summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc6819.txt
blob: dc585bce96d6f9fdb269e75c7d451ce459704f54 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
Internet Engineering Task Force (IETF)               T. Lodderstedt, Ed.
Request for Comments: 6819                           Deutsche Telekom AG
Category: Informational                                       M. McGloin
ISSN: 2070-1721                                                      IBM
                                                                 P. Hunt
                                                      Oracle Corporation
                                                            January 2013


           OAuth 2.0 Threat Model and Security Considerations

Abstract

   This document gives additional security considerations for OAuth,
   beyond those in the OAuth 2.0 specification, based on a comprehensive
   threat model for the OAuth 2.0 protocol.

Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for informational purposes.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Not all documents
   approved by the IESG are a candidate for any level of Internet
   Standard; see Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc6819.

Copyright Notice

   Copyright (c) 2013 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Lodderstedt, et al.           Informational                     [Page 1]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


Table of Contents

   1. Introduction ....................................................6
   2. Overview ........................................................7
      2.1. Scope ......................................................7
      2.2. Attack Assumptions .........................................7
      2.3. Architectural Assumptions ..................................8
           2.3.1. Authorization Servers ...............................8
           2.3.2. Resource Server .....................................9
           2.3.3. Client ..............................................9
   3. Security Features ...............................................9
      3.1. Tokens ....................................................10
           3.1.1. Scope ..............................................11
           3.1.2. Limited Access Token Lifetime ......................11
      3.2. Access Token ..............................................11
      3.3. Refresh Token .............................................11
      3.4. Authorization "code" ......................................12
      3.5. Redirect URI ..............................................13
      3.6. "state" Parameter .........................................13
      3.7. Client Identifier .........................................13
   4. Threat Model ...................................................15
      4.1. Clients ...................................................16
           4.1.1. Threat: Obtaining Client Secrets ...................16
           4.1.2. Threat: Obtaining Refresh Tokens ...................17
           4.1.3. Threat: Obtaining Access Tokens ....................19
           4.1.4. Threat: End-User Credentials Phished Using
                  Compromised or Embedded Browser ....................19
           4.1.5. Threat: Open Redirectors on Client .................20
      4.2. Authorization Endpoint ....................................21
           4.2.1. Threat: Password Phishing by Counterfeit
                  Authorization Server ...............................21
           4.2.2. Threat: User Unintentionally Grants Too
                  Much Access Scope ..................................21
           4.2.3. Threat: Malicious Client Obtains Existing
                  Authorization by Fraud .............................22
           4.2.4. Threat: Open Redirector ............................22
      4.3. Token Endpoint ............................................23
           4.3.1. Threat: Eavesdropping Access Tokens ................23
           4.3.2. Threat: Obtaining Access Tokens from
                  Authorization Server Database ......................23
           4.3.3. Threat: Disclosure of Client Credentials
                  during Transmission ................................23
           4.3.4. Threat: Obtaining Client Secret from
                  Authorization Server Database ......................24
           4.3.5. Threat: Obtaining Client Secret by Online Guessing .24






Lodderstedt, et al.           Informational                     [Page 2]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


      4.4. Obtaining Authorization ...................................25
           4.4.1. Authorization "code" ...............................25
                  4.4.1.1. Threat: Eavesdropping or Leaking
                           Authorization "codes" .....................25
                  4.4.1.2. Threat: Obtaining Authorization "codes"
                           from Authorization Server Database ........26
                  4.4.1.3. Threat: Online Guessing of
                           Authorization "codes" .....................27
                  4.4.1.4. Threat: Malicious Client Obtains
                           Authorization .............................27
                  4.4.1.5. Threat: Authorization "code" Phishing .....29
                  4.4.1.6. Threat: User Session Impersonation ........29
                  4.4.1.7. Threat: Authorization "code" Leakage
                           through Counterfeit Client ................30
                  4.4.1.8. Threat: CSRF Attack against redirect-uri ..32
                  4.4.1.9. Threat: Clickjacking Attack against
                           Authorization .............................33
                  4.4.1.10. Threat: Resource Owner Impersonation .....33
                  4.4.1.11. Threat: DoS Attacks That Exhaust
                            Resources ................................34
                  4.4.1.12. Threat: DoS Using Manufactured
                            Authorization "codes" ....................35
                  4.4.1.13. Threat: Code Substitution (OAuth Login) ..36
           4.4.2. Implicit Grant .....................................37
                  4.4.2.1. Threat: Access Token Leak in
                           Transport/Endpoints .......................37
                  4.4.2.2. Threat: Access Token Leak in
                           Browser History ...........................38
                  4.4.2.3. Threat: Malicious Client Obtains
                           Authorization .............................38
                  4.4.2.4. Threat: Manipulation of Scripts ...........38
                  4.4.2.5. Threat: CSRF Attack against redirect-uri ..39
                  4.4.2.6. Threat: Token Substitution (OAuth Login) ..39
           4.4.3. Resource Owner Password Credentials ................40
                  4.4.3.1. Threat: Accidental Exposure of
                           Passwords at Client Site ..................41
                  4.4.3.2. Threat: Client Obtains Scopes
                           without End-User Authorization ............42
                  4.4.3.3. Threat: Client Obtains Refresh
                           Token through Automatic Authorization .....42
                  4.4.3.4. Threat: Obtaining User Passwords
                           on Transport ..............................43
                  4.4.3.5. Threat: Obtaining User Passwords
                           from Authorization Server Database ........43
                  4.4.3.6. Threat: Online Guessing ...................43
           4.4.4. Client Credentials .................................44





Lodderstedt, et al.           Informational                     [Page 3]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


      4.5. Refreshing an Access Token ................................44
           4.5.1. Threat: Eavesdropping Refresh Tokens from
                  Authorization Server ...............................44
           4.5.2. Threat: Obtaining Refresh Token from
                  Authorization Server Database ......................44
           4.5.3. Threat: Obtaining Refresh Token by Online
                  Guessing ...........................................45
           4.5.4. Threat: Refresh Token Phishing by
                  Counterfeit Authorization Server ...................45
      4.6. Accessing Protected Resources .............................46
           4.6.1. Threat: Eavesdropping Access Tokens on Transport ...46
           4.6.2. Threat: Replay of Authorized Resource
                  Server Requests ....................................46
           4.6.3. Threat: Guessing Access Tokens .....................46
           4.6.4. Threat: Access Token Phishing by
                  Counterfeit Resource Server ........................47
           4.6.5. Threat: Abuse of Token by Legitimate
                  Resource Server or Client ..........................48
           4.6.6. Threat: Leak of Confidential Data in HTTP Proxies ..48
           4.6.7. Threat: Token Leakage via Log Files and
                  HTTP Referrers .....................................48
   5. Security Considerations ........................................49
      5.1. General ...................................................49
           5.1.1. Ensure Confidentiality of Requests .................49
           5.1.2. Utilize Server Authentication ......................50
           5.1.3. Always Keep the Resource Owner Informed ............50
           5.1.4. Credentials ........................................51
                  5.1.4.1. Enforce Credential Storage
                           Protection Best Practices .................51
                  5.1.4.2. Online Attacks on Secrets .................52
           5.1.5. Tokens (Access, Refresh, Code) .....................53
                  5.1.5.1. Limit Token Scope .........................53
                  5.1.5.2. Determine Expiration Time .................54
                  5.1.5.3. Use Short Expiration Time .................54
                  5.1.5.4. Limit Number of Usages or One-Time Usage ..55
                  5.1.5.5. Bind Tokens to a Particular
                           Resource Server (Audience) ................55
                  5.1.5.6. Use Endpoint Address as Token Audience ....56
                  5.1.5.7. Use Explicitly Defined Scopes for
                           Audience and Tokens .......................56
                  5.1.5.8. Bind Token to Client id ...................56
                  5.1.5.9. Sign Self-Contained Tokens ................56
                  5.1.5.10. Encrypt Token Content ....................56
                  5.1.5.11. Adopt a Standard Assertion Format ........57
           5.1.6. Access Tokens ......................................57






Lodderstedt, et al.           Informational                     [Page 4]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


      5.2. Authorization Server ......................................57
           5.2.1. Authorization "codes" ..............................57
                  5.2.1.1. Automatic Revocation of Derived
                           Tokens If Abuse Is Detected ...............57
           5.2.2. Refresh Tokens .....................................57
                  5.2.2.1. Restricted Issuance of Refresh Tokens .....57
                  5.2.2.2. Binding of Refresh Token to "client_id" ...58
                  5.2.2.3. Refresh Token Rotation ....................58
                  5.2.2.4. Revocation of Refresh Tokens ..............58
                  5.2.2.5. Device Identification .....................59
                  5.2.2.6. X-FRAME-OPTIONS Header ....................59
           5.2.3. Client Authentication and Authorization ............59
                  5.2.3.1. Don't Issue Secrets to Clients with
                           Inappropriate Security Policy .............60
                  5.2.3.2. Require User Consent for Public
                           Clients without Secret ....................60
                  5.2.3.3. Issue a "client_id" Only in
                           Combination with "redirect_uri" ...........61
                  5.2.3.4. Issue Installation-Specific Client
                           Secrets ...................................61
                  5.2.3.5. Validate Pre-Registered "redirect_uri" ....62
                  5.2.3.6. Revoke Client Secrets .....................63
                  5.2.3.7. Use Strong Client Authentication
                           (e.g., client_assertion/client_token) .....63
           5.2.4. End-User Authorization .............................63
                  5.2.4.1. Automatic Processing of Repeated
                           Authorizations Requires Client Validation .63
                  5.2.4.2. Informed Decisions Based on Transparency ..63
                  5.2.4.3. Validation of Client Properties by
                           End User ..................................64
                  5.2.4.4. Binding of Authorization "code" to
                           "client_id" ...............................64
                  5.2.4.5. Binding of Authorization "code" to
                           "redirect_uri" ............................64
      5.3. Client App Security .......................................65
           5.3.1. Don't Store Credentials in Code or
                  Resources Bundled with Software Packages ...........65
           5.3.2. Use Standard Web Server Protection Measures
                  (for Config Files and Databases) ...................65
           5.3.3. Store Secrets in Secure Storage ....................65
           5.3.4. Utilize Device Lock to Prevent Unauthorized
                  Device Access ......................................66
           5.3.5. Link the "state" Parameter to User Agent Session ...66
      5.4. Resource Servers ..........................................66
           5.4.1. Authorization Headers ..............................66
           5.4.2. Authenticated Requests .............................67
           5.4.3. Signed Requests ....................................67
      5.5. A Word on User Interaction and User-Installed Apps ........68



Lodderstedt, et al.           Informational                     [Page 5]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   6. Acknowledgements ...............................................69
   7. References .....................................................69
      7.1. Normative References ......................................69
      7.2. Informative References ....................................69

1.  Introduction

   This document gives additional security considerations for OAuth,
   beyond those in the OAuth specification, based on a comprehensive
   threat model for the OAuth 2.0 protocol [RFC6749].  It contains the
   following content:

   o  Documents any assumptions and scope considered when creating the
      threat model.

   o  Describes the security features built into the OAuth protocol and
      how they are intended to thwart attacks.

   o  Gives a comprehensive threat model for OAuth and describes the
      respective countermeasures to thwart those threats.

   Threats include any intentional attacks on OAuth tokens and resources
   protected by OAuth tokens, as well as security risks introduced if
   the proper security measures are not put in place.  Threats are
   structured along the lines of the protocol structure to help
   development teams implement each part of the protocol securely, for
   example, all threats for granting access, or all threats for a
   particular grant type, or all threats for protecting the resource
   server.

   Note: This document cannot assess the probability or the risk
   associated with a particular threat because those aspects strongly
   depend on the particular application and deployment OAuth is used to
   protect.  Similarly, impacts are given on a rather abstract level.
   But the information given here may serve as a foundation for
   deployment-specific threat models.  Implementors may refine and
   detail the abstract threat model in order to account for the specific
   properties of their deployment and to come up with a risk analysis.
   As this document is based on the base OAuth 2.0 specification, it
   does not consider proposed extensions such as client registration or
   discovery, many of which are still under discussion.










Lodderstedt, et al.           Informational                     [Page 6]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


2.  Overview

2.1.  Scope

   This security considerations document only considers clients bound to
   a particular deployment as supported by [RFC6749].  Such deployments
   have the following characteristics:

   o  Resource server URLs are static and well-known at development
      time; authorization server URLs can be static or discovered.

   o  Token scope values (e.g., applicable URLs and methods) are well-
      known at development time.

   o  Client registration is out of scope of the current core
      specification.  Therefore, this document assumes a broad variety
      of options, from static registration during development time to
      dynamic registration at runtime.

