summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc5584.txt
blob: c0c0938bf22686786bf5372eb3eef0e7c8834c00 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
Network Working Group                                        M. Hatanaka
Request for Comments: 5584                                  J. Matsumoto
Category: Standards Track                               Sony Corporation
                                                               July 2009

                        RTP Payload Format for
         the Adaptive TRansform Acoustic Coding (ATRAC) Family

Abstract

   This document describes an RTP payload format for efficient and
   flexible transporting of audio data encoded with the Adaptive
   TRansform Audio Coding (ATRAC) family of codecs.  Recent enhancements
   to the ATRAC family of codecs support high-quality audio coding with
   multiple channels.  The RTP payload format as presented in this
   document also includes support for data fragmentation, elementary
   redundancy measures, and a variation on scalable streaming.

Status of This Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (c) 2009 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents in effect on the date of
   publication of this document (http://trustee.ietf.org/license-info).
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.

   This document may contain material from IETF Documents or IETF
   Contributions published or made publicly available before November
   10, 2008.  The person(s) controlling the copyright in some of this
   material may not have granted the IETF Trust the right to allow
   modifications of such material outside the IETF Standards Process.
   Without obtaining an adequate license from the person(s) controlling
   the copyright in such materials, this document may not be modified
   outside the IETF Standards Process, and derivative works of it may
   not be created outside the IETF Standards Process, except to format
   it for publication as an RFC or to translate it into languages other
   than English.



Hatanaka & Matsumoto        Standards Track                     [Page 1]
^L
RFC 5584          RTP Payload Format for ATRAC Family          July 2009


Table of Contents

   1. Introduction ....................................................3
   2. Conventions Used in This Document ...............................3
   3. Codec-Specific Details ..........................................3
   4. RTP Packetization and Transport of ATRAC-Family Streams .........4
      4.1. ATRAC Frames ...............................................4
      4.2. Concatenation of Frames ....................................4
      4.3. Frame Fragmentation ........................................4
      4.4. Transmission of Redundant Frames ...........................4
      4.5. Scalable Lossless Streaming (High-Speed Transfer Mode) .....5
           4.5.1. Scalable Multiplexed Streaming ......................5
           4.5.2. Scalable Multi-Session Streaming ....................5
   5. Payload Format ..................................................6
      5.1. Global Structure of Payload Format .........................6
      5.2. Usage of RTP Header Fields .................................7
      5.3. RTP Payload Structure ......................................8
           5.3.1. Usage of ATRAC Header Section .......................8
           5.3.2. Usage of ATRAC Frames Section .......................9
   6. Packetization Examples .........................................12
      6.1. Example Multi-Frame Packet ................................12
      6.2. Example Fragmented ATRAC Frame ............................13
   7. Payload Format Parameters ......................................14
      7.1. ATRAC3 Media Type Registration ............................14
      7.2. ATRAC-X Media Type Registration ...........................16
      7.3. ATRAC Advanced Lossless Media Type Registration ...........18
      7.4. Channel Mapping Configuration Table .......................20
      7.5. Mapping Media Type Parameters into SDP ....................21
           7.5.1. For Media Subtype ATRAC3 ...........................21
           7.5.2. For Media Subtype ATRAC-X ..........................21
           7.5.3. For Media Subtype ATRAC Advanced Lossless ..........22
      7.6. Offer/Answer Model Considerations .........................22
           7.6.1. For All Three Media Subtypes .......................22
           7.6.2. For Media Subtype ATRAC3 ...........................23
           7.6.3. For Media Subtype ATRAC-X ..........................23
           7.6.4. For Media Subtype ATRAC Advanced Lossless ..........23
      7.7. Usage of Declarative SDP ..................................24
      7.8. Example SDP Session Descriptions ..........................24
      7.9. Example Offer/Answer Exchange .............................26
   8. IANA Considerations ............................................28
   9. Security Considerations ........................................28
   10. Considerations on Correct Decoding ............................28
      10.1. Verification of the Packets ..............................28
      10.2. Validity Checking of the Packets .........................29
   11. References ....................................................29
      11.1. Normative References .....................................29
      11.2. Informative References ...................................30




Hatanaka & Matsumoto        Standards Track                     [Page 2]
^L
RFC 5584          RTP Payload Format for ATRAC Family          July 2009


1.  Introduction

   The ATRAC family of perceptual audio codecs is designed to address
   numerous needs for high-quality, low-bit-rate audio transfer.  ATRAC
   technology can be found in many consumer and professional products
   and applications, including MD players, CD players, voice recorders,
   and mobile phones.

   Recent advances in ATRAC technology allow for multiple channels of
   audio to be encoded in customizable groupings.  This should allow for
   future expansions in scaled streaming to provide the greatest
   flexibility in streaming any one of the ATRAC family member codecs;
   however, this payload format does not distinguish between the codecs
   on a packet level.

   This simplified payload format contains only the basic information
   needed to disassemble a packet of ATRAC audio in order to decode it.
   There is also basic support for fragmentation and redundancy.

2.  Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [4].

3.  Codec-Specific Details

   Early versions of the ATRAC codec handled only two channels of audio
   at 44.1 kHz sampling frequency, with typical bit-rates between 66
   kbps and 132 kbps.  The latest version allows for a maximum of 8
   channels of audio, up to 96 kHz in sampling frequency, and a lossless
   encoding option that can be transmitted in either a scalable (also
   known as High-Speed Transfer mode) or standard (aka Standard mode)
   format.  The feasible bit-rate range has also expanded, allowing from
   a low of 8 kbps up to 1400 kbps in lossy encoding modes.

   Depending on the version of ATRAC used, the sample-frame size is
   either 512, 1024, or 2048 samples.  While the lossy and Standard mode
   lossless formats are encoded as sequential single audio frames,
   High-Speed Transfer mode lossless data comprises two layers -- a
   lossy base layer and an enhancement layer.

   Although streaming of multi-channel audio is supported depending on
   the ATRAC version used, all encoded audio for a given time period is
   contained within a single frame.  Therefore, there is no interleaving
   nor splitting of audio data on a per-channel basis with which to be
   concerned.




Hatanaka & Matsumoto        Standards Track                     [Page 3]
^L
RFC 5584          RTP Payload Format for ATRAC Family          July 2009


4.  RTP Packetization and Transport of ATRAC-Family Streams

4.1.  ATRAC Frames

   For transportation of compressed audio data, ATRAC uses the concept
   of frames.  ATRAC frames are the smallest data unit for which timing
   information is attributed.  Frames are octet-aligned by definition.

4.2.  Concatenation of Frames

   It is often possible to carry multiple frames in one RTP packet.
   This can be useful in audio, where on a LAN with a 1500-byte MTU, an
   average of 7 complete 64 kbps ATRAC frames could be carried in a
   single RTP packet, as each ATRAC frame would be approximately 200
   bytes.  ATRAC frames may be of fixed or variable length.  To
   facilitate parsing in the case of multiple frames in one RTP packet,
   the size of each frame is made known to the receiver by carrying
   "in-band" the frame size for each contained frame in an RTP packet.
   However, to simplify the implementation of RTP receivers, it is
   required that when multiple frames are carried in an RTP packet, each
   frame MUST be complete, i.e., the number of frames in an RTP packet
   MUST be integral.

