summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc5753.txt
blob: 9c7962e3470baab54829c49a57b3d18de9ac2fa9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
Internet Engineering Task Force (IETF)                         S. Turner
Request for Comments: 5753                                          IECA
Obsoletes: 3278                                                 D. Brown
Category: Informational                                         Certicom
ISSN: 2070-1721                                             January 2010


          Use of Elliptic Curve Cryptography (ECC) Algorithms
                 in Cryptographic Message Syntax (CMS)

Abstract

   This document describes how to use Elliptic Curve Cryptography (ECC)
   public key algorithms in the Cryptographic Message Syntax (CMS).  The
   ECC algorithms support the creation of digital signatures and the
   exchange of keys to encrypt or authenticate content.  The definition
   of the algorithm processing is based on the NIST FIPS 186-3 for
   digital signature, NIST SP800-56A and SEC1 for key agreement, RFC
   3370 and RFC 3565 for key wrap and content encryption, NIST FIPS
   180-3 for message digest, SEC1 for key derivation, and RFC 2104 and
   RFC 4231 for message authentication code standards.  This document
   obsoletes RFC 3278.

Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for informational purposes.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Not all documents
   approved by the IESG are a candidate for any level of Internet
   Standard; see Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc5753.

Copyright Notice

   Copyright (c) 2010 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents



Turner & Brown                Informational                     [Page 1]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

   This document may contain material from IETF Documents or IETF
   Contributions published or made publicly available before November
   10, 2008.  The person(s) controlling the copyright in some of this
   material may not have granted the IETF Trust the right to allow
   modifications of such material outside the IETF Standards Process.
   Without obtaining an adequate license from the person(s) controlling
   the copyright in such materials, this document may not be modified
   outside the IETF Standards Process, and derivative works of it may
   not be created outside the IETF Standards Process, except to format
   it for publication as an RFC or to translate it into languages other
   than English.

Table of Contents

   1. Introduction ....................................................3
      1.1. Requirements Terminology ...................................3
   2. SignedData Using ECC ............................................3
      2.1. SignedData Using ECDSA .....................................4
   3. EnvelopedData Using ECC Algorithms ..............................5
      3.1. EnvelopedData Using (ephemeral-static) ECDH ................5
      3.2. EnvelopedData Using 1-Pass ECMQV ...........................8
   4. AuthenticatedData and AuthEnvelopedData Using ECC ..............11
      4.1. AuthenticatedData Using 1-Pass ECMQV ......................11
      4.2. AuthEnvelopedData Using 1-Pass ECMQV ......................12
   5. Certificates Using ECC .........................................13
   6. SMIMECapabilities Attribute and ECC ............................13
   7. ASN.1 Syntax ...................................................21
      7.1. Algorithm Identifiers .....................................21
      7.2. Other Syntax ..............................................24
   8. Recommended Algorithms and Elliptic Curves .....................26
   9. Security Considerations ........................................28
   10. IANA Considerations ...........................................33
   11. References ....................................................33
      11.1. Normative References .....................................33
      11.2. Informative References ...................................35
   Appendix A.  ASN.1 Modules.........................................37
      A.1.  1988 ASN.1 Module.........................................37
      A.2.  2004 ASN.1 Module.........................................45
   Appendix B. Changes since RFC 3278.................................59
   Acknowledgements...................................................61





Turner & Brown                Informational                     [Page 2]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


1.  Introduction

   The Cryptographic Message Syntax (CMS) is cryptographic algorithm
   independent.  This specification defines a profile for the use of
   Elliptic Curve Cryptography (ECC) public key algorithms in the CMS.
   The ECC algorithms are incorporated into the following CMS content
   types:

   -  'SignedData' to support ECC-based digital signature methods
      (ECDSA) to sign content;

   -  'EnvelopedData' to support ECC-based public key agreement methods
      (ECDH and ECMQV) to generate pairwise key-encryption keys to
      encrypt content-encryption keys used for content encryption;

   -  'AuthenticatedData' to support ECC-based public key agreement
      methods (ECMQV) to generate pairwise key-encryption keys to
      encrypt message-authentication keys used for content
      authentication and integrity; and

   -  'AuthEnvelopedData' to support ECC-based public key agreement
      methods (ECMQV) to generate pairwise key-encryption keys to
      encrypt message-authentication and content-encryption keys used
      for content authentication, integrity, and encryption.

   Certification of EC public keys is also described to provide public
   key distribution in support of the specified techniques.

   The document will obsolete [CMS-ECC].  The technical changes
   performed since RFC 3278 are detailed in Appendix B.

1.1.  Requirements Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [MUST].

2.  SignedData Using ECC

   This section describes how to use ECC algorithms with the CMS
   SignedData format to sign data.










Turner & Brown                Informational                     [Page 3]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


2.1.  SignedData Using ECDSA

   This section describes how to use the Elliptic Curve Digital
   Signature Algorithm (ECDSA) with SignedData.  ECDSA is specified in
   [FIPS186-3].  The method is the elliptic curve analog of the Digital
   Signature Algorithm (DSA) [FIPS186-3].  ECDSA is used with the Secure
   Hash Algorithm (SHA) [FIPS180-3].

   In an implementation that uses ECDSA with CMS SignedData, the
   following techniques and formats MUST be used.

2.1.1.  Fields of the SignedData

   When using ECDSA with SignedData, the fields of SignerInfo are as in
   [CMS], but with the following restrictions:

   -  digestAlgorithm MUST contain the algorithm identifier of the hash
      algorithm (see Section 7.1.1), which MUST be one of the following:
      id-sha1, id-sha224, id-sha256, id-sha384, or id-sha512.

   -  signatureAlgorithm contains the signature algorithm identifier
      (see Section 7.1.3): ecdsa-with-SHA1, ecdsa-with-SHA224, ecdsa-
      with-SHA256, ecdsa-with-SHA384, or ecdsa-with-SHA512.  The hash
      algorithm identified in the name of the signature algorithm MUST
      be the same as the digestAlgorithm (e.g., digestAlgorithm is id-
      sha256 therefore signatureAlgorithm is ecdsa-with-SHA256).

   -  signature MUST contain the DER encoding (as an octet string) of a
      value of the ASN.1 type ECDSA-Sig-Value (see Section 7.2).

   When using ECDSA, the SignedData certificates field MAY include the
   certificate(s) for the EC public key(s) used in the generation of the
   ECDSA signatures in SignedData.  ECC certificates are discussed in
   Section 5.

2.1.2.  Actions of the Sending Agent

   When using ECDSA with SignedData, the sending agent uses the message
   digest calculation process and signature generation process for
   SignedData that are specified in [CMS].  To sign data, the sending
   agent uses the signature method specified in [FIPS186-3].

   The sending agent encodes the resulting signature using the ECDSA-
   Sig-Value syntax (see Section 7.2) and places it in the SignerInfo
   signature field.






Turner & Brown                Informational                     [Page 4]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


2.1.3.  Actions of the Receiving Agent

   When using ECDSA with SignedData, the receiving agent uses the
   message digest calculation process and signature verification process
   for SignedData that are specified in [CMS].  To verify SignedData,
   the receiving agent uses the signature verification method specified
   in [FIPS186-3].

   In order to verify the signature, the receiving agent retrieves the
   integers r and s from the SignerInfo signature field of the received
   message.

3.  EnvelopedData Using ECC Algorithms

   This section describes how to use ECC algorithms with the CMS
   EnvelopedData format.

   This document does not specify the static-static ECDH, method C(0,2,
   ECC CDH) from [SP800-56A].  Static-static ECDH is analogous to
   static-static DH, which is specified in [CMS-ALG].  Ephemeral-static
   ECDH and 1-Pass ECMQV were specified because they provide better
   security due to the originator's ephemeral contribution to the key
   agreement scheme.

3.1.  EnvelopedData Using (ephemeral-static) ECDH

   This section describes how to use the ephemeral-static Elliptic Curve
   Diffie-Hellman (ECDH) key agreement algorithm with EnvelopedData.
   This algorithm has two variations:

   - 'Standard' ECDH, described as the 'Elliptic Curve Diffie-Hellman
     Scheme' with the 'Elliptic Curve Diffie-Hellman Primitive' in
     [SEC1], and

   - 'Co-factor' ECDH, described as the 'One-Pass Diffie-Hellman scheme'
     (method C(1, 1, ECC CDH)) in [SP800-56A].

   Both variations of ephemeral-static ECDH are elliptic curve analogs
   of the ephemeral-static Diffie-Hellman key agreement algorithm
   specified jointly in the documents [CMS-ALG] and [CMS-DH].

   If an implementation uses ECDH with CMS EnvelopedData, then the
   following techniques and formats MUST be used.

   The fields of EnvelopedData are as in [CMS]; as ECDH is a key
   agreement algorithm, the RecipientInfo kari choice is used.





Turner & Brown                Informational                     [Page 5]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


3.1.1.  Fields of KeyAgreeRecipientInfo

   When using ephemeral-static ECDH with EnvelopedData, the fields of
   KeyAgreeRecipientInfo are as follows:

   -  version MUST be 3.

   -  originator MUST be the alternative originatorKey.  The
      originatorKey algorithm field MUST contain the id-ecPublicKey
      object identifier (see Section 7.1.2).  The parameters associated
      with id-ecPublicKey MUST be absent, ECParameters, or NULL.  The
      parameters associated with id-ecPublicKey SHOULD be absent or
      ECParameters, and NULL is allowed to support legacy
      implementations.  The previous version of this document required
      NULL to be present.  If the parameters are ECParameters, then they
      MUST be namedCurve.  The originatorKey publicKey field MUST
      contain the DER encoding of the value of the ASN.1 type ECPoint
      (see Section 7.2), which represents the sending agent's ephemeral
      EC public key.  The ECPoint in uncompressed form MUST be
      supported.

   -  ukm MAY be present or absent.  However, message originators SHOULD
      include the ukm.  As specified in RFC 3852 [CMS], implementations
      MUST support ukm message recipient processing, so interoperability
      is not a concern if the ukm is present or absent.  The ukm is
      placed in the entityUInfo field of the ECC-CMS-SharedInfo
      structure.  When present, the ukm is used to ensure that a
      different key-encryption key is generated, even when the ephemeral
      private key is improperly used more than once, by using the ECC-
      CMS-SharedInfo as an input to the key derivation function (see
      Section 7.2).

   -  keyEncryptionAlgorithm MUST contain the object identifier of the
      key-encryption algorithm, which in this case is a key agreement
      algorithm (see Section 7.1.4).  The parameters field contains
      KeyWrapAlgorithm.  The KeyWrapAlgorithm is the algorithm
      identifier that indicates the symmetric encryption algorithm used
      to encrypt the content-encryption key (CEK) with the key-
      encryption key (KEK) and any associated parameters (see Section
      7.1.5).  Algorithm requirements are found in Section 8.

   -  recipientEncryptedKeys contains an identifier and an encrypted key
      for each recipient.  The RecipientEncryptedKey
      KeyAgreeRecipientIdentifier MUST contain either the
      issuerAndSerialNumber identifying the recipient's certificate or
      the RecipientKeyIdentifier containing the subject key identifier
      from the recipient's certificate.  In both cases, the recipient's
      certificate contains the recipient's static ECDH public key.



Turner & Brown                Informational                     [Page 6]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


      RecipientEncryptedKey EncryptedKey MUST contain the content-
      encryption key encrypted with the ephemeral-static, ECDH-generated
      pairwise key-encryption key using the algorithm specified by the
      KeyWrapAlgorithm.

3.1.2.  Actions of the Sending Agent

   When using ephemeral-static ECDH with EnvelopedData, the sending
   agent first obtains the recipient's EC public key and domain
   parameters (e.g., from the recipient's certificate).  The sending
   agent then performs one of the two ECDH variations mentioned above:

   - If the value of keyEncryptionAlgorithm indicates the use of
     'standard' Diffie-Hellman, then the sending agent performs the
     'Elliptic Curve Diffie-Hellman Scheme' with the 'Elliptic Curve
     Diffie-Hellman Primitive' in [SEC1].

   - If the value of keyEncryptionAlgorithm indicates the use of 'co-
     factor' Diffie-Hellman, then the sending agent performs the 'One-
     Pass Diffie-Hellman scheme' (method C(1, 1, ECC CDH)) in
     [SP800-56A].

   In both of these cases, the sending agent uses the KDF defined in
   Section 3.6.1 of [SEC1] with the hash algorithm identified by the
   value of keyEncryptionAlgorithm.  As a result, the sending agent
   obtains:

   -  an ephemeral public key, which is represented as a value of the
      type ECPoint (see Section 7.2), encapsulated in a bit string and
      placed in the KeyAgreeRecipientInfo originator originatorKey
      publicKey field, and

   -  a shared secret bit string "K", which is used as the pairwise key-
      encryption key for that recipient, as specified in [CMS].

   In a single message, if there are multiple layers for a recipient,
   then the ephemeral public key can be reused by the originator for
   that recipient in each of the different layers.

3.1.3.  Actions of the Receiving Agent

   When using ephemeral-static ECDH with EnvelopedData, the receiving
   agent determines the bit string "SharedInfo", which is the DER
   encoding of ECC-CMS-SharedInfo (see Section 7.2), and the integer
   "keydatalen" from the key size, in bits, of the KeyWrapAlgorithm.
   The receiving agent retrieves the ephemeral EC public key from the
   bit string KeyAgreeRecipientInfo originator, with a value of the type
   ECPoint (see Section 7.2) encapsulated as a bit string, and if



Turner & Brown                Informational                     [Page 7]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


   present, originally supplied additional user key material from the
   ukm field.  The receiving agent then performs one of the two ECDH
   variations mentioned above:

   - If the value of keyEncryptionAlgorithm indicates the use of
     'standard' Diffie-Hellman, then the receiving agent performs the
     'Elliptic Curve Diffie-Hellman Scheme' with the 'Elliptic Curve
     Diffie-Hellman Primitive' in [SEC1].

   - If the value of keyEncryptionAlgorithm indicates the use of 'co-
     factor' Diffie-Hellman, then the receiving agent performs the 'One-
     Pass Diffie-Hellman scheme' (method C(1, 1, ECC CDH)) in
     [SP800-56A].

   In both of these cases, the receiving agent uses the KDF defined in
   Section 3.6.1 of [SEC1] with the hash algorithm identified by the
   value of keyEncryptionAlgorithm.  As a result, the receiving agent
   obtains a shared secret bit string "K", which is used as the pairwise
   key-encryption key to unwrap the CEK.

