summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc5416.txt
blob: 4c0829c52bd2159e78cf4fba8d67fea40fd84eb9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
Network Working Group                                    P. Calhoun, Ed.
Request for Comments: 5416                           Cisco Systems, Inc.
Category: Standards Track                             M. Montemurro, Ed.
                                                      Research In Motion
                                                         D. Stanley, Ed.
                                                          Aruba Networks
                                                              March 2009


  Control and Provisioning of Wireless Access Points (CAPWAP) Protocol
                        Binding for IEEE 802.11

Status of This Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (c) 2009 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents in effect on the date of
   publication of this document (http://trustee.ietf.org/license-info).
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.

   This document may contain material from IETF Documents or IETF
   Contributions published or made publicly available before November
   10, 2008.  The person(s) controlling the copyright in some of this
   material may not have granted the IETF Trust the right to allow
   modifications of such material outside the IETF Standards Process.
   Without obtaining an adequate license from the person(s) controlling
   the copyright in such materials, this document may not be modified
   outside the IETF Standards Process, and derivative works of it may
   not be created outside the IETF Standards Process, except to format
   it for publication as an RFC or to translate it into languages other
   than English.









Calhoun, et al.             Standards Track                     [Page 1]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


Abstract

   Wireless LAN product architectures have evolved from single
   autonomous access points to systems consisting of a centralized
   Access Controller (AC) and Wireless Termination Points (WTPs).  The
   general goal of centralized control architectures is to move access
   control, including user authentication and authorization, mobility
   management, and radio management from the single access point to a
   centralized controller.

   This specification defines the Control And Provisioning of Wireless
   Access Points (CAPWAP) Protocol Binding Specification for use with
   the IEEE 802.11 Wireless Local Area Network protocol.

Table of Contents

   1. Introduction ....................................................4
      1.1. Goals ......................................................5
      1.2. Conventions Used in This Document ..........................5
      1.3. Terminology ................................................5
   2. IEEE 802.11 Binding .............................................7
      2.1. CAPWAP Wireless Binding Identifier .........................7
      2.2. Split MAC and Local MAC Functionality ......................7
           2.2.1. Split MAC ...........................................7
           2.2.2. Local MAC ..........................................12
      2.3. Roaming Behavior ..........................................15
      2.4. Group Key Refresh .........................................16
      2.5. BSSID to WLAN ID Mapping ..................................17
      2.6. CAPWAP Data Channel QoS Behavior ..........................18
           2.6.1. IEEE 802.11 Data Frames ............................18
                  2.6.1.1. 802.1p Support ............................19
                  2.6.1.2. DSCP Support ..............................19
           2.6.2. IEEE 802.11 MAC Management Messages ................21
      2.7. Run State Operation .......................................21
   3. IEEE 802.11 Specific CAPWAP Control Messages ...................21
      3.1. IEEE 802.11 WLAN Configuration Request ....................22
      3.2. IEEE 802.11 WLAN Configuration Response ...................23
   4. CAPWAP Data Message Bindings ...................................23
   5. CAPWAP Control Message Bindings ................................25
      5.1. Discovery Request Message .................................25
      5.2. Discovery Response Message ................................25
      5.3. Primary Discovery Request Message .........................25
      5.4. Primary Discovery Response Message ........................26
      5.5. Join Request Message ......................................26
      5.6. Join Response Message .....................................26
      5.7. Configuration Status Request Message ......................26
      5.8. Configuration Status Response Message .....................27
      5.9. Configuration Update Request Message ......................27



Calhoun, et al.             Standards Track                     [Page 2]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


      5.10. Station Configuration Request ............................28
      5.11. Change State Event Request ...............................28
      5.12. WTP Event Request ........................................28
   6. IEEE 802.11 Message Element Definitions ........................29
      6.1. IEEE 802.11 Add WLAN ......................................29
      6.2. IEEE 802.11 Antenna .......................................35
      6.3. IEEE 802.11 Assigned WTP BSSID ............................36
      6.4. IEEE 802.11 Delete WLAN ...................................37
      6.5. IEEE 802.11 Direct Sequence Control .......................37
      6.6. IEEE 802.11 Information Element ...........................38
      6.7. IEEE 802.11 MAC Operation .................................39
      6.8. IEEE 802.11 MIC Countermeasures ...........................41
      6.9. IEEE 802.11 Multi-Domain Capability .......................42
      6.10. IEEE 802.11 OFDM Control .................................43
      6.11. IEEE 802.11 Rate Set .....................................44
      6.12. IEEE 802.11 RSNA Error Report From Station ...............44
      6.13. IEEE 802.11 Station ......................................46
      6.14. IEEE 802.11 Station QoS Profile ..........................47
      6.15. IEEE 802.11 Station Session Key ..........................48
      6.16. IEEE 802.11 Statistics ...................................50
      6.17. IEEE 802.11 Supported Rates ..............................54
      6.18. IEEE 802.11 Tx Power .....................................54
      6.19. IEEE 802.11 Tx Power Level ...............................55
      6.20. IEEE 802.11 Update Station QoS ...........................56
      6.21. IEEE 802.11 Update WLAN ..................................57
      6.22. IEEE 802.11 WTP Quality of Service .......................61
      6.23. IEEE 802.11 WTP Radio Configuration ......................63
      6.24. IEEE 802.11 WTP Radio Fail Alarm Indication ..............65
      6.25. IEEE 802.11 WTP Radio Information ........................66
   7. IEEE 802.11 Binding WTP Saved Variables ........................67
      7.1. IEEE80211AntennaInfo ......................................67
      7.2. IEEE80211DSControl ........................................67
      7.3. IEEE80211MACOperation .....................................67
      7.4. IEEE80211OFDMControl ......................................67
      7.5. IEEE80211Rateset ..........................................67
      7.6. IEEE80211TxPower ..........................................67
      7.7. IEEE80211QoS ..............................................68
      7.8. IEEE80211RadioConfig ......................................68
   8. Technology Specific Message Element Values .....................68
      8.1. WTP Descriptor Message Element, Encryption
           Capabilities Field ........................................68
   9. Security Considerations ........................................68
      9.1. IEEE 802.11 Security ......................................68
   10. IANA Considerations ...........................................70
      10.1. CAPWAP Wireless Binding Identifier .......................70
      10.2. CAPWAP IEEE 802.11 Message Types .........................70
      10.3. CAPWAP Message Element Type ..............................70
      10.4. IEEE 802.11 Key Status ...................................71



Calhoun, et al.             Standards Track                     [Page 3]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


      10.5. IEEE 802.11 QoS ..........................................71
      10.6. IEEE 802.11 Auth Type ....................................71
      10.7. IEEE 802.11 Antenna Combiner .............................71
      10.8. IEEE 802.11 Antenna Selection ............................72
      10.9. IEEE 802.11 Session Key Flags ............................72
      10.10. IEEE 802.11 Tagging Policy ..............................72
      10.11. IEEE 802.11 WTP Radio Fail ..............................72
      10.12. IEEE 802.11 WTP Radio Type ..............................73
      10.13. WTP Encryption Capabilities .............................73
   11. Acknowledgments ...............................................73
   12. References ....................................................73
      12.1. Normative References .....................................73
      12.2. Informative References ...................................75

1.  Introduction

   The CAPWAP protocol [RFC5415] defines an extensible protocol to allow
   an Access Controller to manage wireless agnostic Wireless Termination
   Points.  The CAPWAP protocol itself does not include any specific
   wireless technologies; instead, it relies on a binding specification
   to extend the technology to a particular wireless technology.

   This specification defines the Control And Provisioning of Wireless
   Access Points (CAPWAP) Protocol Binding Specification for use with
   the IEEE 802.11 Wireless Local Area Network protocol.  Use of CAPWAP
   control message fields, new control messages, and message elements
   are defined.  The minimum required definitions for a binding-specific
   Statistics message element, Station message element, and WTP Radio
   Information message element are included.

   Note that this binding only supports the IEEE 802.11-2007
   specification.  Of note, this binding does not support the ad hoc
   network mode defined in the IEEE 802.11-2007 standard.  This
   specification also does not cover the use of data frames with the
   four-address format, commonly referred to as Wireless Bridges, whose
   use is not specified in the IEEE 802.11-2007 standard.  This protocol
   specification does not currently officially support IEEE 802.11n.
   That said, the protocol does allow a WTP to advertise support for an
   IEEE 802.11n radio; however, the protocol does not allow for any of
   the protocol's additional features to be configured and/or used.  New
   IEEE protocol specifications published outside of this document
   (e.g., IEEE 802.11v, IEEE 802.11r) are also not supported through
   this binding, and in addition to IEEE 802.11n, must be addressed
   either through a separate CAPWAP binding, or an update to this
   binding.






Calhoun, et al.             Standards Track                     [Page 4]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   In order to address immediate market needs for standards still being
   developed by the IEEE 802.11 standards body, the WiFi Alliance
   created interim pseudo-standards specifications.  Two such
   specifications are widely used in the industry, namely the WiFi
   Protect Access [WPA] and the WiFi MultiMedia [WMM] specifications.
   Given their widespread adoption, this CAPWAP binding requires the use
   of these two specifications.

1.1.  Goals

   The goals of this CAPWAP protocol binding are to make the
   capabilities of the CAPWAP protocol available for use in conjunction
   with IEEE 802.11 wireless networks.  The capabilities to be made
   available can be summarized as:

   1. To centralize the authentication and policy enforcement functions
      for an IEEE 802.11 wireless network.  The AC may also provide
      centralized bridging, forwarding, and encryption of user traffic.
      Centralization of these functions will enable reduced cost and
      higher efficiency by applying the capabilities of network
      processing silicon to the wireless network, as in wired LANs.

   2. To enable shifting of the higher-level protocol processing from
      the WTP.  This leaves the time-critical applications of wireless
      control and access in the WTP, making efficient use of the
      computing power available in WTPs that are subject to severe cost
      pressure.

   The CAPWAP protocol binding extensions defined herein apply solely to
   the interface between the WTP and the AC.  Inter-AC and station-to-AC
   communication are strictly outside the scope of this document.

1.2.  Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

1.3.  Terminology

   This section contains definitions for terms used frequently
   throughout this document.  However, many additional definitions can
   be found in [IEEE.802-11.2007].

   Access Controller (AC): The network entity that provides WTP access
   to the network infrastructure in the data plane, control plane,
   management plane, or a combination therein.




Calhoun, et al.             Standards Track                     [Page 5]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   Basic Service Set (BSS): A set of stations controlled by a single
   coordination function.

   Distribution: The service that, by using association information,
   delivers medium access control (MAC) service data units (MSDUs)
   within the distribution system (DS).

   Distribution System Service (DSS): The set of services provided by
   the distribution system (DS) that enable the medium access control
   (MAC) layer to transport MAC service data units (MSDUs) between
   stations that are not in direct communication with each other over a
   single instance of the wireless medium (WM).  These services include
   the transport of MSDUs between the access points (APs) of basic
   service sets (BSSs) within an extended service set (ESS), transport
   of MSDUs between portals and BSSs within an ESS, and transport of
   MSDUs between stations in the same BSS in cases where the MSDU has a
   multicast or broadcast destination address, or where the destination
   is an individual address but the station sending the MSDU chooses to
   involve the DSS.  DSSs are provided between pairs of IEEE 802.11
   MACs.

   Integration: The service that enables delivery of medium access
   control (MAC) service data units (MSDUs) between the distribution
   system (DS) and an existing, non-IEEE 802.11 local area network (via
   a portal).

   Station (STA): A device that contains an IEEE 802.11 conformant
   medium access control (MAC) and physical layer (PHY) interface to the
   wireless medium (WM).

   Portal: The logical point at which medium access control (MAC)
   service data units (MSDUs) from a non-IEEE 802.11 local area network
   (LAN) enter the distribution system (DS) of an extended service set
   (ESS).

   WLAN: In this document, WLAN refers to a logical component
   instantiated on a WTP device.  A single physical WTP may operate a
   number of WLANs.  Each Basic Service Set Identifier (BSSID) and its
   constituent wireless terminal radios is denoted as a distinct WLAN on
   a physical WTP.

   Wireless Termination Point (WTP): The physical or network entity that
   contains an IEEE 802.11 RF antenna and wireless PHY to transmit and
   receive station traffic for wireless access networks.







Calhoun, et al.             Standards Track                     [Page 6]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


2.  IEEE 802.11 Binding

   This section describes use of the CAPWAP protocol with the IEEE
   802.11 Wireless Local Area Network protocol, including Local and
   Split MAC operation, Group Key Refresh, Basic Service Set
   Identification (BSSID) to WLAN Mapping, IEEE 802.11 MAC management
   frame Quality of Service (Qos) tagging and Run State operation.

2.1.  CAPWAP Wireless Binding Identifier

   The CAPWAP Header, defined in Section 4.3 of [RFC5415] requires that
   all CAPWAP binding specifications have a Wireless Binding Identifier
   (WBID) assigned.  This document, which defines the IEEE 802.11
   binding, uses the value one (1).

2.2.  Split MAC and Local MAC Functionality

   The CAPWAP protocol, when used with IEEE 802.11 devices, requires
   specific behavior from the WTP and the AC to support the required
   IEEE 802.11 protocol functions.

   For both the Split and Local MAC approaches, the CAPWAP functions, as
   defined in the taxonomy specification [RFC4118], reside in the AC.

   To provide system component interoperability, the WTP and AC MUST
   support 802.11 encryption/decryption at the WTP.  The WTP and AC MAY
   support 802.11 encryption/decryption at the AC.

2.2.1.  Split MAC

   This section shows the division of labor between the WTP and the AC
   in a Split MAC architecture.  Figure 1 shows the separation of
   functionality between CAPWAP components.


















Calhoun, et al.             Standards Track                     [Page 7]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


        Function                               Location
            Distribution Service                      AC
            Integration Service                       AC
            Beacon Generation                         WTP
            Probe Response Generation                 WTP
            Power Mgmt/Packet Buffering               WTP
            Fragmentation/Defragmentation             WTP/AC
            Assoc/Disassoc/Reassoc                    AC

       IEEE 802.11 QoS
            Classifying                               AC
            Scheduling                                WTP/AC
            Queuing                                   WTP

       IEEE 802.11 RSN
            IEEE 802.1X/EAP                           AC
            RSNA Key Management                       AC
            IEEE 802.11 Encryption/Decryption         WTP/AC

     Figure 1: Mapping of 802.11 Functions for Split MAC Architecture

   In a Split MAC Architecture, the Distribution and Integration
   services reside on the AC, and therefore all user data is tunneled
   between the WTP and the AC.  As noted above, all real-time IEEE
   802.11 services, including the Beacon and Probe Response frames, are
   handled on the WTP.

   All remaining IEEE 802.11 MAC management frames are supported on the
   AC, including the Association Request frame that allows the AC to be
   involved in the access policy enforcement portion of the IEEE 802.11
   protocol.  The IEEE 802.1X [IEEE.802-1X.2004], Extensible
   Authentication Protocol (EAP) [RFC3748] and IEEE Robust Security
   Network Association (RSNA) Key Management [IEEE.802-11.2007]
   functions are also located on the AC.  This implies that the
   Authentication, Authorization, and Accounting (AAA) client also
   resides on the AC.

   While the admission control component of IEEE 802.11 resides on the
   AC, the real-time scheduling and queuing functions are on the WTP.
   Note that this does not prevent the AC from providing additional
   policy and scheduling functionality.

   Note that in the following figure, the use of '( - )' indicates that
   processing of the frames is done on the WTP.  This figure represents
   a case where encryption services are provided by the AC.






Calhoun, et al.             Standards Track                     [Page 8]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


             Client                      WTP                         AC

                      Beacon
             <-----------------------------
                   Probe Request
             ----------------------------( - )------------------------->
                   Probe Response
             <-----------------------------
                              802.11 AUTH/Association
             <--------------------------------------------------------->
                                        Station Configuration Request
                                          [Add Station (Station MAC
                                          Address), IEEE 802.11 Add
                                          Station (WLAN ID), IEEE
                                          802.11 Session Key(Flag=A)]
                                            <-------------------------->
                    802.1X Authentication & 802.11 Key Exchange
             <--------------------------------------------------------->
                                        Station Configuration Request
                                          [Add Station(Station MAC
                                          Address), IEEE 802.11 Add
                                          Station (WLAN ID), IEEE 802.11
                                          Station Session Key(Flag=C)]
                                            <-------------------------->
                               802.11 Action Frames
             <--------------------------------------------------------->
                                   802.11 DATA (1)
             <---------------------------( - )------------------------->

                     Figure 2: Split MAC Message Flow

   Figure 2 provides an illustration of the division of labor in a Split
   MAC architecture.  In this example, a WLAN has been created that is
   configured for IEEE 802.11, using 802.1X-based end user
   authentication and Advanced Encryption Standard-Counter Mode with
   CBC-MAC Protocol (AES-CCMP) link layer encryption (CCMP, see
   [FIPS.197.2001]).  The following process occurs:

   o  The WTP generates the IEEE 802.11 Beacon frames, using information
      provided to it through the IEEE 802.11 Add WLAN (see Section 6.1)
      message element, including the Robust Security Network Information
      Element (RSNIE), which indicates support of 802.1X and AES-CCMP.

   o  The WTP processes the Probe Request frame and responds with a
      corresponding Probe Response frame.  The Probe Request frame is
      then forwarded to the AC for optional processing.