   The following are considered out of scope:

   o  Communication between the authorization server and resource
      server.

   o  Token formats.

   o  Except for the resource owner password credentials grant type (see
      [RFC6749], Section 4.3), the mechanism used by authorization
      servers to authenticate the user.

   o  Mechanism by which a user obtained an assertion and any resulting
      attacks mounted as a result of the assertion being false.

   o  Clients not bound to a specific deployment: An example could be a
      mail client with support for contact list access via the portable
      contacts API (see [Portable-Contacts]).  Such clients cannot be
      registered upfront with a particular deployment and should
      dynamically discover the URLs relevant for the OAuth protocol.

2.2.  Attack Assumptions

   The following assumptions relate to an attacker and resources
   available to an attacker.  It is assumed that:

   o  the attacker has full access to the network between the client and
      authorization servers and the client and the resource server,
      respectively.  The attacker may eavesdrop on any communications




Lodderstedt, et al.           Informational                     [Page 7]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


      between those parties.  He is not assumed to have access to
      communication between the authorization server and resource
      server.

   o  an attacker has unlimited resources to mount an attack.

   o  two of the three parties involved in the OAuth protocol may
      collude to mount an attack against the 3rd party.  For example,
      the client and authorization server may be under control of an
      attacker and collude to trick a user to gain access to resources.

2.3.  Architectural Assumptions

   This section documents assumptions about the features, limitations,
   and design options of the different entities of an OAuth deployment
   along with the security-sensitive data elements managed by those
   entities.  These assumptions are the foundation of the threat
   analysis.

   The OAuth protocol leaves deployments with a certain degree of
   freedom regarding how to implement and apply the standard.  The core
   specification defines the core concepts of an authorization server
   and a resource server.  Both servers can be implemented in the same
   server entity, or they may also be different entities.  The latter is
   typically the case for multi-service providers with a single
   authentication and authorization system and is more typical in
   middleware architectures.

2.3.1.  Authorization Servers

   The following data elements are stored or accessible on the
   authorization server:

   o  usernames and passwords

   o  client ids and secrets

   o  client-specific refresh tokens

   o  client-specific access tokens (in the case of handle-based design;
      see Section 3.1)

   o  HTTPS certificate/key

   o  per-authorization process (in the case of handle-based design;
      Section 3.1): "redirect_uri", "client_id", authorization "code"





Lodderstedt, et al.           Informational                     [Page 8]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


2.3.2.  Resource Server

   The following data elements are stored or accessible on the resource
   server:

   o  user data (out of scope)

   o  HTTPS certificate/key

   o  either authorization server credentials (handle-based design; see
      Section 3.1) or authorization server shared secret/public key
      (assertion-based design; see Section 3.1)

   o  access tokens (per request)

   It is assumed that a resource server has no knowledge of refresh
   tokens, user passwords, or client secrets.

2.3.3.  Client

   In OAuth, a client is an application making protected resource
   requests on behalf of the resource owner and with its authorization.
   There are different types of clients with different implementation
   and security characteristics, such as web, user-agent-based, and
   native applications.  A full definition of the different client types
   and profiles is given in [RFC6749], Section 2.1.

   The following data elements are stored or accessible on the client:

   o  client id (and client secret or corresponding client credential)

   o  one or more refresh tokens (persistent) and access tokens
      (transient) per end user or other security-context or delegation
      context

   o  trusted certification authority (CA) certificates (HTTPS)

   o  per-authorization process: "redirect_uri", authorization "code"

3.  Security Features

   These are some of the security features that have been built into the
   OAuth 2.0 protocol to mitigate attacks and security issues.








Lodderstedt, et al.           Informational                     [Page 9]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


3.1.  Tokens

   OAuth makes extensive use of many kinds of tokens (access tokens,
   refresh tokens, authorization "codes").  The information content of a
   token can be represented in two ways, as follows:

   Handle (or artifact)  A 'handle' is a reference to some internal data
      structure within the authorization server; the internal data
      structure contains the attributes of the token, such as user id
      (UID), scope, etc.  Handles enable simple revocation and do not
      require cryptographic mechanisms to protect token content from
      being modified.  On the other hand, handles require communication
      between the issuing and consuming entity (e.g., the authorization
      server and resource server) in order to validate the token and
      obtain token-bound data.  This communication might have a negative
      impact on performance and scalability if both entities reside on
      different systems.  Handles are therefore typically used if the
      issuing and consuming entity are the same.  A 'handle' token is
      often referred to as an 'opaque' token because the resource server
      does not need to be able to interpret the token directly; it
      simply uses the token.

   Assertion (aka self-contained token)  An assertion is a parseable
      token.  An assertion typically has a duration, has an audience,
      and is digitally signed in order to ensure data integrity and
      origin authentication.  It contains information about the user and
      the client.  Examples of assertion formats are Security Assertion
      Markup Language (SAML) assertions [OASIS.saml-core-2.0-os] and
      Kerberos tickets [RFC4120].  Assertions can typically be directly
      validated and used by a resource server without interactions with
      the authorization server.  This results in better performance and
      scalability in deployments where the issuing and consuming
      entities reside on different systems.  Implementing token
      revocation is more difficult with assertions than with handles.

   Tokens can be used in two ways to invoke requests on resource
   servers, as follows:

   bearer token  A 'bearer token' is a token that can be used by any
      client who has received the token (e.g., [RFC6750]).  Because mere
      possession is enough to use the token, it is important that
      communication between endpoints be secured to ensure that only
      authorized endpoints may capture the token.  The bearer token is
      convenient for client applications, as it does not require them to
      do anything to use them (such as a proof of identity).  Bearer
      tokens have similar characteristics to web single-sign-on (SSO)
      cookies used in browsers.




Lodderstedt, et al.           Informational                    [Page 10]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   proof token  A 'proof token' is a token that can only be used by a
      specific client.  Each use of the token requires the client to
      perform some action that proves that it is the authorized user of
      the token.  Examples of this are MAC-type access tokens, which
      require the client to digitally sign the resource request with a
      secret corresponding to the particular token sent with the request
      (e.g., [OAuth-HTTP-MAC]).

3.1.1.  Scope

   A scope represents the access authorization associated with a
   particular token with respect to resource servers, resources, and
   methods on those resources.  Scopes are the OAuth way to explicitly
   manage the power associated with an access token.  A scope can be
   controlled by the authorization server and/or the end user in order
   to limit access to resources for OAuth clients that these parties
   deem less secure or trustworthy.  Optionally, the client can request
   the scope to apply to the token but only for a lesser scope than
   would otherwise be granted, e.g., to reduce the potential impact if
   this token is sent over non-secure channels.  A scope is typically
   complemented by a restriction on a token's lifetime.

3.1.2.  Limited Access Token Lifetime

   The protocol parameter "expires_in" allows an authorization server
   (based on its policies or on behalf of the end user) to limit the
   lifetime of an access token and to pass this information to the
   client.  This mechanism can be used to issue short-lived tokens to
   OAuth clients that the authorization server deems less secure, or
   where sending tokens over non-secure channels.

3.2.  Access Token

   An access token is used by a client to access a resource.  Access
   tokens typically have short life spans (minutes or hours) that cover
   typical session lifetimes.  An access token may be refreshed through
   the use of a refresh token.  The short lifespan of an access token,
   in combination with the usage of refresh tokens, enables the
   possibility of passive revocation of access authorization on the
   expiry of the current access token.

3.3.  Refresh Token

   A refresh token represents a long-lasting authorization of a certain
   client to access resources on behalf of a resource owner.  Such
   tokens are exchanged between the client and authorization server
   only.  Clients use this kind of token to obtain ("refresh") new
   access tokens used for resource server invocations.



Lodderstedt, et al.           Informational                    [Page 11]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   A refresh token, coupled with a short access token lifetime, can be
   used to grant longer access to resources without involving end-user
   authorization.  This offers an advantage where resource servers and
   authorization servers are not the same entity, e.g., in a distributed
   environment, as the refresh token is always exchanged at the
   authorization server.  The authorization server can revoke the
   refresh token at any time, causing the granted access to be revoked
   once the current access token expires.  Because of this, a short
   access token lifetime is important if timely revocation is a high
   priority.

   The refresh token is also a secret bound to the client identifier and
   client instance that originally requested the authorization; the
   refresh token also represents the original resource owner grant.
   This is ensured by the authorization process as follows:

   1.  The resource owner and user agent safely deliver the
       authorization "code" to the client instance in the first place.

   2.  The client uses it immediately in secure transport-level
       communications to the authorization server and then securely
       stores the long-lived refresh token.

   3.  The client always uses the refresh token in secure transport-
       level communications to the authorization server to get an access
       token (and optionally roll over the refresh token).

   So, as long as the confidentiality of the particular token can be
   ensured by the client, a refresh token can also be used as an
   alternative means to authenticate the client instance itself.

3.4.  Authorization "code"

   An authorization "code" represents the intermediate result of a
   successful end-user authorization process and is used by the client
   to obtain access and refresh tokens.  Authorization "codes" are sent
   to the client's redirect URI instead of tokens for two purposes:

   1.  Browser-based flows expose protocol parameters to potential
       attackers via URI query parameters (HTTP referrer), the browser
       cache, or log file entries, and could be replayed.  In order to
       reduce this threat, short-lived authorization "codes" are passed
       instead of tokens and exchanged for tokens over a more secure
       direct connection between the client and the authorization
       server.






Lodderstedt, et al.           Informational                    [Page 12]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   2.  It is much simpler to authenticate clients during the direct
       request between the client and the authorization server than in
       the context of the indirect authorization request.  The latter
       would require digital signatures.

3.5.  Redirect URI

   A redirect URI helps to detect malicious clients and prevents
   phishing attacks from clients attempting to trick the user into
   believing the phisher is the client.  The value of the actual
   redirect URI used in the authorization request has to be presented
   and is verified when an authorization "code" is exchanged for tokens.
   This helps to prevent attacks where the authorization "code" is
   revealed through redirectors and counterfeit web application clients.
   The authorization server should require public clients and
   confidential clients using the implicit grant type to pre-register
   their redirect URIs and validate against the registered redirect URI
   in the authorization request.

3.6.  "state" Parameter

   The "state" parameter is used to link requests and callbacks to
   prevent cross-site request forgery attacks (see Section 4.4.1.8)
   where an attacker authorizes access to his own resources and then
   tricks a user into following a redirect with the attacker's token.
   This parameter should bind to the authenticated state in a user agent
   and, as per the core OAuth spec, the user agent must be capable of
   keeping it in a location accessible only by the client and user
   agent, i.e., protected by same-origin policy.

3.7.  Client Identifier

   Authentication protocols have typically not taken into account the
   identity of the software component acting on behalf of the end user.
   OAuth does this in order to increase the security level in delegated
   authorization scenarios and because the client will be able to act
   without the user being present.

   OAuth uses the client identifier to collate associated requests to
   the same originator, such as

   o  a particular end-user authorization process and the corresponding
      request on the token's endpoint to exchange the authorization
      "code" for tokens, or







Lodderstedt, et al.           Informational                    [Page 13]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   o  the initial authorization and issuance of a token by an end user
      to a particular client, and subsequent requests by this client to
      obtain tokens without user consent (automatic processing of
      repeated authorizations)

   This identifier may also be used by the authorization server to
   display relevant registration information to a user when requesting
   consent for a scope requested by a particular client.  The client
   identifier may be used to limit the number of requests for a
   particular client or to charge the client per request.  It may
   furthermore be useful to differentiate access by different clients,
   e.g., in server log files.

   OAuth defines two client types, confidential and public, based on
   their ability to authenticate with the authorization server (i.e.,
   ability to maintain the confidentiality of their client credentials).
   Confidential clients are capable of maintaining the confidentiality
   of client credentials (i.e., a client secret associated with the
   client identifier) or capable of secure client authentication using
   other means, such as a client assertion (e.g., SAML) or key
   cryptography.  The latter is considered more secure.

   The authorization server should determine whether the client is
   capable of keeping its secret confidential or using secure
   authentication.  Alternatively, the end user can verify the identity
   of the client, e.g., by only installing trusted applications.  The
   redirect URI can be used to prevent the delivery of credentials to a
   counterfeit client after obtaining end-user authorization in some
   cases but can't be used to verify the client identifier.

   Clients can be categorized as follows based on the client type,
   profile (e.g., native vs. web application; see [RFC6749], Section 9),
   and deployment model:

   Deployment-independent "client_id" with pre-registered "redirect_uri"
      and without "client_secret"  Such an identifier is used by
      multiple installations of the same software package.  The
      identifier of such a client can only be validated with the help of
      the end-user.  This is a viable option for native applications in
      order to identify the client for the purpose of displaying meta
      information about the client to the user and to differentiate
      clients in log files.  Revocation of the rights associated with
      such a client identifier will affect ALL deployments of the
      respective software.







