summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc6278.txt
blob: 913c50120a61915172ca2e483d4a95202b65541a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
Internet Engineering Task Force (IETF)                         J. Herzog
Request for Comments: 6278                                     R. Khazan
Category: Informational                           MIT Lincoln Laboratory
ISSN: 2070-1721                                                June 2011


  Use of Static-Static Elliptic Curve Diffie-Hellman Key Agreement in
                      Cryptographic Message Syntax

Abstract

   This document describes how to use the 'static-static Elliptic Curve
   Diffie-Hellman key-agreement scheme (i.e., Elliptic Curve Diffie-
   Hellman where both participants use static Diffie-Hellman values)
   with the Cryptographic Message Syntax.  In this form of key
   agreement, the Diffie-Hellman values of both the sender and receiver
   are long-term values contained in certificates.

Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for informational purposes.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Not all documents
   approved by the IESG are a candidate for any level of Internet
   Standard; see Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc6278.


















Herzog & Khazan               Informational                     [Page 1]
^L
RFC 6278                Static-Static ECDH in CMS              June 2011


Copyright Notice

   Copyright (c) 2011 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents

   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1. Introduction ....................................................2
      1.1. Requirements Terminology ...................................5
   2. EnvelopedData Using Static-Static ECDH ..........................5
      2.1. Fields of the KeyAgreeRecipientInfo ........................5
      2.2. Actions of the Sending Agent ...............................6
      2.3. Actions of the Receiving Agent .............................7
   3. AuthenticatedData Using Static-Static ECDH ......................8
      3.1. Fields of the KeyAgreeRecipientInfo ........................8
      3.2. Actions of the Sending Agent ...............................8
      3.3. Actions of the Receiving Agent .............................9
   4. AuthEnvelopedData Using Static-Static ECDH ......................9
      4.1. Fields of the KeyAgreeRecipientInfo ........................9
      4.2. Actions of the Sending Agent ...............................9
      4.3. Actions of the Receiving Agent .............................9
   5. Comparison to RFC 5753 ..........................................9
   6. Requirements and Recommendations ...............................10
   7. Security Considerations ........................................12
   8. Acknowledgements ...............................................14
   9. References .....................................................14
      9.1. Normative References ......................................14
      9.2. Informative References ....................................15

1.  Introduction

   This document describes how to use the static-static Elliptic Curve
   Diffie-Hellman key-agreement scheme (i.e., Elliptic Curve Diffie-
   Hellman [RFC6090] where both participants use static Diffie-Hellman
   values) in the Cryptographic Message Syntax (CMS) [RFC5652].  The CMS
   is a standard notation and representation for cryptographic messages.
   The CMS uses ASN.1 notation [X.680] [X.681] [X.682] [X.683] to define



Herzog & Khazan               Informational                     [Page 2]
^L
RFC 6278                Static-Static ECDH in CMS              June 2011


   a number of structures that carry both cryptographically protected
   information and key-management information regarding the keys used.
   Of particular interest here are three structures:

   o  EnvelopedData, which holds encrypted (but not necessarily
      authenticated) information [RFC5652],

   o  AuthenticatedData, which holds authenticated (MACed) information
      [RFC5652], and

   o  AuthEnvelopedData, which holds information protected by
      authenticated encryption: a cryptographic scheme that combines
      encryption and authentication [RFC5083].

   All three of these types share the same basic structure.  First, a
   fresh symmetric key is generated.  This symmetric key has a different
   name that reflects its usage in each of the three structures.
   EnvelopedData uses a content-encryption key (CEK); AuthenticatedData
   uses an authentication key; AuthEnvelopedData uses a content-
   authenticated-encryption key.  The originator uses the symmetric key
   to cryptographically protect the content.  The symmetric key is then
   wrapped for each recipient; only the intended recipient has access to
   the private keying material necessary to unwrap the symmetric key.
   Once unwrapped, the recipient uses the symmetric key to decrypt the
   content, check the authenticity of the content, or both.  The CMS
   supports several different approaches to symmetric key wrapping,
   including:

   o  key transport: the symmetric key is encrypted using the public
      encryption key of some recipient,

   o  key-encryption key: the symmetric key is encrypted using a
      previously distributed symmetric key, and

   o  key agreement: the symmetric key is encrypted using a key-
      encryption key (KEK) created using a key-agreement scheme and a
      key-derivation function (KDF).

