summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc5990.txt
blob: 98afafe03f6e869ac44d238ed158371a16869992 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
Internet Engineering Task Force (IETF)                        J. Randall
Request for Comments: 5990                            Randall Consulting
Category: Standards Track                                     B. Kaliski
ISSN: 2070-1721                                                      EMC
                                                             J. Brainard
                                                                     RSA
                                                               S. Turner
                                                                    IECA
                                                          September 2010


               Use of the RSA-KEM Key Transport Algorithm
               in the Cryptographic Message Syntax (CMS)

Abstract

   The RSA-KEM Key Transport Algorithm is a one-pass (store-and-forward)
   mechanism for transporting keying data to a recipient using the
   recipient's RSA public key.  ("KEM" stands for "key encapsulation
   mechanism".)  This document specifies the conventions for using the
   RSA-KEM Key Transport Algorithm with the Cryptographic Message Syntax
   (CMS).  The ASN.1 syntax is aligned with an expected forthcoming
   change to American National Standard (ANS) X9.44.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc5990.














Randall, et al.              Standards Track                    [Page 1]
^L
RFC 5990                  Use of RSA-KEM in CMS           September 2010


Copyright Notice

   Copyright (c) 2010 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1. Introduction ....................................................3
      1.1. Conventions Used in This Document ..........................4
   2. Use in CMS ......................................................4
      2.1. Underlying Components ......................................4
      2.2. RecipientInfo Conventions ..................................5
      2.3. Certificate Conventions ....................................5
      2.4. SMIMECapabilities Attribute Conventions ....................6
   3. Security Considerations .........................................7
   4. IANA Considerations .............................................9
   5. Acknowledgements ................................................9
   6. References .....................................................10
      6.1. Normative References ......................................10
      6.2. Informative References ....................................11
   Appendix A.  RSA-KEM Key Transport Algorithm ......................12
      A.1.  Underlying Components ....................................12
      A.2.  Sender's Operations ......................................12
      A.3.  Recipient's Operations ...................................13
   Appendix B.  ASN.1 Syntax .........................................15
      B.1.  RSA-KEM Key Transport Algorithm ..........................16
      B.2.  Selected Underlying Components ...........................18
         B.2.1.  Key Derivation Functions ............................18
         B.2.2.  Symmetric Key-Wrapping Schemes ......................19
      B.3.  ASN.1 Module .............................................20
      B.4.  Examples .................................................25










Randall, et al.              Standards Track                    [Page 2]
^L
RFC 5990                  Use of RSA-KEM in CMS           September 2010


1.  Introduction

   The RSA-KEM Key Transport Algorithm is a one-pass (store-and-forward)
   mechanism for transporting keying data to a recipient using the
   recipient's RSA public key.

   Most previous key transport algorithms based on the RSA public-key
   cryptosystem (e.g., the popular PKCS #1 v1.5 algorithm [PKCS1]) have
   the following general form:

   1. Format or "pad" the keying data to obtain an integer m.

   2. Encrypt the integer m with the recipient's RSA public key:

         c = m^e mod n

   3. Output c as the encrypted keying data.

   The RSA-KEM Key Transport Algorithm takes a different approach that
   provides higher security assurance, by encrypting a _random_ integer
   with the recipient's public key, and using a symmetric key-wrapping
   scheme to encrypt the keying data.  It has the following form:

   1. Generate a random integer z between 0 and n-1.

   2. Encrypt the integer z with the recipient's RSA public key:

         c = z^e mod n

   3. Derive a key-encrypting key KEK from the integer z.

   4. Wrap the keying data using KEK to obtain wrapped keying data WK.

   5. Output c and WK as the encrypted keying data.

   This different approach provides higher security assurance because
   (a) the input to the underlying RSA operation is effectively a random
   integer between 0 and n-1, where n is the RSA modulus, so it does not
   have any structure that could be exploited by an adversary, and
   (b) the input is independent of the keying data so the result of the
   RSA decryption operation is not directly available to an adversary.
   As a result, the algorithm enjoys a "tight" security proof in the
   random oracle model.  (In other padding schemes, such as PKCS #1
   v1.5, the input has structure and/or depends on the keying data, and
   the provable security assurances are not as strong.)  The approach is
   also architecturally convenient because the public-key operations are





Randall, et al.              Standards Track                    [Page 3]
^L
RFC 5990                  Use of RSA-KEM in CMS           September 2010


   separate from the symmetric operations on the keying data.  Another
   benefit is that the length of the keying data is bounded only by the
   symmetric key-wrapping scheme, not the size of the RSA modulus.

   The RSA-KEM Key Transport Algorithm in various forms is being adopted
   in several draft standards as well as in American National Standard
   (ANS) X9.44 [ANS-X9.44].  It has also been recommended by the New
   European Schemes for Signatures, Integrity, and Encryption (NESSIE)
   project [NESSIE].  Originally, [ANS-X9.44] specified a different
   object identifier to identify the RSA-KEM Key Transport Algorithm.
   [ANS-X9.44] used id-ac-generic-hybrid, while this document uses
   id-rsa-kem.  These OIDs are used in the KeyTransportInfo field to
   indicate the key encryption algorithm, in certificates to allow
   recipients to restrict their public keys for use with RSA-KEM only,
   and in SMIME Capability attributes to allow recipients to advertise
   their support for RSA-KEM.  Legacy implementations that wish to
   interoperate with [ANS-X9.44] should consult that specification for
   more information on id-ac-generic-hybrid.

   For completeness, a specification of the algorithm is given in
   Appendix A of this document; ASN.1 syntax is given in Appendix B.

      NOTE: The term "KEM" stands for "key encapsulation mechanism" and
      refers to the first three steps of the process above.  The
      formalization of key transport algorithms (or more generally,
      asymmetric encryption schemes) in terms of key encapsulation
      mechanisms is described further in research by Victor Shoup
      leading to the development of the ISO/IEC 18033-2 standard
      [SHOUP].

1.1.  Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED",  "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [STDWORDS].

2.  Use in CMS

   The RSA-KEM Key Transport Algorithm MAY be employed for one or more
   recipients in the CMS enveloped-data content type (Section 6 of
   [CMS]), where the keying data processed by the algorithm is the CMS
   content-encryption key.