3.2.  EnvelopedData Using 1-Pass ECMQV

   This section describes how to use the 1-Pass Elliptic Curve Menezes-
   Qu-Vanstone (ECMQV) key agreement algorithm with EnvelopedData,
   method C(1, 2, ECC MQV) from [SP800-56A].  Like the KEA algorithm
   [CMS-KEA], 1-Pass ECMQV uses three key pairs: an ephemeral key pair,
   a static key pair of the sending agent, and a static key pair of the
   receiving agent.  Using an algorithm with the sender static key pair
   allows for knowledge of the message creator; this means that
   authentication can, in some circumstances, be obtained for
   AuthEnvelopedData and AuthenticatedData.  This means that 1-Pass
   ECMQV can be a common algorithm for EnvelopedData, AuthenticatedData,
   and AuthEnvelopedData, while ECDH can only be used in EnvelopedData.

   If an implementation uses 1-Pass ECMQV with CMS EnvelopedData, then
   the following techniques and formats MUST be used.

   The fields of EnvelopedData are as in [CMS]; as 1-Pass ECMQV is a key
   agreement algorithm, the RecipientInfo kari choice is used.  When
   using 1-Pass ECMQV, the EnvelopedData originatorInfo field MAY
   include the certificate(s) for the EC public key(s) used in the
   formation of the pairwise key.  ECC certificates are discussed in
   Section 5.








Turner & Brown                Informational                     [Page 8]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


3.2.1.  Fields of KeyAgreeRecipientInfo

   When using 1-Pass ECMQV with EnvelopedData, the fields of
   KeyAgreeRecipientInfo are as follows:

   -  version MUST be 3.

   -  originator identifies the static EC public key of the sender.  It
      SHOULD be one of the alternatives, issuerAndSerialNumber or
      subjectKeyIdentifier, and point to one of the sending agent's
      certificates.

   -  ukm MUST be present.  The ukm field is an octet string that MUST
      contain the DER encoding of the type MQVuserKeyingMaterial (see
      Section 7.2).  The MQVuserKeyingMaterial ephemeralPublicKey
      algorithm field MUST contain the id-ecPublicKey object identifier
      (see Section 7.1.2).  The parameters associated with id-
      ecPublicKey MUST be absent, ECParameters, or NULL.  The parameters
      associated with id-ecPublicKey SHOULD be absent or ECParameters,
      as NULL is allowed to support legacy implementations.  The
      previous version of this document required NULL to be present.  If
      the parameters are ECParameters, then they MUST be namedCurve.
      The MQVuserKeyingMaterial ephemeralPublicKey publicKey field MUST
      contain the DER encoding of the ASN.1 type ECPoint (see Section
      7.2) representing the sending agent's ephemeral EC public key.
      The MQVuserKeyingMaterial addedukm field, if present, contains
      additional user keying material from the sending agent.

   -  keyEncryptionAlgorithm MUST contain the object identifier of the
      key-encryption algorithm, which in this case is a key agreement
      algorithm (see Section 7.1.4).  The parameters field contains
      KeyWrapAlgorithm.  The KeyWrapAlgorithm indicates the symmetric
      encryption algorithm used to encrypt the CEK with the KEK
      generated using the 1-Pass ECMQV algorithm and any associated
      parameters (see Section 7.1.5).  Algorithm requirements are found
      in Section 8.

   -  recipientEncryptedKeys contains an identifier and an encrypted key
      for each recipient.  The RecipientEncryptedKey
      KeyAgreeRecipientIdentifier MUST contain either the
      issuerAndSerialNumber identifying the recipient's certificate or
      the RecipientKeyIdentifier containing the subject key identifier
      from the recipient's certificate.  In both cases, the recipient's
      certificate contains the recipient's static ECMQV public key.
      RecipientEncryptedKey EncryptedKey MUST contain the content-
      encryption key encrypted with the 1-Pass ECMQV-generated pairwise
      key-encryption key using the algorithm specified by the
      KeyWrapAlgorithm.



Turner & Brown                Informational                     [Page 9]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


3.2.2.  Actions of the Sending Agent

   When using 1-Pass ECMQV with EnvelopedData, the sending agent first
   obtains the recipient's EC public key and domain parameters (e.g.,
   from the recipient's certificate), and checks that the domain
   parameters are the same as the sender's domain parameters.  The
   sending agent then determines an integer "keydatalen", which is the
   KeyWrapAlgorithm symmetric key size in bits, and also a bit string
   "SharedInfo", which is the DER encoding of ECC-CMS-SharedInfo (see
   Section 7.2).  The sending agent then performs the key deployment and
   key agreement operations of the Elliptic Curve MQV Scheme specified
   in [SP800-56A], but uses the KDF defined in Section 3.6.1 of [SEC1].
   As a result, the sending agent obtains:

   - an ephemeral public key, which is represented as a value of type
     ECPoint (see Section 7.2), encapsulated in a bit string, placed in
     an MQVuserKeyingMaterial ephemeralPublicKey publicKey field (see
     Section 7.2), and

   - a shared secret bit string "K", which is used as the pairwise key-
     encryption key for that recipient, as specified in [CMS].

   In a single message, if there are multiple layers for a recipient,
   then the ephemeral public key can be reused by the originator for
   that recipient in each of the different layers.

3.2.3.  Actions of the Receiving Agent

   When using 1-Pass ECMQV with EnvelopedData, the receiving agent
   determines the bit string "SharedInfo", which is the DER encoding of
   ECC-CMS-SharedInfo (see Section 7.2), and the integer "keydatalen"
   from the key size, in bits, of the KeyWrapAlgorithm.  The receiving
   agent then retrieves the static and ephemeral EC public keys of the
   originator, from the originator and ukm fields as described in
   Section 3.2.1, and its static EC public key identified in the rid
   field and checks that the originator's domain parameters are the same
   as the recipient's domain parameters.  The receiving agent then
   performs the key agreement operation of the Elliptic Curve MQV Scheme
   [SP800-56A], but uses the KDF defined in Section 3.6.1 of [SEC1].  As
   a result, the receiving agent obtains a shared secret bit string "K",
   which is used as the pairwise key-encryption key to unwrap the CEK.










Turner & Brown                Informational                    [Page 10]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


4.  AuthenticatedData and AuthEnvelopedData Using ECC

   This section describes how to use ECC algorithms with the CMS
   AuthenticatedData format.  AuthenticatedData lacks non-repudiation,
   and so in some instances is preferable to SignedData.  (For example,
   the sending agent might not want the message to be authenticated when
   forwarded.)

   This section also describes how to use ECC algorithms with the CMS
   AuthEnvelopedData format [CMS-AUTHENV].  AuthEnvelopedData supports
   authentication and encryption, and in some instances is preferable to
   signing and then encrypting data.

   For both AuthenticatedData and AuthEnvelopedData, data origin
   authentication with 1-Pass ECMQV can only be provided when there is
   one and only one recipient.  When there are multiple recipients, an
   attack is possible where one recipient modifies the content without
   other recipients noticing [BON].  A sending agent who is concerned
   with such an attack SHOULD use a separate AuthenticatedData or
   AuthEnvelopedData for each recipient.

   Using an algorithm with the sender static key pair allows for
   knowledge of the message creator; this means that authentication can,
   in some circumstances, be obtained for AuthEnvelopedData and
   AuthenticatedData.  This means that 1-Pass ECMQV can be a common
   algorithm for EnvelopedData, AuthenticatedData, and AuthEnvelopedData
   while ECDH can only be used in EnvelopedData.

4.1.  AuthenticatedData Using 1-Pass ECMQV

   This section describes how to use the 1-Pass ECMQV key agreement
   algorithm with AuthenticatedData.  ECMQV is method C(1, 2, ECC MQV)
   from [SP800-56A].

   When using ECMQV with AuthenticatedData, the fields of
   AuthenticatedData are as in [CMS], but with the following
   restrictions:

   - macAlgorithm MUST contain the algorithm identifier of the message
     authentication code (MAC) algorithm (see Section 7.1.7), which MUST
     be one of the following: hmac-SHA1, id-hmacWITHSHA224, id-
     hmacWITHSHA256, id-hmacWITHSHA384, or id-hmacWITHSHA512.

   - digestAlgorithm MUST contain the algorithm identifier of the hash
     algorithm (see Section 7.1.1), which MUST be one of the following:
     id-sha1, id-sha224, id-sha256, id-sha384, or id-sha512.





Turner & Brown                Informational                    [Page 11]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


   As 1-Pass ECMQV is a key agreement algorithm, the RecipientInfo kari
   choice is used in the AuthenticatedData.  When using 1-Pass ECMQV,
   the AuthenticatedData originatorInfo field MAY include the
   certificate(s) for the EC public key(s) used in the formation of the
   pairwise key.  ECC certificates are discussed in Section 5.

4.1.1.  Fields of the KeyAgreeRecipientInfo

   The AuthenticatedData KeyAgreeRecipientInfo fields are used in the
   same manner as the fields for the corresponding EnvelopedData
   KeyAgreeRecipientInfo fields of Section 3.2.1 of this document.

4.1.2.  Actions of the Sending Agent

   The sending agent uses the same actions as for EnvelopedData with
   1-Pass ECMQV, as specified in Section 3.2.2 of this document.

   In a single message, if there are multiple layers for a recipient,
   then the ephemeral public key can be reused by the originator for
   that recipient in each of the different layers.

4.1.3.  Actions of the Receiving Agent

   The receiving agent uses the same actions as for EnvelopedData with
   1-Pass ECMQV, as specified in Section 3.2.3 of this document.

4.2.  AuthEnvelopedData Using 1-Pass ECMQV

   This section describes how to use the 1-Pass ECMQV key agreement
   algorithm with AuthEnvelopedData.  ECMQV is method C(1, 2, ECC MQV)
   from [SP800-56A].

   When using ECMQV with AuthEnvelopedData, the fields of
   AuthEnvelopedData are as in [CMS-AUTHENV].

   As 1-Pass ECMQV is a key agreement algorithm, the RecipientInfo kari
   choice is used.  When using 1-Pass ECMQV, the AuthEnvelopedData
   originatorInfo field MAY include the certificate(s) for the EC public
   key used in the formation of the pairwise key.  ECC certificates are
   discussed in Section 5.

4.2.1.  Fields of the KeyAgreeRecipientInfo

   The AuthEnvelopedData KeyAgreeRecipientInfo fields are used in the
   same manner as the fields for the corresponding EnvelopedData
   KeyAgreeRecipientInfo fields of Section 3.2.1 of this document.





Turner & Brown                Informational                    [Page 12]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


4.2.2.  Actions of the Sending Agent

   The sending agent uses the same actions as for EnvelopedData with
   1-Pass ECMQV, as specified in Section 3.2.2 of this document.

   In a single message, if there are multiple layers for a recipient,
   then the ephemeral public key can be reused by the originator for
   that recipient in each of the different layers.

4.2.3.  Actions of the Receiving Agent

   The receiving agent uses the same actions as for EnvelopedData with
   1-Pass ECMQV, as specified in Section 3.2.3 of this document.

5.  Certificates Using ECC

   Internet X.509 certificates [PKI] can be used in conjunction with
   this specification to distribute agents' public keys.  The use of ECC
   algorithms and keys within X.509 certificates is specified in
   [PKI-ALG].

6.  SMIMECapabilities Attribute and ECC

   A sending agent MAY announce to receiving agents that it supports one
   or more of the ECC algorithms specified in this document by using the
   SMIMECapabilities signed attribute [MSG] in either a signed message
   or a certificate [CERTCAP].

   The SMIMECapabilities attribute value indicates support for one of
   the ECDSA signature algorithms in a SEQUENCE with the capabilityID
   field containing the object identifier ecdsa-with-SHA1 with NULL
   parameters and ecdsa-with-SHA* (where * is 224, 256, 384, or 512)
   with absent parameters.  The DER encodings are:

      ecdsa-with-SHA1:   30 0b 06 07 2a 86 48 ce 3d 04 01 05 00

      ecdsa-with-SHA224: 30 0a 06 08 2a 86 48 ce 3d 04 03 01

      ecdsa-with-SHA256: 30 0a 06 08 2a 86 48 ce 3d 04 03 02

      ecdsa-with-SHA384: 30 0a 06 08 2a 86 48 ce 3d 04 03 03

      ecdsa-with-SHA512: 30 0a 06 08 2a 86 48 ce 3d 04 03 04

   NOTE: The SMIMECapabilities attribute indicates that parameters for
   ECDSA with SHA-1 are NULL; however, the parameters are absent when
   used to generate a digital signature.




Turner & Brown                Informational                    [Page 13]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


   The SMIMECapabilities attribute value indicates support for

      a)  the standard ECDH key agreement algorithm,
      b)  the cofactor ECDH key agreement algorithm, or
      c)  the 1-Pass ECMQV key agreement algorithm and

   is a SEQUENCE with the capabilityID field containing the object
   identifier

      a)  dhSinglePass-stdDH-sha*kdf-scheme,
      b)  dhSinglePass-cofactorDH-sha*kdf-scheme, or
      c)  mqvSinglePass-sha*kdf-scheme

   respectively (where * is 1, 224, 256, 384, or 512) with the
   parameters present.  The parameters indicate the supported key-
   encryption algorithm with the KeyWrapAlgorithm algorithm identifier.