   One such key-agreement scheme is the Diffie-Hellman algorithm
   [RFC2631], which uses group theory to produce a value known only to
   its two participants.  In this case, the participants are the
   originator and one of the recipients.  Each participant produces a
   private value and a public value, and each participant can produce
   the shared secret value from their own private value and their
   counterpart's public value.  There are some variations on the basic
   algorithm:





Herzog & Khazan               Informational                     [Page 3]
^L
RFC 6278                Static-Static ECDH in CMS              June 2011


   o  The basic algorithm typically uses the group 'Z mod p', meaning
      the set of integers modulo some prime p.  One can also use an
      elliptic curve group, which allows for shorter messages.

   o  Over elliptic curve groups, the standard algorithm can be extended
      to incorporate the 'cofactor' of the group.  This method, called
      'cofactor Elliptic Curve Diffie-Hellman' [SP800-56A] can prevent
      certain attacks possible in the elliptic curve group.

   o  The participants can generate fresh new public/private values
      (called ephemeral values) for each run of the algorithm, or they
      can re-use long-term values (called static values).  Ephemeral
      values add randomness to the resulting private value, while static
      values can be embedded in certificates.  The two participants do
      not need to use the same kind of value: either participant can use
      either type.  In 'ephemeral-static' Diffie-Hellman, for example,
      the sender uses an ephemeral public/private pair value while the
      receiver uses a static pair.  In 'static-static' Diffie-Hellman,
      on the other hand, both participants use static pairs.  (Receivers
      cannot use ephemeral values in this setting, and so we ignore
      ephemeral-ephemeral and static-ephemeral Diffie-Hellman in this
      document.)

   Several of these variations are already described in existing CMS
   standards; for example, [RFC3370] contains the conventions for using
   ephemeral-static and static-static Diffie-Hellman over the 'basic' (Z
   mod p) group.  [RFC5753] contains the conventions for using
   ephemeral-static Diffie-Hellman over elliptic curves (both standard
   and cofactor methods).  It does not, however, contain conventions for
   using either method of static-static Elliptic Curve Diffie-Hellman,
   preferring to discuss the Elliptic Curve Menezes-Qu-Vanstone (ECMQV)
   algorithm instead.

   In this document, we specify the conventions for using static-static
   Elliptic Curve Diffie-Hellman (ECDH) for both standard and cofactor
   methods.  Our motivation stems from the fact that ECMQV has been
   removed from the National Security Agency's Suite B of cryptographic
   algorithms and will therefore be unavailable to some participants.
   These participants can use ephemeral-static Elliptic Curve Diffie-
   Hellman, of course, but ephemeral-static Diffie-Hellman does not
   provide source authentication.  The CMS does allow the application of
   digital signatures for source authentication, but this alternative is
   available only to those participants with certified signature keys.
   By specifying conventions for static-static Elliptic Curve Diffie-
   Hellman in this document, we present a third alternative for source
   authentication, available to those participants with certified
   Elliptic Curve Diffie-Hellman keys.




Herzog & Khazan               Informational                     [Page 4]
^L
RFC 6278                Static-Static ECDH in CMS              June 2011


   We note that like ephemeral-static ECDH, static-static ECDH creates a
   secret key shared by the sender and receiver.  Unlike ephemeral-
   static ECDH, however, static-static ECDH uses a static key pair for
   the sender.  Each of the three CMS structures discussed in this
   document (EnvelopedData, AuthenticatedData, and AuthEnvelopedData)
   uses static-static ECDH to achieve different goals:

   o  EnvelopedData uses static-static ECDH to provide data
      confidentiality.  It will not necessarily, however, provide data
      authenticity.

   o  AuthenticatedData uses static-static ECDH to provide data
      authenticity.  It will not provide data confidentiality.

   o  AuthEnvelopedData uses static-static ECDH to provide both
      confidentiality and data authenticity.

