1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
|
Internet Engineering Task Force (IETF) A. Doherty
Request for Comments: 6063 RSA, The Security Division of EMC
Category: Standards Track M. Pei
ISSN: 2070-1721 VeriSign, Inc.
S. Machani
Diversinet Corp.
M. Nystrom
Microsoft Corp.
December 2010
Dynamic Symmetric Key Provisioning Protocol (DSKPP)
Abstract
The Dynamic Symmetric Key Provisioning Protocol (DSKPP) is a client-
server protocol for initialization (and configuration) of symmetric
keys to locally and remotely accessible cryptographic modules. The
protocol can be run with or without private key capabilities in the
cryptographic modules and with or without an established public key
infrastructure.
Two variations of the protocol support multiple usage scenarios.
With the four-pass variant, keys are mutually generated by the
provisioning server and cryptographic module; provisioned keys are
not transferred over-the-wire or over-the-air. The two-pass variant
enables secure and efficient download and installation of pre-
generated symmetric keys to a cryptographic module.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc6063.
Doherty, et al. Standards Track [Page 1]
^L
RFC 6063 DSKPP December 2010
Copyright Notice
Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
Doherty, et al. Standards Track [Page 2]
^L
RFC 6063 DSKPP December 2010
Table of Contents
1. Introduction ....................................................6
1.1. Key Words ..................................................6
1.2. Version Support ............................................6
1.3. Namespace Identifiers ......................................7
1.3.1. Defined Identifiers .................................7
1.3.2. Identifiers Defined in Related Specifications .......7
1.3.3. Referenced Identifiers ..............................8
2. Terminology .....................................................8
2.1. Definitions ................................................8
2.2. Notation ..................................................10
2.3. Abbreviations .............................................11
3. DSKPP Overview .................................................11
3.1. Protocol Entities .........................................12
3.2. Basic DSKPP Exchange ......................................12
3.2.1. User Authentication ................................12
3.2.2. Protocol Initiated by the DSKPP Client .............14
3.2.3. Protocol Triggered by the DSKPP Server .............16
3.2.4. Variants ...........................................17
3.2.4.1. Criteria for Using the Four-Pass Variant ..17
3.2.4.2. Criteria for Using the Two-Pass Variant ...18
3.3. Status Codes ..............................................18
3.4. Basic Constructs ..........................................20
3.4.1. User Authentication Data (AD) ......................20
3.4.1.1. Authentication Code Format ................20
3.4.1.2. User Authentication Data Calculation ......23
3.4.2. The DSKPP One-Way Pseudorandom Function,
DSKPP-PRF ..........................................24
3.4.3. The DSKPP Message Hash Algorithm ...................24
4. Four-Pass Protocol Usage .......................................25
4.1. The Key Agreement Mechanism ...............................25
4.1.1. Data Flow ..........................................25
4.1.2. Computation ........................................27
4.2. Message Flow ..............................................28
4.2.1. KeyProvTrigger .....................................28
4.2.2. KeyProvClientHello .................................29
4.2.3. KeyProvServerHello .................................30
4.2.4. KeyProvClientNonce .................................32
4.2.5. KeyProvServerFinished ..............................34
5. Two-Pass Protocol Usage ........................................35
5.1. Key Protection Methods ....................................36
5.1.1. Key Transport ......................................36
5.1.2. Key Wrap ...........................................37
5.1.3. Passphrase-Based Key Wrap ..........................37
5.2. Message Flow ..............................................38
5.2.1. KeyProvTrigger .....................................38
5.2.2. KeyProvClientHello .................................39
Doherty, et al. Standards Track [Page 3]
^L
RFC 6063 DSKPP December 2010
5.2.3. KeyProvServerFinished ..............................43
6. Protocol Extensions ............................................44
6.1. The ClientInfoType Extension ..............................45
6.2. The ServerInfoType Extension ..............................45
7. Protocol Bindings ..............................................45
7.1. General Requirements ......................................45
7.2. HTTP/1.1 Binding for DSKPP ................................46
7.2.1. Identification of DSKPP Messages ...................46
7.2.2. HTTP Headers .......................................46
7.2.3. HTTP Operations ....................................47
7.2.4. HTTP Status Codes ..................................47
7.2.5. HTTP Authentication ................................47
7.2.6. Initialization of DSKPP ............................47
7.2.7. Example Messages ...................................48
8. DSKPP XML Schema ...............................................49
8.1. General Processing Requirements ...........................49
8.2. Schema ....................................................49
9. Conformance Requirements .......................................58
10. Security Considerations .......................................59
10.1. General ..................................................59
10.2. Active Attacks ...........................................60
10.2.1. Introduction ......................................60
10.2.2. Message Modifications .............................60
10.2.3. Message Deletion ..................................61
10.2.4. Message Insertion .................................62
10.2.5. Message Replay ....................................62
10.2.6. Message Reordering ................................62
10.2.7. Man in the Middle .................................63
10.3. Passive Attacks ..........................................63
10.4. Cryptographic Attacks ....................................63
10.5. Attacks on the Interaction between DSKPP and User
Authentication ...........................................64
10.6. Miscellaneous Considerations .............................65
10.6.1. Client Contributions to K_TOKEN Entropy ...........65
10.6.2. Key Confirmation ..................................65
10.6.3. Server Authentication .............................65
10.6.4. User Authentication ...............................66
10.6.5. Key Protection in Two-Pass DSKPP ..................66
10.6.6. Algorithm Agility .................................67
11. Internationalization Considerations ...........................68
12. IANA Considerations ...........................................68
12.1. URN Sub-Namespace Registration ...........................68
12.2. XML Schema Registration ..................................69
12.3. MIME Media Type Registration .............................69
12.4. Status Code Registration .................................70
12.5. DSKPP Version Registration ...............................70
12.6. PRF Algorithm ID Sub-Registry ............................70
12.6.1. DSKPP-PRF-AES .....................................71
Doherty, et al. Standards Track [Page 4]
^L
RFC 6063 DSKPP December 2010
12.6.2. DSKPP-PRF-SHA256 ..................................71
12.7. Key Container Registration ...............................72
13. Intellectual Property Considerations ..........................73
14. Contributors ..................................................73
15. Acknowledgements ..............................................73
16. References ....................................................74
16.1. Normative References .....................................74
16.2. Informative References ...................................76
Appendix A. Usage Scenarios ......................................78
A.1. Single Key Request ........................................78
A.2. Multiple Key Requests .....................................78
A.3. User Authentication .......................................78
A.4. Provisioning Time-Out Policy ............................78
A.5. Key Renewal ...............................................79
A.6. Pre-Loaded Key Replacement ..............................79
A.7. Pre-Shared Manufacturing Key ............................79
A.8. End-to-End Protection of Key Material ...................80
Appendix B. Examples .............................................80
B.1. Trigger Message ...........................................80
B.2. Four-Pass Protocol ......................................81
B.2.1. <KeyProvClientHello> without a Preceding Trigger ......81
B.2.2. <KeyProvClientHello> Assuming a Preceding Trigger .....82
B.2.3. <KeyProvServerHello> Without a Preceding Trigger ......83
B.2.4. <KeyProvServerHello> Assuming Key Renewal .............84
B.2.5. <KeyProvClientNonce> Using Default Encryption .........85
B.2.6. <KeyProvServerFinished> Using Default Encryption ......85
B.3. Two-Pass Protocol .......................................86
B.3.1. Example Using the Key Transport Method ................86
B.3.2. Example Using the Key Wrap Method .....................90
B.3.3. Example Using the Passphrase-Based Key Wrap Method ..94
Appendix C. Integration with PKCS #11 ............................98
C.1. The Four-Pass Variant ...................................98
C.2. The Two-Pass Variant ....................................98
Appendix D. Example of DSKPP-PRF Realizations .................101
D.1. Introduction .............................................101
D.2. DSKPP-PRF-AES ..........................................101
D.2.1. Identification .......................................101
D.2.2. Definition ...........................................101
D.2.3. Example ..............................................102
D.3. DSKPP-PRF-SHA256 .......................................103
D.3.1. Identification .......................................103
D.3.2. Definition ...........................................103
D.3.3. Example ..............................................104
Doherty, et al. Standards Track [Page 5]
^L
RFC 6063 DSKPP December 2010
1. Introduction
Symmetric-key-based cryptographic systems (e.g., those providing
authentication mechanisms such as one-time passwords and challenge-
response) offer performance and operational advantages over public
key schemes. Such use requires a mechanism for the provisioning of
symmetric keys providing equivalent functionality to mechanisms such
as the Certificate Management Protocol (CMP) [RFC4210] and
Certificate Management over CMS (CMC) [RFC5272] in a Public Key
Infrastructure.
Traditionally, cryptographic modules have been provisioned with keys
during device manufacturing, and the keys have been imported to the
cryptographic server using, e.g., a CD-ROM disc shipped with the
devices. Some vendors also have proprietary provisioning protocols,
which often have not been publicly documented (the Cryptographic
Token Key Initialization Protocol (CT-KIP) is one exception
[RFC4758]).
This document describes the Dynamic Symmetric Key Provisioning
Protocol (DSKPP), a client-server protocol for provisioning symmetric
keys between a cryptographic module (corresponding to DSKPP Client)
and a key provisioning server (corresponding to DSKPP Server).
DSKPP provides an open and interoperable mechanism for initializing
and configuring symmetric keys to cryptographic modules that are
accessible over the Internet. The description is based on the
information contained in [RFC4758], and contains specific
enhancements, such as user authentication and support for the
[RFC6030] format for transmission of keying material.
DSKPP has two principal protocol variants. The four-pass protocol
variant permits a symmetric key to be established that includes
randomness contributed by both the client and the server. The two-
pass protocol requires only one round trip instead of two and permits
a server specified key to be established.
1.1. Key Words
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
1.2. Version Support
There is a provision made in the syntax for an explicit version
number. Only version "1.0" is currently specified.
Doherty, et al. Standards Track [Page 6]
^L
RFC 6063 DSKPP December 2010
The purpose for versioning the protocol is to provide a mechanism by
which changes to required cryptographic algorithms (e.g., SHA-256)
and attributes (e.g., key size) can be deployed without disrupting
existing implementations; likewise, outdated implementations can be
de-commissioned without disrupting operations involving newer
protocol versions.
The numbering scheme for DSKPP versions is "<major>.<minor>". The
major and minor numbers MUST be treated as separate integers and each
number MAY be incremented higher than a single digit. Thus, "DSKPP
2.4" would be a lower version than "DSKPP 2.13", which in turn would
be lower than "DSKPP 12.3". Leading zeros (e.g., "DSKPP 6.01") MUST
be ignored by recipients and MUST NOT be sent.
The major version number should be incremented only if the data
formats or security algorithms have changed so dramatically that an
older version implementation would not be able to interoperate with a
newer version (e.g., removing support for a previously mandatory-to-
implement algorithm now found to be insecure). The minor version
number indicates new capabilities (e.g., introducing a new algorithm
option) and MUST be ignored by an entity with a smaller minor version
number but be used for informational purposes by the entity with the
larger minor version number.
1.3. Namespace Identifiers
This document uses Uniform Resource Identifiers (URIs) [RFC3986] to
identify resources, algorithms, and semantics.
1.3.1. Defined Identifiers
The XML namespace [XMLNS] URI for Version 1.0 of DSKPP is:
"urn:ietf:params:xml:ns:keyprov:dskpp"
References to qualified elements in the DSKPP schema defined herein
use the prefix "dskpp", but any prefix is allowed.
1.3.2. Identifiers Defined in Related Specifications
This document relies on qualified elements already defined in the
Portable Symmetric Key Container [RFC6030] namespace, which is
represented by the prefix "pskc" and declared as:
xmlns:pskc="urn:ietf:params:xml:ns:keyprov:pskc"
Doherty, et al. Standards Track [Page 7]
^L
RFC 6063 DSKPP December 2010
1.3.3. Referenced Identifiers
Finally, the DSKPP syntax presented in this document relies on
algorithm identifiers defined in the XML Signature [XMLDSIG]
namespace:
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
References to algorithm identifiers in the XML Signature namespace
are represented by the prefix "ds".
2. Terminology
2.1. Definitions
Terms are defined below as they are used in this document. The same
terms may be defined differently in other documents.
Authentication Code (AC): User Authentication Code comprised of a
string of hexadecimal characters known to the device and the
server and containing at a minimum a client identifier and a
password. This ClientID/password combination is used only once
and may have a time limit, and then discarded.
Authentication Data (AD): User Authentication Data that is derived
from the Authentication Code (AC)
Client ID: An identifier that the DSKPP Server uses to locate the
real username or account identifier on the server. It can be a
short random identifier that is unrelated to any real usernames.
Cryptographic Module: A component of an application, which enables
symmetric key cryptographic functionality
Device: A physical piece of hardware, or a software framework, that
hosts symmetric key cryptographic modules
Device ID (DeviceID): A unique identifier for the device that houses
the cryptographic module, e.g., a mobile phone
DSKPP Client: Manages communication between the symmetric key
cryptographic module and the DSKPP Server
DSKPP Server: The symmetric key provisioning server that
participates in the DSKPP run
Doherty, et al. Standards Track [Page 8]
^L
RFC 6063 DSKPP December 2010
DSKPP Server ID (ServerID): The unique identifier of a DSKPP Server
Key Agreement: A key establishment protocol whereby two or more
parties can agree on a key in such a way that both influence the
outcome
Key Confirmation: The assurance of the rightful participants in a
key-establishment protocol that the intended recipient of the
shared key actually possesses the shared key
Key Issuer: An organization that issues symmetric keys to end-users
Key Package (KP): An object that encapsulates a symmetric key and
its configuration data
Key ID (KeyID): A unique identifier for the symmetric key
Key Protection Method (KPM): The key transport method used during
two-pass DSKPP
Key Protection Method List (KPML): The list of key protection
methods supported by a cryptographic module
Key Provisioning Server: A lifecycle management system that provides
a key issuer with the ability to provision keys to cryptographic
modules hosted on end-users' devices
Key Transport: A key establishment procedure whereby the DSKPP
Server selects and encrypts the keying material and then sends the
material to the DSKPP Client [NIST-SP800-57]
Key Transport Key: The private key that resides on the cryptographic
module. This key is paired with the DSKPP Client's public key,
which the DSKPP Server uses to encrypt keying material during key
transport [NIST-SP800-57]
Key Type: The type of symmetric key cryptographic methods for which
the key will be used (e.g., Open AUTHentication HMAC-Based One-
Time Password (OATH HOTP) or RSA SecurID authentication, AES
encryption, etc.)
Key Wrapping: A method of encrypting keys for key transport
[NIST-SP800-57]
Doherty, et al. Standards Track [Page 9]
^L
RFC 6063 DSKPP December 2010
Key Wrapping Key: A symmetric key encrypting key used for key
wrapping [NIST-SP800-57]
Keying Material: The data necessary (e.g., keys and key
configuration data) necessary to establish and maintain
cryptographic keying relationships [NIST-SP800-57]
Manufacturer's Key: A unique master key pre-issued to a hardware
device, e.g., a smart card, during the manufacturing process. If
present, this key may be used by a cryptographic module to derive
secret keys
Protocol Run: Complete execution of the DSKPP that involves one
exchange (two-pass) or two exchanges (four-pass)
Security Attribute List (SAL): A payload that contains the DSKPP
version, DSKPP variant (four- or two-pass), key package formats,
key types, and cryptographic algorithms that the cryptographic
module is capable of supporting
2.2. Notation
|| String concatenation
[x] Optional element x
A ^ B Exclusive-OR operation on strings A and B
(where A and B are of equal length)
<XMLElement> A typographical convention used in the body of
the text
DSKPP-PRF(k,s,dsLen) A keyed pseudorandom function
E(k,m) Encryption of m with the key k
K Key used to encrypt R_C (either K_SERVER or
K_SHARED), or in MAC or DSKPP_PRF computations
K_AC Secret key that is derived from the
Authentication Code and used for user
authentication purposes
K_MAC Secret key derived during a DSKPP exchange for
use with key confirmation
K_MAC' A second secret key used for server
authentication
K_PROV A provisioning master key from which two keys
are derived: K_TOKEN and K_MAC
K_SERVER Public key of the DSKPP Server; used for
encrypting R_C in the four-pass protocol
variant
Doherty, et al. Standards Track [Page 10]
^L
RFC 6063 DSKPP December 2010
K_SHARED Secret key that is pre-shared between the DSKPP
Client and the DSKPP Server; used for
encrypting R_C in the four-pass protocol
variant
K_TOKEN Secret key that is established in a
cryptographic module using DSKPP
R Pseudorandom value chosen by the DSKPP Client
and used for MAC computations
R_C Pseudorandom value chosen by the DSKPP Client
and used as input to the generation of K_TOKEN
R_S Pseudorandom value chosen by the DSKPP Server
and used as input to the generation of K_TOKEN
URL_S DSKPP Server address, as a URL
2.3. Abbreviations
AC Authentication Code
AD Authentication Data
DSKPP Dynamic Symmetric Key Provisioning Protocol
HTTP Hypertext Transfer Protocol
KP Key Package
KPM Key Protection Method
KPML Key Protection Method List
MAC Message Authentication Code
PC Personal Computer
PDU Protocol Data Unit
PKCS Public Key Cryptography Standards
PRF Pseudorandom Function
PSKC Portable Symmetric Key Container
SAL Security Attribute List (see Section 2.1)
TLS Transport Layer Security
URL Uniform Resource Locator
USB Universal Serial Bus
XML eXtensible Markup Language
3. DSKPP Overview
The following sub-sections provide a high-level view of protocol
internals and how they interact with external provisioning
applications. Usage scenarios are provided in Appendix A.
Doherty, et al. Standards Track [Page 11]
^L
RFC 6063 DSKPP December 2010
3.1. Protocol Entities
A DSKPP provisioning transaction has three entities:
Server: The DSKPP provisioning server.
Cryptographic Module: The cryptographic module to which the
symmetric keys are to be provisioned, e.g., an authentication
token.
Client: The DSKPP Client that manages communication between the
cryptographic module and the key provisioning server.
The principal syntax is XML [XML] and it is layered on a transport
mechanism such as HTTP [RFC2616] and HTTP Over TLS [RFC2818]. While
it is highly desirable for the entire communication between the DSKPP
Client and server to be protected by means of a transport providing
confidentiality and integrity protection such as HTTP over Transport
Layer Security (TLS), such protection is not sufficient to protect
the exchange of the symmetric key data between the server and the
cryptographic module and DSKPP is designed to permit implementations
that satisfy this requirement.
The server only communicates to the client. As far as the server is
concerned, the client and cryptographic module may be considered to
be a single entity.
From a client-side security perspective, however, the client and the
cryptographic module are separate logical entities and may in some
implementations be separate physical entities as well.
It is assumed that a device will host an application layered above
the cryptographic module, and this application will manage
communication between the DSKPP Client and cryptographic module. The
manner in which the communicating application will transfer DSKPP
elements to and from the cryptographic module is transparent to the
DSKPP Server. One method for this transfer is described in
[CT-KIP-P11].
3.2. Basic DSKPP Exchange
3.2.1. User Authentication
In a DSKPP message flow, the user has obtained a new hardware or
software device embedded with a cryptographic module. The goal of
DSKPP is to provision the same symmetric key and related information
to the cryptographic module and the key management server, and
Doherty, et al. Standards Track [Page 12]
^L
RFC 6063 DSKPP December 2010
associate the key with the correct username (or other account
identifier) on the server. To do this, the DSKPP Server MUST
authenticate the user to be sure he is authorized for the new key.
User authentication occurs within the protocol itself *after* the
DSKPP Client initiates the first message. In this case, the DSKPP
Client MUST have access to the DSKPP Server URL.
Alternatively, a DSKPP web service or other form of web application
can authenticate a user *before* the first message is exchanged. In
this case, the DSKPP Server MUST trigger the DSKPP Client to initiate
the first message in the protocol transaction.
Doherty, et al. Standards Track [Page 13]
^L
RFC 6063 DSKPP December 2010
3.2.2. Protocol Initiated by the DSKPP Client
In the following example, the DSKPP Client first initiates DSKPP, and
then the user is authenticated using a Client ID and Authentication
Code.
Crypto DSKPP DSKPP Key Provisioning
Module Client Server Server
| | | |
| | | +---------------+
| | | |Server creates |
| | | |and stores |
| | | |Client ID and |
| | | |Auth. Code and |
| | | |delivers them |
| | | |to user out-of-|
| | | |band. |
| | | +---------------+
| | | |
| +----------------------+ | |
| |User enters Client ID,| | |
| |Auth. Code, and URL | | |
| +----------------------+ | |
| | | |
| |<-- 1. TLS handshake with --->| |
| | server auth. | |
| | | |
| | 2. <KeyProvClientHello> ---->| User -->|
| | | Auth. |
| |<-- [3. <KeyProvServerHello>] | |
| | | |
| | [4. <KeyProvClientNonce>] -->| |
| | | |
| |<- 5. <KeyProvServerFinished> | |
| | | |
| | | |
|<-- Key | | Key -->|
| Package | | Package |
Figure 1: Basic DSKPP Exchange
Doherty, et al. Standards Track [Page 14]
^L
RFC 6063 DSKPP December 2010
Before DSKPP begins:
o The Authentication Code is generated by the DSKPP Server, and
delivered to the user via an out-of-band trustworthy channel
(e.g., a paper slip delivered by IT department staff).
o The user typically enters the Client ID and Authentication Code
manually, possibly on a device with only a numeric keypad. Thus,
they are often short numeric values (for example, 8 decimal
digits). However, the DSKPP Server is free to generate them in
any way it wishes.
o The DSKPP Client needs the URL [RFC3986] of the DSKPP Server
(which is not user specific or secret, and may be pre-configured
somehow), and a set of trust anchors for verifying the server
certificate.
o There must be an account for the user that has an identifier and
long-term username (or other account identifier) to which the
token will be associated. The DSKPP Server will use the Client ID
to find the corresponding Authentication Code for user
authentication.
In Step 1, the client establishes a TLS connection, authenticates the
server (that is, validates the certificate, and compares the host
name in the URL with the certificate) as described in Section 3.1 of
[RFC2818].
Next, the DSKPP Client and DSKPP Server exchange DSKPP messages
(which are sent over HTTPS). In these messages:
o The client and server negotiate which cryptographic algorithms
they want to use, which algorithms are supported for protecting
DSKPP messages, and other DSKPP details.
o The client sends the Client ID to the server, and proves that it
knows the corresponding Authentication Code.
o The client and server agree on a secret key (token key or
K_TOKEN); depending on the negotiated protocol variant, this is
either a fresh key derived during the DSKPP run (called "four-pass
variant", since it involves four DSKPP messages) or is generated
by (or pre-exists on) the server and transported to the client
(called "two-pass variant" in the rest of this document, since it
involves two DSKPP messages).
o The server sends a "key package" to the client. The package only
includes the key itself in the case of the "two-pass variant";
with either variant, the key package contains attributes that
influence how the provisioned key will be later used by the
cryptographic module and cryptographic server. The exact contents
depend on the cryptographic algorithm (e.g., for a one-time
password algorithm that supports variable-length OTP values, the
length of the OTP value would be one attribute in the key
package).
Doherty, et al. Standards Track [Page 15]
^L
RFC 6063 DSKPP December 2010
After the protocol run has been successfully completed, the
cryptographic modules stores the contents of the key package.
Likewise, the DSKPP provisioning server stores the contents of the
key package with the cryptographic server, and associates these with
the correct username. The user can now use the their device to
perform symmetric-key based operations.