Calhoun, et al.             Standards Track                     [Page 9]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   o  The WTP forwards the IEEEE 802.11 Authentication and Association
      frames to the AC, which is responsible for responding to the
      client.

   o  Once the association is complete, the AC transmits a Station
      Configuration Request message, which includes an Add Station
      message element, to the WTP (see Section 4.6.8 in [RFC5415]).  In
      the above example, the WLAN was configured for IEEE 802.1X, and
      therefore the IEEE 802.11 Station Session Key is included with the
      flag field's 'A' bit set.

   o  If the WTP is providing encryption/decryption services, once the
      client has completed the IEEE 802.11 key exchange, the AC
      transmits another Station Configuration Request message, which
      includes:

      -  An Add Station message element.

      -  An IEEE 802.11 Add Station message element, which includes the
         WLAN Identifier with which the station has associated.

      -  An IEEE 802.11 Station Session Key message element, which
         includes the pairwise encryption key.

      -  An IEEE 802.11 Information Element message element, which
         includes the Robust Security Network Information Element
         (RSNIE) to the WTP, stating the security policy to enforce for
         the client (in this case AES-CCMP).

   o  If the WTP is providing encryption/decryption services, once the
      client has completed the IEEE 802.11 key exchange, the AC
      transmits another Station Configuration Request message, which
      includes:

      -  An Add Station message element.

      -  An IEEE 802.11 Add Station message element, which includes the
         WLAN Identifier with which the station has associated.

      -  An IEEE 802.11 Station Session Key message element, which
         includes the pairwise encryption key.

      -  An IEEE 802.11 Information Element message element, which
         includes the Robust Security Network Information Element
         (RSNIE) to the WTP, stating the security policy to enforce for
         the client (in this case AES-CCMP).





Calhoun, et al.             Standards Track                    [Page 10]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   o  If the AC is providing encryption/decryption services, once the
      client has completed the IEEE 802.11 key exchange, the AC
      transmits another Station Configuration Request message, which
      includes:

      -  An Add Station message element.

      -  An IEEE 802.11 Add Station message element, which includes the
         WLAN Identifier with which the station has associated.

      -  An IEEE 802.11 Station Session Key message element with the
         flag field's 'C' bit enabled (indicating that the AC will
         provide crypto services).

   o  The WTP forwards any IEEE 802.11 Management Action frames received
      to the AC.

   o  All IEEE 802.11 station data frames are tunneled between the WTP
      and the AC.

   Note that during the EAP over LAN (EAPOL)-Key exchange between the
   Station and the AC, the Receive Sequence Counter (RSC) field for the
   Group Key (GTK) needs to be included in the frame.  The value of zero
   (0) is used by the AC during this exchange.  Additional details are
   available in Section 9.1.

   The WTP SHALL include the IEEE 802.11 MAC header contents in all
   frames transmitted to the AC.

   When 802.11 encryption/decryption is performed at the WTP, the WTP
   MUST decrypt the uplink frames, MUST set the Protected Frame field to
   0, and MUST make the frame format consistent with that of an
   unprotected 802.11 frame prior to transmitting the frames to the AC.
   The fields added to an 802.11 protected frame (i.e., Initialization
   Vector/Extended Initialization Vector (IV/EIV), Message Integrity
   Code (MIC), and Integrity Check Value (ICV)) MUST be stripped off
   prior to transmission from the WTP to AC.  For downlink frames, the
   Protected Frame field MUST be set to 0 by the AC as the frame being
   sent is unencrypted.  The WTP MUST apply the required protection
   policy for the WLAN, and set the Protected Frame field on
   transmission over the air.  The Protected Frame field always needs to
   accurately indicate the status of the 802.11 frame that is carrying
   it.

   When 802.11 encryption/decryption is performed at the AC, the WTP
   SHALL NOT decrypt the uplink frames prior to transmitting the frames
   to the AC.  The AC and WTP SHALL populate the IEEE 802.11 MAC header
   fields as described in Figure 3.



Calhoun, et al.             Standards Track                    [Page 11]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


           MAC header field        Location
                   Frame Control:
                           Version         AC
                           ToDS            AC
                           FromDS          AC
                           Type            AC
                           SubType         AC
                           MoreFrag        WTP/AC
                           Retry           WTP
                           Pwr Mgmt        -
                           MoreData        WTP
                           Protected       WTP/AC
                           Order           AC
                   Duration:           WTP
                   Address 1:          AC
                   Address 2:          AC
                   Address 3:          AC
                   Sequence Ctrl:      WTP
                   Address 4:          AC
                   QoS Control:        AC
                   Frame Body:         AC
                   FCS:                WTP

       Figure 3: Population of the IEEE 802.11 MAC Header Fields for
                              Downlink Frames

   When 802.11 encryption/decryption is performed at the AC, the
   MoreFrag bit is populated at the AC.  The Pwr Mgmt bit is not
   applicable to downlink frames, and is set to 0.  Note that the Frame
   Check Sequence (FCS) field is not included in 802.11 frames exchanged
   between the WTP and the AC.  Upon sending data frames to the AC, the
   WTP is responsible for validating and stripping the FCS field.  Upon
   receiving data frames from the AC, the WTP is responsible for adding
   the FCS field, and populating the field as described in
   [IEEE.802-11.2007].

   Note that when the WTP tunnels data packets to the AC (and vice
   versa), the CAPWAP protocol does not guarantee in-order delivery.
   When the protocol being transported over IEEE 802.11 is IP, out-of-
   order delivery is not an issue as IP has no such requirements.
   However, implementers need to be aware of this protocol
   characteristic before deciding to use CAPWAP.

2.2.2.  Local MAC

   This section shows the division of labor between the WTP and the AC
   in a Local MAC architecture.  Figure 4 shows the separation of
   functionality among CAPWAP components.



Calhoun, et al.             Standards Track                    [Page 12]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


        Function                               Location
            Distribution Service                      WTP/AC
            Integration Service                       WTP
            Beacon Generation                         WTP
            Probe Response Generation                 WTP
            Power Mgmt/Packet Buffering               WTP
            Fragmentation/Defragmentation             WTP
            Assoc/Disassoc/Reassoc                    WTP/AC

       IEEE 802.11 QoS
            Classifying                               WTP
            Scheduling                                WTP
            Queuing                                   WTP

       IEEE 802.11 RSN
            IEEE 802.1X/EAP                           AC
            RSNA Key Management                       AC
            IEEE 802.11 Encryption/Decryption         WTP

      Figure 4: Mapping of 802.11 Functions for Local AP Architecture

   In the Local MAC mode, the integration service exists on the WTP,
   while the distribution service MAY reside on either the WTP or the
   AC.  When it resides on the AC, station-generated frames are not
   forwarded to the AC in their native format, but encapsulated as 802.3
   frames.

   While the MAC is terminated on the WTP, it is necessary for the AC to
   be aware of mobility events within the WTPs.  Thus, the WTP MUST
   forward the IEEE 802.11 Association Request frames to the AC.  The AC
   MAY reply with a failed Association Response frame if it deems it
   necessary, and upon receipt of a failed Association Response frame
   from the AC, the WTP MUST send a Disassociation frame to the station.

   The IEEE 802.1X [IEEE.802-1X.2004], EAP, and IEEE RSNA Key Management
   [IEEE.802-11.2007] functions reside in the AC.  Therefore, the WTP
   MUST forward all IEEE 802.1X, EAP, and RSNA Key Management frames to
   the AC and forward the corresponding responses to the station.  This
   implies that the AAA client also resides on the AC.

   Note that in the following figure, the use of '( - )' indicates that
   processing of the frames is done on the WTP.









Calhoun, et al.             Standards Track                    [Page 13]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


             Client                      WTP                         AC

                      Beacon
             <-----------------------------
                       Probe
             <---------------------------->
                        802.11 AUTH
             <-----------------------------
                                 802.11 Association
             <---------------------------( - )------------------------->
                                        Station Configuration Request
                                          [Add Station (Station MAC
                                          Address), IEEE 802.11 Add
                                          Station (WLAN ID), IEEE
                                          802.11 Session Key(Flag=A)]
                                            <-------------------------->
                    802.1X Authentication & 802.11 Key Exchange
             <--------------------------------------------------------->
                                        Station Configuration Request
                                          [Add Station(Station MAC
                                          Address), IEEE 802.11 Add
                                          Station (WLAN ID), IEEE 802.11
                                          Station session Key (Key=x),
                                          IEEE 802.11 Information
                                          Element(RSNIE(Pairwise
                                          Cipher=CCMP))]
                                            <-------------------------->
                               802.11 Action Frames
             <--------------------------------------------------------->
                     802.11 DATA
             <----------------------------->

                     Figure 5: Local MAC Message Flow

   Figure 5 provides an illustration of the division of labor in a Local
   MAC architecture.  In this example, a WLAN that is configured for
   IEEE 802.11 has been created using AES-CCMP for privacy.  The
   following process occurs:

   o  The WTP generates the IEEE 802.11 Beacon frames, using information
      provided to it through the Add WLAN (see Section 6.1) message
      element.

   o  The WTP processes a Probe Request frame and responds with a
      corresponding Probe Response frame.

   o  The WTP forwards the IEEE 802.11 Authentication and Association
      frames to the AC.



Calhoun, et al.             Standards Track                    [Page 14]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   o  Once the association is complete, the AC transmits a Station
      Configuration Request message, which includes the Add Station
      message element, to the WTP (see Section 4.6.8 in [RFC5415]).  In
      the above example, the WLAN was configured for IEEE 802.1X, and
      therefore the IEEE 802.11 Station Session Key is included with the
      flag field's 'A' bit set.

   o  The WTP forwards all IEEE 802.1X and IEEE 802.11 key exchange
      messages to the AC for processing.

   o  The AC transmits another Station Configuration Request message,
      which includes:

      -  An Add Station message element, which MAY include a Virtual LAN
         (VLAN) [IEEE.802-1Q.2005] name, which when present is used by
         the WTP to identify the VLAN on which the user's data frames
         are to be bridged.

      -  An IEEE 802.11 Add Station message element, which includes the
         WLAN Identifier with which the station has associated.

      -  An IEEE 802.11 Station Session Key message element, which
         includes the pairwise encryption key.

      -  An IEEE 802.11 Information Element message element, which
         includes the RSNIE to the WTP, stating the security policy to
         enforce for the client (in this case AES-CCMP).

   o  The WTP forwards any IEEE 802.11 Management Action frames received
      to the AC.

   o  The WTP MAY locally bridge client data frames (and provide the
      necessary encryption and decryption services).  The WTP MAY also
      tunnel client data frames to the AC, using 802.3 frame tunnel mode
      or 802.11 frame tunnel mode.

2.3.  Roaming Behavior

   This section expands upon the examples provided in the previous
   section, and describes how the CAPWAP control protocol is used to
   provide secure roaming.

   Once a client has successfully associated with the network in a
   secure fashion, it is likely to attempt to roam to another WTP.
   Figure 6 shows an example of a currently associated station moving
   from its "Old WTP" to a "New WTP".  The figure is valid for multiple
   different security policies, including IEEE 802.1X and Wireless
   Protected Access (WPA) or Wireless Protected Access 2 (WPA2) [WPA].



Calhoun, et al.             Standards Track                    [Page 15]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   In the event that key caching was employed, the 802.1X Authentication
   step would be eliminated.  Note that the example represents one where
   crypto services are provided by the WTP, so in a case where the AC
   provided this function the last Station Configuration Request would
   be different.

            Client              Old WTP            New WTP           AC

                          Association Request/Response
             <--------------------------------------( - )-------------->
                                        Station Configuration Request
                                          [Add Station (Station MAC
                                          Address), IEEE 802.11 Add
                                          Station (WLAN ID), IEEE
                                          802.11 Session Key(Flag=A)]
                                                      <---------------->
             802.1X Authentication (if no key cache entry exists)
             <--------------------------------------( - )-------------->
                           802.11 4-way Key Exchange
             <--------------------------------------( - )-------------->
                                Station Configuration Request
                                  [Delete Station]
                                    <---------------------------------->
                                        Station Configuration Request
                                          [Add Station(Station MAC
                                          Address), IEEE 802.11 Add
                                          Station (WLAN ID), IEEE 802.11
                                          Station session Key (Key=x),
                                          IEEE 802.11 Information
                                          Element(RSNIE(Pairwise
                                          Cipher=CCMP))]
                                                      <---------------->

                     Figure 6: Client Roaming Example

2.4.  Group Key Refresh

   Periodically, the Group Key (GTK) for the BSS needs to be updated.
   The AC uses an EAPOL-Key frame to update the group key for each STA
   in the BSS.  While the AC is updating the GTK, each Layer 2 (L2)
   broadcast frame transmitted to the BSS needs to be duplicated and
   transmitted using both the current GTK and the new GTK.  Once the GTK
   update process has completed, broadcast frames transmitted to the BSS
   will be encrypted using the new GTK.

   In the case of Split MAC, the AC needs to duplicate all broadcast
   packets and update the key index so that the packet is transmitted
   using both the current and new GTK to ensure that all STAs in the BSS



Calhoun, et al.             Standards Track                    [Page 16]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   receive the broadcast frames.  In the case of Local MAC, the WTP
   needs to duplicate and transmit broadcast frames using the
   appropriate index to ensure that all STAs in the BSS continue to
   receive broadcast frames.

   The Group Key update procedure is shown in the following figure.  The
   AC will signal the update to the GTK using an IEEE 802.11
   Configuration Request message, including an IEEE 802.11 Update WLAN
   message element with the new GTK, its index, the Transmit Sequence
   Counter (TSC) for the Group Key and the Key Status set to 3 (begin
   GTK update).  The AC will then begin updating the GTK for each STA.
   During this time, the AC (for Split MAC) or WTP (for Local MAC) MUST
   duplicate broadcast packets and transmit them encrypted with both the
   current and new GTK.  When the AC has completed the GTK update to all
   STAs in the BSS, the AC MUST transmit an IEEE 802.11 Configuration
   Request message including an IEEE 802.11 Update WLAN message element
   containing the new GTK, its index, and the Key Status set to 4 (GTK
   update complete).

        Client           WTP                                          AC

                         IEEE 802.11 WLAN Configuration Request [Update
                           WLAN (GTK, GTK Index, GTK Start,
                           Group TSC) ]
                         <--------------------------------------------
                               802.1X EAPoL (GTK Message 1)
        <-------------( - )-------------------------------------------
                               802.1X EAPoL (GTK Message 2)
        -------------( - )------------------------------------------->
                         IEEE 802.11 WLAN Configuration Request [ Update
                           WLAN (GTK Index, GTK Complete) ]
                         <--------------------------------------------

                   Figure 7: Group Key Update Procedure

2.5.  BSSID to WLAN ID Mapping

   The CAPWAP protocol binding enables the WTP to assign BSSIDs upon
   creation of a WLAN (see Section 6.1).  While manufacturers are free
   to assign BSSIDs using any arbitrary mechanism, it is advised that
   where possible the BSSIDs are assigned as a contiguous block.

   When assigned as a block, implementations can still assign any of the
   available BSSIDs to any WLAN.  One possible method is for the WTP to
   assign the address using the following algorithm: base BSSID address
   + WLAN ID.





Calhoun, et al.             Standards Track                    [Page 17]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   The WTP communicates the maximum number of BSSIDs that it supports
   during configuration via the IEEE 802.11 WTP WLAN Radio Configuration
   message element (see Section 6.23).

2.6.  CAPWAP Data Channel QoS Behavior

   The CAPWAP IEEE 802.11 binding specification provides procedures to
   allow for the WTP to enforce Quality of Service on IEEE 802.11 Data
   Frames and MAC Management messages.

2.6.1.  IEEE 802.11 Data Frames

   When the WLAN is created on the WTP, a default Quality of Service
   policy is established through the IEEE 802.11 WTP Quality of Service
   message element (see Section 6.22).  This default policy will cause
   the WTP to use the default QoS values for any station associated with
   the WLAN in question.  The AC MAY also override the policy for a
   given station by sending the IEEE 802.11 Update Station QoS message
   element (see Section 6.20), known as a station-specific QoS policy.

   Beyond the default, and per station QoS policy, the IEEE 802.11
   protocol also allows a station to request special QoS treatment for a
   specific flow through the Traffic Specification (TSPEC) Information
   Elements found in the IEEE 802.11-2007's QoS Action Frame.
   Alternatively, stations MAY also use the WiFi Alliance's WMM
   specification instead to request QoS treatment for a flow (see
   [WMM]).  This requires the WTP to observe the Status Code in the IEEE
   802.11-2007 and WMM QoS Action Add Traffic System (ADDTS) responses
   from the AC, and provide the services requested in the TSPEC
   Information Element.  Similarly, the WTP MUST observe the Reason Code
   Information Element in the IEEE 802.11-2007 and WMM QoS Action DELTS
   responses from the AC by removing the policy associated with the
   TSPEC.