1.1.  Requirements Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

2.  EnvelopedData Using Static-Static ECDH

   If an implementation uses static-static ECDH with the CMS
   EnvelopedData, then the following techniques and formats MUST be
   used.  The fields of EnvelopedData are as in [RFC5652]; as static-
   static ECDH is a key-agreement algorithm, the RecipientInfo 'kari'
   choice is used.  When using static-static ECDH, the EnvelopedData
   originatorInfo field MAY include the certificate(s) for the EC public
   key(s) used in the formation of the pairwise key.

2.1.  Fields of the KeyAgreeRecipientInfo

   When using static-static ECDH with EnvelopedData, the fields of
   KeyAgreeRecipientInfo [RFC5652] are as follows:

   o  version MUST be 3.

   o  originator identifies the static EC public key of the sender.  It
      MUST be either issuerAndSerialNumber or subjectKeyIdentifier, and
      it MUST point to one of the sending agent's certificates.

   o  ukm MAY be present or absent.  However, message originators SHOULD
      include the ukm and SHOULD ensure that the value of ukm is unique
      to the message being sent.  As specified in [RFC5652],
      implementations MUST support ukm message recipient processing, so



Herzog & Khazan               Informational                     [Page 5]
^L
RFC 6278                Static-Static ECDH in CMS              June 2011


      interoperability is not a concern if the ukm is present or absent.
      The use of a fresh value for ukm will ensure that a different key
      is generated for each message between the same sender and
      receiver.  The ukm, if present, is placed in the entityUInfo field
      of the ECC-CMS-SharedInfo structure [RFC5753] and therefore used
      as an input to the key-derivation function.

   o  keyEncryptionAlgorithm MUST contain the object identifier of the
      key-encryption algorithm, which in this case is a key-agreement
      algorithm (see Section 5).  The parameters field contains
      KeyWrapAlgorithm.  The KeyWrapAlgorithm is the algorithm
      identifier that indicates the symmetric encryption algorithm used
      to encrypt the content-encryption key (CEK) with the key-
      encryption key (KEK) and any associated parameters (see
      Section 5).

   o  recipientEncryptedKeys contains an identifier and an encrypted CEK
      for each recipient.  The RecipientEncryptedKey
      KeyAgreeRecipientIdentifier MUST contain either the
      issuerAndSerialNumber identifying the recipient's certificate or
      the RecipientKeyIdentifier containing the subject key identifier
      from the recipient's certificate.  In both cases, the recipient's
      certificate contains the recipient's static ECDH public key.
      RecipientEncryptedKey EncryptedKey MUST contain the content-
      encryption key encrypted with the static-static ECDH-generated
      pairwise key-encryption key using the algorithm specified by the
      KeyWrapAlgorithm.

2.2.  Actions of the Sending Agent

   When using static-static ECDH with EnvelopedData, the sending agent
   first obtains the EC public key(s) and domain parameters contained in
   the recipient's certificate.  It MUST confirm the following at least
   once per recipient-certificate:

   o  that both certificates (the recipient's certificate and its own)
      contain public-key values with the same curve parameters, and

   o  that both of these public-key values are marked as appropriate for
      ECDH (that is, marked with algorithm identifiers id-ecPublicKey or
      id-ecDH [RFC5480]).

   The sender then determines whether to use standard or cofactor
   Diffie-Hellman.  After doing so, the sender then determines which
   hash algorithms to use for the key-derivation function.  It then
   chooses the keyEncryptionAlgorithm value that reflects these choices.
   It then determines:




Herzog & Khazan               Informational                     [Page 6]
^L
RFC 6278                Static-Static ECDH in CMS              June 2011


   o  an integer "keydatalen", which is the KeyWrapAlgorithm symmetric
      key size in bits, and

   o  the value of ukm, if used.

