1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
|
Internet Engineering Task Force (IETF) D. King, Ed.
Request for Comments: 6639 Old Dog Consulting
Category: Informational M. Venkatesan, Ed.
ISSN: 2070-1721 Aricent
June 2012
Multiprotocol Label Switching Transport Profile (MPLS-TP)
MIB-Based Management Overview
Abstract
A range of Management Information Base (MIB) modules has been
developed to help model and manage the various aspects of
Multiprotocol Label Switching (MPLS) networks. These MIB modules are
defined in separate documents that focus on the specific areas of
responsibility of the modules that they describe.
The MPLS Transport Profile (MPLS-TP) is a profile of MPLS
functionality specific to the construction of packet-switched
transport networks.
This document describes the MIB-based architecture for MPLS-TP,
indicates the interrelationships between different existing MIB
modules that can be leveraged for MPLS-TP network management, and
identifies areas where additional MIB modules are required.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are a candidate for any level of Internet
Standard; see Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc6639.
King & Venkatesan Informational [Page 1]
^L
RFC 6639 MPLS-TP MIB-Based Management Overview June 2012
Copyright Notice
Copyright (c) 2012 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
King & Venkatesan Informational [Page 2]
^L
RFC 6639 MPLS-TP MIB-Based Management Overview June 2012
Table of Contents
1. Introduction ....................................................4
1.1. MPLS-TP Management Function ................................5
2. Terminology .....................................................5
3. The SNMP Management Framework ...................................5
4. Overview of Existing Work .......................................6
4.1. MPLS Management Overview and Requirements ..................6
4.2. An Introduction to the MPLS and Pseudowire MIB Modules .....6
4.2.1. Structure of the MPLS MIB OID Tree ..................6
4.2.2. Textual Convention Modules ..........................8
4.2.3. Label Switched Path (LSP) Modules ...................8
4.2.4. Label Edge Router (LER) Modules .....................8
4.2.5. Label Switching Router (LSR) Modules ................9
4.2.6. Pseudowire Modules ..................................9
4.2.7. Routing and Traffic Engineering ....................10
4.2.8. Resiliency .........................................11
4.2.9. Fault Management and Performance Management ........11
4.2.10. MIB Module Interdependencies ......................13
4.2.11. Dependencies on External MIB Modules ..............15
5. Applicability of MPLS MIB Modules to MPLS-TP ...................16
5.1. MPLS-TP Tunnel ............................................17
5.1.1. Gap Analysis .......................................17
5.1.2. Recommendations ....................................17
5.2. MPLS-TP Pseudowire ........................................17
5.2.1. Gap Analysis .......................................17
5.2.2. Recommendations ....................................18
5.3. MPLS-TP Sections ..........................................18
5.3.1. Gap Analysis .......................................18
5.3.2. Recommendations ....................................18
5.4. MPLS-TP OAM ...............................................18
5.4.1. Gap Analysis .......................................18
5.4.2. Recommendations ....................................19
5.5. MPLS-TP Protection Switching and Recovery .................19
5.5.1. Gap Analysis .......................................19
5.5.2. Recommendations ....................................19
5.6. MPLS-TP Interfaces ........................................19
5.6.1. Gap Analysis .......................................19
5.6.2. Recommendations ....................................19
King & Venkatesan Informational [Page 3]
^L
RFC 6639 MPLS-TP MIB-Based Management Overview June 2012
6. An Introduction to the MPLS-TP MIB Modules .....................20
6.1. MPLS-TP MIB Modules .......................................20
6.1.1. New MIB Modules for MPLS-TP ........................20
6.1.2. Textual Conventions for MPLS-TP ....................20
6.1.3. Identifiers for MPLS-TP ............................21
6.1.4. LSR MIB Extensions for MPLS-TP .....................21
6.1.5. Tunnel Extensions for MPLS-TP ......................21
6.2. PWE3 MIB Modules for MPLS-TP ..............................21
6.2.1. New MIB Modules for MPLS-TP Pseudowires ............21
6.2.2. Pseudowire Textual Conventions for MPLS-TP .........21
6.2.3. Pseudowire Extensions for MPLS-TP ..................22
6.2.4. Pseudowire MPLS Extensions for MPLS-TP .............22
6.3. OAM MIB Modules for MPLS-TP ...............................22
6.3.1. New MIB Modules for OAM for MPLS-TP ................22
6.3.2. BFD MIB Module .....................................22
6.3.3. OAM MIB Module .....................................23
6.4. Protection Switching and Recovery MIB Modules for MPLS-TP .23
6.4.1. New MIB Modules for MPLS Protection
Switching and Recovery .............................23
6.4.2. Linear Protection Switching MIB Module .............23
6.4.3. Ring Protection Switching MIB Module ...............23
6.4.4. Mesh Protection Switching MIB Module ...............23
7. Management Options .............................................23
8. Security Considerations ........................................24
9. IANA Considerations ............................................24
10. Acknowledgements ..............................................24
11. Contributors' Addresses .......................................25
12. References ....................................................26
12.1. Normative References .....................................26
12.2. Informative References ...................................27
1. Introduction
The MPLS Transport Profile (MPLS-TP) is a packet transport technology
based on a profile of the MPLS functionality specific to the
construction of packet-switched transport networks. MPLS is
described in [RFC3031], and requirements for MPLS-TP are specified in
[RFC5654].
A range of Management Information Base (MIB) modules has been
developed to help model and manage the various aspects of
Multiprotocol Label Switching (MPLS) networks. These MIB modules are
defined in separate documents that focus on the specific areas of
responsibility for the modules that they describe.
King & Venkatesan Informational [Page 4]
^L
RFC 6639 MPLS-TP MIB-Based Management Overview June 2012
An MPLS-TP network can be operated via static provisioning of
transport paths, Label Switched Paths (LSPs) and pseudowires (PWs),
or the elective use of a Generalized MPLS (GMPLS) control plane to
support dynamic provisioning of transport paths, LSPs, and PWs.
This document describes the MIB-based management architecture for
MPLS, as extended for MPLS-TP. The document also indicates the
interrelationships between existing MIB modules that should be
leveraged for MPLS-TP network management and identifies areas where
additional MIB modules are required.
Note that [RFC5951] does not specify a preferred management interface
protocol to be used as the standard protocol for managing MPLS-TP
networks.
1.1. MPLS-TP Management Function
The management of the MPLS-TP networks is separable from that of its
client networks so that the same means of management can be used
regardless of the client. The management function of MPLS-TP
includes fault management, configuration management, performance
monitoring, and security management.