   The IEEE 802.11 WTP Quality of Service message element's Tagging
   Policy field indicates how the packets are to be tagged, known as the
   Tagging Policy.  There are five bits defined, two of which are used
   to indicate the type of QoS to be used by the WTP.  The first is the
   'P' bit, which is set to inform the WTP it is to use the 802.1p QoS
   mechanism.  When set, the 'Q' bit is used to inform the WTP which
   802.1p priority values it is to use.

   The 'D' bit is set to inform the WTP it is to use the Differentiated
   Services Code Point (DSCP) QoS mechanism.  When set, the 'I' and 'O'
   bits are used to inform the WTP which values it is to use in the
   inner header, in the station's original packet, or the outer header,
   the latter of which is only valid when tunneling is enabled.




Calhoun, et al.             Standards Track                    [Page 18]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   When an IEEE 802.11 Update Station QoS message element is received,
   while the specific 802.1p priority or DSCP values may change for a
   given station, known as the station specific policy, the original
   Tagging Policy (the use of the five bits) remains the same.

   The use of the DSCP and 802.1p QoS mechanisms are not mutually
   exclusive.  An AC MAY request that a WTP use none, one, or both types
   of QoS mechanisms at the same time.

2.6.1.1.  802.1p Support

   The IEEE 802.11 WTP Quality of Service and IEEE 802.11 Update Station
   QoS message elements include the "802.1p Tag" field, which is the
   802.1p priority value.  This value is used by the WTP by adding an
   802.1Q header (see [IEEE.802-1Q.2005]) with the priority field set
   according to the policy provided.  Note that this tagging is only
   valid for interfaces that support 802.1p.  The actual treatment does
   not change for either Split or Local MAC modes, or when tunneling is
   used.  The only exception is when tunneling is used, the 802.1Q
   header is added to the outer packet (tunneled) header.  The IEEE
   802.11 standard does not permit the station's packet to include an
   802.1Q header.  Instead, the QoS mechanisms defined in the IEEE
   802.11 standard are used by stations to mark a packet's priority.
   When the 'P' bit is set in the Tagging Policy, the 'Q' bit has the
   following behavior:

   Q=1:   The WTP marks the priority field in the 802.1Q header to
          either the default or the station-specific 802.1p policy.

   Q=0:   The WTP marks the priority field in the 802.1Q header to the
          value found in the User Priority field of the QoS Control
          field of the IEEE 802.11 header.  If the QoS Control field is
          not present in the IEEE 802.11 header, then the behavior
          described under 'Q=1' is used.

2.6.1.2.  DSCP Support

   The IEEE 802.11 WTP Quality of Service and IEEE 802.11 Update Station
   QoS message elements also provide a "DSCP Tag", which is used by the
   WTP when the 'D' bit is set to mark the DSCP field of both the IPv4
   and IPv6 headers (see [RFC2474]).  When DSCP is used, the WTP marks
   the inner packet (the original packet received by the station) when
   the 'I' bit is set.  Similarly, the WTP marks the outer packet
   (tunnel header's DSCP field) when the 'O' bit is set.

   When the 'D' bit is set, the treatment of the packet differs based on
   whether the WTP is tunneling the station's packets to the AC.
   Tunneling does not occur in a Local MAC mode when the AC has



Calhoun, et al.             Standards Track                    [Page 19]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   communicated that tunneling is not required, as part of the IEEE
   802.11 Add WLAN message element, see Section 6.1.  In the case where
   tunneling is not used, the 'I' and 'O' bits have the following
   behaviors:

   O=1:   This option is invalid when tunneling is not enabled for
          station data frames.

   O=0:   This option is invalid when tunneling is not enabled for
          station data frames.

   I=1:   The WTP sets the DSCP field in the station's packet to either
          the default policy or the station-specific policy if one
          exists.

   I=0:   The WTP MUST NOT modify the DSCP field in the station's
          packet.

   For Split MAC mode, or Local MAC with tunneling enabled, the WTP
   needs to contend with both the inner packet (the station's original
   packet) as well as the tunnel header (added by the WTP).  In this
   mode of operation, the bits are treated as follows:

   O=1:   The WTP sets the DSCP field in the tunnel header to either the
          default policy or the station specific policy if one exists.

   O=0:   The WTP sets the DSCP field in the tunnel header to the value
          found in the inner packet's DSCP field.  If encryption
          services are provided by the AC (see Section 6.15), the packet
          is encrypted; therefore, the WTP cannot access the inner DSCP
          field, in which case it uses the behavior described when the
          'O' bit is set.  This occurs also if the inner packet is not
          IPv4 or IPv6, and thus does not have a DSCP field.

   I=1:   The WTP sets the DSCP field in the station's packet to either
          the default policy or the station-specific policy if one
          exists.  If encryption services are provided by the AC (see
          Section 6.15), the packet is encrypted; therefore, the WTP
          cannot access the inner DSCP field, in which case it uses the
          behavior described when the 'I' bit is not set.  This occurs
          also if the inner packet is not IPv4 or IPv6, and thus does
          not have a DSCP field.

   I=0:   The WTP MUST NOT modify the DSCP field in the station's
          packet.






Calhoun, et al.             Standards Track                    [Page 20]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   The CAPWAP protocol supports the Explicit Congestion Notification
   (ECN) bits [RFC3168].  Additional details on ECN support can be found
   in [RFC5415].

2.6.2.  IEEE 802.11 MAC Management Messages

   It is recommended that IEEE 802.11 MAC Management frames be sent by
   both the AC and the WTP with appropriate Quality of Service values,
   listed below, to ensure that congestion in the network minimizes
   occurrences of packet loss.  Note that the QoS Mechanism specified in
   the Tagging Policy is used as specified by the AC in the IEEE 802.11
   WTP Quality of Service message element (see Section 6.22).  However,
   the station-specific policy is not used for IEEE 802.11 MAC
   Management frames.

   802.1p:   The precedence value of 7 (decimal) SHOULD be used for all
             IEEE 802.11 MAC management frames, except for Probe
             Requests, which SHOULD use 4.

   DSCP:     All IEEE 802.11 MAC management frames SHOULD use the CS6
             per- hop behavior (see [RFC2474]), while IEEE 802.11 Probe
             Requests should use the Low Drop Assured Forwarding per-hop
             behavior (see [RFC3246]).

2.7.  Run State Operation

   The Run state is the normal state of operation for the CAPWAP
   protocol in both the WTP and the AC.

   When the WTP receives a WLAN Configuration Request message (see
   Section 3.1), it MUST respond with a WLAN Configuration Response
   message (see Section 3.2), and it remains in the Run state.

   When the AC sends a WLAN Configuration Request message (see
   Section 3.1) or receives the corresponding WLAN Configuration
   Response message (see Section 3.2) from the WTP, it remains in the
   Run state.

3.  IEEE 802.11 Specific CAPWAP Control Messages

   This section defines CAPWAP Control messages that are specific to the
   IEEE 802.11 binding.  Two messages are defined: IEEE 802.11 WLAN
   Configuration Request and IEEE 802.11 WLAN Configuration Response.
   See Section 4.5 in [RFC5415] for CAPWAP Control message definitions
   and the derivation of the Message Type value from the IANA Enterprise
   number.





Calhoun, et al.             Standards Track                    [Page 21]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   The valid message types for IEEE 802.11-specific control messages are
   listed below.  The IANA Enterprise number used with these messages is
   13277.

           CAPWAP Control Message                    Message Type
                                                        Value

           IEEE 802.11 WLAN Configuration Request      3398913
           IEEE 802.11 WLAN Configuration Response     3398914

3.1.  IEEE 802.11 WLAN Configuration Request

   The IEEE 802.11 WLAN Configuration Request is sent by the AC to the
   WTP in order to change services provided by the WTP.  This control
   message is used to either create, update, or delete a WLAN on the
   WTP.

   The IEEE 802.11 WLAN Configuration Request is sent as a result of
   either some manual administrative process (e.g., deleting a WLAN), or
   automatically to create a WLAN on a WTP.  When sent automatically to
   create a WLAN, this control message is sent after the CAPWAP
   Configuration Update Response message (see Section 8.5 in [RFC5415])
   has been received by the AC.

   Upon receiving this control message, the WTP will modify the
   necessary services and transmit an IEEE 802.11 WLAN Configuration
   Response.

   A WTP MAY provide service for more than one WLAN; therefore, every
   WLAN is identified through a numerical index.  For instance, a WTP
   that is capable of supporting up to 16 Service Set Identifiers
   (SSIDs), could accept up to 16 IEEE 802.11 WLAN Configuration Request
   messages that include the Add WLAN message element.

   Since the index is the primary identifier for a WLAN, an AC MAY
   attempt to ensure that the same WLAN is identified through the same
   index number on all of its WTPs.  An AC that does not follow this
   approach MUST find some other means of maintaining a WLAN-Identifier-
   to-SSID mapping table.

   The following message elements MAY be included in the IEEE 802.11
   WLAN Configuration Request message.  Only one message element MUST be
   present.

   o  IEEE 802.11 Add WLAN, see Section 6.1

   o  IEEE 802.11 Delete WLAN, see Section 6.4




Calhoun, et al.             Standards Track                    [Page 22]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   o  IEEE 802.11 Update WLAN, see Section 6.21

   The following message element MAY be present.

   o  IEEE 802.11 Information Element, see Section 6.6

   o  Vendor-Specific Payload, see [RFC5415]

3.2.  IEEE 802.11 WLAN Configuration Response

   The IEEE 802.11 WLAN Configuration Response message is sent by the
   WTP to the AC.  It is used to acknowledge receipt of an IEEE 802.11
   WLAN Configuration Request message, and to indicate that the
   requested configuration was successfully applied or that an error
   related to the processing of the IEEE 802.11 WLAN Configuration
   Request message occurred on the WTP.

   The following message element MUST be included in the IEEE 802.11
   WLAN Configuration Response message.

   o  Result Code, see Section 4.6.34 in [RFC5415]

   The following message element MAY be included in the IEEE 802.11 WLAN
   Configuration Response message.

   o  IEEE 802.11 Assigned WTP BSSID, see Section 6.3

   o  Vendor-Specific Payload, see [RFC5415]

4.  CAPWAP Data Message Bindings

   This section describes the CAPWAP data message bindings to support
   transport of IEEE 802.11 frames.

   Payload encapsulation:  The CAPWAP protocol defines the CAPWAP data
      message, which is used to encapsulate a wireless payload.  For
      IEEE 802.11, the IEEE 802.11 header and payload are encapsulated
      (excluding the IEEE 802.11 FCS checksum).  The IEEE 802.11 FCS
      checksum is handled by the WTP.  This allows the WTP to validate
      an IEEE 802.11 frame prior to sending it to the AC.  Similarly,
      when an AC wishes to transmit a frame to a station, the WTP
      computes and adds the FCS checksum.

   Optional Wireless Specific Information:  This optional CAPWAP header
      field (see Section 4.3 in [RFC5415]) is only used with CAPWAP data
      messages, and it serves two purposes, depending upon the direction
      of the message.  For messages from the WTP to the AC, the field
      uses the format described in the "IEEE 802.11 Frame Info" field



Calhoun, et al.             Standards Track                    [Page 23]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


      (see below).  However, for messages sent by the AC to the WTP, the
      format used is described in the "Destination WLANs" field (also
      defined below).

      Note that in both cases, the two optional headers fit in the
      "Data" field of the Wireless Specific Information header.

   IEEE 802.11 Frame Info:  When an IEEE 802.11 frame is received from a
      station over the air, it is encapsulated and this field is used to
      include radio and PHY-specific information associated with the
      frame.

      The IEEE 802.11 Frame Info field has the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     RSSI      |     SNR       |           Data Rate           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      RSSI:   Received Signal Strength Indication (RSSI) is a signed,
         8-bit value.  It is the received signal strength indication, in
         dBm.

      SNR:   SNR is a signed, 8-bit value.  It is the signal-to-noise
         ratio of the received IEEE 802.11 frame, in dB.

      Data Rate:   The data rate field is a 16-bit unsigned value.  The
         data rate field is a 16-bit unsigned value expressing the data
         rate of the packets received by the WTP in units of 0.1 Mbps.
         For instance, a packet received at 5.5 Mbps would be set to 55,
         while 11 Mbps would be set to 110.

   Destination WLANs:  The Destination WLANs field is used to specify
      the target WLANs for a given frame, and is only used with
      broadcast and multicast frames.  This field allows the AC to
      transmit a single broadcast or multicast frame to the WTP and
      allows the WTP to perform the necessary frame replication.  The
      field uses the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |        WLAN ID bitmap         |            Reserved           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+






Calhoun, et al.             Standards Track                    [Page 24]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


      WLAN ID bitmap:   This bit field indicates the WLAN ID (see
         Section 6.1) on which the WTP will transmit the included frame.
         For instance, if a multicast packet is to be transmitted on
         WLANs 1 and 3, the bits for WLAN 1 and 3 of this field would be
         enabled.  WLAN 1 is represented by bit 15 in the figure above,
         or the least significant bit, while WLAN 16 would be
         represented by bit zero (0), or the most significant bit, in
         the figure.  This field is to be set to all zeroes for unicast
         packets and is unused if the WTP is not providing IEEE 802.11
         encryption.

      Reserved:   All implementations complying with this protocol MUST
         set to zero any bits that are reserved in the version of the
         protocol supported by that implementation.  Receivers MUST
         ignore all bits not defined for the version of the protocol
         they support.

5.  CAPWAP Control Message Bindings

   This section describes the IEEE 802.11-specific message elements
   included in CAPWAP Control Messages.

5.1.  Discovery Request Message

   The following IEEE 802.11-specific message element MUST be included
   in the CAPWAP Discovery Request Message.

   o  IEEE 802.11 WTP Radio Information, see Section 6.25.  An IEEE
      802.11 WTP Radio Information message element MUST be present for
      every radio in the WTP.

5.2.  Discovery Response Message

   The following IEEE 802.11-specific message element MUST be included
   in the CAPWAP Discovery Response Message.

   o  IEEE 802.11 WTP Radio Information, see Section 6.25.  An IEEE
      802.11 WTP Radio Information message element MUST be present for
      every radio in the WTP.

5.3.  Primary Discovery Request Message

   The following IEEE 802.11 specific message element MUST be included
   in the CAPWAP Primary Discovery Request message.

   o  IEEE 802.11 WTP Radio Information, see Section 6.25.  An IEEE
      802.11 WTP Radio Information message element MUST be present for
      every radio in the WTP.



Calhoun, et al.             Standards Track                    [Page 25]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


5.4.  Primary Discovery Response Message

   The following IEEE 802.11-specific message element MUST be included
   in the CAPWAP Primary Discovery Response message.

   o  IEEE 802.11 WTP Radio Information, see Section 6.25.  An IEEE
      802.11 WTP Radio Information message element MUST be present for
      every radio in the WTP.

5.5.  Join Request Message

   The following IEEE 802.11-specific message element MUST be included
   in the CAPWAP Join Request message.

   o  IEEE 802.11 WTP Radio Information, see Section 6.25.  An IEEE
      802.11 WTP Radio Information message element MUST be present for
      every radio in the WTP.

5.6.  Join Response Message

   The following IEEE 802.11-specific message element MUST be included
   in the CAPWAP Join Response message.

   o  IEEE 802.11 WTP Radio Information, see Section 6.25.  An IEEE
      802.11 WTP Radio Information message element MUST be present for
      every radio in the WTP.

5.7.  Configuration Status Request Message

   The following IEEE 802.11-specific message elements MAY be included
   in the CAPWAP Configuration Status Request message.  More than one of
   each message element listed MAY be included.

   o  IEEE 802.11 Antenna, see Section 6.2

   o  IEEE 802.11 Direct Sequence Control, see Section 6.5

   o  IEEE 802.11 MAC Operation, see Section 6.7

   o  IEEE 802.11 Multi-Domain Capability, see Section 6.9

   o  IEEE 802.11 Orthogonal Frequency Division Multiplexing (OFDM)
      Control, see Section 6.10

   o  IEEE 802.11 Supported Rates, see Section 6.17

   o  IEEE 802.11 Tx Power, see Section 6.18




Calhoun, et al.             Standards Track                    [Page 26]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   o  IEEE 802.11 TX Power Level, see Section 6.19

   o  IEEE 802.11 WTP Radio Configuration, see Section 6.23

   o  IEEE 802.11 WTP Radio Information, see Section 6.25.  An IEEE
      802.11 WTP Radio Information message element MUST be present for
      every radio in the WTP.