Lodderstedt, et al.           Informational                    [Page 14]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   Deployment-independent "client_id" with pre-registered "redirect_uri"
      and with "client_secret"  This is an option for native
      applications only, since web applications would require different
      redirect URIs.  This category is not advisable because the client
      secret cannot be protected appropriately (see Section 4.1.1).  Due
      to its security weaknesses, such client identities have the same
      trust level as deployment-independent clients without secrets.
      Revocation will affect ALL deployments.

   Deployment-specific "client_id" with pre-registered "redirect_uri"
      and with "client_secret"  The client registration process ensures
      the validation of the client's properties, such as redirect URI,
      web site URL, web site name, and contacts.  Such a client
      identifier can be utilized for all relevant use cases cited above.
      This level can be achieved for web applications in combination
      with a manual or user-bound registration process.  Achieving this
      level for native applications is much more difficult.  Either the
      installation of the application is conducted by an administrator,
      who validates the client's authenticity, or the process from
      validating the application to the installation of the application
      on the device and the creation of the client credentials is
      controlled end-to-end by a single entity (e.g., application market
      provider).  Revocation will affect a single deployment only.

   Deployment-specific "client_id" with "client_secret" without
      validated properties  Such a client can be recognized by the
      authorization server in transactions with subsequent requests
      (e.g., authorization and token issuance, refresh token issuance,
      and access token refreshment).  The authorization server cannot
      assure any property of the client to end users.  Automatic
      processing of re-authorizations could be allowed as well.  Such
      client credentials can be generated automatically without any
      validation of client properties, which makes it another option,
      especially for native applications.  Revocation will affect a
      single deployment only.

4.  Threat Model

   This section gives a comprehensive threat model of OAuth 2.0.
   Threats are grouped first by attacks directed against an OAuth
   component, which are the client, authorization server, and resource
   server.  Subsequently, they are grouped by flow, e.g., obtain token
   or access protected resources.  Every countermeasure description
   refers to a detailed description in Section 5.







Lodderstedt, et al.           Informational                    [Page 15]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


4.1.  Clients

   This section describes possible threats directed to OAuth clients.

4.1.1.  Threat: Obtaining Client Secrets

   The attacker could try to get access to the secret of a particular
   client in order to:

   o  replay its refresh tokens and authorization "codes", or

   o  obtain tokens on behalf of the attacked client with the privileges
      of that "client_id" acting as an instance of the client.

   The resulting impact would be the following:

   o  Client authentication of access to the authorization server can be
      bypassed.

   o  Stolen refresh tokens or authorization "codes" can be replayed.

   Depending on the client category, the following attacks could be
   utilized to obtain the client secret.

   Attack: Obtain Secret From Source Code or Binary:

   This applies for all client types.  For open source projects, secrets
   can be extracted directly from source code in their public
   repositories.  Secrets can be extracted from application binaries
   just as easily when the published source is not available to the
   attacker.  Even if an application takes significant measures to
   obfuscate secrets in their application distribution, one should
   consider that the secret can still be reverse-engineered by anyone
   with access to a complete functioning application bundle or binary.

   Countermeasures:

   o  Don't issue secrets to public clients or clients with
      inappropriate security policy (Section 5.2.3.1).

   o  Require user consent for public clients (Section 5.2.3.2).

   o  Use deployment-specific client secrets (Section 5.2.3.4).

   o  Revoke client secrets (Section 5.2.3.6).






Lodderstedt, et al.           Informational                    [Page 16]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   Attack: Obtain a Deployment-Specific Secret:

   An attacker may try to obtain the secret from a client installation,
   either from a web site (web server) or a particular device (native
   application).

   Countermeasures:

   o  Web server: Apply standard web server protection measures (for
      config files and databases) (see Section 5.3.2).

   o  Native applications: Store secrets in secure local storage
      (Section 5.3.3).

   o  Revoke client secrets (Section 5.2.3.6).

4.1.2.  Threat: Obtaining Refresh Tokens

   Depending on the client type, there are different ways that refresh
   tokens may be revealed to an attacker.  The following sub-sections
   give a more detailed description of the different attacks with
   respect to different client types and further specialized
   countermeasures.  Before detailing those threats, here are some
   generally applicable countermeasures:

   o  The authorization server should validate the client id associated
      with the particular refresh token with every refresh request
      (Section 5.2.2.2).

   o  Limit token scope (Section 5.1.5.1).

   o  Revoke refresh tokens (Section 5.2.2.4).

   o  Revoke client secrets (Section 5.2.3.6).

   o  Refresh tokens can automatically be replaced in order to detect
      unauthorized token usage by another party (see "Refresh Token
      Rotation", Section 5.2.2.3).


   Attack: Obtain Refresh Token from Web Application:

   An attacker may obtain the refresh tokens issued to a web application
   by way of overcoming the web server's security controls.

   Impact: Since a web application manages the user accounts of a
   certain site, such an attack would result in an exposure of all
   refresh tokens on that site to the attacker.



Lodderstedt, et al.           Informational                    [Page 17]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   Countermeasures:

   o  Standard web server protection measures (Section 5.3.2).

   o  Use strong client authentication (e.g., client_assertion/
      client_token) so the attacker cannot obtain the client secret
      required to exchange the tokens (Section 5.2.3.7).


   Attack: Obtain Refresh Token from Native Clients:

   On native clients, leakage of a refresh token typically affects a
   single user only.

   Read from local file system: The attacker could try to get file
   system access on the device and read the refresh tokens.  The
   attacker could utilize a malicious application for that purpose.

   Countermeasures:

   o  Store secrets in secure storage (Section 5.3.3).

   o  Utilize device lock to prevent unauthorized device access
      (Section 5.3.4).


   Attack: Steal Device:

   The host device (e.g., mobile phone) may be stolen.  In that case,
   the attacker gets access to all applications under the identity of
   the legitimate user.

   Countermeasures:

   o  Utilize device lock to prevent unauthorized device access
      (Section 5.3.4).

   o  Where a user knows the device has been stolen, they can revoke the
      affected tokens (Section 5.2.2.4).


   Attack: Clone Device:

   All device data and applications are copied to another device.
   Applications are used as-is on the target device.






Lodderstedt, et al.           Informational                    [Page 18]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   Countermeasures:

   o  Utilize device lock to prevent unauthorized device access
      (Section 5.3.4).

   o  Combine refresh token request with device identification
      (Section 5.2.2.5).

   o  Refresh token rotation (Section 5.2.2.3).

   o  Where a user knows the device has been cloned, they can use
      refresh token revocation (Section 5.2.2.4).

4.1.3.  Threat: Obtaining Access Tokens

   Depending on the client type, there are different ways that access
   tokens may be revealed to an attacker.  Access tokens could be stolen
   from the device if the application stores them in a storage device
   that is accessible to other applications.

   Impact: Where the token is a bearer token and no additional mechanism
   is used to identify the client, the attacker can access all resources
   associated with the token and its scope.

   Countermeasures:

   o  Keep access tokens in transient memory and limit grants
      (Section 5.1.6).

   o  Limit token scope (Section 5.1.5.1).

   o  Keep access tokens in private memory or apply same protection
      means as for refresh tokens (Section 5.2.2).

   o  Keep access token lifetime short (Section 5.1.5.3).

4.1.4.  Threat: End-User Credentials Phished Using Compromised or
        Embedded Browser

   A malicious application could attempt to phish end-user passwords by
   misusing an embedded browser in the end-user authorization process,
   or by presenting its own user interface instead of allowing a trusted
   system browser to render the authorization user interface.  By doing
   so, the usual visual trust mechanisms may be bypassed (e.g.,
   Transport Layer Security (TLS) confirmation, web site mechanisms).
   By using an embedded or internal client application user interface,
   the client application has access to additional information to which
   it should not have access (e.g., UID/password).



Lodderstedt, et al.           Informational                    [Page 19]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   Impact: If the client application or the communication is
   compromised, the user would not be aware of this, and all information
   in the authorization exchange, such as username and password, could
   be captured.

   Countermeasures:

   o  The OAuth flow is designed so that client applications never need
      to know user passwords.  Client applications should avoid directly
      asking users for their credentials.  In addition, end users could
      be educated about phishing attacks and best practices, such as
      only accessing trusted clients, as OAuth does not provide any
      protection against malicious applications and the end user is
      solely responsible for the trustworthiness of any native
      application installed.

   o  Client applications could be validated prior to publication in an
      application market for users to access.  That validation is out of
      scope for OAuth but could include validating that the client
      application handles user authentication in an appropriate way.

   o  Client developers should not write client applications that
      collect authentication information directly from users and should
      instead delegate this task to a trusted system component, e.g.,
      the system browser.

4.1.5.  Threat: Open Redirectors on Client

   An open redirector is an endpoint using a parameter to automatically
   redirect a user agent to the location specified by the parameter
   value without any validation.  If the authorization server allows the
   client to register only part of the redirect URI, an attacker can use
   an open redirector operated by the client to construct a redirect URI
   that will pass the authorization server validation but will send the
   authorization "code" or access token to an endpoint under the control
   of the attacker.

   Impact: An attacker could gain access to authorization "codes" or
   access tokens.

   Countermeasures:

   o  Require clients to register full redirect URI (Section 5.2.3.5).








Lodderstedt, et al.           Informational                    [Page 20]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


4.2.  Authorization Endpoint

4.2.1.  Threat: Password Phishing by Counterfeit Authorization Server

   OAuth makes no attempt to verify the authenticity of the
   authorization server.  A hostile party could take advantage of this
   by intercepting the client's requests and returning misleading or
   otherwise incorrect responses.  This could be achieved using DNS or
   Address Resolution Protocol (ARP) spoofing.  Wide deployment of OAuth
   and similar protocols may cause users to become inured to the
   practice of being redirected to web sites where they are asked to
   enter their passwords.  If users are not careful to verify the
   authenticity of these web sites before entering their credentials, it
   will be possible for attackers to exploit this practice to steal
   users' passwords.

   Countermeasures:

   o  Authorization servers should consider such attacks when developing
      services based on OAuth and should require the use of transport-
      layer security for any requests where the authenticity of the
      authorization server or of request responses is an issue (see
      Section 5.1.2).

   o  Authorization servers should attempt to educate users about the
      risks posed by phishing attacks and should provide mechanisms that
      make it easy for users to confirm the authenticity of their sites.

4.2.2.  Threat: User Unintentionally Grants Too Much Access Scope

   When obtaining end-user authorization, the end user may not
   understand the scope of the access being granted and to whom, or they
   may end up providing a client with access to resources that should
   not be permitted.

   Countermeasures:

   o  Explain the scope (resources and the permissions) the user is
      about to grant in an understandable way (Section 5.2.4.2).

   o  Narrow the scope, based on the client.  When obtaining end-user
      authorization and where the client requests scope, the
      authorization server may want to consider whether to honor that
      scope based on the client identifier.  That decision is between
      the client and authorization server and is outside the scope of
      this spec.  The authorization server may also want to consider
      what scope to grant based on the client type, e.g., providing
      lower scope to public clients (Section 5.1.5.1).



Lodderstedt, et al.           Informational                    [Page 21]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


4.2.3.  Threat: Malicious Client Obtains Existing Authorization by Fraud

   Authorization servers may wish to automatically process authorization
   requests from clients that have been previously authorized by the
   user.  When the user is redirected to the authorization server's end-
   user authorization endpoint to grant access, the authorization server
   detects that the user has already granted access to that particular
   client.  Instead of prompting the user for approval, the
   authorization server automatically redirects the user back to the
   client.

   A malicious client may exploit that feature and try to obtain such an
   authorization "code" instead of the legitimate client.

   Countermeasures:

   o  Authorization servers should not automatically process repeat
      authorizations to public clients unless the client is validated
      using a pre-registered redirect URI (Section 5.2.3.5).

   o  Authorization servers can mitigate the risks associated with
      automatic processing by limiting the scope of access tokens
      obtained through automated approvals (Section 5.1.5.1).

4.2.4.  Threat: Open Redirector

   An attacker could use the end-user authorization endpoint and the
   redirect URI parameter to abuse the authorization server as an open
   redirector.  An open redirector is an endpoint using a parameter to
   automatically redirect a user agent to the location specified by the
   parameter value without any validation.

   Impact: An attacker could utilize a user's trust in an authorization
   server to launch a phishing attack.

   Countermeasures:

   o  Require clients to register any full redirect URIs
      (Section 5.2.3.5).

   o  Don't redirect to a redirect URI if the client identifier or
      redirect URI can't be verified (Section 5.2.3.5).