4.3.  Frame Fragmentation

   The ATRAC codec can handle very large frames.  As most IP networks
   have significantly smaller MTU sizes than the frame sizes ATRAC can
   handle, this payload format allows for the fragmentation of an ATRAC
   frame over multiple RTP packets.  However, to simplify the
   implementation of RTP receivers, an RTP packet MUST carry either one
   or more complete ATRAC frames or a single fragment of one ATRAC
   frame.  In other words, RTP packets MUST NOT contain fragments of
   multiple ATRAC frames and MUST NOT contain a mix of complete and
   fragmented frames.

4.4.  Transmission of Redundant Frames

   As RTP does not guarantee reliable transmission, receipt of data is
   not assured.  Loss of a packet can result in a "decoding gap" at the
   receiver.  One method to remedy this problem is to allow time-shifted
   copies of ATRAC frames to be sent along with current data.  For a
   modest cost in latency and implementation complexity, error
   resiliency to packet loss can be achieved.  For further details, see
   Section 5.3.2.1 and [12].







Hatanaka & Matsumoto        Standards Track                     [Page 4]
^L
RFC 5584          RTP Payload Format for ATRAC Family          July 2009


4.5.  Scalable Lossless Streaming (High-Speed Transfer Mode)

   As ATRAC supports a variation on scalable encoding, this payload
   format provides a mechanism for transmitting essential data (also
   referred to as the base layer) with its enhancement data in two ways
   -- multiplexed through one session or separated over two sessions.

   In either method, only the base layer is essential in producing audio
   data.  The enhancement layer carries the remaining audio data needed
   to decode lossless audio data.  So in situations of limited
   bandwidth, the sender may choose not to transmit enhancement data yet
   still provide a client with enough data to generate lossily-encoded
   audio through the base layer.

4.5.1.  Scalable Multiplexed Streaming

   In multiplexed streaming, the base layer and enhancement layer are
   coupled together in each packet, utilizing only one session as
   illustrated in Figure 1.

   The packet MUST begin with the base layer, and the two layer types
   MUST interleave if both of the layers exist in a packet (only base or
   enhancement is included in a packet at the beginning of a streaming,
   or during the fragmentation).

   +----------------+  +----------------+  +----------------+
   |Base|Enhancement|--|Base|Enhancement|--|Base|Enhancement| ...
   +----------------+  +----------------+  +----------------+
           N                   N+1                 N+2        : Packet

                      Figure 1. Multiplexed Structure

4.5.2.  Scalable Multi-Session Streaming

   In multi-session streaming, the base layer and enhancement layer are
   sent over two separate sessions, allowing clients with certain
   bandwidth limitations to receive just the base layer for decoding as
   illustrated in Figure 2.

   In this case, it is REQUIRED to determine which sessions are paired
   together in receiver side.  For paired base and enhancement layer
   sessions, the CNAME bindings in the RTP Control Protocol (RTCP)
   session MUST be applied using the same CNAME to ensure correct
   mapping to the RTP source.







Hatanaka & Matsumoto        Standards Track                     [Page 5]
^L
RFC 5584          RTP Payload Format for ATRAC Family          July 2009


   While there may be alternative methods for synchronization of the
   layers, the timestamp SHOULD be used for synchronizing the base layer
   with its enhancement.  The two sessions MUST be synchronized using
   the information in RTCP SR packets to align the RTP timestamps.

   If the enhancement layer's session data cannot arrive until the
   presentation time, the decoder MUST decode the base layer session's
   data only, ignoring the enhancement layer's data.

         Session 1:
         +------+  +------+  +------+  +------+
         | Base |--| Base |--| Base |--| Base | ...
         +------+  +------+  +------+  +------+
            N         N+1       N+2       N+3     : Packet

         Session 2:
         +-------------+  +-------------+  +-------------+
         | Enhancement |--| Enhancement |--| Enhancement | ...
         +-------------+  +-------------+  +-------------+
               N                N+1              N+2         : Packet

                 Figure 2. Multi-Session Streaming

5.  Payload Format

5.1.  Global Structure of Payload Format

   The structure of ATRAC Payload is illustrated in Figure 3.  The RTP
   payload following the RTP header contains two octet-aligned data
   sections.

            +------+--------------+-----------------------------+
            |RTP   | ATRAC Header |   ATRAC Frames Section      |
            |Header| Section      | (including redundant data)  |
            +------+--------------+-----------------------------+
            < ---------------- RTP Packet Payload ------------- >

             Figure 3. Structure of RTP Payload of ATRAC Family

   The first data section is the ATRAC Header, containing just one
   header with information for the whole packet.  The second section is
   where the encoded ATRAC frames are stored.  This may contain either a
   single fragment of one ATRAC frame or one or more complete ATRAC
   frames.  The ATRAC Frames Section MUST NOT be empty.  When using the
   redundancy mechanism described in Section 5.3.2.1, the redundant
   frame data can be included in this section and timestamp MUST be set
   to the oldest redundant frame's timestamp.




Hatanaka & Matsumoto        Standards Track                     [Page 6]
^L
RFC 5584          RTP Payload Format for ATRAC Family          July 2009


   To benefit from ATRAC's High-Speed Transfer mode lossless encoding
   capability, the RTP payload can be split across two sessions, with
   one transmitting an essential base layer and the other transmitting
   enhancement data.  However, in either case, the above structure still
   applies.

5.2.  Usage of RTP Header Fields

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |V=2|P|X|  CC   |M|     PT      |       sequence number         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          timestamp                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |            synchronization source (SSRC) identifier           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           contributing source (CSRC) identifiers              |
   |                             .....                             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 4. RTP Standard Header Part

   The structure of the RTP Standard Header Part is illustrated in
   Figure 4.

   Version(V): 2 bits
   Set to 2.

   Padding(P): 1 bit
   If the padding bit is set, the packet contains one or more additional
   padding octets at the end, which are not part of the payload.  The
   last octet of the padding contains a count of how many padding octets
   should be ignored, including itself.  Padding may be needed by some
   encryption algorithms with fixed block sizes or for carrying several
   RTP packets in a lower-layer protocol data unit (see [1]).

   Extension(X): 1 bit
   Defined by the RTP profile used.

   CSRC count(CC): 4 bits
   See RFC 3550 [1].

   Marker (M): 1 bit
   Set to 1 if the packet is the first packet after a silence period;
   otherwise, it MUST be set to 0.





Hatanaka & Matsumoto        Standards Track                     [Page 7]
^L
RFC 5584          RTP Payload Format for ATRAC Family          July 2009


   Payload Type (PT): 7 bits
   The assignment of an RTP payload type for this packet format is
   outside the scope of this document; it is specified by the RTP
   profile under which this payload format is used, or signaled
   dynamically out-of-band (e.g., using the Session Description Protocol
   (SDP)).

   sequence number: 16 bits
   A sequential number for the RTP packet.  It ranges from 0 to 65535
   and repeats itself periodically.