   The DER encodings that indicate capabilities are as follows (KA is
   key agreement, KDF is key derivation function, and Wrap is key wrap
   algorithm):

      KA=ECDH standard KDF=SHA-1 Wrap=Triple-DES

        30 1c 06 09 2b 81 05 10 86 48 3f 00 02 30 0f 06 0b 2a 86 48 86
        f7 0d 01 09 10 03 06 05 00

      KA=ECDH standard KDF=SHA-224 Wrap=Triple-DES

        30 17 06 06 2b 81 04 01 0B 00 30 0d 06 0b 2a 86 48 86 f7 0d 01
        09 10 03 06

      KA=ECDH standard KDF=SHA-256 Wrap=Triple-DES

        30 17 06 06 2b 81 04 01 0B 01 30 0d 06 0b 2a 86 48 86 f7 0d 01
        09 10 03 06

      KA=ECDH standard KDF=SHA-384 Wrap=Triple-DES

        30 17 06 06 2b 81 04 01 0B 02 30 0d 06 0b 2a 86 48 86 f7 0d 01
        09 10 03 06

      KA=ECDH standard KDF=SHA-512 Wrap=Triple-DES

        30 17 06 06 2b 81 04 01 0B 03 30 0d 06 0b 2a 86 48 86 f7 0d 01
        09 10 03 06






Turner & Brown                Informational                    [Page 14]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


      KA=ECDH standard KDF=SHA-1 Wrap=AES-128

        30 18 06 09 2b 81 05 10 86 48 3f 00 02 30 0b 06 09 60 86 48 01
        65 03 04 01 05

      KA=ECDH standard KDF=SHA-224 Wrap=AES-128

        30 15 06 06 2b 81 04 01 0B 00 30 0b 06 09 60 86 48 01 65 03 04
        01 05

      KA=ECDH standard KDF=SHA-256 Wrap=AES-128

        30 15 06 06 2b 81 04 01 0B 01 30 0b 06 09 60 86 48 01 65 03 04
        01 05

      KA=ECDH standard KDF=SHA-384 Wrap=AES-128

        30 15 06 06 2b 81 04 01 0B 02 30 0b 06 09 60 86 48 01 65 03 04
        01 05

      KA=ECDH standard KDF=SHA-512 Wrap=AES-128

        30 15 06 06 2b 81 04 01 0B 03 30 0b 06 09 60 86 48 01 65 03 04
        01 05

      KA=ECDH standard KDF=SHA-1 Wrap=AES-192

        30 18 06 09 2b 81 05 10 86 48 3f 00 02 30 0b 06 09 60 86 48 01
        65 03 04 01 19

      KA=ECDH standard KDF=SHA-224 Wrap=AES-192

        30 15 06 06 2b 81 04 01 0B 00 30 0b 06 09 60 86 48 01 65 03 04
        01 19

      KA=ECDH standard KDF=SHA-256 Wrap=AES-192

        30 15 06 06 2b 81 04 01 0B 01 30 0b 06 09 60 86 48 01 65 03 04
        01 19

      KA=ECDH standard KDF=SHA-384 Wrap=AES-192

        30 15 06 06 2b 81 04 01 0B 02 30 0b 06 09 60 86 48 01 65 03 04
        01 19







Turner & Brown                Informational                    [Page 15]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


      KA=ECDH standard KDF=SHA-512 Wrap=AES-192

        30 15 06 06 2b 81 04 01 0B 03 30 0b 06 09 60 86 48 01 65 03 04
        01 19

      KA=ECDH standard KDF=SHA-1 Wrap=AES-256

        30 18 06 09 2b 81 05 10 86 48 3f 00 02 30 0b 06 09 60 86 48 01
        65 03 04 01 2D

      KA=ECDH standard KDF=SHA-224 Wrap=AES-256

        30 15 06 06 2b 81 04 01 0B 00 30 0b 06 09 60 86 48 01 65 03 04
        01 2D

      KA=ECDH standard KDF=SHA-256 Wrap=AES-256

        30 15 06 06 2b 81 04 01 0B 01 30 0b 06 09 60 86 48 01 65 03 04
        01 2D

      KA=ECDH standard KDF=SHA-384 Wrap=AES-256

        30 15 06 06 2b 81 04 01 0B 02 30 0b 06 09 60 86 48 01 65 03 04
        01 2D 05 00

      KA=ECDH standard KDF=SHA-512 Wrap=AES-256

        30 15 06 06 2b 81 04 01 0B 03 30 0b 06 09 60 86 48 01 65 03 04
        01 2D

      KA=ECDH cofactor KDF=SHA-1 Wrap=Triple-DES

        30 1c 06 09 2b 81 05 10 86 48 3f 00 03 30 0f 06 0b 2a 86 48 86
        f7 0d 01 09 10 03 06 05 00

      KA=ECDH cofactor KDF=SHA-224 Wrap=Triple-DES

        30 17 06 06 2b 81 04 01 0E 00 30 0d 06 0b 2a 86 48 86 f7 0d 01
        09 10 03 06

      KA=ECDH cofactor KDF=SHA-256 Wrap=Triple-DES

        30 17 06 06 2b 81 04 01 0E 01 30 0d 06 0b 2a 86 48 86 f7 0d 01
        09 10 03 06







Turner & Brown                Informational                    [Page 16]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


      KA=ECDH cofactor KDF=SHA-384 Wrap=Triple-DES

        30 17 06 06 2b 81 04 01 0E 02 30 0d 06 0b 2a 86 48 86 f7 0d 01
        09 10 03 06

      KA=ECDH cofactor KDF=SHA-512 Wrap=Triple-DES

        30 17 06 06 2b 81 04 01 0E 03 30 0d 06 0b 2a 86 48 86 f7 0d 01
        09 10 03 06

      KA=ECDH cofactor KDF=SHA-1 Wrap=AES-128

        30 18 06 09 2b 81 05 10 86 48 3f 00 03 30 0b 06 09 60 86 48 01
        65 03 04 01 05

      KA=ECDH cofactor KDF=SHA-224 Wrap=AES-128

        30 15 06 06 2b 81 04 01 0E 00 30 0b 06 09 60 86 48 01 65 03 04
        01 05

      KA=ECDH cofactor KDF=SHA-256 Wrap=AES-128

        30 15 06 06 2b 81 04 01 0E 01 30 0b 06 09 60 86 48 01 65 03 04
        01 05

      KA=ECDH cofactor KDF=SHA-384 Wrap=AES-128

        30 15 06 06 2b 81 04 01 0E 02 30 0b 06 09 60 86 48 01 65 03 04
        01 05

      KA=ECDH cofactor KDF=SHA-512 Wrap=AES-128

        30 17 06 06 2b 81 04 01 0E 03 30 0b 06 09 60 86 48 01 65 03 04
        01 05

      KA=ECDH cofactor KDF=SHA-1 Wrap=AES-192

        30 18 06 09 2b 81 05 10 86 48 3f 00 03 30 0b 06 09 60 86 48 01
        65 03 04 01 19

      KA=ECDH cofactor KDF=SHA-224 Wrap=AES-192

        30 15 06 06 2b 81 04 01 0E 00 30 0b 06 09 60 86 48 01 65 03 04
        01 19







Turner & Brown                Informational                    [Page 17]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


      KA=ECDH cofactor KDF=SHA-256 Wrap=AES-192

        30 15 06 06 2b 81 04 01 0E 01 30 0b 06 09 60 86 48 01 65 03 04
        01 19

      KA=ECDH cofactor KDF=SHA-384 Wrap=AES-192

        30 15 06 06 2b 81 04 01 0E 02 30 0b 06 09 60 86 48 01 65 03 04
        01 19

      KA=ECDH cofactor KDF=SHA-512 Wrap=AES-192

        30 15 06 06 2b 81 04 01 0E 03 30 0b 06 09 60 86 48 01 65 03 04
        01 19

      KA=ECDH cofactor KDF=SHA-1 Wrap=AES-256

        30 15 06 09 2b 81 05 10 86 48 3f 00 03 30 0b 06 09 60 86 48 01
        65 03 04 01 2D

      KA=ECDH cofactor KDF=SHA-224 Wrap=AES-256

        30 15 06 06 2b 81 04 01 0E 00 30 0b 06 09 60 86 48 01 65 03 04
        01 2D

      KA=ECDH cofactor KDF=SHA-256 Wrap=AES-256

        30 15 06 06 2b 81 04 01 0E 01 30 0b 06 09 60 86 48 01 65 03 04
        01 2D

      KA=ECDH cofactor KDF=SHA-384 Wrap=AES-256

        30 15 06 06 2b 81 04 01 0E 02 30 0b 06 09 60 86 48 01 65 03 04
        01 2D

      KA=ECDH cofactor KDF=SHA-512 Wrap=AES-256

        30 15 06 06 2b 81 04 01 0E 03 30 0b 06 09 60 86 48 01 65 03 04
        01 2D

      KA=ECMQV 1-Pass KDF=SHA-1 Wrap=Triple-DES

        30 1c 06 09 2b 81 05 10 86 48 3f 00 10 30 0f 06 0b 2a 86 48 86
        f7 0d 01 09 10 03 06 05 00







Turner & Brown                Informational                    [Page 18]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


      KA=ECMQV 1-Pass KDF=SHA-224 Wrap=Triple-DES

        30 17 06 06 2b 81 04 01 0F 00 30 0d 06 0b 2a 86 48 86 f7 0d 01
        09 10 03 06

      KA=ECMQV 1-Pass KDF=SHA-256 Wrap=Triple-DES

        30 17 06 06 2b 81 04 01 0F 01 30 0d 06 0b 2a 86 48 86 f7 0d 01
        09 10 03 06

      KA=ECMQV 1-Pass KDF=SHA-384 Wrap=Triple-DES

        30 17 06 06 2b 81 04 01 0F 02 30 0d 06 0b 2a 86 48 86 f7 0d 01
        09 10 03 06

      KA=ECMQV 1-Pass KDF=SHA-512 Wrap=Triple-DES

        30 17 06 06 2b 81 04 01 0F 03 30 0d 06 0b 2a 86 48 86 f7 0d 01
        09 10 03 06

      KA=ECMQV 1-Pass KDF=SHA-1 Wrap=AES-128

        30 18 06 09 2b 81 05 10 86 48 3f 00 10 30 0b 06 09 60 86 48 01
        65 03 04 01 05

      KA=ECMQV 1-Pass KDF=SHA-224 Wrap=AES-128

        30 15 06 06 2b 81 04 01 0F 00 30 0b 06 09 60 86 48 01 65 03 04
        01 05

      KA=ECMQV 1-Pass KDF=SHA-256 Wrap=AES-128

        30 15 06 06 2b 81 04 01 0F 01 30 0b 06 09 60 86 48 01 65 03 04
        01 05

      KA=ECMQV 1-Pass KDF=SHA-384 Wrap=AES-128

        30 15 06 06 2b 81 04 01 0F 02 30 0b 06 09 60 86 48 01 65 03 04
        01 05

      KA=ECMQV 1-Pass KDF=SHA-512 Wrap=AES-128

        30 15 06 06 2b 81 04 01 0F 03 30 0b 06 09 60 86 48 01 65 03 04
        01 05







Turner & Brown                Informational                    [Page 19]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


      KA=ECMQV 1-Pass KDF=SHA-1 Wrap=AES-192

        30 18 06 09 2b 81 05 10 86 48 3f 00 10 30 0b 06 09 60 86 48 01
        65 03 04 01 19

      KA=ECMQV 1-Pass KDF=SHA-224 Wrap=AES-192

        30 15 06 06 2b 81 04 01 0F 00 30 0b 06 09 60 86 48 01 65 03 04
        01 19

      KA=ECMQV 1-Pass KDF=SHA-256 Wrap=AES-192

        30 15 06 06 2b 81 04 01 0F 01 30 0b 06 09 60 86 48 01 65 03 04
        01 19

      KA=ECMQV 1-Pass KDF=SHA-384 Wrap=AES-192

        30 15 06 06 2b 81 04 01 0F 02 30 0b 06 09 60 86 48 01 65 03 04
        01 19

      KA=ECMQV 1-Pass KDF=SHA-512 Wrap=AES-192

        30 15 06 06 2b 81 04 01 0F 03 30 0b 06 09 60 86 48 01 65 03 04
        01 19

      KA=ECMQV 1-Pass KDF=SHA-1 Wrap=AES-256

        30 18 06 09 2b 81 05 10 86 48 3f 00 10 30 0b 06 09 60 86 48 01
        65 03 04 01 2D

      KA=ECMQV 1-Pass KDF=SHA-224 Wrap=AES-256

        30 15 06 06 2b 81 04 01 0F 00 30 0b 06 09 60 86 48 01 65 03 04
        01 2D

      KA=ECMQV 1-Pass KDF=SHA-256 Wrap=AES-256

        30 15 06 06 2b 81 04 01 0F 01 30 0b 06 09 60 86 48 01 65 03 04
        01 2D

      KA=ECMQV 1-Pass KDF=SHA-384 Wrap=AES-256

        30 15 06 06 2b 81 04 01 0F 02 30 0b 06 09 60 86 48 01 65 03 04
        01 2D







Turner & Brown                Informational                    [Page 20]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


      KA=ECMQV 1-Pass KDF=SHA-512 Wrap=AES-256

        30 15 06 06 2b 81 04 01 0F 03 30 0b 06 09 60 86 48 01 65 03 04
        01 2D

   NOTE: The S/MIME Capabilities for the supported AES content-
   encryption key sizes are defined in [CMS-AES].

   NOTE: The S/MIME Capabilities for the supported MAC algorithms are
   defined in [CMS-ASN].

7.  ASN.1 Syntax

   The ASN.1 syntax [X.680], [X.681], [X.682], [X.683] used in this
   document is gathered in this section for reference purposes.

7.1.  Algorithm Identifiers

   This section provides the object identifiers for the algorithms used
   in this document along with any associated parameters.

7.1.1.  Digest Algorithms

   Digest algorithm object identifiers are used in the SignedData
   digestAlgorithms and digestAlgorithm fields and the AuthenticatedData
   digestAlgorithm field.  The digest algorithms used in this document
   are SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512.  The object
   identifiers and parameters associated with these algorithms are found
   in [CMS-ALG] and [CMS-SHA2].

7.1.2.  Originator Public Key

   The KeyAgreeRecipientInfo originator field uses the following object
   identifier to indicate an elliptic curve public key:

      id-ecPublicKey OBJECT IDENTIFIER ::= {
        ansi-x9-62 keyType(2) 1 }

   where

      ansi-x9-62 OBJECT IDENTIFIER ::= {
        iso(1) member-body(2) us(840) 10045 }

   When the object identifier id-ecPublicKey is used here with an
   algorithm identifier, the associated parameters MUST be either absent
   or ECParameters.  Implementations MUST accept id-ecPublicKey with
   absent and ECParameters parameters.  If ECParameters is present, its




Turner & Brown                Informational                    [Page 21]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


   value MUST match the recipient's ECParameters.  Implementations
   SHOULD generate absent parameters for the id-ecPublicKey object
   identifier in the KeyAgreeRecipientInfo originator field.

   [CMS-ECC] indicated the parameters were NULL.  Support for this
   legacy form is OPTIONAL.

7.1.3.  Signature Algorithms

   Signature algorithm identifiers are used in the SignedData
   signatureAlgorithm and signature fields.  The signature algorithms
   used in this document are ECDSA with SHA-1, ECDSA with SHA-224, ECDSA
   with SHA-256, ECDSA with SHA-384, and ECDSA with SHA-512.  The object
   identifiers and parameters associated with these algorithms are found
   in [PKI-ALG].

   [CMS-ECC] indicated the parameters were NULL.  Support for this
   legacy form is OPTIONAL.