Lodderstedt, et al.           Informational                    [Page 22]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


4.3.  Token Endpoint

4.3.1.  Threat: Eavesdropping Access Tokens

   Attackers may attempt to eavesdrop access tokens in transit from the
   authorization server to the client.

   Impact: The attacker is able to access all resources with the
   permissions covered by the scope of the particular access token.

   Countermeasures:

   o  As per the core OAuth spec, the authorization servers must ensure
      that these transmissions are protected using transport-layer
      mechanisms such as TLS (see Section 5.1.1).

   o  If end-to-end confidentiality cannot be guaranteed, reducing scope
      (see Section 5.1.5.1) and expiry time (Section 5.1.5.3) for access
      tokens can be used to reduce the damage in case of leaks.

4.3.2.  Threat: Obtaining Access Tokens from Authorization Server
        Database

   This threat is applicable if the authorization server stores access
   tokens as handles in a database.  An attacker may obtain access
   tokens from the authorization server's database by gaining access to
   the database or launching a SQL injection attack.

   Impact: Disclosure of all access tokens.

   Countermeasures:

   o  Enforce system security measures (Section 5.1.4.1.1).

   o  Store access token hashes only (Section 5.1.4.1.3).

   o  Enforce standard SQL injection countermeasures
      (Section 5.1.4.1.2).

4.3.3.  Threat: Disclosure of Client Credentials during Transmission

   An attacker could attempt to eavesdrop the transmission of client
   credentials between the client and server during the client
   authentication process or during OAuth token requests.

   Impact: Revelation of a client credential enabling phishing or
   impersonation of a client service.




Lodderstedt, et al.           Informational                    [Page 23]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   Countermeasures:

   o  The transmission of client credentials must be protected using
      transport-layer mechanisms such as TLS (see Section 5.1.1).

   o  Use alternative authentication means that do not require the
      sending of plaintext credentials over the wire (e.g., Hash-based
      Message Authentication Code).

4.3.4.  Threat: Obtaining Client Secret from Authorization Server
        Database

   An attacker may obtain valid "client_id"/secret combinations from the
   authorization server's database by gaining access to the database or
   launching a SQL injection attack.

   Impact: Disclosure of all "client_id"/secret combinations.  This
   allows the attacker to act on behalf of legitimate clients.

   Countermeasures:

   o  Enforce system security measures (Section 5.1.4.1.1).

   o  Enforce standard SQL injection countermeasures
      (Section 5.1.4.1.2).

   o  Ensure proper handling of credentials as per "Enforce Credential
      Storage Protection Best Practices" (Section 5.1.4.1).

4.3.5.  Threat: Obtaining Client Secret by Online Guessing

   An attacker may try to guess valid "client_id"/secret pairs.

   Impact: Disclosure of a single "client_id"/secret pair.

   Countermeasures:

   o  Use high entropy for secrets (Section 5.1.4.2.2).

   o  Lock accounts (Section 5.1.4.2.3).

   o  Use strong client authentication (Section 5.2.3.7).









Lodderstedt, et al.           Informational                    [Page 24]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


4.4.  Obtaining Authorization

   This section covers threats that are specific to certain flows
   utilized to obtain access tokens.  Each flow is characterized by
   response types and/or grant types on the end-user authorization and
   token endpoint, respectively.

4.4.1.  Authorization "code"

4.4.1.1.  Threat: Eavesdropping or Leaking Authorization "codes"

   An attacker could try to eavesdrop transmission of the authorization
   "code" between the authorization server and client.  Furthermore,
   authorization "codes" are passed via the browser, which may
   unintentionally leak those codes to untrusted web sites and attackers
   in different ways:

   o  Referrer headers: Browsers frequently pass a "referer" header when
      a web page embeds content, or when a user travels from one web
      page to another web page.  These referrer headers may be sent even
      when the origin site does not trust the destination site.  The
      referrer header is commonly logged for traffic analysis purposes.

   o  Request logs: Web server request logs commonly include query
      parameters on requests.

   o  Open redirectors: Web sites sometimes need to send users to
      another destination via a redirector.  Open redirectors pose a
      particular risk to web-based delegation protocols because the
      redirector can leak verification codes to untrusted destination
      sites.

   o  Browser history: Web browsers commonly record visited URLs in the
      browser history.  Another user of the same web browser may be able
      to view URLs that were visited by previous users.

   Note: A description of similar attacks on the SAML protocol can be
   found at [OASIS.sstc-saml-bindings-1.1], Section 4.1.1.9.1;
   [Sec-Analysis]; and [OASIS.sstc-sec-analysis-response-01].












Lodderstedt, et al.           Informational                    [Page 25]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   Countermeasures:

   o  As per the core OAuth spec, the authorization server as well as
      the client must ensure that these transmissions are protected
      using transport-layer mechanisms such as TLS (see Section 5.1.1).

   o  The authorization server will require the client to authenticate
      wherever possible, so the binding of the authorization "code" to a
      certain client can be validated in a reliable way (see
      Section 5.2.4.4).

   o  Use short expiry time for authorization "codes" (Section 5.1.5.3).

   o  The authorization server should enforce a one-time usage
      restriction (see Section 5.1.5.4).

   o  If an authorization server observes multiple attempts to redeem an
      authorization "code", the authorization server may want to revoke
      all tokens granted based on the authorization "code" (see
      Section 5.2.1.1).

   o  In the absence of these countermeasures, reducing scope
      (Section 5.1.5.1) and expiry time (Section 5.1.5.3) for access
      tokens can be used to reduce the damage in case of leaks.

   o  The client server may reload the target page of the redirect URI
      in order to automatically clean up the browser cache.

4.4.1.2.  Threat: Obtaining Authorization "codes" from Authorization
          Server Database

   This threat is applicable if the authorization server stores
   authorization "codes" as handles in a database.  An attacker may
   obtain authorization "codes" from the authorization server's database
   by gaining access to the database or launching a SQL injection
   attack.

   Impact: Disclosure of all authorization "codes", most likely along
   with the respective "redirect_uri" and "client_id" values.

   Countermeasures:

   o  Best practices for credential storage protection should be
      employed (Section 5.1.4.1).

   o  Enforce system security measures (Section 5.1.4.1.1).





Lodderstedt, et al.           Informational                    [Page 26]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   o  Store access token hashes only (Section 5.1.4.1.3).

   o  Enforce standard SQL injection countermeasures
      (Section 5.1.4.1.2).

4.4.1.3.  Threat: Online Guessing of Authorization "codes"

   An attacker may try to guess valid authorization "code" values and
   send the guessed code value using the grant type "code" in order to
   obtain a valid access token.

   Impact: Disclosure of a single access token and probably also an
   associated refresh token.

   Countermeasures:

   o  Handle-based tokens must use high entropy (Section 5.1.4.2.2).

   o  Assertion-based tokens should be signed (Section 5.1.5.9).

   o  Authenticate the client; this adds another value that the attacker
      has to guess (Section 5.2.3.4).

   o  Bind the authorization "code" to the redirect URI; this adds
      another value that the attacker has to guess (Section 5.2.4.5).

   o  Use short expiry time for tokens (Section 5.1.5.3).

4.4.1.4.  Threat: Malicious Client Obtains Authorization

   A malicious client could pretend to be a valid client and obtain an
   access authorization in this way.  The malicious client could even
   utilize screen-scraping techniques in order to simulate a user's
   consent in the authorization flow.

   Assumption: It is not the task of the authorization server to protect
   the end-user's device from malicious software.  This is the
   responsibility of the platform running on the particular device,
   probably in cooperation with other components of the respective
   ecosystem (e.g., an application management infrastructure).  The sole
   responsibility of the authorization server is to control access to
   the end-user's resources maintained in resource servers and to
   prevent unauthorized access to them via the OAuth protocol.  Based on
   this assumption, the following countermeasures are available to cope
   with the threat.






Lodderstedt, et al.           Informational                    [Page 27]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   Countermeasures:

   o  The authorization server should authenticate the client, if
      possible (see Section 5.2.3.4).  Note: The authentication takes
      place after the end user has authorized the access.

   o  The authorization server should validate the client's redirect URI
      against the pre-registered redirect URI, if one exists (see
      Section 5.2.3.5).  Note: An invalid redirect URI indicates an
      invalid client, whereas a valid redirect URI does not necessarily
      indicate a valid client.  The level of confidence depends on the
      client type.  For web applications, the level of confidence is
      high, since the redirect URI refers to the globally unique network
      endpoint of this application, whose fully qualified domain name
      (FQDN) is also validated using HTTPS server authentication by the
      user agent.  In contrast, for native clients, the redirect URI
      typically refers to device local resources, e.g., a custom scheme.
      So, a malicious client on a particular device can use the valid
      redirect URI the legitimate client uses on all other devices.

   o  After authenticating the end user, the authorization server should
      ask him/her for consent.  In this context, the authorization
      server should explain to the end user the purpose, scope, and
      duration of the authorization the client asked for.  Moreover, the
      authorization server should show the user any identity information
      it has for that client.  It is up to the user to validate the
      binding of this data to the particular application (e.g., Name)
      and to approve the authorization request (see Section 5.2.4.3).

   o  The authorization server should not perform automatic
      re-authorizations for clients it is unable to reliably
      authenticate or validate (see Section 5.2.4.1).

   o  If the authorization server automatically authenticates the end
      user, it may nevertheless require some user input in order to
      prevent screen scraping.  Examples are CAPTCHAs (Completely
      Automated Public Turing tests to tell Computers and Humans Apart)
      or other multi-factor authentication techniques such as random
      questions, token code generators, etc.

   o  The authorization server may also limit the scope of tokens it
      issues to clients it cannot reliably authenticate (see
      Section 5.1.5.1).








Lodderstedt, et al.           Informational                    [Page 28]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


4.4.1.5.  Threat: Authorization "code" Phishing

   A hostile party could impersonate the client site and get access to
   the authorization "code".  This could be achieved using DNS or ARP
   spoofing.  This applies to clients, which are web applications; thus,
   the redirect URI is not local to the host where the user's browser is
   running.

   Impact: This affects web applications and may lead to a disclosure of
   authorization "codes" and, potentially, the corresponding access and
   refresh tokens.

   Countermeasures:

   It is strongly recommended that one of the following countermeasures
   be utilized in order to prevent this attack:

   o  The redirect URI of the client should point to an HTTPS-protected
      endpoint, and the browser should be utilized to authenticate this
      redirect URI using server authentication (see Section 5.1.2).

   o  The authorization server should require that the client be
      authenticated, i.e., confidential client, so the binding of the
      authorization "code" to a certain client can be validated in a
      reliable way (see Section 5.2.4.4).

4.4.1.6.  Threat: User Session Impersonation

   A hostile party could impersonate the client site and impersonate the
   user's session on this client.  This could be achieved using DNS or
   ARP spoofing.  This applies to clients, which are web applications;
   thus, the redirect URI is not local to the host where the user's
   browser is running.

   Impact: An attacker who intercepts the authorization "code" as it is
   sent by the browser to the callback endpoint can gain access to
   protected resources by submitting the authorization "code" to the
   client.  The client will exchange the authorization "code" for an
   access token and use the access token to access protected resources
   for the benefit of the attacker, delivering protected resources to
   the attacker, or modifying protected resources as directed by the
   attacker.  If OAuth is used by the client to delegate authentication
   to a social site (e.g., as in the implementation of a "Login" button
   on a third-party social network site), the attacker can use the
   intercepted authorization "code" to log into the client as the user.






Lodderstedt, et al.           Informational                    [Page 29]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   Note: Authenticating the client during authorization "code" exchange
   will not help to detect such an attack, as it is the legitimate
   client that obtains the tokens.

   Countermeasures:

   o  In order to prevent an attacker from impersonating the end-user's
      session, the redirect URI of the client should point to an HTTPS
      protected endpoint, and the browser should be utilized to
      authenticate this redirect URI using server authentication (see
      Section 5.1.2).

4.4.1.7.  Threat: Authorization "code" Leakage through Counterfeit
          Client

   The attacker leverages the authorization "code" grant type in an
   attempt to get another user (victim) to log in, authorize access to
   his/her resources, and subsequently obtain the authorization "code"
   and inject it into a client application using the attacker's account.
   The goal is to associate an access authorization for resources of the
   victim with the user account of the attacker on a client site.

   The attacker abuses an existing client application and combines it
   with his own counterfeit client web site.  The attacker depends on
   the victim expecting the client application to request access to a
   certain resource server.  The victim, seeing only a normal request
   from an expected application, approves the request.  The attacker
   then uses the victim's authorization to gain access to the
   information unknowingly authorized by the victim.