The purpose of the management function is to provide control and
monitoring of the MPLS transport profile protocol mechanisms and
procedures. The requirements for the network management
functionality are found in [RFC5951]. A description of the network
and element management architectures that can be applied to the
management of MPLS-based transport networks is found in [RFC5950].
2. Terminology
This document also uses terminology from the MPLS architecture
document [RFC3031], Pseudowire Emulation Edge-to-Edge (PWE3)
architecture [RFC3985], and the following MPLS-related MIB modules:
the MPLS-TC-STD-MIB [RFC3811], MPLS-LSR-STD-MIB [RFC3813],
MPLS-TE-STD-MIB [RFC3812], MPLS-LDP-STD-MIB [RFC3815],
MPLS-FTN-STD-MIB [RFC3814], and TE-LINK-STD-MIB [RFC4220].
3. The SNMP Management Framework
Managed objects are accessed via a virtual information store, termed
the Management Information Base or MIB. MIB objects are generally
accessed through the Simple Network Management Protocol (SNMP).
Objects in the MIB are defined using the mechanisms defined in the
Structure of Management Information (SMI).
King & Venkatesan Informational [Page 5]
^L
RFC 6639 MPLS-TP MIB-Based Management Overview June 2012
For a detailed overview of the documents that describe the current
Internet-Standard Management Framework, please refer to Section 7 of
[RFC3410].
This document discusses MIB modules that are compliant to the SMIv2,
which is described in [RFC2578], [RFC2579], and [RFC2580].
4. Overview of Existing Work
This section describes the existing tools and techniques for managing
and modeling MPLS networks, devices, and protocols. It is intended
to provide a description of the tool kit that is already available.
Section 5 of this document outlines the applicability of existing
MPLS MIB modules to MPLS-TP, describes the optional use of GMPLS MIB
modules in MPLS-TP networks, and examines the additional MIB modules
and objects that would be required for managing an MPLS-TP network.
4.1. MPLS Management Overview and Requirements
[RFC4378] outlines how data-plane protocols can assist in providing
the Operations, Administration, and Maintenance (OAM) requirements
outlined in [RFC4377] and how it is applied to the management
functions of fault, configuration, accounting, performance, and
security (commonly known as FCAPS) for MPLS networks.
[RFC4221] describes the management architecture for MPLS. In
particular, it describes how the managed objects defined in various
MPLS-related MIB modules model different aspects of MPLS, as well as
the interactions and dependencies between each of these MIB modules.
[RFC4377] describes the requirements for user- and data-plane OAM and
applications for MPLS.
[RFC5654] describes the requirements for the optional use of a
control plane to support dynamic provisioning of MPLS-TP transport
paths. The MPLS-TP LSP control plane is based on GMPLS and is
described in [RFC3945].
4.2. An Introduction to the MPLS and Pseudowire MIB Modules
4.2.1. Structure of the MPLS MIB OID Tree
The MPLS MIB Object Identifier (OID) tree has the following
structure. It is based on the tree originally set out in Section 4.1
of [RFC4221] and has been enhanced to include other relevant MIB
modules.
King & Venkatesan Informational [Page 6]
^L
RFC 6639 MPLS-TP MIB-Based Management Overview June 2012
mib-2 -- RFC 2578 [RFC2578]
|
+-transmission
| |
| +- mplsStdMIB
| | |
| | +- mplsTCStdMIB -- MPLS-TC-STD-MIB [RFC3811]
| | |
| | +- mplsLsrStdMIB -- MPLS-LSR-STD-MIB [RFC3813]
| | |
| | +- mplsTeStdMIB -- MPLS-TE-STD-MIB [RFC3812]
| | |
| | +- mplsLdpStdMIB -- MPLS-LDP-STD-MIB [RFC3815]
| | |
| | +- mplsLdpGenericStdMIB
| | | -- MPLS-LDP-GENERIC-STD-MIB [RFC3815]
| | |
| | +- mplsFTNStdMIB -- MPLS-FTN-STD-MIB [RFC3814]
| | |
| | +- gmplsTCStdMIB -- GMPLS-TC-STD-MIB [RFC4801]
| | |
| | +- gmplsTeStdMIB -- GMPLS-TE-STD-MIB [RFC4802]
| | |
| | +- gmplsLsrStdMIB -- GMPLS-LSR-STD-MIB [RFC4803]
| | |
| | +- gmplsLabelStdMIB -- GMPLS-LABEL-STD-MIB [RFC4803]
| |
| +- teLinkStdMIB -- TE-LINK-STD-MIB [RFC4220]
| |
| +- pwStdMIB -- PW-STD-MIB [RFC5601]
|
+- ianaGmpls -- IANA-GMPLS-TC-MIB [RFC4802]
|
+- ianaPwe3MIB -- IANA-PWE3-MIB [RFC5601]
|
+- pwEnetStdMIB -- PW-ENET-STD-MIB [RFC5603]
|
+- pwMplsStdMIB -- PW-MPLS-STD-MIB [RFC5602]
|
+- pwTDMMIB -- PW-TDM-MIB [RFC5604]
|
+- pwTcStdMIB -- PW-TC-STD-MIB [RFC5542]
Note: The OIDs for MIB modules are assigned and managed by IANA.
They can be found in the referenced MIB documents.
King & Venkatesan Informational [Page 7]
^L
RFC 6639 MPLS-TP MIB-Based Management Overview June 2012
4.2.2. Textual Convention Modules
The MPLS-TC-STD-MIB [RFC3811], GMPLS-TC-STD-MIB [RFC4801],
IANA-GMPLS-TC-MIB [RFC4802], and PW-TC-STD-MIB [RFC5542] contain the
Textual Conventions for MPLS and GMPLS networks. These Textual
Conventions should be imported by MIB modules that manage MPLS and
GMPLS networks. Section 4.2.11 highlights dependencies on additional
external MIB modules.
4.2.3. Label Switched Path (LSP) Modules
An LSP is a path over which a labeled packet travels across the
sequence of Label Switching Routers (LSRs) for a given Forward
Equivalence Class (FEC). When a packet, with or without a label,
arrives at an ingress Label Edge Router (LER) of an LSP, it is
encapsulated with the label corresponding to the FEC and sent across
the LSP. The labeled packet traverses the LSRs and arrives at the
egress LER of the LSP, where it gets forwarded, depending on the
packet type it came with. LSPs could be nested using label stacking,
such that an LSP could traverse another LSP. A more detailed
description of an LSP can be found in [RFC3031].