7.1.4.  Key Agreement Algorithms

   Key agreement algorithms are used in EnvelopedData,
   AuthenticatedData, and AuthEnvelopedData in the KeyAgreeRecipientInfo
   keyEncryptionAlgorithm field.  The following object identifiers
   indicate the key agreement algorithms used in this document
   [SP800-56A], [SEC1]:

      dhSinglePass-stdDH-sha1kdf-scheme OBJECT IDENTIFIER ::= {
        x9-63-scheme 2 }

      dhSinglePass-stdDH-sha224kdf-scheme OBJECT IDENTIFIER ::= {
        secg-scheme 11 0 }

      dhSinglePass-stdDH-sha256kdf-scheme OBJECT IDENTIFIER ::= {
        secg-scheme 11 1 }

      dhSinglePass-stdDH-sha384kdf-scheme OBJECT IDENTIFIER ::= {
        secg-scheme 11 2 }

      dhSinglePass-stdDH-sha512kdf-scheme OBJECT IDENTIFIER ::= {
        secg-scheme 11 3 }

      dhSinglePass-cofactorDH-sha1kdf-scheme OBJECT IDENTIFIER ::= {
        x9-63-scheme 3 }

      dhSinglePass-cofactorDH-sha224kdf-scheme OBJECT IDENTIFIER ::= {
        secg-scheme 14 0 }




Turner & Brown                Informational                    [Page 22]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


      dhSinglePass-cofactorDH-sha256kdf-scheme OBJECT IDENTIFIER ::= {
        secg-scheme 14 1 }

      dhSinglePass-cofactorDH-sha384kdf-scheme OBJECT IDENTIFIER ::= {
        secg-scheme 14 2 }

      dhSinglePass-cofactorDH-sha512kdf-scheme OBJECT IDENTIFIER ::= {
        secg-scheme 14 3 }

      mqvSinglePass-sha1kdf-scheme OBJECT IDENTIFIER ::= {
        x9-63-scheme 16 }

      mqvSinglePass-sha224kdf-scheme OBJECT IDENTIFIER ::= {
        secg-scheme 15 0 }

      mqvSinglePass-sha256kdf-scheme OBJECT IDENTIFIER ::= {
        secg-scheme 15 1 }

      mqvSinglePass-sha384kdf-scheme OBJECT IDENTIFIER ::= {
        secg-scheme 15 2 }

      mqvSinglePass-sha512kdf-scheme OBJECT IDENTIFIER ::= {
        secg-scheme 15 3 }

   where

      x9-63-scheme OBJECT IDENTIFIER ::= {
        iso(1) identified-organization(3) tc68(133) country(16)
        x9(840) x9-63(63) schemes(0) }

   and

      secg-scheme OBJECT IDENTIFIER ::= {
        iso(1) identified-organization(3) certicom(132) schemes(1) }

   When the object identifiers are used here within an algorithm
   identifier, the associated parameters field contains KeyWrapAlgorithm
   to indicate the key wrap algorithm and any associated parameters.

7.1.5.  Key Wrap Algorithms

   Key wrap algorithms are used as part of the parameters in the key
   agreement algorithm.  The key wrap algorithms used in this document
   are Triple-DES, AES-128, AES-192, and AES-256.  The object
   identifiers and parameters for these algorithms are found in
   [CMS-ALG] and [CMS-AES].





Turner & Brown                Informational                    [Page 23]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


7.1.6.  Content Encryption Algorithms

   Content encryption algorithms are used in EnvelopedData and
   AuthEnvelopedData in the EncryptedContentInfo
   contentEncryptionAlgorithm field.  The content encryption algorithms
   used with EnvelopedData in this document are 3-Key Triple DES in CBC
   mode, AES-128 in CBC mode, AES-192 in CBC mode, and AES-256 in CBC
   mode.  The object identifiers and parameters associated with these
   algorithms are found in [CMS-ALG] and [CMS-AES].  The content
   encryption algorithms used with AuthEnvelopedData in this document
   are AES-128 in CCM mode, AES-192 in CCM mode, AES-256 in CCM mode,
   AES-128 in GCM mode, AES-192 in GCM mode, and AES-256 in GCM mode.
   The object identifiers and parameters associated with these
   algorithms are found in [CMS-AESCG].

7.1.7.  Message Authentication Code Algorithms

   Message authentication code algorithms are used in AuthenticatedData
   in the macAlgorithm field.  The message authentication code
   algorithms used in this document are HMAC with SHA-1, HMAC with
   SHA-224, HMAC with SHA-256, HMAC with SHA-384, and HMAC with SHA-512.
   The object identifiers and parameters associated with these
   algorithms are found in [CMS-ALG] and [HMAC-SHA2].

   NOTE: [HMAC-SHA2] defines the object identifiers for HMAC with
   SHA-224, HMAC with SHA-256, HMAC with SHA-384, and HMAC with SHA-512,
   but there is no ASN.1 module from which to import these object
   identifiers.  Therefore, the object identifiers for these algorithms
   are included in the ASN.1 modules defined in Appendix A.

7.1.8.  Key Derivation Algorithm

   The KDF used in this document is as specified in Section 3.6.1 of
   [SEC1].  The hash algorithm is identified in the key agreement
   algorithm.  For example, dhSinglePass-stdDH-sha256kdf-scheme uses the
   KDF from [SEC1] but uses SHA-256 instead of SHA-1.

7.2.  Other Syntax

   The following additional syntax is used here.

   When using ECDSA with SignedData, ECDSA signatures are encoded using
   the type:

      ECDSA-Sig-Value ::= SEQUENCE {
        r INTEGER,
        s INTEGER }




Turner & Brown                Informational                    [Page 24]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


   ECDSA-Sig-Value is specified in [PKI-ALG].  Within CMS, ECDSA-Sig-
   Value is DER-encoded and placed within a signature field of
   SignedData.

   When using ECDH and ECMQV with EnvelopedData, AuthenticatedData, and
   AuthEnvelopedData, ephemeral and static public keys are encoded using
   the type ECPoint.  Implementations MUST support uncompressed keys,
   MAY support compressed keys, and MUST NOT support hybrid keys.

      ECPoint ::= OCTET STRING

   When using ECMQV with EnvelopedData, AuthenticatedData, and
   AuthEnvelopedData, the sending agent's ephemeral public key and
   additional keying material are encoded using the type:

      MQVuserKeyingMaterial ::= SEQUENCE {
        ephemeralPublicKey      OriginatorPublicKey,
        addedukm            [0] EXPLICIT UserKeyingMaterial OPTIONAL  }

   The ECPoint syntax is used to represent the ephemeral public key and
   is placed in the ephemeralPublicKey publicKey field.  The additional
   user keying material is placed in the addedukm field.  Then the
   MQVuserKeyingMaterial value is DER-encoded and placed within the ukm
   field of EnvelopedData, AuthenticatedData, or AuthEnvelopedData.

   When using ECDH or ECMQV with EnvelopedData, AuthenticatedData, or
   AuthEnvelopedData, the key-encryption keys are derived by using the
   type:

      ECC-CMS-SharedInfo ::= SEQUENCE {
        keyInfo         AlgorithmIdentifier,
        entityUInfo [0] EXPLICIT OCTET STRING OPTIONAL,
        suppPubInfo [2] EXPLICIT OCTET STRING  }

   The fields of ECC-CMS-SharedInfo are as follows:

      keyInfo contains the object identifier of the key-encryption
      algorithm (used to wrap the CEK) and associated parameters.  In
      this specification, 3DES wrap has NULL parameters while the AES
      wraps have absent parameters.

      entityUInfo optionally contains additional keying material
      supplied by the sending agent.  When used with ECDH and CMS, the
      entityUInfo field contains the octet string ukm.  When used with
      ECMQV and CMS, the entityUInfo contains the octet string addedukm
      (encoded in MQVuserKeyingMaterial).





Turner & Brown                Informational                    [Page 25]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


      suppPubInfo contains the length of the generated KEK, in bits,
      represented as a 32-bit number, as in [CMS-DH] and [CMS-AES].
      (For example, for AES-256 it would be 00 00 01 00.)

   Within CMS, ECC-CMS-SharedInfo is DER-encoded and used as input to
   the key derivation function, as specified in Section 3.6.1 of [SEC1].

   NOTE: ECC-CMS-SharedInfo differs from the OtherInfo specified in
   [CMS-DH].  Here, a counter value is not included in the keyInfo field
   because the key derivation function specified in Section 3.6.1 of
   [SEC1] ensures that sufficient keying data is provided.

8.  Recommended Algorithms and Elliptic Curves

   It is RECOMMENDED that implementations of this specification support
   SignedData and EnvelopedData.  Support for AuthenticatedData and
   AuthEnvelopedData is OPTIONAL.

   In order to encourage interoperability, implementations SHOULD use
   the elliptic curve domain parameters specified by [PKI-ALG].

   Implementations that support SignedData with ECDSA:

      - MUST support ECDSA with SHA-256; and

      - MAY support ECDSA with SHA-1, ECDSA with SHA-224, ECDSA with
        SHA-384, and ECDSA with SHA-512; other digital signature
        algorithms MAY also be supported.

   When using ECDSA, to promote interoperability it is RECOMMENDED that
   the P-192, P-224, and P-256 curves be used with SHA-256; the P-384
   curve be used with SHA-384; and the P-521 curve be used with SHA-512.

   If EnvelopedData is supported, then ephemeral-static ECDH standard
   primitive MUST be supported.  Support for ephemeral-static ECDH co-
   factor is OPTIONAL, and support for 1-Pass ECMQV is also OPTIONAL.

   Implementations that support EnvelopedData with the ephemeral-static
   ECDH standard primitive:

      - MUST support the dhSinglePass-stdDH-sha256kdf-scheme key
        agreement algorithm, the id-aes128-wrap key wrap algorithm, and
        the id-aes128-cbc content encryption algorithm; and








Turner & Brown                Informational                    [Page 26]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


      - MAY support the dhSinglePass-stdDH-sha1kdf-scheme, dhSinglePass-
        stdDH-sha224kdf-scheme, dhSinglePass-stdDH-sha384kdf-scheme, and
        dhSinglePass-stdDH-sha512kdf-scheme key agreement algorithms;
        the id-alg-CMS3DESwrap, id-aes192-wrap, and id-aes256-wrap key
        wrap algorithms; and the des-ede3-cbc, id-aes192-cbc, and id-
        aes256-cbc content encryption algorithms; other algorithms MAY
        also be supported.

   Implementations that support EnvelopedData with the ephemeral-static
   ECDH cofactor primitive:

      - MUST support the dhSinglePass-cofactorDH-sha256kdf-scheme key
        agreement algorithm, the id-aes128-wrap key wrap algorithm, and
        the id-aes128-cbc content encryption algorithm; and

      - MAY support the dhSinglePass-cofactorDH-sha1kdf-scheme,
        dhSinglePass-cofactorDH-sha224kdf-scheme, dhSinglePass-
        cofactorDH-sha384kdf-scheme, and dhSinglePass-cofactorDH-
        sha512kdf-scheme key agreement; the id-alg-CMS3DESwrap, id-
        aes192-wrap, and id-aes256-wrap key wrap algorithms; and the
        des-ede3-cbc, id-aes192-cbc, and id-aes256-cbc content
        encryption algorithms; other algorithms MAY also be supported.

   Implementations that support EnvelopedData with 1-Pass ECMQV:

      - MUST support the mqvSinglePass-sha256kdf-scheme key agreement
        algorithm, the id-aes128-wrap key wrap algorithm, and the id-
        aes128-cbc content encryption algorithm; and

      - MAY support the mqvSinglePass-sha1kdf-scheme, mqvSinglePass-
        sha224kdf-scheme, mqvSinglePass-sha384kdf-scheme, and
        mqvSinglePass-sha512kdf-scheme key agreement algorithms; the id-
        alg-CMS3DESwrap, id-aes192-wrap, and id-aes256-wrap key wrap
        algorithms; and the des-ede3-cbc, id-aes192-cbc, and id-
        aes256-cbc content encryption algorithms; other algorithms MAY
        also be supported.

   Implementations that support AuthenticatedData with 1-Pass ECMQV:

      - MUST support the mqvSinglePass-sha256kdf-scheme key agreement,
        the id-aes128-wrap key wrap, the id-sha256 message digest, and
        id-hmacWithSHA256 message authentication code algorithms; and

      - MAY support the mqvSinglePass-sha1kdf-scheme, mqvSinglePass-
        sha224kdf-scheme, mqvSinglePass-sha384kdf-scheme, mqvSinglePass-
        sha512kdf-scheme key agreement algorithms; the id-alg-
        CMS3DESwrap, id-aes192-wrap, and id-aes256-wrap key wrap
        algorithms; the id-sha1, id-sha224, id-sha384, and id-sha512,



Turner & Brown                Informational                    [Page 27]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


        message digest algorithms; and the hmac-SHA1, id-hmacWithSHA224,
        id-hmacWithSHA384, and id-hmacWithSHA512 message authentication
        code algorithms; other algorithms MAY also be supported.

   Implementations that support AuthEnvelopedData with 1-Pass ECMQV:

      - MUST support the mqvSinglePass-sha256kdf-scheme key agreement,
        the id-aes128-wrap key wrap, and the id-aes128-ccm
        authenticated-content encryption; and

      - MAY support the mqvSinglePass-sha1kdf-scheme, mqvSinglePass-
        sha224kdf-scheme, mqvSinglePass-sha384kdf-scheme, and
        mqvSinglePass-sha512kdf-scheme key agreement algorithms; the id-
        alg-CMS3DESwrap, id-aes192-wrap, and id-aes256-wrap key wrap
        algorithms; and the id-aes192-ccm, id-aes256-ccm, id-aes128-gcm,
        id-aes192-gcm, and id-aes256-ccm authenticated-content
        encryption algorithms; other algorithms MAY also be supported.

9.  Security Considerations

   Cryptographic algorithms will be broken or weakened over time.
   Implementers and users need to check that the cryptographic
   algorithms listed in this document continue to provide the expected
   level of security.  The IETF from time to time may issue documents
   dealing with the current state of the art.

   Cryptographic algorithms rely on random numbers.  See [RANDOM] for
   guidance on generation of random numbers.

   Receiving agents that validate signatures and sending agents that
   encrypt messages need to be cautious of cryptographic processing
   usage when validating signatures and encrypting messages using keys
   larger than those mandated in this specification.  An attacker could
   send keys and/or certificates with keys that would result in
   excessive cryptographic processing, for example, keys larger than
   those mandated in this specification, which could swamp the
   processing element.  Agents that use such keys without first
   validating the certificate to a trust anchor are advised to have some
   sort of cryptographic resource management system to prevent such
   attacks.

   Using secret keys of an appropriate size is crucial to the security
   of a Diffie-Hellman exchange.  For elliptic curve groups, the size of
   the secret key must be equal to the size of n (the order of the group
   generated by the point g).  Using larger secret keys provides
   absolutely no additional security, and using smaller secret keys is
   likely to result in dramatically less security.  (See [SP800-56A] for
   more information on selecting secret keys.)



Turner & Brown                Informational                    [Page 28]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


   This specification is based on [CMS], [CMS-AES], [CMS-AESCG],
   [CMS-ALG], [CMS-AUTHENV], [CMS-DH], [CMS-SHA2], [FIPS180-3],
   [FIPS186-3], and [HMAC-SHA2], and the appropriate security
   considerations of those documents apply.

   In addition, implementers of AuthenticatedData and AuthEnvelopedData
   should be aware of the concerns expressed in [BON] when using
   AuthenticatedData and AuthEnvelopedData to send messages to more than
   one recipient.  Also, users of MQV should be aware of the
   vulnerability described in [K].

   When implementing EnvelopedData, AuthenticatedData, and
   AuthEnvelopedData, there are five algorithm-related choices that need
   to be made:

      1) What is the public key size?
      2) What is the KDF?
      3) What is the key wrap algorithm?
      4) What is the content encryption algorithm?
      5) What is the curve?