   The attacker conducts the following flow:

   1.  The attacker accesses the client web site (or application) and
       initiates data access to a particular resource server.  The
       client web site in turn initiates an authorization request to the
       resource server's authorization server.  Instead of proceeding
       with the authorization process, the attacker modifies the
       authorization server end-user authorization URL as constructed by
       the client to include a redirect URI parameter referring to a web
       site under his control (attacker's web site).

   2.  The attacker tricks another user (the victim) into opening that
       modified end-user authorization URI and authorizing access (e.g.,
       via an email link or blog link).  The way the attacker achieves
       this goal is out of scope.

   3.  Having clicked the link, the victim is requested to authenticate
       and authorize the client site to have access.



Lodderstedt, et al.           Informational                    [Page 30]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   4.  After completion of the authorization process, the authorization
       server redirects the user agent to the attacker's web site
       instead of the original client web site.

   5.  The attacker obtains the authorization "code" from his web site
       by means that are out of scope of this document.

   6.  He then constructs a redirect URI to the target web site (or
       application) based on the original authorization request's
       redirect URI and the newly obtained authorization "code", and
       directs his user agent to this URL.  The authorization "code" is
       injected into the original client site (or application).

   7.  The client site uses the authorization "code" to fetch a token
       from the authorization server and associates this token with the
       attacker's user account on this site.

   8.  The attacker may now access the victim's resources using the
       client site.

   Impact: The attacker gains access to the victim's resources as
   associated with his account on the client site.

   Countermeasures:

   o  The attacker will need to use another redirect URI for its
      authorization process rather than the target web site because it
      needs to intercept the flow.  So, if the authorization server
      associates the authorization "code" with the redirect URI of a
      particular end-user authorization and validates this redirect URI
      with the redirect URI passed to the token's endpoint, such an
      attack is detected (see Section 5.2.4.5).

   o  The authorization server may also enforce the usage and validation
      of pre-registered redirect URIs (see Section 5.2.3.5).  This will
      allow for early recognition of authorization "code" disclosure to
      counterfeit clients.

   o  For native applications, one could also consider using deployment-
      specific client ids and secrets (see Section 5.2.3.4), along with
      the binding of authorization "codes" to "client_ids" (see
      Section 5.2.4.4) to detect such an attack because the attacker
      does not have access to the deployment-specific secret.  Thus, he
      will not be able to exchange the authorization "code".







Lodderstedt, et al.           Informational                    [Page 31]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   o  The client may consider using other flows that are not vulnerable
      to this kind of attack, such as the implicit grant type (see
      Section 4.4.2) or resource owner password credentials (see
      Section 4.4.3).

4.4.1.8.  Threat: CSRF Attack against redirect-uri

   Cross-site request forgery (CSRF) is a web-based attack whereby HTTP
   requests are transmitted from a user that the web site trusts or has
   authenticated (e.g., via HTTP redirects or HTML forms).  CSRF attacks
   on OAuth approvals can allow an attacker to obtain authorization to
   OAuth protected resources without the consent of the user.

   This attack works against the redirect URI used in the authorization
   "code" flow.  An attacker could authorize an authorization "code" to
   their own protected resources on an authorization server.  He then
   aborts the redirect flow back to the client on his device and tricks
   the victim into executing the redirect back to the client.  The
   client receives the redirect, fetches the token(s) from the
   authorization server, and associates the victim's client session with
   the resources accessible using the token.

   Impact: The user accesses resources on behalf of the attacker.  The
   effective impact depends on the type of resource accessed.  For
   example, the user may upload private items to an attacker's
   resources.  Or, when using OAuth in 3rd-party login scenarios, the
   user may associate his client account with the attacker's identity at
   the external Identity Provider.  In this way, the attacker could
   easily access the victim's data at the client by logging in from
   another device with his credentials at the external Identity
   Provider.

   Countermeasures:

   o  The "state" parameter should be used to link the authorization
      request with the redirect URI used to deliver the access token
      (Section 5.3.5).

   o  Client developers and end users can be educated to not follow
      untrusted URLs.











Lodderstedt, et al.           Informational                    [Page 32]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


4.4.1.9.  Threat: Clickjacking Attack against Authorization

   With clickjacking, a malicious site loads the target site in a
   transparent iFrame (see [iFrame]) overlaid on top of a set of dummy
   buttons that are carefully constructed to be placed directly under
   important buttons on the target site.  When a user clicks a visible
   button, they are actually clicking a button (such as an "Authorize"
   button) on the hidden page.

   Impact: An attacker can steal a user's authentication credentials and
   access their resources.

   Countermeasures:

   o  For newer browsers, avoidance of iFrames during authorization can
      be enforced on the server side by using the X-FRAME-OPTIONS header
      (Section 5.2.2.6).

   o  For older browsers, JavaScript frame-busting (see [Framebusting])
      techniques can be used but may not be effective in all browsers.

4.4.1.10.  Threat: Resource Owner Impersonation

   When a client requests access to protected resources, the
   authorization flow normally involves the resource owner's explicit
   response to the access request, either granting or denying access to
   the protected resources.  A malicious client can exploit knowledge of
   the structure of this flow in order to gain authorization without the
   resource owner's consent, by transmitting the necessary requests
   programmatically and simulating the flow against the authorization
   server.  That way, the client may gain access to the victim's
   resources without her approval.  An authorization server will be
   vulnerable to this threat if it uses non-interactive authentication
   mechanisms or splits the authorization flow across multiple pages.

   The malicious client might embed a hidden HTML user agent, interpret
   the HTML forms sent by the authorization server, and automatically
   send the corresponding form HTTP POST requests.  As a prerequisite,
   the attacker must be able to execute the authorization process in the
   context of an already-authenticated session of the resource owner
   with the authorization server.  There are different ways to achieve
   this:

   o  The malicious client could abuse an existing session in an
      external browser or cross-browser cookies on the particular
      device.





Lodderstedt, et al.           Informational                    [Page 33]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   o  The malicious client could also request authorization for an
      initial scope acceptable to the user and then silently abuse the
      resulting session in his browser instance to "silently" request
      another scope.

   o  Alternatively, the attacker might exploit an authorization
      server's ability to authenticate the resource owner automatically
      and without user interactions, e.g., based on certificates.

   In all cases, such an attack is limited to clients running on the
   victim's device, either within the user agent or as a native app.

   Please note: Such attacks cannot be prevented using CSRF
   countermeasures, since the attacker just "executes" the URLs as
   prepared by the authorization server including any nonce, etc.

   Countermeasures:

   Authorization servers should decide, based on an analysis of the risk
   associated with this threat, whether to detect and prevent this
   threat.

   In order to prevent such an attack, the authorization server may
   force a user interaction based on non-predictable input values as
   part of the user consent approval.  The authorization server could

   o  combine password authentication and user consent in a single form,

   o  make use of CAPTCHAs, or

   o  use one-time secrets sent out of band to the resource owner (e.g.,
      via text or instant message).

   Alternatively, in order to allow the resource owner to detect abuse,
   the authorization server could notify the resource owner of any
   approval by appropriate means, e.g., text or instant message, or
   email.

4.4.1.11.  Threat: DoS Attacks That Exhaust Resources

   If an authorization server includes a nontrivial amount of entropy in
   authorization "codes" or access tokens (limiting the number of
   possible codes/tokens) and automatically grants either without user
   intervention and has no limit on codes or access tokens per user, an
   attacker could exhaust the pool of authorization "codes" by
   repeatedly directing the user's browser to request authorization
   "codes" or access tokens.




Lodderstedt, et al.           Informational                    [Page 34]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   Countermeasures:

   o  The authorization server should consider limiting the number of
      access tokens granted per user.

   o  The authorization server should include a nontrivial amount of
      entropy in authorization "codes".

4.4.1.12.  Threat: DoS Using Manufactured Authorization "codes"

   An attacker who owns a botnet can locate the redirect URIs of clients
   that listen on HTTP, access them with random authorization "codes",
   and cause a large number of HTTPS connections to be concentrated onto
   the authorization server.  This can result in a denial-of-service
   (DoS) attack on the authorization server.

   This attack can still be effective even when CSRF defense/the "state"
   parameter (see Section 4.4.1.8) is deployed on the client side.  With
   such a defense, the attacker might need to incur an additional HTTP
   request to obtain a valid CSRF code/"state" parameter.  This
   apparently cuts down the effectiveness of the attack by a factor of
   2.  However, if the HTTPS/HTTP cost ratio is higher than 2 (the cost
   factor is estimated to be around 3.5x at [SSL-Latency]), the attacker
   still achieves a magnification of resource utilization at the expense
   of the authorization server.

   Impact: There are a few effects that the attacker can accomplish with
   this OAuth flow that they cannot easily achieve otherwise.

   1.  Connection laundering: With the clients as the relay between the
       attacker and the authorization server, the authorization server
       learns little or no information about the identity of the
       attacker.  Defenses such as rate-limiting on the offending
       attacker machines are less effective because it is difficult to
       identify the attacking machines.  Although an attacker could also
       launder its connections through an anonymizing system such as
       Tor, the effectiveness of that approach depends on the capacity
       of the anonymizing system.  On the other hand, a potentially
       large number of OAuth clients could be utilized for this attack.

   2.  Asymmetric resource utilization: The attacker incurs the cost of
       an HTTP connection and causes an HTTPS connection to be made on
       the authorization server; the attacker can coordinate the timing
       of such HTTPS connections across multiple clients relatively
       easily.  Although the attacker could achieve something similar,
       say, by including an iFrame pointing to the HTTPS URL of the
       authorization server in an HTTP web page and luring web users to
       visit that page, timing attacks using such a scheme may be more



Lodderstedt, et al.           Informational                    [Page 35]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


       difficult, as it seems nontrivial to synchronize a large number
       of users to simultaneously visit a particular site under the
       attacker's control.

   Countermeasures:

   o  Though not a complete countermeasure by themselves, CSRF defense
      and the "state" parameter created with secure random codes should
      be deployed on the client side.  The client should forward the
      authorization "code" to the authorization server only after both
      the CSRF token and the "state" parameter are validated.

   o  If the client authenticates the user, either through a single-
      sign-on protocol or through local authentication, the client
      should suspend the access by a user account if the number of
      invalid authorization "codes" submitted by this user exceeds a
      certain threshold.

   o  The authorization server should send an error response to the
      client reporting an invalid authorization "code" and rate-limit or
      disallow connections from clients whose number of invalid requests
      exceeds a threshold.

4.4.1.13.  Threat: Code Substitution (OAuth Login)

   An attacker could attempt to log into an application or web site
   using a victim's identity.  Applications relying on identity data
   provided by an OAuth protected service API to login users are
   vulnerable to this threat.  This pattern can be found in so-called
   "social login" scenarios.

   As a prerequisite, a resource server offers an API to obtain personal
   information about a user that could be interpreted as having obtained
   a user identity.  In this sense, the client is treating the resource
   server API as an "identity" API.  A client utilizes OAuth to obtain
   an access token for the identity API.  It then queries the identity
   API for an identifier and uses it to look up its internal user
   account data (login).  The client assumes that, because it was able
   to obtain information about the user, the user has been
   authenticated.

   If the client uses the grant type "code", the attacker needs to
   gather a valid authorization "code" of the respective victim from the
   same Identity Provider used by the target client application.  The
   attacker tricks the victim into logging into a malicious app (which
   may appear to be legitimate to the Identity Provider) using the same
   Identity Provider as the target application.  This results in the
   Identity Provider's authorization server issuing an authorization



Lodderstedt, et al.           Informational                    [Page 36]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   "code" for the respective identity API.  The malicious app then sends
   this code to the attacker, which in turn triggers a login process
   within the target application.  The attacker now manipulates the
   authorization response and substitutes their code (bound to their
   identity) for the victim's code.  This code is then exchanged by the
   client for an access token, which in turn is accepted by the identity
   API, since the audience, with respect to the resource server, is
   correct.  But since the identifier returned by the identity API is
   determined by the identity in the access token (issued based on the
   victim's code), the attacker is logged into the target application
   under the victim's identity.

   Impact: The attacker gains access to an application and user-specific
   data within the application.

   Countermeasures:

   o  All clients must indicate their client ids with every request to
      exchange an authorization "code" for an access token.  The
      authorization server must validate whether the particular
      authorization "code" has been issued to the particular client.  If
      possible, the client shall be authenticated beforehand.

   o  Clients should use an appropriate protocol, such as OpenID (cf.
      [OPENID]) or SAML (cf. [OASIS.sstc-saml-bindings-1.1]) to
      implement user login.  Both support audience restrictions on
      clients.

