.1.6) with its
contents set to Certificate-WTP.
o The WTP adds the Session ID message element (see Section 6.1.7)
with the contents set to a randomly generated session
identifier (see RFC 1750 [4]). The WTP MUST save the Session
ID in order to validate the Join Response.
Calhoun, et al. Historic [Page 77]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
o The WTP creates a random nonce, included in the XNonce message
element (see Section 6.1.9). The WTP MUST save the XNonce to
validate the Join Response.
o The WTP transmits the Join Request to the AC.
o Upon receiving the Join Request, the AC uses the following
process:
o The AC creates the Join Response, and ensures that the Session
ID message element matches the value found in the Join Request.
o If certificate-based security is used, the AC:
o adds the Certificate-AC to the Certificate message element.
o creates a random 'AC Nonce' and encrypts it using the
following algorithm E-wtp(Kpub, XNonce XOR 'AC Nonce'). The
encrypted contents are added to the ANonce's message element
payload.
o If a pre-shared-key-based security is used, the AC:
o creates RK0 through the following algorithm: RK0 = KDF-
256{PSK, "LWAPP PSK Top K0" || Session ID || WTP-MAC || AC-
MAC}, where WTP-MAC is the WTP's MAC address in the form
"xx:xx:xx:xx:xx:xx". Similarly, the AC-MAC is an ASCII
encoding of the AC's MAC address, of the form "xx:xx:xx:xx:
xx:xx". The resulting K0 is split into the following:
o The first 16 octets are known as RK0E, and are used as an
encryption key.
o The second 16 octets are known as RK0M, and are used for
MIC'ing purposes.
o The AC creates a random 'AC Nonce' and encrypts it using the
following algorithm: AES-E(RK0E, XNonce XOR 'AC Nonce').
The encrypted contents are added to the ANonce's message
element payload.
o The AC adds a MIC to the contents of the Join Response using
AES-CMAC(RK0M, Join Response) and adds the resulting hash to
the PSK-MIC (Section 6.2.9) message element.
o Upon receiving the Join Response, the WTP uses the following
process:
Calhoun, et al. Historic [Page 78]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
o If a pre-shared key is used, the WTP authenticates the Join
Response's PSK-MIC message element. If authentication fails,
the packet is dropped.
o The WTP decrypts the ANonce message element and XOR's the value
with XNonce to retrieve the 'AC Nonce'. The ANonce payload is
referred to as ciphertext below:
o If a pre-shared key is used, use AES-D(RK0E, ciphertext).
The 'AC Nonce' is then recovered using XNonce XOR plaintext.
o If certificates are used, use d-wtp(Kpriv, ciphertext). The
'AC Nonce' is then recovered using XNonce XOR plaintext.
o The WTP creates a random 'WTP Nonce'.
o The WTP uses the KDF function to create a 64-octet session key
(SK). The KDF function used is as follows: KDF-512{'WTP Nonce'
|| 'AC Nonce', "LWAPP Key Generation", WTP-MAC || AC-MAC}. The
KDF function is defined in [7].
o SK is then broken down into three separate session keys with
different purposes:
o The first 16 octets are known as SK1C, and are used as a
confirmation key.
o The second 16 octets are known as SK1E, and are as the
encryption key.
o The third 16 octets are known as SK1D, and are used as the
keywrap key.
o The fourth 16 octets are known as IV, and are used as the
Initialization Vector during encryption.
o The WTP creates the Join ACK message.
o If certificate-based security is used, the AC:
o encrypts the 'WTP Nonce' using the following algorithm: E-
ac(Kpub, 'WTP Nonce'). The encrypted contents are added to
the WNonce's message element payload.
o If a pre-shared-key-based security is used, the AC:
Calhoun, et al. Historic [Page 79]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
o encrypts the 'WTP Nonce' using the following algorithm:
AES-E(RK0E, 'WTP Nonce'). The encrypted contents are added
to the WNonce's message element payload.
o The WTP adds a MIC to the contents of the Join ACK using
AES-CMAC(SK1M, Join ACK) and adds the resulting hash to the
PSK-MIC (Section 6.2.9) message element.
o The WTP then transmits the Join ACK to the AC.
o Upon receiving the Join ACK, the AC uses the following process:
o The AC authenticates the Join ACK through the PSK-MIC message
element. If authentic, the AC decrypts the WNonce message
element to retrieve the 'WTP Nonce'. If the Join ACK cannot be
authenticated, the packet is dropped.
o The AC decrypts the WNonce message element to retrieve the 'WTP
Nonce'. The WNonce payload is referred to as ciphertext below:
o If a pre-shared key is used, use AES-D(RK0E, ciphertext).
The plaintext is then considered the 'WTP Nonce'.
o If certificates are used, use d-ac(Kpriv, ciphertext). The
plaintext is then considered the 'WTP Nonce'.
o The AC then uses the KDF function to create a 64-octet session
key (SK). The KDF function used is as follows: KDF-512{'WTP
Nonce' || 'AC Nonce', "LWAPP Key Generation", WTP-MAC ||
AC-MAC}. The KDF function is defined in [7]. The SK is split
into SK1C, SK1E, SK1D, and IV, as previously noted.
o The AC creates the Join Confirm.
o The AC adds a MIC to the contents of the Join Confirm using
AES-CMAC(SK1M, Join Confirm) and adds the resulting hash to the
MIC (Section 6.2.9) message element.
o The AC then transmits the Join Confirm to the WTP.
o Upon receiving the Join Confirm, the WTP uses the following
process:
o The WTP authenticates the Join Confirm through the PSK-MIC
message element. If the Join Confirm cannot be authenticated,
the packet is dropped.
Calhoun, et al. Historic [Page 80]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
o SK1E is now plumbed into the AC and WTP's crypto engine as the
AES-CCM LWAPP control encryption session key. Furthermore, the
random IV is used as the base Initialization Vector. From this
point on, all control protocol payloads between the WTP and AC are
encrypted and authenticated using the new session key.
10.3.3. Refreshing Cryptographic Keys
Since AC-WTP associations will tend to be relatively long-lived, it
is sensible to periodically refresh the encryption and authentication
keys; this is referred to as "rekeying". When the key lifetime
reaches 95% of the configured value, identified in the KeyLifetime
timer (see Section 12), the rekeying will proceed as follows:
o The WTP creates RK0 through the previously defined KDF algorithm:
RK0 = KDF-256{SK1D, "LWAPP PSK Top K0" || Session ID || WTP-MAC ||
AC-MAC}. Note that the difference in this specific instance is
that SK1D that was previously generated is used instead of the
PSK. Note this is used in both the certificate and pre-shared key
modes. The resulting RK0 creates RK0E, RK0M.
o The remaining steps used are identical to the join process, with
the exception that the rekey messages are used instead of join
messages, and the fact that the messages are encrypted using the
previously created SK1E. This means the Join Request is replaced
with the Rekey Request, the Join Response is replaced with the
Rekey Response, etc. The two differences between the rekey and
the join process are:
o The Certificate-WTP and Certificate-AC are not included in the
Rekey-Request and Rekey-Response, respectively.
o Regardless of whether certificates or pre-shared keys were used
in the initial key derivation, the process now uses the pre-
shared key mode only, using SK1D as the "PSK".
o The Key Update Request is sent to the AC.
o The newly created SK1E is now plumbed into the AC and WTP's crypto
engine as the AES-CCM LWAPP control encryption session key.
Furthermore, the new random IV is used as the base Initialization
Vector. From this point on, all control protocol payloads between
the WTP and AC are encrypted and authenticated using the new
session key.
Calhoun, et al. Historic [Page 81]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
If either the WTP or the AC do not receive an expected response by
the time the ResponseTimeout timer expires (see Section 12), the
WTP MUST delete the new and old session information, and reset the
state machine to the Idle state.
Following a rekey process, both the WTP and the AC keep the
previous encryption for 5-10 seconds in order to be able to
process packets that arrive out of order.
10.4. Certificate Usage
Validation of the certificates by the AC and WTP is required so that
only an AC may perform the functions of an AC and that only a WTP may
perform the functions of a WTP. This restriction of functions to the
AC or WTP requires that the certificates used by the AC MUST be
distinguishable from the certificate used by the WTP. To accomplish
this differentiation, the x.509v3 certificates MUST include the
Extensions field [10] and MUST include the NetscapeComment [11]
extension.
For an AC, the value of the NetscapeComment extension MUST be the
string "CAPWAP AC Device Certificate". For a WTP, the value of the
NetscapeComment extension MUST be the string "CAPWAP WTP Device
Certificate".