   Timestamp: 32 bits
   A timestamp representing the sampling time of the first sample of the
   first ATRAC frame in the current RTP packet.
   When using SDP, the clock rate of the RTP timestamp MUST be expressed
   using the "rtpmap" attribute.  For ATRAC3 and ATRAC Advanced
   Lossless, the RTP timestamp rate MUST be 44100 Hz.  For ATRAC-X, the
   RTP timestamp rate is 44100 Hz or 48000 Hz, and it will be selected
   by out-of-band signaling.

   SSRC: 32 bits
   See RFC 3550 [1].

   CSRC list: 0 to 15 items, 32 bits each
   See RFC 3550 [1].

5.3.  RTP Payload Structure

5.3.1.  Usage of ATRAC Header Section

   The ATRAC header section has the fixed length of one byte as
   illustrated in Figure 5.

                     0 1 2 3 4 5 6 7
                    +-+-+-+-+-+-+-+-+
                    |C|FrgNo|NFrames|
                    +-+-+-+-+-+-+-+-+

                Figure 5. ATRAC RTP Header

   Continuation Flag (C) : 1 bit
   The packet that corresponds to the last part of the audio frame data
   in a fragmentation MUST have this bit set to 0; otherwise, it's set
   to 1.

   Fragment Number (FrgNo): 3 bits
   In the event of data fragmentation, this value is one for the first
   packet, and increases sequentially for the remaining fragmented data



Hatanaka & Matsumoto        Standards Track                     [Page 8]
^L
RFC 5584          RTP Payload Format for ATRAC Family          July 2009


   packets.  This value MUST be zero for an unfragmented frame.  (Note:
   3 bits is sufficient to avoid Fragment Number rollover given the
   current maximum supported bit-rate in the ATRAC specification.  If
   that changes, the choice of 3 bits for the Fragment Number should be
   revisited.)

   Number of Frames (NFrames): 4 bits
   The number of audio frames in this packet are field value + 1.  This
   allows for a maximum of 16 ATRAC-encoded audio frames per packet,
   with 0 indicating one audio frame.  Each audio frame MUST be complete
   in the packet if fragmentation is not applied.  In the case of
   fragmentation, the data for only one audio frame is allowed to be
   fragmented, and this value MUST be 0.

5.3.2.  Usage of ATRAC Frames Section

   The ATRAC Frames Section contains an integer number of complete ATRAC
   frames or a single fragment of one ATRAC frame, as illustrated in
   Figure 6.  Each ATRAC frame is preceded by a one-bit flag indicating
   the layer type and a Block Length field indicating the size in bytes
   of the ATRAC frame.  If more than one ATRAC frame is present, then
   the frames are concatenated into a contiguous string of bit-flag,
   Block Length, and ATRAC frame in order of their frame number.  This
   section MUST NOT be empty.

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |E|       Block Length          |         ATRAC frame           |...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Figure 6. ATRAC Frame Section Format

   Layer Type Flag (E): 1 bit
   Set to 1 if the corresponding ATRAC frame is from an enhancement
   layer.  0 indicates a base layer encoded frame.

   Block length: 15 bits
   The byte length of encoded audio data for the following frame.  This
   is so that in the case of fragmentation, if only a subsequent packet
   is received, decoding can still occur.  15 bits allows for a maximum
   block length of 32,767 bytes.

   ATRAC frame: The encoded ATRAC audio data.








Hatanaka & Matsumoto        Standards Track                     [Page 9]
^L
RFC 5584          RTP Payload Format for ATRAC Family          July 2009


5.3.2.1.  Support of Redundancy

   This payload format provides a rudimentary scheme to compensate for
   occasional packet loss.  As every packet's timestamp corresponds to
   the first audio frame regardless of whether or not it is redundant,
   and because we know how many frames of audio each packet
   encapsulates, if two successive packets are successfully transmitted,
   we can calculate the number of redundant frames being sent.  The
   result gives the client a sense of how the server is responding to
   RTCP reports and warns it to expand its buffer size if necessary.  As
   an example of using the Redundant Data, refer to Figures 7 and 8.

   In this example, the server has determined that for the next few
   packets, it should send the last two frames from the previous packet
   due to recent RTCP reports.  Thus, between packets N and N+1, there
   is a redundancy of two frames (of which the client may choose to
   dispose).  The benefit arises when packets N+2 and N+3 do not arrive
   at all, after which eventually packet N+4 arrives with successive
   necessary audio frame data.

   [Sender]

   |-Fr0-|-Fr1-|-Fr2-|                         Packet: N,   TS=0
         |-Fr1-|-Fr2-|-Fr3-|                   Packet: N+1, TS=1024
               |-Fr2-|-Fr3-|-Fr4-|             Packet: N+2, TS=2048
                     |-Fr3-|-Fr4-|-Fr5-|       Packet: N+3, TS=3072
                           |-Fr4-|-Fr5-|-Fr6-| Packet: N+4, TS=4096

   -----------> Packet "N+2" and "N+3" not arrived  ------------->

   [Receiver]

   |-Fr0-|-Fr1-|-Fr2-|                         Packet: N,   TS=0
         |-Fr1-|-Fr2-|-Fr3-|                   Packet: N+1, TS=1024
                           |-Fr4-|-Fr5-|-Fr6-| Packet: N+4, TS=4096

   The receiver can decode from FR4 to Fr6 by using Packet "N+4" data
   even if the packet loss of "N+2" and "N+3" has occurred.

                  Figure 7. Redundant Example











Hatanaka & Matsumoto        Standards Track                    [Page 10]
^L
RFC 5584          RTP Payload Format for ATRAC Family          July 2009


    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |V=2|P|X|  CC   |M|     PT      |       sequence number         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |        timestamp (= start sample time of Fr1)                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |            synchronization source (SSRC) identifier           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           contributing source (CSRC) identifiers              |
   |                             .....                             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0|  0  |   3   |0|         Block Length        |               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         (redundant)  ATRAC frame (Fr1) data  ...              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0|       Block Length          |(redundant) ATRAC frame (Fr2)  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    (cont.)  |0|   Block Length          |  ATRAC frame (Fr3)  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       (cont.)                                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

          Figure 8. Packet Structure Example with Redundant Data
                          (Case of Packet "N+1")

5.3.2.2.  Frame Fragmentation

   Each RTP packet MUST contain either an integer number of ATRAC-
   encoded audio frames (with a maximum of 16) or one ATRAC frame
   fragment.  In the former case, as many complete ATRAC frames as can
   fit in a single path-MTU SHOULD be placed in an RTP packet.  However,
   if even a single ATRAC frame will not fit into a complete RTP packet,
   the ATRAC frame MUST be fragmented.