2.1.  Underlying Components

   A CMS implementation that supports the RSA-KEM Key Transport
   Algorithm MUST support at least the following underlying components:




Randall, et al.              Standards Track                    [Page 4]
^L
RFC 5990                  Use of RSA-KEM in CMS           September 2010


   o  For the key derivation function, KDF3 (see [ANS-X9.44]) based on
      SHA-256 (see [FIPS-180-3]).  KDF3 is an instantiation of the
      Concatenation Key Derivation Function defined in [NIST-SP800-56A].

   o  For the key-wrapping scheme, AES-Wrap-128, i.e., the AES Key Wrap
      with a 128-bit key-encrypting key (see [AES-WRAP]).

   An implementation SHOULD also support KDF2 (see [ANS-X9.44]) based on
   SHA-1 (this function is also specified as the key derivation function
   in [ANS-X9.63]).  The Camellia key wrap algorithm (see [CAMELLIA])
   SHOULD be supported if Camellia is supported as a content-encryption
   cipher.  The Triple-DES Key Wrap (see [3DES-WRAP]) SHOULD also be
   supported if Triple-DES is supported as a content-encryption cipher.

   It MAY support other underlying components.  When AES or Camellia is
   used, the data block size is 128 bits and the key size can be 128,
   192, or 256 bits, while Triple-DES requires a data block size of
   64 bits and a key size of 112 or 168 bits.

2.2.  RecipientInfo Conventions

   When the RSA-KEM Key Transport Algorithm is employed for a recipient,
   the RecipientInfo alternative for that recipient MUST be
   KeyTransRecipientInfo.  The algorithm-specific fields of the
   KeyTransRecipientInfo value MUST have the following values:

   o  keyEncryptionAlgorithm.algorithm MUST be id-rsa-kem (see
      Appendix B);

   o  keyEncryptionAlgorithm.parameters MUST be a value of type
      GenericHybridParameters, identifying the RSA-KEM key encapsulation
      mechanism (see Appendix B);

   o  encryptedKey MUST be the encrypted keying data output by the
      algorithm, where the keying data is the content-encryption key
      (see Appendix A).

2.3.  Certificate Conventions

   The conventions specified in this section augment RFC 5280 [PROFILE].

   A recipient who employs the RSA-KEM Key Transport Algorithm MAY
   identify the public key in a certificate by the same
   AlgorithmIdentifier as for the PKCS #1 v1.5 algorithm, i.e., using
   the rsaEncryption object identifier [PKCS1].  The fact that the user
   will accept RSA-KEM with this public key is not indicated by the use





Randall, et al.              Standards Track                    [Page 5]
^L
RFC 5990                  Use of RSA-KEM in CMS           September 2010


   of this identifier.  This MAY be signaled by the use of the
   appropriate SMIME Capabilities either in a message or in the
   certificate.

   If the recipient wishes only to employ the RSA-KEM Key Transport
   Algorithm with a given public key, the recipient MUST identify the
   public key in the certificate using the id-rsa-kem object identifier
   (see Appendix B).  When the id-rsa-kem algorithm identifier appears
   in the SubjectPublicKeyInfo algorithm field, the encoding SHALL omit
   the parameters field from AlgorithmIdentifier.  That is, the
   AlgorithmIdentifier SHALL be a SEQUENCE of one component, the object
   identifier id-rsa-kem.

   Regardless of the AlgorithmIdentifier used, the RSA public key is
   encoded in the same manner in the subject public key information.
   The RSA public key MUST be encoded using the type RSAPublicKey type:

      RSAPublicKey ::= SEQUENCE {
         modulus            INTEGER, -- n
         publicExponent     INTEGER  -- e
      }

   Here, the modulus is the modulus n, and publicExponent is the public
   exponent e.  The Distinguished Encoding Rules (DER)-encoded
   RSAPublicKey is carried in the subjectPublicKey BIT STRING within the
   subject public key information.

   The intended application for the key MAY be indicated in the key
   usage certificate extension (see [PROFILE], Section 4.2.1.3).  If the
   keyUsage extension is present in a certificate that conveys an RSA
   public key with the id-rsa-kem object identifier as discussed above,
   then the key usage extension MUST contain the following value:

       keyEncipherment

   dataEncipherment SHOULD NOT be present.  That is, a key intended to
   be employed only with the RSA-KEM Key Transport Algorithm SHOULD NOT
   also be employed for data encryption or for authentication such as in
   signatures.  Good cryptographic practice employs a given RSA key pair
   in only one scheme.  This practice avoids the risk that vulnerability
   in one scheme may compromise the security of the other, and may be
   essential to maintain provable security.

2.4.  SMIMECapabilities Attribute Conventions

   RFC 3851 [MSG], Section 2.5.2 defines the SMIMECapabilities signed
   attribute (defined as a SEQUENCE of SMIMECapability SEQUENCEs) to be
   used to specify a partial list of algorithms that the software



Randall, et al.              Standards Track                    [Page 6]
^L
RFC 5990                  Use of RSA-KEM in CMS           September 2010


   announcing the SMIMECapabilities can support.  When constructing a
   signedData object, compliant software MAY include the
   SMIMECapabilities signed attribute announcing that it supports the
   RSA-KEM Key Transport Algorithm.

   The SMIMECapability SEQUENCE representing the RSA-KEM Key Transport
   Algorithm MUST include the id-rsa-kem object identifier (see
   Appendix B) in the capabilityID field and MUST include a
   GenericHybridParameters value in the parameters field identifying the
   components with which the algorithm is to be employed.

   The DER encoding of a SMIMECapability SEQUENCE is the same as the DER
   encoding of an AlgorithmIdentifier.  Example DER encodings for
   typical sets of components are given in Appendix B.4.

3.  Security Considerations

   The RSA-KEM Key Transport Algorithm should be considered for new CMS-
   based applications as a replacement for the widely implemented RSA
   encryption algorithm specified originally in PKCS #1 v1.5 (see
   [PKCS1] and Section 4.2.1 of [CMSALGS]), which is vulnerable to
   chosen-ciphertext attacks.  The RSA Encryption Scheme - Optimal
   Asymmetric Encryption Padding (RSAES-OAEP) Key Transport Algorithm
   has also been proposed as a replacement (see [PKCS1] and [CMS-OAEP]).
   RSA-KEM has the advantage over RSAES-OAEP of a tighter security
   proof, but the disadvantage of slightly longer encrypted keying data.