   The sender then determines a bit string "SharedInfo", which is the
   DER encoding of ECC-CMS-SharedInfo (see Section 7.2 of [RFC5753]).
   The sending agent then performs either the Elliptic Curve Diffie-
   Hellman operation of [RFC6090] (for standard Diffie-Hellman) or the
   Elliptic Curve Cryptography Cofactor Diffie-Hellman (ECC CDH)
   Primitive of [SP800-56A] (for cofactor Diffie-Hellman).  The sending
   agent then applies the simple hash-function construct of [X963]
   (using the hash algorithm identified in the key-agreement algorithm)
   to the results of the Diffie-Hellman operation and the SharedInfo
   string.  (This construct is also described in Section 3.6.1 of
   [SEC1].)  As a result, the sending agent obtains a shared secret bit
   string "K", which is used as the pairwise key-encryption key (KEK) to
   wrap the CEK for that recipient, as specified in [RFC5652].

2.3.  Actions of the Receiving Agent

   When using static-static ECDH with EnvelopedData, the receiving agent
   retrieves keyEncryptionAlgorithm to determine the key-agreement
   algorithm chosen by the sender, which will identify:

   o  the domain parameters of the curve used,

   o  whether standard or cofactor Diffie-Hellman was used, and

   o  which hash function was used for the KDF.

   The receiver then retrieves the sender's certificate identified in
   the rid field and extracts the EC public key(s) and domain parameters
   contained therein.  It MUST confirm the following at least once per
   sender certificate:

   o  that both certificates (the sender's certificate and its own)
      contain public-key values with the same curve parameters, and

   o  that both of these public-key values are marked as appropriate for
      ECDH (that is, marked with algorithm identifiers id-ecPublicKey or
      id-ecDH [RFC5480]).

   The receiver then determines whether standard or cofactor Diffie-
   Hellman was used.  The receiver then determines a bit string
   "SharedInfo", which is the DER encoding of ECC-CMS-SharedInfo (see
   Section 7.2 of [RFC5753]).  The receiving agent then performs either
   the Elliptic Curve Diffie-Hellman operation of [RFC6090] (for



Herzog & Khazan               Informational                     [Page 7]
^L
RFC 6278                Static-Static ECDH in CMS              June 2011


   standard Diffie-Hellman) or the Elliptic Curve Cryptography Cofactor
   Diffie-Hellman (ECC CDH) Primitive of [SP800-56A] (for cofactor
   Diffie-Hellman).  The receiving agent then applies the simple hash-
   function construct of [X963] (using the hash algorithm identified in
   the key-agreement algorithm) to the results of the Diffie-Hellman
   operation and the SharedInfo string.  (This construct is also
   described in Section 3.6.1 of [SEC1].)  As a result, the receiving
   agent obtains a shared secret bit string "K", which it uses as the
   pairwise key-encryption key to unwrap the CEK.

3.  AuthenticatedData Using Static-Static ECDH

   This section describes how to use the static-static ECDH key-
   agreement algorithm with AuthenticatedData.  When using static-static
   ECDH with AuthenticatedData, the fields of AuthenticatedData are as
   in [RFC5652], but with the following restrictions:

   o  macAlgorithm MUST contain the algorithm identifier of the message
      authentication code (MAC) algorithm.  This algorithm SHOULD be one
      of the following -- id-hmacWITHSHA224, id-hmacWITHSHA256,
      id-hmacWITHSHA384, or id-hmacWITHSHA512 -- and SHOULD NOT be
      hmac-SHA1.  (See Section 5.)

   o  digestAlgorithm MUST contain the algorithm identifier of the hash
      algorithm.  This algorithm SHOULD be one of the following --
      id-sha224, id-sha256, id-sha384, or id-sha512 -- and SHOULD NOT be
      id-sha1.  (See Section 5.)

   As static-static ECDH is a key-agreement algorithm, the RecipientInfo
   kari choice is used in the AuthenticatedData.  When using static-
   static ECDH, the AuthenticatedData originatorInfo field MAY include
   the certificate(s) for the EC public key(s) used in the formation of
   the pairwise key.