   The start of a fragmented frame gets placed in its own RTP packet
   with its Continuation bit (C) set to one, and its Fragment Number
   (FragNo) set to one.  As the frame must be the only one in the
   packet, the Number of Frames field is zero.  Subsequent packets are
   to contain the remaining fragmented frame data, with the Fragment
   Number increasing sequentially and the Continuation bit (C)
   consistently set to one.  As subsequent packets do not contain any
   new frames, the Number of Frames field MUST be ignored.  The last
   packet of fragmented data MUST have the Continuation bit (C) set to
   zero.






Hatanaka & Matsumoto        Standards Track                    [Page 11]
^L
RFC 5584          RTP Payload Format for ATRAC Family          July 2009


   Packets containing related fragmented frames MUST have identical
   timestamps.  Thus, while the Continuous bit and Fragment Number
   fields indicate fragmentation and a means to reorder the packets, the
   timestamp can be used to determine which packets go together.

6.  Packetization Examples

6.1.  Example Multi-Frame Packet

   Multiple encoded audio frames are combined into one packet.  Note
   how, for this example, only base layer frames are sent redundantly,
   but are followed by interleaved base layer and enhancement layer
   frames as illustrated in Figure 9.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |V=2|P|X|  CC   |M|     PT      |       sequence number         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          timestamp                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |            synchronization source (SSRC) identifier           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           contributing source (CSRC) identifiers              |
   |                             .....                             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0|  0  |   5   |0|         Block Length        |               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         (redundant)  base layer frame 1 data...               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0|       Block Length          |(redundant) base layer frame 2 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    (cont.)  |0|   Block Length          |  base layer frame 3 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | (cont.) |1|       Block Length          | enhancement frame 3 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | (cont.) |0|       Block Length          |  base layer frame 4 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | (cont.) |1|       Block Length          | enhancement frame 4 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Figure 9. Example Multi-Frame Packet









Hatanaka & Matsumoto        Standards Track                    [Page 12]
^L
RFC 5584          RTP Payload Format for ATRAC Family          July 2009


6.2.  Example Fragmented ATRAC Frame

   The encoded audio data frame is split over three RTP packets as
   illustrated in Figure 10.  The following points are highlighted in
   the example below:

   o  transition from one to zero of the Continuation bit (C)

   o  sequential increase in the Fragment Number

   Packet 1:
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |V=2|P|X|  CC   |M|     PT      |       sequence number         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          timestamp                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |            synchronization source (SSRC) identifier           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           contributing source (CSRC) identifiers              |
   |                             .....                             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |1|  1  |   0   |1|        Block Length         |               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     enhancement data...                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Packet 2:
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |V=2|P|X|  CC   |M|     PT      |       sequence number         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          timestamp                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |            synchronization source (SSRC) identifier           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           contributing source (CSRC) identifiers              |
   |                             .....                             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |1|  2  |   0   |1|        Block Length         |               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  ...more enhancement data...                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+






Hatanaka & Matsumoto        Standards Track                    [Page 13]
^L
RFC 5584          RTP Payload Format for ATRAC Family          July 2009


   Packet 3:
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |V=2|P|X|  CC   |M|     PT      |       sequence number         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          timestamp                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |            synchronization source (SSRC) identifier           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           contributing source (CSRC) identifiers              |
   |                             .....                             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0|  3  |   0   |1|        Block Length         |               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |            ...the last of the enhancement data                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 10. Example Fragmented ATRAC Frame

7.  Payload Format Parameters

   Certain parameters will need to be defined before ATRAC-family-
   encoded content can be streamed.  Other optional parameters may also
   be defined to take advantage of specific features relevant to certain
   ATRAC versions.  Parameters for ATRAC3, ATRAC-X, and ATRAC Advanced
   Lossless are defined here as part of the media subtype registration
   process.  A mapping of these parameters into the Session Description
   Protocol (SDP) (RFC 4566) [2] is also provided for applications that
   utilize SDP.  These registrations use the template defined in RFC
   4288 [5] and follow RFC 4855 [6].

   The data format and parameters are specified for real-time transport
   in RTP.

7.1.  ATRAC3 Media Type Registration

   The media subtype for the Adaptive TRansform Codec version 3 (ATRAC3)
   uses the template defined in RFC 4855 [6].

   Note, any unknown parameter MUST be ignored by the receiver.

   Type name:  audio

   Subtype name:  ATRAC3






Hatanaka & Matsumoto        Standards Track                    [Page 14]
^L
RFC 5584          RTP Payload Format for ATRAC Family          July 2009


   Required parameters:

   rate:  Represents the sampling frequency in Hz of the original audio
   data.  Permissible value is 44100 only.

   baseLayer:  Indicates the encoded bit-rate in kbps for the audio data
   to be streamed.  Permissible values are 66, 105, and 132.

   Optional parameters:

   ptime:  See RFC 4566 [2].

   maxptime:  See RFC 4566 [2].
   The frame length of ATRAC3 is 1024/44100 = 23.22...(ms), and
   fractional value may not be applicable for the SDP definition.

   So the value of the parameter MUST be a multiple of 24 (ms)
   considering safe transmission.

   If this parameter is not present, the sender MAY encapsulate a
   maximum of 6 encoded frames into one RTP packet, in streaming of
   ATRAC3.

   maxRedundantFrames:  The maximum number of redundant frames that may
   be sent during a session in any given packet under the redundant
   framing mechanism detailed in the document.  Allowed values are
   integers in the range of 0 to 15, inclusive.  If this parameter is
   not used, a default of 15 MUST be assumed.

   Encoding considerations:  This media type is framed and contains
   binary data.

   Security considerations:  This media type does not carry active
   content.  See Section 9 of this document.

   Interoperability considerations:  none

   Published specification:  ATRAC3 Standard Specification [9]

   Applications that use this media type:
   Audio and video streaming and conferencing tools.

   Additional information:  none
   Magic number(s):  none
   File extension(s):  'at3', 'aa3', and 'omg'
   Macintosh file type code(s):  none





Hatanaka & Matsumoto        Standards Track                    [Page 15]
^L
RFC 5584          RTP Payload Format for ATRAC Family          July 2009


   Person and email address to contact for further information:
   Mitsuyuki Hatanaka
   Jun Matsumoto
   actech@jp.sony.com

   Intended usage:  COMMON

   Restrictions on usage:  This media type depends on RTP framing, and
   hence is only defined for transfer via RTP.

   Author:
   Mitsuyuki Hatanaka
   Jun Matsumoto
   actech@jp.sony.com

   Change controller:  IETF AVT WG delegated from the IESG

7.2.  ATRAC-X Media Type Registration

   The media subtype for the Adaptive TRansform Codec version X
   (ATRAC-X) uses the template defined in RFC 4855 [6].

   Note, any unknown parameter MUST be ignored by the receiver.