The exact division of work between the cryptographic module and the
DSKPP Client -- and key Provisioning server and DSKPP Server -- are
not specified in this document. The figure above shows one possible
case, but this is intended for illustrative purposes only.
3.2.3. Protocol Triggered by the DSKPP Server
In the first message flow (previous section), the Client ID and
Authentication Code were delivered to the client by some out-of-band
means (such as paper sent to the user).
Web DSKPP DSKPP Web
Browser Client Server Server
| | | |
|<-------- HTTPS browsing + some kind of user auth. --------->|
| | | |
| some HTTP request ----------------------------------------->|
| | |
| | |<------------->|
| | | |
|<----------------------- HTTP response with <KeyProvTrigger> |
| | | |
| Trigger ---->| | |
| | | |
| |<-- 1. TLS handshake with --->| |
| | server auth. | |
| | | |
| | ... continues... | |
Figure 2: DSKPP Exchange with Web-Based Authentication
In the second message flow, the user first authenticates to a web
server (for example, an IT department's "self-service" Intranet
page), using an ordinary web browser and some existing credentials.
The user then requests (by clicking a link or submitting a form)
provisioning of a new key to the cryptographic module. The web
server will reply with a <KeyProvTrigger> message that contains the
Client ID, Authentication Code, and URL of the DSKPP Server. This
information is also needed by the DSKPP Server; how the web server
and DSKPP Server interact is beyond the scope of this document.
Doherty, et al. Standards Track [Page 16]
^L
RFC 6063 DSKPP December 2010
The <KeyProvTrigger> message is sent in an HTTP response, and it is
marked with MIME type "application/dskpp+xml". It is assumed the web
browser has been configured to recognize this MIME type; the browser
will start the DSKPP Client and provide it with the <KeyProvTrigger>
message.
The DSKPP Client then contacts the DSKPP Server and uses the Client
ID and Authentication Code (from the <KeyProvTrigger> message) the
same way as in the first message flow.
3.2.4. Variants
As noted in the previous section, once the protocol has started, the
client and server MAY engage in either a two-pass or four-pass
message exchange. The four-pass and two-pass protocols are
appropriate in different deployment scenarios. The biggest
differentiator between the two is that the two-pass protocol supports
transport of an existing key to a cryptographic module, while the
four-pass involves key generation on-the-fly via key agreement. In
either case, both protocol variants support algorithm agility through
the negotiation of encryption mechanisms and key types at the
beginning of each protocol run.
3.2.4.1. Criteria for Using the Four-Pass Variant
The four-pass protocol is needed under one or more of the following
conditions:
o Policy requires that both parties engaged in the protocol jointly
contribute entropy to the key. Enforcing this policy mitigates
the risk of exposing a key during the provisioning process as the
key is generated through mutual agreement without being
transferred over-the-air or over-the-wire. It also mitigates risk
of exposure after the key is provisioned, as the key will not be
vulnerable to a single point of attack in the system.
o A cryptographic module does not have private key capabilities.
o The cryptographic module is hosted by a device that neither was
pre-issued with a manufacturer's key or other form of pre-shared
key (as might be the case with a smart card or Subscriber Identity
Module (SIM) card) nor has a keypad that can be used for entering
a passphrase (such as present on a mobile phone).
Doherty, et al. Standards Track [Page 17]
^L
RFC 6063 DSKPP December 2010
3.2.4.2. Criteria for Using the Two-Pass Variant
The two-pass protocol is needed under one or more of the following
conditions:
o Pre-existing (i.e., legacy) keys must be provisioned via transport
to the cryptographic module.
o The cryptographic module is hosted on a device that was pre-issued
with a manufacturer's key (such as may exist on a smart card), or
other form of pre-shared key (such as may exist on a SIM-card),
and is capable of performing private key operations.
o The cryptographic module is hosted by a device that has a built-in
keypad with which a user may enter a passphrase, useful for
deriving a key wrapping key for distribution of keying material.
3.3. Status Codes
Upon transmission or receipt of a message for which the Status
attribute's value is not "Success" or "Continue", the default
behavior, unless explicitly stated otherwise below, is that both the
DSKPP Server and the DSKPP Client MUST immediately terminate the
DSKPP run. DSKPP Servers and DSKPP Clients MUST delete any secret
values generated as a result of failed runs of DSKPP. Session
identifiers MAY be retained from successful or failed protocol runs
for replay detection purposes, but such retained identifiers MUST NOT
be reused for subsequent runs of the protocol.
When possible, the DSKPP Client SHOULD present an appropriate error
message to the user.
These status codes are valid in all DSKPP Response messages unless
explicitly stated otherwise:
Continue: The DSKPP Server is ready for a subsequent request from
the DSKPP Client. It cannot be sent in the server's final
message.
Success: Successful completion of the DSKPP session. It can only be
sent in the server's final message.
Abort: The DSKPP Server rejected the DSKPP Client's request for
unspecified reasons.
AccessDenied: The DSKPP Client is not authorized to contact this
DSKPP Server.
Doherty, et al. Standards Track [Page 18]
^L
RFC 6063 DSKPP December 2010
MalformedRequest: The DSKPP Server failed to parse the DSKPP
Client's request.
UnknownRequest: The DSKPP Client made a request that is unknown to
the DSKPP Server.
UnknownCriticalExtension: A DSKPP extension marked as "Critical"
could not be interpreted by the receiving party.
UnsupportedVersion: The DSKPP Client used a DSKPP version not
supported by the DSKPP Server. This error is only valid in the
DSKPP Server's first response message.
NoSupportedKeyTypes: "NoSupportedKeyTypes" indicates that the DSKPP
Client only suggested key types that are not supported by the
DSKPP Server. This error is only valid in the DSKPP Server's
first response message.
NoSupportedEncryptionAlgorithms: The DSKPP Client only suggested
encryption algorithms that are not supported by the DSKPP Server.
This error is only valid in the DSKPP Server's first response
message.
NoSupportedMacAlgorithms: The DSKPP Client only suggested MAC
algorithms that are not supported by the DSKPP Server. This error
is only valid in the DSKPP Server's first response message.
NoProtocolVariants: The DSKPP Client did not suggest a required
protocol variant (either two-pass or four-pass). This error is
only valid in the DSKPP Server's first response message.
NoSupportedKeyPackages: The DSKPP Client only suggested key package
formats that are not supported by the DSKPP Server. This error is
only valid in the DSKPP Server's first response message.
AuthenticationDataMissing: The DSKPP Client didn't provide
Authentication Data that the DSKPP Server required.
AuthenticationDataInvalid: The DSKPP Client supplied User
Authentication Data that the DSKPP Server failed to validate.
InitializationFailed: The DSKPP Server could not generate a valid
key given the provided data. When this status code is received,
the DSKPP Client SHOULD try to restart DSKPP, as it is possible
that a new run will succeed.
Doherty, et al. Standards Track [Page 19]
^L
RFC 6063 DSKPP December 2010
ProvisioningPeriodExpired: The provisioning period set by the DSKPP
Server has expired. When the status code is received, the DSKPP
Client SHOULD report the reason for key initialization failure to
the user and the user MUST register with the DSKPP Server to
initialize a new key.
3.4. Basic Constructs
The following calculations are used in both DSKPP variants.
3.4.1. User Authentication Data (AD)
User Authentication Data (AD) is derived from a Client ID and
Authentication Code that the user enters before the first DSKPP
message is sent.
Note: The user will typically enter the Client ID and Authentication
Code manually, possibly on a device with only numeric keypad. Thus,
they are often short numeric values (for example, 8 decimal digits).
However, the DSKPP Server is free to generate them in any way it
wishes.
3.4.1.1. Authentication Code Format
AC is encoded in Type-Length-Value (TLV) format. The format consists
of a minimum of two TLVs and a variable number of additional TLVs,
depending on implementation.
The TLV fields are defined as follows:
Type (1 character) A hexadecimal character identifying the
type of information contained in the Value
field.
Length (2 characters) Two hexadecimal characters indicating the
length of the Value field to follow. The
field value MAY be up to 255 characters.
The Length value 00 MAY be used to specify
custom tags without any field values.
Value (variable length) A variable-length string of hexadecimal
characters containing the instance-specific
information for this TLV.
Doherty, et al. Standards Track [Page 20]
^L
RFC 6063 DSKPP December 2010
The following table summarizes the TLVs defined in this document.
Optional TLVs are allowed for vendor-specific extensions with the
constraint that the high bit MUST be set to indicate a vendor-
specific type. Other TLVs are left for later revisions of this
protocol.
+------+------------+-------------------------------------------+
| Type | TLV Name | Conformance | Example Usage |
+------+------------+-------------------------------------------+
| 1 | Client ID | Mandatory | { "AC00000A" } |
+------+------------+-------------+-----------------------------+
| 2 | Password | Mandatory | { "3582AF0C3E" } |
+------+------------+-------------+-----------------------------+
| 3 | Checksum | Optional | { "4D5" } |
+------+------------+-------------+-----------------------------+
The Client ID is a mandatory TLV that represents the requester's
identifier of maximum length 255. The value is represented as a
string of hexadecimal characters that identifies the key request.
For example, suppose Client ID is set to "AC00000A", the Client ID
TLV in the AC will be represented as "108AC00000A".
The Password is a mandatory TLV the contains a one-time use shared
secret known by the user and the Provisioning Server. The Password
value is unique and SHOULD be a random string to make AC more
difficult to guess. The string MUST contain hexadecimal characters
only. For example, suppose password is set to "3582AF0C3E", then the
Password TLV would be "20A3582AF0C3E".
The Checksum is an OPTIONAL TLV, which is generated by the issuing
server and sent to the user as part of the AC. If the TLV is
provided, the checksum value MUST be computed using the CRC16
algorithm [ISO3309]. When the user enters the AC, the typed AC
string of characters is verified with the checksum to ensure it is
correctly entered by the user. For example, suppose the AC with
combined Client ID tag and Password tag is set to
"108AC00000A20A3582AF0C3E", then the CRC16 calculation would generate
a checksum of 0x356, resulting in a Checksum TLV of "334D5". The
complete AC string in this example would be
"108AC00000A20A3582AF0C3E3034D5".
Although this specification recommends using hexadecimal characters
only for the AC at the application's user interface layer and making
the TLV triples non-transparent to the user as described in the
example above; implementations MAY additionally choose to use other
printable Unicode characters [UNICODE] at the application's user
interface layer in order to meet specific local, context or usability
requirements. When non-hexadecimal characters are desired at the
Doherty, et al. Standards Track [Page 21]
^L
RFC 6063 DSKPP December 2010
user interface layer such as when other printable US-ASCII characters
or international characters are used, SASLprep [RFC4013] MUST be used
to normalize user input before converting it to a string of
hexadecimal characters. For example, if a given application allows
the use of any printable US-ASCII characters and extended ASCII
characters for Client ID and Password fields, and the Client ID is
set to "myclient!D" and the associated Password is set to
"mYpas&#rD", the user enters through the keyboard or other means a
Client ID of "myclient!D" and a Password of "mYpas&#rD" in separate
form fields or as instructed by the provider. The application's
layer processing user input MUST then convert the values entered by
the user to the following string for use in the protocol:
"1146D79636C69656E7421442126D5970617326237244" (note that in this
example the Checksum TLV is not added).
The example is explained further below in detail:
Assume that the raw Client ID value or the value entered by the use
is: myclient!ID
The Client ID value as characters names is:
U+006D LATIN SMALL LETTER M character
U+0079 LATIN SMALL LETTER Y character
U+0063 LATIN SMALL LETTER C character
U+006C LATIN SMALL LETTER L character
U+0069 LATIN SMALL LETTER I character
U+0065 LATIN SMALL LETTER E character
U+006E LATIN SMALL LETTER N character
U+0074 LATIN SMALL LETTER T character
U+0021 EXCLAMATION MARK character (!)
U+0044 LATIN CAPITAL LETTER D character
The UTF-8 conversion of the Client ID value is: 6D 79 63 6C 69 65 6E
74 21 44
The length of the Client ID value in hexadecimal characters is: 14
The TLV presentation of the Client ID field is:
1146D79636C69656E742144
The raw Password value or the value entered by the user is: mYpas&#rD
The Password value as character names is:
U+006D LATIN SMALL LETTER M character
U+0059 LATIN LARGE LETTER Y character
U+0070 LATIN SMALL LETTER P character
Doherty, et al. Standards Track [Page 22]
^L
RFC 6063 DSKPP December 2010
U+0061 LATIN SMALL LETTER A character
U+0073 LATIN SMALL LETTER S character
U+0026 AMPERSAND character (&)
U+0023 POUND SIGN character (#)
U+0072 LATIN SMALL LETTER R character
U+0044 LATIN LARGE LETTER D character
The UTF-8 conversion of the password value is: 6D 59 70 61 73 26 23
72 44
The length of the password value in hexadecimal characters is: 12
The TLV presentation of the password field is: 2126D5970617326237244
The combined Client ID and password fields value or the AC value is:
1146D79636C69656E7421442126D5970617326237244
3.4.1.2. User Authentication Data Calculation
The Authentication Data consists of a Client ID (extracted from the
AC) and a value, which is derived from AC as follows (refer to
Section 3.4.2 for a description of DSKPP-PRF in general and
Appendix D for a description of DSKPP-PRF-AES):
MAC = DSKPP-PRF(K_AC, AC->ClientID||URL_S||R_C||[R_S], 16)
In four-pass DSKPP, the cryptographic module uses R_C, R_S, and URL_S
to calculate the MAC, where URL_S is the URL the DSKPP Client uses
when contacting the DSKPP Server. In two-pass DSKPP, the
cryptographic module does not have access to R_S, therefore only R_C
is used in combination with URL_S to produce the MAC. In either
case, K_AC MUST be derived from AC->password as follows [PKCS-5]:
K_AC = PBKDF2(AC->password, R_C || K, iter_count, 16)
One of the following values for K MUST be used:
a. In four-pass:
* The public key of the DSKPP Server (K_SERVER), or (in the pre-
shared key variant) the pre-shared key between the client and
the server (K_SHARED).
b. In two-pass:
* The public key of the DSKPP Client, or the public key of the
device when a device certificate is available.
* The pre-shared key between the client and the server
(K_SHARED).
* A passphrase-derived key.
Doherty, et al. Standards Track [Page 23]
^L
RFC 6063 DSKPP December 2010
The iteration count, iter_count, MUST be set to at least 100,000
except in the last two two-pass cases (where K is set to K_SHARED or
a passphrase-derived key), in which case iter_count MUST be set to 1.
3.4.2. The DSKPP One-Way Pseudorandom Function, DSKPP-PRF
Regardless of the protocol variant employed, there is a requirement
for a cryptographic primitive that provides a deterministic
transformation of a secret key k and a varying length octet string s
to a bit string of specified length dsLen.
This primitive must meet the same requirements as for a keyed hash
function: it MUST take an arbitrary length input and generate an
output that is one way and collision free (for a definition of these
terms, see, e.g., [FAQ]). Further, its output MUST be unpredictable
even if other outputs for the same key are known.
From the point of view of this specification, DSKPP-PRF is a "black-
box" function that, given the inputs, generates a pseudorandom value
and MAY be realized by any appropriate and competent cryptographic
technique. Appendix D contains two example realizations of DSKPP-
PRF.
DSKPP-PRF(k, s, dsLen)
Input:
k secret key in octet string format
s octet string of varying length consisting of variable data
distinguishing the particular string being derived
dsLen desired length of the output
Output:
DS pseudorandom string, dsLen octets long
For the purposes of this document, the secret key k MUST be at least
16 octets long.
3.4.3. The DSKPP Message Hash Algorithm
When sending its last message in a protocol run, the DSKPP Server
generates a MAC that is used by the client for key confirmation.
Computation of the MAC MUST include a hash of all DSKPP messages sent
by the client and server during the transaction. To compute a
message hash for the MAC given a sequence of DSKPP messages msg_1,
..., msg_n, the following operations MUST be carried out:
Doherty, et al. Standards Track [Page 24]
^L
RFC 6063 DSKPP December 2010
a. The sequence of messages contains all DSKPP Request and Response
messages up to but not including this message.
b. Re-transmitted messages are removed from the sequence of
messages.
Note: The resulting sequence of messages MUST be an alternating
sequence of DSKPP Request and DSKPP Response messages
c. The contents of each message is concatenated together.
d. The resultant string is hashed using SHA-256 in accordance with
[FIPS180-SHA].
4. Four-Pass Protocol Usage
This section describes the methods and message flow that comprise the
four-pass protocol variant. Four-pass DSKPP depends on a client-
server key agreement mechanism.
4.1. The Key Agreement Mechanism
With four-pass DSKPP, the symmetric key that is the target of
provisioning, is generated on-the-fly without being transferred
between the DSKPP Client and DSKPP Server. The data flow and
computation are described below.
4.1.1. Data Flow
A sample data flow showing key generation during the four-pass
protocol is shown in Figure 3.
Doherty, et al. Standards Track [Page 25]
^L
RFC 6063 DSKPP December 2010
+----------------------+ +----------------------+
| +------------+ | | |
| | Server key | | | |
| +<-| Public |------>------------->-------------+---------+ |
| | | Private | | | | | |
| | +------------+ | | | | |
| | | | | | | |
| V V | | V V |
| | +---------+ | | +---------+ | |
| | | Decrypt |<-------<-------------<-----------| Encrypt | | |
| | +---------+ | | +---------+ | |
| | | +--------+ | | ^ | |
| | | | Server | | | | | |
| | | | Random |--->------------->------+ +----------+ | |
| | | +--------+ | | | | Client | | |
| | | | | | | | Random | | |
| | | | | | | +----------+ | |
| | | | | | | | | |
| | V V | | V V | |
| | +------------+ | | +------------+ | |
| +-->| DSKPP PRF | | | | DSKPP PRF |<----+ |
| +------------+ | | +------------+ |
| | | | | |
| V | | V |
| +-------+ | | +-------+ |
| | Key | | | | Key | |
| +-------+ | | +-------+ |
| +-------+ | | +-------+ |
| |Key Id |-------->------------->------|Key Id | |
| +-------+ | | +-------+ |
+----------------------+ +----------------------+
DSKPP Server DSKPP Client
Figure 3: Principal Data Flow for DSKPP Key Generation Using Public
Server Key
The inclusion of the two random nonces (R_S and R_C) in the key
generation provides assurance to both sides (the cryptographic module
and the DSKPP Server) that they have contributed to the key's
randomness and that the key is unique. The inclusion of the
encryption key (K) ensures that no man in the middle may be present,
or else the cryptographic module will end up with a key different
from the one stored by the legitimate DSKPP Server.
Conceptually, although R_C is one pseudorandom string, it may be
viewed as consisting of two components, R_C1 and R_C2, where R_C1 is
generated during the protocol run, and R_C2 can be pre-generated and
Doherty, et al. Standards Track [Page 26]
^L
RFC 6063 DSKPP December 2010
loaded on the cryptographic module before the device is issued to the
user. In that case, the latter string, R_C2, SHOULD be unique for
each cryptographic module.
A man in the middle (in the form of corrupt client software or a
mistakenly contacted server) may present his own public key to the
cryptographic module. This will enable the attacker to learn the
client's version of K_TOKEN. However, the attacker is not able to
persuade the legitimate server to derive the same value for K_TOKEN,
since K_TOKEN is a function of the public key involved, and the
attacker's public key must be different than the correct server's (or
else the attacker would not be able to decrypt the information
received from the client). Therefore, once the attacker is no longer
"in the middle," the client and server will detect that they are "out
of sync" when they try to use their keys. In the case of encrypting
R_C with K_SERVER, it is therefore important to verify that K_SERVER
really is the legitimate server's key. One way to do this is to
independently validate a newly generated K_TOKEN against some
validation service at the server (e.g., using a connection
independent from the one used for the key generation).
4.1.2. Computation
In four-pass DSKPP, the client and server both generate K_TOKEN and
K_MAC by deriving them from a provisioning key (K_PROV) using the
DSKPP-PRF (refer to Section 3.4.2) as follows:
K_PROV = DSKPP-PRF(k,s,dsLen), where
k = R_C (i.e., the secret random value chosen by the DSKPP
Client)
s = "Key generation" || K || R_S (where K is the key used to
encrypt R_C and R_S is the random value chosen by the DSKPP
Server)
dsLen = (desired length of K_PROV whose first half constitutes
K_MAC and second half constitutes K_TOKEN)
Then, K_TOKEN and K_MAC are derived from K_PROV, where
K_PROV = K_MAC || K_TOKEN
When computing K_PROV, the derived keys, K_MAC and K_TOKEN, MAY be
subject to an algorithm-dependent transform before being adopted as a
key of the selected type. One example of this is the need for parity
in DES keys.
Note that this computation pertains to four-pass DSKPP only.
Doherty, et al. Standards Track [Page 27]
^L
RFC 6063 DSKPP December 2010
4.2. Message Flow
The four-pass protocol flow consists of two message exchanges:
1: Pass 1 = <KeyProvClientHello>, Pass 2 = <KeyProvServerHello>
2: Pass 3 = <KeyProvClientNonce>, Pass 4 = <KeyProvServerFinished>
The first pair of messages negotiate cryptographic algorithms and
exchange nonces. The second pair of messages establishes a symmetric
key using mutually authenticated key agreement.
The purpose and content of each message are described below. XML
format and examples are in Section 8 and Appendix B.
4.2.1. KeyProvTrigger
DSKPP Client DSKPP Server
------------ ------------
[<---] AD, [DeviceID],
[KeyID], [URL_S]
When this message is sent:
The "trigger" message is optional. The DSKPP Server sends this
message after the following out-of-band steps are performed:
1. A user directed their browser to a key provisioning web
application and signs in (i.e., authenticates).
2. The user requests a key.
3. The web application processes the request and returns an
Authentication Code to the user, e.g., in response to an
enrollment request via a secure web session.
4. The web application retrieves the Authentication Code from the
user (possibly by asking the user to enter it using a web
form, or alternatively by the user selecting a URL in which
the Authentication Code is embedded).
5. The web application derives Authentication Data (AD) from the
Authentication Code as described in Section 3.4.1.
6. The web application passes AD, and possibly a DeviceID
(identifies a particular device to which the key is to be
provisioned) and/or KeyID (identifies a key that will be
replaced) to the DSKPP Server.
Purpose of this message:
To start a DSKPP session: The DSKPP Server uses this message to
trigger a client-side application to send the first DSKPP message.
To provide a way for the key provisioning system to get the DSKPP
Server URL to the DSKPP Client.
Doherty, et al. Standards Track [Page 28]
^L
RFC 6063 DSKPP December 2010
So the key provisioning system can point the DSKPP Client to a
particular cryptographic module that was pre-configured in the
DSKPP provisioning server.
In the case of key renewal, to identify the key to be replaced.
What is contained in this message:
AD MUST be provided to allow the DSKPP Server to authenticate the
user before completing the protocol run.
A DeviceID MAY be included to allow a key provisioning application
to bind the provisioned key to a specific device.
A KeyID MAY be included to allow the key provisioning application
to identify a key to be replaced, e.g., in the case of key
renewal.
The Server URL MAY be included to allow the key provisioning
application to inform the DSKPP Client of which server to contact.
4.2.2. KeyProvClientHello
DSKPP Client DSKPP Server
------------ ------------
SAL, [AD],
[DeviceID], [KeyID] --->
When this message is sent:
When a DSKPP Client first connects to a DSKPP Server, it is
required to send the <KeyProvClientHello> as its first message.
