summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc5952.txt
blob: 56a0e0c355ede14db2f314e8dda086b877b1f7e3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
Internet Engineering Task Force (IETF)                       S. Kawamura
Request for Comments: 5952                             NEC BIGLOBE, Ltd.
Updates: 4291                                               M. Kawashima
Category: Standards Track                       NEC AccessTechnica, Ltd.
ISSN: 2070-1721                                              August 2010


         A Recommendation for IPv6 Address Text Representation

Abstract

   As IPv6 deployment increases, there will be a dramatic increase in
   the need to use IPv6 addresses in text.  While the IPv6 address
   architecture in Section 2.2 of RFC 4291 describes a flexible model
   for text representation of an IPv6 address, this flexibility has been
   causing problems for operators, system engineers, and users.  This
   document defines a canonical textual representation format.  It does
   not define a format for internal storage, such as within an
   application or database.  It is expected that the canonical format
   will be followed by humans and systems when representing IPv6
   addresses as text, but all implementations must accept and be able to
   handle any legitimate RFC 4291 format.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc5952.















Kawamura & Kawashima         Standards Track                    [Page 1]
^L
RFC 5952                IPv6 Text Representation             August 2010


Copyright Notice

   Copyright (c) 2010 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.





































Kawamura & Kawashima         Standards Track                    [Page 2]
^L
RFC 5952                IPv6 Text Representation             August 2010


Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  4
     1.1.  Requirements Language  . . . . . . . . . . . . . . . . . .  4
   2.  Text Representation Flexibility of RFC 4291  . . . . . . . . .  4
     2.1.  Leading Zeros in a 16-Bit Field  . . . . . . . . . . . . .  4
     2.2.  Zero Compression . . . . . . . . . . . . . . . . . . . . .  5
     2.3.  Uppercase or Lowercase . . . . . . . . . . . . . . . . . .  6
   3.  Problems Encountered with the Flexible Model . . . . . . . . .  6
     3.1.  Searching  . . . . . . . . . . . . . . . . . . . . . . . .  6
       3.1.1.  General Summary  . . . . . . . . . . . . . . . . . . .  6
       3.1.2.  Searching Spreadsheets and Text Files  . . . . . . . .  6
       3.1.3.  Searching with Whois . . . . . . . . . . . . . . . . .  6
       3.1.4.  Searching for an Address in a Network Diagram  . . . .  7
     3.2.  Parsing and Modifying  . . . . . . . . . . . . . . . . . .  7
       3.2.1.  General Summary  . . . . . . . . . . . . . . . . . . .  7
       3.2.2.  Logging  . . . . . . . . . . . . . . . . . . . . . . .  7
       3.2.3.  Auditing: Case 1 . . . . . . . . . . . . . . . . . . .  8
       3.2.4.  Auditing: Case 2 . . . . . . . . . . . . . . . . . . .  8
       3.2.5.  Verification . . . . . . . . . . . . . . . . . . . . .  8
       3.2.6.  Unexpected Modifying . . . . . . . . . . . . . . . . .  8
     3.3.  Operating  . . . . . . . . . . . . . . . . . . . . . . . .  8
       3.3.1.  General Summary  . . . . . . . . . . . . . . . . . . .  8
       3.3.2.  Customer Calls . . . . . . . . . . . . . . . . . . . .  9
       3.3.3.  Abuse  . . . . . . . . . . . . . . . . . . . . . . . .  9
     3.4.  Other Minor Problems . . . . . . . . . . . . . . . . . . .  9
       3.4.1.  Changing Platforms . . . . . . . . . . . . . . . . . .  9
       3.4.2.  Preference in Documentation  . . . . . . . . . . . . .  9
       3.4.3.  Legibility . . . . . . . . . . . . . . . . . . . . . .  9
   4.  A Recommendation for IPv6 Text Representation  . . . . . . . . 10
     4.1.  Handling Leading Zeros in a 16-Bit Field . . . . . . . . . 10
     4.2.  "::" Usage . . . . . . . . . . . . . . . . . . . . . . . . 10
       4.2.1.  Shorten as Much as Possible  . . . . . . . . . . . . . 10
       4.2.2.  Handling One 16-Bit 0 Field  . . . . . . . . . . . . . 10
       4.2.3.  Choice in Placement of "::"  . . . . . . . . . . . . . 10
     4.3.  Lowercase  . . . . . . . . . . . . . . . . . . . . . . . . 10
   5.  Text Representation of Special Addresses . . . . . . . . . . . 11
   6.  Notes on Combining IPv6 Addresses with Port Numbers  . . . . . 11
   7.  Prefix Representation  . . . . . . . . . . . . . . . . . . . . 12
   8.  Security Considerations  . . . . . . . . . . . . . . . . . . . 12
   9.  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 12
   10. References . . . . . . . . . . . . . . . . . . . . . . . . . . 12
     10.1. Normative References . . . . . . . . . . . . . . . . . . . 12
     10.2. Informative References . . . . . . . . . . . . . . . . . . 13
   Appendix A.  For Developers  . . . . . . . . . . . . . . . . . . . 14