4.4.2.  Implicit Grant

   In the implicit grant type flow, the access token is directly
   returned to the client as a fragment part of the redirect URI.  It is
   assumed that the token is not sent to the redirect URI target, as
   HTTP user agents do not send the fragment part of URIs to HTTP
   servers.  Thus, an attacker cannot eavesdrop the access token on this
   communication path, and the token cannot leak through HTTP referrer
   headers.

4.4.2.1.  Threat: Access Token Leak in Transport/Endpoints

   This token might be eavesdropped by an attacker.  The token is sent
   from the server to the client via a URI fragment of the redirect URI.
   If the communication is not secured or the endpoint is not secured,
   the token could be leaked by parsing the returned URI.

   Impact: The attacker would be able to assume the same rights granted
   by the token.




Lodderstedt, et al.           Informational                    [Page 37]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   Countermeasures:

   o  The authorization server should ensure confidentiality (e.g.,
      using TLS) of the response from the authorization server to the
      client (see Section 5.1.1).

4.4.2.2.  Threat: Access Token Leak in Browser History

   An attacker could obtain the token from the browser's history.  Note
   that this means the attacker needs access to the particular device.

   Countermeasures:

   o  Use short expiry time for tokens (see Section 5.1.5.3).  Reduced
      scope of the token may reduce the impact of that attack (see
      Section 5.1.5.1).

   o  Make responses non-cacheable.

4.4.2.3.  Threat: Malicious Client Obtains Authorization

   A malicious client could attempt to obtain a token by fraud.

   The same countermeasures as for Section 4.4.1.4 are applicable,
   except client authentication.

4.4.2.4.  Threat: Manipulation of Scripts

   A hostile party could act as the client web server and replace or
   modify the actual implementation of the client (script).  This could
   be achieved using DNS or ARP spoofing.  This applies to clients
   implemented within the web browser in a scripting language.

   Impact: The attacker could obtain user credential information and
   assume the full identity of the user.

   Countermeasures:

   o  The authorization server should authenticate the server from which
      scripts are obtained (see Section 5.1.2).

   o  The client should ensure that scripts obtained have not been
      altered in transport (see Section 5.1.1).








Lodderstedt, et al.           Informational                    [Page 38]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   o  Introduce one-time, per-use secrets (e.g., "client_secret") values
      that can only be used by scripts in a small time window once
      loaded from a server.  The intention would be to reduce the
      effectiveness of copying client-side scripts for re-use in an
      attacker's modified code.

4.4.2.5.  Threat: CSRF Attack against redirect-uri

   CSRF attacks (see Section 4.4.1.8) also work against the redirect URI
   used in the implicit grant flow.  An attacker could acquire an access
   token to their own protected resources.  He could then construct a
   redirect URI and embed their access token in that URI.  If he can
   trick the user into following the redirect URI and the client does
   not have protection against this attack, the user may have the
   attacker's access token authorized within their client.

   Impact: The user accesses resources on behalf of the attacker.  The
   effective impact depends on the type of resource accessed.  For
   example, the user may upload private items to an attacker's
   resources.  Or, when using OAuth in 3rd-party login scenarios, the
   user may associate his client account with the attacker's identity at
   the external Identity Provider.  In this way, the attacker could
   easily access the victim's data at the client by logging in from
   another device with his credentials at the external Identity
   Provider.

   Countermeasures:

   o  The "state" parameter should be used to link the authorization
      request with the redirect URI used to deliver the access token.
      This will ensure that the client is not tricked into completing
      any redirect callback unless it is linked to an authorization
      request initiated by the client.  The "state" parameter should not
      be guessable, and the client should be capable of keeping the
      "state" parameter secret.

   o  Client developers and end users can be educated to not follow
      untrusted URLs.

4.4.2.6.  Threat: Token Substitution (OAuth Login)

   An attacker could attempt to log into an application or web site
   using a victim's identity.  Applications relying on identity data
   provided by an OAuth protected service API to login users are
   vulnerable to this threat.  This pattern can be found in so-called
   "social login" scenarios.





Lodderstedt, et al.           Informational                    [Page 39]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   As a prerequisite, a resource server offers an API to obtain personal
   information about a user that could be interpreted as having obtained
   a user identity.  In this sense, the client is treating the resource
   server API as an "identity" API.  A client utilizes OAuth to obtain
   an access token for the identity API.  It then queries the identity
   API for an identifier and uses it to look up its internal user
   account data (login).  The client assumes that, because it was able
   to obtain information about the user, the user has been
   authenticated.

   To succeed, the attacker needs to gather a valid access token of the
   respective victim from the same Identity Provider used by the target
   client application.  The attacker tricks the victim into logging into
   a malicious app (which may appear to be legitimate to the Identity
   Provider) using the same Identity Provider as the target application.
   This results in the Identity Provider's authorization server issuing
   an access token for the respective identity API.  The malicious app
   then sends this access token to the attacker, which in turn triggers
   a login process within the target application.  The attacker now
   manipulates the authorization response and substitutes their access
   token (bound to their identity) for the victim's access token.  This
   token is accepted by the identity API, since the audience, with
   respect to the resource server, is correct.  But since the identifier
   returned by the identity API is determined by the identity in the
   access token, the attacker is logged into the target application
   under the victim's identity.

   Impact: The attacker gains access to an application and user-specific
   data within the application.

   Countermeasures:

   o  Clients should use an appropriate protocol, such as OpenID (cf.
      [OPENID]) or SAML (cf. [OASIS.sstc-saml-bindings-1.1]) to
      implement user login.  Both support audience restrictions on
      clients.

4.4.3.  Resource Owner Password Credentials

   The resource owner password credentials grant type (see [RFC6749],
   Section 4.3), often used for legacy/migration reasons, allows a
   client to request an access token using an end-user's user id and
   password along with its own credential.  This grant type has higher
   risk because it maintains the UID/password anti-pattern.
   Additionally, because the user does not have control over the
   authorization process, clients using this grant type are not limited





Lodderstedt, et al.           Informational                    [Page 40]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   by scope but instead have potentially the same capabilities as the
   user themselves.  As there is no authorization step, the ability to
   offer token revocation is bypassed.

   Because passwords are often used for more than 1 service, this
   anti-pattern may also put at risk whatever else is accessible with
   the supplied credential.  Additionally, any easily derived equivalent
   (e.g., joe@example.com and joe@example.net) might easily allow
   someone to guess that the same password can be used elsewhere.

   Impact: The resource server can only differentiate scope based on the
   access token being associated with a particular client.  The client
   could also acquire long-lived tokens and pass them up to an
   attacker's web service for further abuse.  The client, eavesdroppers,
   or endpoints could eavesdrop the user id and password.

   Countermeasures:

   o  Except for migration reasons, minimize use of this grant type.

   o  The authorization server should validate the client id associated
      with the particular refresh token with every refresh request
      (Section 5.2.2.2).

   o  As per the core OAuth specification, the authorization server must
      ensure that these transmissions are protected using transport-
      layer mechanisms such as TLS (see Section 5.1.1).

   o  Rather than encouraging users to use a UID and password, service
      providers should instead encourage users not to use the same
      password for multiple services.

   o  Limit use of resource owner password credential grants to
      scenarios where the client application and the authorizing service
      are from the same organization.

4.4.3.1.  Threat: Accidental Exposure of Passwords at Client Site

   If the client does not provide enough protection, an attacker or
   disgruntled employee could retrieve the passwords for a user.

   Countermeasures:

   o  Use other flows that do not rely on the client's cooperation for
      secure resource owner credential handling.

   o  Use digest authentication instead of plaintext credential
      processing.



Lodderstedt, et al.           Informational                    [Page 41]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   o  Obfuscate passwords in logs.

4.4.3.2.  Threat: Client Obtains Scopes without End-User Authorization

   All interaction with the resource owner is performed by the client.
   Thus it might, intentionally or unintentionally, happen that the
   client obtains a token with scope unknown for, or unintended by, the
   resource owner.  For example, the resource owner might think the
   client needs and acquires read-only access to its media storage only
   but the client tries to acquire an access token with full access
   permissions.

   Countermeasures:

   o  Use other flows that do not rely on the client's cooperation for
      resource owner interaction.

   o  The authorization server may generally restrict the scope of
      access tokens (Section 5.1.5.1) issued by this flow.  If the
      particular client is trustworthy and can be authenticated in a
      reliable way, the authorization server could relax that
      restriction.  Resource owners may prescribe (e.g., in their
      preferences) what the maximum scope is for clients using this
      flow.

   o  The authorization server could notify the resource owner by an
      appropriate medium, e.g., email, of the grant issued (see
      Section 5.1.3).

4.4.3.3.  Threat: Client Obtains Refresh Token through Automatic
          Authorization

   All interaction with the resource owner is performed by the client.
   Thus it might, intentionally or unintentionally, happen that the
   client obtains a long-term authorization represented by a refresh
   token even if the resource owner did not intend so.

   Countermeasures:

   o  Use other flows that do not rely on the client's cooperation for
      resource owner interaction.

   o  The authorization server may generally refuse to issue refresh
      tokens in this flow (see Section 5.2.2.1).  If the particular
      client is trustworthy and can be authenticated in a reliable way
      (see client authentication), the authorization server could relax





Lodderstedt, et al.           Informational                    [Page 42]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


      that restriction.  Resource owners may allow or deny (e.g., in
      their preferences) the issuing of refresh tokens using this flow
      as well.

   o  The authorization server could notify the resource owner by an
      appropriate medium, e.g., email, of the refresh token issued (see
      Section 5.1.3).

4.4.3.4.  Threat: Obtaining User Passwords on Transport

   An attacker could attempt to eavesdrop the transmission of end-user
   credentials with the grant type "password" between the client and
   server.

   Impact: Disclosure of a single end-user's password.

   Countermeasures:

   o  Ensure confidentiality of requests (Section 5.1.1).

   o  Use alternative authentication means that do not require the
      sending of plaintext credentials over the wire (e.g., Hash-based
      Message Authentication Code).

4.4.3.5.  Threat: Obtaining User Passwords from Authorization Server
          Database

   An attacker may obtain valid username/password combinations from the
   authorization server's database by gaining access to the database or
   launching a SQL injection attack.

   Impact: Disclosure of all username/password combinations.  The impact
   may exceed the domain of the authorization server, since many users
   tend to use the same credentials on different services.

   Countermeasures:

   o  Enforce credential storage protection best practices
      (Section 5.1.4.1).

4.4.3.6.  Threat: Online Guessing

   An attacker may try to guess valid username/password combinations
   using the grant type "password".

   Impact: Revelation of a single username/password combination.





Lodderstedt, et al.           Informational                    [Page 43]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   Countermeasures:

   o  Utilize secure password policy (Section 5.1.4.2.1).

   o  Lock accounts (Section 5.1.4.2.3).

   o  Use tar pit (Section 5.1.4.2.4).

   o  Use CAPTCHAs (Section 5.1.4.2.5).

   o  Consider not using the grant type "password".

   o  Client authentication (see Section 5.2.3) will provide another
      authentication factor and thus hinder the attack.

4.4.4.  Client Credentials

   Client credentials (see [RFC6749], Section 3) consist of an
   identifier (not secret) combined with an additional means (such as a
   matching client secret) of authenticating a client.  The threats to
   this grant type are similar to those described in Section 4.4.3.

4.5.  Refreshing an Access Token

4.5.1.  Threat: Eavesdropping Refresh Tokens from Authorization Server

   An attacker may eavesdrop refresh tokens when they are transmitted
   from the authorization server to the client.

   Countermeasures:

   o  As per the core OAuth spec, the authorization servers must ensure
      that these transmissions are protected using transport-layer
      mechanisms such as TLS (see Section 5.1.1).

   o  If end-to-end confidentiality cannot be guaranteed, reducing scope
      (see Section 5.1.5.1) and expiry time (see Section 5.1.5.3) for
      issued access tokens can be used to reduce the damage in case of
      leaks.

4.5.2.  Threat: Obtaining Refresh Token from Authorization Server
        Database

   This threat is applicable if the authorization server stores refresh
   tokens as handles in a database.  An attacker may obtain refresh
   tokens from the authorization server's database by gaining access to
   the database or launching a SQL injection attack.




Lodderstedt, et al.           Informational                    [Page 44]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   Impact: Disclosure of all refresh tokens.

   Countermeasures:

   o  Enforce credential storage protection best practices
      (Section 5.1.4.1).

   o  Bind token to client id, if the attacker cannot obtain the
      required id and secret (Section 5.1.5.8).

4.5.3.  Threat: Obtaining Refresh Token by Online Guessing

   An attacker may try to guess valid refresh token values and send it
   using the grant type "refresh_token" in order to obtain a valid
   access token.

   Impact: Exposure of a single refresh token and derivable access
   tokens.