Part of the LWAPP certificate validation process includes ensuring
that the proper string is included in the NetscapeComment extension,
and only allowing the LWAPP session to be established if the
extension does not represent the same role as the device validating
the certificate. For instance, a WTP MUST NOT accept a certificate
whose NetscapeComment field is set to "CAPWAP WTP Device
Certificate".
11. IEEE 802.11 Binding
This section defines the extensions required for the LWAPP protocol
to be used with the IEEE 802.11 protocol.
11.1. Division of Labor
The LWAPP protocol, when used with IEEE 802.11 devices, requires a
specific behavior from the WTP and the AC, specifically in terms of
which 802.11 protocol functions are handled.
For both the Split and Local MAC approaches, the CAPWAP functions, as
defined in the taxonomy specification, reside in the AC.
Calhoun, et al. Historic [Page 82]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
11.1.1. Split MAC
This section shows the division of labor between the WTP and the AC
in a Split MAC architecture. Figure 3 shows the clear separation of
functionality among LWAPP components.
Function Location
Distribution Service AC
Integration Service AC
Beacon Generation WTP
Probe Response WTP
Power Mgmt/Packet Buffering WTP
Fragmentation/Defragmentation WTP
Assoc/Disassoc/Reassoc AC
802.11e
Classifying AC
Scheduling WTP/AC
Queuing WTP
802.11i
802.1X/EAP AC
Key Management AC
802.11 Encryption/Decryption WTP or AC
Figure 3: Mapping of 802.11 Functions for Split MAC Architecture
The Distribution and Integration services reside on the AC, and
therefore all user data is tunneled between the WTP and the AC. As
noted above, all real-time 802.11 services, including the control
protocol and the beacon and Probe Response frames, are handled on the
WTP.
All remaining 802.11 MAC management frames are supported on the AC,
including the Association Request, which allows the AC to be involved
in the access policy enforcement portion of the 802.11 protocol. The
802.1X and 802.11i key management function are also located on the
AC.
While the admission control component of 802.11e resides on the AC,
the real-time scheduling and queuing functions are on the WTP. Note
that this does not exclude the AC from providing additional policing
and scheduling functionality.
Note that in the following figure, the use of '( - )' indicates that
processing of the frames is done on the WTP.
Calhoun, et al. Historic [Page 83]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Client WTP AC
Beacon
<-----------------------------
Probe Request
----------------------------( - )------------------------->
Probe Response
<-----------------------------
802.11 AUTH/Association
<--------------------------------------------------------->
Add Mobile (Clear Text, 802.1X Only)
<------------------------->
802.1X Authentication & 802.11i Key Exchange
<--------------------------------------------------------->
Add Mobile (AES-CCMP, PTK=x)
<------------------------->
802.11 Action Frames
<--------------------------------------------------------->
802.11 DATA (1)
<---------------------------( - )------------------------->
Figure 4: Split MAC Message Flow
Figure 4 provides an illustration of the division of labor in a Split
MAC architecture. In this example, a WLAN has been created that is
configured for 802.11i, using AES-CCMP for privacy. The following
process occurs:
o The WTP generates the 802.11 beacon frames, using information
provided to it through the Add WLAN (see Section 11.8.1.1) message
element.
o The WTP processes the Probe Request and responds with a
corresponding Probe Response. The problem request is then
forwarded to the AC for optional processing.
o The WTP forwards the 802.11 Authentication and Association frames
to the AC, which is responsible for responding to the client.
o Once the association is complete, the AC transmits an LWAPP Add
Mobile Request to the WTP (see Section 11.7.1.1). In the above
example, the WLAN is configured for 802.1X, and therefore the
'802.1X only' policy bit is enabled.
o If the WTP is providing encryption/decryption services, once the
client has completed the 802.11i key exchange, the AC transmits
another Add Mobile Request to the WTP, stating the security policy
to enforce for the client (in this case AES-CCMP), as well as the
Calhoun, et al. Historic [Page 84]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
encryption key to use. If encryption/decryption is handled in the
AC, the Add Mobile Request would have the encryption policy set to
"Clear Text".
o The WTP forwards any 802.11 Action frames received to the AC.
o All client data frames are tunneled between the WTP and the AC.
Note that the WTP is responsible for encrypting and decrypting
frames, if it was indicated in the Add Mobile Request.
11.1.2. Local MAC
This section shows the division of labor between the WTP and the AC
in a Local MAC architecture. Figure 5 shows the clear separation of
functionality among LWAPP components.
Function Location
Distribution Service WTP
Integration Service WTP
Beacon Generation WTP
Probe Response WTP
Power Mgmt/Packet Buffering WTP
Fragmentation/Defragmentation WTP
Assoc/Disassoc/Reassoc WTP
802.11e
Classifying WTP
Scheduling WTP
Queuing WTP
802.11i
802.1X/EAP AC
Key Management AC
802.11 Encryption/Decryption WTP
Figure 5: Mapping of 802.11 Functions for Local AP Architecture
Given that Distribution and Integration Services exist on the WTP,
client data frames are not forwarded to the AC, with the exception
listed in the following paragraphs.
While the MAC is terminated on the WTP, it is necessary for the AC to
be aware of mobility events within the WTPs. As a consequence, the
WTP MUST forward the 802.11 Association Requests to the AC, and the
AC MAY reply with a failed Association Response if it deems it
necessary.
Calhoun, et al. Historic [Page 85]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
The 802.1X and 802.11i Key Management function resides in the AC.
Therefore, the WTP MUST forward all 802.1X/Key Management frames to
the AC and forward the associated responses to the station.
Note that in the following figure, the use of '( - )' indicates that
processing of the frames is done on the WTP.
Client WTP AC
Beacon
<-----------------------------
Probe
<---------------------------->
802.11 AUTH
<-----------------------------
802.11 Association
<---------------------------( - )------------------------->
Add Mobile (Clear Text, 802.1X Only)
<------------------------->
802.1X Authentication & 802.11i Key Exchange
<--------------------------------------------------------->
802.11 Action Frames
<--------------------------------------------------------->
Add Mobile (AES-CCMP, PTK=x)
<------------------------->
802.11 DATA
<----------------------------->
Figure 6: Local MAC Message Flow
Figure 6 provides an illustration of the division of labor in a Local
MAC architecture. In this example, a WLAN has been created that is
configured for 802.11i, using AES-CCMP for privacy. The following
process occurs:
o The WTP generates the 802.11 beacon frames, using information
provided to it through the Add WLAN (see Section 11.8.1.1) message
element.
o The WTP processes the Probe Request and responds with a
corresponding Probe Response.
o The WTP forwards the 802.11 Authentication and Association frames
to the AC, which is responsible for responding to the client.
Calhoun, et al. Historic [Page 86]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
o Once the association is complete, the AC transmits an LWAPP Add
Mobile Request to the WTP (see Section 11.7.1.1. In the above
example, the WLAN is configured for 802.1X, and therefore the
'802.1X only' policy bit is enabled.
o The WTP forwards all 802.1X and 802.11i key exchange messages to
the AC for processing.
o The AC transmits another Add Mobile Request to the WTP, stating
the security policy to enforce for the client (in this case, AES-
CCMP), as well as the encryption key to use. The Add Mobile
Request MAY include a VLAN name, which when present is used by the
WTP to identify the VLAN on which the user's data frames are to be
bridged.
o The WTP forwards any 802.11 Action frames received to the AC.
o The WTP locally bridges all client data frames, and provides the
necessary encryption and decryption services.
11.2. Roaming Behavior and 802.11 Security
It is important that LWAPP implementations react properly to mobile
devices associating to the networks in how they generate Add Mobile
and Delete Mobile messages. This section expands upon the examples
provided in the previous section, and describes how the LWAPP control
protocol is used in order to provide secure roaming.
Once a client has successfully associated with the network in a
secure fashion, it is likely to attempt to roam to another access
point. Figure 7 shows an example of a currently associated station
moving from its "Old WTP" to a new "WTP". The figure is useful for
multiple different security policies, including standard 802.1X and
dynamic WEP keys, WPA or even WPA2 both with key caching (where the
802.1x exchange would be bypassed) and without.