   The security of the RSA-KEM Key Transport Algorithm described in this
   document can be shown to be tightly related to the difficulty of
   either solving the RSA problem or breaking the underlying symmetric
   key-wrapping scheme, if the underlying key derivation function is
   modeled as a random oracle, and assuming that the symmetric key-
   wrapping scheme satisfies the properties of a data encapsulation
   mechanism [SHOUP].  While in practice a random-oracle result does not
   provide an actual security proof for any particular key derivation
   function, the result does provide assurance that the general
   construction is reasonable; a key derivation function would need to
   be particularly weak to lead to an attack that is not possible in the
   random oracle model.

   The RSA key size and the underlying components should be selected
   consistent with the desired symmetric security level for an
   application.  Several security levels have been identified in the
   NIST FIPS PUB 800-57 [NIST-GUIDELINE].  For brevity, the first three
   levels are mentioned here:






Randall, et al.              Standards Track                    [Page 7]
^L
RFC 5990                  Use of RSA-KEM in CMS           September 2010


   o  80-bit security.  The RSA key size SHOULD be at least 1024 bits,
      the hash function underlying the KDF SHOULD be SHA-1 or above, and
      the symmetric key-wrapping scheme SHOULD be AES Key Wrap, Triple-
      DES Key Wrap, or Camellia Key Wrap.

   o  112-bit security.  The RSA key size SHOULD be at least 2048 bits,
      the hash function underlying the KDF SHOULD be SHA-224 or above,
      and the symmetric key-wrapping scheme SHOULD be AES Key Wrap,
      Triple-DES Key Wrap, or Camellia Key Wrap.

   o  128-bit security.  The RSA key size SHOULD be at least 3072 bits,
      the hash function underlying the KDF SHOULD be SHA-256 or above,
      and the symmetric key-wrapping scheme SHOULD be AES Key Wrap or
      Camellia Key Wrap.

   Note that the AES Key Wrap or Camellia Key Wrap MAY be used at all
   three of these levels; the use of AES or Camellia does not require a
   128-bit security level for other components.

   Implementations MUST protect the RSA private key and the content-
   encryption key.  Compromise of the RSA private key may result in the
   disclosure of all messages protected with that key.  Compromise of
   the content-encryption key may result in disclosure of the associated
   encrypted content.

   Additional considerations related to key management may be found in
   [NIST-GUIDELINE].

   The security of the algorithm also depends on the strength of the
   random number generator, which SHOULD have a comparable security
   level.  For further discussion on random number generation, please
   see [RANDOM].

   Implementations SHOULD NOT reveal information about intermediate
   values or calculations, whether by timing or other "side channels",
   or otherwise an opponent may be able to determine information about
   the keying data and/or the recipient's private key.  Although not all
   intermediate information may be useful to an opponent, it is
   preferable to conceal as much information as is practical, unless
   analysis specifically indicates that the information would not be
   useful.

   Generally, good cryptographic practice employs a given RSA key pair
   in only one scheme.  This practice avoids the risk that vulnerability
   in one scheme may compromise the security of the other, and may be
   essential to maintain provable security.  While RSA public keys have
   often been employed for multiple purposes such as key transport and
   digital signature without any known bad interactions, for increased



Randall, et al.              Standards Track                    [Page 8]
^L
RFC 5990                  Use of RSA-KEM in CMS           September 2010


   security assurance, such combined use of an RSA key pair is NOT
   RECOMMENDED in the future (unless the different schemes are
   specifically designed to be used together).

   Accordingly, an RSA key pair used for the RSA-KEM Key Transport
   Algorithm SHOULD NOT also be used for digital signatures.  (Indeed,
   the Accredited Standards Committee X9 (ASC X9) requires such a
   separation between key establishment key pairs and digital signature
   key pairs.)  Continuing this principle of key separation, a key pair
   used for the RSA-KEM Key Transport Algorithm SHOULD NOT be used with
   other key establishment schemes, or for data encryption, or with more
   than one set of underlying algorithm components.

   Parties MAY formalize the assurance that one another's
   implementations are correct through implementation validation, e.g.,
   NIST's Cryptographic Module Validation Program (CMVP).

4.  IANA Considerations

   Within the CMS, algorithms are identified by object identifiers
   (OIDs).  With one exception, all of the OIDs used in this document
   were assigned in other IETF documents, in ISO/IEC standards
   documents, by the National Institute of Standards and Technology
   (NIST), and in Public-Key Cryptography Standards (PKCS) documents.
   The two exceptions are the ASN.1 module's identifier (see Appendix
   B.3) and id-rsa-kem that are both assigned in this document.  The
   module object identifiers are defined in an arc delegated by the
   former company RSA Data Security Inc. to the S/MIME Working Group.
   When the S/MIME Working Group closes, this arc and its registration
   procedures will be transferred to IANA.

5.  Acknowledgements

   This document is one part of a strategy to align algorithm standards
   produced by ASC X9, ISO/IEC JTC1 SC27, NIST, and the IETF.  We would
   like to thank the members of the ASC X9F1 working group for their
   contributions to drafts of ANS X9.44, which led to this
   specification.

   Our thanks to Russ Housley as well for his guidance and
   encouragement.  We also appreciate the helpful direction we've
   received from Blake Ramsdell and Jim Schaad in bringing this document
   to fruition.  A special thanks to Magnus Nystrom for his assistance
   on Appendix B.  Thanks also to Bob Griffin and John Linn for both
   editorial direction and procedural guidance.






Randall, et al.              Standards Track                    [Page 9]
^L
RFC 5990                  Use of RSA-KEM in CMS           September 2010


6.  References

6.1.  Normative References

   [3DES-WRAP]       Housley, R., "Triple-DES and RC2 Key Wrapping",
                     RFC 3217, December 2001.

   [AES-WRAP]        Schaad, J. and R. Housley, "Advanced Encryption
                     Standard (AES) Key Wrap Algorithm", RFC 3394,
                     September 2002.

   [ANS-X9.44]       ASC X9F1 Working Group.  American National Standard
                     X9.44: Public Key Cryptography for the Financial
                     Services Industry -- Key Establishment Using
                     Integer Factorization Cryptography.  2007.

   [ANS-X9.63]       American National Standard X9.63-2002: Public Key
                     Cryptography for the Financial Services Industry:
                     Key Agreement and Key Transport Using Elliptic
                     Curve Cryptography.