The client can also send a <KeyProvClientHello> in response to a
<KeyProvTrigger>.
What is contained in this message:
The Security Attribute List (SAL) included with
<KeyProvClientHello> contains the combinations of DSKPP versions,
variants, key package formats, key types, and cryptographic
algorithms that the DSKPP Client supports in order of the client's
preference (favorite choice first).
If <KeyProvClientHello> was preceded by a <KeyProvTrigger>, then
this message MUST also include the Authentication Data (AD),
DeviceID, and/or KeyID that was provided with the trigger.
If <KeyProvClientHello> was not preceded by a <KeyProvTrigger>,
then this message MAY contain a DeviceID that was pre-shared with
the DSKPP Server, and a key ID associated with a key previously
provisioned by the DSKPP provisioning server.
Doherty, et al. Standards Track [Page 29]
^L
RFC 6063 DSKPP December 2010
Application note:
If this message is preceded by trigger message <KeyProvTrigger>,
then the application will already have AD available (see
Section 4.2.1). However, if this message was not preceded by
<KeyProvTrigger>, then the application MUST retrieve the User
Authentication Code, possibly by prompting the user to manually
enter their Authentication Code, e.g., on a device with only a
numeric keypad.
The application MUST also derive Authentication Data (AD) from the
Authentication Code, as described in Section 3.4.1, and save it
for use in its next message, <KeyProvClientNonce>.
How the DSKPP Server uses this message:
The DSKPP Server will look for an acceptable combination of DSKPP
version, variant (in this case, four-pass), key package format,
key type, and cryptographic algorithms. If the DSKPP Client's SAL
does not match the capabilities of the DSKPP Server, or does not
comply with key provisioning policy, then the DSKPP Server will
set the Status attribute to something other than "Continue".
Otherwise, the Status attribute will be set to "Continue".
If included in <KeyProvClientHello>, the DSKPP Server will
validate the Authentication Data (AD), DeviceID, and KeyID. The
DSKPP Server MUST NOT accept the DeviceID unless the server sent
the DeviceID in a preceding trigger message. Note that it is also
legitimate for a DSKPP Client to initiate the DSKPP run without
having received a <KeyProvTrigger> message from a server, but in
this case any provided DeviceID MUST NOT be accepted by the DSKPP
Server unless the server has access to a unique key for the
identified device and that key will be used in the protocol.
4.2.3. KeyProvServerHello
DSKPP Client DSKPP Server
------------ ------------
<--- SAL, R_S, [K], [MAC]
When this message is sent:
The DSKPP Server will send this message in response to a
<KeyProvClientHello> message after it looks for an acceptable
combination of DSKPP version, variant (in this case, four-pass),
key package format, key type, and set of cryptographic algorithms.
If it could not find an acceptable combination, then it will still
send the message, but with a failure status.
Doherty, et al. Standards Track [Page 30]
^L
RFC 6063 DSKPP December 2010
Purpose of this message:
With this message, the context for the protocol run is set.
Furthermore, the DSKPP Server uses this message to transmit a
random nonce, which is required for each side to agree upon the
same symmetric key (K_TOKEN).
What is contained in this message:
A status attribute equivalent to the server's return code to
<KeyProvClientHello>. If the server found an acceptable set of
attributes from the client's SAL, then it sets status to Continue
and returns an SAL (selected from the SAL that it received in
<KeyProvClientHello>). The Server's SAL specifies the DSKPP
version and variant (in this case, four-pass), key type,
cryptographic algorithms, and key package format that the DSKPP
Client MUST use for the remainder of the protocol run.
A random nonce (R_S) for use in generating a symmetric key through
key agreement; the length of R_S may depend on the selected key
type.
A key (K) for the DSKPP Client to use for encrypting the client
nonce included with <KeyProvClientNonce>. K represents the
server's public key (K_SERVER) or a pre-shared secret key
(K_SHARED).
A MAC MUST be present if a key is being renewed so that the DSKPP
Client can confirm that the replacement key came from a trusted
server. This MAC MUST be computed using DSKPP-PRF (see
Section 3.4.2), where the input parameter k MUST be set to the
existing MAC key K_MAC' (i.e., the value of the MAC key that
existed before this protocol run; the implementation MAY specify
K_MAC' to be the value of the K_TOKEN that is being replaced), and
input parameter dsLen MUST be set to the length of R_S.
How the DSKPP Client uses this message:
When the Status attribute is not set to "Continue", this indicates
failure and the DSKPP Client MUST abort the protocol.
If successful execution of the protocol will result in the
replacement of an existing key with a newly generated one, the
DSKPP Client MUST verify the MAC provided in <KeyProvServerHello>.
The DSKPP Client MUST terminate the DSKPP session if the MAC does
not verify, and MUST delete any nonces, keys, and/or secrets
associated with the failed run.
Doherty, et al. Standards Track [Page 31]
^L
RFC 6063 DSKPP December 2010
If the Status attribute is set to "Continue", the cryptographic
module generates a random nonce (R_C) using the cryptographic
algorithm specified in the SAL. The length of the nonce R_C will
depend on the selected key type.
Encrypt R_C using K and the encryption algorithm included in the
SAL.
The method the DSKPP Client MUST use to encrypt R_C:
If K is equivalent to K_SERVER (i.e., the public key of the DSKPP
Server), then an RSA encryption scheme from PKCS #1 [PKCS-1] MAY
be used. If K is equivalent to K_SERVER, then the cryptographic
module SHOULD verify the server's certificate before using it to
encrypt R_C as described in [RFC2818], Section 3.1, and [RFC5280].
If K is equivalent to K_SHARED, the DSKPP Client MAY use the
DSKPP-PRF to avoid dependence on other algorithms. In this case,
the client uses K_SHARED as input parameter k (K_SHARED SHOULD be
used solely for this purpose) as follows:
dsLen = len(R_C), where "len" is the length of R_C
DS = DSKPP-PRF(K_SHARED, "Encryption" || R_S, dsLen)
This will produce a pseudorandom string DS of length equal to R_C.
Encryption of R_C MAY then be achieved by XOR-ing DS with R_C:
E(DS, R_C) = DS ^ R_C
The DSKPP Server will then perform the reverse operation to
extract R_C from E(DS, R_C).
4.2.4. KeyProvClientNonce
DSKPP Client DSKPP Server
------------ ------------
E(K,R_C), AD --->
When this message is sent:
The DSKPP Client will send this message immediately following a
<KeyProvServerHello> message whose status was set to "Continue".
Purpose of this message:
With this message the DSKPP Client transmits User Authentication
Data (AD) and a random nonce encrypted with the DSKPP Server's key
(K). The client's random nonce is required for each side to agree
upon the same symmetric key (K_TOKEN).
Doherty, et al. Standards Track [Page 32]
^L
RFC 6063 DSKPP December 2010
What is contained in this message:
Authentication Data (AD) that was derived from an Authentication
Code entered by the user before <KeyProvClientHello> was sent
(refer to Section 3.2).
The DSKPP Client's random nonce (R_C), which was encrypted as
described in Section 4.2.3.
How the DSKPP Server uses this message:
The DSKPP Server MUST use AD to authenticate the user. If
authentication fails, then the DSKPP Server MUST set the return
code to a failure status.
If user authentication passes, the DSKPP Server decrypts R_C using
its key (K). The decryption method is based on whether K that was
transmitted to the client in <KeyProvServerHello> was equal to the
server's public key (K_SERVER) or a pre-shared key (K_SHARED)
(refer to Section 4.2.3 for a description of how the DSKPP Client
encrypts R_C).
After extracting R_C, the DSKPP Server computes K_TOKEN using a
combination of the two random nonces R_S and R_C and its
encryption key, K, as described in Section 4.1.2. The particular
realization of DSKPP-PRF (e.g., those defined in Appendix D)
depends on the MAC algorithm contained in the <KeyProvServerHello>
message. The DSKPP Server then generates a key package that
contains key usage attributes such as expiry date and length. The
key package MUST NOT include K_TOKEN since in the four-pass
variant K_TOKEN is never transmitted between the DSKPP Server and
Client. The server stores K_TOKEN and the key package with the
user's account on the cryptographic server.
Finally, the server generates a key confirmation MAC that the
client will use to avoid a false "Commit" message that would cause
the cryptographic module to end up in state in which the server
does not recognize the stored key.
The MAC used for key confirmation MUST be calculated as follows:
msg_hash = SHA-256(msg_1, ..., msg_n)
dsLen = len(msg_hash)
MAC = DSKPP-PRF (K_MAC, "MAC 1 computation" || msg_hash, dsLen)
Doherty, et al. Standards Track [Page 33]
^L
RFC 6063 DSKPP December 2010
where
MAC The DSKPP Pseudorandom Function defined in Section 3.4.2 is
used to compute the MAC. The particular realization of DSKPP-
PRF (e.g., those defined in Appendix D) depends on the MAC
algorithm contained in the <KeyProvServerHello> message. The
MAC MUST be computed using the existing MAC key (K_MAC), and a
string that is formed by concatenating the (ASCII) string "MAC
1 computation" and a msg_hash.
K_MAC The key derived from K_PROV, as described in Section 4.1.2.
msg_hash The message hash (defined in Section 3.4.3) of messages
msg_1, ..., msg_n.
4.2.5. KeyProvServerFinished
DSKPP Client DSKPP Server
------------ ------------
<--- KP, MAC
When this message is sent:
The DSKPP Server will send this message after authenticating the
user and, if authentication passed, generating K_TOKEN and a key
package, and associating them with the user's account on the
cryptographic server.
Purpose of this message:
With this message, the DSKPP Server confirms generation of the key
(K_TOKEN) and transmits the associated identifier and application-
specific attributes, but not the key itself, in a key package to
the client for protocol completion.
What is contained in this message:
A status attribute equivalent to the server's return code to
<KeyProvClientNonce>. If user authentication passed, and the
server successfully computed K_TOKEN, generated a key package, and
associated them with the user's account on the cryptographic
server, then it sets the Status attribute to "Success".
If the Status attribute is set to "Success", then this message
acts as a "Commit" message, instructing the cryptographic module
to store the generated key (K_TOKEN) and associate the given key
identifier with this key. As such, a key package (KP) MUST be
included in this message, which holds an identifier for the
generated key (but not the key itself) and additional
configuration, e.g., the identity of the DSKPP Server, key usage
attributes, etc. The default symmetric key package format MUST be
Doherty, et al. Standards Track [Page 34]
^L
RFC 6063 DSKPP December 2010
based on the Portable Symmetric Key Container (PSKC) defined in
[RFC6030]. Alternative formats MAY include [RFC6031], PKCS #12
[PKCS-12], or PKCS #5 XML [PKCS-5-XML] format.
With KP, the server includes a key confirmation MAC that the
client uses to avoid a false "Commit" message. The MAC algorithm
is the same DSKPP-PRF that was sent in the <KeyProvServerHello>
message.
How the DSKPP Client uses this message:
When the Status attribute is not set to "Success", this indicates
failure and the DSKPP Client MUST abort the protocol.
After receiving a <KeyProvServerFinished> message with Status =
"Success", the DSKPP Client MUST verify the key confirmation MAC
that was transmitted with this message. The DSKPP Client MUST
terminate the DSKPP session if the MAC does not verify, and MUST,
in this case, also delete any nonces, keys, and/or secrets
associated with the failed run of the protocol.
If <KeyProvServerFinished> has Status = "Success", and the MAC was
verified, then the DSKPP Client MUST calculate K_TOKEN from the
combination of the two random nonces R_S and R_C and the server's
encryption key, K, as described in Section 4.1.2. The DSKPP-PRF
is the same one used for MAC computation. The DSKPP Client
associates the key package contained in <KeyProvServerFinished>
with the generated key, K_TOKEN, and stores this data permanently
on the cryptographic module.
After this operation, it MUST NOT be possible to overwrite the key
unless knowledge of an authorizing key is proven through a MAC on
a later <KeyProvServerHello> (and <KeyProvServerFinished>)
message.
5. Two-Pass Protocol Usage
This section describes the methods and message flow that comprise the
two-pass protocol variant. Two-pass DSKPP is essentially a transport
of keying material from the DSKPP Server to the DSKPP Client. The
DSKPP Server transmits keying material in a key package formatted in
accordance with [RFC6030], [RFC6031], PKCS #12 [PKCS-12], or PKCS #5
XML [PKCS-5-XML].
The keying material includes a provisioning master key, K_PROV, from
which the DSKPP Client derives two keys: the symmetric key to be
established in the cryptographic module, K_TOKEN, and a key, K_MAC,
used for key confirmation. The keying material also includes key
usage attributes, such as expiry date and length.
Doherty, et al. Standards Track [Page 35]
^L
RFC 6063 DSKPP December 2010
The DSKPP Server encrypts K_PROV to ensure that it is not exposed to
any other entity than the DSKPP Server and the cryptographic module
itself. The DSKPP Server uses any of three key protection methods to
encrypt K_PROV: Key Transport, Key Wrap, and Passphrase-Based Key
Wrap Key Protection methods.
While the DSKPP Client and server may negotiate the key protection
method to use, the actual key protection is carried out in the
KeyPackage. The format of a KeyPackage specifies how a key should be
protected using the three key protection methods. The following
KeyPackage formats are defined for DSKPP:
o PSKC Key Container [RFC6030] at
urn:ietf:params:xml:ns:keyprov:dskpp:pskc-key-container
o SKPC Key Container [RFC6031] at
urn:ietf:params:xml:ns:keyprov:dskpp:skpc-key-container
o PKCS12 Key Container [PKCS-12] at
urn:ietf:params:xml:ns:keyprov:dskpp:pkcs12-key-container
o PKCS5-XML Key Container [PKCS-5-XML] at
urn:ietf:params:xml:ns:keyprov:dskpp:pkcs5-xml-key-container
Each of the key protection methods is described below.
5.1. Key Protection Methods
This section introduces three key protection methods for the two-pass
variant. Additional methods MAY be defined by external entities or
through the IETF process.
5.1.1. Key Transport
Purpose of this method:
This method is intended for PKI-capable devices. The DSKPP Server
encrypts keying material and transports it to the DSKPP Client.
The server encrypts the keying material using the public key of
the DSKPP Client, whose private key part resides in the
cryptographic module. The DSKPP Client decrypts the keying
material and uses it to derive the symmetric key, K_TOKEN.
This method is identified with the following URN:
urn:ietf:params:xml:schema:keyprov:dskpp:transport
The DSKPP Server and Client MUST support the following mechanism:
http://www.w3.org/2001/04/xmlenc#rsa-1_5 encryption mechanism
defined in [XMLENC].
Doherty, et al. Standards Track [Page 36]
^L
RFC 6063 DSKPP December 2010
5.1.2. Key Wrap
Purpose of this method:
This method is ideal for pre-keyed devices, e.g., SIM cards. The
DSKPP Server encrypts keying material using a pre-shared key
wrapping key and transports it to the DSKPP Client. The DSKPP
Client decrypts the keying material, and uses it to derive the
symmetric key, K_TOKEN.
This method is identified with the following URN:
urn:ietf:params:xml:schema:keyprov:dskpp:wrap
The DSKPP Server and Client MUST support all of the following key
wrapping mechanisms:
AES128 KeyWrap
Refer to id-aes128-wrap in [RFC3394] and
http://www.w3.org/2001/04/xmlenc#kw-aes128 in [XMLENC]
AES128 KeyWrap with Padding
Refer to id-aes128-wrap-pad in [RFC5649] and
http://www.w3.org/2001/04/xmlenc#kw-aes128 in [XMLENC]
AES-CBC-128
Refer to [FIPS197-AES] and
http://www.w3.org/2001/04/xmlenc#aes128-cbc in [XMLENC]
5.1.3. Passphrase-Based Key Wrap
Purpose of this method:
This method is a variation of the Key Wrap Method that is
applicable to constrained devices with keypads, e.g., mobile
phones. The DSKPP Server encrypts keying material using a
wrapping key derived from a user-provided passphrase, and
transports the encrypted material to the DSKPP Client. The DSKPP
Client decrypts the keying material, and uses it to derive the
symmetric key, K_TOKEN.
To preserve the property of not exposing K_TOKEN to any other
entity than the DSKPP Server and the cryptographic module itself,
the method SHOULD be employed only when the device contains
facilities (e.g., a keypad) for direct entry of the passphrase.
This method is identified with the following URN:
urn:ietf:params:xml:schema:keyprov:dskpp:passphrase-wrap
Doherty, et al. Standards Track [Page 37]
^L
RFC 6063 DSKPP December 2010
The DSKPP Server and Client MUST support the following:
* The PBES2 password-based encryption scheme defined in [PKCS-5]
(and identified as
http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-5#pbes2 in
[PKCS-5-XML]).
* The PBKDF2 passphrase-based key derivation function also
defined in [PKCS-5] (and identified as
http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-5#pbkdf2
in [PKCS-5-XML]).
* All of the following key wrapping mechanisms:
AES128 KeyWrap
Refer to id-aes128-wrap in [RFC3394] and
http://www.w3.org/2001/04/xmlenc#kw-aes128 in [XMLENC]
AES128 KeyWrap with Padding
Refer to id-aes128-wrap-pad in [RFC5649] and
http://www.w3.org/2001/04/xmlenc#kw-aes128 in [XMLENC]
AES-CBC-128
Refer to [FIPS197-AES] and
http://www.w3.org/2001/04/xmlenc#aes128-cbc in [XMLENC]
5.2. Message Flow
The two-pass protocol flow consists of one exchange:
1: Pass 1 = <KeyProvClientHello>, Pass 2 = <KeyProvServerFinished>
Although there is no exchange of the <ServerHello> message or the
<ClientNonce> message, the DSKPP Client is still able to specify
algorithm preferences and supported key types in the
<KeyProvClientHello> message.
The purpose and content of each message are described below. XML
format and examples are in Section 8 and Appendix B.
5.2.1. KeyProvTrigger
The trigger message is used in exactly the same way for the two-pass
variant as for the four-pass variant; refer to Section 4.2.1.
Doherty, et al. Standards Track [Page 38]
^L
RFC 6063 DSKPP December 2010
5.2.2. KeyProvClientHello
DSKPP Client DSKPP Server
------------ ------------
SAL, AD, R_C,
[DeviceID], [KeyID],
KPML --->
When this message is sent:
When a DSKPP Client first connects to a DSKPP Server, it is
required to send the <KeyProvClientHello> as its first message.
The client can also send <KeyProvClientHello> in response to a
<KeyProvTrigger> message.
Purpose of this message:
With this message, the DSKPP Client specifies its algorithm
preferences and supported key types as well as which DSKPP
versions, protocol variants (in this case "two-pass"), key package
formats, and key protection methods that it supports.
Furthermore, the DSKPP Client facilitates user authentication by
transmitting the Authentication Data (AD) that was provided by the
user before the first DSKPP message was sent.
Application note:
This message MUST send User Authentication Data (AD) to the DSKPP
Server. If this message is preceded by trigger message
<KeyProvTrigger>, then the application will already have AD
available (see Section 4.2.1). However, if this message was not
preceded by <KeyProvTrigger>, then the application MUST retrieve
the User Authentication Code, possibly by prompting the user to
manually enter their Authentication Code, e.g., on a device with
only a numeric keypad. The application MUST also derive
Authentication Data (AD) from the Authentication Code, as
described in Section 3.4.1, and save it for use in its next
message, <KeyProvClientNonce>.
What is contained in this message:
The Security Attribute List (SAL) included with
<KeyProvClientHello> contains the combinations of DSKPP versions,
variants, key package formats, key types, and cryptographic
algorithms that the DSKPP Client supports in order of the client's
preference (favorite choice first).
Authentication Data (AD) that was either included with
<KeyProvTrigger>, or generated as described in the "Application
Note" above.
Doherty, et al. Standards Track [Page 39]
^L
RFC 6063 DSKPP December 2010
The DSKPP Client's random nonce (R_C), which was used by the
client when generating AD. By inserting R_C into the DSKPP
session, the DSKPP Client is able to ensure the DSKPP Server is
live before committing the key.
If <KeyProvClientHello> was preceded by a <KeyProvTrigger>, then
this message MUST also include the DeviceID and/or KeyID that was
provided with the trigger. Otherwise, if a trigger message did
not precede <KeyProvClientHello>, then this message MAY include a
DeviceID that was pre-shared with the DSKPP Server, and MAY
contain a key ID associated with a key previously provisioned by
the DSKPP provisioning server.
The list of key protection methods (KPML) that the DSKPP Client
supports. Each item in the list MAY include an encryption key
"payload" for the DSKPP Server to use to protect keying material
that it sends back to the client. The payload MUST be of type
<ds:KeyInfoType> ([XMLDSIG]). For each key protection method, the
allowable choices for <ds:KeyInfoType> are:
* Key Transport
Only those choices of <ds:KeyInfoType> that identify a public
key (i.e., <ds:KeyName>, <ds:KeyValue>, <ds:X509Data>, or <ds:
PGPData>). The <ds:X509Certificate> option of the <ds:
X509Data> alternative is RECOMMENDED when the public key
corresponding to the private key on the cryptographic module
has been certified.
* Key Wrap
Only those choices of <ds:KeyInfoType> that identify a
symmetric key (i.e., <ds:KeyName> and <ds:KeyValue>). The <ds:
KeyName> alternative is RECOMMENDED.
* Passphrase-Based Key Wrap
The <ds:KeyName> option MUST be used and the key name MUST
identify the passphrase that will be used by the server to
generate the key wrapping key. The identifier and passphrase
components of <ds:KeyName> MUST be set to the Client ID and
Authentication Code components of AD (same AD as contained in
this message).
How the DSKPP Server uses this message:
The DSKPP Server will look for an acceptable combination of DSKPP
version, variant (in this case, two-pass), key package format, key
type, and cryptographic algorithms. If the DSKPP Client's SAL
does not match the capabilities of the DSKPP Server, or does not
Doherty, et al. Standards Track [Page 40]
^L
RFC 6063 DSKPP December 2010
comply with key provisioning policy, then the DSKPP Server will
set the Status attribute to something other than "Success".
Otherwise, the Status attribute will be set to "Success".
The DSKPP Server will validate the DeviceID and KeyID if included
in <KeyProvClientHello>. The DSKPP Server MUST NOT accept the
DeviceID unless the server sent the DeviceID in a preceding
trigger message. Note that it is also legitimate for a DSKPP
Client to initiate the DSKPP run without having received a
<KeyProvTrigger> message from a server, but in this case any
provided DeviceID MUST NOT be accepted by the DSKPP Server unless
the server has access to a unique key for the identified device
and that key will be used in the protocol.
The DSKPP Server MUST use AD to authenticate the user. If
authentication fails, then the DSKPP Server MUST set the return
code to a failure status, and MUST, in this case, also delete any
nonces, keys, and/or secrets associated with the failed run of the
protocol.
If user authentication passes, the DSKPP Server generates a key
K_PROV. In the two-pass case, wherein the client does not have
access to R_S, K_PROV is randomly generated solely by the DSKPP
Server wherein K_PROV MUST consist of two parts of equal length,
i.e.,
K_PROV = K_MAC || K_TOKEN
The length of K_TOKEN (and hence also the length of K_MAC) is
determined by the type of K_TOKEN, which MUST be one of the key
types supported by the DSKPP Client. In cases where the desired
key length for K_TOKEN is different from the length of K_MAC for
the underlying MAC algorithm, the greater length of the two MUST
be chosen to generate K_PROV. The actual MAC key is truncated
from the resulting K_MAC when it is used in the MAC algorithm when
K_MAC is longer than necessary in order to match the desired
K_TOKEN length. If K_TOKEN is longer than needed in order to
match the K_MAC length, the provisioning server and the receiving
client must determine the actual secret key length from the target
key algorithm and store only the truncated portion of the K_TOKEN.
