1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
|
Internet Engineering Task Force (IETF) D. Bider
Request for Comments: 6668 Bitvise Limited
Updates: 4253 M. Baushke
Category: Standards Track Juniper Networks, Inc.
ISSN: 2070-1721 July 2012
SHA-2 Data Integrity Verification for
the Secure Shell (SSH) Transport Layer Protocol
Abstract
This memo defines algorithm names and parameters for use in some of
the SHA-2 family of secure hash algorithms for data integrity
verification in the Secure Shell (SSH) protocol. It also updates RFC
4253 by specifying a new RECOMMENDED data integrity algorithm.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc6668.
Copyright Notice
Copyright (c) 2012 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Bider & Baushke Standards Track [Page 1]
^L
RFC 6668 Sha2-Transport Layer Protocol July 2012
1. Overview and Rationale
The Secure Shell (SSH) [RFC4251] is a very common protocol for secure
remote login on the Internet. Currently, SSH defines data integrity
verification using SHA-1 and MD5 algorithms [RFC4253]. Due to recent
security concerns with these two algorithms ([RFC6194] and [RFC6151],
respectively), implementors and users request support for data
integrity verification using some of the SHA-2 family of secure hash
algorithms.
1.1. Requirements Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
2. Data Integrity Algorithms
This memo adopts the style and conventions of [RFC4253] in specifying
how the use of new data integrity algorithms are indicated in SSH.
The following new data integrity algorithms are defined:
hmac-sha2-256 RECOMMENDED HMAC-SHA2-256
(digest length = 32 bytes,
key length = 32 bytes)
hmac-sha2-512 OPTIONAL HMAC-SHA2-512
(digest length = 64 bytes,
key length = 64 bytes)
Figure 1
The Hashed Message Authentication Code (HMAC) mechanism was
originally defined in [RFC2104] and has been updated in [RFC6151].
The SHA-2 family of secure hash algorithms is defined in
[FIPS-180-3].
Sample code for the SHA-based HMAC algorithms are available in
[RFC6234]. The variants, HMAC-SHA2-224 and HMAC-SHA2-384 algorithms,
were considered but not added to this list as they have the same
computational requirements of HMAC-SHA2-256 and HMAC-SHA2-512,
respectively, and do not seem to be much used in practice.
Bider & Baushke Standards Track [Page 2]
^L
RFC 6668 Sha2-Transport Layer Protocol July 2012
Test vectors for use of HMAC with SHA-2 are provided in [RFC4231].
Users, implementors, and administrators may choose to put these new
MACs into the proposal ahead of the REQUIRED hmac-sha1 algorithm
defined in [RFC4253] so that they are negotiated first.
3. IANA Considerations
This document augments the MAC Algorithm Names in [RFC4253] and
[RFC4250].
IANA has updated the "Secure Shell (SSH) Protocol Parameters"
registry with the following entries:
MAC Algorithm Name Reference Note
hmac-sha2-256 RFC 6668 Section 2
hmac-sha2-512 RFC 6668 Section 2
Figure 2
4. Security Considerations
The security considerations of RFC 4253 [RFC4253] apply to this
document.
The National Institute of Standards and Technology (NIST)
publications: NIST Special Publication (SP) 800-107 [800-107] and
NIST SP 800-131A [800-131A] suggest that HMAC-SHA1 and HMAC-SHA2-256
have a security strength of 128 bits and 256 bits, respectively,
which are considered acceptable key lengths.
Many users seem to be interested in the perceived safety of using the
SHA2-based algorithms for hashing.
5. References
5.1. Normative References
[FIPS-180-3]
National Institute of Standards and Technology (NIST),
United States of America, "Secure Hash Standard (SHS)",
FIPS PUB 180-3, October 2008, <http://csrc.nist.gov/
publications/fips/fips180-3/fips180-3_final.pdf>.
[RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
Hashing for Message Authentication", RFC 2104, February
1997.
Bider & Baushke Standards Track [Page 3]
^L
RFC 6668 Sha2-Transport Layer Protocol July 2012
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC4231] Nystrom, M., "Identifiers and Test Vectors for HMAC-
SHA-224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512",
RFC 4231, December 2005.
[RFC4253] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
Transport Layer Protocol", RFC 4253, January 2006.
5.2. Informative References
[800-107] National Institute of Standards and Technology (NIST),
"Recommendation for Applications Using Approved Hash
Algorithms", NIST Special Publication 800-107, February
2009, <http://csrc.nist.gov/publications/
nistpubs/800-107/NIST-SP-800-107.pdf>.
[800-131A] National Institute of Standards and Technology (NIST),
"Transitions: Recommendation for the Transitioning of the
Use of Cryptographic Algorithms and Key Lengths", DRAFT
NIST Special Publication 800-131A, January 2011,
<http://csrc.nist.gov/publications/nistpubs/800-131A/
sp800-131A.pdf>.
[RFC4250] Lehtinen, S. and C. Lonvick, Ed., "The Secure Shell (SSH)
Protocol Assigned Numbers", RFC 4250, January 2006.
[RFC4251] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
Protocol Architecture", RFC 4251, January 2006.
[RFC6151] Turner, S. and L. Chen, "Updated Security Considerations
for the MD5 Message-Digest and the HMAC-MD5 Algorithms",
RFC 6151, March 2011.
[RFC6194] Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security
Considerations for the SHA-0 and SHA-1 Message-Digest
Algorithms", RFC 6194, March 2011.
[RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
(SHA and SHA-based HMAC and HKDF)", RFC 6234, May 2011.
Bider & Baushke Standards Track [Page 4]
^L
RFC 6668 Sha2-Transport Layer Protocol July 2012
Authors' Addresses
Denis Bider
Bitvise Limited
Suites 41/42, Victoria House
26 Main Street
GI
Phone: +1 869 762 1410
EMail: ietf-ssh2@denisbider.com
URI: http://www.bitvise.com/
Mark D. Baushke
Juniper Networks, Inc.
1194 N Mathilda Av
Sunnyvale, CA 94089-1206
US
Phone: +1 408 745 2952
EMail: mdb@juniper.net
URI: http://www.juniper.net/
Bider & Baushke Standards Track [Page 5]
^L
|