   [CAMELLIA]        Moriai, S. and A. Kato, "Use of the Camellia
                     Encryption Algorithm in Cryptographic Message
                     Syntax (CMS)", RFC 3657, January 2004.

   [CMS]             Housley, R., "Cryptographic Message Syntax (CMS)",
                     RFC 5652, September 2009.

   [CMSALGS]         Housley, R., "Cryptographic Message Syntax (CMS)
                     Algorithms", RFC 3370, August 2002.

   [FIPS-180-3]      National Institute of Standards and Technology
                     (NIST).  FIPS 180-3: Secure Hash Standard.  October
                     2008.

   [MSG]             Ramsdell, B. and S. Turner, "Secure/Multipurpose
                     Internet Mail Extensions (S/MIME) Version 3.2
                     Message Specification", RFC 5751, January 2010.

   [PROFILE]         Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
                     Housley, R., and W. Polk, "Internet X.509 Public
                     Key Infrastructure Certificate and Certificate
                     Revocation List (CRL) Profile", RFC 5280, May 2008.

   [STDWORDS]        Bradner, S., "Key words for use in RFCs to Indicate
                     Requirement Levels", BCP 14, RFC 2119, March 1997.





Randall, et al.              Standards Track                   [Page 10]
^L
RFC 5990                  Use of RSA-KEM in CMS           September 2010


6.2.  Informative References

   [AES-WRAP-PAD]    Housley, R. and M. Dworkin, "Advanced Encryption
                     Standard (AES) Key Wrap with Padding Algorithm",
                     RFC 5649, September 2009.

   [CMS-OAEP]        Housley, R., "Use of the RSAES-OAEP Key Transport
                     Algorithm in Cryptographic Message Syntax (CMS)",
                     RFC 3560, July 2003.

   [NESSIE]          NESSIE Consortium.  Portfolio of Recommended
                     Cryptographic Primitives.  February 2003.
                     http://www.cryptonessie.org/.

   [NIST-GUIDELINE]  National Institute of Standards and Technology.
                     Special Publication 800-57: Recommendation for Key
                     Management - Part 1: General (Revised).  March
                     2007.
                     http://csrc.nist.gov/publications/index.html.

   [NIST-SP800-56A]  National Institute of Standards and Technology.
                     Special Publication 800-56A: Recommendation for
                     Pair-Wise Key Establishment Schemes Using Discrete
                     Logarithm Cryptography (Revised).  March 2007.
                     http://csrc.nist.gov/publications/index.html.

   [PKCS1]           Jonsson, J. and B. Kaliski, "Public-Key
                     Cryptography Standards (PKCS) #1: RSA Cryptography
                     Specifications Version 2.1", RFC 3447, February
                     2003.

   [RANDOM]          Eastlake 3rd, D., Schiller, J., and S. Crocker,
                     "Randomness Requirements for Security", BCP 106,
                     RFC 4086, June 2005.

   [SHOUP]           Shoup, V.  A Proposal for an ISO Standard for
                     Public Key Encryption.  Version 2.1, December 20,
                     2001.  http://eprint.iacr.org/2001/112.













Randall, et al.              Standards Track                   [Page 11]
^L
RFC 5990                  Use of RSA-KEM in CMS           September 2010


Appendix A.  RSA-KEM Key Transport Algorithm

   The RSA-KEM Key Transport Algorithm is a one-pass (store-and-forward)
   mechanism for transporting keying data to a recipient using the
   recipient's RSA public key.

   With this type of algorithm, a sender encrypts the keying data using
   the recipient's public key to obtain encrypted keying data.  The
   recipient decrypts the encrypted keying data using the recipient's
   private key to recover the keying data.

A.1.  Underlying Components

   The algorithm has the following underlying components:

   o  KDF, a key derivation function, which derives keying data of a
      specified length from a shared secret value;

   o  Wrap, a symmetric key-wrapping scheme, which encrypts keying Data
      using a key-encrypting key.

   In the following, kekLen denotes the length in bytes of the key-
   encrypting key for the underlying symmetric key-wrapping scheme.

   In this scheme, the length of the keying data to be transported MUST
   be among the lengths supported by the underlying symmetric key-
   wrapping scheme.  (Both the AES and Camellia Key Wraps, for instance,
   require the length of the keying data to be a multiple of 8 bytes,
   and at least 16 bytes.)  Usage and formatting of the keying data
   (e.g., parity adjustment for Triple-DES keys) is outside the scope of
   this algorithm.  With some key derivation functions, it is possible
   to include other information besides the shared secret value in the
   input to the function.  Also, with some symmetric key-wrapping
   schemes, it is possible to associate a label with the keying data.
   Such uses are outside the scope of this document, as they are not
   directly supported by CMS.

A.2.  Sender's Operations

   Let (n,e) be the recipient's RSA public key (see [PKCS1] for
   details), and let K be the keying data to be transported.

   Let nLen denote the length in bytes of the modulus n, i.e., the least
   integer such that 2^{8*nLen} > n.







Randall, et al.              Standards Track                   [Page 12]
^L
RFC 5990                  Use of RSA-KEM in CMS           September 2010


   The sender performs the following operations:

   1. Generate a random integer z between 0 and n-1 (see note), and
      convert z to a byte string Z of length nLen, most significant byte
      first:

         z = RandomInteger (0, n-1)

         Z = IntegerToString (z, nLen)

   2. Encrypt the random integer z using the recipient's public key
      (n,e), and convert the resulting integer c to a ciphertext C, a
      byte string of length nLen:

         c = z^e mod n

         C = IntegerToString (c, nLen)

   3. Derive a key-encrypting key KEK of length kekLen bytes from the
      byte string Z using the underlying key derivation function:

         KEK = KDF (Z, kekLen)

   4. Wrap the keying data K with the key-encrypting key KEK using the
      underlying key-wrapping scheme to obtain wrapped keying data WK:

         WK = Wrap (KEK, K)

   5. Concatenate the ciphertext C and the wrapped keying data WK to
      obtain the encrypted keying data EK:

         EK = C || WK

   6. Output the encrypted keying data EK.

   NOTE: The random integer z MUST be generated independently at random
   for different encryption operations, whether for the same or
   different recipients.

A.3.  Recipient's Operations

   Let (n,d) be the recipient's RSA private key (see [PKCS1]; other
   private key formats are allowed), and let EK be the encrypted keying
   data.