Kawamura & Kawashima         Standards Track                    [Page 3]
^L
RFC 5952                IPv6 Text Representation             August 2010


1.  Introduction

   A single IPv6 address can be text represented in many ways.  Examples
   are shown below.

      2001:db8:0:0:1:0:0:1

      2001:0db8:0:0:1:0:0:1

      2001:db8::1:0:0:1

      2001:db8::0:1:0:0:1

      2001:0db8::1:0:0:1

      2001:db8:0:0:1::1

      2001:db8:0000:0:1::1

      2001:DB8:0:0:1::1

   All of the above examples represent the same IPv6 address.  This
   flexibility has caused many problems for operators, systems
   engineers, and customers.  The problems are noted in Section 3.  A
   canonical representation format to avoid problems is introduced in
   Section 4.

1.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

2.  Text Representation Flexibility of RFC 4291

   Examples of flexibility in Section 2.2 of [RFC4291] are described
   below.

2.1.  Leading Zeros in a 16-Bit Field

      'It is not necessary to write the leading zeros in an individual
      field.'

   Conversely, it is also not necessary to omit leading zeros.  This
   means that it is possible to select from representations such as
   those in the following example.  The final 16-bit field is different,
   but all of these addresses represent the same address.




Kawamura & Kawashima         Standards Track                    [Page 4]
^L
RFC 5952                IPv6 Text Representation             August 2010


      2001:db8:aaaa:bbbb:cccc:dddd:eeee:0001

      2001:db8:aaaa:bbbb:cccc:dddd:eeee:001

      2001:db8:aaaa:bbbb:cccc:dddd:eeee:01

      2001:db8:aaaa:bbbb:cccc:dddd:eeee:1

2.2.  Zero Compression

      'A special syntax is available to compress the zeros.  The use of
      "::" indicates one or more groups of 16 bits of zeros.'

   It is possible to select whether or not to omit just one 16-bit 0
   field.

      2001:db8:aaaa:bbbb:cccc:dddd::1

      2001:db8:aaaa:bbbb:cccc:dddd:0:1

   In cases where there is more than one field of only zeros, there is a
   choice of how many fields can be shortened.

      2001:db8:0:0:0::1

      2001:db8:0:0::1

      2001:db8:0::1

      2001:db8::1

   In addition, Section 2.2 of [RFC4291] notes,

      'The "::" can only appear once in an address.'

   This gives a choice on where in a single address to compress the
   zero.

      2001:db8::aaaa:0:0:1

      2001:db8:0:0:aaaa::1










Kawamura & Kawashima         Standards Track                    [Page 5]
^L
RFC 5952                IPv6 Text Representation             August 2010


2.3.  Uppercase or Lowercase

   [RFC4291] does not mention any preference of uppercase or lowercase.