   Consideration must be given to the strength of the security provided
   by each of these choices.  Security algorithm strength is measured in
   bits, where bits is measured in equivalence to a symmetric cipher
   algorithm.  Thus, a strong symmetric cipher algorithm with a key of X
   bits is said to provide X bits of security.  For other algorithms,
   the key size is mapped to an equivalent symmetric cipher strength.
   It is recommended that the bits of security provided by each are
   roughly equivalent.  The following table provides comparable minimum
   bits of security [SP800-57] for the ECDH/ECMQV key sizes, KDFs, key
   wrapping algorithms, and content encryption algorithms.  It also
   lists curves [PKI-ALG] for the key sizes.



















Turner & Brown                Informational                    [Page 29]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


   Minimum  | ECDH or  | Key        | Key      | Content     | Curves
   Bits of  | ECMQV    | Derivation | Wrap     | Encryption  |
   Security | Key Size | Function   | Alg.     | Alg.        |
   ---------+----------+------------+----------+-------------+----------
   80       | 160-223  | SHA-1      | 3DES     | 3DES CBC    | sect163k1
            |          | SHA-224    | AES-128  | AES-128 CBC | secp163r2
            |          | SHA-256    | AES-192  | AES-192 CBC | secp192r1
            |          | SHA-384    | AES-256  | AES-256 CBC |
            |          | SHA-512    |          |             |
   ---------+----------+------------+----------+-------------+---------
   112      | 224-255  | SHA-1      | 3DES     | 3DES CBC    | secp224r1
            |          | SHA-224    | AES-128  | AES-128 CBC | sect233k1
            |          | SHA-256    | AES-192  | AES-192 CBC | sect233r1
            |          | SHA-384    | AES-256  | AES-256 CBC |
            |          | SHA-512    |          |             |
   ---------+----------+------------+----------+-------------+---------
   128      | 256-383  | SHA-1      | AES-128  | AES-128 CBC | secp256r1
            |          | SHA-224    | AES-192  | AES-192 CBC | sect283k1
            |          | SHA-256    | AES-256  | AES-256 CBC | sect283r1
            |          | SHA-384    |          |             |
            |          | SHA-512    |          |             |
   ---------+----------+------------+----------+-------------+---------
   192      | 384-511  | SHA-224    | AES-192  | AES-192 CBC | secp384r1
            |          | SHA-256    | AES-256  | AES-256 CBC | sect409k1
            |          | SHA-384    |          |             | sect409r1
            |          | SHA-512    |          |             |
   ---------+----------+------------+----------+-------------+---------
   256      | 512+     | SHA-256    | AES-256  | AES-256 CBC | secp521r1
            |          | SHA-384    |          |             | sect571k1
            |          | SHA-512    |          |             | sect571r1
   ---------+----------+------------+----------+-------------+---------




















Turner & Brown                Informational                    [Page 30]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


   To promote interoperability, the following choices are RECOMMENDED:

   Minimum  | ECDH or  | Key        | Key      | Content     | Curve
   Bits of  | ECMQV    | Derivation | Wrap     | Encryption  |
   Security | Key Size | Function   | Alg.     | Alg.        |
   ---------+----------+------------+----------+-------------+----------
   80       | 192      | SHA-256    | 3DES     | 3DES CBC    | secp192r1
   ---------+----------+------------+----------+-------------+----------
   112      | 224      | SHA-256    | 3DES     | 3DES CBC    | secp224r1
   ---------+----------+------------+----------+-------------+----------
   128      | 256      | SHA-256    | AES-128  | AES-128 CBC | secp256r1
   ---------+----------+------------+----------+-------------+----------
   192      | 384      | SHA-384    | AES-256  | AES-256 CBC | secp384r1
   ---------+----------+------------+----------+-------------+----------
   256      | 512+     | SHA-512    | AES-256  | AES-256 CBC | secp521r1
   ---------+----------+------------+----------+-------------+----------

   When implementing SignedData, there are three algorithm-related
   choices that need to be made:

      1) What is the public key size?
      2) What is the hash algorithm?
      3) What is the curve?

   Consideration must be given to the bits of security provided by each
   of these choices.  Security is measured in bits, where a strong
   symmetric cipher with a key of X bits is said to provide X bits of
   security.  It is recommended that the bits of security provided by
   each choice are roughly equivalent.  The following table provides
   comparable minimum bits of security [SP800-57] for the ECDSA key
   sizes and message digest algorithms.  It also lists curves [PKI-ALG]
   for the key sizes.



















Turner & Brown                Informational                    [Page 31]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


   Minimum  | ECDSA    | Message   | Curve
   Bits of  | Key Size | Digest    |
   Security |          | Algorithm |
   ---------+----------+-----------+-----------
   80       | 160-223  | SHA-1     | sect163k1
            |          | SHA-224   | secp163r2
            |          | SHA-256   | secp192r1
            |          | SHA-384   |
            |          | SHA-512   |
   ---------+----------+-----------+-----------
   112      | 224-255  | SHA-224   | secp224r1
            |          | SHA-256   | sect233k1
            |          | SHA-384   | sect233r1
            |          | SHA-512   |
   ---------+----------+-----------+-----------
   128      | 256-383  | SHA-256   | secp256r1
            |          | SHA-384   | sect283k1
            |          | SHA-512   | sect283r1
   ---------+----------+-----------+-----------
   192      | 384-511  | SHA-384   | secp384r1
            |          | SHA-512   | sect409k1
            |          |           | sect409r1
   ---------+----------+-----------+-----------
   256      | 512+     | SHA-512   | secp521r1
            |          |           | sect571k1
            |          |           | sect571r1
   ---------+----------+-----------+-----------

   To promote interoperability, the following choices are RECOMMENDED:

   Minimum  | ECDSA    | Message   | Curve
   Bits of  | Key Size | Digest    |
   Security |          | Algorithm |
   ---------+----------+-----------+-----------
   80       | 192      | SHA-256   | sect192r1
   ---------+----------+-----------+-----------
   112      | 224      | SHA-256   | secp224r1
   ---------+----------+-----------+-----------
   128      | 256      | SHA-256   | secp256r1
   ---------+----------+-----------+-----------
   192      | 384      | SHA-384   | secp384r1
   ---------+----------+-----------+-----------
   256      | 512+     | SHA-512   | secp521r1
   ---------+----------+-----------+-----------







Turner & Brown                Informational                    [Page 32]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


10.  IANA Considerations

   This document makes extensive use of object identifiers to register
   originator public key types and algorithms.  The algorithm object
   identifiers are registered in the ANSI X9.62, ANSI X9.63, NIST, RSA,
   and SECG arcs.  Additionally, object identifiers are used to identify
   the ASN.1 modules found in Appendix A (there are two).  These are
   defined by the SMIME WG Registrar in an arc delegated by RSA to the
   SMIME Working Group: iso(1) member-body(2) us(840) rsadsi(113549)
   pkcs(1) pkcs-9(9) smime(16) modules(0).  No action by IANA is
   necessary for this document or any anticipated updates.

11.  References

11.1.  Normative References

   [CMS]          Housley, R., "Cryptographic Message Syntax (CMS)", RFC
                  5652, September 2009.

   [CMS-AES]      Schaad, J., "Use of the Advanced Encryption Standard
                  (AES) Encryption Algorithm in Cryptographic Message
                  Syntax (CMS)", RFC 3565, July 2003.

   [CMS-AESCG]    Housley, R., "Using AES-CCM and AES-GCM Authenticated
                  Encryption in the Cryptographic Message Syntax (CMS)",
                  RFC 5084, December 2007.

   [CMS-ALG]      Housley, R., "Cryptographic Message Syntax (CMS)
                  Algorithms", RFC 3370, August 2002.

   [CMS-AUTHENV]  Housley, R., "Cryptographic Message Syntax (CMS)
                  Authenticated-Enveloped-Data Content Type", RFC 5083,
                  November 2007.

   [CMS-DH]       Rescorla, E., "Diffie-Hellman Key Agreement Method",
                  RFC 2631, June 1999.

   [CMS-SHA2]     Turner, S., "Using SHA2 Algorithms with Cryptographic
                  Message Syntax", RFC 5754, January 2010.

   [FIPS180-3]    National Institute of Standards and Technology (NIST),
                  FIPS Publication 180-3: Secure Hash Standard, October
                  2008.

   [FIPS186-3]    National Institute of Standards and Technology (NIST),
                  FIPS Publication 186-3: Digital Signature Standard,
                  June 2009.




Turner & Brown                Informational                    [Page 33]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


   [HMAC-SHA2]    Nystrom, M., "Identifiers and Test Vectors for HMAC-
                  SHA-224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-
                  SHA-512", RFC 4231, December 2005.

   [MUST]         Bradner, S., "Key words for use in RFCs to Indicate
                  Requirement Levels", BCP 14, RFC 2119, March 1997.

   [MSG]          Ramsdell, B. and S. Turner, "Secure/Multipurpose
                  Internet Mail Extensions (S/MIME) Version 3.2 Message
                  Specification", RFC 5751, January 2010.

   [PKI]          Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
                  Housley, R., and W. Polk, "Internet X.509 Public Key
                  Infrastructure Certificate and Certificate Revocation
                  List (CRL) Profile", RFC 5280, May 2008.

   [PKI-ALG]      Turner, S., Brown, D., Yiu, K., Housley, R., and T.
                  Polk, "Elliptic Curve Cryptography Subject Public Key
                  Information", RFC 5480, March 2009.

   [RANDOM]       Eastlake, D., 3rd, Schiller, J., and S. Crocker,
                  "Randomness Requirements for Security", BCP 106, RFC
                  4086, June 2005.

   [RSAOAEP]      Schaad, J., Kaliski, B., and R. Housley, "Additional
                  Algorithms and Identifiers for RSA Cryptography for
                  use in the Internet X.509 Public Key Infrastructure
                  Certificate and Certificate Revocation List (CRL)
                  Profile", RFC 4055, June 2005.

   [SEC1]         Standards for Efficient Cryptography Group, "SEC 1:
                  Elliptic Curve Cryptography", version 2.0, May 2009,
                  available from www.secg.org.

   [SP800-56A]    National Institute of Standards and Technology (NIST),
                  Special Publication 800-56A: Recommendation Pair-Wise
                  Key Establishment Schemes Using Discrete Logarithm
                  Cryptography (Revised), March 2007.

   [X.680]        ITU-T Recommendation X.680 (2002) | ISO/IEC
                  8824-1:2002. Information Technology - Abstract Syntax
                  Notation One.









Turner & Brown                Informational                    [Page 34]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


11.2.  Informative References

   [BON]          D. Boneh, "The Security of Multicast MAC",
                  Presentation at Selected Areas of Cryptography 2000,
                  Center for Applied Cryptographic Research, University
                  of Waterloo, 2000.  Paper version available from
                  http://crypto.stanford.edu/~dabo/papers/mmac.ps

   [CERTCAP]      Santesson, S., "X.509 Certificate Extension for
                  Secure/Multipurpose Internet Mail Extensions (S/MIME)
                  Capabilities", RFC 4262, December 2005.

   [CMS-ASN]      Hoffman, P. and J. Schaad, "New ASN.1 Modules for CMS
                  and S/MIME", Work in Progress, August 2009.

   [CMS-ECC]      Blake-Wilson, S., Brown, D., and P. Lambert, "Use of
                  Elliptic Curve Cryptography (ECC) Algorithms in
                  Cryptographic Message Syntax (CMS)", RFC 3278, April
                  2002.

   [CMS-KEA]      Pawling, J., "Use of the KEA and SKIPJACK Algorithms
                  in CMS", RFC 2876, July 2000.

   [K]            B. Kaliski, "MQV Vulnerability", Posting to ANSI X9F1
                  and IEEE P1363 newsgroups, 1998.

   [PKI-ASN]      Hoffman, P. and J. Schaad, "New ASN.1 Modules for
                  PKIX", Work in Progress, August 2009.

   [SP800-57]     National Institute of Standards and Technology (NIST),
                  Special Publication 800-57: Recommendation for Key
                  Management - Part 1 (Revised), March 2007.

   [X.681]        ITU-T Recommendation X.681 (2002) | ISO/IEC
                  8824-2:2002. Information Technology - Abstract Syntax
                  Notation One: Information Object Specification.

   [X.682]        ITU-T Recommendation X.682 (2002) | ISO/IEC
                  8824-3:2002. Information Technology - Abstract Syntax
                  Notation One: Constraint Specification.

   [X.683]        ITU-T Recommendation X.683 (2002) | ISO/IEC
                  8824-4:2002. Information Technology - Abstract Syntax
                  Notation One: Parameterization of ASN.1
                  Specifications, 2002.






Turner & Brown                Informational                    [Page 35]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


   [X9.62]        X9.62-2005, "Public Key Cryptography for the Financial
                  Services Industry: The Elliptic Curve Digital
                  Signature Standard (ECDSA)", November, 2005.
















































Turner & Brown                Informational                    [Page 36]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


Appendix A.   ASN.1 Modules

   Appendix A.1 provides the normative ASN.1 definitions for the
   structures described in this specification using ASN.1 as defined in
   [X.680] for compilers that support the 1988 ASN.1.

   Appendix A.2 provides informative ASN.1 definitions for the
   structures described in this specification using ASN.1 as defined in
   [X.680], [X.681], [X.682], and [X.683] for compilers that support the
   2002 ASN.1.  This appendix contains the same information as Appendix
   A.1 in a more recent (and precise) ASN.1 notation; however, Appendix
   A.1 takes precedence in case of conflict.