   Let nLen denote the length in bytes of the modulus n.





Randall, et al.              Standards Track                   [Page 13]
^L
RFC 5990                  Use of RSA-KEM in CMS           September 2010


   The recipient performs the following operations:

   1. Separate the encrypted keying data EK into a ciphertext C of
      length nLen bytes and wrapped keying data WK:

         C || WK = EK

      If the length of the encrypted keying data is less than nLen
      bytes, output "decryption error", and stop.

   2. Convert the ciphertext C to an integer c, most significant byte
      first.  Decrypt the integer c using the recipient's private key
      (n,d) to recover an integer z (see note):

         c = StringToInteger (C)

         z = c^d mod n

      If the integer c is not between 0 and n-1, output "decryption
      error", and stop.

   3. Convert the integer z to a byte string Z of length nLen, most
      significant byte first (see note):

         Z = IntegerToString (z, nLen)

   4. Derive a key-encrypting key KEK of length kekLen bytes from the
      byte string Z using the underlying key derivation function (see
      note):

         KEK = KDF (Z, kekLen)

   5. Unwrap the wrapped keying data WK with the key-encrypting key KEK
      using the underlying key-wrapping scheme to recover the keying
      data K:

         K = Unwrap (KEK, WK)

      If the unwrapping operation outputs an error, output "decryption
      error", and stop.

   6. Output the keying data K.

   NOTE: Implementations SHOULD NOT reveal information about the
   integer z and the string Z, nor about the calculation of the
   exponentiation in Step 2, the conversion in Step 3, or the key
   derivation in Step 4, whether by timing or other "side channels".
   The observable behavior of the implementation SHOULD be the same at



Randall, et al.              Standards Track                   [Page 14]
^L
RFC 5990                  Use of RSA-KEM in CMS           September 2010


   these steps for all ciphertexts C that are in range.  (For example,
   IntegerToString conversion should take the same amount of time
   regardless of the actual value of the integer z.)  The integer z, the
   string Z, and other intermediate results MUST be securely deleted
   when they are no longer needed.

Appendix B.  ASN.1 Syntax

   The ASN.1 syntax for identifying the RSA-KEM Key Transport Algorithm
   is an extension of the syntax for the "generic hybrid cipher" in
   ANS X9.44 [ANS-X9.44].  The syntax for the scheme is given in
   Appendix B.1.  The syntax for selected underlying components
   including those mentioned above is given in Appendix B.2.

   The following object identifier prefixes are used in the definitions
   below:

      is18033-2 OID ::= { iso(1) standard(0) is18033(18033) part2(2) }

      nistAlgorithm OID ::= {
         joint-iso-itu-t(2) country(16) us(840) organization(1)
         gov(101) csor(3) nistAlgorithm(4)
      }

      pkcs-1 OID ::= {
         iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1)
      }

      x9-44 OID ::= { iso(1) identified-organization(3) tc68(133)
        country(16) x9(840) x9Standards(9) x9-44(44) }

      x9-44-components OID ::= { x9-44 components(1) }

   NullParms is a more descriptive synonym for NULL when an algorithm
   identifier has null parameters:

      NullParms ::= NULL

   The material in this Appendix is based on ANS X9.44.












Randall, et al.              Standards Track                   [Page 15]
^L
RFC 5990                  Use of RSA-KEM in CMS           September 2010


B.1.  RSA-KEM Key Transport Algorithm

   The object identifier for the RSA-KEM Key Transport Algorithm is
   id-rsa-kem, which is defined in this document as:

      id-rsa-kem OID ::= {
         iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
         pkcs-9(9) smime(16) alg(3) 14
      }

   When id-rsa-kem is used in an AlgorithmIdentifier, the parameters
   MUST employ the GenericHybridParameters syntax.  The parameters MUST
   be absent when used in the SubjectPublicKeyInfo field.  The syntax
   for GenericHybridParameters is as follows:

      GenericHybridParameters ::= {
         kem  KeyEncapsulationMechanism,
         dem  DataEncapsulationMechanism
      }

   The fields of type GenericHybridParameters have the following
   meanings:

      o  kem identifies the underlying key encapsulation mechanism,
         which in this case is also denoted as RSA-KEM.

         The object identifier for RSA-KEM (as a key encapsulation
         mechanism) is id-kem-rsa as:

            id-kem-rsa OID ::= {
               is18033-2 key-encapsulation-mechanism(2) rsa(4)
            }

         The associated parameters for id-kem-rsa have type
         RsaKemParameters:

            RsaKemParameters ::= {
               keyDerivationFunction  KeyDerivationFunction,
               keyLength              KeyLength
            }











Randall, et al.              Standards Track                   [Page 16]
^L
RFC 5990                  Use of RSA-KEM in CMS           September 2010


         The fields of type RsaKemParameters have the following
         meanings:

         *  keyDerivationFunction identifies the underlying key
            derivation function.  For alignment with ANS X9.44, it MUST
            be KDF2 or KDF3.  However, other key derivation functions
            MAY be used with CMS.  Please see Appendix B.2.1 for the
            syntax for KDF2 and KDF3.

               KeyDerivationFunction ::=
                  AlgorithmIdentifier {{KDFAlgorithms}}

               KDFAlgorithms ALGORITHM ::= {
                  kdf2 | kdf3,
                  ...  -- implementations may define other methods
               }

         *  keyLength is the length in bytes of the key-encrypting key,
            which depends on the underlying symmetric key-wrapping
            scheme.

               KeyLength ::= INTEGER (1..MAX)

      o  dem identifies the underlying data encapsulation mechanism.
         For alignment with ANS X9.44, it MUST be an X9-approved
         symmetric key-wrapping scheme.  However, other symmetric key-
         wrapping schemes MAY be used with CMS.  Please see Appendix
         B.2.2 for the syntax for the AES, Triple-DES, and Camellia Key
         Wraps.