   Type name:  audio

   Subtype name:  ATRAC-X

   Required parameters:

   rate:  Represents the sampling frequency in Hz of the original
   audio data.  Permissible values are 44100 and 48000.

   baseLayer:  Indicates the encoded bit-rate in kbps for the audio data
   to be streamed.  Permissible values are 32, 48, 64, 96, 128, 160,
   192, 256, 320, and 352.

   channelID:  Indicates the number of channels and channel layout
   according to the table1 in Section 7.4.  Note that this layout is
   different from that proposed in RFC 3551 [3].  However, as channelID
   = 0 defines an ambiguous channel layout, the channel mapping defined
   in Section 4.1 of [3] could be used.  Permissible values are 0, 1, 2,
   3, 4, 5, 6, 7.

   Optional parameters:

   ptime:  See RFC 4566 [2].




Hatanaka & Matsumoto        Standards Track                    [Page 16]
^L
RFC 5584          RTP Payload Format for ATRAC Family          July 2009


   maxptime:  See RFC 4566 [2].
   The frame length of ATRAC-X is 2048/44100 = 46.44...(ms) or
   2048/48000 = 42.67...(ms), but fractional value may not be applicable
   for the SDP definition.  So the value of the parameter MUST be a
   multiple of 47 (ms) or 43 (ms) considering safe transmission.

   If this parameter is not present, the sender MAY encapsulate a
   maximum of 16 encoded frames into one RTP packet, in streaming of
   ATRAC-X.

   maxRedundantFrames:  The maximum number of redundant frames that may
   be sent during a session in any given packet under the redundant
   framing mechanism detailed in the document.  Allowed values are
   integers in the range 0 to 15, inclusive.  If this parameter is not
   used, a default of 15 MUST be assumed.

   delayMode:  Indicates a desire to use low-delay features, in which
   case the decoder will process received data accordingly based on this
   value.  Permissible values are 2 and 4.

   Encoding considerations:  This media type is framed and contains
   binary data.

   Security considerations:  This media type does not carry active
   content.  See Section 9 of this document.

   Interoperability considerations:  none

   Published specification:  ATRAC-X Standard Specification [10]

   Applications that use this media type:
   Audio and video streaming and conferencing tools.

   Additional information:  none

   Magic number(s):  none
   File extension(s):  'atx', 'aa3', and 'omg'
   Macintosh file type code(s):  none

   Person and email address to contact for further information:
   Mitsuyuki Hatanaka
   Jun Matsumoto
   actech@jp.sony.com

   Intended usage:  COMMON

   Restrictions on usage:  This media type depends on RTP framing, and
   hence is only defined for transfer via RTP.



Hatanaka & Matsumoto        Standards Track                    [Page 17]
^L
RFC 5584          RTP Payload Format for ATRAC Family          July 2009


   Author:
   Mitsuyuki Hatanaka
   Jun Matsumoto
   actech@jp.sony.com

   Change controller:  IETF AVT WG delegated from the IESG

7.3.  ATRAC Advanced Lossless Media Type Registration

   The media subtype for the Adaptive TRansform Codec Lossless version
   (ATRAC Advanced Lossless) uses the template defined in RFC 4855 [6].

   Note, any unknown parameter MUST be ignored by the receiver.

   Type name:  audio

   Subtype name:  ATRAC-ADVANCED-LOSSLESS

   Required parameters:

   rate:  Represents the sampling frequency in Hz of the original
   audio data.  Permissible value is 44100 only for High-Speed Transfer
   mode.  Any value of 24000, 32000, 44100, 48000, 64000, 88200, 96000,
   176400, and 192000 can be used for Standard mode.

   baseLayer:  Indicates the encoded bit-rate in kbps for the base layer
   in High-Speed Transfer mode lossless encodings.

   For Standard lossless mode, this value MUST be 0.

   The Permissible values for ATRAC3 baselayer are 66, 105, and 132.
   For ATRAC-X baselayer, they are 32, 48, 64, 96, 128, 160, 192, 256,
   320, and 352.

   blockLength:  Indicates the block length.  In High-Speed Transfer
   mode, the value of 1024 and 2048 is used for ATRAC3 based and ATRAC-X
   based ATRAC Advanced Lossless streaming, respectively.

   Any value of 512, 1024, and 2048 can be used for Standard mode.

   channelID:  Indicates the number of channels and channel layout
   according to the table1 in Section 7.4.  Note that this layout is
   different from that proposed in RFC 3551 [3].  However, as channelID
   = 0 defines an ambiguous channel layout, the channel mapping defined
   in Section 4.1 of [3] could be used in this case.  Permissible values
   are 0, 1, 2, 3, 4, 5, 6, 7.

   ptime:  See RFC 4566 [2].



Hatanaka & Matsumoto        Standards Track                    [Page 18]
^L
RFC 5584          RTP Payload Format for ATRAC Family          July 2009


   maxptime:  See RFC 4566 [2].
   In streaming of ATRAC Advanced Lossless, multiple frames cannot be
   transmitted in a single RTP packet, as the frame size is large.  So
   it SHOULD be regarded as the time of one encoded frame in both of the
   sender and the receiver side.  The frame length of ATRAC Advanced
   Lossless is 512/44100 = 11.6...(ms), 1024/44100 = 23.22...(ms), or
   2048/44100 = 46.44...(ms), but fractional value may not be applicable
   for the SDP definition.  So the value of the parameter MUST be
   12(ms), 24(ms), or 47(ms) considering safe transmission.

   Encoding considerations:  This media type is framed and contains
   binary data.

   Security considerations:  This media type does not carry active
   content.  See Section 9 of this document.

   Interoperability considerations:  none

   Published specification:
   ATRAC Advanced Lossless Standard Specification [11]

   Applications that use this media type:
   Audio and video streaming and conferencing tools.

   Additional information:  none

   Magic number(s):  none
   File extension(s):  'aal', 'aa3', and 'omg'
   Macintosh file type code(s):  none

   Person and email address to contact for further information:

   Mitsuyuki Hatanaka
   Jun Matsumoto
   actech@jp.sony.com

   Intended usage:  COMMON

   Restrictions on usage:  This media type depends on RTP framing, and
   hence is only defined for transfer via RTP.

   Author:
   Mitsuyuki Hatanaka
   Jun Matsumoto
   actech@jp.sony.com

   Change controller:  IETF AVT WG delegated from the IESG




Hatanaka & Matsumoto        Standards Track                    [Page 19]
^L
RFC 5584          RTP Payload Format for ATRAC Family          July 2009


7.4.  Channel Mapping Configuration Table

   Table 1 explains the mapping between the channelID as passed during
   SDP negotiations, and the speaker mapping the value represents.