Calhoun, et al. Historic [Page 87]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Client Old WTP WTP AC
Association Request/Response
<--------------------------------------( - )-------------->
Add Mobile (Clear Text, 802.1X Only)
<---------------->
802.1X Authentication (if no key cache entry exists)
<--------------------------------------( - )-------------->
802.11i 4-way Key Exchange
<--------------------------------------( - )-------------->
Delete Mobile
<---------------------------------->
Add Mobile (AES-CCMP, PTK=x)
<---------------->
Figure 7: Client Roaming Example
11.3. Transport-Specific Bindings
All LWAPP transports have the following IEEE 802.11 specific
bindings:
11.3.1. Status and WLANS Field
The interpretation of this 16-bit field depends on the direction of
transmission of the packet. Refer to the figure in Section 3.1.
Status
When an LWAPP packet is transmitted from a WTP to an AC, this field
is called the Status field and indicates radio resource information
associated with the frame. When the message is an LWAPP control
message this field is transmitted as zero.
The Status field is divided into the signal strength and signal-to-
noise ratio with which an IEEE 802.11 frame was received, encoded in
the following manner:
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RSSI | SNR |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
RSSI: RSSI is a signed, 8-bit value. It is the received signal
strength indication, in dBm.
Calhoun, et al. Historic [Page 88]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
SNR: SNR is a signed, 8-bit value. It is the signal-to-noise ratio
of the received IEEE 802.11 frame, in dB.
WLANs field: When an LWAPP data message is transmitted from an AC
to a WTP, this 16-bit field indicates on which WLANs the
encapsulated IEEE 802.11 frame is to be transmitted. For unicast
packets, this field is not used by the WTP. For broadcast or
multicast packets, the WTP might require this information if it
provides encryption services.
Given that a single broadcast or multicast packet might need to be
sent to multiple wireless LANs (presumably each with a different
broadcast key), this field is defined as a bit field. A bit set
indicates a WLAN ID (see Section 11.8.1.1), which will be sent the
data. The WLANS field is encoded in the following manner:
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WLAN ID(s) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
11.4. BSSID to WLAN ID Mapping
The LWAPP protocol makes assumptions regarding the BSSIDs used on the
WTP. It is a requirement for the WTP to use a contiguous block of
BSSIDs. The WLAN Identifier field, which is managed by the AC, is
used as an offset into the BSSID list.
For instance, if a WTP had a base BSSID address of 00:01:02:00:00:00,
and the AC sent an Add WLAN message with a WLAN Identifier of 2 (see
Section 11.8.1.1), the BSSID for the specific WLAN on the WTP would
be 00:01:02:00:00:02.
The WTP communicates the maximum number of BSSIDs that it supports
during the Config Request within the IEEE 802.11 WTP WLAN Radio
Configuration message element (see Section 11.9.1).
11.5. Quality of Service
It is recommended that 802.11 MAC management be sent by both the AC
and the WTP with appropriate Quality-of-Service (QoS) values,
ensuring that congestion in the network minimizes occurrences of
packet loss. Therefore, a QoS-enabled LWAPP device should use:
802.1P: The precedence value of 6 SHOULD be used for all 802.11 MAC
management messages, except for Probe Requests, which SHOULD use
4.
Calhoun, et al. Historic [Page 89]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
DSCP: The DSCP tag value of 46 SHOULD be used for all 802.11 MAC
management messages, except for Probe Requests, which SHOULD use
34.
11.6. Data Message Bindings
There are no LWAPP data message bindings for IEEE 802.11.
11.7. Control Message Bindings
The IEEE 802.11 binding has the following control message
definitions.
11.7.1. Mobile Config Request
This section contains the 802.11-specific message elements that are
used with the Mobile Config Request.
11.7.1.1. Add Mobile
The Add Mobile Request is used by the AC to inform a WTP that it
should forward traffic from a particular mobile station. The Add
Mobile Request may also include security parameters that must be
enforced by the WTP for the particular mobile.
When the AC sends an Add Mobile Request, it includes any security
parameters that may be required. An AC that wishes to update a
mobile's policy on a WTP may do so by simply sending a new Add Mobile
message element.
When a WTP receives an Add Mobile message element, it must first
override any existing state it may have for the mobile station in
question. The latest Add Mobile overrides any previously received
messages. If the Add Mobile message element's EAP-Only bit is set,
the WTP MUST drop all 802.11 packets that do not contain EAP packets.
Note that when EAP Only is set, the Encryption Policy field MAY have
additional values, and therefore it is possible to inform a WTP to
only accept encrypted EAP packets. Once the mobile station has
successfully completed EAP authentication, the AC must send a new Add
Mobile message element to push the session key down to the WTP as
well as to remove the EAP Only restriction.
If the QoS field is set, the WTP MUST observe and provide policing of
the 802.11e priority tag to ensure that it does not exceed the value
provided by the AC.
Calhoun, et al. Historic [Page 90]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Association ID | MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address |E|C| Encryption Policy |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Encrypt Policy | Session Key... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Pairwise TSC... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Pairwise RSC... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Capabilities | WLAN ID | WME Mode |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 802.11e Mode | Qos | Supported Rates |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Supported Rates |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| VLAN Name...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 29 for Add Mobile
Length: 36
Radio ID: An 8-bit value representing the radio.
Association ID: A 16-bit value specifying the 802.11 Association
Identifier.
MAC Address: The mobile station's MAC address.
E: The 1-bit field is set by the AC to inform the WTP that it MUST
NOT accept any 802.11 data frames, other than 802.1X frames. This
is the equivalent of the WTP's 802.1X port for the mobile station
to be in the closed state. When set, the WTP MUST drop any
non-802.1X packets it receives from the mobile station.
C: The 1-bit field is set by the AC to inform the WTP that
encryption services will be provided by the AC. When set, the WTP
SHOULD police frames received from stations to ensure that they
comply to the stated encryption policy, but does not need to take
specific cryptographic action on the frame. Similarly, for
transmitted frames, the WTP only needs to forward already
encrypted frames.
Calhoun, et al. Historic [Page 91]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Encryption Policy: The policy field informs the WTP how to handle
packets from/to the mobile station. The following values are
supported:
0 - Encrypt WEP 104: All packets to/from the mobile station must
be encrypted using a standard 104-bit WEP.
1 - Clear Text: All packets to/from the mobile station do not
require any additional crypto processing by the WTP.
2 - Encrypt WEP 40: All packets to/from the mobile station must
be encrypted using a standard 40-bit WEP.
3 - Encrypt WEP 128: All packets to/from the mobile station must
be encrypted using a standard 128-bit WEP.
4 - Encrypt AES-CCMP 128: All packets to/from the mobile station
must be encrypted using a 128-bit AES-CCMP [7].
5 - Encrypt TKIP-MIC: All packets to/from the mobile station must
be encrypted using Temporal Key Integrity Protocol (TKIP) and
authenticated using Michael [16].
Session Key: A 32-octet session key the WTP is to use when
encrypting traffic to or decrypting traffic from the mobile
station. The type of key is determined based on the Encryption
Policy field.
Pairwise TSC: The TKIP Sequence Counter (TSC) to use for unicast
packets transmitted to the mobile.
Pairwise RSC: The Receive Sequence Counter (RSC) to use for unicast
packets received from the mobile.
Capabilities: A 16-bit field containing the 802.11 capabilities to
use with the mobile.
WLAN ID: An 8-bit value specifying the WLAN Identifier.
WME Mode: An 8-bit Boolean used to identify whether the station is
WME capable. A value of zero is used to indicate that the station
is not Wireless Multimedia Extension (WME) capable, while a value
of one means that the station is WME capable.
802.11e Mode: An 8-bit Boolean used to identify whether the station
is 802.11e-capable. A value of zero is used to indicate that the
station is not 802.11e-capable, while a value of one means that
the station is 802.11e-capable.
Calhoun, et al. Historic [Page 92]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
QoS: An 8-bit value specifying the QoS policy to enforce for the
station. The following values are supported: PRC: TO CHECK
0 - Silver (Best Effort)
1 - Gold (Video)
2 - Platinum (Voice)
3 - Bronze (Background)
Supported Rates: The supported rates to be used with the mobile
station.
VLAN Name: An optional variable string containing the VLAN Name on
which the WTP is to locally bridge user data. Note that this
field is only valid with Local MAC WTPs.
11.7.1.2. IEEE 802.11 Mobile Session Key
The Mobile Session Key Payload message element is sent when the AC
determines that encryption of a mobile station must be performed in
the WTP. This message element MUST NOT be present without the Add
Mobile message element, and MUST NOT be sent if the WTP had not
specifically advertised support for the requested encryption scheme
(see Section 11.7.1.1).
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address | Encryption Policy |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Encryption Policy | Session Key... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 105 for IEEE 802.11 Mobile Session Key
Length: >= 11
MAC Address: The mobile station's MAC address.