The MPLS-LSR-STD-MIB [RFC3813] describes the objects required to
define the LSP.
4.2.4. Label Edge Router (LER) Modules
Ingress and egress LSRs of an LSP are known as Label Edge Routers
(LERs). An ingress LER takes each incoming unlabeled or labeled
packet and encapsulates it with the corresponding label of the LSP it
represents, and then forwards it to the adjacent LSR of the LSP.
Each FEC is mapped to a label-forwarding entry, so that a packet
could be encapsulated with one or more label entries; this is
referred to as a label stack.
The packet traverses the LSP. Upon reaching the egress LER, further
action will be taken to handle the packet, depending on the type of
packet received. MPLS Architecture [RFC3031] details the
functionality of ingress and egress LERs.
The MPLS-FTN-STD-MIB [RFC3814] describes the managed objects for
mapping FEC to label bindings.
King & Venkatesan Informational [Page 8]
^L
RFC 6639 MPLS-TP MIB-Based Management Overview June 2012
4.2.5. Label Switching Router (LSR) Modules
A router that performs MPLS forwarding is known as an LSR. An LSR
receives a labeled packet and performs forwarding action based on the
label received.
The LSR maintains a mapping of an incoming label and incoming
interface to one or more outgoing labels and outgoing interfaces in
its forwarding database. When a labeled packet is received, the LSR
examines the topmost label in the label stack and then does a 'swap',
'push', or 'pop' operation based on the contents.
The MPLS-LSR-STD-MIB [RFC3813] describes the managed objects for
modeling an MPLS [RFC3031] LSR. The MPLS-LSR-STD-MIB [RFC3813]
contains the managed objects to maintain mapping of in-segments to
out-segments.
4.2.6. Pseudowire Modules
The pseudowire (PW) MIB architecture provides a layered modular model
into which any supported emulated service such as Frame Relay, ATM,
Ethernet, Time-Division Multiplexing (TDM), and Synchronous Optical
Network/Synchronous Digital Hierarchy (SONET/SDH) can be connected to
any supported Packet Switched Network (PSN) type. This MIB
architecture is modeled based on PW3 architecture [RFC3985].
The emulated service layer, generic PW layer, and PSN Virtual Circuit
(VC) layer constitute the different layers of the model. A
combination of the MIB modules belonging to each layer provides the
glue for mapping the emulated service onto the native PSN service.
At least three MIB modules, each belonging to a different layer, are
required to define a PW emulated service.
- The service-specific module is dependent on the emulated signal
type and helps in modeling the emulated service layer.
The PW-ENET-STD-MIB [RFC5603] describes a model for managing Ethernet
pseudowire services for transmission over a PSN. This MIB module is
generic and common to all types of PSNs supported in the PWE3
Architecture [RFC3985], which describes the transport and
encapsulation of L1 and L2 services over supported PSN types.
In particular, the MIB module associates a port or specific VLANs on
top of a physical Ethernet port or a virtual Ethernet interface (for
the Virtual Private LAN Service (VPLS)) to a point-to-point PW. It
is complementary to the PW-STD-MIB [RFC5601], which manages the
generic PW parameters common to all services, including all supported
PSN types.
King & Venkatesan Informational [Page 9]
^L
RFC 6639 MPLS-TP MIB-Based Management Overview June 2012
The PW-TDM-MIB [RFC5604] describes a model for managing TDM
pseudowires, i.e., TDM data encapsulated for transmission over a PSN.
The term "TDM" in this document is limited to the scope of
Plesiochronous Digital Hierarchy (PDH). It is currently specified to
carry any TDM signals in either Structure Agnostic Transport mode
(E1, T1, E3, and T3) or Structure Aware Transport mode (E1, T1, and
NxDS0) as defined in the PWE3 TDM Requirements document [RFC4197].
- The generic PW module configures general parameters of the PW that
are common to all types of emulated services and PSN types.
The PW-STD-MIB [RFC5601] defines a MIB module that can be used to
manage PW services for transmission over a PSN [RFC3931] [RFC4447].
This MIB module provides generic management of PWs that is common to
all types of PSN and PW services defined by the IETF PWE3 Working
Group.
- The PSN-specific module associates the PW with one or more
"tunnels" that carry the service over the PSN. There is a
different module for each type of PSN.
The PW-MPLS-STD-MIB [RFC5602] describes a model for managing
pseudowire services for transmission over different flavors of MPLS
tunnels. The generic PW MIB module [RFC5601] defines the parameters
global to the PW, regardless of the underlying PSN and emulated
service. This document is applicable for PWs that use the MPLS PSN
type in the PW-STD-MIB. Additionally, this document describes the
MIB objects that define pseudowire association to the MPLS PSN that
is not specific to the carried service.
Together, [RFC3811], [RFC3812], and [RFC3813] describe the modeling
of an MPLS tunnel and a tunnel's underlying cross-connects. This MIB
module supports MPLS Traffic Engineering (MPLS-TE) PSNs, non-TE MPLS
PSNs (an outer tunnel created by the Label Distribution Protocol
(LDP) or manually), and MPLS PW labels only (no outer tunnel).
4.2.7. Routing and Traffic Engineering
In MPLS traffic engineering, it's possible to specify explicit routes
or choose routes based on QoS metrics in setting up a path such that
some specific data can be routed around network hot spots. TE LSPs
can be set up through a management plane or a control plane.
The MPLS-TE-STD-MIB [RFC3812] describes managed objects for modeling
MPLS [RFC3031]-based traffic engineering. This MIB module should be
used in conjunction with the companion document [RFC3813] for MPLS-
based traffic engineering configuration and management.
King & Venkatesan Informational [Page 10]
^L
RFC 6639 MPLS-TP MIB-Based Management Overview June 2012
4.2.8. Resiliency
The purpose of MPLS resiliency is to ensure minimal interruption to
traffic when a failure occurs within the system or network.
Various components of MPLS resiliency solutions are as follows:
1) Graceful restart in LDP and RSVP-TE modules
2) Make before break
3) Protection switching for LSPs
4) Fast reroute for LSPs
5) PW redundancy
The MIB modules below only support MIB-based management for MPLS
resiliency.
MPLS Fast Reroute (FRR) is a restoration network resiliency mechanism
used in MPLS TE to redirect traffic onto the backup LSPs in tens of
milliseconds in case of link or node failure across the LSP.
The MPLS-FRR-GENERAL-STD-MIB [RFC6445] contains objects that apply to
any MPLS LSR implementing MPLS TE fast-reroute functionality.