            DataEncapsulationMechanism ::=
               AlgorithmIdentifier {{DEMAlgorithms}}

            DEMAlgorithms ALGORITHM ::= {
               X9-SymmetricKeyWrappingSchemes,
               Camellia-KeyWrappingSchemes,
               ...  -- implementations may define other methods
            }

            X9-SymmetricKeyWrappingSchemes ALGORITHM ::= {
               aes128-Wrap | aes192-Wrap | aes256-Wrap | tdes-Wrap,
               ...  -- allows for future expansion
            }

            Camellia-KeyWrappingSchemes ALGORITHM ::= {
               Camellia128-Wrap | Camellia192-Wrap | Camellia256-Wrap
            }




Randall, et al.              Standards Track                   [Page 17]
^L
RFC 5990                  Use of RSA-KEM in CMS           September 2010


B.2.  Selected Underlying Components

B.2.1.  Key Derivation Functions

   The object identifier for KDF2 (see [ANS-X9.44]) is:

      id-kdf-kdf2 OID ::= { x9-44-components kdf2(1) }

   The associated parameters identify the underlying hash function.  For
   alignment with ANS X9.44, the hash function MUST be an ASC
   X9-approved hash function.  However, other hash functions MAY be used
   with CMS.

      kdf2 ALGORITHM ::= { OID id-kdf-kdf2  PARMS KDF2-HashFunction }

      KDF2-HashFunction ::= AlgorithmIdentifier {{KDF2-HashFunctions}}

      KDF2-HashFunctions ALGORITHM ::= {
         X9-HashFunctions,
         ...  -- implementations may define other methods
      }

      X9-HashFunctions ALGORITHM ::= {
         sha1 | sha224 | sha256 | sha384 | sha512,
         ...  -- allows for future expansion
      }

   The object identifier for SHA-1 is:

      id-sha1 OID ::= {
         iso(1) identified-organization(3) oiw(14) secsig(3)
         algorithms(2) sha1(26)
      }

   The object identifiers for SHA-224, SHA-256, SHA-384, and SHA-512 are

      id-sha224 OID ::= { nistAlgorithm hashAlgs(2) sha224(4) }
      id-sha256 OID ::= { nistAlgorithm hashAlgs(2) sha256(1) }
      id-sha384 OID ::= { nistAlgorithm hashAlgs(2) sha384(2) }
      id-sha512 OID ::= { nistAlgorithm hashAlgs(2) sha512(3) }

   There has been some confusion over whether the various SHA object
   identifiers have a NULL parameter, or no associated parameters.  As
   also discussed in [PKCS1], implementations SHOULD generate algorithm
   identifiers without parameters and MUST accept algorithm identifiers
   either without parameters, or with NULL parameters.





Randall, et al.              Standards Track                   [Page 18]
^L
RFC 5990                  Use of RSA-KEM in CMS           September 2010


      sha1   ALGORITHM ::= { OID id-sha1   } -- NULLParms MUST be
      sha224 ALGORITHM ::= { OID id-sha224 } -- accepted for these
      sha256 ALGORITHM ::= { OID id-sha256 } -- OIDs
      sha384 ALGORITHM ::= { OID id-sha384 } -- ""
      sha512 ALGORITHM ::= { OID id-sha512 } -- ""

   The object identifier for KDF3 (see [ANS-X9.44]) is:

      id-kdf-kdf3 OID ::= { x9-44-components kdf3(2) }

   The associated parameters identify the underlying hash function.  For
   alignment with the draft ANS X9.44, the hash function MUST be an ASC
   X9-approved hash function.  However, other hash functions MAY be used
   with CMS.

      kdf3 ALGORITHM ::= { OID id-kdf-kdf3  PARMS KDF3-HashFunction }

      KDF3-HashFunction ::= AlgorithmIdentifier { KDF3-HashFunctions }

      KDF3-HashFunctions ALGORITHM ::= {
         X9-HashFunctions,
         ...  -- implementations may define other methods
      }

B.2.2.  Symmetric Key-Wrapping Schemes

   The object identifiers for the AES Key Wrap depend on the size of the
   key-encrypting key.  There are three object identifiers (see
   [AES-WRAP]):

      id-aes128-Wrap OID ::= { nistAlgorithm aes(1) aes128-Wrap(5) }
      id-aes192-Wrap OID ::= { nistAlgorithm aes(1) aes192-Wrap(25) }
      id-aes256-Wrap OID ::= { nistAlgorithm aes(1) aes256-Wrap(45) }

   These object identifiers have no associated parameters.

      aes128-Wrap ALGORITHM ::= { OID id-aes128-Wrap }
      aes192-Wrap ALGORITHM ::= { OID id-aes192-Wrap }
      aes256-Wrap ALGORITHM ::= { OID id-aes256-Wrap }

   The object identifier for the Triple-DES Key Wrap (see
   [3DES-WRAP]) is:

      id-alg-CMS3DESwrap OBJECT IDENTIFIER ::= {
         iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
         smime(16) alg(3) 6
      }




Randall, et al.              Standards Track                   [Page 19]
^L
RFC 5990                  Use of RSA-KEM in CMS           September 2010


   This object identifier has a NULL parameter.

      tdes-Wrap ALGORITHM ::=
         { OID id-alg-CMS3DESwrap  PARMS NullParms }

   NOTE: ASC X9 has not yet incorporated AES Key Wrap with Padding
   [AES-WRAP-PAD] into ANS X9.44.  When ASC X9.44 adds AES Key Wrap with
   Padding, this document will also be updated.

   The object identifiers for the Camellia Key Wrap depend on the size
   of the key-encrypting key.  There are three object identifiers:

      id-camellia128-Wrap OBJECT IDENTIFIER ::=
         { iso(1) member-body(2) 392 200011 61 security(1)
           algorithm(1) key-wrap-algorithm(3)
           camellia128-wrap(2) }

      id-camellia192-Wrap OBJECT IDENTIFIER ::=
         { iso(1) member-body(2) 392 200011 61 security(1)
           algorithm(1) key-wrap-algorithm(3)
           camellia192-wrap(3) }

      id-camellia256-Wrap OBJECT IDENTIFIER ::=
         { iso(1) member-body(2) 392 200011 61 security(1)
           algorithm(1) key-wrap-algorithm(3)
           camellia256-wrap(4) }

   These object identifiers have no associated parameters.

      camellia128-Wrap ALGORITHM ::= { OID id-camellia128-Wrap }
      camellia192-Wrap ALGORITHM ::= { OID id-camellia192-Wrap }
      camellia256-Wrap ALGORITHM ::= { OID id-camellia256-Wrap }

B.3.  ASN.1 Module

   CMS-RSA-KEM
      { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
        pkcs-9(9) smime(16) modules(0) cms-rsa-kem(21) }

   DEFINITIONS ::=

   BEGIN

   -- EXPORTS ALL

   -- IMPORTS None

   -- Useful types and definitions



Randall, et al.              Standards Track                   [Page 20]
^L
RFC 5990                  Use of RSA-KEM in CMS           September 2010


   OID ::= OBJECT IDENTIFIER  -- alias

   -- Unless otherwise stated, if an object identifier has associated
   -- parameters (i.e., the PARMS element is specified), the
   -- parameters field shall be included in algorithm identifier
   -- values.  The parameters field shall be omitted if and only if
   -- the object identifier does not have associated parameters
   -- (i.e., the PARMS element is omitted), unless otherwise stated.