      2001:db8:aaaa:bbbb:cccc:dddd:eeee:aaaa

      2001:db8:aaaa:bbbb:cccc:dddd:eeee:AAAA

      2001:db8:aaaa:bbbb:cccc:dddd:eeee:AaAa

3.  Problems Encountered with the Flexible Model

3.1.  Searching

3.1.1.  General Summary

   A search of an IPv6 address if conducted through a UNIX system is
   usually case sensitive and extended options that allow for regular
   expression use will come in handy.  However, there are many
   applications in the Internet today that do not provide this
   capability.  When searching for an IPv6 address in such systems, the
   system engineer will have to try each and every possibility to search
   for an address.  This has critical impacts, especially when trying to
   deploy IPv6 over an enterprise network.

3.1.2.  Searching Spreadsheets and Text Files

   Spreadsheet applications and text editors on GUI systems rarely have
   the ability to search for text using regular expression.  Moreover,
   there are many non-engineers (who are not aware of case sensitivity
   and regular expression use) that use these applications to manage IP
   addresses.  This has worked quite well with IPv4 since text
   representation in IPv4 has very little flexibility.  There is no
   incentive to encourage these non-engineers to change their tool or
   learn regular expression when they decide to go dual-stack.  If the
   entry in the spreadsheet reads, 2001:db8::1:0:0:1, but the search was
   conducted as 2001:db8:0:0:1::1, this will show a result of no match.
   One example where this will cause a problem is, when the search is
   being conducted to assign a new address from a pool, and a check is
   being done to see if it is not in use.  This may cause problems for
   the end-hosts or end-users.  This type of address management is very
   often seen in enterprise networks and ISPs.

3.1.3.  Searching with Whois

   The "whois" utility is used by a wide range of people today.  When a
   record is set to a database, one will likely check the output to see
   if the entry is correct.  If an entity was recorded as 2001:db8::/48,



Kawamura & Kawashima         Standards Track                    [Page 6]
^L
RFC 5952                IPv6 Text Representation             August 2010


   but the whois output showed 2001:0db8:0000::/48, most non-engineers
   would think that their input was wrong and will likely retry several
   times or make a frustrated call to the database hostmaster.  If there
   was a need to register the same prefix on different systems, and each
   system showed a different text representation, this would confuse
   people even more.  Although this document focuses on addresses rather
   than prefixes, it is worth mentioning the prefix problems because the
   problems encountered with addresses and prefixes are mostly equal.

3.1.4.  Searching for an Address in a Network Diagram

   Network diagrams and blueprints often show what IP addresses are
   assigned to a system devices.  In times of trouble shooting there may
   be a need to search through a diagram to find the point of failure
   (for example, if a traceroute stopped at 2001:db8::1, one would
   search the diagram for that address).  This is a technique quite
   often in use in enterprise networks and managed services.  Again, the
   different flavors of text representation will result in a time-
   consuming search leading to longer mean times to restoration (MTTR)
   in times of trouble.

3.2.  Parsing and Modifying

3.2.1.  General Summary

   With all the possible methods of text representation, each
   application must include a module, object, link, etc. to a function
   that will parse IPv6 addresses in a manner such that no matter how it
   is represented, they will mean the same address.  Many system
   engineers who integrate complex computer systems for corporate
   customers will have difficulties finding that their favorite tool
   will not have this function, or will encounter difficulties such as
   having to rewrite their macros or scripts for their customers.

3.2.2.  Logging

   If an application were to output a log summary that represented the
   address in full (such as 2001:0db8:0000:0000:1111:2222:3333:4444),
   the output would be highly unreadable compared to the IPv4 output.
   The address would have to be parsed and reformed to make it useful
   for human reading.  Sometimes logging for critical systems is done by
   mirroring the same traffic to two different systems.  Care must be
   taken so that no matter what the log output is, the logs should be
   parsed so they are equivalent.