The MPLS-FRR-ONE2ONE-STD-MIB [RFC6445] contains objects that apply to
the one-to-one backup method.
The MPLS-FRR-FACILITY-STD-MIB [RFC6445] contains objects that apply
to the facility backup method.
Protection switching mechanisms have been designed to provide network
resiliency for MPLS networks. Different types of protection
switching mechanisms, such as 1:1, 1:N, and 1+1, have been designed.
4.2.9. Fault Management and Performance Management
MPLS manages LSP and pseudowire faults through the use of LSP ping
[RFC4379], Virtual Circuit Connectivity Verification (VCCV)
[RFC5085], Bidirectional Forwarding Detection (BFD) for LSPs
[RFC5884], and BFD for VCCV [RFC5885] tools.
MPLS currently focuses on in and/or out packet counters, errored
packets, and discontinuity time.
King & Venkatesan Informational [Page 11]
^L
RFC 6639 MPLS-TP MIB-Based Management Overview June 2012
Some of the MPLS and pseudowire performance tables used for
performance management are given below.
The mplsTunnelPerfTable [RFC3812] provides several counters (e.g.,
packets forwarded, packets dropped because of errors) to measure the
performance of the MPLS tunnels.
The mplsInterfacePerfTable [RFC3813] provides performance information
(incoming and outgoing labels in use, and lookup failures) on a
per-interface basis.
The mplsInSegmentPerfTable [RFC3813] contains statistical information
(total packets received by the in-segment, total errored packets
received, total packets discarded, discontinuity time) for incoming
MPLS segments to an LSR.
The mplsOutSegmentPerfTable [RFC3813] contains statistical
information (total packets received, total errored packets received,
total packets discarded, discontinuity time) for outgoing MPLS
segments from an LSR.
The mplsFTNPerfTable [RFC3814] contains performance information for
the specified interface and an FTN entry mapped to this interface.
The mplsLdpEntityStatsTable [RFC3815] and mplsLdpSessionStatsTable
[RFC3815] contain statistical information (session attempts, errored
packets, notifications) about an LDP entity.
The pwPerfCurrentTable [RFC5601], pwPerfIntervalTable [RFC5601], and
pwPerf1DayIntervalTable [RFC5601] provide pseudowire performance
information (in and/or out packets) based on time (current interval,
preconfigured specific interval, 1-day interval).
The pwEnetStatsTable [RFC5603] contains statistical counters specific
for Ethernet PW.
The pwTDMPerfCurrentTable [RFC5604], pwTDMPerfIntervalTable
[RFC5604], and pwTDMPerf1DayIntervalTable [RFC5604] contain
statistical information accumulated per 15-minute, 24-hour, and 1-day
periods, respectively.
The gmplsTunnelErrorTable [RFC4802] and gmplsTunnelReversePerfTable
[RFC4802] provide information about performance, errored packets, and
in/out packet counters.
King & Venkatesan Informational [Page 12]
^L
RFC 6639 MPLS-TP MIB-Based Management Overview June 2012
4.2.10. MIB Module Interdependencies
This section provides an overview of the relationship between the
MPLS MIB modules for managing MPLS networks. More details of these
relationships are given below.
[RFC4221] mainly focuses on MPLS MIB module interdependencies. This
section also highlights GMPLS and PW MIB module interdependencies.
The relationship "A --> B" means that A depends on B and that MIB
module A uses an object, object identifier, or Textual Convention
defined in MIB module B, or that MIB module A contains a pointer
(index or RowPointer) to an object in MIB module B.
King & Venkatesan Informational [Page 13]
^L
RFC 6639 MPLS-TP MIB-Based Management Overview June 2012
+-------> MPLS-TC-STD-MIB <-----------------------------------------+
^ ^ ^
| | |
| MPLS-LSR-STD-MIB <--------------------------------+ |
| ^ |
| | |
+<----------------------- MPLS-LDP-STD-MIB ---------------->+ |
^ ^ ^ |
| | | |
+<-- MPLS-LDP-GENERIC-STD-MIB ------>+ | |
^ | |
| | |
+<------ MPLS-FTN-STD-MIB --------------------------------->+ |
^ | ^ |
| V | |
+<------------- MPLS-TE-STD-MIB -->+----------------------->+ |
^ GMPLS-TC-STD-MIB ------------>+
| ^ ^
| | |
+---+ +<-- GMPLS-LABEL-STD-MIB -->+
^ ^ ^ ^ ^
| | | | |
+----> PW-TC-STD-MIB | GMPLS-LSR-STD-MIB --------------->+
^ | ^ ^ ^
| | | | |
| IANA-PWE3-MIB | | | IANA-GMPLS-TC-MIB |
| ^ | | | ^ |
| | | | | | |
| | +<--- GMPLS-TE-STD-MIB ------------->+
| | ^ ^
+<--- PW-STD-MIB <------+ | |
^ ^ | |
| | | |
+<--- PW-ENET-STD-MIB ->+ | |
^ ^ | |
| | | |
| | | |
+<---------------- PW-MPLS-STD-MIB--------------------------------->+
Thus,
- All the MPLS MIB modules depend on the MPLS-TC-STD-MIB.
- All the GMPLS MIB modules depend on the GMPLS-TC-STD-MIB.
- All the PW MIB modules depend on the PW-TC-STD-MIB.
King & Venkatesan Informational [Page 14]
^L
RFC 6639 MPLS-TP MIB-Based Management Overview June 2012
- The MPLS-LDP-STD-MIB, MPLS-TE-STD-MIB, MPLS-FTN-STD-MIB,
GMPLS-LSR-STD-MIB, and PW-MPLS-STD-MIB contain references to
objects in the MPLS-LSR-STD-MIB.
- The MPLS-LDP-GENERIC-STD-MIB contains references to objects in the
MPLS-LDP-STD-MIB.
- The MPLS-FTN-STD-MIB, PW-MPLS-STD-MIB, and GMPLS-TE-STD-MIB
contain references to objects in the MPLS-TE-STD-MIB.
- The PW-MPLS-STD-MIB and PW-ENET-STD-MIB contain references to
objects in the PW-STD-MIB.
- The PW-STD-MIB contains references to objects in the
IANA-PWE3-MIB.
- The GMPLS-TE-STD-MIB contains references to objects in the
IANA-GMPLS-TC-MIB.
- The GMPLS-LSR-STD-MIB contains references to objects in the
GMPLS-LABEL-STD-MIB.