The truncation MUST take the beginning bytes of the desired length
from K_TOKEN or K_MAC for the actual key. For example, when a
provisioning server provisions an event based HOTP secret key with
length 20 and MAC algorithm DSKPP-PRF-SHA256 (Appendix D), K_PROV
length will be 64. The derived K_TOKEN and K_MAC will each
consist of 32 bytes. The actual HOTP key should be the first 20
bytes of the K_TOKEN.
Doherty, et al. Standards Track [Page 41]
^L
RFC 6063 DSKPP December 2010
Once K_PROV is computed, the DSKPP Server selects one of the key
protection methods from the DSKPP Client's KPML, and uses that
method and corresponding payload to encrypt K_PROV. The DSKPP
Server generates a key package to transport the key encryption
method information and the encrypted provisioning key (K_PROV).
The encrypted data format is subject to the choice supported by
the selected key package. The key package MUST specify and use
the selected key protection method and the key information that
was received in <KeyProvClientHello>. The key package also
includes key usage attributes such as expiry date and length. The
server stores the key package and K_TOKEN with a user account on
the cryptographic server.
The server generates a MAC for key confirmation, which the client
will use to avoid a false "Commit" message that would cause the
cryptographic module to end up in state in which the server does
not recognize the stored key.
In addition, if an existing key is being renewed, the server
generates a second MAC that it will return to the client as server
Authentication Data (AD) so that the DSKPP Client can confirm that
the replacement key came from a trusted server.
The method the DSKPP Server MUST use to calculate the key
confirmation MAC:
msg_hash = SHA-256(msg_1, ..., msg_n)
dsLen = len(msg_hash)
MAC = DSKPP-PRF (K_MAC, "MAC 1 computation" || msg_hash ||
ServerID, dsLen)
where
MAC The MAC MUST be calculated using the already
established MAC algorithm and MUST be computed on the
(ASCII) string "MAC 1 computation", msg_hash, and
ServerID using the existing MAC key K_MAC.
K_MAC The key that is derived from K_PROV, which the DSKPP
Server MUST provide to the cryptographic module.
msg_hash The message hash, defined in Section 3.4.3, of
messages msg_1, ..., msg_n.
ServerID The identifier that the DSKPP Server MUST include in
the <KeyPackage> element of <KeyProvServerFinished>.
Doherty, et al. Standards Track [Page 42]
^L
RFC 6063 DSKPP December 2010
If DSKPP-PRF (defined in Section 3.4.2) is used as the MAC
algorithm, then the input parameter s MUST consist of the
concatenation of the (ASCII) string "MAC 1 computation", msg_hash,
and ServerID, and the parameter dsLen MUST be set to the length of
msg_hash.
The method the DSKPP Server MUST use to calculate the server
authentication MAC:
The MAC MUST be computed on the (ASCII) string "MAC 2
computation", the server identifier ServerID, and R, using a pre-
existing MAC key K_MAC' (the MAC key that existed before this
protocol run). Note that the implementation may specify K_MAC' to
be the value of the K_TOKEN that is being replaced.
If DSKPP-PRF is used as the MAC algorithm, then the input
parameter s MUST consist of the concatenation of the (ASCII)
string "MAC 2 computation" ServerID, and R. The parameter dsLen
MUST be set to at least 16 (i.e., the length of the MAC MUST be at
least 16 octets):
dsLen >= 16
MAC = DSKPP-PRF (K_MAC', "MAC 2 computation" || ServerID || R,
dsLen)
The MAC algorithm MUST be the same as the algorithm used by the
DSKPP Server to calculate the key confirmation MAC.
5.2.3. KeyProvServerFinished
DSKPP Client DSKPP Server
------------ ------------
<--- KP, MAC, AD
When this message is sent:
The DSKPP Server will send this message after authenticating the
user and, if authentication passed, generating K_TOKEN and a key
package, and associating them with the user's account on the
cryptographic server.
Purpose of this message:
With this message, the DSKPP Server transports a key package
containing the encrypted provisioning key (K_PROV) and key usage
attributes.
Doherty, et al. Standards Track [Page 43]
^L
RFC 6063 DSKPP December 2010
What is contained in this message:
A Status attribute equivalent to the server's return code to
<KeyProvClientHello>. If the server found an acceptable set of
attributes from the client's SAL, then it sets Status to
"Success".
The confirmation message MUST include the Key Package (KP) that
holds the DSKPP Server's ID, key ID, key type, encrypted
provisioning key (K_PROV), encryption method, and additional
configuration information. The default symmetric key package
format MUST be based on the Portable Symmetric Key Container
(PSKC) defined in [RFC6030]. Alternative formats MAY include
[RFC6031], PKCS #12 [PKCS-12], or PKCS #5 XML [PKCS-5-XML].
This message MUST include a MAC that the DSKPP Client will use for
key confirmation. This key confirmation MAC is calculated using
the "MAC 1 computation" as described in the previous section.
Finally, if an existing key is being replaced, then this message
MUST also include a server authentication MAC (calculated using
the "MAC 2 computation" as described in the previous section),
which is passed as AD to the DSKPP Client.
How the DSKPP Client uses this message:
After receiving a <KeyProvServerFinished> message with Status =
"Success", the DSKPP Client MUST verify both MACs (MAC and AD).
The DSKPP Client MUST terminate the DSKPP run if either MAC does
not verify, and MUST, in this case, also delete any nonces, keys,
and/or secrets associated with the failed run of the protocol.
If <KeyProvServerFinished> has Status = "Success" and the MACs
were verified, then the DSKPP Client MUST extract K_PROV from the
provided key package, and derive K_TOKEN. Finally, the DSKPP
Client initializes the cryptographic module with K_TOKEN and the
corresponding key usage attributes. After this operation, it MUST
NOT be possible to overwrite the key unless knowledge of an
authorizing key is proven through a MAC on a later
<KeyProvServerFinished> message.
6. Protocol Extensions
DSKPP has been designed to be extensible. The sub-sections below
define two extensions that are included with the DSKPP schema. Since
it is possible that the use of extensions will harm interoperability,
protocol designers are advised to carefully consider the use of
extensions. For example, if a particular implementation relies on
Doherty, et al. Standards Track [Page 44]
^L
RFC 6063 DSKPP December 2010
the presence of a proprietary extension, then it may not be able to
interoperate with independent implementations that have no knowledge
of this extension.
Extensions may be sent with any DSKPP message using the
ExtensionsType. The ExtensionsType type is a list of Extensions
containing type-value pairs that define optional features supported
by a DSKPP Client or server. Each extension MAY be marked as
Critical by setting the Critical attribute of the Extension to
"true". Unless an extension is marked as Critical, a receiving party
need not be able to interpret it; a receiving party is always free to
disregard any (non-critical) extensions.
6.1. The ClientInfoType Extension
The ClientInfoType extension MAY contain any client-specific data
required of an application. This extension MAY be present in a
<KeyProvClientHello> or <KeyProvClientNonce> message. When present,
this extension MUST NOT be marked as Critical.
DSKPP Servers MUST support this extension. DSKPP Servers MUST NOT
attempt to interpret the data it carries and, if received, MUST
include it unmodified in the current protocol run's next server
response. DSKPP Servers need not retain the ClientInfoType data.
6.2. The ServerInfoType Extension
The ServerInfoType extension MAY contain any server-specific data
required of an application, e.g., state information. This extension
is only valid in <KeyProvServerHello> messages for which the Status
attribute is set to "Continue". When present, this extension MUST
NOT be marked as Critical.
DSKPP Clients MUST support this extension. DSKPP Clients MUST NOT
attempt to interpret the data it carries and, if received, MUST
include it unmodified in the current protocol run's next client
request (i.e., the <KeyProvClientNonce> message). DSKPP Clients need
not retain the ServerInfoType data.
7. Protocol Bindings
7.1. General Requirements
DSKPP assumes a reliable transport.
Doherty, et al. Standards Track [Page 45]
^L
RFC 6063 DSKPP December 2010
7.2. HTTP/1.1 Binding for DSKPP
This section presents a binding of the previous messages to HTTP/1.1
[RFC2616]. This HTTP binding is mandatory to implement, although
newer versions of the specification might define additional bindings
in the future. Note that the HTTP client will normally be different
from the DSKPP Client (i.e., the HTTP client will "proxy" DSKPP
messages from the DSKPP Client to the DSKPP Server). Likewise, on
the HTTP server side, the DSKPP Server MAY receive DSKPP message from
a "front-end" HTTP server. The DSKPP Server will be identified by a
specific URL, which may be pre-configured, or provided to the client
during initialization.
7.2.1. Identification of DSKPP Messages
The MIME type for all DSKPP messages MUST be
application/dskpp+xml
7.2.2. HTTP Headers
In order to avoid caching of responses carrying DSKPP messages by
proxies, the following holds:
o When using HTTP/1.1, requesters SHOULD:
* Include a Cache-Control header field set to "no-cache, no-
store".
* Include a Pragma header field set to "no-cache".
o When using HTTP/1.1, responders SHOULD:
* Include a Cache-Control header field set to "no-cache, no-must-
revalidate, private".
* Include a Pragma header field set to "no-cache".
* NOT include a Validator, such as a Last-Modified or ETag
header.
To handle content negotiation, HTTP requests MAY include an HTTP
Accept header field. This header field SHOULD should be identified
using the MIME type specified in Section 7.2.1. The Accept header
MAY include additional content types defined by future versions of
this protocol.
There are no other restrictions on HTTP headers, besides the
requirement to set the Content-Type header value to the MIME type
specified in Section 7.2.1.
Doherty, et al. Standards Track [Page 46]
^L
RFC 6063 DSKPP December 2010
7.2.3. HTTP Operations
Persistent connections as defined in HTTP/1.1 are OPTIONAL. DSKPP
requests are mapped to HTTP requests with the POST method. DSKPP
responses are mapped to HTTP responses.
For the four-pass DSKPP, messages within the protocol run are bound
together. In particular, <KeyProvServerHello> is bound to the
preceding <KeyProvClientHello> by being transmitted in the
corresponding HTTP response. <KeyProvServerHello> MUST have a
SessionID attribute, and the SessionID attribute of the subsequent
<KeyProvClientNonce> message MUST be identical.
<KeyProvServerFinished> is then once again bound to the rest through
HTTP (and possibly through a SessionID).
7.2.4. HTTP Status Codes
A DSKPP HTTP responder that refuses to perform a message exchange
with a DSKPP HTTP requester SHOULD return a 403 (Forbidden) response.
In this case, the content of the HTTP body is not significant. In
the case of an HTTP error while processing a DSKPP request, the HTTP
server MUST return a 500 (Internal Server Error) response. This type
of error SHOULD be returned for HTTP-related errors detected before
control is passed to the DSKPP processor, or when the DSKPP processor
reports an internal error (for example, the DSKPP XML namespace is
incorrect, or the DSKPP schema cannot be located). If a request is
received that is not a DSKPP Client message, the DSKPP responder MUST
return a 400 (Bad request) response.
In these cases (i.e., when the HTTP response code is 4xx or 5xx), the
content of the HTTP body is not significant.
Redirection status codes (3xx) apply as usual.
Whenever the HTTP POST is successfully invoked, the DSKPP HTTP
responder MUST use the 200 status code and provide a suitable DSKPP
message (possibly with DSKPP error information included) in the HTTP
body.
7.2.5. HTTP Authentication
No support for HTTP/1.1 authentication is assumed.
7.2.6. Initialization of DSKPP
If a user requests key initialization in a browsing session, and if
that request has an appropriate Accept header (e.g., to a specific
DSKPP Server URL), the DSKPP Server MAY respond by sending a DSKPP
Doherty, et al. Standards Track [Page 47]
^L
RFC 6063 DSKPP December 2010
initialization message in an HTTP response with Content-Type set
according to Section 7.2.1 and response code set to 200 (OK). The
initialization message MAY carry data in its body, such as the URL
for the DSKPP Client to use when contacting the DSKPP Server. If the
message does carry data, the data MUST be a valid instance of a
<KeyProvTrigger> element.
Note that if the user's request was directed to some other resource,
the DSKPP Server MUST NOT respond by combining the DSKPP content type
with response code 200. In that case, the DSKPP Server SHOULD
respond by sending a DSKPP initialization message in an HTTP response
with Content-Type set according to Section 7.2.1 and response code
set to 406 (Not Acceptable).
7.2.7. Example Messages
a. Initialization from DSKPP Server:
HTTP/1.1 200 OK
Cache-Control: no-store
Content-Type: application/dskpp+xml
Content-Length: <some value>
DSKPP initialization data in XML form...
b. Initial request from DSKPP Client:
POST http://example.com/cgi-bin/DSKPP-server HTTP/1.1
Cache-Control: no-cache, no-store
Pragma: no-cache
Host: www.example.com
Content-Type: application/dskpp+xml
Content-Length: <some value>
DSKPP data in XML form (supported version, supported
algorithms...)
c. Initial response from DSKPP Server:
HTTP/1.1 200 OK
Cache-Control: no-cache, no-must-revalidate, private
Pragma: no-cache
Content-Type: application/dskpp+xml
Content-Length: <some value>
DSKPP data in XML form (server random nonce, server public key,
...)
Doherty, et al. Standards Track [Page 48]
^L
RFC 6063 DSKPP December 2010
8. DSKPP XML Schema
8.1. General Processing Requirements
Some DSKPP elements rely on the parties being able to compare
received values with stored values. Unless otherwise noted, all
elements that have the XML schema "xs:string" type, or a type derived
from it, MUST be compared using an exact binary comparison. In
particular, DSKPP implementations MUST NOT depend on case-insensitive
string comparisons, normalization or trimming of white space, or
conversion of locale-specific formats such as numbers.
Implementations that compare values that are represented using
different character encodings MUST use a comparison method that
returns the same result as converting both values to the Unicode
character encoding [UNICODE] and then performing an exact binary
comparison.
No collation or sorting order for attributes or element values is
defined. Therefore, DSKPP implementations MUST NOT depend on
specific sorting orders for values.
8.2. Schema
<?xml version="1.0" encoding="utf-8"?>
<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:dskpp="urn:ietf:params:xml:ns:keyprov:dskpp"
xmlns:pskc="urn:ietf:params:xml:ns:keyprov:pskc"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
targetNamespace="urn:ietf:params:xml:ns:keyprov:dskpp"
elementFormDefault="qualified" attributeFormDefault="unqualified"
version="1.0">
<xs:import namespace="http://www.w3.org/2000/09/xmldsig#"
schemaLocation=
"http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
xmldsig-core-schema.xsd"/>
<xs:import namespace="urn:ietf:params:xml:ns:keyprov:pskc"
schemaLocation="keyprov-pskc-1.0.xsd"/>
<xs:complexType name="AbstractRequestType" abstract="true">
<xs:annotation>
<xs:documentation> Basic types </xs:documentation>
</xs:annotation>
<xs:attribute name="Version" type="dskpp:VersionType"
use="required"/>
</xs:complexType>
Doherty, et al. Standards Track [Page 49]
^L
RFC 6063 DSKPP December 2010
<xs:complexType name="AbstractResponseType" abstract="true">
<xs:annotation>
<xs:documentation> Basic types </xs:documentation>
</xs:annotation>
<xs:attribute name="Version" type="dskpp:VersionType"
use="required"/>
<xs:attribute name="SessionID" type="dskpp:IdentifierType" />
<xs:attribute name="Status" type="dskpp:StatusCode"
use="required"/>
</xs:complexType>
<xs:simpleType name="VersionType">
<xs:restriction base="xs:string">
<xs:pattern value="\d{1,2}\.\d{1,3}" />
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="IdentifierType">
<xs:restriction base="xs:string">
<xs:maxLength value="128" />
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="StatusCode">
<xs:restriction base="xs:string">
<xs:enumeration value="Continue" />
<xs:enumeration value="Success" />
<xs:enumeration value="Abort" />
<xs:enumeration value="AccessDenied" />
<xs:enumeration value="MalformedRequest" />
<xs:enumeration value="UnknownRequest" />
<xs:enumeration value="UnknownCriticalExtension" />
<xs:enumeration value="UnsupportedVersion" />
<xs:enumeration value="NoSupportedKeyTypes" />
<xs:enumeration value="NoSupportedEncryptionAlgorithms" />
<xs:enumeration value="NoSupportedMacAlgorithms" />
<xs:enumeration value="NoProtocolVariants" />
<xs:enumeration value="NoSupportedKeyPackages" />
<xs:enumeration value="AuthenticationDataMissing" />
<xs:enumeration value="AuthenticationDataInvalid" />
<xs:enumeration value="InitializationFailed" />
<xs:enumeration value="ProvisioningPeriodExpired" />
</xs:restriction>
</xs:simpleType>
Doherty, et al. Standards Track [Page 50]
^L
RFC 6063 DSKPP December 2010
<xs:complexType name="DeviceIdentifierDataType">
<xs:choice>
<xs:element name="DeviceId" type="pskc:DeviceInfoType" />
<xs:any namespace="##other" processContents="strict" />
</xs:choice>
</xs:complexType>
<xs:simpleType name="PlatformType">
<xs:restriction base="xs:string">
<xs:enumeration value="Hardware" />
<xs:enumeration value="Software" />
<xs:enumeration value="Unspecified" />
</xs:restriction>
</xs:simpleType>
<xs:complexType name="TokenPlatformInfoType">
<xs:attribute name="KeyLocation"
type="dskpp:PlatformType"/>
<xs:attribute name="AlgorithmLocation"
type="dskpp:PlatformType"/>
</xs:complexType>
<xs:simpleType name="NonceType">
<xs:restriction base="xs:base64Binary">
<xs:minLength value="16" />
</xs:restriction>
</xs:simpleType>
<xs:complexType name="AlgorithmsType">
<xs:sequence maxOccurs="unbounded">
<xs:element name="Algorithm" type="dskpp:AlgorithmType"/>
</xs:sequence>
</xs:complexType>
<xs:simpleType name="AlgorithmType">
<xs:restriction base="xs:anyURI" />
</xs:simpleType>
<xs:complexType name="ProtocolVariantsType">
<xs:sequence>
<xs:element name="FourPass" minOccurs="0" />
<xs:element name="TwoPass"
type="dskpp:KeyProtectionDataType" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
Doherty, et al. Standards Track [Page 51]
^L
RFC 6063 DSKPP December 2010
<xs:complexType name="KeyProtectionDataType">
<xs:annotation>
<xs:documentation xml:lang="en">
This element is only valid for two-pass DSKPP.
</xs:documentation>
</xs:annotation>
<xs:sequence maxOccurs="unbounded">
<xs:element name="SupportedKeyProtectionMethod"
type="xs:anyURI"/>
<xs:element name="Payload"
type="dskpp:PayloadType" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="PayloadType">
<xs:choice>
<xs:element name="Nonce" type="dskpp:NonceType" />
<xs:any namespace="##other" processContents="strict"/>
</xs:choice>
</xs:complexType>
<xs:complexType name="KeyPackagesFormatType">
<xs:sequence maxOccurs="unbounded">
<xs:element name="KeyPackageFormat"
type="dskpp:KeyPackageFormatType"/>
</xs:sequence>
</xs:complexType>
<xs:simpleType name="KeyPackageFormatType">
<xs:restriction base="xs:anyURI" />
</xs:simpleType>
<xs:complexType name="AuthenticationDataType">
<xs:annotation>
<xs:documentation xml:lang="en">
Authentication Data contains a MAC.
</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="ClientID"
type="dskpp:IdentifierType" minOccurs="0"/>
<xs:choice>
<xs:element name="AuthenticationCodeMac"
type="dskpp:AuthenticationMacType"/>
<xs:any namespace="##other" processContents="strict" />
</xs:choice>
</xs:sequence>
</xs:complexType>
Doherty, et al. Standards Track [Page 52]
^L
RFC 6063 DSKPP December 2010
<xs:complexType name="AuthenticationMacType">
<xs:sequence>
<xs:element minOccurs="0" name="Nonce"
type="dskpp:NonceType"/>
<xs:element minOccurs="0" name="IterationCount"
type="xs:int"/>
<xs:element name="Mac" type="dskpp:MacType" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="MacType">
<xs:simpleContent>
<xs:extension base="xs:base64Binary">
<xs:attribute name="MacAlgorithm" type="xs:anyURI"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="KeyPackageType">
<xs:sequence>
<xs:element minOccurs="0" name="ServerID"
type="xs:anyURI"/>
<xs:element minOccurs="0" name="KeyProtectionMethod"
type="xs:anyURI" />
<xs:choice>
<xs:element name="KeyContainer"
type="pskc:KeyContainerType"/>
<xs:any namespace="##other" processContents="strict"/>
</xs:choice>
</xs:sequence>
</xs:complexType>
<xs:complexType name="InitializationTriggerType">
<xs:sequence>
<xs:element minOccurs="0" name="DeviceIdentifierData"
type="dskpp:DeviceIdentifierDataType" />
<xs:element minOccurs="0" name="KeyID"
type="xs:base64Binary"/>
<xs:element minOccurs="0" name="TokenPlatformInfo"
type="dskpp:TokenPlatformInfoType" />
<xs:element name="AuthenticationData"
type="dskpp:AuthenticationDataType" />
<xs:element minOccurs="0" name="ServerUrl"
type="xs:anyURI"/>
<xs:any minOccurs="0" namespace="##other"
processContents="strict" />
</xs:sequence>
</xs:complexType>
Doherty, et al. Standards Track [Page 53]
^L
RFC 6063 DSKPP December 2010
<xs:complexType name="ExtensionsType">
<xs:annotation>
<xs:documentation> Extension types </xs:documentation>
</xs:annotation>
<xs:sequence maxOccurs="unbounded">
<xs:element name="Extension"
type="dskpp:AbstractExtensionType"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="AbstractExtensionType" abstract="true">
<xs:attribute name="Critical" type="xs:boolean" />
</xs:complexType>
<xs:complexType name="ClientInfoType">
<xs:complexContent mixed="false">
<xs:extension base="dskpp:AbstractExtensionType">
<xs:sequence>
<xs:element name="Data" type="xs:base64Binary"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="ServerInfoType">
<xs:complexContent mixed="false">
<xs:extension base="dskpp:AbstractExtensionType">
<xs:sequence>
<xs:element name="Data" type="xs:base64Binary"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="KeyProvTrigger"
type="dskpp:KeyProvTriggerType">
<xs:annotation>
<xs:documentation> DSKPP PDUs </xs:documentation>
</xs:annotation>
</xs:element>
Doherty, et al. Standards Track [Page 54]
^L
RFC 6063 DSKPP December 2010
<xs:complexType name="KeyProvTriggerType">
<xs:annotation>
<xs:documentation xml:lang="en">
Message used to trigger the device to initiate a
DSKPP run.
</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:choice>
<xs:element name="InitializationTrigger"
type="dskpp:InitializationTriggerType" />
<xs:any namespace="##other" processContents="strict"/>
</xs:choice>
</xs:sequence>
<xs:attribute name="Version" type="dskpp:VersionType"/>
</xs:complexType>
<xs:element name="KeyProvClientHello"
type="dskpp:KeyProvClientHelloPDU">
<xs:annotation>
<xs:documentation>KeyProvClientHello PDU</xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexType name="KeyProvClientHelloPDU">
<xs:annotation>
<xs:documentation xml:lang="en">
Message sent from DSKPP Client to DSKPP Server to
initiate a DSKPP session.