            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            | channelID | Number of |  Default Speaker    |
            |           | Channels  |      Mapping        |
            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            |     0     |  max 64   |     undefined       |
            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            |     1     |     1     | front: center       |
            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            |     2     |     2     | front: left, right  |
            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            |     3     |     3     | front: left, right  |
            |           |           | front: center       |
            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            |     4     |     4     | front: left, right  |
            |           |           | front: center       |
            |           |           | rear: surround      |
            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            |     5     |    5+1    | front: left, right  |
            |           |           | front: center       |
            |           |           | rear: left, right   |
            |           |           | LFE                 |
            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            |     6     |    6+1    | front: left, right  |
            |           |           | front: center       |
            |           |           | rear: left, right   |
            |           |           | rear: center        |
            |           |           | LFE                 |
            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            |     7     |    7+1    | front: left, right  |
            |           |           | front: center       |
            |           |           | rear: left, right   |
            |           |           | side: left, right   |
            |           |           | LFE                 |
            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Table 1. Channel Configuration










Hatanaka & Matsumoto        Standards Track                    [Page 20]
^L
RFC 5584          RTP Payload Format for ATRAC Family          July 2009


7.5.  Mapping Media Type Parameters into SDP

   The information carried in the Media type specification has a
   specific mapping to fields in the Session Description Protocol (SDP)
   [2], which is commonly used to describe RTP sessions.  When SDP is
   used to specify sessions employing the ATRAC family of codecs, the
   following mapping rules according to the ATRAC codec apply.

7.5.1.  For Media Subtype ATRAC3

   o  The Media type ("audio") goes in SDP "m=" as the media name.

   o  The Media subtype (payload format name) goes in SDP "a=rtpmap" as
      the encoding name.  ATRAC3 supports only mono or stereo signals,
      so a corresponding number of channels (0 or 1) MUST also be
      specified in this attribute.

   o  The "baseLayer" parameter goes in SDP "a=fmtp".  This parameter
      MUST be present.  "maxRedundantFrames" may follow, but if no value
      is transmitted, the receiver SHOULD assume a default value of
      "15".

   o  The parameters "ptime" and "maxptime" go in the SDP "a=ptime" and
      "a=maxptime" attributes, respectively.

7.5.2.  For Media Subtype ATRAC-X

   o  The Media type ("audio") goes in SDP "m=" as the media name.

   o  The Media subtype (payload format name) goes in SDP "a=rtpmap" as
      the encoding name.  This SHOULD be followed by the "sampleRate"
      (as the RTP clock rate), and then the actual number of channels
      regardless of the channelID parameter.

   o  The parameters "ptime" and "maxptime" go in the SDP "a=ptime" and
      "a=maxptime" attributes, respectively.

   o  Any remaining parameters go in the SDP "a=fmtp" attribute by
      copying them directly from the Media type string as a semicolon-
      separated list of parameter=value pairs.  The "baseLayer"
      parameter MUST be the first entry on this line.  The "channelID"
      parameter MUST be the next entry.  The receiver MUST assume a
      default value of "15" for "maxRedundantFrames".








Hatanaka & Matsumoto        Standards Track                    [Page 21]
^L
RFC 5584          RTP Payload Format for ATRAC Family          July 2009


7.5.3.  For Media Subtype ATRAC Advanced Lossless

   o  The Media type ("audio") goes in SDP "m=" as the media name.

   o  The Media subtype (payload format name) goes in SDP "a=rtpmap" as
      the encoding name.  This MUST be followed by the "sampleRate" (as
      the RTP clock rate), and then the actual number of channels
      regardless of the channelID parameter.

   o  The parameters "ptime" and "maxptime" go in the SDP "a=ptime" and
      "a=maxptime" attributes, respectively.

   o  Any remaining parameters go in the SDP "a=fmtp" attribute by
      copying them directly from the Media type string as a semicolon-
      separated list of parameter=value pairs.

      On this line, the parameters "baseLayer" and "blockLength" MUST be
      present in this order.

      The value of "blockLength" MUST be one of 1024 and 2048, for using
      ATRAC3 and ATRAC-X as baselayer, respectively.  If "baseLayer=0"
      (means standard mode), "blockLength" MUST be one of either 512,
      1024, or 2048.  The "channelID" parameter MUST be the next entry .
      The receiver MUST assume a default value of "15" for
      "maxRedundantFrames".

7.6.  Offer/Answer Model Considerations

   Some options for encoding and decoding ATRAC audio data will require
   either or both of the sender and receiver complying with certain
   specifications.  In order to establish an interoperable transmission
   framework, an Offer/Answer negotiation in SDP MUST observe the
   following considerations.  (See [14].)

7.6.1.  For All Three Media Subtypes

   o  Each combination of the RTP payload transport format configuration
      parameters (baseLayer and blockLength, sampleRate, channelID) is
      unique in its bit-pattern and not compatible with any other
      combination.  When creating an offer in an application desiring to
      use the more advanced features (sample rates above 44100 kHz, more
      than two channels), the offerer SHOULD also offer a payload type
      containing only the lowest set of necessary requirements.  If
      multiple configurations are of interest to the application, they
      may all be offered.






Hatanaka & Matsumoto        Standards Track                    [Page 22]
^L
RFC 5584          RTP Payload Format for ATRAC Family          July 2009


   o  The parameters "maxptime" and "ptime" will in most cases not
      affect interoperability; however, the setting of the parameters
      can affect the performance of the application.  The SDP
      Offer/Answer handling of the "ptime" parameter is described in RFC
      3264.  The "maxptime" parameter MUST be handled in the same way.

7.6.2.  For Media Subtype ATRAC3

   o  In response to an offer, downgraded subsets of "baseLayer" are
      possible.  However, for best performance, we suggest the answer
      contain the highest possible values offered.

7.6.3.  For Media Subtype ATRAC-X

   o  In response to an offer, downgraded subsets of "sampleRate",
      "baseLayer", and "channelID" are possible.  For best performance,
      an answer MUST NOT contain any values requiring further
      capabilities than the offer contains, but it SHOULD provide values
      as close as possible to those in the offer.

   o  The "maxRedundantFrames" is a suggested minimum.  This value MAY
      be increased in an answer (with a maximum of 15), but MUST NOT be
      reduced.

   o  The optional parameter "delayMode" is non-negotiable.  If the
      Answerer cannot comply with the offered value, the session MUST be
      deemed inoperable.

7.6.4.  For Media Subtype ATRAC Advanced Lossless

   o  In response to an offer, downgraded subsets of "sampleRate",
      "baseLayer", and "channelID" are possible.  For best performance,
      an answer MUST NOT contain any values requiring further
      capabilities than the offer contains, but it SHOULD provide values
      as close as possible to those in the offer.

   o  There are no requirements when negotiating "blockLength", other
      than that both parties must be in agreement.

   o  The "maxRedundantFrames" is a suggested minimum.  This value MAY
      be increased in an answer (with a maximum of 15), but MUST NOT be
      reduced.

   o  For transmission of scalable multi-session streaming of ATRAC
      Advanced Lossless content, the attributes of media stream
      identification, group information, and decoding dependency between
      base layer stream and enhancement layer stream MUST be signaled in
      SDP by the Offer/Answer model.  In this case, the attribute of



Hatanaka & Matsumoto        Standards Track                    [Page 23]
^L
RFC 5584          RTP Payload Format for ATRAC Family          July 2009


      "group", "mid", and "depend" followed by the appropriate parameter
      MUST be used in SDP [7] [8] in order to indicate layered coding
      dependency.  The attribute of "group" followed by "DDP" parameter
      is used for indicating the relationship between the base and the
      enhancement layer stream with decoding dependency.  Each stream is
      identified by "mid" attribute, and the dependency of enhancement
      layer stream is defined by the "depend" attribute, as the
      enhancement layer is only useful when the base layer is available.
      Examples for signaling ATRAC Advanced Lossless decoding dependency
      are described in Sections 7.8 and 7.9.