3.1.  Fields of the KeyAgreeRecipientInfo

   The AuthenticatedData KeyAgreeRecipientInfo fields are used in the
   same manner as the fields for the corresponding EnvelopedData
   KeyAgreeRecipientInfo fields of Section 2.1 of this document.  The
   authentication key is wrapped in the same manner as is described
   there for the content-encryption key.

3.2.  Actions of the Sending Agent

   The sending agent uses the same actions as for EnvelopedData with
   static-static ECDH, as specified in Section 2.2 of this document.





Herzog & Khazan               Informational                     [Page 8]
^L
RFC 6278                Static-Static ECDH in CMS              June 2011


3.3.  Actions of the Receiving Agent

   The receiving agent uses the same actions as for EnvelopedData with
   static-static ECDH, as specified in Section 2.3 of this document.

4.  AuthEnvelopedData Using Static-Static ECDH

   When using static-static ECDH with AuthEnvelopedData, the fields of
   AuthEnvelopedData are as in [RFC5083].  As static-static ECDH is a
   key-agreement algorithm, the RecipientInfo kari choice is used.  When
   using static-static ECDH, the AuthEnvelopedData originatorInfo field
   MAY include the certificate(s) for the EC public key used in the
   formation of the pairwise key.

4.1.  Fields of the KeyAgreeRecipientInfo

   The AuthEnvelopedData KeyAgreeRecipientInfo fields are used in the
   same manner as the fields for the corresponding EnvelopedData
   KeyAgreeRecipientInfo fields of Section 2.1 of this document.  The
   content-authenticated-encryption key is wrapped in the same manner as
   is described there for the content-encryption key.

4.2.  Actions of the Sending Agent

   The sending agent uses the same actions as for EnvelopedData with
   static-static ECDH, as specified in Section 2.2 of this document.

4.3.  Actions of the Receiving Agent

   The receiving agent uses the same actions as for EnvelopedData with
   static-static ECDH, as specified in Section 2.3 of this document.

5.  Comparison to RFC 5753

   This document defines the use of static-static ECDH for
   EnvelopedData, AuthenticatedData, and AuthEnvelopedData.  [RFC5753]
   defines ephemeral-static ECDH for EnvelopedData only.

   With regard to EnvelopedData, this document and [RFC5753] greatly
   parallel each other.  Both specify how to apply Elliptic Curve
   Diffie-Hellman and differ only on how the sender's public value is to
   be communicated to the recipient.  In [RFC5753], the sender provides
   the public value explicitly by including an OriginatorPublicKey value
   in the originator field of KeyAgreeRecipientInfo.  In this document,
   the sender includes a reference to a (certified) public value by
   including either an IssuerAndSerialNumber or SubjectKeyIdentifier
   value in the same field.  Put another way, [RFC5753] provides an
   interpretation of a KeyAgreeRecipientInfo structure where:



Herzog & Khazan               Informational                     [Page 9]
^L
RFC 6278                Static-Static ECDH in CMS              June 2011


   o  the keyEncryptionAlgorithm value indicates Elliptic Curve Diffie-
      Hellman, and

   o  the originator field contains an OriginatorPublicKey value.

   This document, on the other hand, provides an interpretation of a
   KeyAgreeRecipientInfo structure where:

   o  the keyEncryptionAlgorithm value indicates Elliptic Curve Diffie-
      Hellman, and

   o  the originator field contains either an IssuerAndSerialNumber
      value or a SubjectKeyIdentifier value.

   AuthenticatedData or AuthEnvelopedData messages, on the other hand,
   are not given any form of ECDH by [RFC5753].  This is appropriate:
   that document only defines ephemeral-static Diffie-Hellman, and this
   form of Diffie-Hellman does not (inherently) provide any form of data
   authentication or data-origin authentication.  This document, on the
   other hand, requires that the sender use a certified public value.
   Thus, this form of key agreement provides implicit key authentication
   and, under some limited circumstances, data-origin authentication.
   (See Section 7.)