</xs:documentation>
</xs:annotation>
<xs:complexContent mixed="false">
<xs:extension base="dskpp:AbstractRequestType">
<xs:sequence>
<xs:element minOccurs="0" name="DeviceIdentifierData"
type="dskpp:DeviceIdentifierDataType" />
<xs:element minOccurs="0" name="KeyID"
type="xs:base64Binary" />
<xs:element minOccurs="0" name="ClientNonce"
type="dskpp:NonceType" />
<xs:element name="SupportedKeyTypes"
type="dskpp:AlgorithmsType" />
<xs:element name="SupportedEncryptionAlgorithms"
type="dskpp:AlgorithmsType" />
<xs:element name="SupportedMacAlgorithms"
type="dskpp:AlgorithmsType" />
<xs:element minOccurs="0"
name="SupportedProtocolVariants"
type="dskpp:ProtocolVariantsType" />
Doherty, et al. Standards Track [Page 55]
^L
RFC 6063 DSKPP December 2010
<xs:element minOccurs="0" name="SupportedKeyPackages"
type="dskpp:KeyPackagesFormatType" />
<xs:element minOccurs="0" name="AuthenticationData"
type="dskpp:AuthenticationDataType" />
<xs:element minOccurs="0" name="Extensions"
type="dskpp:ExtensionsType" />
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="KeyProvServerHello"
type="dskpp:KeyProvServerHelloPDU">
<xs:annotation>
<xs:documentation>KeyProvServerHello PDU</xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexType name="KeyProvServerHelloPDU">
<xs:annotation>
<xs:documentation xml:lang="en">
Response message sent from DSKPP Server to DSKPP Client
in four-pass DSKPP.
</xs:documentation>
</xs:annotation>
<xs:complexContent mixed="false">
<xs:extension base="dskpp:AbstractResponseType">
<xs:sequence minOccurs="0">
<xs:element name="KeyType"
type="dskpp:AlgorithmType"/>
<xs:element name="EncryptionAlgorithm"
type="dskpp:AlgorithmType" />
<xs:element name="MacAlgorithm"
type="dskpp:AlgorithmType"/>
<xs:element name="EncryptionKey"
type="ds:KeyInfoType"/>
<xs:element name="KeyPackageFormat"
type="dskpp:KeyPackageFormatType" />
<xs:element name="Payload" type="dskpp:PayloadType"/>
<xs:element minOccurs="0" name="Extensions"
type="dskpp:ExtensionsType" />
<xs:element minOccurs="0" name="Mac"
type="dskpp:MacType"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
Doherty, et al. Standards Track [Page 56]
^L
RFC 6063 DSKPP December 2010
<xs:element name="KeyProvClientNonce"
type="dskpp:KeyProvClientNoncePDU">
<xs:annotation>
<xs:documentation>KeyProvClientNonce PDU</xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexType name="KeyProvClientNoncePDU">
<xs:annotation>
<xs:documentation xml:lang="en">
Response message sent from DSKPP Client to
DSKPP Server in a four-pass DSKPP session.
</xs:documentation>
</xs:annotation>
<xs:complexContent mixed="false">
<xs:extension base="dskpp:AbstractRequestType">
<xs:sequence>
<xs:element name="EncryptedNonce"
type="xs:base64Binary"/>
<xs:element minOccurs="0" name="AuthenticationData"
type="dskpp:AuthenticationDataType" />
<xs:element minOccurs="0" name="Extensions"
type="dskpp:ExtensionsType" />
</xs:sequence>
<xs:attribute name="SessionID"
type="dskpp:IdentifierType" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="KeyProvServerFinished"
type="dskpp:KeyProvServerFinishedPDU">
<xs:annotation>
<xs:documentation>
KeyProvServerFinished PDU
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexType name="KeyProvServerFinishedPDU">
<xs:annotation>
<xs:documentation xml:lang="en">
Final message sent from DSKPP Server to DSKPP Client in
a DSKPP session. A MAC value serves for key
confirmation, and optional AuthenticationData serves for
server authentication.
</xs:documentation>
</xs:annotation>
<xs:complexContent mixed="false">
<xs:extension base="dskpp:AbstractResponseType">
Doherty, et al. Standards Track [Page 57]
^L
RFC 6063 DSKPP December 2010
<xs:sequence minOccurs="0">
<xs:element name="KeyPackage"
type="dskpp:KeyPackageType" />
<xs:element minOccurs="0" name="Extensions"
type="dskpp:ExtensionsType" />
<xs:element name="Mac" type="dskpp:MacType" />
<xs:element minOccurs="0" name="AuthenticationData"
type="dskpp:AuthenticationMacType" />
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:schema>
9. Conformance Requirements
In order to assure that all implementations of DSKPP can
interoperate, the DSKPP Server:
a. MUST implement the four-pass variation of the protocol
(Section 4)
b. MUST implement the two-pass variation of the protocol (Section 5)
c. MUST support user authentication (Section 3.2.1)
d. MUST support the following key derivation functions:
* DSKPP-PRF-AES DSKPP-PRF realization (Appendix D)
* DSKPP-PRF-SHA256 DSKPP-PRF realization (Appendix D)
e. MUST support the following encryption mechanisms for protection
of the client nonce in the four-pass protocol:
* Mechanism described in Section 4.2.4
f. MUST support one of the following encryption algorithms for
symmetric key operations, e.g., key wrap:
* KW-AES128 without padding; refer to
http://www.w3.org/2001/04/xmlenc#kw-aes128 in [XMLENC]
* KW-AES128 with padding; refer to
http://www.w3.org/2001/04/xmlenc#kw-aes128 in [XMLENC] and
[RFC5649]
* AES-CBC-128; refer to [FIPS197-AES]
g. MUST support the following encryption algorithms for asymmetric
key operations, e.g., key transport:
* RSA Encryption Scheme [PKCS-1]
Doherty, et al. Standards Track [Page 58]
^L
RFC 6063 DSKPP December 2010
h. MUST support the following integrity/KDF MAC functions:
* DSKPP-PRF-AES (Appendix D)
* DSKPP-PRF-SHA256 (Appendix D)
i. MUST support the PSKC key package [RFC6030]; all three PSKC key
protection methods (Key Transport, Key Wrap, and Passphrase-Based
Key Wrap) MUST be implemented
j. MAY support the ASN.1 key package as defined in [RFC6031]
DSKPP Clients MUST support either the two-pass or the four-pass
variant of the protocol. DSKPP Clients MUST fulfill all requirements
listed in item (c) - (j).
Finally, implementations of DSKPP MUST bind DSKPP messages to
HTTP/1.1 as described in Section 7.2.
Of course, DSKPP is a security protocol, and one of its major
functions is to allow only authorized parties to successfully
initialize a cryptographic module with a new symmetric key.
Therefore, a particular implementation may be configured with any of
a number of restrictions concerning algorithms and trusted
authorities that will prevent universal interoperability.
10. Security Considerations
10.1. General
DSKPP is designed to protect generated keying material from exposure.
No entities other than the DSKPP Server and the cryptographic module
will have access to a generated K_TOKEN if the cryptographic
algorithms used are of sufficient strength and, on the DSKPP Client
side, generation and encryption of R_C and generation of K_TOKEN take
place as specified in the cryptographic module. This applies even if
malicious software is present in the DSKPP Client. However, as
discussed in the following sub-sections, DSKPP does not protect
against certain other threats resulting from man-in-the-middle
attacks and other forms of attacks. DSKPP MUST, therefore, be run
over a transport providing confidentiality and integrity, such as
HTTP over Transport Layer Security (TLS) with a suitable ciphersuite
[RFC2818], when such threats are a concern. Note that TLS
ciphersuites with anonymous key exchanges are not suitable in those
situations [RFC5246].
Doherty, et al. Standards Track [Page 59]
^L
RFC 6063 DSKPP December 2010
10.2. Active Attacks
10.2.1. Introduction
An active attacker MAY attempt to modify, delete, insert, replay, or
reorder messages for a variety of purposes including service denial
and compromise of generated keying material.
10.2.2. Message Modifications
Modifications to a <KeyProvTrigger> message will either cause denial
of service (modifications of any of the identifiers or the
Authentication Code) or will cause the DSKPP Client to contact the
wrong DSKPP Server. The latter is in effect a man-in-the-middle
attack and is discussed further in Section 10.2.7.
An attacker may modify a <KeyProvClientHello> message. This means
that the attacker could indicate a different key or device than the
one intended by the DSKPP Client, and could also suggest other
cryptographic algorithms than the ones preferred by the DSKPP Client,
e.g., cryptographically weaker ones. The attacker could also suggest
earlier versions of DSKPP, in case these versions have been shown to
have vulnerabilities. These modifications could lead to an attacker
succeeding in initializing or modifying another cryptographic module
than the one intended (i.e., the server assigning the generated key
to the wrong module) or gaining access to a generated key through the
use of weak cryptographic algorithms or protocol versions. DSKPP
implementations MAY protect against the latter by having strict
policies about what versions and algorithms they support and accept.
The former threat (assignment of a generated key to the wrong module)
is not possible when the shared-key variant of DSKPP is employed
(assuming existing shared keys are unique per cryptographic module),
but is possible in the public key variation. Therefore, DSKPP
Servers MUST NOT accept unilaterally provided device identifiers in
the public key variation. This is also indicated in the protocol
description. In the shared-key variation, however, an attacker may
be able to provide the wrong identifier (possibly also leading to the
incorrect user being associated with the generated key) if the
attacker has real-time access to the cryptographic module with the
identified key. The result of this attack could be that the
generated key is associated with the correct cryptographic module but
the module is associated with the incorrect user. See Section 10.5
for a further discussion of this threat and possible countermeasures.
An attacker may also modify a <KeyProvServerHello> message. This
means that the attacker could indicate different key types,
algorithms, or protocol versions than the legitimate server would,
e.g., cryptographically weaker ones. The attacker may also provide a
Doherty, et al. Standards Track [Page 60]
^L
RFC 6063 DSKPP December 2010
different nonce than the one sent by the legitimate server. Clients
MAY protect against the former through strict adherence to policies
regarding permissible algorithms and protocol versions. The latter
(wrong nonce) will not constitute a security problem, as a generated
key will not match the key generated on the legitimate server. Also,
whenever the DSKPP run would result in the replacement of an existing
key, the <Mac> element protects against modifications of R_S.
Modifications of <KeyProvClientNonce> messages are also possible. If
an attacker modifies the SessionID attribute, then, in effect, a
switch to another session will occur at the server, assuming the new
SessionID is valid at that time on the server. It still will not
allow the attacker to learn a generated K_TOKEN since R_C has been
wrapped for the legitimate server. Modifications of the
<EncryptedNonce> element, e.g., replacing it with a value for which
the attacker knows an underlying R'C, will not result in the client
changing its pre-DSKPP state, since the server will be unable to
provide a valid MAC in its final message to the client. The server
MAY, however, end up storing K'TOKEN rather than K_TOKEN. If the
cryptographic module has been associated with a particular user, then
this could constitute a security problem. For a further discussion
about this threat, and a possible countermeasure, see Section 10.5
below. Note that use of TLS does not protect against this attack if
the attacker has access to the DSKPP Client (e.g., through malicious
software, "Trojans") [RFC5246].
Finally, attackers may also modify the <KeyProvServerFinished>
message. Replacing the <Mac> element will only result in denial of
service. Replacement of any other element may cause the DSKPP Client
to associate, e.g., the wrong service with the generated key. DSKPP
SHOULD be run over a transport providing confidentiality and
integrity when this is a concern.
10.2.3. Message Deletion
Message deletion will not cause any other harm than denial of
service, since a cryptographic module MUST NOT change its state
(i.e., "commit" to a generated key) until it receives the final
message from the DSKPP Server and successfully has processed that
message, including validation of its MAC. A deleted
<KeyProvServerFinished> message will not cause the server to end up
in an inconsistent state vis-a-vis the cryptographic module if the
server implements the suggestions in Section 10.5.
Doherty, et al. Standards Track [Page 61]
^L
RFC 6063 DSKPP December 2010
10.2.4. Message Insertion
An active attacker may initiate a DSKPP run at any time, and suggest
any device identifier. DSKPP Server implementations MAY receive some
protection against inadvertently initializing a key or inadvertently
replacing an existing key or assigning a key to a cryptographic
module by initializing the DSKPP run by use of the <KeyProvTrigger>.
The <AuthenticationData> element allows the server to associate a
DSKPP run e.g., with an earlier user-authenticated session. The
security of this method, therefore, depends on the ability to protect
the <AuthenticationData> element in the DSKPP initialization message.
If an eavesdropper is able to capture this message, he may race the
legitimate user for a key initialization. DSKPP over a transport
providing confidentiality and integrity, coupled with the
recommendations in Section 10.5, is RECOMMENDED when this is a
concern.
Insertion of other messages into an existing protocol run is seen as
equivalent to modification of legitimately sent messages.
10.2.5. Message Replay
During four-pass DSKPP, attempts to replay a previously recorded
DSKPP message will be detected, as the use of nonces ensures that
both parties are live. For example, a DSKPP Client knows that a
server it is communicating with is "live" since the server MUST
create a MAC on information sent by the client.
The same is true for two-pass DSKPP thanks to the requirement that
the client sends R in the <KeyProvClientHello> message and that the
server includes R in the MAC computation.
10.2.6. Message Reordering
An attacker may attempt to re-order four-pass DSKPP messages but this
will be detected, as each message is of a unique type. Note: Message
re-ordering attacks cannot occur in two-pass DSKPP since each party
sends at most one message each.
Doherty, et al. Standards Track [Page 62]
^L
RFC 6063 DSKPP December 2010
10.2.7. Man in the Middle
In addition to other active attacks, an attacker posing as a man in
the middle may be able to provide his own public key to the DSKPP
Client. This threat and countermeasures to it are discussed in
Section 4.1.1. An attacker posing as a man in the middle may also be
acting as a proxy and, hence, may not interfere with DSKPP runs but
still learn valuable information; see Section 10.3.
10.3. Passive Attacks
Passive attackers may eavesdrop on DSKPP runs to learn information
that later on may be used to impersonate users, mount active attacks,
etc.
If DSKPP is not run over a transport providing confidentiality, a
passive attacker may learn:
o What cryptographic modules a particular user possesses
o The identifiers of keys on those cryptographic modules and other
attributes pertaining to those keys, e.g., the lifetime of the
keys
o DSKPP versions and cryptographic algorithms supported by a
particular DSKPP Client or server
o Any value present in an <extension> that is part of
<KeyProvClientHello>
Whenever the above is a concern, DSKPP MUST be run over a transport
providing confidentiality. If man-in-the-middle attacks for the
purposes described above are a concern, the transport MUST also offer
server-side authentication.
10.4. Cryptographic Attacks
An attacker with unlimited access to an initialized cryptographic
module may use the module as an "oracle" to pre-compute values that
later on may be used to impersonate the DSKPP Server. Section 4.1.1
contains a discussion of this threat and steps RECOMMENDED to protect
against it.
Implementers are advised that cryptographic algorithms become weaker
with time. As new cryptographic techniques are developed and
computing performance improves, the work factor to break a particular
cryptographic algorithm will reduce. Therefore, cryptographic
Doherty, et al. Standards Track [Page 63]
^L
RFC 6063 DSKPP December 2010
algorithm implementations SHOULD be modular allowing new algorithms
to be readily inserted. That is, implementers SHOULD be prepared to
regularly update the algorithms in their implementations.
10.5. Attacks on the Interaction between DSKPP and User Authentication
If keys generated in DSKPP will be associated with a particular user
at the DSKPP Server (or a server trusted by, and communicating with
the DSKPP Server), then in order to protect against threats where an
attacker replaces a client-provided encrypted R_C with his own R'C
(regardless of whether the public key variation or the shared-secret
variation of DSKPP is employed to encrypt the client nonce), the
server SHOULD NOT commit to associate a generated K_TOKEN with the
given cryptographic module until the user simultaneously has proven
both possession of the device that hosts the cryptographic module
containing K_TOKEN and some out-of-band provided authenticating
information (e.g., an Authentication Code). For example, if the
cryptographic module is a one-time password token, the user could be
required to authenticate with both a one-time password generated by
the cryptographic module and an out-of-band provided Authentication
Code in order to have the server "commit" to the generated OTP value
for the given user. Preferably, the user SHOULD perform this
operation from another host than the one used to initialize keys on
the cryptographic module, in order to minimize the risk of malicious
software on the client interfering with the process.
Note: This scenario, wherein the attacker replaces a client-provided
R_C with his own R'C, does not apply to two-pass DSKPP as the client
does not provide any entropy to K_TOKEN. The attack as such (and its
countermeasures) still applies to two-pass DSKPP, however, as it
essentially is a man-in-the-middle attack.
Another threat arises when an attacker is able to trick a user into
authenticating to the attacker rather than to the legitimate service
before the DSKPP run. If successful, the attacker will then be able
to impersonate the user towards the legitimate service, and
subsequently receive a valid DSKPP trigger. If the public key
variant of DSKPP is used, this may result in the attacker being able
to (after a successful DSKPP run) impersonate the user. Ordinary
precautions MUST, therefore, be in place to ensure that users
authenticate only to legitimate services.
Doherty, et al. Standards Track [Page 64]
^L
RFC 6063 DSKPP December 2010
10.6. Miscellaneous Considerations
10.6.1. Client Contributions to K_TOKEN Entropy
In four-pass DSKPP, both the client and the server provide
randomizing material to K_TOKEN, in a manner that allows both parties
to verify that they did contribute to the resulting key. In the two-
pass DSKPP version defined herein, only the server contributes to the
entropy of K_TOKEN. This means that a broken or compromised
(pseudo)random number generator in the server may cause more damage
than it would in the four-pass variant. Server implementations
SHOULD therefore take extreme care to ensure that this situation does
not occur.
10.6.2. Key Confirmation
four-pass DSKPP Servers provide key confirmation through the MAC on
R_C in the <KeyProvServerFinished> message. In the two-pass DSKPP
variant described herein, key confirmation is provided by the MAC
including R, using K_MAC.
10.6.3. Server Authentication
DSKPP Servers MUST authenticate themselves whenever a successful
DSKPP two-pass protocol run would result in an existing K_TOKEN being
replaced by a K_TOKEN', or else a denial-of-service attack where an
unauthorized DSKPP Server replaces a K_TOKEN with another key would
be possible. In two-pass DSKPP, servers authenticate by including
the AuthenticationDataType extension containing a MAC as described in
Section 5 for two-pass DSKPP.
Whenever a successful DSKPP two-pass protocol run would result in an
existing K_TOKEN being replaced by a K_TOKEN', the DSKPP Client and
Server MUST do the following to prevent a denial-of-service attack
where an unauthorized DSKPP Server replaces a K_TOKEN with another
key:
o The DSKPP Server MUST use the AuthenticationDataType extension to
transmit a second MAC, calculated as described in Section 5.2.2.
o The DSKPP Client MUST authenticate the server using the MAC
contained in the AuthenticationDataType extension received from
the DSKPP Server to which it is connected.
Doherty, et al. Standards Track [Page 65]
^L
RFC 6063 DSKPP December 2010
10.6.4. User Authentication
A DSKPP Server MUST authenticate a client to ensure that K_TOKEN is
delivered to the intended device. The following measures SHOULD be
considered:
o When an Authentication Code is used for client authentication, a
password dictionary attack on the Authentication Data is possible.
o The length of the Authentication Code when used over a non-secure
channel SHOULD be longer than what is used over a secure channel.
When a device, e.g., some mobile phones with small screens, cannot
handle a long Authentication Code in a user-friendly manner, DSKPP
SHOULD rely on a secure channel for communication.
o In the case that a non-secure channel has to be used, the
Authentication Code SHOULD be sent to the server MAC'd as
specified in Section 3.4.1. The Authentication Code and nonce
value MUST be strong enough to prevent offline brute-force
recovery of the Authentication Code from the Hashed MAC (HMAC)
data. Given that the nonce value is sent in plaintext format over
a non-secure transport, the cryptographic strength of the
Authentication Data depends more on the quality of the
Authentication Code.
o When the Authentication Code is sent from the DSKPP Server to the
device in a DSKPP initialization trigger message, an eavesdropper
may be able to capture this message and race the legitimate user
for a key initialization. To prevent this, the transport layer
used to send the DSKPP trigger MUST provide confidentiality and
integrity, e.g. a secure browser session.
10.6.5. Key Protection in Two-Pass DSKPP
Three key protection methods are defined for the different usages of
two-pass DSKPP, which MUST be supported by a key package format, such
as [RFC6030] and [RFC6031]. Therefore, key protection in the two-
pass DSKPP is dependent upon the security of the key package format
selected for a protocol run. Some considerations for the Passphrase-
Based Key Wrap method follow.
The Passphrase-Based Key Wrap method SHOULD depend upon the PBKDF2
function from [PKCS-5] to generate an encryption key from a
passphrase and salt string. It is important to note that passphrase-
based encryption is generally limited in the security that it
provides despite the use of salt and iteration count in PBKDF2 to
increase the complexity of attack. Implementations SHOULD therefore
Doherty, et al. Standards Track [Page 66]
^L
RFC 6063 DSKPP December 2010
take additional measures to strengthen the security of the
Passphrase-Based Key Wrap method. The following measures SHOULD be
considered where applicable:
o The passphrase is the same as the one-time password component of
the Authentication Code (see Section 3.4.1) for a description of
the AC format). The passphrase SHOULD be selected well, and usage
guidelines such as the ones in [NIST-PWD] SHOULD be taken into
account.
o A different passphrase SHOULD be used for every key initialization
wherever possible (the use of a global passphrase for a batch of
cryptographic modules SHOULD be avoided, for example). One way to
achieve this is to use randomly generated passphrases.
o The passphrase SHOULD be protected well if stored on the server
and/or on the cryptographic module and SHOULD be delivered to the
device's user using secure methods.
o User pre-authentication SHOULD be implemented to ensure that
K_TOKEN is not delivered to a rogue recipient.
o The iteration count in PBKDF2 SHOULD be high to impose more work
for an attacker using brute-force methods (see [PKCS-5] for
recommendations). However, it MUST be noted that the higher the
count, the more work is required on the legitimate cryptographic
module to decrypt the newly delivered K_TOKEN. Servers MAY use
relatively low iteration counts to accommodate devices with
limited processing power such as some PDA and cell phones when
other security measures are implemented and the security of the
Passphrase-Based Key Wrap method is not weakened.
o TLS [RFC5246] SHOULD be used where possible to protect a two-pass
protocol run. Transport level security provides a second layer of
protection for the newly generated K_TOKEN.
10.6.6. Algorithm Agility
Many protocols need to be algorithm agile. One reason for this is
that in the past many protocols had fixed sized fields for
information such as hash outputs, keys, etc. This is not the case
for DSKPP, except for the key size in the computation of DSKPP-PRF.
Another reason was that protocols did not support algorithm
negotiation. This is also not the case for DSKPP, except for the use
of SHA-256 in the MAC confirmation message. Updating the key size
for DSKPP-PRF or the MAC confirmation message algorithm will require
a new version of the protocol, which is supported with the Version
attribute.
Doherty, et al. Standards Track [Page 67]
^L
RFC 6063 DSKPP December 2010
11. Internationalization Considerations
DSKPP is meant for machine-to-machine communications; as such, its
elements are tokens not meant for direct human consumption. DSKPP
exchanges information using XML. All XML processors are required to
understand UTF-8 [RFC3629] encoding, and therefore all DSKPP Clients
and servers MUST understand UTF-8 encoded XML. Additionally, DSKPP
Servers and clients MUST NOT encode XML with encodings other than
UTF-8.