Note that there is a Textual Convention (MplsIndexType) defined in
the MPLS-LSR-STD-MIB that is imported by the MPLS-LDP-STD-MIB.
4.2.11. Dependencies on External MIB Modules
With the exception of the MPLS-TC-STD-MIB, all the MPLS MIB modules
have dependencies on the Interfaces MIB (also called the Interfaces
Group MIB or the IF-MIB) [RFC2863]. The MPLS-FTN-STD-MIB references
IP-capable interfaces on which received traffic is to be classified
using indexes in the Interfaces Table (ifTable) of the IF-MIB
[RFC2863]. The other MPLS MIB modules reference MPLS-capable
interfaces in the ifTable.
The IF-MIB [RFC2863] defines generic managed objects for managing
interfaces. The MPLS MIB modules contain media-specific extensions
to the Interfaces Group for managing MPLS interfaces.
The MPLS MIB modules assume the interpretation of the Interfaces
Group to be in accordance with [RFC2863], which states that the
ifTable contains information on the managed resource's interfaces and
that each sub-layer below the internetwork layer of a network
interface is considered an interface. Thus, the MPLS interface is
represented as an entry in the ifTable.
The interrelation of entries in the ifTable is defined by the
Interface Stack Group defined in [RFC2863].
King & Venkatesan Informational [Page 15]
^L
RFC 6639 MPLS-TP MIB-Based Management Overview June 2012
The MPLS MIB modules have dependencies on the TE-LINK-STD-MIB for
maintaining traffic engineering information.
The MPLS MIB modules depend on the Constrained Shortest Path First
(CSPF) component to obtain the path required for an MPLS tunnel to
reach the end point of the tunnel, and on the BFD component to verify
data-plane failures of LSPs and PWs.
Finally, all of the MIB modules import standard Textual Conventions
such as integers, strings, timestamps, etc., from the MIB modules in
which they are defined.
5. Applicability of MPLS MIB Modules to MPLS-TP
This section highlights gaps in existing MPLS MIB modules in order to
determine extensions or additional MIB modules that are required to
support MPLS-TP in MPLS networks.
[RFC5951] specifies the requirements for the management of equipment
used in networks supporting MPLS-TP. It also details the essential
network management capabilities for operating networks consisting of
MPLS-TP equipment.
[RFC5950] provides the network management framework for MPLS-TP. The
document explains how network elements and networks that support
MPLS-TP can be managed using solutions that satisfy the requirements
defined in [RFC5951]. The relationship between MPLS-TP management
and OAM is described in the MPLS-TP framework document [RFC5950].
The MPLS MIB documents MPLS-TE-STD-MIB [RFC3812], PW-STD-MIB
[RFC5601], and MPLS-LSR-STD-MIB [RFC3813], and their associated MIB
modules, are reused for MPLS-based transport network management.
Fault management and performance management form key parts of the OAM
function. MPLS-TP OAM is described in [RFC6371].
King & Venkatesan Informational [Page 16]
^L
RFC 6639 MPLS-TP MIB-Based Management Overview June 2012
5.1. MPLS-TP Tunnel
5.1.1. Gap Analysis
An MPLS-TP tunnel can be operated over IP and/or ITU-T Carrier Code
(ICC) environments. The points below capture the gaps in existing
MPLS MIB modules for managing MPLS-TP networks.
- IP-based environment
i. The MPLS-TE-STD-MIB [RFC3812] does not support the tunnel
Ingress/Egress identifier based on Global_ID and Node_ID
[RFC6370].
ii. The MPLS-TE-STD-MIB [RFC3812] does not support
co-routed/associated bidirectional tunnel configurations.
- ICC-based environment
i. The MPLS-TE-STD-MIB [RFC3812] does not support the tunnel LSR
identifier based on ICC.
5.1.2. Recommendations
- New MIB definitions may be created for Global_Node_ID and/or ICC
configurations.
- The MPLS-LSR-STD-MIB [RFC3813] module may be enhanced to identify
the next hop based on a Media Access Control (MAC) address for
environments that do not use IP. The mplsOutSegmentTable may be
extended to hold the MAC address.
- The MPLS-TE-STD-MIB [RFC3812] and MPLS-LSR-STD-MIB may be enhanced
to provide static and signaling MIB module extensions for
co-routed/associated bidirectional LSPs.
5.2. MPLS-TP Pseudowire
5.2.1. Gap Analysis
MPLS-TP pseudowire can be operated over IP and/or ICC environments.
The points below capture the gaps in existing PW MIB modules for
managing MPLS-TP networks.
[RFC6370] specifies an initial set of identifiers to be used in
MPLS-TP. These identifiers were chosen to be compatible with
existing MPLS, GMPLS, and PW definitions.
King & Venkatesan Informational [Page 17]
^L
RFC 6639 MPLS-TP MIB-Based Management Overview June 2012
- IP-based environment
i. The PW-STD-MIB [RFC5601] does not support the PW end point
identifier based on Global_ID and Node_ID.
ii. The PW-MPLS-STD-MIB [RFC5602] does not support operation over
co-routed/associated bidirectional tunnels.
- ICC-based environment
i. The PW-STD-MIB [RFC5601] does not support the PW end point
identifier based on ICC.
5.2.2. Recommendations
- The PW-MPLS-STD-MIB [RFC5602] can be enhanced to operate over
co-routed/associated bidirectional tunnels.
5.3. MPLS-TP Sections
5.3.1. Gap Analysis
The existing MPLS MIB modules do not support MPLS-TP sections.
5.3.2. Recommendations
Link-specific and/or path/segment-specific sections can be supported
by enhancing the IF-MIB [RFC2863], MPLS-TE-STD-MIB [RFC3812], and
PW-STD-MIB [RFC5601] MIB modules.
5.4. MPLS-TP OAM
5.4.1. Gap Analysis
MPLS manages LSP and pseudowire faults through LSP ping [RFC4379],
VCCV [RFC5085], BFD for LSPs [RFC5884], and BFD for VCCV [RFC5885]
tools.
The MPLS MIB modules do not support the following MPLS-TP OAM
functions:
o Continuity Check and Connectivity Verification
o Remote Defect Indication
o Alarm Reporting
o Lock Reporting
King & Venkatesan Informational [Page 18]
^L
RFC 6639 MPLS-TP MIB-Based Management Overview June 2012
o Lock Instruct
o Client Failure Indication
o Packet Loss Measurement
o Packet Delay Measurement
5.4.2. Recommendations
New MIB module for BFD can be created to address all the gaps
mentioned in Section 5.4.1.