7.7.  Usage of Declarative SDP

   In declarative usage, like SDP in Real-Time Streaming Protocol (RTSP)
   [15] or Session Announcement Protocol (SAP) [16], the parameters MUST
   be interpreted as follows:

   o  The payload format configuration parameters (baseLayer,
      sampleRate, channelID) are all declarative and a participant MUST
      use the configuration(s) provided for the session.  More than one
      configuration may be provided if necessary by declaring multiple
      RTP payload types; however, the number of types SHOULD be kept
      small.

   o  Any "maxptime" and "ptime" values SHOULD be selected with care to
      ensure that the session's participants can achieve reasonable
      performance.

   o  The attribute of "mid", "group", and "depend" MUST be used for
      indicating the relationship and dependency of the base layer and
      the enhancement layer in scalable multi-session streaming of ATRAC
      ADVANCED LOSSLESS content, as described in Sections 7.6, 7.8, and
      7.9.

7.8.  Example SDP Session Descriptions

   Example usage of ATRAC-X with stereo at 44100 Hz:

   v=0
   o=atrac 2465317890 2465317890 IN IP4 service.example.com
   s=ATRAC-X Streaming
   c=IN IP4 192.0.2.1/127
   t=3409539540 3409543140
   m=audio 49120 RTP/AVP 99
   a=rtpmap:99 ATRAC-X/44100/2
   a=fmtp:99 baseLayer=128; channelID=2; delayMode=2
   a=maxptime:47




Hatanaka & Matsumoto        Standards Track                    [Page 24]
^L
RFC 5584          RTP Payload Format for ATRAC Family          July 2009


   Example usage of ATRAC-X with 5.1 setup at 48000 Hz:

   v=0
   o=atrac 2465317890 2465317890 IN IP4 service.example.com
   s=ATRAC-X 5.1ch Streaming
   c=IN IP4 192.0.2.1/127
   t=3409539540 3409543140
   m=audio 49120 RTP/AVP 99
   a=rtpmap:99 ATRAC-X/48000/6
   a=fmtp:99 baseLayer=320; channelID=5
   a=maxptime:43

   Example usage of ATRAC-Advanced-Lossless in multiplexed
   High-Speed Transfer mode:

   v=0
   o=atrac 2465317890 2465317890 IN IP4 service.example.com
   s=AAL Multiplexed Streaming
   c=IN IP4 192.0.2.1/127
   t=3409539540 3409543140
   m=audio 49200 RTP/AVP 96
   a=rtpmap:96 ATRAC-ADVANCED-LOSSLESS/44100/2
   a=fmtp:96 baseLayer=128; blockLength=2048; channelID=2
   a=maxptime:47

   Example usage of ATRAC-Advanced-Lossless in multi-session High-Speed
   Transfer mode.  In this case, the base layer and the enhancement
   layer stream are identified by L1 and L2, respectively, and L2
   depends on L1 in decoding.

   v=0
   o=atrac 2465317890 2465317890 IN IP4 service.example.com
   s=AAL Multi Session Streaming
   c=IN IP4 192.0.2.1/127
   t=3409539540 3409543140
   a=group:DDP L1 L2
   m=audio 49200 RTP/AVP 96
   a=rtpmap:96 ATRAC-ADVANCED-LOSSLESS/44100/2
   a=fmtp:96 baseLayer=128; blockLength=2048; channelID=2
   a=maxptime:47
   a=mid:L1
   m=audio 49202 RTP/AVP 97
   a=rtpmap:97 ATRAC-ADVANCED-LOSSLESS/44100/2
   a=fmtp:97 baseLayer=0; blockLength=2048; channelID=2
   a=maxptime:47
   a=mid:L2
   a=depend:97 lay L1:96




Hatanaka & Matsumoto        Standards Track                    [Page 25]
^L
RFC 5584          RTP Payload Format for ATRAC Family          July 2009


   Example usage of ATRAC-Advanced-Lossless in Standard mode:

   m=audio 49200 RTP/AVP 99
   a=rtpmap:99 ATRAC-ADVANCED-LOSSLESS/44100/2
   a=fmtp:99 baseLayer=0; blockLength=1024; channelID=2
   a=maxptime:24

7.9.  Example Offer/Answer Exchange

   The following Offer/Answer example shows how a desire to stream
   multi-channel content is turned down by the receiver, who answers
   with only the ability to receive stereo content:

   Offer:

   m=audio 49170 RTP/AVP 98 99
   a=rtpmap:98 ATRAC-X/44100/6
   a=fmtp:98 baseLayer=320; channelID=5
   a=rtpmap:99 ATRAC-X/44100/2
   a=fmtp:99 baseLayer=160; channelID=2

   Answer:

   m=audio 49170 RTP/AVP 99
   a=rtpmap:99 ATRAC-X/44100/2
   a=fmtp:99 baseLayer=160; channelID=2

   The following Offer/Answer example shows the receiver answering with
   a selection of supported parameters:

   Offer:

   m=audio 49170 RTP/AVP 97 98 99
   a=rtpmap:97 ATRAC-X/44100/2
   a=fmtp:97 baseLayer=128; channelID=2
   a=rtpmap:98 ATRAC-X/44100/6
   a=fmtp:98 baseLayer=128; channelID=5
   a=rtpmap:99 ATRAC-X/48000/6
   a=fmtp:99 baseLayer=320; channelID=5

   Answer:

   m=audio 49170 RTP/AVP 97 98
   a=rtpmap:97 ATRAC-X/44100/2
   a=fmtp:97 baseLayer=128; channelID=2
   a=rtpmap:98 ATRAC-X/44100/6
   a=fmtp:98 baseLayer=128; channelID=5




Hatanaka & Matsumoto        Standards Track                    [Page 26]
^L
RFC 5584          RTP Payload Format for ATRAC Family          July 2009


   The following Offer/Answer example shows an exchange in trying to
   resolve using ATRAC-Advanced-Lossless.  The offer contains three
   options: multi-session High-Speed Transfer mode, multiplexed High-
   Speed Transfer mode, and Standard mode.