5.8.  Configuration Status Response Message

   The following IEEE 802.11 specific message elements MAY be included
   in the CAPWAP Configuration Status Response Message.  More than one
   of each message element listed MAY be included.

   o  IEEE 802.11 Antenna, see Section 6.2

   o  IEEE 802.11 Direct Sequence Control, see Section 6.5

   o  IEEE 802.11 MAC Operation, see Section 6.7

   o  IEEE 802.11 Multi-Domain Capability, see Section 6.9

   o  IEEE 802.11 OFDM Control, see Section 6.10

   o  IEEE 802.11 Rate Set, see Section 6.11

   o  IEEE 802.11 Supported Rates, see Section 6.17

   o  IEEE 802.11 Tx Power, see Section 6.18

   o  IEEE 802.11 WTP Quality of Service, see Section 6.22

   o  IEEE 802.11 WTP Radio Configuration, see Section 6.23

5.9.  Configuration Update Request Message

   The following IEEE 802.11-specific message elements MAY be included
   in the CAPWAP Configuration Update Request message.  More than one of
   each message element listed MAY be included.

   o  IEEE 802.11 Antenna, see Section 6.2

   o  IEEE 802.11 Direct Sequence Control, see Section 6.5

   o  IEEE 802.11 MAC Operation, see Section 6.7

   o  IEEE 802.11 Multi-Domain Capability, see Section 6.9




Calhoun, et al.             Standards Track                    [Page 27]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   o  IEEE 802.11 OFDM Control, see Section 6.10

   o  IEEE 802.11 Rate Set, see Section 6.11

   o  IEEE 802.11 RSNA Error Report from Station, see Section 6.12

   o  IEEE 802.11 Tx Power, see Section 6.18

   o  IEEE 802.11 WTP Quality of Service, see Section 6.22

   o  IEEE 802.11 WTP Radio Configuration, see Section 6.23

5.10.  Station Configuration Request

   The following IEEE 802.11-specific message elements MAY be included
   in the CAPWAP Station Configuration Request message.  More than one
   of each message element listed MAY be included.

   o  IEEE 802.11 Station, see Section 6.13

   o  IEEE 802.11 Station Session Key, see Section 6.15

   o  IEEE 802.11 Station QoS Profile, see Section 6.14

   o  IEEE 802.11 Update Station Qos, see Section 6.20

5.11.  Change State Event Request

   The following IEEE 802.11-specific message element MAY be included in
   the CAPWAP Station Configuration Request message.

   o  IEEE 802.11 WTP Radio Fail Alarm Indication, see Section 6.24

5.12.  WTP Event Request

   The following IEEE 802.11-specific message elements MAY be included
   in the CAPWAP WTP Event Request message.  More than one of each
   message element listed MAY be included.

   o  IEEE 802.11 MIC Countermeasures, see Section 6.8

   o  IEEE 802.11 RSNA Error Report from Station, see Section 6.12

   o  IEEE 802.11 Statistics, see Section 6.16







Calhoun, et al.             Standards Track                    [Page 28]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


6.  IEEE 802.11 Message Element Definitions

   The following IEEE 802.11-specific message elements are defined in
   this section.

   IEEE 802.11 Message Element                     Type Value

   IEEE 802.11 Add WLAN                               1024
   IEEE 802.11 Antenna                                1025
   IEEE 802.11 Assigned WTP BSSID                     1026
   IEEE 802.11 Delete WLAN                            1027
   IEEE 802.11 Direct Sequence Control                1028
   IEEE 802.11 Information Element                    1029
   IEEE 802.11 MAC Operation                          1030
   IEEE 802.11 MIC Countermeasures                    1031
   IEEE 802.11 Multi-Domain Capability                1032
   IEEE 802.11 OFDM Control                           1033
   IEEE 802.11 Rate Set                               1034
   IEEE 802.11 RSNA Error Report From Station         1035
   IEEE 802.11 Station                                1036
   IEEE 802.11 Station QoS Profile                    1037
   IEEE 802.11 Station Session Key                    1038
   IEEE 802.11 Statistics                             1039
   IEEE 802.11 Supported Rates                        1040
   IEEE 802.11 Tx Power                               1041
   IEEE 802.11 Tx Power Level                         1042
   IEEE 802.11 Update Station QoS                     1043
   IEEE 802.11 Update WLAN                            1044
   IEEE 802.11 WTP Quality of Service                 1045
   IEEE 802.11 WTP Radio Configuration                1046
   IEEE 802.11 WTP Radio Fail Alarm Indication        1047
   IEEE 802.11 WTP Radio Information                  1048

              Figure 8: IEEE 802.11 Binding Message Elements

6.1.  IEEE 802.11 Add WLAN

   The IEEE 802.11 Add WLAN message element is used by the AC to define
   a WLAN on the WTP.  The inclusion of this message element MUST also
   include IEEE 802.11 Information Element message elements, containing
   the following IEEE 802.11 IEs:

   Power Constraint information element

   EDCA Parameter Set information element

   QoS Capability information element




Calhoun, et al.             Standards Track                    [Page 29]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   WPA information element  [WPA]

   RSN information element

   WMM information element  [WMM]

   These IEEE 802.11 Information Elements are stored by the WTP and
   included in any Probe Responses and Beacons generated, as specified
   in the IEEE 802.11 standard [IEEE.802-11.2007].  If present, the RSN
   Information Element is sent with the IEEE 802.11 Add WLAN message
   element to instruct the WTP on the usage of the Key field.

   If cryptographic services are provided at the WTP, the WTP MUST
   observe the algorithm dictated in the Group Cipher Suite field of the
   RSN Information Element sent by the AC.  The RSN Information Element
   is used to communicate any supported algorithm, including WEP,
   Temporal Key Integrity Protocol (TKIP) and AES-CCMP.  In the case of
   static WEP keys, the RSN Information Element is still used to
   indicate the cryptographic algorithm even though no key exchange
   occurred.

   An AC MAY include additional Information Elements as desired.  The
   message element uses the following format:

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |    Radio ID   |    WLAN ID    |          Capability           |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |   Key Index   |   Key Status  |           Key Length          |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                             Key...                            |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                           Group TSC                           |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |           Group TSC           |      QoS      |   Auth Type   |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |   MAC Mode    |  Tunnel Mode  | Suppress SSID |    SSID ...
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type:   1024 for IEEE 802.11 Add WLAN

   Length:   >= 20

   Radio ID:   An 8-bit value representing the radio, whose value is
      between one (1) and 31.





Calhoun, et al.             Standards Track                    [Page 30]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   WLAN ID:   An 8-bit value specifying the WLAN Identifier.  The value
      MUST be between one (1) and 16.

   Capability:   A 16-bit value containing the Capability information
      field to be advertised by the WTP in the Probe Request and Beacon
      frames.  Each bit of the Capability field represents a different
      WTP capability, which are described in detail in
      [IEEE.802-11.2007].  The format of the field is:

        0                   1
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |E|I|C|F|P|S|B|A|M|Q|T|D|V|O|K|L|
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      E (ESS):   The AC MUST set the Extended Service Set (ESS) subfield
        to 1.

      I (IBSS):   The AC MUST set the Independent Basic Service Set
        (IBSS) subfield to 0.

      C (CF-Pollable):   The AC sets the Contention Free Pollable (CF-
        Pollable) subfield based on the table found in
        [IEEE.802-11.2007].

      F (CF-Poll Request):   The AC sets the CF-Poll Request subfield
        based on the table found in [IEEE.802-11.2007].

      P (Privacy):   The AC sets the Privacy subfield based on the
        confidentiality requirements of the WLAN, as defined in
        [IEEE.802-11.2007].

      S (Short Preamble):   The AC sets the Short Preamble subfield
        based on whether the use of short preambles is permitted on the
        WLAN, as defined in [IEEE.802-11.2007].

      B (PBCC):   The AC sets the Packet Binary Convolutional Code
        (PBCC) modulation option subfield based on whether the use of
        PBCC is permitted on the WLAN, as defined in [IEEE.802-11.2007].

      A (Channel Agility):   The AC sets the Channel Agility subfield
        based on whether the WTP is capable of supporting the High Rate
        Direct Sequence Spread Spectrum (HR/DSSS), as defined in
        [IEEE.802-11.2007].







Calhoun, et al.             Standards Track                    [Page 31]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


      M (Spectrum Management):   The AC sets the Spectrum Management
        subfield according to the value of the
        dot11SpectrumManagementRequired MIB variable, as defined in
        [IEEE.802-11.2007].

      Q (QoS):   The AC sets the Quality of Service (QoS) subfield based
        on the table found in [IEEE.802-11.2007].

      T (Short Slot Time):   The AC sets the Short Slot Time subfield
        according to the value of the WTP's currently used slot time
        value, as defined in [IEEE.802-11.2007].

      D (APSD):   The AC sets the Automatic Power Save Delivery (APSD)
        subfield according to the value of the
        dot11APSDOptionImplemented Management Information Base (MIB)
        variable, as defined in [IEEE.802-11.2007].

      V (Reserved):   The AC sets the Reserved subfield to zero, as
        defined in [IEEE.802-11.2007].

      O (DSSS-OFDM):   The AC sets the DSSS-OFDM subfield to indicate
        the use of Direct Sequence Spread Spectrum with Orthogonal
        Frequency Division Multiplexing (DSSS-OFDM), as defined in
        [IEEE.802-11.2007].

      K (Delayed Block ACK):   The AC sets the Delayed Block ACK
        subfield according to the value of the
        dot11DelayedBlockAckOptionImplemented MIB variable, as defined
        in [IEEE.802-11.2007].

      L (Immediate Block ACK):   The AC sets the Delayed Block ACK
        subfield according to the value of the
        dot11ImmediateBlockAckOptionImplemented MIB variable, as defined
        in [IEEE.802-11.2007].

   Key-Index:   The Key Index associated with the key.

   Key Status:   A 1-byte value that specifies the state and usage of
      the key that has been included.  Note this field is ignored if the
      Key Length field is set to zero (0).  The following values
      describe the key usage and its status:

      0 -  A value of zero, with the inclusion of the RSN Information
           Element means that the WLAN uses per-station encryption keys,
           and therefore the key in the 'Key' field is only used for
           multicast traffic.





Calhoun, et al.             Standards Track                    [Page 32]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


      1 -  When set to one, the WLAN employs a shared Wired Equivalent
           Privacy (WEP) key, also known as a static WEP key, and uses
           the encryption key for both unicast and multicast traffic for
           all stations.

      2 -  The value of 2 indicates that the AC will begin rekeying the
           GTK with the STA's in the BSS.  It is only valid when IEEE
           802.11 is enabled as the security policy for the BSS.

      3 -  The value of 3 indicates that the AC has completed rekeying
           the GTK and broadcast packets no longer need to be duplicated
           and transmitted with both GTK's.

   Key Length:   A 16-bit value representing the length of the Key
      field.

   Key:   A Session Key, whose length is known via the Key Length field,
      used to provide data privacy.  For encryption schemes that employ
      a separate encryption key for unicast and multicast traffic, the
      key included here only applies to multicast frames, and the cipher
      suite is specified in an accompanied RSN Information Element.  In
      these scenarios, the key and cipher information is communicated
      via the Add Station message element, see Section 4.6.8 in
      [RFC5415] and the IEEE 802.11 Station Session Key message element,
      see Section 6.15.  When used with WEP, the key field includes the
      broadcast key.  When used with CCMP, the Key field includes the
      128-bit Group Temporal Key.  When used with TKIP, the Key field
      includes the 256-bit Group Temporal Key (which consists of a 128-
      bit key used as input for TKIP key mixing, and two 64-bit keys
      used for Michael).

   Group TSC:   A 48-bit value containing the Transmit Sequence Counter
      (TSC) for the updated group key.  The WTP will set the TSC for
      broadcast/multicast frames to this value for the updated group
      key.

   QoS:   An 8-bit value specifying the default QoS policy for the WTP
      to apply to network traffic received for a non-WMM enabled STA.

      The following enumerated values are supported:

      0 -  Best Effort

      1 -  Video







Calhoun, et al.             Standards Track                    [Page 33]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


      2 -  Voice

      3 -  Background

   Auth Type:   An 8-bit value specifying the supported authentication
      type.

      The following enumerated values are supported:

      0 -  Open System

      1 -  WEP Shared Key

   MAC Mode:   This field specifies whether the WTP should support the
      WLAN in Local or Split MAC mode.  Note that the AC MUST NOT
      request a mode of operation that was not advertised by the WTP
      during the discovery process (see Section 4.6.43 in [RFC5415]).
      The following enumerated values are supported:

      0 - Local MAC:   Service for the WLAN is to be provided in Local
         MAC mode.

      1 - Split MAC:   Service for the WLAN is to be provided in Split
         MAC mode.

   Tunnel Mode:   This field specifies the frame tunneling type to be
      used for 802.11 data frames from all stations associated with the
      WLAN.  The AC MUST NOT request a mode of operation that was not
      advertised by the WTP during the discovery process (see Section
      4.6.42 in [RFC5415]).  All IEEE 802.11 management frames MUST be
      tunneled using 802.11 Tunnel mode.  The following enumerated
      values are supported:

      0 - Local Bridging:   All user traffic is to be locally bridged.

      1 - 802.3 Tunnel:   All user traffic is to be tunneled to the AC
         in 802.3 format (see Section 4.4.2 in [RFC5415]).  Note that
         this option MUST NOT be selected with Split MAC mode.

      2 - 802.11 Tunnel:   All user traffic is to be tunneled to the AC
         in 802.11 format.

   Suppress SSID:   A boolean indicating whether the SSID is to be
      advertised by the WTP.  A value of zero suppresses the SSID in the
      802.11 Beacon and Probe Response frames, while a value of one will
      cause the WTP to populate the field.





Calhoun, et al.             Standards Track                    [Page 34]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   SSID:   The SSID attribute is the service set identifier that will be
      advertised by the WTP for this WLAN.  The SSID field contains any
      ASCII character and MUST NOT exceed 32 octets in length, as
      defined in [IEEE.802-11.2007].

6.2.  IEEE 802.11 Antenna

   The IEEE 802.11 Antenna message element is communicated by the WTP to
   the AC to provide information on the antennas available.  The AC MAY
   use this element to reconfigure the WTP's antennas.  The message
   element contains the following fields:

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |    Radio ID   |   Diversity   |    Combiner   |  Antenna Cnt  |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       | Antenna Selection...
       +-+-+-+-+-+-+-+-+

   Type:   1025 for IEEE 802.11 Antenna

   Length:   >= 5

   Radio ID:   An 8-bit value representing the radio to configure, whose
      value is between one (1) and 31.

   Diversity:   An 8-bit value specifying whether the antenna is to
      provide receiver diversity.  The value of this field is the same
      as the IEEE 802.11 dot11DiversitySelectionRx MIB element, see
      [IEEE.802-11.2007].  The following enumerated values are
      supported:

      0 -  Disabled

      1 -  Enabled (may only be true if the antenna can be used as a
           receiving antenna)

   Combiner:   An 8-bit value specifying the combiner selection.  The
      following enumerated values are supported:

      1 -  Sectorized (Left)

      2 -  Sectorized (Right)







Calhoun, et al.             Standards Track                    [Page 35]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


      3 -  Omni

      4 -  Multiple Input/Multiple Output (MIMO)

   Antenna Count:   An 8-bit value specifying the number of Antenna
      Selection fields.  This value SHOULD be the same as the one found
      in the IEEE 802.11 dot11CurrentTxAntenna MIB element (see
      [IEEE.802-11.2007]).

   Antenna Selection:   One 8-bit antenna configuration value per
      antenna in the WTP, containing up to 255 antennas.  The following
      enumerated values are supported:

      1 -  Internal Antenna

      2 -  External Antenna

6.3.  IEEE 802.11 Assigned WTP BSSID

   The IEEE 802.11 Assigned WTP BSSID is only included by the WTP when
   the IEEE 802.11 WLAN Configuration Request included the IEEE 802.11
   Add WLAN message element.  The BSSID value field of this message
   element contains the BSSID that has been assigned by the WTP,
   enabling the WTP to perform its own BSSID assignment.

   The WTP is free to assign the BSSIDs the way it sees fit, but it is
   highly recommended that the WTP assign the BSSID using the following
   algorithm: BSSID = {base BSSID} + WLAN ID.

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |    Radio ID   |    WLAN ID    |           BSSID
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                             BSSID                             |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type:   1026 for IEEE 802.11 Assigned WTP BSSID

   Length:   8

   Radio ID:   An 8-bit value representing the radio, whose value is
      between one (1) and 31.

   WLAN ID:   An 8-bit value specifying the WLAN Identifier.  The value
      MUST be between one (1) and 16.





Calhoun, et al.             Standards Track                    [Page 36]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   BSSID:   The BSSID assigned by the WTP for the WLAN created as a
      result of receiving an IEEE 802.11 Add WLAN.

6.4.  IEEE 802.11 Delete WLAN

   The IEEE 802.11 Delete WLAN message element is used to inform the WTP
   that a previously created WLAN is to be deleted, and contains the
   following fields:

      0                   1
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    Radio ID   |    WLAN ID    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type:   1027 for IEEE 802.11 Delete WLAN

   Length:   2

   Radio ID:   An 8-bit value representing the radio, whose value is
      between one (1) and 31.

   WLAN ID:   An 8-bit value specifying the WLAN Identifier.  The value
      MUST be between one (1) and 16.