   Countermeasures:

   o  For handle-based designs (Section 5.1.4.2.2).

   o  For assertion-based designs (Section 5.1.5.9).

   o  Bind token to client id, because the attacker would guess the
      matching client id, too (see Section 5.1.5.8).

   o  Authenticate the client; this adds another element that the
      attacker has to guess (see Section 5.2.3.4).

4.5.4.  Threat: Refresh Token Phishing by Counterfeit Authorization
        Server

   An attacker could try to obtain valid refresh tokens by proxying
   requests to the authorization server.  Given the assumption that the
   authorization server URL is well-known at development time or can at
   least be obtained from a well-known resource server, the attacker
   must utilize some kind of spoofing in order to succeed.

   Countermeasures:

   o  Utilize server authentication (as described in Section 5.1.2).








Lodderstedt, et al.           Informational                    [Page 45]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


4.6.  Accessing Protected Resources

4.6.1.  Threat: Eavesdropping Access Tokens on Transport

   An attacker could try to obtain a valid access token on transport
   between the client and resource server.  As access tokens are shared
   secrets between the authorization server and resource server, they
   should be treated with the same care as other credentials (e.g., end-
   user passwords).

   Countermeasures:

   o  Access tokens sent as bearer tokens should not be sent in the
      clear over an insecure channel.  As per the core OAuth spec,
      transmission of access tokens must be protected using transport-
      layer mechanisms such as TLS (see Section 5.1.1).

   o  A short lifetime reduces impact in case tokens are compromised
      (see Section 5.1.5.3).

   o  The access token can be bound to a client's identifier and require
      the client to prove legitimate ownership of the token to the
      resource server (see Section 5.4.2).

4.6.2.  Threat: Replay of Authorized Resource Server Requests

   An attacker could attempt to replay valid requests in order to obtain
   or to modify/destroy user data.

   Countermeasures:

   o  The resource server should utilize transport security measures
      (e.g., TLS) in order to prevent such attacks (see Section 5.1.1).
      This would prevent the attacker from capturing valid requests.

   o  Alternatively, the resource server could employ signed requests
      (see Section 5.4.3) along with nonces and timestamps in order to
      uniquely identify requests.  The resource server should detect and
      refuse every replayed request.

4.6.3.  Threat: Guessing Access Tokens

   Where the token is a handle, the attacker may attempt to guess the
   access token values based on knowledge they have from other access
   tokens.

   Impact: Access to a single user's data.




Lodderstedt, et al.           Informational                    [Page 46]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   Countermeasures:

   o  Handle tokens should have a reasonable level of entropy (see
      Section 5.1.4.2.2) in order to make guessing a valid token value
      infeasible.

   o  Assertion (or self-contained token) token contents should be
      protected by a digital signature (see Section 5.1.5.9).

   o  Security can be further strengthened by using a short access token
      duration (see Sections 5.1.5.2 and 5.1.5.3).

4.6.4.  Threat: Access Token Phishing by Counterfeit Resource Server

   An attacker may pretend to be a particular resource server and to
   accept tokens from a particular authorization server.  If the client
   sends a valid access token to this counterfeit resource server, the
   server in turn may use that token to access other services on behalf
   of the resource owner.

   Countermeasures:

   o  Clients should not make authenticated requests with an access
      token to unfamiliar resource servers, regardless of the presence
      of a secure channel.  If the resource server URL is well-known to
      the client, it may authenticate the resource servers (see
      Section 5.1.2).

   o  Associate the endpoint URL of the resource server the client
      talked to with the access token (e.g., in an audience field) and
      validate the association at a legitimate resource server.  The
      endpoint URL validation policy may be strict (exact match) or more
      relaxed (e.g., same host).  This would require telling the
      authorization server about the resource server endpoint URL in the
      authorization process.

   o  Associate an access token with a client and authenticate the
      client with resource server requests (typically via a signature,
      in order to not disclose a secret to a potential attacker).  This
      prevents the attack because the counterfeit server is assumed to
      lack the capability to correctly authenticate on behalf of the
      legitimate client to the resource server (Section 5.4.2).

   o  Restrict the token scope (see Section 5.1.5.1) and/or limit the
      token to a certain resource server (Section 5.1.5.5).






Lodderstedt, et al.           Informational                    [Page 47]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


4.6.5.  Threat: Abuse of Token by Legitimate Resource Server or Client

   A legitimate resource server could attempt to use an access token to
   access another resource server.  Similarly, a client could try to use
   a token obtained for one server on another resource server.

   Countermeasures:

   o  Tokens should be restricted to particular resource servers (see
      Section 5.1.5.5).

4.6.6.  Threat: Leak of Confidential Data in HTTP Proxies

   An OAuth HTTP authentication scheme as discussed in [RFC6749] is
   optional.  However, [RFC2616] relies on the Authorization and
   WWW-Authenticate headers to distinguish authenticated content so that
   it can be protected.  Proxies and caches, in particular, may fail to
   adequately protect requests not using these headers.  For example,
   private authenticated content may be stored in (and thus be
   retrievable from) publicly accessible caches.

   Countermeasures:

   o  Clients and resource servers not using an OAuth HTTP
      authentication scheme (see Section 5.4.1) should take care to use
      Cache-Control headers to minimize the risk that authenticated
      content is not protected.  Such clients should send a
      Cache-Control header containing the "no-store" option [RFC2616].
      Resource server success (2XX status) responses to these requests
      should contain a Cache-Control header with the "private" option
      [RFC2616].

   o  Reducing scope (see Section 5.1.5.1) and expiry time
      (Section 5.1.5.3) for access tokens can be used to reduce the
      damage in case of leaks.

4.6.7.  Threat: Token Leakage via Log Files and HTTP Referrers

   If access tokens are sent via URI query parameters, such tokens may
   leak to log files and the HTTP "referer".

   Countermeasures:

   o  Use Authorization headers or POST parameters instead of URI
      request parameters (see Section 5.4.1).

   o  Set logging configuration appropriately.




Lodderstedt, et al.           Informational                    [Page 48]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   o  Prevent unauthorized persons from access to system log files (see
      Section 5.1.4.1.1).

   o  Abuse of leaked access tokens can be prevented by enforcing
      authenticated requests (see Section 5.4.2).

   o  The impact of token leakage may be reduced by limiting scope (see
      Section 5.1.5.1) and duration (see Section 5.1.5.3) and by
      enforcing one-time token usage (see Section 5.1.5.4).

5.  Security Considerations

   This section describes the countermeasures as recommended to mitigate
   the threats described in Section 4.

5.1.  General

   This section covers considerations that apply generally across all
   OAuth components (client, resource server, token server, and user
   agents).

5.1.1.  Ensure Confidentiality of Requests

   This is applicable to all requests sent from the client to the
   authorization server or resource server.  While OAuth provides a
   mechanism for verifying the integrity of requests, it provides no
   guarantee of request confidentiality.  Unless further precautions are
   taken, eavesdroppers will have full access to request content and may
   be able to mount interception or replay attacks by using the contents
   of requests, e.g., secrets or tokens.

   Attacks can be mitigated by using transport-layer mechanisms such as
   TLS [RFC5246].  A virtual private network (VPN), e.g., based on IPsec
   VPNs [RFC4301], may be considered as well.

   Note: This document assumes end-to-end TLS protected connections
   between the respective protocol entities.  Deployments deviating from
   this assumption by offloading TLS in between (e.g., on the data
   center edge) must refine this threat model in order to account for
   the additional (mainly insider) threat this may cause.

   This is a countermeasure against the following threats:

   o  Replay of access tokens obtained on the token's endpoint or the
      resource server's endpoint

   o  Replay of refresh tokens obtained on the token's endpoint




Lodderstedt, et al.           Informational                    [Page 49]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   o  Replay of authorization "codes" obtained on the token's endpoint
      (redirect?)

   o  Replay of user passwords and client secrets

5.1.2.  Utilize Server Authentication

   HTTPS server authentication or similar means can be used to
   authenticate the identity of a server.  The goal is to reliably bind
   the fully qualified domain name of the server to the public key
   presented by the server during connection establishment (see
   [RFC2818]).

   The client should validate the binding of the server to its domain
   name.  If the server fails to prove that binding, the communication
   is considered a man-in-the-middle attack.  This security measure
   depends on the certification authorities the client trusts for that
   purpose.  Clients should carefully select those trusted CAs and
   protect the storage for trusted CA certificates from modifications.

   This is a countermeasure against the following threats:

   o  Spoofing

   o  Proxying

   o  Phishing by counterfeit servers

5.1.3.  Always Keep the Resource Owner Informed

   Transparency to the resource owner is a key element of the OAuth
   protocol.  The user should always be in control of the authorization
   processes and get the necessary information to make informed
   decisions.  Moreover, user involvement is a further security
   countermeasure.  The user can probably recognize certain kinds of
   attacks better than the authorization server.  Information can be
   presented/exchanged during the authorization process, after the
   authorization process, and every time the user wishes to get informed
   by using techniques such as:

   o  User consent forms.

   o  Notification messages (e.g., email, SMS, ...).  Note that
      notifications can be a phishing vector.  Messages should be such
      that look-alike phishing messages cannot be derived from them.






Lodderstedt, et al.           Informational                    [Page 50]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   o  Activity/event logs.

   o  User self-care applications or portals.

5.1.4.  Credentials

   This section describes countermeasures used to protect all kinds of
   credentials from unauthorized access and abuse.  Credentials are
   long-term secrets, such as client secrets and user passwords as well
   as all kinds of tokens (refresh and access tokens) or authorization
   "codes".

5.1.4.1.  Enforce Credential Storage Protection Best Practices

   Administrators should undertake industry best practices to protect
   the storage of credentials (for example, see [OWASP]).  Such
   practices may include but are not limited to the following
   sub-sections.

5.1.4.1.1.  Enforce Standard System Security Means

   A server system may be locked down so that no attacker may get access
   to sensitive configuration files and databases.

5.1.4.1.2.  Enforce Standard SQL Injection Countermeasures

   If a client identifier or other authentication component is queried
   or compared against a SQL database, it may become possible for an
   injection attack to occur if parameters received are not validated
   before submission to the database.

   o  Ensure that server code is using the minimum database privileges
      possible to reduce the "surface" of possible attacks.

   o  Avoid dynamic SQL using concatenated input.  If possible, use
      static SQL.

   o  When using dynamic SQL, parameterize queries using bind arguments.
      Bind arguments eliminate the possibility of SQL injections.

   o  Filter and sanitize the input.  For example, if an identifier has
      a known format, ensure that the supplied value matches the
      identifier syntax rules.








Lodderstedt, et al.           Informational                    [Page 51]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


5.1.4.1.3.  No Cleartext Storage of Credentials

   The authorization server should not store credentials in clear text.
   Typical approaches are to store hashes instead or to encrypt
   credentials.  If the credential lacks a reasonable entropy level
   (because it is a user password), an additional salt will harden the
   storage to make offline dictionary attacks more difficult.

   Note: Some authentication protocols require the authorization server
   to have access to the secret in the clear.  Those protocols cannot be
   implemented if the server only has access to hashes.  Credentials
   should be strongly encrypted in those cases.

5.1.4.1.4.  Encryption of Credentials

   For client applications, insecurely persisted client credentials are
   easy targets for attackers to obtain.  Store client credentials using
   an encrypted persistence mechanism such as a keystore or database.
   Note that compiling client credentials directly into client code
   makes client applications vulnerable to scanning as well as difficult
   to administer should client credentials change over time.

5.1.4.1.5.  Use of Asymmetric Cryptography

   Usage of asymmetric cryptography will free the authorization server
   of the obligation to manage credentials.

5.1.4.2.  Online Attacks on Secrets

5.1.4.2.1.  Utilize Secure Password Policy

   The authorization server may decide to enforce a complex user
   password policy in order to increase the user passwords' entropy to
   hinder online password attacks.  Note that too much complexity can
   increase the likelihood that users re-use passwords or write them
   down, or otherwise store them insecurely.

5.1.4.2.2.  Use High Entropy for Secrets

   When creating secrets not intended for usage by human users (e.g.,
   client secrets or token handles), the authorization server should
   include a reasonable level of entropy in order to mitigate the risk
   of guessing attacks.  The token value should be >=128 bits long and
   constructed from a cryptographically strong random or pseudo-random
   number sequence (see [RFC4086] for best current practice) generated
   by the authorization server.





Lodderstedt, et al.           Informational                    [Page 52]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


5.1.4.2.3.  Lock Accounts

   Online attacks on passwords can be mitigated by locking the
   respective accounts after a certain number of failed attempts.

   Note: This measure can be abused to lock down legitimate service
   users.