Encryption Policy: The policy field informs the WTP how to handle
packets from/to the mobile station. The following values are
supported:
Calhoun, et al. Historic [Page 93]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
0 - Encrypt WEP 104: All packets to/from the mobile station must
be encrypted using a standard 104-bit WEP.
1 - Clear Text: All packets to/from the mobile station do not
require any additional crypto processing by the WTP.
2 - Encrypt WEP 40: All packets to/from the mobile station must
be encrypted using a standard 40-bit WEP.
3 - Encrypt WEP 128: All packets to/from the mobile station must
be encrypted using a standard 128-bit WEP.
4 - Encrypt AES-CCMP 128: All packets to/from the mobile station
must be encrypted using a 128-bit AES-CCMP [7].
5 - Encrypt TKIP-MIC: All packets to/from the mobile station must
be encrypted using TKIP and authenticated using Michael [16].
Session Key: The session key the WTP is to use when encrypting
traffic to/from the mobile station.
11.7.1.3. Station QoS Profile
The Station QoS Profile Payload message element contains the maximum
802.11e priority tag that may be used by the station. Any packets
received that exceed the value encoded in this message element must
either be dropped or tagged using the maximum value permitted to the
user. The priority tag must be between zero (0) and seven (7).
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address | 802.1P Precedence Tag |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 140 for IEEE 802.11 Station QoS Profile
Length: 12
MAC Address: The mobile station's MAC address.
802.1P Precedence Tag: The maximum 802.1P precedence value that the
WTP will allow in the Traffic Identifier (TID) field in the
extended 802.11e QoS Data header.
Calhoun, et al. Historic [Page 94]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
11.7.1.4. IEEE 802.11 Update Mobile QoS
The Update Mobile QoS message element is used to change the Quality-
of-Service policy on the WTP for a given mobile station.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Association ID | MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address | QoS Profile | Vlan Identifier |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| DSCP Tag | 802.1P Tag |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 106 for IEEE 802.11 Update Mobile QoS
Length: 14
Radio ID: The Radio Identifier, typically refers to some interface
index on the WTP.
Association ID: The 802.11 Association Identifier.
MAC Address: The mobile station's MAC address.
QoS Profile: An 8-bit value specifying the QoS policy to enforce
for the station. The following values are supported:
0 - Silver (Best Effort)
1 - Gold (Video)
2 - Platinum (Voice)
3 - Bronze (Background)
VLAN Identifier: PRC.
DSCP Tag: The DSCP label to use if packets are to be DSCP tagged.
802.1P Tag: The 802.1P precedence value to use if packets are to be
802.1P-tagged.
Calhoun, et al. Historic [Page 95]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
11.7.2. WTP Event Request
This section contains the 802.11-specific message elements that are
used with the WTP Event Request message.
11.7.2.1. IEEE 802.11 Statistics
The Statistics message element is sent by the WTP to transmit its
current statistics. The value contains the following fields:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Tx Fragment Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Tx Fragment Cnt| Multicast Tx Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Mcast Tx Cnt | Failed Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Failed Count | Retry Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Retry Count | Multiple Retry Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Multi Retry Cnt| Frame Duplicate Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Frame Dup Cnt | RTS Success Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|RTS Success Cnt| RTS Failure Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|RTS Failure Cnt| ACK Failure Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|ACK Failure Cnt| Rx Fragment Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Rx Fragment Cnt| Multicast RX Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Mcast Rx Cnt | FCS Error Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| FCS Error Cnt| Tx Frame Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Tx Frame Cnt | Decryption Errors |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Decryption Errs|
+-+-+-+-+-+-+-+-+
Type: 38 for Statistics
Length: 57
Calhoun, et al. Historic [Page 96]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Radio ID: An 8-bit value representing the radio.
Tx Fragment Count: A 32-bit value representing the number of
fragmented frames transmitted.
Multicast Tx Count: A 32-bit value representing the number of
multicast frames transmitted.
Failed Count: A 32-bit value representing the transmit excessive
retries.
Retry Count: A 32-bit value representing the number of transmit
retries.
Multiple Retry Count: A 32-bit value representing the number of
transmits that required more than one retry.
Frame Duplicate Count: A 32-bit value representing the duplicate
frames received.
RTS Success Count: A 32-bit value representing the number of
successfully transmitted Ready To Send (RTS).
RTS Failure Count: A 32-bit value representing the failed
transmitted RTS.
ACK Failure Count: A 32-bit value representing the number of failed
acknowledgements.
Rx Fragment Count: A 32-bit value representing the number of
fragmented frames received.
Multicast RX Count: A 32-bit value representing the number of
multicast frames received.
FCS Error Count: A 32-bit value representing the number of Frame
Check Sequence (FCS) failures.
Decryption Errors: A 32-bit value representing the number of
Decryption errors that occurred on the WTP. Note that this field
is only valid in cases where the WTP provides encryption/
decryption services.
11.8. 802.11 Control Messages
This section will define LWAPP control messages that are specific to
the IEEE 802.11 binding.
Calhoun, et al. Historic [Page 97]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
11.8.1. IEEE 802.11 WLAN Config Request
The IEEE 802.11 WLAN Configuration Request is sent by the AC to the
WTP in order to change services provided by the WTP. This control
message is used to either create, update, or delete a WLAN on the
WTP.
The IEEE 802.11 WLAN Configuration Request is sent as a result of
either some manual administrative process (e.g., deleting a WLAN), or
automatically to create a WLAN on a WTP. When sent automatically to
create a WLAN, this control message is sent after the LWAPP
Configuration Request message has been received by the WTP.
Upon receiving this control message, the WTP will modify the
necessary services, and transmit an IEEE 802.11 WLAN Configuration
Response.
An WTP MAY provide service for more than one WLAN: therefore, every
WLAN is identified through a numerical index. For instance, a WTP
that is capable of supporting up to 16 SSIDs could accept up to 16
IEEE 802.11 WLAN Configuration Request messages that include the Add
WLAN message element.
Since the index is the primary identifier for a WLAN, an AC SHOULD
attempt to ensure that the same WLAN is identified through the same
index number on all of its WTPs. An AC that does not follow this
approach MUST find some other means of maintaining a WLAN Identifier
to SSID mapping table.
The following subsections define the message elements that are of
value for this LWAPP operation. Only one message MUST be present.
11.8.1.1. IEEE 802.11 Add WLAN
The Add WLAN message element is used by the AC to define a wireless
LAN on the WTP. The value contains the following format:
Calhoun, et al. Historic [Page 98]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | WLAN Capability | WLAN ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Encryption Policy |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Key ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Key Index | Shared Key | WPA Data Len |WPA IE Data ...|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RSN Data Len |RSN IE Data ...| Reserved .... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WME Data Len |WME IE Data ...| 11e Data Len |11e IE Data ...|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| QoS | Auth Type |Broadcast SSID | Reserved... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SSID ... |
+-+-+-+-+-+-+-+-+
Type: 7 for IEEE 802.11 Add WLAN
Length: >= 298
Radio ID: An 8-bit value representing the radio.
WLAN Capability: A 16-bit value containing the capabilities to be
advertised by the WTP within the Probe and Beacon messages.
WLAN ID: A 16-bit value specifying the WLAN Identifier.
Encryption Policy: A 32-bit value specifying the encryption scheme
to apply to traffic to and from the mobile station.
The following values are supported:
0 - Encrypt WEP 104: All packets to/from the mobile station must
be encrypted using a standard 104-bit WEP.
1 - Clear Text: All packets to/from the mobile station do not
require any additional crypto processing by the WTP.
2 - Encrypt WEP 40: All packets to/from the mobile station must
be encrypted using a standard 40-bit WEP.
3 - Encrypt WEP 128: All packets to/from the mobile station must
be encrypted using a standard 128-bit WEP.
Calhoun, et al. Historic [Page 99]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
4 - Encrypt AES-CCMP 128: All packets to/from the mobile station
must be encrypted using a 128-bit AES-CCMP [7].
5 - Encrypt TKIP-MIC: All packets to/from the mobile station must
be encrypted using TKIP and authenticated using Michael [16].
6 - Encrypt CKIP: All packets to/from the mobile station must be
encrypted using Cisco TKIP.
Key: A 32-byte session key to use with the encryption policy.
Key-Index: The Key Index associated with the key.
Shared Key: A 1-byte Boolean that specifies whether the key
included in the Key field is a shared WEP key. A value of zero is
used to state that the key is not a shared WEP key, while a value
of one is used to state that the key is a shared WEP key.
WPA Data Len: Length of the WPA Information Element (IE).
WPA IE: A 32-byte field containing the WPA Information Element.