5.5. MPLS-TP Protection Switching and Recovery
5.5.1. Gap Analysis
An important aspect that MPLS-TP technology provides is protection
switching. In general, the mechanism of protection switching can be
described as the substitution of a protection or standby facility for
a working or primary facility.
The MPLS MIB modules do not provide support for protection switching
and recovery in the following three topologies: linear, ring, and
mesh.
5.5.2. Recommendations
New MIB modules can be created to address all the gaps mentioned in
Section 5.5.1.
5.6. MPLS-TP Interfaces
5.6.1. Gap Analysis
As per [RFC6370], an LSR requires identification of the node itself
and of its interfaces. An interface is the attachment point to a
server layer MPLS-TP section or MPLS-TP tunnel.
The MPLS MIB modules do not provide support for configuring the
interfaces within the context of an operator.
5.6.2. Recommendations
New MIB definitions can be created to address the gaps mentioned in
Section 5.6.1.
King & Venkatesan Informational [Page 19]
^L
RFC 6639 MPLS-TP MIB-Based Management Overview June 2012
6. An Introduction to the MPLS-TP MIB Modules
This section highlights new MIB modules that have been identified as
being required for MPLS-TP. This section also provides an overview
of the purpose of each MIB module within the MIB documents, what it
can be used for, and how it relates to the other MIB modules.
Note that each new MIB module (apart from Textual Conventions
modules) will contain one or more Compliance Statements to indicate
which objects must be supported in what manner to claim a specific
level of compliance. Additional text, either in the documents that
define the MIB modules or in separate Applicability Statements, will
define which Compliance Statements need to be conformed to in order
to provide specific MPLS-TP functionality. This document does not
set any requirements in that respect, although some recommendations
are included in the sections that follow.
6.1. MPLS-TP MIB Modules
6.1.1. New MIB Modules for MPLS-TP
Four new MIB modules are identified as follows:
- Textual Conventions for MPLS-TP
- Identifiers for MPLS-TP
- LSR MIB Extensions for MPLS-TP
- Tunnel Extensions for MPLS-TP
Note that the MIB modules mentioned here are applicable for MPLS
operations as well.
6.1.2. Textual Conventions for MPLS-TP
A new MIB module needs to be written that will define Textual
Conventions [RFC2579] for MPLS-TP-related MIB modules. These
conventions allow multiple MIB modules to use the same syntax and
format to provide a concept that is shared between the MIB modules.
For example, a Maintenance Entity Group End Point (MEP) identifier is
used to identify a maintenance entity group end point within MPLS-TP
networks. The Textual Convention representing the MEP identifier
should be defined in a new Textual Convention MIB module.
All new extensions related to MPLS-TP are defined in the MIB module
and will be referenced by other MIB modules to support MPLS-TP.
King & Venkatesan Informational [Page 20]
^L
RFC 6639 MPLS-TP MIB-Based Management Overview June 2012
6.1.3. Identifiers for MPLS-TP
New identifiers describe managed objects that are used to model
common MPLS-TP identifiers [RFC6370].
6.1.4. LSR MIB Extensions for MPLS-TP
The MPLS-LSR-STD-MIB describes managed objects for modeling an MPLS
LSR. This puts it at the heart of the management architecture for
MPLS.
In the case of MPLS-TP, the MPLS-LSR-STD-MIB is extended to support
MPLS-TP LSPs, which are co-routed or associated bidirectionally.
This extended MIB is also applicable for modeling MPLS-TP tunnels.
6.1.5. Tunnel Extensions for MPLS-TP
The MPLS-TE-STD-MIB describes managed objects that are used to model
and manage MPLS-TE tunnels.
MPLS-TP tunnels are very similar to MPLS-TE tunnels but are co-routed
or associated bidirectionally.
The MPLS-TE-STD-MIB must be extended to support the MPLS-TP-specific
attributes for the tunnel.
6.2. PWE3 MIB Modules for MPLS-TP
This section provides an overview of pseudowire-extension MIB modules
used to meet MPLS-based transport network requirements.
6.2.1. New MIB Modules for MPLS-TP Pseudowires
Three new MIB modules are identified as follows:
- Pseudowire Textual Conventions for MPLS-TP
- Pseudowire Extensions for MPLS-TP
- Pseudowire MPLS Extensions for MPLS-TP
6.2.2. Pseudowire Textual Conventions for MPLS-TP
The PW-TC-STD-MIB defines Textual Conventions used for PW technology
and for PWE3 MIB modules. A new Textual Convention MIB module is
required to define textual definitions for MPLS-TP-specific
pseudowire attributes.
King & Venkatesan Informational [Page 21]
^L
RFC 6639 MPLS-TP MIB-Based Management Overview June 2012
6.2.3. Pseudowire Extensions for MPLS-TP
The PW-STD-MIB describes managed objects for the modeling of
pseudowire edge-to-edge services carried over a general PSN. This
MIB module is extended to support MPLS-TP-specific attributes related
to pseudowires.
6.2.4. Pseudowire MPLS Extensions for MPLS-TP
The PW-MPLS-STD-MIB defines the managed objects for pseudowire
operations over MPLS LSRs. This MIB module supports
- manually and dynamically signaled PWs
- point-to-point connections
- the use of any emulated service
- outer tunnels provisioned using MPLS-TE
- PWs with no outer tunnel
An extended MIB module would define additional objects, extending the
PW-MPLS-STD-MIB by continuing to support configurations that operate
with or without an outer tunnel.
6.3. OAM MIB Modules for MPLS-TP
This section provides an overview of Operations, Administration, and
Maintenance (OAM) MIB modules for MPLS LSPs and pseudowires.
6.3.1. New MIB Modules for OAM for MPLS-TP
Two new MIB modules are identified as follows:
- BFD MIB module
- OAM MIB module
6.3.2. BFD MIB Module
The BFD-STD-MIB defines managed objects for performing BFD operations
in IP networks. This MIB module is modeled to support the BFD
protocol [RFC5880].
A new MIB module needs to be written that will be an extension to
BFD-STD-MIB managed objects to support BFD operations on MPLS LSPs
and PWs.
King & Venkatesan Informational [Page 22]
^L
RFC 6639 MPLS-TP MIB-Based Management Overview June 2012
6.3.3. OAM MIB Module
A new MIB module needs to be written that will define managed objects
for OAM maintenance identifiers, i.e., Maintenance Entity Group (MEG)
identifiers, the MEP, and the Maintenance Entity Group Intermediate
Point (MIP). Maintenance points are uniquely associated with a MEG.