Kawamura & Kawashima         Standards Track                    [Page 7]
^L
RFC 5952                IPv6 Text Representation             August 2010


3.2.3.  Auditing: Case 1

   When a router or any other network appliance machine configuration is
   audited, there are many methods to compare the configuration
   information of a node.  Sometimes auditing will be done by just
   comparing the changes made each day.  In this case, if configuration
   was done such that 2001:db8::1 was changed to 2001:0db8:0000:0000:
   0000:0000:0000:0001 just because the new engineer on the block felt
   it was better, a simple diff will show that a different address was
   configured.  If this was done on a wide scale network, people will be
   focusing on 'why the extra zeros were put in' instead of doing any
   real auditing.  Lots of tools are just plain diffs that do not take
   into account address representation rules.

3.2.4.  Auditing: Case 2

   Node configurations will be matched against an information system
   that manages IP addresses.  If output notation is different, there
   will need to be a script that is implemented to cover for this.  The
   result of an SNMP GET operation, converted to text and compared to a
   textual address written by a human is highly unlikely to match on the
   first try.

3.2.5.  Verification

   Some protocols require certain data fields to be verified.  One
   example of this is X.509 certificates.  If an IPv6 address field in a
   certificate was incorrectly verified by converting it to text and
   making a simple textual comparison to some other address, the
   certificate may be mistakenly shown as being invalid due to a
   difference in text representation methods.

3.2.6.  Unexpected Modifying

   Sometimes, a system will take an address and modify it as a
   convenience.  For example, a system may take an input of
   2001:0db8:0::1 and make the output 2001:db8::1.  If the zeros were
   input for a reason, the outcome may be somewhat unexpected.

3.3.  Operating

3.3.1.  General Summary

   When an operator sets an IPv6 address of a system as 2001:db8:0:0:1:
   0:0:1, the system may take the address and show the configuration
   result as 2001:DB8::1:0:0:1.  Someone familiar with IPv6 address
   representation will know that the right address is set, but not
   everyone may understand this.



Kawamura & Kawashima         Standards Track                    [Page 8]
^L
RFC 5952                IPv6 Text Representation             August 2010


3.3.2.  Customer Calls

   When a customer calls to inquire about a suspected outage, IPv6
   address representation should be handled with care.  Not all
   customers are engineers, nor do they have a similar skill level in
   IPv6 technology.  The network operations center will have to take
   extra steps to humanly parse the address to avoid having to explain
   to the customers that 2001:db8:0:1::1 is the same as
   2001:db8::1:0:0:0:1.  This is one thing that will never happen in
   IPv4 because IPv4 addresses cannot be abbreviated.

3.3.3.  Abuse

   Network abuse reports generally include the abusing IP address.  This
   'reporting' could take any shape or form of the flexible model.  A
   team that handles network abuse must be able to tell the difference
   between a 2001:db8::1:0:1 and 2001:db8:1::0:1.  Mistakes in the
   placement of the "::" will result in a critical situation.  A system
   that handles these incidents should be able to handle any type of
   input and parse it in a correct manner.  Also, incidents are reported
   over the phone.  It is unnecessary to report if the letter is
   uppercase or lowercase.  However, when a letter is spelled uppercase,
   people tend to specify that it is uppercase, which is unnecessary
   information.

3.4.  Other Minor Problems

3.4.1.  Changing Platforms

   When an engineer decides to change the platform of a running service,
   the same code may not work as expected due to the difference in IPv6
   address text representation.  Usually, a change in a platform (e.g.,
   Unix to Windows, Cisco to Juniper) will result in a major change of
   code anyway, but flexibility in address representation will increase
   the work load.

3.4.2.  Preference in Documentation

   A document that is edited by more than one author may become harder
   to read.

3.4.3.  Legibility

   Capital case D and 0 can be quite often misread.  Capital B and 8 can
   also be misread.






Kawamura & Kawashima         Standards Track                    [Page 9]
^L
RFC 5952                IPv6 Text Representation             August 2010


4.  A Recommendation for IPv6 Text Representation

   A recommendation for a canonical text representation format of IPv6
   addresses is presented in this section.  The recommendation in this
   document is one that complies fully with [RFC4291], is implemented by
   various operating systems, and is human friendly.  The recommendation
   in this section SHOULD be followed by systems when generating an
   address to be represented as text, but all implementations MUST
   accept and be able to handle any legitimate [RFC4291] format.  It is
   advised that humans also follow these recommendations when spelling
   an address.