   This document does not define any new ASN.1 structures or algorithm
   identifiers.  It provides new ways to interpret structures from
   [RFC5652] and [RFC5753], and it allows previously defined algorithms
   to be used under these new interpretations.  Specifically:

   o  The ECDH key-agreement algorithm identifiers from [RFC5753] define
      only how Diffie-Hellman values are processed, and not where these
      values are created.  Therefore, they can be used for static-static
      ECDH with no changes.

   o  The key-wrap, MAC, and digest algorithms referenced in [RFC5753]
      describe how the secret key is to be used but not created.
      Therefore, they can be used with keys from static-static ECDH
      without modification.

6.  Requirements and Recommendations

   It is RECOMMENDED that implementations of this specification support
   AuthenticatedData and EnvelopedData.  Support for AuthEnvelopedData
   is OPTIONAL.

   Implementations that support this specification MUST support standard
   Elliptic Curve Diffie-Hellman, and these implementations MAY also
   support cofactor Elliptic Curve Diffie-Hellman.



Herzog & Khazan               Informational                    [Page 10]
^L
RFC 6278                Static-Static ECDH in CMS              June 2011


   In order to encourage interoperability, implementations SHOULD use
   the elliptic curve domain parameters specified by [RFC5480].

   Implementations that support standard static-static Elliptic Curve
   Diffie-Hellman:

   o  MUST support the dhSinglePass-stdDH-sha256kdf-scheme key-
      agreement algorithm;

   o  MAY support the dhSinglePass-stdDH-sha224kdf-scheme,
      dhSinglePass-stdDH-sha384kdf-scheme, and
      dhSinglePass-stdDH-sha512kdf-scheme key-agreement algorithms; and

   o  SHOULD NOT support the dhSinglePass-stdDH-sha1kdf-scheme
      algorithm.

   Other algorithms MAY also be supported.

   Implementations that support cofactor static-static Elliptic Curve
   Diffie-Hellman:

   o  MUST support the dhSinglePass-cofactorDH-sha256kdf-scheme key-
      agreement algorithm;

   o  MAY support the dhSinglePass-cofactorDH-sha224kdf-scheme,
      dhSinglePass-cofactorDH-sha384kdf-scheme, and
      dhSinglePass-cofactorDH-sha512kdf-scheme key-agreement algorithms;
      and

   o  SHOULD NOT support the dhSinglePass-cofactorDH-sha1kdf-scheme
      algorithm.

   In addition, all implementations:

   o  MUST support the id-aes128-wrap key-wrap algorithm and the
      id-aes128-cbc content-encryption algorithm;

   o  MAY support:

      *  the id-aes192-wrap and id-aes256-wrap key-wrap algorithms;

      *  the id-aes128-CCM, id-aes192-CCM, id-aes256-CCM, id-aes128-GCM,
         id-aes192-GCM, and id-aes256-GCM authenticated-encryption
         algorithms; and

      *  the id-aes192-cbc and id-aes256-cbc content-encryption
         algorithms.




Herzog & Khazan               Informational                    [Page 11]
^L
RFC 6278                Static-Static ECDH in CMS              June 2011


   o  SHOULD NOT support the id-alg-CMS3DESwrap key-wrap algorithm or
      the des-ede3-cbc content-encryption algorithms.

   (All algorithms above are defined in [RFC3370], [RFC3565], [RFC5084],
   and [RFC5753].)  Unless otherwise noted above, other algorithms MAY
   also be supported.

7.  Security Considerations

   All security considerations in Section 9 of [RFC5753] apply.

   Extreme care must be used when using static-static Diffie-Hellman
   (either standard or cofactor) without the use of some per-message
   value in the ukm.  As described in [RFC5753], the ukm value (if
   present) will be embedded in an ECC-CMS-SharedInfo structure, and the
   DER encoding of this structure will be used as the 'SharedInfo' input
   to the key-derivation function of [X963].  The purpose of this input
   is to add a message-unique value to the key-distribution function so
   that two different sessions of static-static ECDH between a given
   pair of agents result in independent keys.  If the ukm value is not
   used or is re-used, on the other hand, then the ECC-CMS-SharedInfo
   structure (and 'SharedInfo' input) will likely not vary from message
   to message.  In this case, the two agents will re-use the same keying
   material across multiple messages.  This is considered to be bad
   cryptographic practice and may open the sender to attacks on Diffie-
   Hellman (e.g., the 'small subgroup' attack [MenezesUstaoglu] or
   other, yet-undiscovered attacks).