RSN Data Len: Length of the Robust Security Network (RSN) IE.
RSN IE: A 64-byte field containing the RSN Information Element.
Reserved: A 49-byte reserved field, which MUST be set to zero (0).
WME Data Len: Length of the WME IE.
WME IE: A 32-byte field containing the WME Information Element.
DOT11E Data Len: Length of the 802.11e IE.
DOT11E IE: A 32-byte field containing the 802.11e Information
Element.
QOS: An 8-bit value specifying the QoS policy to enforce for the
station.
The following values are supported:
0 - Silver (Best Effort)
1 - Gold (Video)
2 - Platinum (Voice)
Calhoun, et al. Historic [Page 100]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
3 - Bronze (Background)
Auth Type: An 8-bit value specifying the station's authentication
type.
The following values are supported:
0 - Open System
1 - WEP Shared Key
2 - WPA/WPA2 802.1X
3 - WPA/WPA2 PSK
Broadcast SSID: A Boolean indicating whether the SSID is to be
broadcast by the WTP. A value of zero disables SSID broadcast,
while a value of one enables it.
Reserved: A 40-byte reserved field.
SSID: The SSID attribute is the service set identifier that will be
advertised by the WTP for this WLAN.
11.8.1.2. IEEE 802.11 Delete WLAN
The Delete WLAN message element is used to inform the WTP that a
previously created WLAN is to be deleted. The value contains the
following fields:
0 1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | WLAN ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 28 for IEEE 802.11 Delete WLAN
Length: 3
Radio ID: An 8-bit value representing the radio
WLAN ID: A 16-bit value specifying the WLAN Identifier
11.8.1.3. IEEE 802.11 Update WLAN
The Update WLAN message element is used by the AC to define a
wireless LAN on the WTP. The value contains the following format:
Calhoun, et al. Historic [Page 101]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | WLAN ID |Encrypt Policy |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Encryption Policy | Key... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Key ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Key Index | Shared Key | WLAN Capability |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 34 for IEEE 802.11 Update WLAN
Length: 43
Radio ID: An 8-bit value representing the radio.
WLAN ID: A 16-bit value specifying the WLAN Identifier.
Encryption Policy: A 32-bit value specifying the encryption scheme
to apply to traffic to and from the mobile station.
The following values are supported:
0 - Encrypt WEP 104: All packets to/from the mobile station must
be encrypted using a standard 104-bit WEP.
1 - Clear Text: All packets to/from the mobile station do not
require any additional crypto processing by the WTP.
2 - Encrypt WEP 40: All packets to/from the mobile station must
be encrypted using a standard 40-bit WEP.
3 - Encrypt WEP 128: All packets to/from the mobile station must
be encrypted using a standard 128-bit WEP.
4 - Encrypt AES-CCMP 128: All packets to/from the mobile station
must be encrypted using a 128-bit AES-CCMP [7].
5 - Encrypt TKIP-MIC: All packets to/from the mobile station must
be encrypted using TKIP and authenticated using Michael [16].
6 - Encrypt CKIP: All packets to/from the mobile station must be
encrypted using Cisco TKIP.
Key: A 32-byte session key to use with the encryption policy.
Calhoun, et al. Historic [Page 102]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Key-Index: The Key Index associated with the key.
Shared Key: A 1-byte Boolean that specifies whether the key
included in the Key field is a shared WEP key. A value of zero
means that the key is not a shared WEP key, while a value of one
is used to state that the key is a shared WEP key.
WLAN Capability: A 16-bit value containing the capabilities to be
advertised by the WTP within the Probe and Beacon messages.
11.8.2. IEEE 802.11 WLAN Config Response
The IEEE 802.11 WLAN Configuration Response is sent by the WTP to the
AC as an acknowledgement of the receipt of an IEEE 802.11 WLAN
Configuration Request.
This LWAPP control message does not include any message elements.
11.8.3. IEEE 802.11 WTP Event
The IEEE 802.11 WTP Event LWAPP message is used by the WTP in order
to report asynchronous events to the AC. There is no reply message
expected from the AC, except that the message is acknowledged via the
reliable transport.
When the AC receives the IEEE 802.11 WTP Event, it will take whatever
action is necessary, depending upon the message elements present in
the message.
The IEEE 802.11 WTP Event message MUST contain one of the following
message elements described in the next subsections.
11.8.3.1. IEEE 802.11 MIC Countermeasures
The MIC Countermeasures message element is sent by the WTP to the AC
to indicate the occurrence of a MIC failure.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | WLAN ID | MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 61 for IEEE 802.11 MIC Countermeasures
Length: 8
Calhoun, et al. Historic [Page 103]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Radio ID: The Radio Identifier, typically refers to some interface
index on the WTP.
WLAN ID: This 8-bit unsigned integer includes the WLAN Identifier,
on which the MIC failure occurred.
MAC Address: The MAC address of the mobile station that caused the
MIC failure.
11.8.3.2. IEEE 802.11 WTP Radio Fail Alarm Indication
The WTP Radio Fail Alarm Indication message element is sent by the
WTP to the AC when it detects a radio failure.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Type | Status | Pad |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 95 for WTP Radio Fail Alarm Indication
Length: 4
Radio ID: The Radio Identifier, typically refers to some interface
index on the WTP.
Type: The type of radio failure detected. The following values are
supported:
1 - Receiver
2 - Transmitter
Status: An 8-bit Boolean indicating whether the radio failure is
being reported or cleared. A value of zero is used to clear the
event, while a value of one is used to report the event.
Pad: Reserved field MUST be set to zero (0).
Calhoun, et al. Historic [Page 104]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
11.9. Message Element Bindings
The IEEE 802.11 Message Element binding has the following
definitions:
Conf Conf Conf Add
Req Resp Upd Mobile
IEEE 802.11 WTP WLAN Radio Configuration X X X
IEEE 802.11 Rate Set X X
IEEE 802.11 Multi-domain Capability X X X
IEEE 802.11 MAC Operation X X X
IEEE 802.11 Tx Power X X X
IEEE 802.11 Tx Power Level X
IEEE 802.11 Direct Sequence Control X X X
IEEE 802.11 OFDM Control X X X
IEEE 802.11 Supported Rates X X
IEEE 802.11 Antenna X X X
IEEE 802.11 CFP Status X X
IEEE 802.11 Broadcast Probe Mode X X
IEEE 802.11 WTP Mode and Type X? X
IEEE 802.11 WTP Quality of Service X X
IEEE 802.11 MIC Error Report From Mobile X
IEEE 802.11 Update Mobile QoS X
IEEE 802.11 Mobile Session Key X
11.9.1. IEEE 802.11 WTP WLAN Radio Configuration
The WTP WLAN radio configuration is used by the AC to configure a
Radio on the WTP. The message element value contains the following
Fields:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Reserved | Occupancy Limit |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| CFP Per | CFP Maximum Duration | BSS ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| BSS ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| BSS ID | Beacon Period | DTIM Per |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Country String |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Num Of BSSIDs |
+-+-+-+-+-+-+-+-+
Calhoun, et al. Historic [Page 105]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Type: 8 for IEEE 802.11 WTP WLAN Radio Configuration
Length: 20
Radio ID: An 8-bit value representing the radio to configure.
Reserved: MUST be set to zero
Occupancy Limit: This attribute indicates the maximum amount of
time, in Time Units (TUs), that a point coordinator MAY control
the usage of the wireless medium without relinquishing control for
long enough to allow at least one instance of Distributed
Coordination Function (DCF) access to the medium. The default
value of this attribute SHOULD be 100, and the maximum value
SHOULD be 1000.
CFP Period: The attribute describes the number of DTIM intervals
between the start of Contention-Free Periods (CFPs).
CFP Maximum Duration: The attribute describes the maximum duration
of the CFP in TU that MAY be generated by the Point Coordination
Function (PCF).
BSSID: The WLAN Radio's base MAC address. For WTPs that support
more than a single WLAN, the value of the WLAN Identifier is added
to the last octet of the BSSID. Therefore, a WTP that supports 16
WLANs MUST have 16 MAC addresses reserved for it, and the last
nibble is used to represent the WLAN ID.
Beacon Period: This attribute specifies the number of TUs that a
station uses for scheduling Beacon transmissions. This value is
transmitted in Beacon and Probe Response frames.
DTIM Period: This attribute specifies the number of Beacon
intervals that elapses between transmission of Beacons frames
containing a TIM element whose DTIM Count field is 0. This value
is transmitted in the DTIM Period field of Beacon frames.