12. IANA Considerations
This document requires several IANA registrations, detailed below.
12.1. URN Sub-Namespace Registration
This section registers a new XML namespace,
"urn:ietf:params:xml:ns:keyprov:dskpp" per the guidelines in
[RFC3688]:
URI: urn:ietf:params:xml:ns:keyprov:dskpp
Registrant Contact:
IETF, KEYPROV Working Group (keyprov@ietf.org), Andrea Doherty
(andrea.doherty@rsa.com)
XML:
BEGIN
<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>DSKPP Messages</title>
</head>
<body>
<h1>Namespace for DSKPP Messages</h1>
<h2>urn:ietf:params:xml:ns:keyprov:dskpp</h2>
<p>See RFC 6063</p>
</body>
</html>
END
Doherty, et al. Standards Track [Page 68]
^L
RFC 6063 DSKPP December 2010
12.2. XML Schema Registration
This section registers an XML schema as per the guidelines in
[RFC3688].
URI: urn:ietf:params:xml:ns:keyprov:dskpp
Registrant Contact:
IETF, KEYPROV Working Group (keyprov@ietf.org), Andrea Doherty
(andrea.doherty@rsa.com)
Schema:
The XML for this schema can be found as the entirety of Section 8
of this document.
12.3. MIME Media Type Registration
This section registers the "application/dskpp+xml" MIME type:
To: ietf-types@iana.org
Subject: Registration of MIME media type application/dskpp+xml
MIME media type name: application
MIME subtype name: dskpp+xml
Required parameters: (none)
Optional parameters: charset
Indicates the character encoding of enclosed XML.
Encoding considerations: Uses XML, which can employ 8-bit
characters, depending on the character encoding used. See
[RFC3023], Section 3.2. Implementations need to support UTF-8
[RFC3629].
Security considerations: This content type is designed to carry
protocol data related to key management. Security mechanisms are
built into the protocol to ensure that various threats are dealt
with. Refer to Section 10 of RFC 6063 for more details
Interoperability considerations: None
Published specification: RFC 6063.
Applications that use this media type: Protocol for key exchange.
Additional information:
Magic Number(s): (none)
File extension(s): .xmls
Macintosh File Type Code(s): (none)
Person & email address to contact for further information:
Andrea Doherty (andrea.doherty@rsa.com)
Intended usage: LIMITED USE
Author/Change controller: The IETF
Other information: This media type is a specialization of
application/xml [RFC3023], and many of the considerations
described there also apply to application/dskpp+xml.
Doherty, et al. Standards Track [Page 69]
^L
RFC 6063 DSKPP December 2010
12.4. Status Code Registration
This section registers status codes included in each DSKPP response
message. The status codes are defined in the schema in the
<StatusCode> type definition contained in the XML schema in
Section 8. The following summarizes the registry:
Related Registry:
KEYPROV DSKPP Registries, Status codes for DSKPP
Defining RFC:
RFC 6063.
Registration/Assignment Procedures:
Following the policies outlined in [RFC3575], the IANA policy for
assigning new values for the status codes for DSKPP MUST be
"Specification Required" and their meanings MUST be documented in
an RFC or in some other permanent and readily available reference,
in sufficient detail that interoperability between independent
implementations is possible. No mechanism to mark entries as
"deprecated" is envisioned. It is possible to update entries from
the registry.
Registrant Contact:
IETF, KEYPROV working group (keyprov@ietf.org),
Andrea Doherty (andrea.doherty@rsa.com)
12.5. DSKPP Version Registration
This section registers DSKPP version numbers. The registry has the
following structure:
+-------------------------------------------+
| DSKPP Version | Specification |
+-------------------------------------------+
| 1.0 | This document |
+-------------------------------------------+
Standards action is required to define new versions of DSKPP. It is
not envisioned to deprecate, delete, or modify existing DSKPP
versions.
12.6. PRF Algorithm ID Sub-Registry
This specification relies on a cryptographic primitive, called
"DSKPP-PRF" that provides a deterministic transformation of a secret
key k and a varying length octet string s to a bit string of
specified length dsLen. From the point of view of this
specification, DSKPP-PRF is a "black-box" function that, given the
inputs, generates a pseudorandom value that can be realized by any
Doherty, et al. Standards Track [Page 70]
^L
RFC 6063 DSKPP December 2010
appropriate and competent cryptographic technique. Section 3.4.2
provides two realizations of DSKPP-PRF, DSKPP-PRF-AES, and DSKPP-PRF-
SHA256.
This section registers the identifiers associated with these
realizations. PRF Algorithm ID Sub-registries are to be subject to
"Specification Required" as per RFC 5226 [RFC5226]. Updates MUST be
documented in an RFC or in some other permanent and readily available
reference, in sufficient detail that interoperability between
independent implementations is possible.
Expert approval is required to deprecate a sub-registry. Once
deprecated, the PRF Algorithm ID SHOULD NOT be used in any new
implementations.
12.6.1. DSKPP-PRF-AES
This section registers the following in the IETF XML namespace
registry.
Common Name:
DSKPP-PRF-AES
URI:
urn:ietf:params:xml:ns:keyprov:dskpp:prf-aes-128
Identifier Definition:
The DSKPP-PRF-AES algorithm realization is defined in
Appendix D.2.2 of this document.
Registrant Contact:
IETF, KEYPROV working group (keyprov@ietf.org),
Andrea Doherty (andrea.doherty@rsa.com)
12.6.2. DSKPP-PRF-SHA256
This section registers the following in the IETF XML namespace
registry.
Common Name:
DSKPP-PRF-SHA256
URI:
urn:ietf:params:xml:ns:keyprov:dskpp:prf-sha256
Identifier Definition:
The DSKPP-PRF-SHA256 algorithm realization is defined in
Appendix D.3.2 of this document.
Doherty, et al. Standards Track [Page 71]
^L
RFC 6063 DSKPP December 2010
Registrant Contact:
IETF, KEYPROV working group (keyprov@ietf.org),
Andrea Doherty (andrea.doherty@rsa.com)
12.7. Key Container Registration
This section registers the Key Container type.
Key Container:
The registration name for the Key Container.
Specification:
Key Container defines a key package format that specifies how a
key should be protected using the three key protection methods
provided in Section 5.1.
Registration Procedure:
Following the policies outlined in [RFC3575], the IANA policy for
assigning new values for the status codes for DSKPP MUST be
"Specification Required" and their meanings MUST be documented in
an RFC or in some other permanent and readily available reference,
in sufficient detail that interoperability between independent
implementations is possible.
Deprecated:
TRUE if based on expert approval this entry has been deprecated
and SHOULD NOT be used in any new implementations. Otherwise,
FALSE.
Identifiers:
The initial URIs for the Key Container defined for this version of
the document are listed here:
Name: PSKC Key Container
URI: urn:ietf:params:xml:ns:keyprov:dskpp:pskc-key-container
Specification: [RFC6030]
Deprecated: FALSE
Name: SKPC Key Container
URI: urn:ietf:params:xml:ns:keyprov:dskpp:skpc-key-container
Specification: [RFC6031]
Deprecated: FALSE
Name: PKCS12 Key Container
URI: urn:ietf:params:xml:ns:keyprov:dskpp:pkcs12-key-container
Specification: [PKCS-12]
Deprecated: FALSE
Doherty, et al. Standards Track [Page 72]
^L
RFC 6063 DSKPP December 2010
Name: PKCS5-XML Key Container
URI: urn:ietf:params:xml:ns:keyprov:dskpp:pkcs5-xml-key-container
Specification: [PKCS-5-XML]
Deprecated: FALSE
Registrant Contact:
IETF, KEYPROV working group (keyprov@ietf.org),
Andrea Doherty (andrea.doherty@rsa.com)
13. Intellectual Property Considerations
RSA and RSA Security are registered trademarks or trademarks of RSA
Security, Inc. in the United States and/or other countries. The
names of other products and services mentioned may be the trademarks
of their respective owners.
14. Contributors
This work is based on information contained in [RFC4758], authored by
Magnus Nystrom, with enhancements borrowed from an individual
document coauthored by Mingliang Pei and Salah Machani (e.g., user
authentication, and support for multiple key package formats).
We would like to thank Philip Hoyer for his work in aligning DSKPP
and PSKC schemas.
We would also like to thank Hannes Tschofenig and Phillip Hallam-
Baker for their reviews, feedback, and text contributions.
15. Acknowledgements
We would like to thank the following for review of previous DSKPP
document versions:
o Dr. Ulrike Meyer (Review June 2007)
o Niklas Neumann (Review June 2007)
o Shuh Chang (Review June 2007)
o Hannes Tschofenig (Review June 2007 and again in August 2007)
o Sean Turner (Reviews August 2007 and again in July 2008)
o John Linn (Review August 2007)
o Philip Hoyer (Review September 2007)
o Thomas Roessler (Review November 2007)
o Lakshminath Dondeti (Comments December 2007)
o Pasi Eronen (Comments December 2007)
o Phillip Hallam-Baker (Review and Edits November 2008 and again in
January 2009)
o Alexey Melnikov (Review May 2010)
o Peter Saint-Andre (Review May 2010)
Doherty, et al. Standards Track [Page 73]
^L
RFC 6063 DSKPP December 2010
We would also like to thank the following for their input to selected
design aspects of DSKPP:
o Anders Rundgren (Key Package Format and Client Authentication
Data)
o Thomas Roessler (HTTP Binding)
o Hannes Tschofenig (HTTP Binding)
o Phillip Hallam-Baker (Registry for Algorithms)
o N. Asokan (original observation of weakness in Authentication
Data)
Finally, we would like to thank Robert Griffin for opening
communication channels for us with the IEEE P1619.3 Key Management
Group, and facilitating our groups in staying informed of potential
areas (especially key provisioning and global key identifiers of
collaboration) of collaboration.
16. References
16.1. Normative References
[FIPS180-SHA] National Institute of Standards and Technology,
"Secure Hash Standard", FIPS 180-2, February 2004,
<http://csrc.nist.gov/publications/fips/fips180-2/
fips180-2withchangenotice.pdf>.
[FIPS197-AES] National Institute of Standards and Technology,
"Specification for the Advanced Encryption Standard
(AES)", FIPS 197, November 2001, <http://
csrc.nist.gov/publications/fips/fips197/
fips-197.pdf>.
[ISO3309] International Organization for Standardization,
"ISO Information Processing Systems - Data
Communication - High-Level Data Link Control
Procedure - Frame Structure", ISO 3309,
3rd Edition, October 1984.
[PKCS-1] RSA Laboratories, "RSA Cryptography Standard",
PKCS #1 Version 2.1, June 2002,
<http://www.rsasecurity.com/rsalabs/pkcs/>.
[PKCS-5] RSA Laboratories, "Password-Based Cryptography
Standard", PKCS #5 Version 2.0, March 1999,
<http://www.rsasecurity.com/rsalabs/pkcs/>.
Doherty, et al. Standards Track [Page 74]
^L
RFC 6063 DSKPP December 2010
[PKCS-5-XML] RSA Laboratories, "XML Schema for PKCS #5 Version
2.0", PKCS #5 Version 2.0 Amd.1 (FINAL DRAFT),
October 2006,
<http://www.rsasecurity.com/rsalabs/pkcs/>.
[RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC:
Keyed-Hashing for Message Authentication",
RFC 2104, February 1997.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., and T. Berners-Lee,
"Hypertext Transfer Protocol -- HTTP/1.1",
RFC 2616, June 1999.
[RFC3394] Schaad, J. and R. Housley, "Advanced Encryption
Standard (AES) Key Wrap Algorithm", RFC 3394,
September 2002.
[RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
10646", STD 63, RFC 3629, November 2003.
[RFC4013] Zeilenga, K., "SASLprep: Stringprep Profile for
User Names and Passwords", RFC 4013, February 2005.
[RFC4210] Adams, C., Farrell, S., Kause, T., and T. Mononen,
"Internet X.509 Public Key Infrastructure
Certificate Management Protocol (CMP)", RFC 4210,
September 2005.
[RFC5272] Schaad, J. and M. Myers, "Certificate Management
over CMS (CMC)", RFC 5272, June 2008.
[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, "Internet X.509 Public
Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile", RFC 5280, May 2008.
[RFC5649] Housley, R. and M. Dworkin, "Advanced Encryption
Standard (AES) Key Wrap with Padding Algorithm",
RFC 5649, September 2009.
[RFC6030] Hoyer, P., Pei, M., and S. Machani, "Portable
Symmetric Key Container (PSKC)", RFC 6030,
October 2010.
Doherty, et al. Standards Track [Page 75]
^L
RFC 6063 DSKPP December 2010
[UNICODE] Davis, M. and M. Duerst, "Unicode Normalization
Forms", March 2001, <http://www.unicode.org/
unicode/reports/tr15/tr15-21.html>.
[XML] W3C, "Extensible Markup Language (XML) 1.0 (Fifth
Edition)", W3C Recommendation, November 2008,
<http://www.w3.org/TR/2006/REC-xml-20060816/>.
[XMLDSIG] W3C, "XML Signature Syntax and Processing",
W3C Recommendation, February 2002, <http://
www.w3.org/TR/2002/REC-xmldsig-core-20020212/>.
[XMLENC] W3C, "XML Encryption Syntax and Processing",
W3C Recommendation, December 2002, <http://
www.w3.org/TR/2002/REC-xmldsig-core-20020212/>.
16.2. Informative References
[CT-KIP-P11] RSA Laboratories, "PKCS #11 Mechanisms for the
Cryptographic Token Key Initialization Protocol",
PKCS #11 Version 2.20 Amd.2, December 2005,
<http://www.rsasecurity.com/rsalabs/pkcs/>.
[FAQ] RSA Laboratories, "Frequently Asked Questions About
Today's Cryptography", Version 4.1, 2000.
[NIST-PWD] National Institute of Standards and Technology,
"Password Usage", FIPS 112, May 1985,
<http://www.itl.nist.gov/fipspubs/fip112.htm>.
[NIST-SP800-38B] International Organization for Standardization,
"Recommendations for Block Cipher Modes of
Operation: The CMAC Mode for Authentication",
NIST SP800-38B, May 2005, <http://csrc.nist.gov/
publications/nistpubs/800-38B/SP_800-38B.pdf>.
[NIST-SP800-57] National Institute of Standards and Technology,
"Recommendation for Key Management - Part I:
General (Revised)", NIST 800-57, March 2007, <http:
//csrc.nist.gov/publications/nistpubs/800-57/
sp800-57-Part1-revised2_Mar08-2007.pdf>.
[PKCS-11] RSA Laboratories, "Cryptographic Token Interface
Standard", PKCS #11 Version 2.20, June 2004,
<http://www.rsasecurity.com/rsalabs/pkcs/>.
Doherty, et al. Standards Track [Page 76]
^L
RFC 6063 DSKPP December 2010
[PKCS-12] "Personal Information Exchange Syntax Standard",
PKCS #12 Version 1.0, 2005, <ftp://
ftp.rsasecurity.com/pub/pkcs/pkcs-12/
pkcs-12v1.pdf>.
[RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.
[RFC3023] Murata, M., St. Laurent, S., and D. Kohn, "XML
Media Types", RFC 3023, January 2001.
[RFC3575] Aboba, B., "IANA Considerations for RADIUS (Remote
Authentication Dial In User Service)", RFC 3575,
July 2003.
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81,
RFC 3688, January 2004.
[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter,
"Uniform Resource Identifier (URI): Generic
Syntax", STD 66, RFC 3986, January 2005.
[RFC4758] Nystroem, M., "Cryptographic Token Key
Initialization Protocol (CT-KIP) Version 1.0
Revision 1", RFC 4758, November 2006.
[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for
Writing an IANA Considerations Section in RFCs",
BCP 26, RFC 5226, May 2008.
[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer
Security (TLS) Protocol Version 1.2", RFC 5246,
August 2008.
[RFC6031] Turner, S. and R. , "Cryptographic Message Syntax
(CMS) Symmetric Key Package Content Type",
RFC 6031, December 2010.
[XMLNS] W3C, "Namespaces in XML", W3C Recommendation,
January 1999,
<http://www.w3.org/TR/2009/REC-xml-names-20091208>.
Doherty, et al. Standards Track [Page 77]
^L
RFC 6063 DSKPP December 2010
Appendix A. Usage Scenarios
DSKPP is expected to be used to provision symmetric keys to
cryptographic modules in a number of different scenarios, each with
its own special requirements, as described below. This appendix
forms an informative part of the document.
A.1. Single Key Request
The usual scenario is that a cryptographic module makes a request for
a symmetric key from a provisioning server that is located on the
local network or somewhere on the Internet. Depending upon the
deployment scenario, the provisioning server may generate a new key
on-the-fly or use a pre-generated key, e.g., one provided by a legacy
back-end issuance server. The provisioning server assigns a unique
key ID to the symmetric key and provisions it to the cryptographic
module.
A.2. Multiple Key Requests
A cryptographic module makes multiple requests for symmetric keys
from the same provisioning server. The symmetric keys need not be of
the same type, i.e., the keys may be used with different symmetric
key cryptographic algorithms, including one-time password
authentication algorithms, and the AES encryption algorithm.
A.3. User Authentication
In some deployment scenarios, a key issuer may rely on a third-party
provisioning service. In this case, the issuer directs provisioning
requests from the cryptographic module to the provisioning service.
As such, it is the responsibility of the issuer to authenticate the
user through some out-of-band means before granting him rights to
acquire keys. Once the issuer has granted those rights, the issuer
provides an Authentication Code to the user and makes it available to
the provisioning service, so that the user can prove that he is
authorized to acquire keys.
A.4. Provisioning Time-Out Policy
An issuer may provide a time-limited Authentication Code to a user
during registration, which the user will input into the cryptographic
module to authenticate themselves with the provisioning server. The
server will allow a key to be provisioned to the cryptographic module
hosted by the user's device when user authentication is required only
if the user inputs a valid Authentication Code within the fixed time
period established by the issuer.
Doherty, et al. Standards Track [Page 78]
^L
RFC 6063 DSKPP December 2010
A.5. Key Renewal
A cryptographic module requests renewal of the symmetric key material
attached to a key ID, as opposed to keeping the key value constant
and refreshing the metadata. Such a need may occur in the case when
a user wants to upgrade her device that houses the cryptographic
module or when a key has expired. When a user uses the same
cryptographic module for example, to perform strong authentication at
multiple Web login sites, keeping the same key ID removes the need
for the user to register a new key ID at each site.
A.6. Pre-Loaded Key Replacement
This scenario represents a special case of symmetric key renewal in
which a local administrator can authenticate the user procedurally
before initiating the provisioning process. It also allows for a
device issuer to pre-load a key onto a cryptographic module with a
restriction that the key is replaced with a new key prior to use of
the cryptographic module. Another variation of this scenario is the
organization who recycles devices. In this case, a key issuer would
provision a new symmetric key to a cryptographic module hosted on a
device that was previously owned by another user.
Note that this usage scenario is essentially the same as the previous
scenario wherein the same key ID is used for renewal.
A.7. Pre-Shared Manufacturing Key
A cryptographic module is loaded onto a smart card after the card is
issued to a user. The symmetric key for the cryptographic module
will then be provisioned using a secure channel mechanism present in
many smart card platforms. This allows a direct secure channel to be
established between the smart card chip and the provisioning server.
For example, the card commands (i.e., Application Protocol Data
Units, or APDUs) are encrypted with a pre-issued card manufacturer's
key and sent directly to the smart card chip, allowing secure post-
issuance in-the-field provisioning. This secure flow can pass
Transport Layer Security (TLS) [RFC5246] and other transport security
boundaries.
Note that two pre-conditions for this usage scenario are for the
protocol to be tunneled and the provisioning server to know the
correct pre-established manufacturer's key.
Doherty, et al. Standards Track [Page 79]
^L
RFC 6063 DSKPP December 2010
A.8. End-to-End Protection of Key Material
In this scenario, Transport Layer Security does not provide end-to-
end protection of keying material transported from the provisioning
server to the cryptographic module. For example, TLS may terminate
at an application hosted on a PC rather than at the cryptographic
module (i.e., the endpoint) located on a data storage device
[RFC5246]. Mutually authenticated key agreement provides end-to-end
protection, which TLS cannot provide.
Appendix B. Examples
This appendix contains example messages that illustrate parameters,
encoding, and semantics in four- and two-pass DSKPP exchanges. The
examples are written using XML, and are syntactically correct. MAC
and cipher values are fictitious, however. This appendix forms an
informative part of the document.