6.5.  IEEE 802.11 Direct Sequence Control

   The IEEE 802.11 Direct Sequence Control message element is a bi-
   directional element.  When sent by the WTP, it contains the current
   state.  When sent by the AC, the WTP MUST adhere to the values
   provided.  This element is only used for IEEE 802.11b radios.  The
   message element has the following fields.

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |    Radio ID   |    Reserved   | Current Chan  |  Current CCA  |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                    Energy Detect Threshold                    |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type:   1028 for IEEE 802.11 Direct Sequence Control

   Length:   8







Calhoun, et al.             Standards Track                    [Page 37]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   Radio ID:   An 8-bit value representing the radio to configure, whose
      value is between one (1) and 31.

   Reserved:   All implementations complying with this protocol MUST set
      to zero any bits that are reserved in the version of the protocol
      supported by that implementation.  Receivers MUST ignore all bits
      not defined for the version of the protocol they support.

   Current Channel:   This attribute contains the current operating
      frequency channel of the Direct Sequence Spread Spectrum (DSSS)
      PHY.  This value comes from the IEEE 802.11 dot11CurrentChannel
      MIB element (see [IEEE.802-11.2007]).

   Current CCA:   The current Clear Channel Assessment (CCA) method in
      operation, whose value can be found in the IEEE 802.11
      dot11CCAModeSupported MIB element (see [IEEE.802-11.2007]).  Valid
      values are:

         1 - energy detect only (edonly)

         2 - carrier sense only (csonly)

         4 - carrier sense and energy detect (edandcs)

         8 - carrier sense with timer (cswithtimer)

        16 - high rate carrier sense and energy detect (hrcsanded)

   Energy Detect Threshold:   The current Energy Detect Threshold being
      used by the DSSS PHY.  The value can be found in the IEEE 802.11
      dot11EDThreshold MIB element (see [IEEE.802-11.2007]).

6.6.  IEEE 802.11 Information Element

   The IEEE 802.11 Information Element is used to communicate any IE
   defined in the IEEE 802.11 protocol.  The data field contains the raw
   IE as it would be included within an IEEE 802.11 MAC management
   message.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Radio ID    |    WLAN ID    |B|P| Reserved  |Info Element...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+







Calhoun, et al.             Standards Track                    [Page 38]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   Type:   1029 for IEEE 802.11 Information Element

   Length:   >= 4

   Radio ID:   An 8-bit value representing the radio, whose value is
      between one (1) and 31.

   WLAN ID:   An 8-bit value specifying the WLAN Identifier.  The value
      MUST be between one (1) and 16.

   B:   When set, the WTP is to include the Information Element in IEEE
      802.11 Beacons associated with the WLAN.

   P:   When set, the WTP is to include the Information Element in Probe
      Responses associated with the WLAN.

   Reserved:   All implementations complying with this protocol MUST set
      to zero any bits that are reserved in the version of the protocol
      supported by that implementation.  Receivers MUST ignore all bits
      not defined for the version of the protocol they support.

   Info Element:   The IEEE 802.11 Information Element, which includes
      the type, length, and value field.

6.7.  IEEE 802.11 MAC Operation

   The IEEE 802.11 MAC Operation message element is sent by the AC to
   set the IEEE 802.11 MAC parameters on the WTP, and contains the
   following fields.

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |    Radio ID   |    Reserved   |         RTS Threshold         |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |  Short Retry  |  Long Retry   |    Fragmentation Threshold    |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                       Tx MSDU Lifetime                        |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                       Rx MSDU Lifetime                        |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type:   1030 for IEEE 802.11 MAC Operation

   Length:   16






Calhoun, et al.             Standards Track                    [Page 39]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   Radio ID:   An 8-bit value representing the radio to configure, whose
      value is between one (1) and 31.

   Reserved:   All implementations complying with this protocol MUST set
      to zero any bits that are reserved in the version of the protocol
      supported by that implementation.  Receivers MUST ignore all bits
      not defined for the version of the protocol they support.

   RTS Threshold:   This attribute indicates the number of octets in an
      MAC Protocol Data Unit (MPDU), below which a Request To Send/Clear
      To Send (RTS/CTS) handshake MUST NOT be performed.  An RTS/CTS
      handshake MUST be performed at the beginning of any frame exchange
      sequence where the MPDU is of type Data or Management, the MPDU
      has an individual address in the Address1 field, and the length of
      the MPDU is greater than this threshold.  Setting this attribute
      to be larger than the maximum MSDU size MUST have the effect of
      turning off the RTS/CTS handshake for frames of Data or Management
      type transmitted by this STA.  Setting this attribute to zero MUST
      have the effect of turning on the RTS/CTS handshake for all frames
      of Data or Management type transmitted by this STA.  The default
      value of this attribute MUST be 2347.  The value of this field
      comes from the IEEE 802.11 dot11RTSThreshold MIB element, (see
      [IEEE.802-11.2007]).

   Short Retry:   This attribute indicates the maximum number of
      transmission attempts of a frame, the length of which is less than
      or equal to RTSThreshold, that MUST be made before a failure
      condition is indicated.  The default value of this attribute MUST
      be 7.  The value of this field comes from the IEEE 802.11
      dot11ShortRetryLimit MIB element, (see [IEEE.802-11.2007]).

   Long Retry:   This attribute indicates the maximum number of
      transmission attempts of a frame, the length of which is greater
      than dot11RTSThreshold, that MUST be made before a failure
      condition is indicated.  The default value of this attribute MUST
      be 4.  The value of this field comes from the IEEE 802.11
      dot11LongRetryLimit MIB element, (see [IEEE.802-11.2007]).

   Fragmentation Threshold:   This attribute specifies the current
      maximum size, in octets, of the MPDU that MAY be delivered to the
      PHY.  A MAC Service Data Unit (MSDU) MUST be broken into fragments
      if its size exceeds the value of this attribute after adding MAC
      headers and trailers.  An MSDU or MAC Management Protocol Data
      Unit (MMPDU) MUST be fragmented when the resulting frame has an
      individual address in the Address1 field, and the length of the
      frame is larger than this threshold.  The default value for this
      attribute MUST be the lesser of 2346 or the aMPDUMaxLength of the
      attached PHY and MUST never exceed the lesser of 2346 or the



Calhoun, et al.             Standards Track                    [Page 40]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


      aMPDUMaxLength of the attached PHY.  The value of this attribute
      MUST never be less than 256.  The value of this field comes from
      the IEEE 802.11 dot11FragmentationThreshold MIB element, (see
      [IEEE.802-11.2007]).

   Tx MSDU Lifetime:   This attribute specifies the elapsed time in Time
      Units (TUs), after the initial transmission of an MSDU, after
      which further attempts to transmit the MSDU MUST be terminated.
      The default value of this attribute MUST be 512.  The value of
      this field comes from the IEEE 802.11 dot11MaxTransmitMSDULifetime
      MIB element, (see [IEEE.802-11.2007]).

   Rx MSDU Lifetime:   This attribute specifies the elapsed time in TU,
      after the initial reception of a fragmented MMPDU or MSDU, after
      which further attempts to reassemble the MMPDU or MSDU MUST be
      terminated.  The default value MUST be 512.  The value of this
      field comes from the IEEE 802.11 dot11MaxReceiveLifetime MIB
      element, (see [IEEE.802-11.2007]).

6.8.  IEEE 802.11 MIC Countermeasures

   The IEEE 802.11 MIC Countermeasures message element is sent by the
   WTP to the AC to indicate the occurrence of a MIC failure.  For more
   information on MIC failure events, see the
   dot11RSNATKIPCounterMeasuresInvoked MIB element definition in
   [IEEE.802-11.2007].

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Radio ID    |    WLAN ID    |          MAC Address          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                          MAC Address                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type:   1031 for IEEE 802.11 MIC Countermeasures

   Length:   8

   Radio ID:   The Radio Identifier, whose value is between one (1) and
      31, typically refers to some interface index on the WTP.

   WLAN ID:   This 8-bit unsigned integer includes the WLAN Identifier,
      on which the MIC failure occurred.  The value MUST be between one
      (1) and 16.






Calhoun, et al.             Standards Track                    [Page 41]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   MAC Address:   The MAC Address of the station that caused the MIC
      failure.

6.9.  IEEE 802.11 Multi-Domain Capability

   The IEEE 802.11 Multi-Domain Capability message element is used by
   the AC to inform the WTP of regulatory limits.  The AC will transmit
   one message element per frequency band to indicate the regulatory
   constraints in that domain.  The message element contains the
   following fields.

         0                   1                   2                   3
         0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |    Radio ID   |    Reserved   |        First Channel #        |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |       Number of Channels      |       Max Tx Power Level      |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type:   1032 for IEEE 802.11 Multi-Domain Capability

   Length:   8

   Radio ID:   An 8-bit value representing the radio to configure, whose
      value is between one (1) and 31.

   Reserved:   All implementations complying with this protocol MUST set
      to zero any bits that are reserved in the version of the protocol
      supported by that implementation.  Receivers MUST ignore all bits
      not defined for the version of the protocol they support.

   First Channel #:   This attribute indicates the value of the lowest
      channel number in the sub-band for the associated domain country
      string.  The value of this field comes from the IEEE 802.11
      dot11FirstChannelNumber MIB element (see [IEEE.802-11.2007]).

   Number of Channels:   This attribute indicates the value of the total
      number of channels allowed in the sub-band for the associated
      domain country string (see Section 6.23).  The value of this field
      comes from the IEEE 802.11 dot11NumberofChannels MIB element (see
      [IEEE.802-11.2007]).

   Max Tx Power Level:   This attribute indicates the maximum transmit
      power, in dBm, allowed in the sub-band for the associated domain
      country string (see Section 6.23).  The value of this field comes
      from the IEEE 802.11 dot11MaximumTransmitPowerLevel MIB element
      (see [IEEE.802-11.2007]).




Calhoun, et al.             Standards Track                    [Page 42]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


6.10.  IEEE 802.11 OFDM Control

   The IEEE 802.11 Orthogonal Frequency Division Multiplexing (OFDM)
   Control message element is a bi-directional element.  When sent by
   the WTP, it contains the current state.  When sent by the AC, the WTP
   MUST adhere to the received values.  This message element is only
   used for 802.11a radios and contains the following fields:

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |    Radio ID   |    Reserved   | Current Chan  |  Band Support |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                         TI Threshold                          |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type:   1033 for IEEE 802.11 OFDM Control

   Length:   8

   Radio ID:   An 8-bit value representing the radio to configure, whose
      value is between one (1) and 31.

   Reserved:   All implementations complying with this protocol MUST set
      to zero any bits that are reserved in the version of the protocol
      supported by that implementation.  Receivers MUST ignore all bits
      not defined for the version of the protocol they support.

   Current Channel:   This attribute contains the current operating
      frequency channel of the OFDM PHY.  The value of this field comes
      from the IEEE 802.11 dot11CurrentFrequency MIB element (see
      [IEEE.802-11.2007]).

   Band Supported:   The capability of the OFDM PHY implementation to
      operate in the three Unlicensed National Information
      Infrastructure (U-NII) bands.  The value of this field comes from
      the IEEE 802.11 dot11FrequencyBandsSupported MIB element (see
      [IEEE.802-11.2007]), coded as a bit field, whose values are:

      Bit 0 -  capable of operating in the 5.15-5.25 GHz band

      Bit 1 -  capable of operating in the 5.25-5.35 GHz band

      Bit 2 -  capable of operating in the 5.725-5.825 GHz band







Calhoun, et al.             Standards Track                    [Page 43]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


      Bit 3 -  capable of operating in the 5.47-5.725 GHz band

      Bit 4 -  capable of operating in the lower Japanese 5.25 GHz band

      Bit 5 -  capable of operating in the 5.03-5.091 GHz band

      Bit 6 -  capable of operating in the 4.94-4.99 GHz band

      For example, for an implementation capable of operating in the
      5.15-5.35 GHz bands, this attribute would take the value 3.

   TI Threshold:   The threshold being used to detect a busy medium
      (frequency).  CCA MUST report a busy medium upon detecting the
      RSSI above this threshold.  The value of this field comes from the
      IEEE 802.11 dot11TIThreshold MIB element (see [IEEE.802-11.2007]).

6.11.  IEEE 802.11 Rate Set

   The rate set message element value is sent by the AC and contains the
   supported operational rates.  It contains the following fields.

         0                   1                   2                   3
         0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |    Radio ID   |                 Rate Set...
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type:   1034 for IEEE 802.11 Rate Set

   Length:   >= 3

   Radio ID:   An 8-bit value representing the radio to configure, whose
      value is between one (1) and 31.

   Rate Set:   The AC generates the Rate Set that the WTP is to include
      in its Beacon and Probe messages.  The length of this field is
      between 2 and 8 bytes.  The value of this field comes from the
      IEEE 802.11 dot11OperationalRateSet MIB element (see
      [IEEE.802-11.2007]).

6.12.  IEEE 802.11 RSNA Error Report From Station

   The IEEE 802.11 RSN Error Report From Station message element is used
   by a WTP to send RSN error reports to the AC.  The WTP does not need
   to transmit any reports that do not include any failures.  The fields
   from this message element come from the IEEE 802.11
   Dot11RSNAStatsEntry table, see [IEEE.802-11.2007].




Calhoun, et al.             Standards Track                    [Page 44]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                       Client MAC Address                      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |      Client MAC Address       |             BSSID             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                             BSSID                             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Radio ID    |    WLAN ID    |           Reserved            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        TKIP ICV Errors                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                    TKIP Local MIC Failures                    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                   TKIP Remote MIC Failures                    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                          CCMP Replays                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        CCMP Decrypt Errors                    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                          TKIP Replays                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


   Type:   1035 for IEEE 802.11 RSNA Error Report From Station

   Length:   40

   Client MAC Address:   The Client MAC Address of the station.

   BSSID:   The BSSID on which the failures are being reported.

   Radio ID:   The Radio Identifier, whose value is between one (1) and
      31, typically refers to some interface index on the WTP.

   WLAN ID:   The WLAN ID on which the RSNA failures are being reported.
      The value MUST be between one (1) and 16.

   Reserved:   All implementations complying with this protocol MUST set
      to zero any bits that are reserved in the version of the protocol
      supported by that implementation.  Receivers MUST ignore all bits
      not defined for the version of the protocol they support.








Calhoun, et al.             Standards Track                    [Page 45]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   TKIP ICV Errors:   A 32-bit value representing the number of Temporal
      Key Integrity Protocol (TKIP) (as defined in [IEEE.802-11.2007])
      ICV errors encountered when decrypting packets from the station.
      The value of this field comes from the IEEE 802.11
      dot11RSNAStatsTKIPICVErrors MIB element (see [IEEE.802-11.2007]).

   TKIP Local MIC Failures:   A 32-bit value representing the number of
      MIC failures encountered when checking the integrity of packets
      received from the station.  The value of this field comes from the
      IEEE 802.11 dot11RSNAStatsTKIPLocalMICFailures MIB element (see
      [IEEE.802-11.2007]).

   TKIP Remote MIC Failures:   A 32-bit value representing the number of
      MIC failures reported by the station encountered (possibly via the
      EAPOL-Key frame).  The value of this field comes from the IEEE
      802.11 dot11RSNAStatsTKIPRemoteMICFailures MIB element (see
      [IEEE.802-11.2007]).

   CCMP Replays:   A 32-bit value representing the number of CCMP MPDUs
      discarded by the replay detection mechanism.  The value of this
      field comes from the IEEE 802.11 dot11RSNACCMPReplays MIB element
      (see [IEEE.802-11.2007]).

   CCMP Decrypt Errors:   A 32-bit value representing the number of CCMP
      MDPUs discarded by the decryption algorithm.  The value of this
      field comes from the IEEE 802.11 dot11RSNACCMPDecryptErrors MIB
      element (see [IEEE.802-11.2007]).

   TKIP Replays:   A 32-bit value representing the number of TKIP
      Replays detected in frames received from the station.  The value
      of this field comes from the IEEE 802.11 dot11RSNAStatsTKIPReplays
      MIB element (see [IEEE.802-11.2007]).

6.13.  IEEE 802.11 Station

   The IEEE 802.11 Station message element accompanies the Add Station
   message element, and is used to deliver IEEE 802.11 station policy
   from the AC to the WTP.

   The latest IEEE 802.11 Station message element overrides any
   previously received message elements.

   If the QoS field is set, the WTP MUST observe and provide policing of
   the 802.11e priority tag to ensure that it does not exceed the value
   provided by the AC.






Calhoun, et al.             Standards Track                    [Page 46]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    Radio ID   |        Association ID         |     Flags     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                           MAC Address                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |          MAC Address          |          Capabilities         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   WLAN ID     |Supported Rates|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type:   1036 for IEEE 802.11 Station

   Length:   >= 14

   Radio ID:   An 8-bit value representing the radio, whose value is
      between one (1) and 31.

   Association ID:   A 16-bit value specifying the IEEE 802.11
      Association Identifier.

   Flags:   All implementations complying with this protocol MUST set to
      zero any bits that are reserved in the version of the protocol
      supported by that implementation.  Receivers MUST ignore all bits
      not defined for the version of the protocol they support.