Country Code: This attribute identifies the country in which the
station is operating. The first two octets of this string is the
two-character country code as described in document ISO/IEC 3166-
1. The third octet MUST be one of the following:
1. an ASCII space character, if the regulations under which the
station is operating encompass all environments in the country,
2. an ASCII 'O' character, if the regulations under which the station
is operating are for an outdoor environment only, or
Calhoun, et al. Historic [Page 106]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
3. an ASCII 'I' character, if the regulations under which the station
is operating are for an indoor environment only.
Number of BSSIDs: This attribute contains the maximum number of
BSSIDs supported by the WTP. This value restricts the number of
logical networks supported by the WTP.
11.9.2. IEEE 802.11 Rate Set
The Rate Set message element value is sent by the AC and contains the
supported operational rates. It contains the following fields:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Rate Set |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 16 for IEEE 802.11 Rate Set
Length: 4
Radio ID: An 8-bit value representing the radio to configure.
Rate Set: The AC generates the Rate Set that the WTP is to include
in its Beacon and Probe messages.
11.9.3. IEEE 802.11 Multi-Domain Capability
The Multi-Domain Capability message element is used by the AC to
inform the WTP of regulatory limits. The value contains the
following fields:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Reserved | First Channel # |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Number of Channels | Max Tx Power Level |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 10 for IEEE 802.11 Multi-Domain Capability
Length: 8
Radio ID: An 8-bit value representing the radio to configure.
Reserved: MUST be set to zero
Calhoun, et al. Historic [Page 107]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
First Channel #: This attribute indicates the value of the lowest
channel number in the subband for the associated domain country
string.
Number of Channels: This attribute indicates the value of the total
number of channels allowed in the subband for the associated
domain country string.
Max Tx Power Level: This attribute indicates the maximum transmit
power, in dBm, allowed in the subband for the associated domain
country string.
11.9.4. IEEE 802.11 MAC Operation
The MAC Operation message element is sent by the AC to set the 802.11
MAC parameters on the WTP. The value contains the following fields:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Reserved | RTS Threshold |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Short Retry | Long Retry | Fragmentation Threshold |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Tx MSDU Lifetime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Rx MSDU Lifetime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 11 for IEEE 802.11 MAC Operation
Length: 16
Radio ID: An 8-bit value representing the radio to configure.
Reserved: MUST be set to zero
RTS Threshold: This attribute indicates the number of octets in a
Management Protocol Data Unit (MPDU), below which an RTS/CTS
(clear to send) handshake MUST NOT be performed. An RTS/CTS
handshake MUST be performed at the beginning of any frame exchange
sequence where the MPDU is of type Data or Management, the MPDU
has an individual address in the Address1 field, and the length of
the MPDU is greater than this threshold. Setting this attribute
to be larger than the maximum MAC Service Data Unit (MSDU) size
MUST have the effect of turning off the RTS/CTS handshake for
frames of Data or Management type transmitted by this Station
(STA). Setting this attribute to zero MUST have the effect of
Calhoun, et al. Historic [Page 108]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
turning on the RTS/CTS handshake for all frames of Data or
Management type transmitted by this STA. The default value of
this attribute MUST be 2347.
Short Retry: This attribute indicates the maximum number of
transmission attempts of a frame, the length of which is less than
or equal to RTSThreshold, that MUST be made before a failure
condition is indicated. The default value of this attribute MUST
be 7.
Long Retry: This attribute indicates the maximum number of
transmission attempts of a frame, the length of which is greater
than dot11RTSThreshold, that MUST be made before a failure
condition is indicated. The default value of this attribute MUST
be 4.
Fragmentation Threshold: This attribute specifies the current
maximum size, in octets, of the MPDU that MAY be delivered to the
PHY. An MSDU MUST be broken into fragments if its size exceeds
the value of this attribute after adding MAC headers and trailers.
An MSDU or MAC Management Protocol Data Unit (MMPDU) MUST be
fragmented when the resulting frame has an individual address in
the Address1 field, and the length of the frame is larger than
this threshold. The default value for this attribute MUST be the
lesser of 2346 or the aMPDUMaxLength of the attached PHY and MUST
never exceed the lesser of 2346 or the aMPDUMaxLength of the
attached PHY. The value of this attribute MUST never be less than
256.
Tx MSDU Lifetime: This attribute specifies the elapsed time in TU,
after the initial transmission of an MSDU, after which, further
attempts to transmit the MSDU MUST be terminated. The default
value of this attribute MUST be 512.
Rx MSDU Lifetime: This attribute specifies the elapsed time, in TU,
after the initial reception of a fragmented MMPDU or MSDU, after
which, further attempts to reassemble the MMPDU or MSDU MUST be
terminated. The default value MUST be 512.
11.9.5. IEEE 802.11 Tx Power
The Tx Power message element value is bi-directional. When sent by
the WTP, it contains the current power level of the radio in
question. When sent by the AC, it contains the power level to which
the WTP MUST adhere:
Calhoun, et al. Historic [Page 109]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Reserved | Current Tx Power |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 12 for IEEE 802.11 Tx Power
Length: 4
Radio ID: An 8-bit value representing the radio to configure.
Reserved: MUST be set to zero
Current Tx Power: This attribute contains the transmit output power
in mW.
11.9.6. IEEE 802.11 Tx Power Level
The Tx Power Level message element is sent by the WTP and contains
the different power levels supported. The value contains the
following fields:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Num Levels | Power Level [n] |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 13 for IEEE 802.11 Tx Power Level
Length: >= 4
Radio ID: An 8-bit value representing the radio to configure.
Num Levels: The number of power level attributes.
Power Level: Each power level fields contains a supported power
level, in mW.
11.9.7. IEEE 802.11 Direct Sequence Control
The Direct Sequence Control message element is a bi-directional
element. When sent by the WTP, it contains the current state. When
sent by the AC, the WTP MUST adhere to the values. This element is
only used for 802.11b radios. The value has the following fields.
Calhoun, et al. Historic [Page 110]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Reserved | Current Chan | Current CCA |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Energy Detect Threshold |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 14 for IEEE 802.11 Direct Sequence Control
Length: 8
Radio ID: An 8-bit value representing the radio to configure.
Reserved: MUST be set to zero
Current Channel: This attribute contains the current operating
frequency channel of the Direct Sequence Spread Spectrum (DSSS)
PHY.
Current CCA: The current Controlled Channel Access (CCA) method in
operation. Valid values are:
1 - energy detect only (edonly)
2 - carrier sense only (csonly)
4 - carrier sense and energy detect (edandcs)
8 - carrier sense with timer (cswithtimer)
16 - high-rate carrier sense and energy detect (hrcsanded)
Energy Detect Threshold: The current Energy Detect Threshold being
used by the DSSS PHY.
11.9.8. IEEE 802.11 OFDM Control
The Orthogonal Frequency Division Multiplexing (OFDM) Control message
element is a bi-directional element. When sent by the WTP, it
contains the current state. When sent by the AC, the WTP MUST adhere
to the values. This element is only used for 802.11a radios. The
value contains the following fields:
Calhoun, et al. Historic [Page 111]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Reserved | Current Chan | Band Support |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TI Threshold |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 15 for IEEE 802.11 OFDM Control
Length: 8
Radio ID: An 8-bit value representing the radio to configure.
Reserved: MUST be set to zero
Current Channel: This attribute contains the current operating
frequency channel of the OFDM PHY.
Band Supported: The capability of the OFDM PHY implementation to
operate in the three U-NII bands. Coded as an integer value of a
3-bit field as follows:
Bit 0 - capable of operating in the lower (5.15-5.25 GHz) U-NII
band
Bit 1 - capable of operating in the middle (5.25-5.35 GHz) U-NII
band
Bit 2 - capable of operating in the upper (5.725-5.825 GHz) U-NII
band
For example, for an implementation capable of operating in the
lower and mid bands, this attribute would take the value.
TI Threshold: The threshold being used to detect a busy medium
(frequency). CCA MUST report a busy medium upon detecting the
RSSI above this threshold.
11.9.9. IEEE 802.11 Antenna
The Antenna message element is communicated by the WTP to the AC to
provide information on the antennas available. The AC MAY use this
element to reconfigure the WTP's antennas. The value contains the
following fields:
Calhoun, et al. Historic [Page 112]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Diversity | Combiner | Antenna Cnt |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Antenna Selection [0..N] |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 41 for IEEE 802.11 Antenna
Length: >= 8
Radio ID: An 8-bit value representing the radio to configure.