Within the context of a MEG, MEPs and MIPs must be uniquely
identified.
6.4. Protection Switching and Recovery MIB Modules for MPLS-TP
This section provides an overview of protection switching and
recovery MIB modules for MPLS LSPs and pseudowires.
6.4.1. New MIB Modules for MPLS Protection Switching and Recovery
Three new MIB modules are identified as follows:
- Linear Protection Switching MIB module
- Ring Protection Switching MIB module
- Mesh Protection Switching MIB module
6.4.2. Linear Protection Switching MIB Module
A new MIB module needs to be written that will define managed objects
for linear protection switching of MPLS LSPs and pseudowires.
6.4.3. Ring Protection Switching MIB Module
A new MIB module needs to be written that will define managed objects
for ring protection switching of MPLS LSPs and pseudowires.
6.4.4. Mesh Protection Switching MIB Module
A new MIB module needs to be written that will define managed objects
for mesh protection switching of MPLS LSPs and pseudowires.
7. Management Options
This document applies only to scenarios where MIB modules are used to
manage the MPLS-TP network. It is not the intention of this document
to provide instructions or advice to implementers of management
systems, management agents, or managed entities. It is, however,
useful to make some observations about how the MIB modules described
above might be used to manage MPLS systems, if SNMP is used in the
management interface.
King & Venkatesan Informational [Page 23]
^L
RFC 6639 MPLS-TP MIB-Based Management Overview June 2012
For MPLS-specific management options, refer to [RFC4221] Section 12
("Management Options").
8. Security Considerations
This document describes the interrelationships amongst the different
MIB modules relevant to MPLS-TP management and as such does not have
any security implications in and of itself.
Each IETF MIB document that specifies MIB objects for MPLS-TP must
provide a proper Security Considerations section that explains the
security aspects of those objects.
The attention of readers is particularly drawn to the security
implications of making MIB objects available for create or write
access through an access protocol such as SNMP. SNMPv1 by itself is
an insecure environment. Even if the network itself is made secure
(for example, by using IPsec), there is no control over who on the
secure network is allowed to access the objects in the MIB module.
It is recommended that the implementers consider the security
features as provided by the SNMPv3 framework. Specifically, the use
of the User-based Security Model STD 62, RFC 3414 [RFC3414], and the
View-based Access Control Model STD 62, RFC 3415 [RFC3415], is
recommended.
It is then a customer/user responsibility to ensure that the SNMP
entity giving access to an instance of each MIB module is properly
configured to give access to only those objects, and to those
principals (users) that have legitimate rights to access them.
9. IANA Considerations
This document has identified areas where additional MIB modules are
necessary for MPLS-TP. The new MIB modules recommended by this
document will require OID assignments from IANA. However, this
document makes no specific request for IANA action.
10. Acknowledgements
The authors would like to thank Eric Gray, Thomas Nadeau, Benjamin
Niven-Jenkins, Saravanan Narasimhan, Joel Halpern, David Harrington,
and Stephen Farrell for their valuable comments.
This document also benefited from review by participants in ITU-T
Study Group 15.
King & Venkatesan Informational [Page 24]
^L
RFC 6639 MPLS-TP MIB-Based Management Overview June 2012
11. Contributors' Addresses
Adrian Farrel
Old Dog Consulting
UK
EMail: adrian@olddog.co.uk
Scott Mansfield
Ericsson
300 Holger Way
San Jose, CA 95134
US
Phone: +1 724 931 9316
EMail: scott.mansfield@ericsson.com
Jeong-dong Ryoo
ETRI
161 Gajeong, Yuseong
Daejeon, 305-700
South Korea
Phone: +82 42 860 5384
EMail: ryoo@etri.re.kr
A S Kiran Koushik
Cisco Systems Inc.
EMail: kkoushik@cisco.com
A. Karmakar
Cisco Systems Inc.
EMail: akarmaka@cisco.com
Sam Aldrin
Huawei Technologies Co.
2330 Central Expressway
Santa Clara, CA 95051
USA
EMail: aldrin.ietf@gmail.com
King & Venkatesan Informational [Page 25]
^L
RFC 6639 MPLS-TP MIB-Based Management Overview June 2012
12. References
12.1. Normative References
[RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group
MIB", RFC 2863, June 2000.
[RFC3811] Nadeau, T., Ed., and J. Cucchiara, Ed., "Definitions of
Textual Conventions (TCs) for Multiprotocol Label
Switching (MPLS) Management", RFC 3811, June 2004.
[RFC3812] Srinivasan, C., Viswanathan, A., and T. Nadeau,
"Multiprotocol Label Switching (MPLS) Traffic Engineering
(TE) Management Information Base (MIB)", RFC 3812,
June 2004.
[RFC3813] Srinivasan, C., Viswanathan, A., and T. Nadeau,
"Multiprotocol Label Switching (MPLS) Label Switching
Router (LSR) Management Information Base (MIB)",
RFC 3813, June 2004.
[RFC3814] Nadeau, T., Srinivasan, C., and A. Viswanathan,
"Multiprotocol Label Switching (MPLS) Forwarding
Equivalence Class To Next Hop Label Forwarding Entry
(FEC-To-NHLFE) Management Information Base (MIB)",
RFC 3814, June 2004.
[RFC3815] Cucchiara, J., Sjostrand, H., and J. Luciani,
"Definitions of Managed Objects for the Multiprotocol
Label Switching (MPLS), Label Distribution Protocol
(LDP)", RFC 3815, June 2004.
[RFC4220] Dubuc, M., Nadeau, T., and J. Lang, "Traffic Engineering
Link Management Information Base", RFC 4220,
November 2005.
[RFC4221] Nadeau, T., Srinivasan, C., and A. Farrel, "Multiprotocol
Label Switching (MPLS) Management Overview", RFC 4221,
November 2005.
[RFC4801] Nadeau, T., Ed., and A. Farrel, Ed., "Definitions of
Textual Conventions for Generalized Multiprotocol Label
Switching (GMPLS) Management", RFC 4801, February 2007.
[RFC4802] Nadeau, T., Ed., and A. Farrel, Ed., "Generalized
Multiprotocol Label Switching (GMPLS) Traffic Engineering
Management Information Base", RFC 4802, February 2007.