   ALGORITHM ::= CLASS {
      &id    OBJECT IDENTIFIER  UNIQUE,
      &Type  OPTIONAL
   }
   WITH SYNTAX { OID &id [PARMS &Type] }

   AlgorithmIdentifier { ALGORITHM:IOSet } ::= SEQUENCE {
      algorithm   ALGORITHM.&id( {IOSet} ),
      parameters  ALGORITHM.&Type( {IOSet}{@algorithm} ) OPTIONAL
   }

   NullParms ::= NULL

   -- ISO/IEC 18033-2 arc

   is18033-2 OID ::= { iso(1) standard(0) is18033(18033) part2(2) }

   -- NIST algorithm arc

   nistAlgorithm OID ::= {
      joint-iso-itu-t(2) country(16) us(840) organization(1)
      gov(101) csor(3) nistAlgorithm(4)
   }

   -- PKCS #1 arc

   pkcs-1 OID ::= {
      iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1)
   }

   -- RSA-KEM Key Transport Algorithm

   id-rsa-kem OID ::= {
      iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
      pkcs-9(9) smime(16) alg(3) 14
   }






Randall, et al.              Standards Track                   [Page 21]
^L
RFC 5990                  Use of RSA-KEM in CMS           September 2010


   GenericHybridParameters ::= SEQUENCE {
      kem  KeyEncapsulationMechanism,
      dem  DataEncapsulationMechanism
   }

   KeyEncapsulationMechanism ::= AlgorithmIdentifier {{KEMAlgorithms}}

   KEMAlgorithms ALGORITHM ::= { kem-rsa, ... }

   kem-rsa ALGORITHM ::= { OID id-kem-rsa PARMS RsaKemParameters }

   id-kem-rsa OID ::= {
      is18033-2 key-encapsulation-mechanism(2) rsa(4)
   }

   RsaKemParameters ::= SEQUENCE {
      keyDerivationFunction  KeyDerivationFunction,
      keyLength              KeyLength
   }

   KeyDerivationFunction ::= AlgorithmIdentifier {{KDFAlgorithms}}

   KDFAlgorithms ALGORITHM ::= {
      kdf2 | kdf3,
      ...  -- implementations may define other methods
   }

   KeyLength ::= INTEGER (1..MAX)

   DataEncapsulationMechanism ::= AlgorithmIdentifier {{DEMAlgorithms}}

   DEMAlgorithms ALGORITHM ::= {
      X9-SymmetricKeyWrappingSchemes |
      Camellia-KeyWrappingSchemes,
      ...  -- implementations may define other methods
   }

   X9-SymmetricKeyWrappingSchemes ALGORITHM ::= {
      aes128-Wrap | aes192-Wrap | aes256-Wrap | tdes-Wrap,
      ...  -- allows for future expansion
   }

   X9-SymmetricKeyWrappingScheme ::=
               AlgorithmIdentifier {{ X9-SymmetricKeyWrappingSchemes }}







Randall, et al.              Standards Track                   [Page 22]
^L
RFC 5990                  Use of RSA-KEM in CMS           September 2010


   Camellia-KeyWrappingSchemes ALGORITHM ::= {
      camellia128-Wrap | camellia192-Wrap | camellia256-Wrap,
      ... -- allows for future expansion
   }

   Camellia-KeyWrappingScheme ::=
                  AlgorithmIdentifier {{ Camellia-KeyWrappingSchemes }}

   -- Key Derivation Functions

   id-kdf-kdf2 OID ::= { x9-44-components kdf2(1) }

   -- Base arc

   x9-44 OID ::= {
      iso(1) identified-organization(3) tc68(133) country(16) x9(840)
      x9Standards(9) x9-44(44)
   }

   x9-44-components OID ::= { x9-44 components(1) }

   kdf2 ALGORITHM ::= { OID id-kdf-kdf2  PARMS KDF2-HashFunction }

   KDF2-HashFunction ::= AlgorithmIdentifier {{ KDF2-HashFunctions }}

   KDF2-HashFunctions ALGORITHM ::= {
      X9-HashFunctions,
      ...  -- implementations may define other methods
   }

   id-kdf-kdf3 OID ::= { x9-44-components kdf3(2) }

   kdf3 ALGORITHM ::= { OID id-kdf-kdf3  PARMS KDF3-HashFunction }

   KDF3-HashFunction  ::= AlgorithmIdentifier {{ KDF3-HashFunctions }}

   KDF3-HashFunctions ALGORITHM ::= {
      X9-HashFunctions,
      ...  -- implementations may define other methods
   }

   -- Hash Functions

   X9-HashFunctions ALGORITHM ::= {
      sha1 | sha224 | sha256 | sha384 | sha512,
      ...  -- allows for future expansion
   }




Randall, et al.              Standards Track                   [Page 23]
^L
RFC 5990                  Use of RSA-KEM in CMS           September 2010


   id-sha1 OID ::= {
      iso(1) identified-organization(3) oiw(14) secsig(3)
      algorithms(2) sha1(26)
   }

   id-sha224 OID ::= { nistAlgorithm hashAlgs(2) sha224(4) }

   id-sha256 OID ::= { nistAlgorithm hashAlgs(2) sha256(1) }

   id-sha384 OID ::= { nistAlgorithm hashAlgs(2) sha384(2) }

   id-sha512 OID ::= { nistAlgorithm hashAlgs(2) sha512(3) }

   sha1   ALGORITHM ::= { OID id-sha1    } -- NullParms MUST be

   sha224 ALGORITHM ::= { OID id-sha224  } -- accepted for these

   sha256 ALGORITHM ::= { OID id-sha256  } -- OIDs

   sha384 ALGORITHM ::= { OID id-sha384  } -- ""

   sha512 ALGORITHM ::= { OID id-sha512  } -- ""