A.1.  1988 ASN.1 Module

   CMSECCAlgs-2009-88
     { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
       smime(16) modules(0) id-mod-cms-ecc-alg-2009-88(45) }

   DEFINITIONS IMPLICIT TAGS ::=

   BEGIN

   -- EXPORTS ALL

   IMPORTS

   -- From [PKI]

   AlgorithmIdentifier
     FROM PKIX1Explicit88
       { iso(1) identified-organization(3) dod(6)
         internet(1) security(5) mechanisms(5) pkix(7) mod(0)
         pkix1-explicit(18) }

   -- From [RSAOAEP]

   id-sha224, id-sha256, id-sha384, id-sha512
     FROM PKIX1-PSS-OAEP-Algorithms
       { iso(1) identified-organization(3) dod(6) internet(1)
         security(5) mechanisms(5) pkix(7) id-mod(0)
         id-mod-pkix1-rsa-pkalgs(33) }









Turner & Brown                Informational                    [Page 37]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


   -- From [PKI-ALG]

   id-sha1, ecdsa-with-SHA1, ecdsa-with-SHA224,
   ecdsa-with-SHA256, ecdsa-with-SHA384, ecdsa-with-SHA512,
   id-ecPublicKey, ECDSA-Sig-Value, ECPoint, ECParameters
     FROM PKIX1Algorithms2008
       { iso(1) identified-organization(3) dod(6) internet(1)
         security(5) mechanisms(5) pkix(7) id-mod(0) 45 }

   -- From [CMS]

   OriginatorPublicKey, UserKeyingMaterial
     FROM CryptographicMessageSyntax2004
       { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
         smime(16) modules(0) cms-2004(24) }

   -- From [CMS-ALG]

   hMAC-SHA1, des-ede3-cbc, id-alg-CMS3DESwrap, CBCParameter
     FROM CryptographicMessageSyntaxAlgorithms
       { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
         smime(16) modules(0) cmsalg-2001(16) }

   -- From [CMS-AES]

   id-aes128-CBC, id-aes192-CBC, id-aes256-CBC, AES-IV,
   id-aes128-wrap, id-aes192-wrap, id-aes256-wrap
     FROM CMSAesRsaesOaep
       { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
         smime(16) modules(0) id-mod-cms-aes(19) }

   -- From [CMS-AESCG]

   id-aes128-CCM, id-aes192-CCM, id-aes256-CCM, CCMParameters
   id-aes128-GCM, id-aes192-GCM, id-aes256-GCM, GCMParameters
     FROM CMS-AES-CCM-and-AES-GCM
       { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
         smime(16) modules(0) id-mod-cms-aes(32) }

   ;

   --
   -- Message Digest Algorithms: Imported from [PKI-ALG] and [RSAOAEP]
   --

   -- id-sha1 Parameters are preferred absent
   -- id-sha224 Parameters are preferred absent
   -- id-sha256 Parameters are preferred absent



Turner & Brown                Informational                    [Page 38]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


   -- id-sha384 Parameters are preferred absent
   -- id-sha512 Parameters are preferred absent

   --
   -- Signature Algorithms: Imported from [PKI-ALG]
   --

   -- ecdsa-with-SHA1 Parameters are NULL
   -- ecdsa-with-SHA224 Parameters are absent
   -- ecdsa-with-SHA256 Parameters are absent
   -- ecdsa-with-SHA384 Parameters are absent
   -- ecdsa-with-SHA512 Parameters are absent

   -- ECDSA Signature Value
   -- Contents of SignatureValue OCTET STRING

   -- ECDSA-Sig-Value ::= SEQUENCE {
   --   r  INTEGER,
   --   s  INTEGER
   -- }

   --
   -- Key Agreement Algorithms
   --

   x9-63-scheme OBJECT IDENTIFIER ::= {
     iso(1) identified-organization(3) tc68(133) country(16) x9(840)
     x9-63(63) schemes(0) }
   secg-scheme OBJECT IDENTIFIER ::= {
     iso(1) identified-organization(3) certicom(132) schemes(1) }

   --
   -- Diffie-Hellman Single Pass, Standard, with KDFs
   --

   -- Parameters are always present and indicate the key wrap algorithm
   -- with KeyWrapAlgorithm.

   dhSinglePass-stdDH-sha1kdf-scheme OBJECT IDENTIFIER ::= {
     x9-63-scheme 2 }

   dhSinglePass-stdDH-sha224kdf-scheme OBJECT IDENTIFIER ::= {
     secg-scheme 11 0 }

   dhSinglePass-stdDH-sha256kdf-scheme OBJECT IDENTIFIER ::= {
     secg-scheme 11 1 }





Turner & Brown                Informational                    [Page 39]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


   dhSinglePass-stdDH-sha384kdf-scheme OBJECT IDENTIFIER ::= {
     secg-scheme 11 2 }

   dhSinglePass-stdDH-sha512kdf-scheme OBJECT IDENTIFIER ::= {
     secg-scheme 11 3 }

   --
   -- Diffie-Hellman Single Pass, Cofactor, with KDFs
   --

   dhSinglePass-cofactorDH-sha1kdf-scheme OBJECT IDENTIFIER ::= {
     x9-63-scheme 3 }

   dhSinglePass-cofactorDH-sha224kdf-scheme OBJECT IDENTIFIER ::= {
     secg-scheme 14 0 }

   dhSinglePass-cofactorDH-sha256kdf-scheme OBJECT IDENTIFIER ::= {
     secg-scheme 14 1 }

   dhSinglePass-cofactorDH-sha384kdf-scheme OBJECT IDENTIFIER ::= {
     secg-scheme 14 2 }

   dhSinglePass-cofactorDH-sha512kdf-scheme OBJECT IDENTIFIER ::= {
     secg-scheme 14 3 }

   --
   -- MQV Single Pass, Cofactor, with KDFs
   --

   mqvSinglePass-sha1kdf-scheme OBJECT IDENTIFIER ::= {
     x9-63-scheme 16 }

   mqvSinglePass-sha224kdf-scheme OBJECT IDENTIFIER ::= {
     secg-scheme 15 0 }

   mqvSinglePass-sha256kdf-scheme OBJECT IDENTIFIER ::= {
     secg-scheme 15 1 }

   mqvSinglePass-sha384kdf-scheme OBJECT IDENTIFIER ::= {
     secg-scheme 15 2 }

   mqvSinglePass-sha512kdf-scheme OBJECT IDENTIFIER ::= {
     secg-scheme 15 3 }

   --
   -- Key Wrap Algorithms: Imported from [CMS-ALG] and [CMS-AES]
   --




Turner & Brown                Informational                    [Page 40]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


   KeyWrapAlgorithm ::= AlgorithmIdentifier

   -- id-alg-CMS3DESwrap Parameters are NULL
   -- id-aes128-wrap Parameters are absent
   -- id-aes192-wrap Parameters are absent
   -- id-aes256-wrap Parameters are absent

   --
   -- Content Encryption Algorithms: Imported from [CMS-ALG]
   -- and [CMS-AES]
   --

   -- des-ede3-cbc Parameters are CBCParameter
   -- id-aes128-CBC Parameters are AES-IV
   -- id-aes192-CBC Parameters are AES-IV
   -- id-aes256-CBC Parameters are AES-IV
   -- id-aes128-CCM Parameters are CCMParameters
   -- id-aes192-CCM Parameters are CCMParameters
   -- id-aes256-CCM Parameters are CCMParameters
   -- id-aes128-GCM Parameters are GCMParameters
   -- id-aes192-GCM Parameters are GCMParameters
   -- id-aes256-GCM Parameters are GCMParameters

   --
   -- Message Authentication Code Algorithms
   --

   -- hMAC-SHA1 Parameters are preferred absent

   -- HMAC with SHA-224, SHA-256, SHA_384, and SHA-512 Parameters are
   -- absent

   id-hmacWithSHA224 OBJECT IDENTIFIER ::= {
     iso(1) member-body(2) us(840) rsadsi(113549)
     digestAlgorithm(2) 8 }

   id-hmacWithSHA256 OBJECT IDENTIFIER ::= {
     iso(1) member-body(2) us(840) rsadsi(113549)
     digestAlgorithm(2) 9 }

   id-hmacWithSHA384 OBJECT IDENTIFIER ::= {
     iso(1) member-body(2) us(840) rsadsi(113549)
     digestAlgorithm(2) 10 }

   id-hmacWithSHA512 OBJECT IDENTIFIER ::= {
     iso(1) member-body(2) us(840) rsadsi(113549)
     digestAlgorithm(2) 11 }




Turner & Brown                Informational                    [Page 41]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


   --
   -- Originator Public Key Algorithms: Imported from [PKI-ALG]
   --

   -- id-ecPublicKey Parameters are absent, NULL, or ECParameters

   -- Format for both ephemeral and static public keys: Imported from
   -- [PKI-ALG]

   -- ECPoint ::= OCTET STRING

   -- ECParameters ::= CHOICE {
   --   namedCurve      OBJECT IDENTIFIER
   --   commented out in [PKI-ALG]  implicitCurve   NULL
   --   commented out in [PKI-ALG]  specifiedCurve  SpecifiedECDomain
   --   commented out in [PKI-ALG]  ...
   -- }
       -- implicitCurve and specifiedCurve MUST NOT be used in PKIX.
       -- Details for SpecifiedECDomain can be found in [X9.62].
       -- Any future additions to this CHOICE should be coordinated
       -- with ANSI X9.

   -- Format of KeyAgreeRecipientInfo ukm field when used with
   -- ECMQV

   MQVuserKeyingMaterial ::= SEQUENCE {
     ephemeralPublicKey       OriginatorPublicKey,
     addedukm             [0] EXPLICIT UserKeyingMaterial OPTIONAL
   }

   -- 'SharedInfo' for input to KDF when using ECDH and ECMQV with
   -- EnvelopedData, AuthenticatedData, or AuthEnvelopedData

   ECC-CMS-SharedInfo ::= SEQUENCE {
     keyInfo         AlgorithmIdentifier,
     entityUInfo [0] EXPLICIT OCTET STRING OPTIONAL,
     suppPubInfo [2] EXPLICIT OCTET STRING
   }

   --
   -- S/MIME Capabilities
   -- An identifier followed by type.
   --








Turner & Brown                Informational                    [Page 42]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


   --
   -- S/MIME Capabilities: Message Digest Algorithms
   --

   -- Found in [CMS-SHA2].

   --
   -- S/MIME Capabilities: Signature Algorithms
   --

   -- ecdsa-with-SHA1 Type NULL
   -- ecdsa-with-SHA224 Type absent
   -- ecdsa-with-SHA256 Type absent
   -- ecdsa-with-SHA384 Type absent
   -- ecdsa-with-SHA512 Type absent

   --
   -- S/MIME Capabilities: ECDH, Single Pass, Standard
   --

   -- dhSinglePass-stdDH-sha1kdf Type is the KeyWrapAlgorithm
   -- dhSinglePass-stdDH-sha224kdf Type is the KeyWrapAlgorithm
   -- dhSinglePass-stdDH-sha256kdf Type is the KeyWrapAlgorithm
   -- dhSinglePass-stdDH-sha384kdf Type is the KeyWrapAlgorithm
   -- dhSinglePass-stdDH-sha512kdf Type is the KeyWrapAlgorithm


   --
   -- S/MIME Capabilities: ECDH, Single Pass, Cofactor
   --

   -- dhSinglePass-cofactorDH-sha1kdf Type is the KeyWrapAlgorithm
   -- dhSinglePass-cofactorDH-sha224kdf Type is the KeyWrapAlgorithm
   -- dhSinglePass-cofactorDH-sha256kdf Type is the KeyWrapAlgorithm
   -- dhSinglePass-cofactorDH-sha384kdf Type is the KeyWrapAlgorithm
   -- dhSinglePass-cofactorDH-sha512kdf Type is the KeyWrapAlgorithm

   --
   -- S/MIME Capabilities: ECMQV, Single Pass, Standard
   --

   -- mqvSinglePass-sha1kdf Type is the KeyWrapAlgorithm
   -- mqvSinglePass-sha224kdf Type is the KeyWrapAlgorithm
   -- mqvSinglePass-sha256kdf Type is the KeyWrapAlgorithm
   -- mqvSinglePass-sha384kdf Type is the KeyWrapAlgorithm
   -- mqvSinglePass-sha512kdf Type is the KeyWrapAlgorithm





Turner & Brown                Informational                    [Page 43]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


   --
   -- S/MIME Capabilities: Message Authentication Code Algorithms
   --

   -- hMACSHA1 Type is preferred absent
   -- id-hmacWithSHA224 Type is absent
   -- if-hmacWithSHA256 Type is absent
   -- id-hmacWithSHA384 Type is absent
   -- id-hmacWithSHA512 Type is absent

   END








































Turner & Brown                Informational                    [Page 44]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


A.2.  2004 ASN.1 Module

CMSECCAlgs-2009-02
  { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
    smime(16) modules(0) id-mod-cms-ecc-alg-2009-02(46) }

DEFINITIONS IMPLICIT TAGS ::=

BEGIN

-- EXPORTS ALL

IMPORTS

-- From [PKI-ASN]

mda-sha1, sa-ecdsaWithSHA1, sa-ecdsaWithSHA224, sa-ecdsaWithSHA256,
sa-ecdsaWithSHA384, sa-ecdsaWithSHA512, id-ecPublicKey,
ECDSA-Sig-Value, ECPoint, ECParameters
  FROM PKIXAlgs-2009
    { iso(1) identified-organization(3) dod(6) internet(1)
      security(5) mechanisms(5) pkix(7) id-mod(0)
      id-mod-pkix1-algorithms2008-02(56) }

-- From [PKI-ASN]

mda-sha224, mda-sha256, mda-sha384, mda-sha512
  FROM PKIX1-PSS-OAEP-Algorithms-2009
    { iso(1) identified-organization(3) dod(6) internet(1)
      security(5) mechanisms(5) pkix(7) id-mod(0)
      id-mod-pkix1-rsa-pkalgs-02(54) }

-- FROM [CMS-ASN]

KEY-WRAP, SIGNATURE-ALGORITHM, DIGEST-ALGORITHM, ALGORITHM,
PUBLIC-KEY, MAC-ALGORITHM, CONTENT-ENCRYPTION, KEY-AGREE, SMIME-CAPS,
AlgorithmIdentifier{}
  FROM AlgorithmInformation-2009
    { iso(1) identified-organization(3) dod(6) internet(1)
      security(5) mechanisms(5) pkix(7) id-mod(0)
      id-mod-algorithmInformation-02(58) }

-- From [CMS-ASN]

OriginatorPublicKey, UserKeyingMaterial
  FROM CryptographicMessageSyntax-2009
    { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
      smime(16) modules(0) id-mod-cms-2004-02(41) }



Turner & Brown                Informational                    [Page 45]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


-- From [CMS-ASN]

maca-hMAC-SHA1, cea-3DES-cbc, kwa-3DESWrap, CBCParameter
  FROM CryptographicMessageSyntaxAlgorithms-2009
    { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
      smime(16) modules(0) id-mod-cmsalg-2001-02(37) }

-- From [CMS-ASN]

cea-aes128-cbc, cea-aes192-cbc, cea-aes256-cbc, kwa-aes128-wrap,
kwa-aes192-wrap, kwa-aes256-wrap
  FROM CMSAesRsaesOaep-2009
    { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
      smime(16) modules(0) id-mod-cms-aes-02(38) }

-- From [CMS-ASN]

cea-aes128-CCM, cea-aes192-CCM, cea-aes256-CCM, cea-aes128-GCM,
cea-aes192-GCM, cea-aes256-GCM
  FROM CMS-AES-CCM-and-AES-GCM-2009
    { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
      smime(16) modules(0) id-mod-cms-aes-ccm-gcm-02(44) }

;

-- Constrains the SignedData digestAlgorithms field
-- Constrains the SignedData SignerInfo digestAlgorithm field
-- Constrains the AuthenticatedData digestAlgorithm field

-- Message Digest Algorithms: Imported from [PKI-ASN]

-- MessageDigestAlgs DIGEST-ALGORITHM ::= {
--  mda-sha1   |
--  mda-sha224 |
--  mda-sha256 |
--  mda-sha384 |
--  mda-sha512,
--  ...
-- }

-- Constrains the SignedData SignerInfo signatureAlgorithm field

-- Signature Algorithms: Imported from [PKI-ASN]