Diversity: An 8-bit value specifying whether the antenna is to
provide receive diversity. The following values are supported:
0 - Disabled
1 - Enabled (may only be true if the antenna can be used as a
receive antenna)
Combiner: An 8-bit value specifying the combiner selection. The
following values are supported:
1 - Sectorized (Left)
2 - Sectorized (Right)
3 - Omni
4 - Mimo
Antenna Count: An 8-bit value specifying the number of Antenna
Selection fields.
Antenna Selection: One 8-bit antenna configuration value per
antenna in the WTP. The following values are supported:
1 - Internal Antenna
2 - External Antenna
11.9.10. IEEE 802.11 Supported Rates
The Supported Rates message element is sent by the WTP to indicate
the rates that it supports. The value contains the following fields:
Calhoun, et al. Historic [Page 113]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Supported Rates |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 16 for IEEE 802.11 Supported Rates
Length: 4
Radio ID: An 8-bit value representing the radio.
Supported Rates: The WTP includes the Supported Rates that its
hardware supports. The format is identical to the Rate Set
message element.
11.9.11. IEEE 802.11 CFP Status
The CFP Status message element is sent to provide the CF Polling
configuration.
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Status |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 48 for IEEE 802.11 CFP Status
Length: 2
Radio ID: The Radio Identifier, typically refers to some interface
index on the WTP.
Status: An 8-bit Boolean containing the status of the CF Polling
feature. A value of zero disables CFP Status, while a value of
one enables it.
11.9.12. IEEE 802.11 WTP Mode and Type
The WTP Mode and Type message element is used to configure a WTP to
operate in a specific mode.
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Mode | Type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Calhoun, et al. Historic [Page 114]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Type: 54 for IEEE 802.11 WTP Mode and Type
Length: 2
Mode: An 8-bit value describing the type of information being sent.
The following values are supported:
0 - Split MAC
2 - Local MAC
Type: The type field is not currently used.
11.9.13. IEEE 802.11 Broadcast Probe Mode
The Broadcast Probe Mode message element indicates whether a WTP will
respond to NULL SSID Probe requests. Since broadcast NULL Probes are
not sent to a specific BSSID, the WTP cannot know which SSID the
sending station is querying. Therefore, this behavior must be global
to the WTP.
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| Status |
+-+-+-+-+-+-+-+-+
Type: 51 for IEEE 802.11 Broadcast Probe Mode
Length: 1
Status: An 8-bit Boolean indicating the status of whether a WTP
shall respond to a NULL SSID Probe request. A value of zero
disables the NULL SSID Probe response, while a value of one
enables it.
11.9.14. IEEE 802.11 WTP Quality of Service
The WTP Quality of Service message element value is sent by the AC to
the WTP to communicate quality-of-service configuration information.
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Tag Packets |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 57 for IEEE 802.11 WTP Quality of Service
Calhoun, et al. Historic [Page 115]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Length: 12
Radio ID: The Radio Identifier, typically refers to some interface
index on the WTP.
Tag Packets: A value indicating whether LWAPP packets should be
tagged for QoS purposes. The following values are currently
supported:
0 - Untagged
1 - 802.1P
2 - DSCP
Immediately following the above header is the following data
structure. This data structure will be repeated five times, once
for every QoS profile. The order of the QoS profiles is Uranium,
Platinum, Gold, Silver, and Bronze.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Queue Depth | CWMin | CWMax |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| CWMax | AIFS | CBR |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Dot1P Tag | DSCP Tag |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Queue Depth: The number of packets that can be on the specific QoS
transmit queue at any given time.
CWMin: The Contention Window minimum value for the QoS transmit
queue.
CWMax: The Contention Window maximum value for the QoS transmit
queue.
AIFS: The Arbitration Inter Frame Spacing to use for the QoS
transmit queue.
CBR: The Constant Bit Rate (CBR) value to observe for the QoS
transmit queue.
Dot1P Tag: The 802.1P precedence value to use if packets are to be
802.1P tagged.
Calhoun, et al. Historic [Page 116]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
DSCP Tag: The DSCP label to use if packets are to be DSCP tagged.
11.9.15. IEEE 802.11 MIC Error Report From Mobile
The MIC Error Report From Mobile message element is sent by an AC to
a WTP when it receives a MIC failure notification via the Error bit
in the EAP over LAN (EAPOL)-Key frame.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Client MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Client MAC Address | BSSID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| BSSID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | WLAN ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 79 for IEEE 802.11 MIC Error Report From Mobile
Length: 14
Client MAC Address: The Client MAC address of the station reporting
the MIC failure.
BSSID: The BSSID on which the MIC failure is being reported.
Radio ID: The Radio Identifier, typically refers to some interface
index on the WTP.
WLAN ID: The WLAN ID on which the MIC failure is being reported.
11.10. IEEE 802.11 Message Element Values
This section lists IEEE 802.11-specific values for any generic LWAPP
message elements that include fields whose values are technology-
specific.
IEEE 802.11 uses the following values:
4 - Encrypt AES-CCMP 128: WTP supports AES-CCMP, as defined in [7].
5 - Encrypt TKIP-MIC: WTP supports TKIP and Michael, as defined in
[16].
Calhoun, et al. Historic [Page 117]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
12. LWAPP Protocol Timers
A WTP or AC that implements LWAPP discovery MUST implement the
following timers.
12.1. MaxDiscoveryInterval
The maximum time allowed between sending Discovery Requests from the
interface, in seconds. Must be no less than 2 seconds and no greater
than 180 seconds.
Default: 20 seconds.
12.2. SilentInterval
The minimum time, in seconds, a WTP MUST wait after failing to
receive any responses to its Discovery Requests, before it MAY again
send Discovery Requests.
Default: 30
12.3. NeighborDeadInterval
The minimum time, in seconds, a WTP MUST wait without having received
Echo Responses to its Echo Requests, before the destination for the
Echo Request may be considered dead. Must be no less than
2*EchoInterval seconds and no greater than 240 seconds.
Default: 60
12.4. EchoInterval
The minimum time, in seconds, between sending Echo Requests to the AC
with which the WTP has joined.
Default: 30
12.5. DiscoveryInterval
The minimum time, in seconds, that a WTP MUST wait after receiving a
Discovery Response, before sending a Join Request.
Default: 5
Calhoun, et al. Historic [Page 118]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
12.6. RetransmitInterval
The minimum time, in seconds, that a non-acknowledged LWAPP packet
will be retransmitted.
Default: 3
12.7. ResponseTimeout
The minimum time, in seconds, in which an LWAPP Request message must
be responded to.
Default: 1
12.8. KeyLifetime
The maximum time, in seconds, that an LWAPP session key is valid.
Default: 28800
13. LWAPP Protocol Variables
A WTP or AC that implements LWAPP discovery MUST allow for the
following variables to be configured by system management; default
values are specified so as to make it unnecessary to configure any of
these variables in many cases.
13.1. MaxDiscoveries
The maximum number of Discovery Requests that will be sent after a
WTP boots.
Default: 10
13.2. DiscoveryCount
The number of discoveries transmitted by a WTP to a single AC. This
is a monotonically increasing counter.
13.3. RetransmitCount
The number of retransmissions for a given LWAPP packet. This is a
monotonically increasing counter.
Calhoun, et al. Historic [Page 119]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
13.4. MaxRetransmit
The maximum number of retransmissions for a given LWAPP packet before
the link layer considers the peer dead.
Default: 5
14. NAT Considerations
There are two specific situations where a NAT system may be used in
conjunction with LWAPP. The first consists of a configuration where
the WTP is behind a NAT system. Given that all communication is
initiated by the WTP, and all communication is performed over IP
using a single UDP port, the protocol easily traverses NAT systems in
this configuration.
The second configuration is one where the AC sits behind a NAT, and
there are two main issues that exist in this situation. First, an AC
communicates its interfaces and associated WTP load on these
interfaces, through the WTP Manager Control IP Address. This message
element is currently mandatory, and if NAT compliance became an
issue, it would be possible to either:
1. make the WTP Manager Control IP Address optional, allowing the WTP
to simply use the known IP address. However, note that this
approach would eliminate the ability to perform load balancing of
WTP across ACs, and therefore is not the recommended approach.
2. allow an AC to be able to configure a NAT'ed address for every
associated AC that would generally be communicated in the WTP
Manager Control IP Address message element.
3. require that if a WTP determines that the AC List message element
consists of a set of IP addresses that are different from the AC's
IP address it is currently communicating with, then assume that
NAT is being enforced, and require that the WTP communicate with
the original AC's IP address (and ignore the WTP Manager Control
IP Address message element(s)).