   It is for these reasons that Section 2.1 states that message senders
   SHOULD include the ukm and SHOULD ensure that the value of ukm is
   unique to the message being sent.  One way to ensure the uniqueness
   of the ukm is for the message sender to choose a 'sufficiently long'
   random string for each message (where, as a rule of thumb, a
   'sufficiently long' string is one at least as long as the keys used
   by the key-wrap algorithm identified in the keyEncryptionAlgorithm
   field of the KeyAgreeRecipientInfo structure).  However, other
   methods (such as a counter) are possible.  Also, applications that
   cannot tolerate the inclusion of per-message information in the ukm
   (due to bandwidth requirements, for example) SHOULD NOT use static-
   static ECDH for a recipient without ascertaining that the recipient
   knows the private value associated with their certified Diffie-
   Hellman value.

   Static-static Diffie-Hellman, when used as described in this
   document, does not necessarily provide data-origin authentication.
   Consider, for example, the following sequence of events:





Herzog & Khazan               Informational                    [Page 12]
^L
RFC 6278                Static-Static ECDH in CMS              June 2011


   o  Alice sends an AuthEnvelopedData message to both Bob and Mallory.
      Furthermore, Alice uses a static-static DH method to transport the
      content-authenticated-encryption key to Bob, and some arbitrary
      method to transport the same key to Mallory.

   o  Mallory intercepts the message and prevents Bob from receiving it.

   o  Mallory recovers the content-authenticated-encryption key from the
      message received from Alice.  Mallory then creates new plaintext
      of her choice, and encrypts it using the same authenticated-
      encryption algorithm and the same content-authenticated-encryption
      key used by Alice.

   o  Mallory then replaces the EncryptedContentInfo and
      MessageAuthenticationCode fields of Alice's message with the
      values Mallory just generated.  She may additionally remove her
      RecipientInfo value from Alice's message.

   o  Mallory sends the modified message to Bob.

   o  Bob receives the message, validates the static-static DH values,
      and decrypts/authenticates the message.

   At this point, Bob has received and validated a message that appears
   to have been sent by Alice, but whose content was chosen by Mallory.
   Mallory may not even be an apparent receiver of the modified message.
   Thus, this use of static-static Diffie-Hellman does not necessarily
   provide data-origin authentication.  (We note that this example does
   not also contradict either confidentiality or data authentication:
   Alice's message was not received by anyone not intended by Alice, and
   Mallory's message was not modified before reaching Bob.)

   More generally, the data origin may not be authenticated unless:

   o  it is a priori guaranteed that the message in question was sent to
      exactly one recipient, or

   o  data-origin authentication is provided by some other mechanism
      (such as digital signatures).

   However, we also note that this lack of authentication is not a
   product of static-static ECDH per se, but is inherent in the way key-
   agreement schemes are used in the AuthenticatedData and
   AuthEnvelopedData structures of the CMS.

   When two parties are communicating using static-static ECDH as
   described in this document, and either party's asymmetric keys have
   been centrally generated, it is possible for that party's central



Herzog & Khazan               Informational                    [Page 13]
^L
RFC 6278                Static-Static ECDH in CMS              June 2011


   infrastructure to decrypt the communication (for application-layer
   network monitoring or filtering, for example).  By way of contrast:
   were ephemeral-static ECDH to be used instead, such decryption by the
   sender's infrastructure would not be possible (though it would remain
   possible for the infrastructure of any recipient).

8.  Acknowledgements and Disclaimer

   This work is sponsored by the United States Air Force under Air Force
   Contract FA8721-05-C-0002.  Opinions, interpretations, conclusions
   and recommendations are those of the authors and are not necessarily
   endorsed by the United States Government.