   MAC Address:   The station's MAC Address

   Capabilities:   A 16-bit field containing the IEEE 802.11
      Capabilities Information Field to use with the station.

   WLAN ID:   An 8-bit value specifying the WLAN Identifier.  The value
      MUST be between one (1) and 16.

   Supported Rates:   The variable-length field containing the supported
      rates to be used with the station, as found in the IEEE 802.11
      dot11OperationalRateSet MIB element (see [IEEE.802-11.2007]).
      This field MUST NOT exceed 126 octets and specifies the set of
      data rates at which the station may transmit data, where each
      octet represents a data rate.

6.14.  IEEE 802.11 Station QoS Profile

   The IEEE 802.11 Station QoS Profile message element contains the
   maximum IEEE 802.11e priority tag that may be used by the station.
   Any packet received that exceeds the value encoded in this message
   element MUST be tagged using the maximum value permitted by to the



Calhoun, et al.             Standards Track                    [Page 47]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   user.  The priority tag MUST be between zero (0) and seven (7).  This
   message element MUST NOT be present without the IEEE 802.11 Station
   (see Section 6.13) message element.

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                           MAC Address                         |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |          MAC Address          |         Reserved        |8021p|
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type:   1037 for IEEE 802.11 Station QoS Profile

   Length:   8

   MAC Address:   The station's MAC Address

   Reserved:   All implementations complying with this protocol MUST set
      to zero any bits that are reserved in the version of the protocol
      supported by that implementation.  Receivers MUST ignore all bits
      not defined for the version of the protocol they support.

   8021p:   The maximum 802.1p priority value that the WTP will allow in
      the Traffic Identifier (TID) field in the extended 802.11e QoS
      Data header.

6.15.  IEEE 802.11 Station Session Key

   The IEEE 802.11 Station Session Key message element is sent by the AC
   to provision encryption keys, or to configure an access policy, on
   the WTP.  This message element MUST NOT be present without the IEEE
   802.11 Station (see Section 6.13) message element, and MUST NOT be
   sent if the WTP had not specifically advertised support for the
   requested encryption scheme, through the WTP Descriptor Message
   Element's Encryption Capabilities field (see Section 8.1).

   When the Key field is non-zero in length, the RSN Information Element
   MUST be sent along with the IEEE 802.11 Station Session Key in order
   to instruct the WTP on the usage of the Key field.  The WTP MUST
   observe the Authentication and Key Management (AKM) field of the RSN
   Information Element in order to identify the authentication protocol
   to be enforced with the station.

   If cryptographic services are provided at the WTP, the WTP MUST
   observe the algorithm dictated in the Pairwise Cipher Suite field of
   the RSN Information Element sent by the AC.  The RSN Information
   Element included here is the one sent by the AC in the third message



Calhoun, et al.             Standards Track                    [Page 48]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   of the 4-Way Key Handshake, which specifies which cipher is to be
   applied to provide encryption and decryption services with the
   station.  The RSN Information Element is used to communicate any
   supported algorithm, including WEP, TKIP, and AES-CCMP.  In the case
   of static WEP keys, the RSN Information Element is still used to
   indicate the cryptographic algorithm even though no key exchange
   occurred.

   If the IEEE 802.11 Station Session Key message element's 'AKM-Only'
   bit is set, the WTP MUST drop all IEEE 802.11 packets that are not
   part of the Authentication and Key Management (AKM), such as EAP.
   Note that AKM-Only MAY be set while an encryption key is in force,
   requiring that the AKM packets be encrypted.  Once the station has
   successfully completed authentication via the AKM, the AC MUST send a
   new Add Station message element to remove the AKM-Only restriction,
   and optionally push the session key down to the WTP.

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                           MAC Address                         |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |          MAC Address          |A|C|           Flags           |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                         Pairwise TSC                          |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |         Pairwise TSC          |         Pairwise RSC          |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                         Pairwise RSC                          |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |    Key...
       +-+-+-+-+-+-+-+-

   Type:   1038 for IEEE 802.11 Station Session Key

   Length:   >= 25

   MAC Address:   The station's MAC Address

   Flags:   All implementations complying with this protocol MUST set to
      zero any bits that are reserved in the version of the protocol
      supported by that implementation.  Receivers MUST ignore all bits
      not defined for the version of the protocol they support.  The
      following bits are defined:







Calhoun, et al.             Standards Track                    [Page 49]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


      A:   The 1-bit AKM-Only field is set by the AC to inform the WTP
           that is MUST NOT accept any 802.11 Data Frames other than AKM
           frames.  This is the equivalent of the WTP's IEEE 802.1X port
           for the station to be in the closed state.  When set, the WTP
           MUST drop any non-IEEE 802.1X packets it receives from the
           station.

      C:   The 1-bit field is set by the AC to inform the WTP that
           encryption services will be provided by the AC.  When set,
           the WTP SHOULD police frames received from stations to ensure
           that they are properly encrypted as specified in the RSN
           Information Element, but does not need to take specific
           cryptographic action on the frame.  Similarly, for
           transmitted frames, the WTP only needs to forward already
           encrypted frames.  Since packets received by the WTP will be
           encrypted, the WTP cannot modify the contents of the packets,
           including modifying the DSCP markings of the encapsulated
           packet.  In this case, this function would be the
           responsibility of the AC.

   Pairwise TSC:   The 6-byte Transmit Sequence Counter (TSC) field to
      use for unicast packets transmitted to the station.

   Pairwise RSC:   The 6-byte Receive Sequence Counter (RSC) to use for
      unicast packets received from the station.

   Key:   The pairwise key the WTP is to use when encrypting traffic to/
      from the station.  The format of the keys differs based on the
      crypto algorithm used.  For unicast WEP keys, the Key field
      consists of the actual unicast encryption key (note, this is used
      when WEP is used in conjunction with 802.1X, and therefore a
      unicast encryption key exists).  When used with CCMP, the Key
      field includes the 128-bit Temporal Key.  When used with TKIP, the
      Key field includes the 256-bit Temporal Key (which consists of a
      128-bit key used as input for TKIP key mixing, and two 64-bit keys
      used for Michael).

6.16.  IEEE 802.11 Statistics

   The IEEE 802.11 Statistics message element is sent by the WTP to
   transmit its current statistics, and it contains the following
   fields.  All of the fields in this message element are set to zero
   upon WTP initialization.  The fields will roll over when they reach
   their maximum value of 4294967295.  Due to the nature of each counter
   representing different data points, the rollover event will vary






Calhoun, et al.             Standards Track                    [Page 50]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   greatly across each field.  Applications or human operators using
   these counters need to be aware of the minimal possible times between
   rollover events in order to make sure that no consecutive rollover
   events are missed.

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |    Radio ID   |                   Reserved                    |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                       Tx Fragment Count                       |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                       Multicast Tx Count                      |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                          Failed Count                         |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                          Retry Count                          |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                      Multiple Retry Count                     |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                     Frame Duplicate Count                     |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                       RTS Success Count                       |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                       RTS Failure Count                       |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                       ACK Failure Count                       |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                       Rx Fragment Count                       |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                       Multicast RX Count                      |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                        FCS Error  Count                       |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                        Tx Frame Count                         |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                       Decryption Errors                       |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                  Discarded QoS Fragment Count                 |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                    Associated Station Count                   |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                  QoS CF Polls Received Count                  |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                   QoS CF Polls Unused Count                   |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                  QoS CF Polls Unusable Count                  |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



Calhoun, et al.             Standards Track                    [Page 51]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   Type:   1039 for IEEE 802.11 Statistics

   Length:   80

   Radio ID:   An 8-bit value representing the radio, whose value is
      between one (1) and 31.

   Reserved:   All implementations complying with this protocol MUST set
      to zero any bits that are reserved in the version of the protocol
      supported by that implementation.  Receivers MUST ignore all bits
      not defined for the version of the protocol they support.

   Tx Fragment Count:   A 32-bit value representing the number of
      fragmented frames transmitted.  The value of this field comes from
      the IEEE 802.11 dot11TransmittedFragmentCount MIB element (see
      [IEEE.802-11.2007]).

   Multicast Tx Count:   A 32-bit value representing the number of
      multicast frames transmitted.  The value of this field comes from
      the IEEE 802.11 dot11MulticastTransmittedFrameCount MIB element
      (see [IEEE.802-11.2007]).

   Failed Count:   A 32-bit value representing the transmit excessive
      retries.  The value of this field comes from the IEEE 802.11
      dot11FailedCount MIB element (see [IEEE.802-11.2007]).

   Retry Count:   A 32-bit value representing the number of transmit
      retries.  The value of this field comes from the IEEE 802.11
      dot11RetryCount MIB element (see [IEEE.802-11.2007]).

   Multiple Retry Count:   A 32-bit value representing the number of
      transmits that required more than one retry.  The value of this
      field comes from the IEEE 802.11 dot11MultipleRetryCount MIB
      element (see [IEEE.802-11.2007]).

   Frame Duplicate Count:   A 32-bit value representing the duplicate
      frames received.  The value of this field comes from the IEEE
      802.11 dot11FrameDuplicateCount MIB element (see
      [IEEE.802-11.2007]).

   RTS Success Count:   A 32-bit value representing the number of
      successfully transmitted Ready To Send (RTS).  The value of this
      field comes from the IEEE 802.11 dot11RTSSuccessCount MIB element
      (see [IEEE.802-11.2007]).







Calhoun, et al.             Standards Track                    [Page 52]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   RTS Failure Count:   A 32-bit value representing the failed
      transmitted RTS.  The value of this field comes from the IEEE
      802.11 dot11RTSFailureCount MIB element (see [IEEE.802-11.2007]).

   ACK Failure Count:   A 32-bit value representing the number of failed
      acknowledgements.  The value of this field comes from the IEEE
      802.11 dot11ACKFailureCount MIB element (see [IEEE.802-11.2007]).

   Rx Fragment Count:   A 32-bit value representing the number of
      fragmented frames received.  The value of this field comes from
      the IEEE 802.11 dot11ReceivedFragmentCount MIB element (see
      [IEEE.802-11.2007]).

   Multicast RX Count:   A 32-bit value representing the number of
      multicast frames received.  The value of this field comes from the
      IEEE 802.11 dot11MulticastReceivedFrameCount MIB element (see
      [IEEE.802-11.2007]).

   FCS Error Count:   A 32-bit value representing the number of FCS
      failures.  The value of this field comes from the IEEE 802.11
      dot11FCSErrorCount MIB element (see [IEEE.802-11.2007]).

   Decryption Errors:   A 32-bit value representing the number of
      Decryption errors that occurred on the WTP.  Note that this field
      is only valid in cases where the WTP provides encryption/
      decryption services.  The value of this field comes from the IEEE
      802.11 dot11WEPUndecryptableCount MIB element (see
      [IEEE.802-11.2007]).

   Discarded QoS Fragment Count:   A 32-bit value representing the
      number of discarded QoS fragments received.  The value of this
      field comes from the IEEE 802.11 dot11QoSDiscardedFragmentCount
      MIB element (see [IEEE.802-11.2007]).

   Associated Station Count:   A 32-bit value representing the number of
      number of associated stations.  The value of this field comes from
      the IEEE 802.11 dot11AssociatedStationCount MIB element (see
      [IEEE.802-11.2007]).

   QoS CF Polls Received Count:   A 32-bit value representing the number
      of (+)CF-Polls received.  The value of this field comes from the
      IEEE 802.11 dot11QosCFPollsReceivedCount MIB element (see
      [IEEE.802-11.2007]).

   QoS CF Polls Unused Count:   A 32-bit value representing the number
      of (+)CF-Polls that have been received, but not used.  The value
      of this field comes from the IEEE 802.11
      dot11QosCFPollsUnusedCount MIB element (see [IEEE.802-11.2007]).



Calhoun, et al.             Standards Track                    [Page 53]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   QoS CF Polls Unusable Count:   A 32-bit value representing the number
      of (+)CF-Polls that have been received, but could not be used due
      to the Transmission Opportunity (TXOP) size being smaller than the
      time that is required for one frame exchange sequence.  The value
      of this field comes from the IEEE 802.11
      dot11QosCFPollsUnusableCount MIB element (see [IEEE.802-11.2007]).

6.17.  IEEE 802.11 Supported Rates

   The IEEE 802.11 Supported Rates message element is sent by the WTP to
   indicate the rates that it supports, and contains the following
   fields.

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |    Radio ID   |               Supported Rates...
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type:   1040 for IEEE 802.11 Supported Rates

   Length:   >= 3

   Radio ID:   An 8-bit value representing the radio, whose value is
      between one (1) and 31.

   Supported Rates:   The WTP includes the Supported Rates that its
      hardware supports.  The format is identical to the Rate Set
      message element and is between 2 and 8 bytes in length.

6.18.  IEEE 802.11 Tx Power

   The IEEE 802.11 Tx Power message element value is bi-directional.
   When sent by the WTP, it contains the current power level of the
   radio in question.  When sent by the AC, it contains the power level
   to which the WTP MUST adhere.

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |    Radio ID   |    Reserved   |        Current Tx Power       |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type:   1041 for IEEE 802.11 Tx Power







Calhoun, et al.             Standards Track                    [Page 54]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   Length:   4

   Radio ID:   An 8-bit value representing the radio to configure, whose
      value is between one (1) and 31.

   Reserved:   All implementations complying with this protocol MUST set
      to zero any bits that are reserved in the version of the protocol
      supported by that implementation.  Receivers MUST ignore all bits
      not defined for the version of the protocol they support.

   Current Tx Power:   This attribute contains the current transmit
      output power in mW, as described in the dot11CurrentTxPowerLevel
      MIB variable, see [IEEE.802-11.2007].

6.19.  IEEE 802.11 Tx Power Level

   The IEEE 802.11 Tx Power Level message element is sent by the WTP and
   contains the different power levels supported.  The values found in
   this message element are found in the IEEE 802.11
   Dot11PhyTxPowerEntry MIB table, see [IEEE.802-11.2007].

   The value field contains the following:

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |    Radio ID   |   Num Levels  |        Power Level [n]        |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type:   1042 for IEEE 802.11 Tx Power Level

   Length:   >= 4

   Radio ID:   An 8-bit value representing the radio to configure, whose
      value is between one (1) and 31.

   Num Levels:   The number of power level attributes.  The value of
      this field comes from the IEEE 802.11
      dot11NumberSupportedPowerLevels MIB element (see
      [IEEE.802-11.2007]).

   Power Level:   Each power level field contains a supported power
      level, in mW.  The value of this field comes from the
      corresponding IEEE 802.11 dot11TxPowerLevel[n] MIB element, see
      [IEEE.802-11.2007].






Calhoun, et al.             Standards Track                    [Page 55]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


6.20.  IEEE 802.11 Update Station QoS

   The IEEE 802.11 Update Station QoS message element is used to change
   the Quality of Service policy on the WTP for a given station.  The
   QoS tags included in this message element are to be applied to
   packets received at the WTP from the station indicated through the
   MAC Address field.  This message element overrides the default values
   provided through the IEEE 802.11 WTP Quality of Service message
   element (see Section 6.22).  Any tagging performed by the WTP MUST be
   directly applied to the packets received from the station, as well as
   the CAPWAP tunnel, if the packets are tunneled to the AC.  See
   Section 2.6 for more information.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Radio ID    |                  MAC Address                  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |          MAC Address          |       QoS Sub-Element...      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type:   1043 for IEEE 802.11 Update Station QoS

   Length:   8

   Radio ID:   The Radio Identifier, whose value is between one (1) and
      31, typically refers to some interface index on the WTP.

   MAC Address:   The station's MAC Address.

   QoS Sub-Element:   The IEEE 802.11 WTP Quality of Service message
      element contains four QoS sub-elements, one for every QoS profile.
      The order of the QoS profiles are Voice, Video, Best Effort, and
      Background.

      0                   1
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Reserved|8021p|RSV| DSCP Tag  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


      Reserved:   All implementations complying with this protocol MUST
         set to zero any bits that are reserved in the version of the
         protocol supported by that implementation.  Receivers MUST
         ignore all bits not defined for the version of the protocol
         they support.




Calhoun, et al.             Standards Track                    [Page 56]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


      8021p:   The 3-bit 802.1p priority value to use if packets are to
         be IEEE 802.1p tagged.  This field is used only if the 'P' bit
         in the WTP Quality of Service message element was set;
         otherwise, its contents MUST be ignored.

      RSV:   All implementations complying with this protocol MUST set
         to zero any bits that are reserved in the version of the
         protocol supported by that implementation.  Receivers MUST
         ignore all bits not defined for the version of the protocol
         they support.

      DSCP Tag:   The 6-bit DSCP label to use if packets are eligible to
         be DSCP tagged, specifically an IPv4 or IPv6 packet (see
         [RFC2474]).  This field is used only if the 'D' bit in the WTP
         Quality of Service message element was set; otherwise, its
         contents MUST be ignored.