   Offer:

// Multi-session High-Speed Transfer mode, L1 and L2 correspond
   to the base layer and the enhancement layer, respectively, and L2
   depends on L1 in decoding.

   a=group:DDP L1 L2
   m=audio 49200 RTP/AVP 96
   a=rtpmap:96 ATRAC-ADVANCED-LOSSLESS/44100/2
   a=fmtp:96 baseLayer=132; blockLength=1024; channelID=2
   a=maxptime:24
   a=mid:L1

   m=audio 49202 RTP/AVP 97
   a=rtpmap:97 ATRAC-ADVANCED-LOSSLESS/44100/2
   a=fmtp:97 baseLayer=0; blockLength=2048; channelID=2
   a=maxptime:24
   a=mid:L2
   a=depend:97 lay L1:96

// Multiplexed High-Speed Transfer mode
   m=audio 49200 RTP/AVP 98
   a=rtpmap:98 ATRAC-ADVANCED-LOSSLESS/44100/2
   a=fmtp:98 baseLayer=256; blockLength=2048; channelID=2
   a=maxptime:47

// Standard mode
   m=audio 49200 RTP/AVP 99
   a=rtpmap:99 ATRAC-ADVANCED-LOSSLESS/44100/2
   a=fmtp:99 baseLayer=0; blockLength=2048; channelID=2
   a=maxptime:47

   Answer:

   a=group:DDP L1 L2
   m=audio 49200 RTP/AVP 94
   a=rtpmap:94 ATRAC-ADVANCED-LOSSLESS/44100/2
   a=fmtp:94 baseLayer=132; blockLength=1024; channelID=2
   a=maxptime:24
   a=mid:L1






Hatanaka & Matsumoto        Standards Track                    [Page 27]
^L
RFC 5584          RTP Payload Format for ATRAC Family          July 2009


   m=audio 49202 RTP/AVP 95
   a=rtpmap:95 ATRAC-ADVANCED-LOSSLESS/44100/2
   a=fmtp:95 baseLayer=0; blockLength=2048; channelID=2
   a=maxptime:24
   a=mid:L2
   a=depend:95 lay L1:94

   Note that the names of payload format (encoding) and Media subtypes
   are case-insensitive in both places.  Similarly, parameter names are
   case-insensitive both in Media types and in the default mapping to
   the SDP a=fmtp attribute.

8.  IANA Considerations

   Three new Media subtypes, audio/ATRAC3, audio/ATRAC-X, and
   audio/ATRAC-ADVANCED-LOSSLESS, have been registered (see Section 7).

9.  Security Considerations

   The payload format as described in this document is subject to the
   security considerations defined in RFC 3550 [1] and any applicable
   profile, for example, RFC 3551 [3].  Also, the security of Media type
   registration MUST be taken into account as described in Section 5 of
   RFC 4855 [6].

   The payload for ATRAC family consists solely of compressed audio data
   to be decoded and presented as sound, and the standard specifications
   of ATRAC3, ATRAC-X, and ATRAC Advanced Lossless [9] [10] [11]
   strictly define the bit stream syntax and the buffer model in decoder
   side for each codec.  So they can not carry "active content" that
   could impose malicious side effects upon the receiver, and they do
   not cause any problem of illegal resource consumption in receiver
   side, as far as the bit streams are conforming to their standard
   specifications.

   This payload format does not implement any security mechanisms of its
   own.  Confidentiality, integrity protection, and authentication have
   to be provided by a mechanism external to this payload format, e.g.,
   SRTP RFC 3711 [13].

10.  Considerations on Correct Decoding

10.1.  Verification of the Packets

   Verification of the received encoded audio packets MUST be performed
   so as to ensure correct decoding of the packets.  As a most primitive
   implementation, the comparison of the packet size and payload length
   can be taken into account.  If the UDP packet length is longer than



Hatanaka & Matsumoto        Standards Track                    [Page 28]
^L
RFC 5584          RTP Payload Format for ATRAC Family          July 2009


   the RTP packet length, the packet can be accepted, but the extra
   bytes MUST be ignored.  In case of receiving a shorter UDP packet or
   improperly encoded packets, the packets MUST be discarded.

10.2.  Validity Checking of the Packets

   Also, validity checking of the received audio packets MUST be
   performed.  It can be carried out by the decoding process, as the
   ATRAC format is designed so that the validity of data frames can be
   determined by decoding the algorithm.  The required decoder response
   to a malformed frame is to discard the malformed data and conceal the
   errors in the audio output until a valid frame is detected and
   decoded.  This is expected to prevent crashes and other abnormal
   decoder behavior in response to errors or attacks.

11.  References

11.1.  Normative References

   [1]   Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson,
         "RTP: A Transport Protocol for Real-Time Applications", STD 64,
         RFC 3550, July 2003.

   [2]   Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
         Description Protocol", RFC 4566, July 2006.

   [3]   Schulzrinne, H. and S. Casner, "RTP Profile for Audio and Video
         Conferences with Minimal Control", STD 65, RFC 3551, July 2003.

   [4]   Bradner, S., "Key words for use in RFCs to Indicate Requirement
         Levels", BCP 14, RFC 2119, March 1997.

   [5]   Freed, N. and J. Klensin, "Media Type Specifications and
         Registration Procedures", BCP 13, RFC 4288, December 2005.

   [6]   Casner, S., "Media Type Registration of RTP Payload Formats",
         RFC 4855, February 2007.

   [7]   Camarillo, G., Eriksson, G., Holler, J., and H. Schulzrinne,
         "Grouping of Media Lines in the Session Description Protocol
         (SDP)", RFC 3388, December 2002.

   [8]   Schierl, T., and S. Wenger, "Signaling Media Decoding
         Dependency in the Session Description Protocol (SDP)", RFC
         5583, July 2009.

   [9]   ATRAC3 Standard Specification ver.1.1, Sony Corporation, 2003.




Hatanaka & Matsumoto        Standards Track                    [Page 29]
^L
RFC 5584          RTP Payload Format for ATRAC Family          July 2009


   [10]  ATRAC-X Standard Specification ver.1.2, Sony Corporation, 2004.

   [11]  ATRAC Advanced Lossless Standard Specification ver.1.1, Sony
         Corporation, 2007.

11.2.  Informative References

   [12]  Perkins, C., Kouvelas, I., Hodson, O., Hardman, V., Handley,
         M., Bolot, J., Vega-Garcia, A., and S. Fosse-Parisis, "RTP
         Payload for Redundant Audio Data", RFC 2198, September 1997.

   [13]  Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
         Norrman, "The Secure Real-time Transport Protocol (SRTP)", RFC
         3711, March 2004.

   [14]  Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with
         Session Description Protocol (SDP)", RFC 3264, June 2002.

   [15]  Schulzrinne, H., Rao, A., and R. Lanphier, "Real Time Streaming
         Protocol (RTSP)", RFC 2326, April 1998.

   [16]  Handley, M., Perkins, C., and E. Whelan, "Session Announcement
         Protocol", RFC 2974, October 2000.

Authors' Addresses

   Mitsuyuki Hatanaka
   Sony Corporation, Japan
   1-7-1 Konan
   Minato-ku
   Tokyo  108-0075
   Japan

   EMail: actech@jp.sony.com


   Jun Matsumoto
   Sony Corporation, Japan
   1-7-1 Konan
   Minato-ku
   Tokyo  108-0075
   Japan

   EMail: actech@jp.sony.com







Hatanaka & Matsumoto        Standards Track                    [Page 30]
^L