B.1. Trigger Message
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<dskpp:KeyProvTrigger Version="1.0"
xmlns:dskpp="urn:ietf:params:xml:ns:keyprov:dskpp"
xmlns:pskc="urn:ietf:params:xml:ns:keyprov:pskc">
<dskpp:InitializationTrigger>
<dskpp:DeviceIdentifierData>
<dskpp:DeviceId>
<pskc:Manufacturer>TokenVendorAcme</pskc:Manufacturer>
<pskc:SerialNo>987654321</pskc:SerialNo>
<pskc:StartDate>2009-09-01T00:00:00Z</pskc:StartDate>
<pskc:ExpiryDate>2014-09-01T00:00:00Z</pskc:ExpiryDate>
</dskpp:DeviceId>
</dskpp:DeviceIdentifierData>
<dskpp:KeyID>SE9UUDAwMDAwMDAx</dskpp:KeyID>
<dskpp:TokenPlatformInfo KeyLocation="Hardware"
AlgorithmLocation="Software"/>
<dskpp:AuthenticationData>
<dskpp:ClientID>31300257</dskpp:ClientID>
<dskpp:AuthenticationCodeMac>
<dskpp:IterationCount>512</dskpp:IterationCount>
<dskpp:Mac>4bRJf9xXd3KchKoTenHJiw==</dskpp:Mac>
</dskpp:AuthenticationCodeMac>
</dskpp:AuthenticationData>
<dskpp:ServerUrl>keyprovservice.example.com
</dskpp:ServerUrl>
</dskpp:InitializationTrigger>
</dskpp:KeyProvTrigger>
Doherty, et al. Standards Track [Page 80]
^L
RFC 6063 DSKPP December 2010
B.2. Four-Pass Protocol
B.2.1. <KeyProvClientHello> without a Preceding Trigger
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<dskpp:KeyProvClientHello
xmlns:pskc="urn:ietf:params:xml:ns:keyprov:pskc"
xmlns:dskpp="urn:ietf:params:xml:ns:keyprov:dskpp"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
Version="1.0">
<dskpp:DeviceIdentifierData>
<dskpp:DeviceId>
<pskc:Manufacturer>TokenVendorAcme</pskc:Manufacturer>
<pskc:SerialNo>987654321</pskc:SerialNo>
<pskc:StartDate>2009-09-01T00:00:00Z</pskc:StartDate>
<pskc:ExpiryDate>2014-09-01T00:00:00Z</pskc:ExpiryDate>
</dskpp:DeviceId>
</dskpp:DeviceIdentifierData>
<dskpp:SupportedKeyTypes>
<dskpp:Algorithm>
urn:ietf:params:xml:ns:keyprov:pskc:hotp
</dskpp:Algorithm>
<dskpp:Algorithm>
http://www.rsa.com/rsalabs/otps/schemas/2005/09/otps-wst#SecurID-AES
</dskpp:Algorithm>
</dskpp:SupportedKeyTypes>
<dskpp:SupportedEncryptionAlgorithms>
<dskpp:Algorithm>
http://www.w3.org/2001/04/xmlenc#aes128-cbc
</dskpp:Algorithm>
</dskpp:SupportedEncryptionAlgorithms>
<dskpp:SupportedMacAlgorithms>
<dskpp:Algorithm>
urn:ietf:params:xml:ns:keyprov:dskpp:prf-sha256
</dskpp:Algorithm>
</dskpp:SupportedMacAlgorithms>
<dskpp:SupportedProtocolVariants>
<dskpp:FourPass/>
</dskpp:SupportedProtocolVariants>
<dskpp:SupportedKeyPackages>
<dskpp:KeyPackageFormat>
urn:ietf:params:xml:ns:keyprov:dskpp:pskc-key-container
</dskpp:KeyPackageFormat>
</dskpp:SupportedKeyPackages>
</dskpp:KeyProvClientHello>
Doherty, et al. Standards Track [Page 81]
^L
RFC 6063 DSKPP December 2010
B.2.2. <KeyProvClientHello> Assuming a Preceding Trigger
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<dskpp:KeyProvClientHello
xmlns:pskc="urn:ietf:params:xml:ns:keyprov:pskc"
xmlns:dskpp="urn:ietf:params:xml:ns:keyprov:dskpp"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
Version="1.0">
<dskpp:DeviceIdentifierData>
<dskpp:DeviceId>
<pskc:Manufacturer>TokenVendorAcme</pskc:Manufacturer>
<pskc:SerialNo>987654321</pskc:SerialNo>
<pskc:StartDate>2009-09-01T00:00:00Z</pskc:StartDate>
<pskc:ExpiryDate>2014-09-01T00:00:00Z</pskc:ExpiryDate>
</dskpp:DeviceId>
</dskpp:DeviceIdentifierData>
<dskpp:KeyID>SE9UUDAwMDAwMDAx</dskpp:KeyID>
<dskpp:SupportedKeyTypes>
<dskpp:Algorithm>
urn:ietf:params:xml:ns:keyprov:pskc:hotp
</dskpp:Algorithm>
<dskpp:Algorithm>
http://www.rsa.com/rsalabs/otps/schemas/2005/09/otps-wst#SecurID-AES
</dskpp:Algorithm>
</dskpp:SupportedKeyTypes>
<dskpp:SupportedEncryptionAlgorithms>
<dskpp:Algorithm>
http://www.w3.org/2001/04/xmlenc#aes128-cbc
</dskpp:Algorithm>
</dskpp:SupportedEncryptionAlgorithms>
<dskpp:SupportedMacAlgorithms>
<dskpp:Algorithm>
urn:ietf:params:xml:ns:keyprov:dskpp:prf-sha256
</dskpp:Algorithm>
</dskpp:SupportedMacAlgorithms>
<dskpp:SupportedProtocolVariants>
<dskpp:FourPass/>
</dskpp:SupportedProtocolVariants>
<dskpp:SupportedKeyPackages>
<dskpp:KeyPackageFormat>
urn:ietf:params:xml:ns:keyprov:dskpp:pskc-key-container
</dskpp:KeyPackageFormat>
</dskpp:SupportedKeyPackages>
</dskpp:KeyProvClientHello>
Doherty, et al. Standards Track [Page 82]
^L
RFC 6063 DSKPP December 2010
B.2.3. <KeyProvServerHello> Without a Preceding Trigger
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<dskpp:KeyProvServerHello
xmlns:pskc="urn:ietf:params:xml:ns:keyprov:pskc"
xmlns:dskpp="urn:ietf:params:xml:ns:keyprov:dskpp"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
Version="1.0"
Status="Continue"
SessionID="4114">
<dskpp:KeyType>
urn:ietf:params:xml:ns:keyprov:pskc:hotp
</dskpp:KeyType>
<dskpp:EncryptionAlgorithm>
http://www.w3.org/2001/04/xmlenc#aes128-cbc
</dskpp:EncryptionAlgorithm>
<dskpp:MacAlgorithm>
urn:ietf:params:xml:ns:keyprov:dskpp:prf-sha256
</dskpp:MacAlgorithm>
<dskpp:EncryptionKey>
<ds:KeyName>Example-Key1</ds:KeyName>
</dskpp:EncryptionKey>
<dskpp:KeyPackageFormat>
urn:ietf:params:xml:ns:keyprov:dskpp:pskc-key-container
</dskpp:KeyPackageFormat>
<dskpp:Payload>
<dskpp:Nonce>EjRWeJASNFZ4kBI0VniQEg==</dskpp:Nonce>
</dskpp:Payload>
</dskpp:KeyProvServerHello>
Doherty, et al. Standards Track [Page 83]
^L
RFC 6063 DSKPP December 2010
B.2.4. <KeyProvServerHello> Assuming Key Renewal
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<dskpp:KeyProvServerHello
xmlns:dskpp="urn:ietf:params:xml:ns:keyprov:dskpp"
xmlns:pskc="urn:ietf:params:xml:ns:keyprov:pskc"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
Version="1.0"
SessionID="4114"
Status="Continue">
<dskpp:KeyType>
urn:ietf:params:xml:schema:keyprov:otpalg#SecurID-AES
</dskpp:KeyType>
<dskpp:EncryptionAlgorithm>
http://www.w3.org/2001/04/xmlenc#aes128-cbc
</dskpp:EncryptionAlgorithm>
<dskpp:MacAlgorithm>
urn:ietf:params:xml:ns:keyprov:dskpp:prf-sha256
</dskpp:MacAlgorithm>
<dskpp:EncryptionKey>
<ds:KeyName>Example-Key1</ds:KeyName>
</dskpp:EncryptionKey>
<dskpp:KeyPackageFormat>
urn:ietf:params:xml:ns:keyprov:dskpp:pskc-key-container
</dskpp:KeyPackageFormat>
<dskpp:Payload>
<dskpp:Nonce>qw2ewasde312asder394jw==</dskpp:Nonce>
</dskpp:Payload>
<dskpp:Mac
MacAlgorithm="urn:ietf:params:xml:ns:keyprov:dskpp:prf-aes-128">
cXcycmFuZG9tMzEyYXNkZXIzOTRqdw==
</dskpp:Mac>
</dskpp:KeyProvServerHello>
Doherty, et al. Standards Track [Page 84]
^L
RFC 6063 DSKPP December 2010
B.2.5. <KeyProvClientNonce> Using Default Encryption
This message contains the nonce chosen by the cryptographic module,
R_C, encrypted by the specified encryption key and encryption
algorithm.
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<dskpp:KeyProvClientNonce
xmlns:pskc="urn:ietf:params:xml:ns:keyprov:pskc"
xmlns:dskpp="urn:ietf:params:xml:ns:keyprov:dskpp"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
SessionID="4114"
Version="1.0">
<dskpp:EncryptedNonce>
oTvo+S22nsmS2Z/RtcoF8CTwadRa1PVsRXkZnCihHkU1rPueggrd0NpEWVZR
16Rg16+FHuTg33GK1wH3wffDZQ==
</dskpp:EncryptedNonce>
</dskpp:KeyProvClientNonce>
B.2.6. <KeyProvServerFinished> Using Default Encryption
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<dskpp:KeyProvServerFinished
xmlns:pskc="urn:ietf:params:xml:ns:keyprov:pskc"
xmlns:dskpp="urn:ietf:params:xml:ns:keyprov:dskpp"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
Version="1.0"
Status="Success"
SessionID="4114">
<dskpp:KeyPackage>
<dskpp:KeyContainer Version="1.0" Id="KC0001">
<pskc:KeyPackage>
<pskc:DeviceInfo>
<pskc:Manufacturer>
TokenVendorAcme
</pskc:Manufacturer>
<pskc:SerialNo>
987654321
</pskc:SerialNo>
<pskc:StartDate>
2009-09-01T00:00:00Z
</pskc:StartDate>
<pskc:ExpiryDate>
2014-09-01T00:00:00Z
</pskc:ExpiryDate>
</pskc:DeviceInfo>
Doherty, et al. Standards Track [Page 85]
^L
RFC 6063 DSKPP December 2010
<pskc:CryptoModuleInfo>
<pskc:Id>CM_ID_001</pskc:Id>
</pskc:CryptoModuleInfo>
<pskc:Key
Id="MBK000000001"
Algorithm=
"urn:ietf:params:xml:ns:keyprov:pskc:hotp">
<pskc:Issuer>Example-Issuer</pskc:Issuer>
<pskc:AlgorithmParameters>
<pskc:ResponseFormat Length="6"
Encoding="DECIMAL"/>
</pskc:AlgorithmParameters>
<pskc:Data>
<pskc:Counter>
<pskc:PlainValue>0</pskc:PlainValue>
</pskc:Counter>
</pskc:Data>
<pskc:Policy>
<pskc:KeyUsage>OTP</pskc:KeyUsage>
</pskc:Policy>
</pskc:Key>
</pskc:KeyPackage>
</dskpp:KeyContainer>
</dskpp:KeyPackage>
<dskpp:Mac
MacAlgorithm=
"urn:ietf:params:xml:ns:keyprov:dskpp:prf-sha256">
151yAR2NqU5dJzETK+SGYqN6sq6DEH5AgHohra3Jpp4=
</dskpp:Mac>
</dskpp:KeyProvServerFinished>
B.3. Two-Pass Protocol
B.3.1. Example Using the Key Transport Method
The client indicates support for all the Key Transport, Key Wrap, and
Passphrase-Based Key Wrap key protection methods:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<dskpp:KeyProvClientHello
xmlns:pskc="urn:ietf:params:xml:ns:keyprov:pskc"
xmlns:dskpp="urn:ietf:params:xml:ns:keyprov:dskpp"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
Version="1.0">
<dskpp:DeviceIdentifierData>
<dskpp:DeviceId>
<pskc:Manufacturer>TokenVendorAcme</pskc:Manufacturer>
Doherty, et al. Standards Track [Page 86]
^L
RFC 6063 DSKPP December 2010
<pskc:SerialNo>987654321</pskc:SerialNo>
<pskc:StartDate>2009-09-01T00:00:00Z</pskc:StartDate>
<pskc:ExpiryDate>2014-09-01T00:00:00Z</pskc:ExpiryDate>
</dskpp:DeviceId>
</dskpp:DeviceIdentifierData>
<dskpp:SupportedKeyTypes>
<dskpp:Algorithm>
urn:ietf:params:xml:ns:keyprov:pskc:hotp
</dskpp:Algorithm>
<dskpp:Algorithm>
http://www.rsa.com/rsalabs/otps/schemas/2005/09/otps-wst#SecurID-AES
</dskpp:Algorithm>
</dskpp:SupportedKeyTypes>
<dskpp:SupportedEncryptionAlgorithms>
<dskpp:Algorithm>
http://www.w3.org/2001/04/xmlenc#rsa_1_5
</dskpp:Algorithm>
</dskpp:SupportedEncryptionAlgorithms>
<dskpp:SupportedMacAlgorithms>
<dskpp:Algorithm>
urn:ietf:params:xml:ns:keyprov:dskpp:prf-sha256
</dskpp:Algorithm>
</dskpp:SupportedMacAlgorithms>
<dskpp:SupportedProtocolVariants>
<dskpp:TwoPass>
<dskpp:SupportedKeyProtectionMethod>
urn:ietf:params:xml:schema:keyprov:dskpp:transport
</dskpp:SupportedKeyProtectionMethod>
<dskpp:Payload>
<ds:KeyInfo>
<ds:X509Data>
<ds:X509Certificate>
MIIB5zCCAVCgAwIBAgIESZp/vDANBgkqhkiG9w0BAQUFADA4MQ0wCwYDVQQKEwRJRVRGM
RMwEQYDVQQLEwpLZXlQcm92IFdHMRIwEAYDVQQDEwlQU0tDIFRlc3QwHhcNMDkwMjE3MD
kxMzMyWhcNMTEwMjE3MDkxMzMyWjA4MQ0wCwYDVQQKEwRJRVRGMRMwEQYDVQQLEwpLZXl
Qcm92IFdHMRIwEAYDVQQDEwlQU0tDIFRlc3QwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJ
AoGBALCWLDa2ItYJ6su80hd1gL4cggQYdyyKK17btt/aS6Q/eDsKjsPyFIODsxeKVV/uA
3wLT4jQJM5euKJXkDajzGGOy92+ypfzTX4zDJMkh61SZwlHNJxBKilAM5aW7C+BQ0RvCx
vdYtzx2LTdB+X/KMEBA7uIYxLfXH2Mnub3WIh1AgMBAAEwDQYJKoZIhvcNAQEFBQADgYE
Ae875m84sYUJ8qPeZ+NG7REgTvlHTmoCdoByU0LBBLotUKuqfrnRuXJRMeZXaaEGmzY1k
LonVjQGzjAkU4dJ+RPmiDlYuHLZS41Pg6VMwY+03lhk6I5A/w4rnqdkmwZX/NgXg06aln
c2pBsXWhL4O7nk0S2ZrLMsQZ6HcsXgdmHo=
</ds:X509Certificate>
</ds:X509Data>
</ds:KeyInfo>
</dskpp:Payload>
</dskpp:TwoPass>
</dskpp:SupportedProtocolVariants>
Doherty, et al. Standards Track [Page 87]
^L
RFC 6063 DSKPP December 2010
<dskpp:SupportedKeyPackages>
<dskpp:KeyPackageFormat>
urn:ietf:params:xml:ns:keyprov:dskpp:pskc-key-container
</dskpp:KeyPackageFormat>
</dskpp:SupportedKeyPackages>
<dskpp:AuthenticationData>
<dskpp:ClientID>AC00000A</dskpp:ClientID>
<dskpp:AuthenticationCodeMac>
<dskpp:Nonce>
ESIzRFVmd4iZqrvM3e7/ESIzRFVmd4iZqrvM3e7/ESI=
</dskpp:Nonce>
<dskpp:IterationCount>100000</dskpp:IterationCount>
<dskpp:Mac
MacAlgorithm=
"urn:ietf:params:xml:ns:keyprov:dskpp:prf-sha256">
3eRz51ILqiG+dJW2iLcjuA==
</dskpp:Mac>
</dskpp:AuthenticationCodeMac>
</dskpp:AuthenticationData>
</dskpp:KeyProvClientHello>
In this example, the server responds to the previous request by
returning a key package in which the provisioning key was encrypted
using the Key Transport key protection method.
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<dskpp:KeyProvServerFinished
xmlns:pskc="urn:ietf:params:xml:ns:keyprov:pskc"
xmlns:dskpp="urn:ietf:params:xml:ns:keyprov:dskpp"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:dkey="http://www.w3.org/2009/xmlsec-derivedkey#"
xmlns:pkcs5=
"http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-5v2-0#"
Version="1.0"
Status="Success"
SessionID="4114">
<dskpp:KeyPackage>
<dskpp:KeyContainer Version="1.0" Id="KC0001">
<pskc:EncryptionKey>
<ds:X509Data>
<ds:X509Certificate>
MIIB5zCCAVCgAwIBAgIESZp/vDANBgkqhkiG9w0BAQUFADA4MQ0wCwYDVQQKEwRJRVRGM
RMwEQYDVQQLEwpLZXlQcm92IFdHMRIwEAYDVQQDEwlQU0tDIFRlc3QwHhcNMDkwMjE3MD
kxMzMyWhcNMTEwMjE3MDkxMzMyWjA4MQ0wCwYDVQQKEwRJRVRGMRMwEQYDVQQLEwpLZXl
Qcm92IFdHMRIwEAYDVQQDEwlQU0tDIFRlc3QwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJ
AoGBALCWLDa2ItYJ6su80hd1gL4cggQYdyyKK17btt/aS6Q/eDsKjsPyFIODsxeKVV/uA
3wLT4jQJM5euKJXkDajzGGOy92+ypfzTX4zDJMkh61SZwlHNJxBKilAM5aW7C+BQ0RvCx
Doherty, et al. Standards Track [Page 88]
^L
RFC 6063 DSKPP December 2010
vdYtzx2LTdB+X/KMEBA7uIYxLfXH2Mnub3WIh1AgMBAAEwDQYJKoZIhvcNAQEFBQADgYE
Ae875m84sYUJ8qPeZ+NG7REgTvlHTmoCdoByU0LBBLotUKuqfrnRuXJRMeZXaaEGmzY1k
LonVjQGzjAkU4dJ+RPmiDlYuHLZS41Pg6VMwY+03lhk6I5A/w4rnqdkmwZX/NgXg06aln
c2pBsXWhL4O7nk0S2ZrLMsQZ6HcsXgdmHo=
</ds:X509Certificate>
</ds:X509Data>
</pskc:EncryptionKey>
<pskc:KeyPackage>
<pskc:DeviceInfo>
<pskc:Manufacturer>
TokenVendorAcme
</pskc:Manufacturer>
<pskc:SerialNo>
987654321
</pskc:SerialNo>
<pskc:StartDate>
2009-09-01T00:00:00Z
</pskc:StartDate>
<pskc:ExpiryDate>
2014-09-01T00:00:00Z
</pskc:ExpiryDate>
</pskc:DeviceInfo>
<pskc:Key
Id="MBK000000001"
Algorithm=
"urn:ietf:params:xml:ns:keyprov:pskc:hotp">
<pskc:Issuer>Example-Issuer</pskc:Issuer>
<pskc:AlgorithmParameters>
<pskc:ResponseFormat Length="6"
Encoding="DECIMAL"/>
</pskc:AlgorithmParameters>
<pskc:Data>
<pskc:Secret>
<pskc:EncryptedValue>
<xenc:EncryptionMethod
Algorithm=
"http://www.w3.org/2001/04/xmlenc#rsa_1_5"/>
<xenc:CipherData>
<xenc:CipherValue>
eyjr23WMy9S2UdKgGnQEbs44T1jmX1TNWEBq48xfS20PK2VWF4ZK1iSctHj/u3uk+7+y8
uKrAzHEm5mujKPAU4DCbb5mSibXMnAbbIoAi2cJW60/l8FlzwaU4EZsZ1LyQ1GcBQKACE
eylG5vK8NTo47vZTatL5UxmbmOX2HvaVQ=
</xenc:CipherValue>
</xenc:CipherData>
</pskc:EncryptedValue>
</pskc:Secret>
<pskc:Counter>
<pskc:PlainValue>0</pskc:PlainValue>
Doherty, et al. Standards Track [Page 89]
^L
RFC 6063 DSKPP December 2010
</pskc:Counter>
</pskc:Data>
<pskc:Policy>
<pskc:KeyUsage>OTP</pskc:KeyUsage>
</pskc:Policy>
</pskc:Key>
</pskc:KeyPackage>
</dskpp:KeyContainer>
</dskpp:KeyPackage>
<dskpp:Mac
MacAlgorithm=
"urn:ietf:params:xml:ns:keyprov:dskpp:prf-sha256">
GHZ0H6Y+KpxdlVZ7zgcJDiDdqc8Gcmlcf+HQi4EUxYU=
</dskpp:Mac>
</dskpp:KeyProvServerFinished>
B.3.2. Example Using the Key Wrap Method
The client sends a request that specifies a shared key to protect the
K_TOKEN, and the server responds using the Key Wrap key protection
method. Authentication Data in this example is based on an
Authentication Code rather than a device certificate.
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<dskpp:KeyProvClientHello
xmlns:pskc="urn:ietf:params:xml:ns:keyprov:pskc"
xmlns:dskpp="urn:ietf:params:xml:ns:keyprov:dskpp"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
Version="1.0">
<dskpp:DeviceIdentifierData>
<dskpp:DeviceId>
<pskc:Manufacturer>TokenVendorAcme</pskc:Manufacturer>
<pskc:SerialNo>987654321</pskc:SerialNo>
<pskc:StartDate>2009-09-01T00:00:00Z</pskc:StartDate>
<pskc:ExpiryDate>2014-09-01T00:00:00Z</pskc:ExpiryDate>
</dskpp:DeviceId>
</dskpp:DeviceIdentifierData>
<dskpp:SupportedKeyTypes>
<dskpp:Algorithm>
urn:ietf:params:xml:ns:keyprov:pskc:hotp
</dskpp:Algorithm>
<dskpp:Algorithm>
http://www.rsa.com/rsalabs/otps/schemas/2005/09/otps-wst#SecurID-AES
</dskpp:Algorithm>
</dskpp:SupportedKeyTypes>
<dskpp:SupportedEncryptionAlgorithms>
<dskpp:Algorithm>
Doherty, et al. Standards Track [Page 90]
^L
RFC 6063 DSKPP December 2010
http://www.w3.org/2001/04/xmlenc#aes128-cbc
</dskpp:Algorithm>
</dskpp:SupportedEncryptionAlgorithms>
<dskpp:SupportedMacAlgorithms>
<dskpp:Algorithm>
urn:ietf:params:xml:ns:keyprov:dskpp:prf-sha256
</dskpp:Algorithm>
</dskpp:SupportedMacAlgorithms>
<dskpp:SupportedProtocolVariants>
<dskpp:TwoPass>
<dskpp:SupportedKeyProtectionMethod>
urn:ietf:params:xml:schema:keyprov:dskpp:wrap
</dskpp:SupportedKeyProtectionMethod>
<dskpp:Payload>
<ds:KeyInfo>
<ds:KeyName>Pre-shared-key-1</ds:KeyName>
</ds:KeyInfo>
</dskpp:Payload>
</dskpp:TwoPass>
</dskpp:SupportedProtocolVariants>
<dskpp:SupportedKeyPackages>
<dskpp:KeyPackageFormat>
urn:ietf:params:xml:ns:keyprov:dskpp:pskc-key-container
</dskpp:KeyPackageFormat>
</dskpp:SupportedKeyPackages>
<dskpp:AuthenticationData>
<dskpp:ClientID>AC00000A</dskpp:ClientID>
<dskpp:AuthenticationCodeMac>
<dskpp:Nonce>
ESIzRFVmd4iZqrvM3e7/ESIzRFVmd4iZqrvM3e7/ESI=
</dskpp:Nonce>
<dskpp:IterationCount>1</dskpp:IterationCount>
<dskpp:Mac
MacAlgorithm=
"urn:ietf:params:xml:ns:keyprov:dskpp:prf-sha256">
3eRz51ILqiG+dJW2iLcjuA==
</dskpp:Mac>
</dskpp:AuthenticationCodeMac>
</dskpp:AuthenticationData>
</dskpp:KeyProvClientHello>
In this example, the server responds to the previous request by
returning a key package in which the provisioning key was encrypted
using the Key Wrap key protection method.