   -- Symmetric Key-Wrapping Schemes

   id-aes128-Wrap OID ::= { nistAlgorithm aes(1) aes128-Wrap(5)  }

   id-aes192-Wrap OID ::= { nistAlgorithm aes(1) aes192-Wrap(25) }

   id-aes256-Wrap OID ::= { nistAlgorithm aes(1) aes256-Wrap(45) }

   aes128-Wrap ALGORITHM ::= { OID id-aes128-Wrap }

   aes192-Wrap ALGORITHM ::= { OID id-aes192-Wrap }

   aes256-Wrap ALGORITHM ::= { OID id-aes256-Wrap }

   id-alg-CMS3DESwrap OBJECT IDENTIFIER ::= {
      iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
      smime(16) alg(3) 6
   }

   tdes-Wrap ALGORITHM ::= { OID id-alg-CMS3DESwrap  PARMS NullParms }

   id-camellia128-Wrap OBJECT IDENTIFIER ::=
      { iso(1) member-body(2) 392 200011 61 security(1)
        algorithm(1) key-wrap-algorithm(3)
        camellia128-wrap(2) }



Randall, et al.              Standards Track                   [Page 24]
^L
RFC 5990                  Use of RSA-KEM in CMS           September 2010


   id-camellia192-Wrap OBJECT IDENTIFIER ::=
      { iso(1) member-body(2) 392 200011 61 security(1)
        algorithm(1) key-wrap-algorithm(3)
        camellia192-wrap(3) }

   id-camellia256-Wrap OBJECT IDENTIFIER ::=
      { iso(1) member-body(2) 392 200011 61 security(1)
        algorithm(1) key-wrap-algorithm(3)
        camellia256-wrap(4) }

   camellia128-Wrap ALGORITHM ::= { OID id-camellia128-Wrap }

   camellia192-Wrap ALGORITHM ::= { OID id-camellia192-Wrap }

   camellia256-Wrap ALGORITHM ::= { OID id-camellia256-Wrap }

   END

B.4.  Examples

   As an example, if the key derivation function is KDF3 based on
   SHA-256 and the symmetric key-wrapping scheme is the AES Key Wrap
   with a 128-bit KEK, the AlgorithmIdentifier for the RSA-KEM Key
   Transport Algorithm will have the following value:

   SEQUENCE {
      id-rsa-kem,                                   -- RSA-KEM cipher
      SEQUENCE {                           -- GenericHybridParameters
         SEQUENCE {                    -- key encapsulation mechanism
            id-kem-rsa,                                    -- RSA-KEM
            SEQUENCE {                            -- RsaKemParameters
               SEQUENCE {                  -- key derivation function
                  id-kdf-kdf3,                                -- KDF3
                  SEQUENCE {                     -- KDF3-HashFunction
                     id-sha256  -- SHA-256; no parameters (preferred)
                  },
               16                              -- KEK length in bytes
               },
         SEQUENCE {                   -- data encapsulation mechanism
            id-aes128-Wrap             -- AES-128 Wrap; no parameters
         }
      }
   }








Randall, et al.              Standards Track                   [Page 25]
^L
RFC 5990                  Use of RSA-KEM in CMS           September 2010


   This AlgorithmIdentifier value has the following DER encoding:

   30 47
     06 0b 2a 86 48 86 f7 0d 01 09 10 03 0e           -- id-rsa-kem
     30 38
        30 29
           06 07 28 81 8c 71 02 02 04                 -- id-kem-rsa
           30 1e
              30 19
                 06 0a 2b 81 05 10 86 48 09 2c 01 02  -- id-kdf-kdf3
                 30 0b
                    06 09 60 86 48 01 65 03 04 02 01  -- id-sha256
                    02 01 10                          -- 16 bytes
         30 0b
            06 09 60 86 48 01 65 03 04 01 05         -- id-aes128-Wrap

   The DER encodings for other typical sets of underlying components are
   as follows:

   o  KDF3 based on SHA-384, AES Key Wrap with a 192-bit KEK

         30 47 06 0b 2a 86 48 86 f7 0d 01 09 10 03 0e 30
         38 30 29 06 07 28 81 8c 71 02 02 04 30 1e 30 19
         06 0a 2b 81 05 10 86 48 09 2c 01 02 30 0b 06 09
         60 86 48 01 65 03 04 02 02 02 01 18 30 0b 06 09
         60 86 48 01 65 03 04 01 19

   o  KDF3 based on SHA-512, AES Key Wrap with a 256-bit KEK

         30 47 06 0b 2a 86 48 86 f7 0d 01 09 10 03 0e 30
         38 30 29 06 07 28 81 8c 71 02 02 04 30 1e 30 19
         06 0a 2b 81 05 10 86 48 09 2c 01 02 30 0b 06 09
         60 86 48 01 65 03 04 02 03 02 01 20 30 0b 06 09
         60 86 48 01 65 03 04 01 2d

   o  KDF2 based on SHA-1, Triple-DES Key Wrap with a 128-bit KEK (two-
      key Triple-DES)

         30 45 06 0b 2a 86 48 86 f7 0d 01 09 10 03 0e 30
         36 30 25 06 07 28 81 8c 71 02 02 04 30 1a 30 15
         06 0a 2b 81 05 10 86 48 09 2c 01 01 30 07 06 05
         2b 0e 03 02 1a 02 01 10 30 0d 06 0b 2a 86 48 86
         f7 0d 01 09 10 03 06








Randall, et al.              Standards Track                   [Page 26]
^L
RFC 5990                  Use of RSA-KEM in CMS           September 2010


Authors' Addresses

   James Randall
   Randall Consulting
   55 Sandpiper Drive
   Dover, NH  03820
   USA

   EMail: jdrandall@comcast.net


   Burt Kaliski
   EMC
   176 South Street
   Hopkinton, MA  01748
   USA

   EMail: burt.kaliski@emc.com


   John Brainard
   RSA, The Security Division of EMC
   174 Middlesex Turnpike
   Bedford, MA  01730
   USA

   EMail: jbrainard@rsa.com


   Sean Turner
   IECA, Inc.
   3057 Nutley Street, Suite 106
   Fairfax, VA  22031
   USA

   EMail: turners@ieca.com















Randall, et al.              Standards Track                   [Page 27]
^L