King & Venkatesan Informational [Page 26]
^L
RFC 6639 MPLS-TP MIB-Based Management Overview June 2012
[RFC4803] Nadeau, T., Ed., and A. Farrel, Ed., "Generalized
Multiprotocol Label Switching (GMPLS) Label Switching
Router (LSR) Management Information Base", RFC 4803,
February 2007.
[RFC5542] Nadeau, T., Ed., Zelig, D., Ed., and O. Nicklass, Ed.,
"Definitions of Textual Conventions for Pseudowire (PW)
Management", RFC 5542, May 2009.
[RFC5601] Nadeau, T., Ed., and D. Zelig, Ed., "Pseudowire (PW)
Management Information Base (MIB)", RFC 5601, July 2009.
[RFC5602] Zelig, D., Ed., and T. Nadeau, Ed., "Pseudowire (PW) over
MPLS PSN Management Information Base (MIB)", RFC 5602,
July 2009.
[RFC5603] Zelig, D., Ed., and T. Nadeau, Ed., "Ethernet Pseudowire
(PW) Management Information Base (MIB)", RFC 5603,
July 2009.
[RFC5604] Nicklass, O., "Managed Objects for Time Division
Multiplexing (TDM) over Packet Switched Networks (PSNs)",
RFC 5604, July 2009.
12.2. Informative References
[RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J.
Schoenwaelder, Ed., "Structure of Management Information
Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.
[RFC2579] McCloghrie, K., Ed., Perkins, D., Ed., and J.
Schoenwaelder, Ed., "Textual Conventions for SMIv2",
STD 58, RFC 2579, April 1999.
[RFC2580] McCloghrie, K., Ed., Perkins, D., Ed., and J.
Schoenwaelder, Ed., "Conformance Statements for SMIv2",
STD 58, RFC 2580, April 1999.
[RFC3031] Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol
Label Switching Architecture", RFC 3031, January 2001.
[RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart,
"Introduction and Applicability Statements for Internet-
Standard Management Framework", RFC 3410, December 2002.
[RFC3414] Blumenthal, U. and B. Wijnen, "User-based Security Model
(USM) for version 3 of the Simple Network Management
Protocol (SNMPv3)", STD 62, RFC 3414, December 2002.
King & Venkatesan Informational [Page 27]
^L
RFC 6639 MPLS-TP MIB-Based Management Overview June 2012
[RFC3415] Wijnen, B., Presuhn, R., and K. McCloghrie, "View-based
Access Control Model (VACM) for the Simple Network
Management Protocol (SNMP)", STD 62, RFC 3415,
December 2002.
[RFC3931] Lau, J., Ed., Townsley, M., Ed., and I. Goyret, Ed.,
"Layer Two Tunneling Protocol - Version 3 (L2TPv3)",
RFC 3931, March 2005.
[RFC3945] Mannie, E., Ed., "Generalized Multi-Protocol Label
Switching (GMPLS) Architecture", RFC 3945, October 2004.
[RFC3985] Bryant, S., Ed., and P. Pate, Ed., "Pseudo Wire Emulation
Edge-to-Edge (PWE3) Architecture", RFC 3985, March 2005.
[RFC4197] Riegel, M., Ed., "Requirements for Edge-to-Edge Emulation
of Time Division Multiplexed (TDM) Circuits over Packet
Switching Networks", RFC 4197, October 2005.
[RFC4377] Nadeau, T., Morrow, M., Swallow, G., Allan, D., and S.
Matsushima, "Operations and Management (OAM) Requirements
for Multi-Protocol Label Switched (MPLS) Networks",
RFC 4377, February 2006.
[RFC4378] Allan, D., Ed., and T. Nadeau, Ed., "A Framework for
Multi-Protocol Label Switching (MPLS) Operations and
Management (OAM)", RFC 4378, February 2006.
[RFC4379] Kompella, K. and G. Swallow, "Detecting Multi-Protocol
Label Switched (MPLS) Data Plane Failures", RFC 4379,
February 2006.
[RFC4447] Martini, L., Ed., Rosen, E., El-Aawar, N., Smith, T., and
G. Heron, "Pseudowire Setup and Maintenance Using the
Label Distribution Protocol (LDP)", RFC 4447, April 2006.
[RFC5085] Nadeau, T., Ed., and C. Pignataro, Ed., "Pseudowire
Virtual Circuit Connectivity Verification (VCCV): A
Control Channel for Pseudowires", RFC 5085,
December 2007.
[RFC5654] Niven-Jenkins, B., Ed., Brungard, D., Ed., Betts, M.,
Ed., Sprecher, N., and S. Ueno, "Requirements of an MPLS
Transport Profile", RFC 5654, September 2009.
[RFC5880] Katz, D. and D. Ward, "Bidirectional Forwarding Detection
(BFD)", RFC 5880, June 2010.
King & Venkatesan Informational [Page 28]
^L
RFC 6639 MPLS-TP MIB-Based Management Overview June 2012
[RFC5884] Aggarwal, R., Kompella, K., Nadeau, T., and G. Swallow,
"Bidirectional Forwarding Detection (BFD) for MPLS Label
Switched Paths (LSPs)", RFC 5884, June 2010.
[RFC5885] Nadeau, T., Ed., and C. Pignataro, Ed., "Bidirectional
Forwarding Detection (BFD) for the Pseudowire Virtual
Circuit Connectivity Verification (VCCV)", RFC 5885,
June 2010.
[RFC5950] Mansfield, S., Ed., Gray, E., Ed., and K. Lam, Ed.,
"Network Management Framework for MPLS-based Transport
Networks", RFC 5950, September 2010.
[RFC5951] Lam, K., Mansfield, S., and E. Gray, "Network Management
Requirements for MPLS-based Transport Networks",
RFC 5951, September 2010.
[RFC6370] Bocci, M., Swallow, G., and E. Gray, "MPLS Transport
Profile (MPLS-TP) Identifiers", RFC 6370, September 2011.
[RFC6371] Busi, I., Ed., and D. Allan, Ed., "Operations,
Administration, and Maintenance Framework for MPLS-Based
Transport Networks", RFC 6371, September 2011.
[RFC6445] Nadeau, T., Ed., Koushik, A., Ed., and R. Cetin, Ed.,
"Multiprotocol Label Switching (MPLS) Traffic Engineering
Management Information Base for Fast Reroute", RFC 6445,
November 2011.
Authors' Addresses
Daniel King (editor)
Old Dog Consulting
UK
EMail: daniel@olddog.co.uk
Venkatesan Mahalingam (editor)
Aricent
India
EMail: venkat.mahalingams@gmail.com
King & Venkatesan Informational [Page 29]
^L
|