4.1.  Handling Leading Zeros in a 16-Bit Field

   Leading zeros MUST be suppressed.  For example, 2001:0db8::0001 is
   not acceptable and must be represented as 2001:db8::1.  A single 16-
   bit 0000 field MUST be represented as 0.

4.2.  "::" Usage

4.2.1.  Shorten as Much as Possible

   The use of the symbol "::" MUST be used to its maximum capability.
   For example, 2001:db8:0:0:0:0:2:1 must be shortened to 2001:db8::2:1.
   Likewise, 2001:db8::0:1 is not acceptable, because the symbol "::"
   could have been used to produce a shorter representation 2001:db8::1.

4.2.2.  Handling One 16-Bit 0 Field

   The symbol "::" MUST NOT be used to shorten just one 16-bit 0 field.
   For example, the representation 2001:db8:0:1:1:1:1:1 is correct, but
   2001:db8::1:1:1:1:1 is not correct.

4.2.3.  Choice in Placement of "::"

   When there is an alternative choice in the placement of a "::", the
   longest run of consecutive 16-bit 0 fields MUST be shortened (i.e.,
   the sequence with three consecutive zero fields is shortened in 2001:
   0:0:1:0:0:0:1).  When the length of the consecutive 16-bit 0 fields
   are equal (i.e., 2001:db8:0:0:1:0:0:1), the first sequence of zero
   bits MUST be shortened.  For example, 2001:db8::1:0:0:1 is correct
   representation.

4.3.  Lowercase

   The characters "a", "b", "c", "d", "e", and "f" in an IPv6 address
   MUST be represented in lowercase.




Kawamura & Kawashima         Standards Track                   [Page 10]
^L
RFC 5952                IPv6 Text Representation             August 2010


5.  Text Representation of Special Addresses

   Addresses such as IPv4-Mapped IPv6 addresses, ISATAP [RFC5214], and
   IPv4-translatable addresses [ADDR-FORMAT] have IPv4 addresses
   embedded in the low-order 32 bits of the address.  These addresses
   have a special representation that may mix hexadecimal and dot
   decimal notations.  The decimal notation may be used only for the
   last 32 bits of the address.  For these addresses, mixed notation is
   RECOMMENDED if the following condition is met: the address can be
   distinguished as having IPv4 addresses embedded in the lower 32 bits
   solely from the address field through the use of a well-known prefix.
   Such prefixes are defined in [RFC4291] and [RFC2765] at the time of
   this writing.  If it is known by some external method that a given
   prefix is used to embed IPv4, it MAY be represented as mixed
   notation.  Tools that provide options to specify prefixes that are
   (or are not) to be represented as mixed notation may be useful.

   There is a trade-off here where a recommendation to achieve an exact
   match in a search (no dot decimals whatsoever) and a recommendation
   to help the readability of an address (dot decimal whenever possible)
   does not result in the same solution.  The above recommendation is
   aimed at fixing the representation as much as possible while leaving
   the opportunity for future well-known prefixes to be represented in a
   human-friendly manner as tools adjust to newly assigned prefixes.

   The text representation method noted in Section 4 should be applied
   for the leading hexadecimal part (i.e., ::ffff:192.0.2.1 instead of
   0:0:0:0:0:ffff:192.0.2.1).

6.  Notes on Combining IPv6 Addresses with Port Numbers

   There are many different ways to combine IPv6 addresses and port
   numbers that are represented in text.  Examples are shown below.

   o  [2001:db8::1]:80

   o  2001:db8::1:80

   o  2001:db8::1.80

   o  2001:db8::1 port 80

   o  2001:db8::1p80

   o  2001:db8::1#80

   The situation is not much different in IPv4, but the most ambiguous
   case with IPv6 is the second bullet.  This is due to the "::"usage in



Kawamura & Kawashima         Standards Track                   [Page 11]
^L
RFC 5952                IPv6 Text Representation             August 2010


   IPv6 addresses.  This style is NOT RECOMMENDED because of its
   ambiguity.  The [] style as expressed in [RFC3986] SHOULD be
   employed, and is the default unless otherwise specified.  Other
   styles are acceptable when there is exactly one style for the given
   context and cross-platform portability does not become an issue.  For
   URIs containing IPv6 address literals, [RFC3986] MUST be followed, as
   well as the rules defined in this document.