   The authors would like to thank Jim Schaad, Russ Housley, Sean
   Turner, Brian Weis, Rene Struik, Brian Carpenter, David McGrew, and
   Stephen Farrell for their helpful comments and suggestions.  We would
   also like to thank Jim Schaad for describing to us the attack
   described in Section 7.

9.  References

9.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC3370]  Housley, R., "Cryptographic Message Syntax (CMS)
              Algorithms", RFC 3370, August 2002.

   [RFC3565]  Schaad, J., "Use of the Advanced Encryption Standard (AES)
              Encryption Algorithm in Cryptographic Message Syntax
              (CMS)", RFC 3565, July 2003.

   [RFC5083]  Housley, R., "Cryptographic Message Syntax (CMS)
              Authenticated-Enveloped-Data Content Type", RFC 5083,
              November 2007.

   [RFC5084]  Housley, R., "Using AES-CCM and AES-GCM Authenticated
              Encryption in the Cryptographic Message Syntax (CMS)",
              RFC 5084, November 2007.

   [RFC5480]  Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
              "Elliptic Curve Cryptography Subject Public Key
              Information", RFC 5480, March 2009.

   [RFC5652]  Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
              RFC 5652, September 2009.




Herzog & Khazan               Informational                    [Page 14]
^L
RFC 6278                Static-Static ECDH in CMS              June 2011


   [RFC5753]  Turner, S. and D. Brown, "Use of Elliptic Curve
              Cryptography (ECC) Algorithms in Cryptographic Message
              Syntax (CMS)", RFC 5753, January 2010.

   [RFC6090]  McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
              Curve Cryptography Algorithms", RFC 6090, February 2011.

   [SP800-56A]
              Barker, E., Johnson, D., and M. Smid, "Recommendation for
              Pair-Wise Key Establishment Schemes Using Discrete
              Logarithm Cryptography (Revised)", NIST Special
              Publication (SP) 800-56A, March 2007.

   [X963]     "Public Key Cryptography for the Financial Services
              Industry, Key Agreement and Key Transport Using Elliptic
              Curve Cryptography", ANSI X9.63, 2001.

9.2.  Informative References

   [MenezesUstaoglu]
              Menezes, A. and B. Ustaoglu, "On Reusing Ephemeral Keys in
              Diffie-Hellman Key Agreement Protocols", International
              Journal of Applied Cryptography, Vol. 2, No. 2, pp. 154-
              158, 2010.

   [RFC2631]  Rescorla, E., "Diffie-Hellman Key Agreement Method",
              RFC 2631, June 1999.

   [SEC1]     Standards for Efficient Cryptography Group (SECG), "SEC 1:
              Elliptic Curve Cryptography", Version 2.0, May 2009.

   [X.680]    ITU-T, "Information Technology - Abstract Syntax Notation
              One: Specification of Basic Notation",
              Recommendation X.680, ISO/IEC 8824-1:2002, 2002.

   [X.681]    ITU-T, "Information Technology - Abstract Syntax Notation
              One: Information Object Specification",
              Recommendation X.681, ISO/IEC 8824-2:2002, 2002.

   [X.682]    ITU-T, "Information Technology - Abstract Syntax Notation
              One: Constraint Specification", Recommendation X.682, ISO/
              IEC 8824-3:2002, 2002.

   [X.683]    ITU-T, "Information Technology - Abstract Syntax Notation
              One: Parameterization of ASN.1 Specifications",
              Recommendation X.683, ISO/IEC 8824-4:2002, 2002.





Herzog & Khazan               Informational                    [Page 15]
^L
RFC 6278                Static-Static ECDH in CMS              June 2011


Authors' Addresses

   Jonathan C. Herzog
   MIT Lincoln Laboratory
   244 Wood St.
   Lexington, MA  02144
   USA

   EMail: jherzog@ll.mit.edu


   Roger Khazan
   MIT Lincoln Laboratory
   244 Wood St.
   Lexington, MA  02144
   USA

   EMail: rkh@ll.mit.edu

































Herzog & Khazan               Informational                    [Page 16]
^L