6.21.  IEEE 802.11 Update WLAN

   The IEEE 802.11 Update WLAN message element is used by the AC to
   define a wireless LAN on the WTP.  The inclusion of this message
   element MUST also include the IEEE 802.11 Information Element message
   element, containing the following 802.11 IEs:

   Power Constraint information element

   WPA information element  [WPA]

   RSN information element

   Enhanced Distributed Channel Access (EDCA) Parameter Set information
      element

   QoS Capability information element

   WMM information element  [WMM]

   These IEEE 802.11 Information Elements are stored by the WTP and
   included in any Probe Responses and Beacons generated, as specified
   in the IEEE 802.11 standard [IEEE.802-11.2007].

   If cryptographic services are provided at the WTP, the WTP MUST
   observe the algorithm dictated in the Group Cipher Suite field of the
   RSN Information Element sent by the AC.  The RSN Information Element
   is used to communicate any supported algorithm, including WEP, TKIP,
   and AES-CCMP.  In the case of static WEP keys, the RSN Information
   Element is still used to indicate the cryptographic algorithm even
   though no key exchange occurred.



Calhoun, et al.             Standards Track                    [Page 57]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   The message element uses the following format:

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |    Radio ID   |     WLAN ID   |           Capability          |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |   Key Index   |   Key Status  |           Key Length          |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                             Key...                            |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type:   1044 for IEEE 802.11 Update WLAN

   Length:   >= 8

   Radio ID:   An 8-bit value representing the radio, whose value is
      between one (1) and 31.

   WLAN ID:   An 8-bit value specifying the WLAN Identifier.  The value
      MUST be between one (1) and 16.

   Capability:   A 16-bit value containing the Capability information
      field to be advertised by the WTP in the Probe Request and Beacon
      frames.  Each bit of the Capability field represents a different
      WTP capability, which are described in detail in
      [IEEE.802-11.2007].  The format of the field is:

        0                   1
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |E|I|C|F|P|S|B|A|M|Q|T|D|V|O|K|L|
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      E (ESS):   The AC MUST set the Extended Service Set (ESS) subfield
        to 1.

      I (IBSS):   The AC MUST set the Independent Basic Service Set
        (IBSS) subfield to 0.

      C (CF-Pollable):   The AC sets the Contention Free Pollable (CF-
        Pollable) subfield based on the table found in
        [IEEE.802-11.2007].

      F (CF-Poll Request):   The AC sets the CF-Poll Request subfield
        based on the table found in [IEEE.802-11.2007].





Calhoun, et al.             Standards Track                    [Page 58]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


      P (Privacy):   The AC sets the Privacy subfield based on the
        confidentiality requirements of the WLAN, as defined in
        [IEEE.802-11.2007].

      S (Short Preamble):   The AC sets the Short Preamble subfield
        based on whether the use of short preambles are permitted on the
        WLAN, as defined in [IEEE.802-11.2007].

      B (PBCC):   The AC sets the Packet Binary Convolutional Code
        (PBCC) modulation option subfield based on whether the use of
        PBCC is permitted on the WLAN, as defined in [IEEE.802-11.2007].

      A (Channel Agility):   The AC sets the Channel Agility subfield
        based on whether the WTP is capable of supporting the High Rate
        Direct Sequence Spread Spectrum (HR/DSSS), as defined in
        [IEEE.802-11.2007].

      M (Spectrum Management):   The AC sets the Spectrum Management
        subfield according to the value of the
        dot11SpectrumManagementRequired MIB variable, as defined in
        [IEEE.802-11.2007].

      Q (QoS):   The AC sets the Quality of Service (QoS) subfield based
        on the table found in [IEEE.802-11.2007].

      T (Short Slot Time):   The AC sets the Short Slot Time subfield
        according to the value of the WTP's currently used slot time
        value, as defined in [IEEE.802-11.2007].

      D (APSD):   The AC sets the APSD subfield according to the value
        of the dot11APSDOptionImplemented Management Information Base
        (MIB) variable, as defined in [IEEE.802-11.2007].

      V (Reserved):   The AC sets the Reserved subfield to zero, as
        defined in [IEEE.802-11.2007].

      O (DSSS-OFDM):   The AC sets the DSSS-OFDM subfield to indicate
        the use of Direct Sequence Spread Spectrum with Orthogonal
        Frequency Division Multiplexing (DSSS-OFDM), as defined in
        [IEEE.802-11.2007].

      K (Delayed Block ACK):   The AC sets the Delayed Block ACK
        subfield according to the value of the
        dot11DelayedBlockAckOptionImplemented MIB variable, as defined
        in [IEEE.802-11.2007].






Calhoun, et al.             Standards Track                    [Page 59]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


      L (Immediate Block ACK):   The AC sets the Delayed Block ACK
        subfield according to the value of the
        dot11ImmediateBlockAckOptionImplemented MIB variable, as defined
        in [IEEE.802-11.2007].

   Key-Index:   The Key-Index associated with the key.

   Key Status:   A 1-byte value that specifies the state and usage of
      the key that has been included.  The following values describe the
      key usage and its status:

      0 -  A value of zero, with the inclusion of the RSN Information
           Element means that the WLAN uses per-station encryption keys,
           and therefore the key in the 'Key' field is only used for
           multicast traffic.

      1 -  When set to one, the WLAN employs a shared WEP key, also
           known as a static WEP key, and uses the encryption key for
           both unicast and multicast traffic for all stations.

      2 -  The value of 2 indicates that the AC will begin rekeying the
           GTK with the STA's in the BSS.  It is only valid when IEEE
           802.11 is enabled as the security policy for the BSS.

      3 -  The value of 3 indicates that the AC has completed rekeying
           the GTK and broadcast packets no longer need to be duplicated
           and transmitted with both GTK's.

   Key Length:   A 16-bit value representing the length of the Key
      field.

   Key:   A Session Key, whose length is known via the Key Length field,
      used to provide data privacy.  For static WEP keys, which is true
      when the 'Key Status' bit is set to one, this key is used for both
      unicast and multicast traffic.  For encryption schemes that employ
      a separate encryption key for unicast and multicast traffic, the
      key included here only applies to multicast data, and the cipher
      suite is specified in an accompanied RSN Information Element.  In
      these scenarios, the key, and cipher information, is communicated
      via the Add Station message element, see Section 4.6.8 in
      [RFC5415].  When used with WEP, the Key field includes the
      broadcast key.  When used with CCMP, the Key field includes the
      128-bit Group Temporal Key.  When used with TKIP, the Key field
      includes the 256-bit Group Temporal Key (which consists of a 128-
      bit key used as input for TKIP key mixing, and two 64-bit keys
      used for Michael).





Calhoun, et al.             Standards Track                    [Page 60]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


6.22.  IEEE 802.11 WTP Quality of Service

   The IEEE 802.11 WTP Quality of Service message element value is sent
   by the AC to the WTP to communicate Quality of Service configuration
   information.  The QoS tags included in this message element are the
   default QoS values to be applied to packets received by the WTP from
   stations on a particular radio.  Any tagging performed by the WTP
   MUST be directly applied to the packets received from the station, as
   well as the CAPWAP tunnel, if the packets are tunneled to the AC.
   See Section 2.6 for more information.

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Radio ID    |Tagging Policy |       QoS Sub-Element ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type:   1045 for IEEE 802.11 WTP Quality of Service

   Length:   34

   Radio ID:   The Radio Identifier, whose value is between one (1) and
      31, typically refers to some interface index on the WTP.

   Tagging Policy:   A bit field indicating how the WTP is to mark
      packets for QoS purposes.  The required WTP behavior is defined in
      Section 2.6.1.  The field has the following format:

         0 1 2 3 4 5 6 7
        +-+-+-+-+-+-+-+-+
        |Rsvd |P|Q|D|O|I|
        +-+-+-+-+-+-+-+-+

      Rsvd:  A set of reserved bits for future use.  All implementations
         complying with this protocol MUST set to zero any bits that are
         reserved in the version of the protocol supported by that
         implementation.  Receivers MUST ignore all bits not defined for
         the version of the protocol they support.

      P:   When set, the WTP is to employ the 802.1p QoS mechanism (see
           Section 2.6.1.1), and the WTP is to use the 'Q' bit.

      Q:   When the 'P' bit is set, the 'Q' bit is used by the AC to
           communicate to the WTP how 802.1p QoS is to be enforced.
           Details on the behavior of the 'Q' bit are specified in
           Section 2.6.1.1.





Calhoun, et al.             Standards Track                    [Page 61]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


      D:   When set, the WTP is to employ the DSCP QoS mechanism (see
           Section 2.6.1.2), and the WTP is to use the 'O' and 'I' bits.

      O:   When the 'D' bit is set, the 'O' bit is used by the AC to
           communicate to the WTP how DSCP QoS is to be enforced on the
           outer (tunneled) header.  Details on the behavior of the 'O'
           bit are specified in Section 2.6.1.2.

      I:   When the 'D' bit is set, the 'I' bit is used by the AC to
           communicate to the WTP how DSCP QoS is to be enforced on the
           station's packet (inner) header.  Details on the behavior of
           the 'I' bit are specified in Section 2.6.1.2.

   QoS Sub-Element:   The IEEE 802.11 WTP Quality of Service message
      element contains four QoS sub-elements, one for every QoS profile.
      The order of the QoS profiles are Voice, Video, Best Effort, and
      Background.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Queue Depth  |             CWMin             |     CWMax     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     CWMax     |     AIFS      | Reserved|8021p|RSV| DSCP Tag  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Queue Depth:   The number of packets that can be on the specific
         QoS transmit queue at any given time.

      CWMin:   The Contention Window minimum (CWmin) value for the QoS
         transmit queue.  The value of this field comes from the IEEE
         802.11 dot11EDCATableCWMin MIB element (see
         [IEEE.802-11.2007]).

      CWMax:   The Contention Window maximum (CWmax) value for the QoS
         transmit queue.  The value of this field comes from the IEEE
         802.11 dot11EDCATableCWMax MIB element (see
         [IEEE.802-11.2007]).

      AIFS:   The Arbitration Inter Frame Spacing (AIFS) to use for the
         QoS transmit queue.  The value of this field comes from the
         IEEE 802.11 dot11EDCATableAIFSN MIB element (see
         [IEEE.802-11.2007]).








Calhoun, et al.             Standards Track                    [Page 62]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


      Reserved:   All implementations complying with this protocol MUST
         set to zero any bits that are reserved in the version of the
         protocol supported by that implementation.  Receivers MUST
         ignore all bits not defined for the version of the protocol
         they support.

      8021p:   The 3-bit 802.1p priority value to use if packets are to
         be IEEE 802.1p tagged.  This field is used only if the 'P' bit
         is set; otherwise, its contents MUST be ignored.

      RSV:   All implementations complying with this protocol MUST set
         to zero any bits that are reserved in the version of the
         protocol supported by that implementation.  Receivers MUST
         ignore all bits not defined for the version of the protocol
         they support.

      DSCP Tag:   The 6-bit DSCP label to use if packets are eligible to
         be DSCP tagged, specifically an IPv4 or IPv6 packet (see
         [RFC2474]).  This field is used only if the 'D' bit is set;
         otherwise, its contents MUST be ignored.

6.23.  IEEE 802.11 WTP Radio Configuration

   The IEEE 802.11 WTP WLAN Radio Configuration message element is used
   by the AC to configure a Radio on the WTP, and by the WTP to deliver
   its radio configuration to the AC.  The message element value
   contains the following fields:

         0                   1                   2                   3
         0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |    Radio ID   |Short Preamble| Num of BSSIDs |  DTIM Period  |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                            BSSID                              |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |          BSSID                |      Beacon Period            |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                        Country String                         |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type:   1046 for IEEE 802.11 WTP WLAN Radio Configuration

   Length:   16

   Radio ID:   An 8-bit value representing the radio to configure, whose
      value is between one (1) and 31.





Calhoun, et al.             Standards Track                    [Page 63]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   Short Preamble:   An 8-bit value indicating whether short preamble is
      supported.  The following enumerated values are currently
      supported:

      0 -  Short preamble not supported.

      1 -  Short preamble is supported.

   BSSID:   The WLAN Radio's base MAC Address.

   Number of BSSIDs:   This attribute contains the maximum number of
      BSSIDs supported by the WTP.  This value restricts the number of
      logical networks supported by the WTP, and is between 1 and 16.

   DTIM Period:   This attribute specifies the number of Beacon
      intervals that elapse between transmission of Beacons frames
      containing a Traffic Indication Map (TIM) element whose Delivery
      Traffic Indication Message (DTIM) Count field is 0.  This value is
      transmitted in the DTIM Period field of Beacon frames.  The value
      of this field comes from the IEEE 802.11 dot11DTIMPeriod MIB
      element (see [IEEE.802-11.2007]).

   Beacon Period:   This attribute specifies the number of Time Unit
      (TU) that a station uses for scheduling Beacon transmissions.
      This value is transmitted in Beacon and Probe Response frames.
      The value of this field comes from the IEEE 802.11
      dot11BeaconPeriod MIB element (see [IEEE.802-11.2007]).

   Country String:   This attribute identifies the country in which the
      station is operating.  The value of this field comes from the IEEE
      802.11 dot11CountryString MIB element (see [IEEE.802-11.2007]).
      Some regulatory domains do not allow WTPs to have user
      configurable country string, and require that it be a fixed value
      during the manufacturing process.  Therefore, WTP vendors that
      wish to allow for the configuration of this field will need to
      validate this behavior during its radio certification process.
      Other WTP vendors may simply wish to treat this WTP configuration
      parameter as read-only.  The country strings can be found in
      [ISO.3166-1].

      The WTP and AC MAY ignore the value of this field, depending upon
      regulatory requirements, for example to avoid classification as a
      Software-Defined Radio.  When this field is used, the first two
      octets of this string is the two-character country string as
      described in [ISO.3166-1], and the third octet MUST either be a
      space, 'O', 'I', or X' as defined below.  When the value of the





Calhoun, et al.             Standards Track                    [Page 64]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


      third octet is 255 (HEX 0xff), the country string field is not
      used, and MUST be ignored.  The following are the possible values
      for the third octet:

      1.   an ASCII space character, if the regulations under which the
           station is operating encompass all environments in the
           country,

      2.   an ASCII 'O' character, if the regulations under which the
           station is operating are for an outdoor environment only, or

      3.   an ASCII 'I' character, if the regulations under which the
           station is operating are for an indoor environment only,

      4.   an ASCII 'X' character, if the station is operating under a
           non-country entity.  The first two octets of the non-country
           entity shall be two ASCII 'XX' characters,

      5.   a HEX 0xff character means that the country string field is
           not used and MUST be ignored.

      Note that the last byte of the Country String MUST be set to NULL.

6.24.  IEEE 802.11 WTP Radio Fail Alarm Indication

   The IEEE 802.11 WTP Radio Fail Alarm Indication message element is
   sent by the WTP to the AC when it detects a radio failure.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Radio ID    |     Type      |    Status     |      Pad      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type:   1047 for IEEE 802.11 WTP Radio Fail Alarm Indication

   Length:   4

   Radio ID:   The Radio Identifier, whose value is between one (1) and
      31, typically refers to some interface index on the WTP.

   Type:   The type of radio failure detected.  The following enumerated
      values are supported:

      1 -  Receiver

      2 -  Transmitter




Calhoun, et al.             Standards Track                    [Page 65]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   Status:   An 8-bit boolean indicating whether the radio failure is
      being reported or cleared.  A value of zero is used to clear the
      event, while a value of one is used to report the event.

   Pad:   All implementations complying with version zero of this
      protocol MUST set these bits to zero.  Receivers MUST ignore all
      bits not defined for the version of the protocol they support.

6.25.  IEEE 802.11 WTP Radio Information

   The IEEE 802.11 WTP Radio Information message element is used to
   communicate the radio information for each IEEE 802.11 radio in the
   WTP.  The Discovery Request message, Primary Discovery Request
   message, and Join Request message MUST include one such message
   element per radio in the WTP.  The Radio-Type field is used by the AC
   in order to determine which IEEE 802.11 technology specific binding
   is to be used with the WTP.

   The message element contains two fields, as shown below.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Radio ID    |                  Radio Type                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Radio Type   |
     +-+-+-+-+-+-+-+-+

   Type:   1048 for IEEE 802.11 WTP Radio Information

   Length:   5

   Radio ID:   The Radio Identifier, whose value is between one (1) and
      31, which typically refers to an interface index on the WTP.

   Radio Type:   The type of radio present.  Note this is a bit field
      that is used to specify support for more than a single type of
      PHY/MAC.  The field has the following format:

         0 1 2 3 4 5 6 7
        +-+-+-+-+-+-+-+-+
        |Reservd|N|G|A|B|
        +-+-+-+-+-+-+-+-+








Calhoun, et al.             Standards Track                    [Page 66]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


      Reservd:  A set of reserved bits for future use.  All
         implementations complying with this protocol MUST set to zero
         any bits that are reserved in the version of the protocol
         supported by that implementation.  Receivers MUST ignore all
         bits not defined for the version of the protocol they support.

      N:   An IEEE 802.11n radio.

      G:   An IEEE 802.11g radio.