7.  Prefix Representation

   Problems with prefixes are the same as problems encountered with
   addresses.  The text representation method of IPv6 prefixes should be
   no different from that of IPv6 addresses.

8.  Security Considerations

   This document notes some examples where IPv6 addresses are compared
   in text format.  The example on Section 3.2.5 is one that may cause a
   security risk if used for access control.  The common practice of
   comparing X.509 data is done in binary format.

9.  Acknowledgements

   The authors would like to thank Jan Zorz, Randy Bush, Yuichi Minami,
   and Toshimitsu Matsuura for their generous and helpful comments in
   kick starting this document.  We also would like to thank Brian
   Carpenter, Akira Kato, Juergen Schoenwaelder, Antonio Querubin, Dave
   Thaler, Brian Haley, Suresh Krishnan, Jerry Huang, Roman Donchenko,
   Heikki Vatiainen, Dan Wing, and Doug Barton for their input.  Also, a
   very special thanks to Ron Bonica, Fred Baker, Brian Haberman, Robert
   Hinden, Jari Arkko, and Kurt Lindqvist for their support in bringing
   this document to light in IETF working groups.

10.  References

10.1.  Normative References

   [RFC2119]      Bradner, S., "Key words for use in RFCs to Indicate
                  Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2765]      Nordmark, E., "Stateless IP/ICMP Translation Algorithm
                  (SIIT)", RFC 2765, February 2000.

   [RFC3986]      Berners-Lee, T., Fielding, R., and L. Masinter,
                  "Uniform Resource Identifier (URI): Generic Syntax",
                  STD 66, RFC 3986, January 2005.





Kawamura & Kawashima         Standards Track                   [Page 12]
^L
RFC 5952                IPv6 Text Representation             August 2010


   [RFC4291]      Hinden, R. and S. Deering, "IP Version 6 Addressing
                  Architecture", RFC 4291, February 2006.

10.2.  Informative References

   [ADDR-FORMAT]  Bao, C., "IPv6 Addressing of IPv4/IPv6 Translators",
                  Work in Progress, July 2010.

   [RFC4038]      Shin, M-K., Hong, Y-G., Hagino, J., Savola, P., and E.
                  Castro, "Application Aspects of IPv6 Transition",
                  RFC 4038, March 2005.

   [RFC5214]      Templin, F., Gleeson, T., and D. Thaler, "Intra-Site
                  Automatic Tunnel Addressing Protocol (ISATAP)",
                  RFC 5214, March 2008.




































Kawamura & Kawashima         Standards Track                   [Page 13]
^L
RFC 5952                IPv6 Text Representation             August 2010


Appendix A.  For Developers

   We recommend that developers use display routines that conform to
   these rules.  For example, the usage of getnameinfo() with flags
   argument NI_NUMERICHOST in FreeBSD 7.0 will give a conforming output,
   except for the special addresses notes in Section 5.  The function
   inet_ntop() of FreeBSD7.0 is a good C code reference, but should not
   be called directly.  See [RFC4038] for details.

Authors' Addresses

   Seiichi Kawamura
   NEC BIGLOBE, Ltd.
   14-22, Shibaura 4-chome
   Minatoku, Tokyo  108-8558
   JAPAN

   Phone: +81 3 3798 6085
   EMail: kawamucho@mesh.ad.jp


   Masanobu Kawashima
   NEC AccessTechnica, Ltd.
   800, Shimomata
   Kakegawa-shi, Shizuoka  436-8501
   JAPAN

   Phone: +81 537 23 9655
   EMail: kawashimam@necat.nec.co.jp






















Kawamura & Kawashima         Standards Track                   [Page 14]
^L