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<dskpp:KeyProvServerFinished
xmlns:pskc="urn:ietf:params:xml:ns:keyprov:pskc"
Doherty, et al. Standards Track [Page 91]
^L
RFC 6063 DSKPP December 2010
xmlns:dskpp="urn:ietf:params:xml:ns:keyprov:dskpp"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:dkey="http://www.w3.org/2009/xmlsec-derivedkey#"
xmlns:pkcs5=
"http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-5v2-0#"
Version="1.0"
Status="Success"
SessionID="4114">
<dskpp:KeyPackage>
<dskpp:KeyContainer Version="1.0" Id="KC0001">
<pskc:EncryptionKey>
<ds:KeyName>Pre-shared-key-1</ds:KeyName>
</pskc:EncryptionKey>
<pskc:MACMethod
Algorithm=
"http://www.w3.org/2000/09/xmldsig#hmac-sha1">
<pskc:MACKey>
<xenc:EncryptionMethod
Algorithm=
"http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
<xenc:CipherData>
<xenc:CipherValue>
2GTTnLwM3I4e5IO5FkufoMUBJBuAf25hARFv0Z7MFk9Ecdb04PWY/qaeCbrgz7Es
</xenc:CipherValue>
</xenc:CipherData>
</pskc:MACKey>
</pskc:MACMethod>
<pskc:KeyPackage>
<pskc:DeviceInfo>
<pskc:Manufacturer>
TokenVendorAcme
</pskc:Manufacturer>
<pskc:SerialNo>
987654321
</pskc:SerialNo>
<pskc:StartDate>
2009-09-01T00:00:00Z
</pskc:StartDate>
<pskc:ExpiryDate>
2014-09-01T00:00:00Z
</pskc:ExpiryDate>
</pskc:DeviceInfo>
<pskc:CryptoModuleInfo>
<pskc:Id>CM_ID_001</pskc:Id>
</pskc:CryptoModuleInfo>
<pskc:Key
Id="MBK000000001"
Doherty, et al. Standards Track [Page 92]
^L
RFC 6063 DSKPP December 2010
Algorithm=
"urn:ietf:params:xml:ns:keyprov:pskc:hotp">
<pskc:Issuer>Example-Issuer</pskc:Issuer>
<pskc:AlgorithmParameters>
<pskc:ResponseFormat Length="6"
Encoding="DECIMAL"/>
</pskc:AlgorithmParameters>
<pskc:Data>
<pskc:Secret>
<pskc:EncryptedValue>
<xenc:EncryptionMethod
Algorithm=
"http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
<xenc:CipherData>
<xenc:CipherValue>
oTvo+S22nsmS2Z/RtcoF8AabC6vr
09sh0QIU+E224S96sZjpV+6nFYgn
6525OoepbPnL/fGuuey64WCYXoqh
Tg==
</xenc:CipherValue>
</xenc:CipherData>
</pskc:EncryptedValue>
<pskc:ValueMAC>
o+e9xgMVUbYuZH9UHe0W9dIo88A=
</pskc:ValueMAC>
</pskc:Secret>
<pskc:Counter>
<pskc:PlainValue>0</pskc:PlainValue>
</pskc:Counter>
</pskc:Data>
<pskc:Policy>
<pskc:KeyUsage>OTP</pskc:KeyUsage>
</pskc:Policy>
</pskc:Key>
</pskc:KeyPackage>
</dskpp:KeyContainer>
</dskpp:KeyPackage>
<dskpp:Mac
MacAlgorithm=
"urn:ietf:params:xml:ns:keyprov:dskpp:prf-sha256">
l53BmSO6qUzoIgbQegimsKk2es+WRpEl0YFqaOp5PGE=
</dskpp:Mac>
</dskpp:KeyProvServerFinished>
Doherty, et al. Standards Track [Page 93]
^L
RFC 6063 DSKPP December 2010
B.3.3. Example Using the Passphrase-Based Key Wrap Method
The client sends a request similar to that in Appendix B.3.1 with
Authentication Data based on an Authentication Code, and the server
responds using the Passphrase-Based Key Wrap method to encrypt the
provisioning key (note that the encryption is derived from the
password component of the Authentication Code). The Authentication
Data is set in clear text when it is sent over a secure transport
channel such as TLS [RFC5246].
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<dskpp:KeyProvClientHello
xmlns:pskc="urn:ietf:params:xml:ns:keyprov:pskc"
xmlns:dskpp="urn:ietf:params:xml:ns:keyprov:dskpp"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
Version="1.0">
<dskpp:DeviceIdentifierData>
<dskpp:DeviceId>
<pskc:Manufacturer>TokenVendorAcme</pskc:Manufacturer>
<pskc:SerialNo>987654321</pskc:SerialNo>
<pskc:StartDate>2009-09-01T00:00:00Z</pskc:StartDate>
<pskc:ExpiryDate>2014-09-01T00:00:00Z</pskc:ExpiryDate>
</dskpp:DeviceId>
</dskpp:DeviceIdentifierData>
<dskpp:SupportedKeyTypes>
<dskpp:Algorithm>
urn:ietf:params:xml:ns:keyprov:pskc:hotp
</dskpp:Algorithm>
<dskpp:Algorithm>
http://www.rsa.com/rsalabs/otps/schemas/2005/09/otps-wst#SecurID-AES
</dskpp:Algorithm>
</dskpp:SupportedKeyTypes>
<dskpp:SupportedEncryptionAlgorithms>
<dskpp:Algorithm>
http://www.w3.org/2001/04/xmlenc#rsa_1_5
</dskpp:Algorithm>
</dskpp:SupportedEncryptionAlgorithms>
<dskpp:SupportedMacAlgorithms>
<dskpp:Algorithm>
urn:ietf:params:xml:ns:keyprov:dskpp:prf-sha256
</dskpp:Algorithm>
</dskpp:SupportedMacAlgorithms>
<dskpp:SupportedProtocolVariants>
<dskpp:TwoPass>
<dskpp:SupportedKeyProtectionMethod>
urn:ietf:params:xml:schema:keyprov:dskpp:passphrase-wrap
</dskpp:SupportedKeyProtectionMethod>
Doherty, et al. Standards Track [Page 94]
^L
RFC 6063 DSKPP December 2010
<dskpp:Payload>
<ds:KeyInfo>
<ds:KeyName>Passphrase-1</ds:KeyName>
</ds:KeyInfo>
</dskpp:Payload>
</dskpp:TwoPass>
</dskpp:SupportedProtocolVariants>
<dskpp:SupportedKeyPackages>
<dskpp:KeyPackageFormat>
urn:ietf:params:xml:ns:keyprov:dskpp:pskc-key-container
</dskpp:KeyPackageFormat>
</dskpp:SupportedKeyPackages>
<dskpp:AuthenticationData>
<dskpp:ClientID>AC00000A</dskpp:ClientID>
<dskpp:AuthenticationCodeMac>
<dskpp:Nonce>
ESIzRFVmd4iZqrvM3e7/ESIzRFVmd4iZqrvM3e7/ESI=
</dskpp:Nonce>
<dskpp:IterationCount>1</dskpp:IterationCount>
<dskpp:Mac
MacAlgorithm=
"urn:ietf:params:xml:ns:keyprov:dskpp:prf-sha256">
K4YvLMN6Q1DZvtShoCxQag==
</dskpp:Mac>
</dskpp:AuthenticationCodeMac>
</dskpp:AuthenticationData>
</dskpp:KeyProvClientHello>
In this example, the server responds to the previous request by
returning a key package in which the provisioning key was encrypted
using the Passphrase-Based Key Wrap key protection method.
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<dskpp:KeyProvServerFinished
xmlns:pskc="urn:ietf:params:xml:ns:keyprov:pskc"
xmlns:dskpp="urn:ietf:params:xml:ns:keyprov:dskpp"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:dkey="http://www.w3.org/2009/xmlsec-derivedkey#"
xmlns:pkcs5=
"http://www.rsasecurity.com/rsalabs/pkcs/schemas/pkcs-5v2-0#"
Version="1.0"
Status="Success"
SessionID="4114">
<dskpp:KeyPackage>
<dskpp:KeyContainer Version="1.0" Id="KC0002">
<pskc:EncryptionKey>
<dkey:DerivedKey>
Doherty, et al. Standards Track [Page 95]
^L
RFC 6063 DSKPP December 2010
<dkey:KeyDerivationMethod
Algorithm=
"http://www.rsasecurity.com/rsalabs/pkcs/schemas/
pkcs-5v2-0#pbkdf2">
<pkcs5:PBKDF2-params>
<Salt>
<Specified>Ej7/PEpyEpw=</Specified>
</Salt>
<IterationCount>1000</IterationCount>
<KeyLength>16</KeyLength>
</pkcs5:PBKDF2-params>
</dkey:KeyDerivationMethod>
<xenc:ReferenceList>
<xenc:DataReference URI="#ED"/>
</xenc:ReferenceList>
<dkey:MasterKeyName>
Passphrase1
</dkey:MasterKeyName>
</dkey:DerivedKey>
</pskc:EncryptionKey>
<pskc:MACMethod
Algorithm=
"http://www.w3.org/2000/09/xmldsig#hmac-sha1">
<pskc:MACKey>
<xenc:EncryptionMethod
Algorithm=
"http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
<xenc:CipherData>
<xenc:CipherValue>
2GTTnLwM3I4e5IO5FkufoOEiOhNj91fhKRQBtBJYluUDsPOLTfUvoU2dStyOwYZx
</xenc:CipherValue>
</xenc:CipherData>
</pskc:MACKey>
</pskc:MACMethod>
<pskc:KeyPackage>
<pskc:DeviceInfo>
<pskc:Manufacturer>
TokenVendorAcme
</pskc:Manufacturer>
<pskc:SerialNo>
987654321
</pskc:SerialNo>
<pskc:StartDate>
2009-09-01T00:00:00Z
</pskc:StartDate>
<pskc:ExpiryDate>
2014-09-01T00:00:00Z
</pskc:ExpiryDate>
Doherty, et al. Standards Track [Page 96]
^L
RFC 6063 DSKPP December 2010
</pskc:DeviceInfo>
<pskc:CryptoModuleInfo>
<pskc:Id>CM_ID_001</pskc:Id>
</pskc:CryptoModuleInfo>
<pskc:Key
Id="MBK000000001"
Algorithm=
"urn:ietf:params:xml:ns:keyprov:pskc:hotp">
<pskc:Issuer>Example-Issuer</pskc:Issuer>
<pskc:AlgorithmParameters>
<pskc:ResponseFormat Length="6"
Encoding="DECIMAL"/>
</pskc:AlgorithmParameters>
<pskc:Data>
<pskc:Secret>
<pskc:EncryptedValue>
<xenc:EncryptionMethod
Algorithm=
"http://www.w3.org/2001/04/
xmlenc#aes128-cbc"/>
<xenc:CipherData>
<xenc:CipherValue>
oTvo+S22nsmS2Z/RtcoF8HX385uMWgJ
myIFMESBmcvtHQXp/6T1TgCS9CsgKtm
cOrF8VoK254tZKnrAjiD5cdw==
</xenc:CipherValue>
</xenc:CipherData>
</pskc:EncryptedValue>
<pskc:ValueMAC>
pbgEbVYxoYs0x41wdeC7eDRbUEk=
</pskc:ValueMAC>
</pskc:Secret>
<pskc:Counter>
<pskc:PlainValue>0</pskc:PlainValue>
</pskc:Counter>
</pskc:Data>
<pskc:Policy>
<pskc:KeyUsage>OTP</pskc:KeyUsage>
</pskc:Policy>
</pskc:Key>
</pskc:KeyPackage>
</dskpp:KeyContainer>
</dskpp:KeyPackage>
<dskpp:Mac MacAlgorithm=
"urn:ietf:params:xml:ns:keyprov:dskpp:prf-sha256">
Jc4VsNODYXgfbDmTn9qQZgcL3cKoa//j/NRT7sTpKOM=
</dskpp:Mac>
</dskpp:KeyProvServerFinished>
Doherty, et al. Standards Track [Page 97]
^L
RFC 6063 DSKPP December 2010
Appendix C. Integration with PKCS #11
A DSKPP Client that needs to communicate with a connected
cryptographic module to perform a DSKPP exchange MAY use PKCS #11
[PKCS-11] as a programming interface as described herein. This
appendix forms an informative part of the document.
C.1. The Four-Pass Variant
When performing four-pass DSKPP with a cryptographic module using the
PKCS #11 programming interface, the procedure described in
[CT-KIP-P11], Appendix B, is RECOMMENDED.
C.2. The Two-Pass Variant
A suggested procedure to perform two-pass DSKPP with a cryptographic
module through the PKCS #11 interface using the mechanisms defined in
[CT-KIP-P11] is as follows:
a. On the client side,
1. The client selects a suitable slot and token (e.g., through
use of the <DeviceIdentifier> or the <PlatformInfo> element
of the DSKPP trigger message).
2. A nonce R is generated, e.g., by calling C_SeedRandom and
C_GenerateRandom.
3. The client sends its first message to the server, including
the nonce R.
b. On the server side,
1. A generic key K_PROV = K_TOKEN | K_MAC (where '|' denotes
concatenation) is generated, e.g., by calling C_GenerateKey
(using key type CKK_GENERIC_SECRET). The template for K_PROV
MUST allow it to be exported (but only in wrapped form, i.e.,
CKA_SENSITIVE MUST be set to CK_TRUE and CKA_EXTRACTABLE MUST
also be set to CK_TRUE), and also to be used for further key
derivation. From K, a token key K_TOKEN of suitable type is
derived by calling C_DeriveKey using the PKCS #11 mechanism
CKM_EXTRACT_KEY_FROM_KEY and setting the CK_EXTRACT_PARAMS to
the first bit of the generic secret key (i.e., set to 0).
Likewise, a MAC key K_MAC is derived from K_PROV by calling
C_DeriveKey using the CKM_EXTRACT_KEY_FROM_KEY mechanism,
this time setting CK_EXTRACT_PARAMS to the length of K_PROV
(in bits) divided by two.
Doherty, et al. Standards Track [Page 98]
^L
RFC 6063 DSKPP December 2010
2. The server wraps K_PROV with either the public key of the
DSKPP Client or device, the pre-shared secret key, or the
derived shared secret key by using C_WrapKey. If use of the
DSKPP key wrap algorithm has been negotiated, then the
CKM_KIP_WRAP mechanism MUST be used to wrap K. When calling
C_WrapKey, the hKey handle in the CK_KIP_PARAMS structure
MUST be set to NULL_PTR. The pSeed parameter in the
CK_KIP_PARAMS structure MUST point to the nonce R provided by
the DSKPP Client, and the ulSeedLen parameter MUST indicate
the length of R. The hWrappingKey parameter in the call to
C_WrapKey MUST be set to refer to the key wrapping key.
3. Next, the server needs to calculate a MAC using K_MAC. If
use of the DSKPP MAC algorithm has been negotiated, then the
MAC is calculated by calling C_SignInit with the CKM_KIP_MAC
mechanism followed by a call to C_Sign. In the call to
C_SignInit, K_MAC MUST be the signature key, the hKey
parameter in the CK_KIP_PARAMS structure MUST be set to
NULL_PTR, the pSeed parameter of the CT_KIP_PARAMS structure
MUST be set to NULL_PTR, and the ulSeedLen parameter MUST be
set to zero. In the call to C_Sign, the pData parameter MUST
be set to the concatenation of the string ServerID and the
nonce R, and the ulDataLen parameter MUST be set to the
length of the concatenated string. The desired length of the
MAC MUST be specified through the pulSignatureLen parameter
and MUST be set to the length of R.
4. If the server also needs to authenticate its message (due to
an existing K_TOKEN being replaced), the server MUST
calculate a second MAC. Again, if use of the DSKPP MAC
algorithm has been negotiated, then the MAC is calculated by
calling C_SignInit with the CKM_KIP_MAC mechanism followed by
a call to C_Sign. In this call to C_SignInit, the K_MAC'
existing before this DSKPP run MUST be the signature key (the
implementation may specify K_MAC' to be the value of the
K_TOKEN that is being replaced, or a version of K_MAC from
the previous protocol run), the hKey parameter in the
CK_KIP_PARAMS structure MUST be set to NULL, the pSeed
parameter of the CT_KIP_PARAMS structure MUST be set to
NULL_PTR, and the ulSeedLen parameter MUST be set to zero.
In the call to C_Sign, the pData parameter MUST be set to the
concatenation of the string ServerID and the nonce R, and the
ulDataLen parameter MUST be set to the length of concatenated
string. The desired length of the MAC MUST be specified
through the pulSignatureLen parameter and MUST be set to the
length of R.
Doherty, et al. Standards Track [Page 99]
^L
RFC 6063 DSKPP December 2010
5. The server sends its message to the client, including the
wrapped key K_TOKEN, the MAC and possibly also the
authenticating MAC.
c. On the client side,
1. The client calls C_UnwrapKey to receive a handle to K. After
this, the client calls C_DeriveKey twice: once to derive
K_TOKEN and once to derive K_MAC. The client MUST use the
same mechanism (CKM_EXTRACT_KEY_FROM_KEY) and the same
mechanism parameters as used by the server above. When
calling C_UnwrapKey and C_DeriveKey, the pTemplate parameter
MUST be used to set additional key attributes in accordance
with local policy and as negotiated and expressed in the
protocol. In particular, the value of the <KeyID> element in
the server's response message MAY be used as CKA_ID for
K_TOKEN. The key K_PROV MUST be destroyed after deriving
K_TOKEN and K_MAC.
2. The MAC is verified in a reciprocal fashion as it was
generated by the server. If use of the CKM_KIP_MAC mechanism
has been negotiated, then in the call to C_VerifyInit, the
hKey parameter in the CK_KIP_PARAMS structure MUST be set to
NULL_PTR, the pSeed parameter MUST be set to NULL_PTR, and
ulSeedLen MUST be set to 0. The hKey parameter of
C_VerifyInit MUST refer to K_MAC. In the call to C_Verify,
pData MUST be set to the concatenation of the string ServerID
and the nonce R, and the ulDataLen parameter MUST be set to
the length of the concatenated string, pSignature to the MAC
value received from the server, and ulSignatureLen to the
length of the MAC. If the MAC does not verify the protocol
session ends with a failure. The token MUST be constructed
to not "commit" to the new K_TOKEN or the new K_MAC unless
the MAC verifies.
3. If an authenticating MAC was received (REQUIRED if the new
K_TOKEN will replace an existing key on the token), then it
is verified in a similar vein but using the K_MAC' associated
with this server and existing before the protocol run (the
implementation may specify K_MAC' to be the value of the
K_TOKEN that is being replaced, or a version of K_MAC from
the previous protocol run). Again, if the MAC does not
verify the protocol session ends with a failure, and the
token MUST be constructed not to "commit" to the new K_TOKEN
or the new K_MAC unless the MAC verifies.
Doherty, et al. Standards Track [Page 100]
^L
RFC 6063 DSKPP December 2010
Appendix D. Example of DSKPP-PRF Realizations
D.1. Introduction
This example appendix defines DSKPP-PRF in terms of AES [FIPS197-AES]
and HMAC [RFC2104]. This appendix forms a normative part of the
document.
D.2. DSKPP-PRF-AES
D.2.1. Identification
For cryptographic modules supporting this realization of DSKPP-PRF,
the following URN MUST be used to identify this algorithm in DSKPP:
urn:ietf:params:xml:ns:keyprov:dskpp:prf-aes-128
When this URN is used to identify the encryption algorithm, the
method for encryption of R_C values described in Section 4.2.4 MUST
be used.
D.2.2. Definition
DSKPP-PRF-AES (k, s, dsLen)
Input:
k Encryption key to use
s Octet string consisting of randomizing material. The
length of the string s is sLen.
dsLen Desired length of the output
Output:
DS A pseudorandom string, dsLen-octets long
Steps:
1. Let bLen be the output block size of AES in octets:
bLen = (AES output block length in octets)
(normally, bLen = 16)
2. If dsLen > (2**32 - 1) * bLen, output "derived data too long" and
stop
Doherty, et al. Standards Track [Page 101]
^L
RFC 6063 DSKPP December 2010
3. Let n be the number of bLen-octet blocks in the output data,
rounding up, and let j be the number of octets in the last block:
n = CEILING( dsLen / bLen)
j = dsLen - (n - 1) * bLen
4. For each block of the pseudorandom string DS, apply the function
F defined below to the key k, the string s and the block index to
compute the block:
B1 = F (k, s, 1) ,
B2 = F (k, s, 2) ,
...
Bn = F (k, s, n)
The function F is defined in terms of the CMAC construction from
[NIST-SP800-38B], using AES as the block cipher:
F (k, s, i) = CMAC-AES (k, INT (i) || s)
where INT (i) is a four-octet encoding of the integer i, most
significant octet first, and the output length of CMAC is set to
bLen.
Concatenate the blocks and extract the first dsLen octets to produce
the desired data string DS:
DS = B1 || B2 || ... || Bn<0..j-1>
Output the derived data DS.
D.2.3. Example
If we assume that dsLen = 16, then:
n = 16 / 16 = 1
j = 16 - (1 - 1) * 16 = 16
DS = B1 = F (k, s, 1) = CMAC-AES (k, INT (1) || s)
Doherty, et al. Standards Track [Page 102]
^L
RFC 6063 DSKPP December 2010
D.3. DSKPP-PRF-SHA256
D.3.1. Identification
For cryptographic modules supporting this realization of DSKPP-PRF,
the following URN MUST be used to identify this algorithm in DSKPP:
urn:ietf:params:xml:ns:keyprov:dskpp:prf-sha256
When this URN is used to identify the encryption algorithm to use,
the method for encryption of R_C values described in Section 4.2.4
MUST be used.
D.3.2. Definition
DSKPP-PRF-SHA256 (k, s, dsLen)
Input:
k Encryption key to use
s Octet string consisting of randomizing material. The
length of the string s is sLen.
dsLen Desired length of the output
Output:
DS A pseudorandom string, dsLen-octets long
Steps:
1. Let bLen be the output size of SHA-256 in octets of [FIPS180-SHA]
(no truncation is done on the HMAC output):
bLen = 32
(normally, bLen = 16)
2. If dsLen > (2**32 - 1) * bLen, output "derived data too long" and
stop
3. Let n be the number of bLen-octet blocks in the output data,
rounding up, and let j be the number of octets in the last block:
n = CEILING( dsLen / bLen)
j = dsLen - (n - 1) * bLen
4. For each block of the pseudorandom string DS, apply the function
F defined below to the key k, the string s and the block index to
compute the block:
Doherty, et al. Standards Track [Page 103]
^L
RFC 6063 DSKPP December 2010
B1 = F (k, s, 1),
B2 = F (k, s, 2),
...
Bn = F (k, s, n)
The function F is defined in terms of the HMAC construction from
[RFC2104], using SHA-256 as the digest algorithm:
F (k, s, i) = HMAC-SHA256 (k, INT (i) || s)
where INT (i) is a four-octet encoding of the integer i, most
significant octet first, and the output length of HMAC is set to
bLen.
Concatenate the blocks and extract the first dsLen octets to produce
the desired data string DS:
DS = B1 || B2 || ... || Bn<0..j-1>
Output the derived data DS.
D.3.3. Example
If we assume that sLen = 256 (two 128-octet long values) and dsLen =
16, then:
n = CEILING( 16 / 32 ) = 1
j = 16 - (1 - 1) * 32 = 16
B1 = F (k, s, 1) = HMAC-SHA256 (k, INT (1) || s)
DS = B1<0 ... 15>
That is, the result will be the first 16 octets of the HMAC output.
Doherty, et al. Standards Track [Page 104]
^L
RFC 6063 DSKPP December 2010
Authors' Addresses
Andrea Doherty
RSA, The Security Division of EMC
174 Middlesex Turnpike
Bedford, MA 01730
USA
EMail: andrea.doherty@rsa.com
Mingliang Pei
VeriSign, Inc.
487 E. Middlefield Road
Mountain View, CA 94043
USA
EMail: mpei@verisign.com
Salah Machani
Diversinet Corp.
2225 Sheppard Avenue East, Suite 1801
Toronto, Ontario M2J 5C2
Canada
EMail: smachani@diversinet.com
Magnus Nystrom
Microsoft Corp.
One Microsoft Way
Redmond, WA 98052
USA
EMail: mnystrom@microsoft.com
Doherty, et al. Standards Track [Page 105]
^L
|