      A:   An IEEE 802.11a radio.

      B:   An IEEE 802.11b radio.

7.  IEEE 802.11 Binding WTP Saved Variables

   This section contains the IEEE 802.11 binding specific variables that
   SHOULD be saved in non-volatile memory on the WTP.

7.1.  IEEE80211AntennaInfo

   The WTP-per-radio antenna configuration, defined in Section 6.2.

7.2.  IEEE80211DSControl

   The WTP-per-radio Direct Sequence Control configuration, defined in
   Section 6.5.

7.3.  IEEE80211MACOperation

   The WTP-per-radio MAC Operation configuration, defined in
   Section 6.7.

7.4.  IEEE80211OFDMControl

   The WTP-per-radio OFDM MAC Operation configuration, defined in
   Section 6.10.

7.5.  IEEE80211Rateset

   The WTP-per-radio Basic Rate Set configuration, defined in
   Section 6.11.

7.6.  IEEE80211TxPower

   The WTP-per-radio Transmit Power configuration, defined in
   Section 6.18.




Calhoun, et al.             Standards Track                    [Page 67]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


7.7.  IEEE80211QoS

   The WTP-per-radio Quality of Service configuration, defined in
   Section 6.22.

7.8.  IEEE80211RadioConfig

   The WTP-per-radio Radio Configuration, defined in Section 6.23.

8.  Technology Specific Message Element Values

   This section lists IEEE 802.11-specific values for the generic CAPWAP
   message elements that include fields whose values are technology
   specific.

8.1.  WTP Descriptor Message Element, Encryption Capabilities Field

   This specification defines two new bits for the WTP Descriptor's
   Encryption Capabilities field, as defined in [RFC5415].  Note that
   only the bits defined in this specification are described below.  WEP
   is not explicitly advertised as a WTP capability since all WTPs are
   expected to support the encryption cipher.  The format of the
   Encryption Capabilities field is:

                             1
         0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        |                       |A|T|   |
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   A:   WTP supports AES-CCMP, as defined in [IEEE.802-11.2007].

   T:   WTP supports TKIP and Michael, as defined in [IEEE.802-11.2007]
        and [WPA], respectively.

9.  Security Considerations

   This section describes security considerations for using IEEE 802.11
   with the CAPWAP protocol.  A complete threat analysis of the CAPWAP
   protocol can also be found in [RFC5418].

9.1.  IEEE 802.11 Security

   When used with an IEEE 802.11 infrastructure with WEP encryption, the
   CAPWAP protocol does not add any new vulnerabilities.  Derived
   Session Keys between the STA and WTP can be compromised, resulting in





Calhoun, et al.             Standards Track                    [Page 68]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   many well-documented attacks.  Implementers SHOULD discourage the use
   of WEP and encourage the use of technically-sound cryptographic
   solutions such as those in an IEEE 802.11 RSN.

   STA authentication is performed using IEEE 802.lX, and consequently
   EAP.  Implementers SHOULD use EAP methods meeting the requirements
   specified [RFC4017].

   When used with IEEE 802.11 RSN security, the CAPWAP protocol may
   introduce new vulnerabilities, depending on whether the link security
   (packet encryption and integrity verification) is provided by the WTP
   or the AC.  When the link security function is provided by the AC, no
   new security concerns are introduced.

   However, when the WTP provides link security, a new vulnerability
   will exist when the following conditions are true:

   o  The client is not the first to associate to the WTP/ESSID (i.e.,
      other clients are associated), a GTK already exists, and

   o  traffic has been broadcast under the existing GTK.

   Under these circumstances, the receive sequence counter (KeyRSC)
   associated with the GTK is non-zero, but because the AC anchors the
   4-way handshake with the client, the exact value of the KeyRSC is not
   known when the AC constructs the message containing the GTK.  The
   client will update its Key RSC value to the current valid KeyRSC upon
   receipt of a valid multicast/broadcast message, but prior to this,
   previous multicast/broadcast traffic that was secured with the
   existing GTK may be replayed, and the client will accept this traffic
   as valid.

   Typically, busy networks will produce numerous multicast or broadcast
   frames per second, so the window of opportunity with respect to such
   replay is expected to be very small.  In most conditions, it is
   expected that replayed frames could be detected (and logged) by the
   WTP.

   The only way to completely close this window is to provide the exact
   KeyRSC value in message 3 of the 4-way handshake; any other approach
   simply narrows the window to varying degrees.  Given the low relative
   threat level this presents, the additional complexity introduced by
   providing the exact KeyRSC value is not warranted.  That is, this
   specification provides for a calculated risk in this regard.







Calhoun, et al.             Standards Track                    [Page 69]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   The AC SHOULD use an RSC of 0 when computing message-3 of the 4-way
   802.11i handshake, unless the AC has knowledge of a more optimal RSC
   value to use.  Mechanisms for determining a more optimal RSC value
   are outside the scope of this specification.

10.  IANA Considerations

   This section details the actions IANA has taken per this
   specification.  There are numerous registries that have been be
   created, and the contents, document action (see [RFC5226], and
   registry format are all included below.  Note that in cases where bit
   fields are referred to, the bit numbering is left to right, where the
   leftmost bit is labeled as bit zero (0).

10.1.  CAPWAP Wireless Binding Identifier

   This specification requires a value assigned from the Wireless
   Binding Identifier namespace, defined in [RFC5415]. (1) has been
   assigned (see Section 2.1, as it is used in implementations.

10.2.  CAPWAP IEEE 802.11 Message Types

   IANA created a new sub-registry in the existing CAPWAP Message Type
   registry, which is defined in [RFC5415].

   IANA created and maintains the CAPWAP IEEE 802.11 Message Types
   sub-registry for all message types whose Enterprise Number is set to
   13277.  The namespace is 8 bits (3398912-3399167), where the value
   3398912 is reserved and must not be assigned.  The values 3398913 and
   3398914 are allocated in this specification, and can be found in
   Section 3.  Any new assignments of a CAPWAP IEEE 802.11 Message Type
   (whose Enterprise Number is set to 13277) require an Expert Review.
   The format of the registry maintained by IANA is as follows:

           CAPWAP IEEE 802.11               Message Type     Reference
           Control Message                     Value

10.3.  CAPWAP Message Element Type

   This specification defines new values to be registered to the
   existing CAPWAP Message Element Type registry, defined in [RFC5415].
   The values used in this document, 1024 through 1048, as listed in
   Figure 8 are recommended as implementations already exist that make
   use of these values.







Calhoun, et al.             Standards Track                    [Page 70]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


10.4.  IEEE 802.11 Key Status

   The Key Status field in the IEEE 802.11 Add WLAN message element (see
   Section 6.1) and IEEE 802.11 Update WLAN message element (see
   Section 6.21) is used to provide information about the status of the
   keying exchange.  This document defines four values, zero (0) through
   three (3), and the remaining values (4-255) are controlled and
   maintained by IANA and requires an Expert Review.

10.5.  IEEE 802.11 QoS

   The QoS field in the IEEE 802.11 Add WLAN message element (see
   Section 6.1) is used to configure a QoS policy for the WLAN.  The
   namespace is 8 bits (0-255), where the values zero (0) through three
   (3) are allocated in this specification, and can be found in
   Section 6.1.  This namespace is managed by IANA and assignments
   require an Expert Review.  IANA created the IEEE 802.11 QoS registry,
   whose format is:

           IEEE 802.11 QoS                  Type Value       Reference

10.6.  IEEE 802.11 Auth Type

   The Auth Type field in the IEEE 802.11 Add WLAN message element (see
   Section 6.1) is 8 bits and is used to configure the IEEE 802.11
   authentication policy for the WLAN.  The namespace is 8 bits (0-255),
   where the values zero (0) and one (1) are allocated in this
   specification, and can be found in Section 6.1.  This namespace is
   managed by IANA and assignments require an Expert Review.  IANA
   created the IEEE 802.11 Auth Type registry, whose format is:

           IEEE 802.11 Auth Type            Type Value       Reference

10.7.  IEEE 802.11 Antenna Combiner

   The Combiner field in the IEEE 802.11 Antenna message element (see
   Section 6.2) is used to provide information about the WTP's antennas.
   The namespace is 8 bits (0-255), where the values one (1) through
   four (4) are allocated in this specification, and can be found in
   Section 6.2.  This namespace is managed by IANA and assignments
   require an Expert Review.  IANA created the IEEE 802.11 Antenna
   Combiner registry, whose format is:

           IEEE 802.11 Antenna Combiner     Type Value       Reference







Calhoun, et al.             Standards Track                    [Page 71]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


10.8.  IEEE 802.11 Antenna Selection

   The Antenna Selection field in the IEEE 802.11 Antenna message
   element (see Section 6.2) is used to provide information about the
   WTP's antennas.  The namespace is 8 bits (0-255), where the values
   zero (0) is reserved and used and the values one (1) through two (2)
   are allocated in this specification, and can be found in Section 6.2.
   This namespace is managed by IANA and assignments require an Expert
   Review.  IANA created the IEEE 802.11 Antenna Selection registry,
   whose format is:

           IEEE 802.11 Antenna Selection    Type Value       Reference

10.9.  IEEE 802.11 Session Key Flags

   The flags field in the IEEE 802.11 Station Session Key message
   element (see Section 6.15) is 16 bits and is used to configure the
   session key association with the mobile device.  This specification
   defines bits zero (0) and one (1), while bits two (2) through fifteen
   are reserved.  The reserved bits are managed by IANA and assignment
   requires an Expert Review.  IANA created the IEEE 802.11 Session Key
   Flags registry, whose format is:

           IEEE 802.11 Station Session Key   Bit Position    Reference

10.10.  IEEE 802.11 Tagging Policy

   The Tagging Policy field in the IEEE 802.11 WTP Quality of Service
   message element (see Section 6.22) is 8 bits and is used to specify
   how the CAPWAP Data Channel packets are to be tagged.  This
   specification defines bits three (3) through seven (7).  The
   remaining bits are managed by IANA and assignment requires an Expert
   Review.  IANA created the IEEE 802.11 Tagging Policy registry, whose
   format is:

           IEEE 802.11 Tagging Policy        Bit Position    Reference

10.11.  IEEE 802.11 WTP Radio Fail

   The Type field in the IEEE 802.11 WTP Radio Fail Alarm Indication
   message element (see Section 6.24) is used to provide information on
   why a WTP's radio has failed.  The namespace is 8 bits (0-255), where
   the value zero (0) is reserved and unused, while the values one (1)
   and two (2) are allocated in this specification, and can be found in
   Section 6.24.  This namespace is managed by IANA and assignments
   require an Expert Review.  IANA created the IEEE 802.11 WTP Radio
   Fail registry, whose format is:




Calhoun, et al.             Standards Track                    [Page 72]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


           IEEE 802.11 WTP Radio Fail       Type Value       Reference

10.12.  IEEE 802.11 WTP Radio Type

   The Radio Type field in the IEEE 802.11 WTP Radio Information message
   element (see Section 6.25) is 8 bits and is used to provide
   information about the WTP's radio type.  This specification defines
   bits four (4) through seven (7).  The remaining bits are managed by
   IANA and assignment requires an Expert Review.  IANA created the IEEE
   802.11 WTP Radio Type registry, whose format is:

           IEEE 802.11 WTP Radio Type        Bit Position    Reference

10.13.  WTP Encryption Capabilities

   The WTP Encryption Capabilities field in the WTP Descriptor message
   element (see Section 8.1) is 16 bits and is used by the WTP to
   indicate its IEEE 802.11 encryption capabilities.  This specification
   defines bits 12 and 13.  The reserved bits are managed by IANA and
   assignment requires an Expert Review.  IANA created the IEEE 802.11
   Encryption Capabilities registry, whose format is:

          IEEE 802.11 Encryption Capabilities  Bit Position    Reference

11.  Acknowledgments

   The following individuals are acknowledged for their contributions to
   this binding specification: Puneet Agarwal, Charles Clancy, Pasi
   Eronen, Saravanan Govindan, Scott Kelly, Peter Nilsson, Bob O'Hara,
   David Perkins, Margaret Wasserman, and Yong Zhang.

12.  References

12.1.  Normative References

   [RFC2119]           Bradner, S., "Key words for use in RFCs to
                       Indicate Requirement Levels", BCP 14, RFC 2119,
                       March 1997.

   [RFC2474]           Nichols, K., Blake, S., Baker, F., and D. Black,
                       "Definition of the Differentiated Services Field
                       (DS Field) in the IPv4 and IPv6 Headers",
                       RFC 2474, December 1998.

   [RFC3246]           Davie, B., Charny, A., Bennet, J., Benson, K., Le
                       Boudec, J., Courtney, W., Davari, S., Firoiu, V.,
                       and D. Stiliadis, "An Expedited Forwarding PHB
                       (Per-Hop Behavior)", RFC 3246, March 2002.



Calhoun, et al.             Standards Track                    [Page 73]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   [RFC3168]           Ramakrishnan, K., Floyd, S., and D. Black, "The
                       Addition of Explicit Congestion Notification
                       (ECN) to IP", RFC 3168, September 2001.

   [RFC3748]           Aboba, B., Blunk, L., Vollbrecht, J., Carlson,
                       J., and H. Levkowetz, "Extensible Authentication
                       Protocol (EAP)", RFC 3748, June 2004.

   [RFC5226]           Narten, T. and H. Alvestrand, "Guidelines for
                       Writing an IANA Considerations Section in RFCs",
                       BCP 26, RFC 5226, May 2008.

   [FIPS.197.2001]     National Institute of Standards and Technology,
                       "Advanced Encryption Standard (AES)", FIPS PUB
                       197, November 2001, <http://csrc.nist.gov/
                       publications/fips/fips197/fips-197.pdf>.

   [ISO.3166-1]        ISO Standard, "International Organization for
                       Standardization, Codes for the representation of
                       names of countries and their subdivisions - Part
                       1: Country codes", ISO Standard 3166-1:1997,
                       1997.

   [IEEE.802-11.2007]  "Information technology - Telecommunications and
                       information exchange between systems - Local and
                       metropolitan area networks - Specific
                       requirements - Part 11: Wireless LAN Medium
                       Access Control (MAC) and Physical Layer (PHY)
                       specifications", IEEE Standard 802.11, 2007,
                       <http://standards.ieee.org/getieee802/download/
                       802.11-2007.pdf>.

   [RFC5415]           Montemurro, M., Stanley, D., and P. Calhoun,
                       "CAPWAP Protocol Specification", RFC 5415, March
                       2009.

   [IEEE.802-1X.2004]  "Information technology - Telecommunications and
                       information exchange between systems - Local and
                       metropolitan area networks - Specific
                       requirements - Port-Based Network Access
                       Control", IEEE Standard 802.1X, 2004, <http://
                       standards.ieee.org/getieee802/download/
                       802.1X-2004.pdf>.








Calhoun, et al.             Standards Track                    [Page 74]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


   [IEEE.802-1Q.2005]  "Information technology - Telecommunications and
                       information exchange between systems - Local and
                       metropolitan area networks - Specific
                       requirements - Virtual Bridged Local Area
                       Networks", IEEE Standard 802.1Q, 2005, <http://
                       standards.ieee.org/getieee802/download/
                       802.1Q-2005.pdf>.

12.2.  Informative References

   [RFC4017]           Stanley, D., Walker, J., and B. Aboba,
                       "Extensible Authentication Protocol (EAP) Method
                       Requirements for Wireless LANs", RFC 4017,
                       March 2005.

   [RFC4118]           Yang, L., Zerfos, P., and E. Sadot, "Architecture
                       Taxonomy for Control and Provisioning of Wireless
                       Access Points (CAPWAP)", RFC 4118, June 2005.

   [RFC5418]           Kelly, S. and C. Clancy, "Control And
                       Provisioning for Wireless Access Points (CAPWAP)
                       Threat Analysis for IEEE 802.11 Deployments",
                       RFC 5418, March 2009.

   [WPA]               "Deploying Wi-Fi Protected Access (WPA) and WPA2
                       in the Enterprise", March 2005, <www.wi-fi.org>.

   [WMM]               "Support for Multimedia Applications with Quality
                       of Service in WiFi Networks)", September 2004,
                       <www.wi-fi.org>.





















Calhoun, et al.             Standards Track                    [Page 75]
^L
RFC 5416        CAPWAP Protocol Binding for IEEE 802.11       March 2009


Editors' Addresses

   Pat R. Calhoun (editor)
   Cisco Systems, Inc.
   170 West Tasman Drive
   San Jose, CA  95134

   Phone: +1 408-902-3240
   EMail: pcalhoun@cisco.com


   Michael P. Montemurro (editor)
   Research In Motion
   5090 Commerce Blvd
   Mississauga, ON  L4W 5M4
   Canada

   Phone: +1 905-629-4746 x4999
   EMail: mmontemurro@rim.com


   Dorothy Stanley (editor)
   Aruba Networks
   1322 Crossman Ave
   Sunnyvale, CA  94089

   Phone: +1 630-363-1389
   EMail: dstanley@arubanetworks.com























Calhoun, et al.             Standards Track                    [Page 76]
^L