-- SignatureAlgs SIGNATURE-ALGORITHM ::= {
--  sa-ecdsaWithSHA1   |
--  sa-ecdsaWithSHA224 |
--  sa-ecdsaWithSHA256 |



Turner & Brown                Informational                    [Page 46]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


--  sa-ecdsaWithSHA384 |
--  sa-ecdsaWithSHA512,
--  ...
-- }

-- ECDSA Signature Value: Imported from [PKI-ALG]
-- Contents of SignatureValue OCTET STRING

-- ECDSA-Sig-Value ::= SEQUENCE {
--   r  INTEGER,
--   s  INTEGER
-- }

--
-- Key Agreement Algorithms
--

-- Constrains the EnvelopedData RecipientInfo KeyAgreeRecipientInfo
--   keyEncryption Algorithm field
-- Constrains the AuthenticatedData RecipientInfo
--   KeyAgreeRecipientInfo keyEncryption Algorithm field
-- Constrains the AuthEnvelopedData RecipientInfo
--   KeyAgreeRecipientInfo keyEncryption Algorithm field

-- DH variants are not used with AuthenticatedData or
-- AuthEnvelopedData

KeyAgreementAlgs KEY-AGREE ::= {
  kaa-dhSinglePass-stdDH-sha1kdf-scheme        |
  kaa-dhSinglePass-stdDH-sha224kdf-scheme      |
  kaa-dhSinglePass-stdDH-sha256kdf-scheme      |
  kaa-dhSinglePass-stdDH-sha384kdf-scheme      |
  kaa-dhSinglePass-stdDH-sha512kdf-scheme      |
  kaa-dhSinglePass-cofactorDH-sha1kdf-scheme   |
  kaa-dhSinglePass-cofactorDH-sha224kdf-scheme |
  kaa-dhSinglePass-cofactorDH-sha256kdf-scheme |
  kaa-dhSinglePass-cofactorDH-sha384kdf-scheme |
  kaa-dhSinglePass-cofactorDH-sha512kdf-scheme |
  kaa-mqvSinglePass-sha1kdf-scheme             |
  kaa-mqvSinglePass-sha224kdf-scheme           |
  kaa-mqvSinglePass-sha256kdf-scheme           |
  kaa-mqvSinglePass-sha384kdf-scheme           |
  kaa-mqvSinglePass-sha512kdf-scheme,
  ...
}






Turner & Brown                Informational                    [Page 47]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


x9-63-scheme OBJECT IDENTIFIER ::= {
  iso(1) identified-organization(3) tc68(133) country(16) x9(840)
  x9-63(63) schemes(0) }

secg-scheme OBJECT IDENTIFIER ::= {
  iso(1) identified-organization(3) certicom(132) schemes(1) }

--
-- Diffie-Hellman Single Pass, Standard, with KDFs
--

-- Parameters are always present and indicate the Key Wrap Algorithm

kaa-dhSinglePass-stdDH-sha1kdf-scheme KEY-AGREE ::= {
  IDENTIFIER dhSinglePass-stdDH-sha1kdf-scheme
  PARAMS TYPE KeyWrapAlgorithm ARE required
  UKM -- TYPE unencoded data -- ARE preferredPresent
  SMIME-CAPS cap-kaa-dhSinglePass-stdDH-sha1kdf-scheme
}

dhSinglePass-stdDH-sha1kdf-scheme OBJECT IDENTIFIER ::= {
  x9-63-scheme 2 }

kaa-dhSinglePass-stdDH-sha224kdf-scheme KEY-AGREE ::= {
  IDENTIFIER dhSinglePass-stdDH-sha224kdf-scheme
  PARAMS TYPE KeyWrapAlgorithm ARE required
  UKM -- TYPE unencoded data -- ARE preferredPresent
  SMIME-CAPS cap-kaa-dhSinglePass-stdDH-sha224kdf-scheme
}

dhSinglePass-stdDH-sha224kdf-scheme OBJECT IDENTIFIER ::= {
  secg-scheme 11 0 }

kaa-dhSinglePass-stdDH-sha256kdf-scheme KEY-AGREE ::= {
  IDENTIFIER dhSinglePass-stdDH-sha256kdf-scheme
  PARAMS TYPE KeyWrapAlgorithm ARE required
  UKM -- TYPE unencoded data -- ARE preferredPresent
  SMIME-CAPS cap-kaa-dhSinglePass-stdDH-sha256kdf-scheme
}

dhSinglePass-stdDH-sha256kdf-scheme OBJECT IDENTIFIER ::= {
  secg-scheme 11 1 }









Turner & Brown                Informational                    [Page 48]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


kaa-dhSinglePass-stdDH-sha384kdf-scheme KEY-AGREE ::= {
  IDENTIFIER dhSinglePass-stdDH-sha384kdf-scheme
  PARAMS TYPE KeyWrapAlgorithm ARE required
  UKM -- TYPE unencoded data -- ARE preferredPresent
  SMIME-CAPS cap-kaa-dhSinglePass-stdDH-sha384kdf-scheme
}

dhSinglePass-stdDH-sha384kdf-scheme OBJECT IDENTIFIER ::= {
  secg-scheme 11 2 }

kaa-dhSinglePass-stdDH-sha512kdf-scheme KEY-AGREE ::= {
  IDENTIFIER dhSinglePass-stdDH-sha512kdf-scheme
  PARAMS TYPE KeyWrapAlgorithm ARE required
  UKM -- TYPE unencoded data -- ARE preferredPresent
  SMIME-CAPS cap-kaa-dhSinglePass-stdDH-sha512kdf-scheme
}

dhSinglePass-stdDH-sha512kdf-scheme OBJECT IDENTIFIER ::= {
  secg-scheme 11 3 }

--
-- Diffie-Hellman Single Pass, Cofactor, with KDFs
--

kaa-dhSinglePass-cofactorDH-sha1kdf-scheme KEY-AGREE ::= {
  IDENTIFIER dhSinglePass-cofactorDH-sha1kdf-scheme
  PARAMS TYPE KeyWrapAlgorithm ARE required
  UKM -- TYPE unencoded data -- ARE preferredPresent
  SMIME-CAPS cap-kaa-dhSinglePass-cofactorDH-sha1kdf-scheme
}

dhSinglePass-cofactorDH-sha1kdf-scheme OBJECT IDENTIFIER ::= {
  x9-63-scheme 3 }

kaa-dhSinglePass-cofactorDH-sha224kdf-scheme KEY-AGREE ::= {
  IDENTIFIER dhSinglePass-cofactorDH-sha224kdf-scheme
  PARAMS TYPE KeyWrapAlgorithm ARE required
  UKM -- TYPE unencoded data -- ARE preferredPresent
  SMIME-CAPS cap-kaa-dhSinglePass-cofactorDH-sha224kdf-scheme
}

dhSinglePass-cofactorDH-sha224kdf-scheme OBJECT IDENTIFIER ::= {
  secg-scheme 14 0 }








Turner & Brown                Informational                    [Page 49]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


kaa-dhSinglePass-cofactorDH-sha256kdf-scheme KEY-AGREE ::= {
  IDENTIFIER dhSinglePass-cofactorDH-sha256kdf-scheme
  PARAMS TYPE KeyWrapAlgorithm ARE required
  UKM -- TYPE unencoded data -- ARE preferredPresent
  SMIME-CAPS cap-kaa-dhSinglePass-cofactorDH-sha256kdf-scheme
}

dhSinglePass-cofactorDH-sha256kdf-scheme OBJECT IDENTIFIER ::= {
  secg-scheme 14 1 }

kaa-dhSinglePass-cofactorDH-sha384kdf-scheme KEY-AGREE ::= {
  IDENTIFIER dhSinglePass-cofactorDH-sha384kdf-scheme
  PARAMS TYPE KeyWrapAlgorithm ARE required
  UKM -- TYPE unencoded data -- ARE preferredPresent
  SMIME-CAPS cap-kaa-dhSinglePass-cofactorDH-sha384kdf-scheme
}

dhSinglePass-cofactorDH-sha384kdf-scheme OBJECT IDENTIFIER ::= {
  secg-scheme 14 2 }

kaa-dhSinglePass-cofactorDH-sha512kdf-scheme KEY-AGREE ::= {
  IDENTIFIER dhSinglePass-cofactorDH-sha512kdf-scheme
  PARAMS TYPE KeyWrapAlgorithm ARE required
  UKM -- TYPE unencoded data -- ARE preferredPresent
  SMIME-CAPS cap-kaa-dhSinglePass-cofactorDH-sha512kdf-scheme
}

dhSinglePass-cofactorDH-sha512kdf-scheme OBJECT IDENTIFIER ::= {
  secg-scheme 14 3 }

--
-- MQV Single Pass, Cofactor, with KDFs
--

kaa-mqvSinglePass-sha1kdf-scheme KEY-AGREE ::= {
  IDENTIFIER mqvSinglePass-sha1kdf-scheme
  PARAMS TYPE KeyWrapAlgorithm ARE required
  UKM -- TYPE unencoded data -- ARE preferredPresent
  SMIME-CAPS cap-kaa-mqvSinglePass-sha1kdf-scheme
}

mqvSinglePass-sha1kdf-scheme OBJECT IDENTIFIER ::= {
  x9-63-scheme 16 }








Turner & Brown                Informational                    [Page 50]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


kaa-mqvSinglePass-sha224kdf-scheme KEY-AGREE ::= {
  IDENTIFIER mqvSinglePass-sha224kdf-scheme
  PARAMS TYPE KeyWrapAlgorithm ARE required
  UKM -- TYPE unencoded data -- ARE preferredPresent
  SMIME-CAPS cap-kaa-mqvSinglePass-sha224kdf-scheme
}

mqvSinglePass-sha224kdf-scheme OBJECT IDENTIFIER ::= {
  secg-scheme 15 0 }

kaa-mqvSinglePass-sha256kdf-scheme KEY-AGREE ::= {
  IDENTIFIER mqvSinglePass-sha256kdf-scheme
  PARAMS TYPE KeyWrapAlgorithm ARE required
  UKM -- TYPE unencoded data -- ARE preferredPresent
  SMIME-CAPS cap-kaa-mqvSinglePass-sha256kdf-scheme
}

mqvSinglePass-sha256kdf-scheme OBJECT IDENTIFIER ::= {
  secg-scheme 15 1 }

kaa-mqvSinglePass-sha384kdf-scheme KEY-AGREE ::= {
  IDENTIFIER mqvSinglePass-sha384kdf-scheme
  PARAMS TYPE KeyWrapAlgorithm ARE required
  UKM -- TYPE unencoded data -- ARE preferredPresent
  SMIME-CAPS cap-kaa-mqvSinglePass-sha384kdf-scheme
}

mqvSinglePass-sha384kdf-scheme OBJECT IDENTIFIER ::= {
  secg-scheme 15 2 }

kaa-mqvSinglePass-sha512kdf-scheme KEY-AGREE ::= {
  IDENTIFIER mqvSinglePass-sha512kdf-scheme
  PARAMS TYPE KeyWrapAlgorithm ARE required
  UKM -- TYPE unencoded data -- ARE preferredPresent
  SMIME-CAPS cap-kaa-mqvSinglePass-sha512kdf-scheme
}

mqvSinglePass-sha512kdf-scheme OBJECT IDENTIFIER ::= {
  secg-scheme 15 3 }

--
-- Key Wrap Algorithms: Imported from [CMS-ASN]
--








Turner & Brown                Informational                    [Page 51]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


KeyWrapAlgorithm ::= AlgorithmIdentifier { KEY-WRAP, { KeyWrapAlgs } }

KeyWrapAlgs KEY-WRAP ::= {
  kwa-3DESWrap    |
  kwa-aes128-wrap |
  kwa-aes192-wrap |
  kwa-aes256-wrap,
  ...
}

--
-- Content Encryption Algorithms: Imported from [CMS-ASN]
--

-- Constrains the EnvelopedData EncryptedContentInfo encryptedContent
-- field and the AuthEnvelopedData EncryptedContentInfo
-- contentEncryptionAlgorithm field

-- ContentEncryptionAlgs CONTENT-ENCRYPTION ::= {
--   cea-3DES-cbc |
--   cea-aes128-cbc   |
--   cea-aes192-cbc   |
--   cea-aes256-cbc   |
--   cea-aes128-ccm   |
--   cea-aes192-ccm   |
--   cea-aes256-ccm   |
--   cea-aes128-gcm   |
--   cea-aes192-gcm   |
--   cea-aes256-gcm,
--   ...
--   }

-- des-ede3-cbc and aes*-cbc are used with EnvelopedData and
-- EncryptedData
-- aes*-ccm are used with AuthEnvelopedData
-- aes*-gcm are used with AuthEnvelopedData
-- (where * is 128, 192, and 256)

--
-- Message Authentication Code Algorithms
--

-- Constrains the AuthenticatedData
-- MessageAuthenticationCodeAlgorithm field
--






Turner & Brown                Informational                    [Page 52]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


MessageAuthAlgs MAC-ALGORITHM ::= {
--  maca-hMAC-SHA1 |
  maca-hMAC-SHA224 |
  maca-hMAC-SHA256 |
  maca-hMAC-SHA384 |
  maca-hMAC-SHA512,
  ...
}

maca-hMAC-SHA224 MAC-ALGORITHM ::= {
  IDENTIFIER id-hmacWithSHA224
  PARAMS ARE absent
  IS-KEYED-MAC TRUE
  SMIME-CAPS cap-hMAC-SHA224
}

id-hmacWithSHA224 OBJECT IDENTIFIER ::= {
  iso(1) member-body(2) us(840) rsadsi(113549)
  digestAlgorithm(2) 8 }

maca-hMAC-SHA256 MAC-ALGORITHM ::= {
  IDENTIFIER id-hmacWithSHA256
  PARAMS ARE absent
  IS-KEYED-MAC TRUE
  SMIME-CAPS cap-hMAC-SHA256
}

id-hmacWithSHA256 OBJECT IDENTIFIER ::= {
  iso(1) member-body(2) us(840) rsadsi(113549)
  digestAlgorithm(2) 9 }

maca-hMAC-SHA384 MAC-ALGORITHM ::= {
  IDENTIFIER id-hmacWithSHA384
  PARAMS ARE absent
  IS-KEYED-MAC TRUE
  SMIME-CAPS cap-hMAC-SHA384
}

id-hmacWithSHA384 OBJECT IDENTIFIER ::= {
  iso(1) member-body(2) us(840) rsadsi(113549)
  digestAlgorithm(2) 10 }

maca-hMAC-SHA512 MAC-ALGORITHM ::= {
  IDENTIFIER id-hmacWithSHA512
  PARAMS ARE absent
  IS-KEYED-MAC TRUE
  SMIME-CAPS cap-hMAC-SHA512
}



Turner & Brown                Informational                    [Page 53]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


id-hmacWithSHA512 OBJECT IDENTIFIER ::= {
  iso(1) member-body(2) us(840) rsadsi(113549)
  digestAlgorithm(2) 11 }

--
-- Originator Public Key Algorithms
--

-- Constraints on KeyAgreeRecipientInfo OriginatorIdentifierOrKey
-- OriginatorPublicKey algorithm field

OriginatorPKAlgorithms PUBLIC-KEY ::= {
  opka-ec,
  ...
}

opka-ec PUBLIC-KEY ::={
  IDENTIFIER id-ecPublicKey
  KEY ECPoint
  PARAMS TYPE CHOICE { n NULL, p ECParameters } ARE preferredAbsent
}

-- Format for both ephemeral and static public keys: Imported from
-- [PKI-ALG]

-- ECPoint ::= OCTET STRING

-- ECParameters ::= CHOICE {
--   namedCurve      CURVE.&id({NamedCurve})
--   commented out in [PKI-ALG] implicitCurve   NULL
--   commented out in [PKI-ALG] specifiedCurve  SpecifiedECDomain
--   commented out in [PKI-ALG] ...
-- }
  -- implicitCurve and specifiedCurve MUST NOT be used in PKIX.
  -- Details for SpecifiedECDomain can be found in [X9.62].
  -- Any future additions to this CHOICE should be coordinated
  -- with ANSI X.9.