Another issue related to having an AC behind a NAT system is LWAPP's
support for the CAPWAP Objective to allow the control and data plane
to be separated. In order to support this requirement, the LWAPP
protocol defines the WTP Manager Data IP Address message element,
which allows the AC to inform the WTP that the LWAPP data frames are
to be forwarded to a separate IP address. This feature MUST be
disabled when an AC is behind a NAT. However, there is no easy way
to provide some default mechanism that satisfies both the data/
Calhoun, et al. Historic [Page 120]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
control separation and NAT objectives, as they directly conflict with
each other. As a consequence, user intervention will be required to
support such networks.
LWAPP has a feature that allows for all of the AC's identities
supporting a group of WTPs to be communicated through the AC List
message element. This feature must be disabled when the AC is behind
a NAT and the IP address that is embedded would be invalid.
The LWAPP protocol has a feature that allows an AC to configure a
static IP address on a WTP. The WTP Static IP Address Information
message element provides such a function; however, this feature
SHOULD NOT be used in NAT'ed environments, unless the administrator
is familiar with the internal IP addressing scheme within the WTP's
private network, and does not rely on the public address seen by the
AC.
When a WTP detects the duplicate address condition, it generates a
message to the AC, which includes the Duplicate IP Address message
element. Once again, it is important to note that the IP address
embedded within this message element would be different from the
public IP address seen by the AC.
15. Security Considerations
LWAPP uses either an authenticated key exchange or key agreement
mechanism to ensure peer authenticity and establish fresh session
keys to protect the LWAPP communications.
The LWAPP protocol defines a join phase, which allows a WTP to bind a
session with an AC. During this process, a session key is mutually
derived, and secured either through an X.509 certificate or a pre-
shared key. The resulting key exchange generates an encryption
session key, which is used to encrypt the LWAPP control packets, and
a key derivation key.
During the established secure communication, the WTP and AC may rekey
using the key update process, which is identical to the join phase,
meaning the session keys are mutually derived. However, the exchange
described for pre-shared session keys is always used for the key
update, with the pre-shared key set to the derivation key created
either during the join, or the last key update if one has occurred.
The key update results in a new derivation key, which is used in the
next key update, as well as an encryption session key to encrypt the
LWAPP control packets.
Calhoun, et al. Historic [Page 121]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Replay protection of the Join Request is handled through an exchange
of nonces during the join (or key update) phase. The Join Request
includes an XNonce, which is included in the AC's authenticated Join
Reply's encrypted ANonce message element, allowing for the two
messages to be bound. Upon receipt of the Join Reply, the WTP
generates the WNonce, and generates a set of session keys using a KDF
function. One of these keys is used to MIC the Join ACK. The AC
responds with a Join Confirm, which must also include a MIC, and
therefore be capable of deriving the same set of session keys.
In both the X.509 certificate and pre-shared key modes, an
initialization vector is created through the above mentioned KDF
function. The IV and the KDF created encryption key are used to
encrypt the LWAPP control frames.
Given that authentication in the Join exchange does not occur until
the WTP transmits the Join ACK message, it is crucial that an AC not
delete any state for a WTP it is servicing until an authentication
Join ACK has been received. Otherwise, a potential Denial-of-Service
attack exists, whereby sending a spoofed Join Request for a valid WTP
would cause the AC to reset the WTP's connection.
It is important to note that Perfect Forward Secrecy is not a
requirement for the LWAPP protocol.
Note that the LWAPP protocol does not add any new vulnerabilities to
802.11 infrastructure that makes use of WEP for encryption purposes.
However, implementors SHOULD discourage the use of WEP to allow the
market to move towards technically sound cryptographic solutions,
such as 802.11i.
15.1. Certificate-Based Session Key Establishment
LWAPP uses public key cryptography to ensure trust between the WTP
and the AC. One question that periodically arises is why the Join
Request is not signed. Signing this request would not be optimal for
the following reasons:
1. The Join Request is replayable, so a signature doesn't provide
much protection unless the switches keep track of all previous
Join Requests from a given WTP.
2. Replay detection is handled during the Join Reply and Join ACK
messages.
3. A signed Join Request provides a potential Denial-of-Service
attack on the AC, which would have to authenticate each
(potentially malicious) message.
Calhoun, et al. Historic [Page 122]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
The WTP-Certificate that is included in the Join Request MUST be
validated by the AC. It is also good practice that the AC perform
some form of authorization, ensuring that the WTP in question is
allowed to establish an LWAPP session with it.
15.2. PSK-Based Session Key Establishment
Use of a fixed shared secret of limited entropy (for example, a PSK
that is relatively short, or was chosen by a human and thus may
contain less entropy than its length would imply) may allow an
attacker to perform a brute-force or dictionary attack to recover the
secret.
It is RECOMMENDED that implementations that allow the administrator
to manually configure the PSK also provide a functionality for
generating a new random PSK, taking RFC 1750 [4] into account.
Since the key generation does not expose the nonces in plaintext,
there are no practical passive attacks possible.
16. Acknowledgements
The authors wish to thank Michael Vakulenko for contributing text
that describes how LWAPP can be used over a Layer 3 (IP) network.
The authors would also like to thanks Russ Housley and Charles Clancy
for their assistance in providing a security review of the LWAPP
specification. Charles' review can be found in [12].
17. References
17.1. Normative References
[1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.
[2] National Institute of Standards and Technology, "Advanced
Encryption Standard (AES)", FIPS PUB 197, November 2001,
<http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf>.
[3] Whiting, D., Housley, R., and N. Ferguson, "Counter with CBC-
MAC (CCM)", RFC 3610, September 2003.
[4] Eastlake, D., 3rd, Schiller, J., and S. Crocker, "Randomness
Requirements for Security", BCP 106, RFC 4086, June 2005.
[5] Manner, J., Ed., and M. Kojo, Ed., "Mobility Related
Terminology", RFC 3753, June 2004.
Calhoun, et al. Historic [Page 123]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
[6] "Information technology - Telecommunications and information
exchange between systems - Local and metropolitan area networks
- Specific requirements - Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) specifications", IEEE
Standard 802.11, 2007,
<http://standards.ieee.org/getieee802/download/802.11-2007.pdf>
[7] "Information technology - Telecommunications and information
exchange between systems - Local and metropolitan area networks
- Specific requirements - Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) specifications Amendment
6: Medium Access Control (MAC) Security Enhancements", IEEE
Standard 802.11i, July 2004,
http://standards.ieee.org/getieee802/download/802.11i-2004.pdf
[8] Clark, D., "IP datagram reassembly algorithms", RFC 815, July
1982.
[9] Schaad, J. and R. Housley, "Advanced Encryption Standard (AES)
Key Wrap Algorithm", RFC 3394, September 2002.
[10] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley,
R., and W. Polk, "Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile", RFC
5280, May 2008.
[11] "Netscape-Defined Certificate Extensions",
<http://www.redhat.com/docs/manuals/cert-
system/admin/7.1/app_ext.html#35336>.
[12] Clancy, C., "Security Review of the Light-Weight Access Point
Protocol", May 2005,
<http://www.cs.umd.edu/~clancy/docs/lwapp-review.pdf>.
17.2. Informative References
[13] Reynolds, J., Ed., "Assigned Numbers: RFC 1700 is Replaced by
an On-line Database", RFC 3232, January 2002.
[14] Kent, S. and K. Seo, "Security Architecture for the Internet
Protocol", RFC 4301, December 2005.
[15] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-Hashing
for Message Authentication", RFC 2104, February 1997.
[16] "WiFi Protected Access (WPA) rev 1.6", April 2003.
Calhoun, et al. Historic [Page 124]
^L
RFC 5412 Lightweight Access Point Protocol February 2010
Authors' Addresses
Pat R. Calhoun
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134
Phone: +1 408-853-5269
EMail: pcalhoun@cisco.com
Rohit Suri
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134
Phone: +1 408-853-5548
EMail: rsuri@cisco.com
Nancy Cam-Winget
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134
Phone: +1 408-853-0532
EMail: ncamwing@cisco.com
Scott Kelly
EMail: scott@hyperthought.com
Michael Glenn Williams
GWhiz Arts & Sciences
1560 Newbury Road, Suite 1-204
Newbury Park, CA 91320
Phone: +1 805-499-1994
EMail: gwhiz@gwhiz.com
Sue Hares
Phone: +1 734-604-0332
EMail: shares@ndzh.com
Bob O'Hara
EMail: bob.ohara@computer.org
Calhoun, et al. Historic [Page 125]
^L
|