-- Format of KeyAgreeRecipientInfo ukm field when used with
-- ECMQV

MQVuserKeyingMaterial ::= SEQUENCE {
  ephemeralPublicKey       OriginatorPublicKey,
  addedukm             [0] EXPLICIT UserKeyingMaterial OPTIONAL
}






Turner & Brown                Informational                    [Page 54]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


-- 'SharedInfo' for input to KDF when using ECDH and ECMQV with
-- EnvelopedData, AuthenticatedData, or AuthEnvelopedData

ECC-CMS-SharedInfo ::= SEQUENCE {
  keyInfo         KeyWrapAlgorithm,
  entityUInfo [0] EXPLICIT OCTET STRING OPTIONAL,
  suppPubInfo [2] EXPLICIT OCTET STRING
}

--
-- S/MIME CAPS for algorithms in this document
--







































Turner & Brown                Informational                    [Page 55]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


SMimeCAPS SMIME-CAPS ::= {
--  mda-sha1.&smimeCaps                                   |
--  mda-sha224.&smimeCaps                                 |
--  mda-sha256.&smimeCaps                                 |
--  mda-sha384.&smimeCaps                                 |
--  mda-sha512.&smimeCaps                                 |
--  sa-ecdsaWithSHA1.&smimeCaps                           |
--  sa-ecdsaWithSHA224.&smimeCaps                         |
--  sa-ecdsaWithSHA256.&smimeCaps                         |
--  sa-ecdsaWithSHA384.&smimeCaps                         |
--  sa-ecdsaWithSHA512.&smimeCaps                         |
  kaa-dhSinglePass-stdDH-sha1kdf-scheme.&smimeCaps        |
  kaa-dhSinglePass-stdDH-sha224kdf-scheme.&smimeCaps      |
  kaa-dhSinglePass-stdDH-sha256kdf-scheme.&smimeCaps      |
  kaa-dhSinglePass-stdDH-sha384kdf-scheme.&smimeCaps      |
  kaa-dhSinglePass-stdDH-sha512kdf-scheme.&smimeCaps      |
  kaa-dhSinglePass-cofactorDH-sha1kdf-scheme.&smimeCaps   |
  kaa-dhSinglePass-cofactorDH-sha224kdf-scheme.&smimeCaps |
  kaa-dhSinglePass-cofactorDH-sha256kdf-scheme.&smimeCaps |
  kaa-dhSinglePass-cofactorDH-sha384kdf-scheme.&smimeCaps |
  kaa-dhSinglePass-cofactorDH-sha512kdf-scheme.&smimeCaps |
  kaa-mqvSinglePass-sha1kdf-scheme.&smimeCaps             |
  kaa-mqvSinglePass-sha224kdf-scheme.&smimeCaps           |
  kaa-mqvSinglePass-sha256kdf-scheme.&smimeCaps           |
  kaa-mqvSinglePass-sha384kdf-scheme.&smimeCaps           |
  kaa-mqvSinglePass-sha512kdf-scheme.&smimeCaps           |
--  kwa-3des.&smimeCaps                                   |
--  kwa-aes128.&smimeCaps                                 |
--  kwa-aes192.&smimeCaps                                 |
--  kwa-aes256.&smimeCaps                                 |
--  cea-3DES-cbc.&smimeCaps                               |
--  cea-aes128-cbc.&smimeCaps                             |
--  cea-aes192-cbc.&smimeCaps                             |
--  cea-aes256-cbc.&smimeCaps                             |
--  cea-aes128-ccm.&smimeCaps                             |
--  cea-aes192-ccm.&smimeCaps                             |
--  cea-aes256-ccm.&smimeCaps                             |
--  cea-aes128-gcm.&smimeCaps                             |
--  cea-aes192-gcm.&smimeCaps                             |
--  cea-aes256-gcm.&smimeCaps                             |
--  maca-hMAC-SHA1.&smimeCaps                             |
  maca-hMAC-SHA224.&smimeCaps                             |
  maca-hMAC-SHA256.&smimeCaps                             |
  maca-hMAC-SHA384.&smimeCaps                             |
  maca-hMAC-SHA512.&smimeCaps,
  ...
}




Turner & Brown                Informational                    [Page 56]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


cap-kaa-dhSinglePass-stdDH-sha1kdf-scheme SMIME-CAPS ::= {
  TYPE KeyWrapAlgorithm
  IDENTIFIED BY dhSinglePass-stdDH-sha1kdf-scheme
}

cap-kaa-dhSinglePass-stdDH-sha224kdf-scheme SMIME-CAPS ::= {
  TYPE KeyWrapAlgorithm
  IDENTIFIED BY dhSinglePass-stdDH-sha224kdf-scheme
}

cap-kaa-dhSinglePass-stdDH-sha256kdf-scheme SMIME-CAPS ::= {
  TYPE KeyWrapAlgorithm
  IDENTIFIED BY dhSinglePass-stdDH-sha256kdf-scheme
}

cap-kaa-dhSinglePass-stdDH-sha384kdf-scheme SMIME-CAPS ::= {
   TYPE KeyWrapAlgorithm
   IDENTIFIED BY dhSinglePass-stdDH-sha384kdf-scheme
}

cap-kaa-dhSinglePass-stdDH-sha512kdf-scheme SMIME-CAPS ::= {
  TYPE KeyWrapAlgorithm
  IDENTIFIED BY dhSinglePass-stdDH-sha512kdf-scheme
}

cap-kaa-dhSinglePass-cofactorDH-sha1kdf-scheme SMIME-CAPS ::={
  TYPE KeyWrapAlgorithm
  IDENTIFIED BY dhSinglePass-cofactorDH-sha1kdf-scheme
}

cap-kaa-dhSinglePass-cofactorDH-sha224kdf-scheme SMIME-CAPS ::={
  TYPE KeyWrapAlgorithm
  IDENTIFIED BY dhSinglePass-cofactorDH-sha224kdf-scheme
}

cap-kaa-dhSinglePass-cofactorDH-sha256kdf-scheme SMIME-CAPS ::={
  TYPE KeyWrapAlgorithm
  IDENTIFIED BY dhSinglePass-cofactorDH-sha256kdf-scheme
}

cap-kaa-dhSinglePass-cofactorDH-sha384kdf-scheme SMIME-CAPS ::={
  TYPE KeyWrapAlgorithm
  IDENTIFIED BY dhSinglePass-cofactorDH-sha384kdf-scheme
}







Turner & Brown                Informational                    [Page 57]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


cap-kaa-dhSinglePass-cofactorDH-sha512kdf-scheme SMIME-CAPS ::={
  TYPE KeyWrapAlgorithm
  IDENTIFIED BY dhSinglePass-cofactorDH-sha512kdf-scheme
}

cap-kaa-mqvSinglePass-sha1kdf-scheme SMIME-CAPS ::={
  TYPE KeyWrapAlgorithm
  IDENTIFIED BY mqvSinglePass-sha1kdf-scheme
}

cap-kaa-mqvSinglePass-sha224kdf-scheme SMIME-CAPS ::={
  TYPE KeyWrapAlgorithm
  IDENTIFIED BY mqvSinglePass-sha224kdf-scheme
}

cap-kaa-mqvSinglePass-sha256kdf-scheme SMIME-CAPS ::={
  TYPE KeyWrapAlgorithm
  IDENTIFIED BY mqvSinglePass-sha256kdf-scheme
}

cap-kaa-mqvSinglePass-sha384kdf-scheme SMIME-CAPS ::={
  TYPE KeyWrapAlgorithm
  IDENTIFIED BY mqvSinglePass-sha384kdf-scheme
}

cap-kaa-mqvSinglePass-sha512kdf-scheme SMIME-CAPS ::={
  TYPE KeyWrapAlgorithm
  IDENTIFIED BY mqvSinglePass-sha512kdf-scheme
}

cap-hMAC-SHA224 SMIME-CAPS ::={ IDENTIFIED BY id-hmacWithSHA224 }

cap-hMAC-SHA256 SMIME-CAPS ::={ IDENTIFIED BY id-hmacWithSHA256 }

cap-hMAC-SHA384 SMIME-CAPS ::={ IDENTIFIED BY id-hmacWithSHA384 }

cap-hMAC-SHA512 SMIME-CAPS ::={ IDENTIFIED BY id-hmacWithSHA512 }

END












Turner & Brown                Informational                    [Page 58]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


Appendix B.  Changes since RFC 3278

   The following summarizes the changes:

   - Abstract: The basis of the document was changed to refer to NIST
     FIPS 186-3 and SP800-56A.  However, to maintain backwards
     compatibility the Key Derivation Function from ANSI/SEC1 is
     retained.

   - Section 1: A bullet was added to address AuthEnvelopedData.

   - Section 2.1: A sentence was added to indicate FIPS180-3 is used
     with ECDSA.  Replaced reference to ANSI X9.62 with FIPS186-3.

   - Section 2.1.1: The permitted digest algorithms were expanded from
     SHA-1 to SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512.

   - Section 2.1.2 and 2.1.3: The bullet addressing integer "e" was
     deleted.

   - Section 3: Added explanation of why static-static ECDH is not
     included.

   - Section 3.1: The reference for DH was changed from RFC 3852 to RFC
     3370.  Provided text to indicate fields of EnvelopedData are as in
     CMS.

   - Section 3.1.1: The text was updated to include description of all
     KeyAgreeRecipientInfo fields.  Parameters for id-ecPublicKey field
     changed from NULL to absent or ECParameter.  Additional information
     about ukm was added.

   - Section 3.2: The sentence describing the advantages of 1-Pass ECMQV
     was rewritten.

   - Section 3.2.1: The text was updated to include description of all
     fields.  Parameters for id-ecPublicKey field changed from NULL to
     absent or ECParameters.

   - Sections 3.2.2 and 4.1.2: The re-use of ephemeral keys paragraph
     was reworded.

   - Section 4.1:  The sentences describing the advantages of 1-Pass
     ECMQV was moved to Section 4.

   - Section 4.1.2: The note about the attack was moved to Section 4.





Turner & Brown                Informational                    [Page 59]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


   - Section 4.2: This section was added to address AuthEnvelopedData
     with ECMQV.

   - Section 5: This section was moved to Section 8.  The 1st paragraph
     was modified to recommend both SignedData and EnvelopedData.  The
     requirements were updated for hash algorithms and recommendations
     for matching curves and hash algorithms.  Also, the requirements
     were expanded to indicate which ECDH and ECMQV variants, key wrap
     algorithms, and content encryption algorithms are required for each
     of the content types used in this document.  The permitted digest
     algorithms used in KDFs were expanded from SHA-1 to SHA-1, SHA-224,
     SHA-256, SHA-384, and SHA-512.

   - Section 6 (formerly 7): This section was updated to allow for
     SMIMECapabilities to be present in certificates.  The S/MIME
     capabilities for ECDSA with SHA-224, SHA-256, SHA-384, and SHA-512
     were added to the list of S/MIME Capabilities.  Also, updated to
     include S/MIME capabilities for ECDH and ECMQV using the SHA-224,
     SHA-256, SHA-384, and SHA-512 algorithms as the KDF.

   - Section 7.1 (formerly 8.1): Added sub-sections for digest,
     signature, originator public key, key agreement, content
     encryption, key wrap, and message authentication code algorithms.
     Pointed to algorithms and parameters in appropriate documents for:
     SHA-224, SHA-256, SHA-384, and SHA-512 as well as SHA-224, SHA-256,
     SHA-384, and SHA-512 with ECDSA.  Also, added algorithm identifiers
     for ECDH std, ECDH cofactor, and ECMQV with SHA-224, SHA-256,
     SHA-384, and SHA-512 algorithms as the KDF.  Changed id-ecPublicKey
     parameters to be absent, NULL, or ECParameters, and if present the
     originator's ECParameters must match the recipient's ECParameters.

   - Section 7.2 (formerly 8.2): Updated to include AuthEnvelopedData.
     Also, added text to address support requirement for compressed,
     uncompressed, and hybrid keys; changed pointers from ANSI X9.61 to
     PKIX (where ECDSA-Sig-Value is imported); changed pointers from
     SECG to NIST specs; and updated example of suppPubInfo to be
     AES-256.  keyInfo's parameters changed from NULL to any associated
     parameters (AES wraps have absent parameters).

   - Section 9: Replaced text, which was a summary paragraph, with an
     updated security considerations section.  Paragraph referring to
     definitions of SHA-224, SHA-256, SHA-384, and SHA-512 is deleted.

   - Updated references.

   - Added ASN.1 modules.

   - Updated acknowledgements section.



Turner & Brown                Informational                    [Page 60]
^L
RFC 5753              Use of ECC Algorithms in CMS          January 2010


Acknowledgements

   The methods described in this document are based on work done by the
   ANSI X9F1 working group.  The authors wish to extend their thanks to
   ANSI X9F1 for their assistance.  The authors also wish to thank Peter
   de Rooij for his patient assistance.  The technical comments of
   Francois Rousseau were valuable contributions.

   Many thanks go out to the other authors of RFC 3278: Simon Blake-
   Wilson and Paul Lambert.  Without RFC 3278, this version wouldn't
   exist.

   The authors also wish to thank Alfred Hoenes, Jonathan Herzog, Paul
   Hoffman, Russ Housley, and Jim Schaad for their valuable input.

Authors' Addresses

   Sean Turner
   IECA, Inc.
   3057 Nutley Street, Suite 106
   Fairfax, VA 22031
   USA

   EMail: turners@ieca.com


   Daniel R. L. Brown
   Certicom Corp
   5520 Explorer Drive #400
   Mississauga, ON L4W 5L1
   Canada

   EMail: dbrown@certicom.com


















Turner & Brown                Informational                    [Page 61]
^L