5.1.4.2.4.  Use Tar Pit

   The authorization server may react on failed attempts to authenticate
   by username/password by temporarily locking the respective account
   and delaying the response for a certain duration.  This duration may
   increase with the number of failed attempts.  The objective is to
   slow the attacker's attempts on a certain username down.

   Note: This may require a more complex and stateful design of the
   authorization server.

5.1.4.2.5.  Use CAPTCHAs

   The idea is to prevent programs from automatically checking a huge
   number of passwords, by requiring human interaction.

   Note: This has a negative impact on user experience.

5.1.5.  Tokens (Access, Refresh, Code)

5.1.5.1.  Limit Token Scope

   The authorization server may decide to reduce or limit the scope
   associated with a token.  The basis of this decision is out of scope;
   examples are:

   o  a client-specific policy, e.g., issue only less powerful tokens to
      public clients,

   o  a service-specific policy, e.g., it is a very sensitive service,

   o  a resource-owner-specific setting, or

   o  combinations of such policies and preferences.









Lodderstedt, et al.           Informational                    [Page 53]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   The authorization server may allow different scopes dependent on the
   grant type.  For example, end-user authorization via direct
   interaction with the end user (authorization "code") might be
   considered more reliable than direct authorization via grant type
   "username"/"password".  This means will reduce the impact of the
   following threats:

   o  token leakage

   o  token issuance to malicious software

   o  unintended issuance of powerful tokens with resource owner
      credentials flow

5.1.5.2.  Determine Expiration Time

   Tokens should generally expire after a reasonable duration.  This
   complements and strengthens other security measures (such as
   signatures) and reduces the impact of all kinds of token leaks.
   Depending on the risk associated with token leakage, tokens may
   expire after a few minutes (e.g., for payment transactions) or stay
   valid for hours (e.g., read access to contacts).

   The expiration time is determined by several factors, including:

   o  risk associated with token leakage,

   o  duration of the underlying access grant,

   o  duration until the modification of an access grant should take
      effect, and

   o  time required for an attacker to guess or produce a valid token.

5.1.5.3.  Use Short Expiration Time

   A short expiration time for tokens is a means of protection against
   the following threats:

   o  replay

   o  token leak (a short expiration time will reduce impact)

   o  online guessing (a short expiration time will reduce the
      likelihood of success)






Lodderstedt, et al.           Informational                    [Page 54]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   Note: Short token duration requires more precise clock
   synchronization between the authorization server and resource server.
   Furthermore, shorter duration may require more token refreshes
   (access token) or repeated end-user authorization processes
   (authorization "code" and refresh token).

5.1.5.4.  Limit Number of Usages or One-Time Usage

   The authorization server may restrict the number of requests or
   operations that can be performed with a certain token.  This
   mechanism can be used to mitigate the following threats:

   o  replay of tokens

   o  guessing

   For example, if an authorization server observes more than one
   attempt to redeem an authorization "code", the authorization server
   may want to revoke all access tokens granted based on the
   authorization "code" as well as reject the current request.

   As with the authorization "code", access tokens may also have a
   limited number of operations.  This either forces client applications
   to re-authenticate and use a refresh token to obtain a fresh access
   token, or forces the client to re-authorize the access token by
   involving the user.

5.1.5.5.  Bind Tokens to a Particular Resource Server (Audience)

   Authorization servers in multi-service environments may consider
   issuing tokens with different content to different resource servers
   and to explicitly indicate in the token the target server to which a
   token is intended to be sent.  SAML assertions (see
   [OASIS.saml-core-2.0-os]) use the Audience element for this purpose.
   This countermeasure can be used in the following situations:

   o  It reduces the impact of a successful replay attempt, since the
      token is applicable to a single resource server only.

   o  It prevents abuse of a token by a rogue resource server or client,
      since the token can only be used on that server.  It is rejected
      by other servers.

   o  It reduces the impact of leakage of a valid token to a counterfeit
      resource server.






Lodderstedt, et al.           Informational                    [Page 55]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


5.1.5.6.  Use Endpoint Address as Token Audience

   This may be used to indicate to a resource server which endpoint URL
   has been used to obtain the token.  This measure will allow the
   detection of requests from a counterfeit resource server, since such
   a token will contain the endpoint URL of that server.

5.1.5.7.  Use Explicitly Defined Scopes for Audience and Tokens

   Deployments may consider only using tokens with explicitly defined
   scopes, where every scope is associated with a particular resource
   server.  This approach can be used to mitigate attacks where a
   resource server or client uses a token for a different purpose than
   the one intended.

5.1.5.8.  Bind Token to Client id

   An authorization server may bind a token to a certain client
   identifier.  This identifier should be validated for every request
   with that token.  This technique can be used to

   o  detect token leakage and

   o  prevent token abuse.

   Note: Validating the client identifier may require the target server
   to authenticate the client's identifier.  This authentication can be
   based on secrets managed independently of the token (e.g.,
   pre-registered client id/secret on authorization server) or sent with
   the token itself (e.g., as part of the encrypted token content).

5.1.5.9.  Sign Self-Contained Tokens

   Self-contained tokens should be signed in order to detect any attempt
   to modify or produce faked tokens (e.g., Hash-based Message
   Authentication Code or digital signatures).

5.1.5.10.  Encrypt Token Content

   Self-contained tokens may be encrypted for confidentiality reasons or
   to protect system internal data.  Depending on token format, keys
   (e.g., symmetric keys) may have to be distributed between server
   nodes.  The method of distribution should be defined by the token and
   the encryption used.







Lodderstedt, et al.           Informational                    [Page 56]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


5.1.5.11.  Adopt a Standard Assertion Format

   For service providers intending to implement an assertion-based token
   design, it is highly recommended to adopt a standard assertion format
   (such as SAML [OASIS.saml-core-2.0-os] or the JavaScript Object
   Notation Web Token (JWT) [OAuth-JWT]).

5.1.6.  Access Tokens

   The following measures should be used to protect access tokens:

   o  Keep them in transient memory (accessible by the client
      application only).

   o  Pass tokens securely using secure transport (TLS).

   o  Ensure that client applications do not share tokens with 3rd
      parties.

5.2.  Authorization Server

   This section describes considerations related to the OAuth
   authorization server endpoint.

5.2.1.  Authorization "codes"

5.2.1.1.  Automatic Revocation of Derived Tokens If Abuse Is Detected

   If an authorization server observes multiple attempts to redeem an
   authorization grant (e.g., such as an authorization "code"), the
   authorization server may want to revoke all tokens granted based on
   the authorization grant.

5.2.2.  Refresh Tokens

5.2.2.1.  Restricted Issuance of Refresh Tokens

   The authorization server may decide, based on an appropriate policy,
   not to issue refresh tokens.  Since refresh tokens are long-term
   credentials, they may be subject to theft.  For example, if the
   authorization server does not trust a client to securely store such
   tokens, it may refuse to issue such a client a refresh token.









Lodderstedt, et al.           Informational                    [Page 57]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


5.2.2.2.  Binding of Refresh Token to "client_id"

   The authorization server should match every refresh token to the
   identifier of the client to whom it was issued.  The authorization
   server should check that the same "client_id" is present for every
   request to refresh the access token.  If possible (e.g., confidential
   clients), the authorization server should authenticate the respective
   client.

   This is a countermeasure against refresh token theft or leakage.

   Note: This binding should be protected from unauthorized
   modifications.

5.2.2.3.  Refresh Token Rotation

   Refresh token rotation is intended to automatically detect and
   prevent attempts to use the same refresh token in parallel from
   different apps/devices.  This happens if a token gets stolen from the
   client and is subsequently used by both the attacker and the
   legitimate client.  The basic idea is to change the refresh token
   value with every refresh request in order to detect attempts to
   obtain access tokens using old refresh tokens.  Since the
   authorization server cannot determine whether the attacker or the
   legitimate client is trying to access, in case of such an access
   attempt the valid refresh token and the access authorization
   associated with it are both revoked.

   The OAuth specification supports this measure in that the token's
   response allows the authorization server to return a new refresh
   token even for requests with grant type "refresh_token".

   Note: This measure may cause problems in clustered environments,
   since usage of the currently valid refresh token must be ensured.  In
   such an environment, other measures might be more appropriate.

5.2.2.4.  Revocation of Refresh Tokens

   The authorization server may allow clients or end users to explicitly
   request the invalidation of refresh tokens.  A mechanism to revoke
   tokens is specified in [OAuth-REVOCATION].










Lodderstedt, et al.           Informational                    [Page 58]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   This is a countermeasure against:

   o  device theft,

   o  impersonation of a resource owner, or

   o  suspected compromised client applications.

5.2.2.5.  Device Identification

   The authorization server may require the binding of authentication
   credentials to a device identifier.  The International Mobile Station
   Equipment Identity [IMEI] is one example of such an identifier; there
   are also operating system-specific identifiers.  The authorization
   server could include such an identifier when authenticating user
   credentials in order to detect token theft from a particular device.

   Note: Any implementation should consider potential privacy
   implications of using device identifiers.

5.2.2.6.  X-FRAME-OPTIONS Header

   For newer browsers, avoidance of iFrames can be enforced on the
   server side by using the X-FRAME-OPTIONS header (see
   [X-Frame-Options]).  This header can have two values, "DENY" and
   "SAMEORIGIN", which will block any framing or any framing by sites
   with a different origin, respectively.  The value "ALLOW-FROM"
   specifies a list of trusted origins that iFrames may originate from.

   This is a countermeasure against the following threat:

   o  Clickjacking attacks

5.2.3.  Client Authentication and Authorization

   As described in Section 3 (Security Features), clients are
   identified, authenticated, and authorized for several purposes, such
   as to:

   o  Collate requests to the same client,

   o  Indicate to the user that the client is recognized by the
      authorization server,

   o  Authorize access of clients to certain features on the
      authorization server or resource server, and

   o  Log a client identifier to log files for analysis or statistics.



Lodderstedt, et al.           Informational                    [Page 59]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   Due to the different capabilities and characteristics of the
   different client types, there are different ways to support these
   objectives, which will be described in this section.  Authorization
   server providers should be aware of the security policy and
   deployment of a particular client and adapt its treatment
   accordingly.  For example, one approach could be to treat all clients
   as less trustworthy and unsecure.  On the other extreme, a service
   provider could activate every client installation individually by an
   administrator and in that way gain confidence in the identity of the
   software package and the security of the environment in which the
   client is installed.  There are several approaches in between.

5.2.3.1.  Don't Issue Secrets to Clients with Inappropriate Security
          Policy

   Authorization servers should not issue secrets to clients that cannot
   protect secrets ("public" clients).  This reduces the probability of
   the server treating the client as strongly authenticated.

   For example, it is of limited benefit to create a single client id
   and secret that are shared by all installations of a native
   application.  Such a scenario requires that this secret must be
   transmitted from the developer via the respective distribution
   channel, e.g., an application market, to all installations of the
   application on end-user devices.  A secret, burned into the source
   code of the application or an associated resource bundle, is not
   protected from reverse engineering.  Secondly, such secrets cannot be
   revoked, since this would immediately put all installations out of
   work.  Moreover, since the authorization server cannot really trust
   the client's identifier, it would be dangerous to indicate to end
   users the trustworthiness of the client.

   There are other ways to achieve a reasonable security level, as
   described in the following sections.

5.2.3.2.  Require User Consent for Public Clients without Secret

   Authorization servers should not allow automatic authorization for
   public clients.  The authorization server may issue an individual
   client id but should require that all authorizations are approved by
   the end user.  For clients without secrets, this is a countermeasure
   against the following threat:

   o  Impersonation of public client applications.







Lodderstedt, et al.           Informational                    [Page 60]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


5.2.3.3.  Issue a "client_id" Only in Combination with "redirect_uri"

   The authorization server may issue a "client_id" and bind the
   "client_id" to a certain pre-configured "redirect_uri".  Any
   authorization request with another redirect URI is refused
   automatically.  Alternatively, the authorization server should not
   accept any dynamic redirect URI for such a "client_id" and instead
   should always redirect to the well-known pre-configured redirect URI.
   This is a countermeasure for clients without secrets against the
   following threats:

   o  Cross-site scripting attacks

   o  Impersonation of public client applications

5.2.3.4.  Issue Installation-Specific Client Secrets

   An authorization server may issue separate client identifiers and
   corresponding secrets to the different installations of a particular
   client (i.e., software package).  The effect of such an approach
   would be to turn otherwise "public" clients back into "confidential"
   clients.

   For web applications, this could mean creating one "client_id" and
   "client_secret" for each web site on which a software package is
   installed.  So, the provider of that particular site could request a
   client id and secret from the authorization server during the setup
   of the web site.  This would also allow the validation of some of the
   properties of that web site, such as redirect URI, web site URL, and
   whatever else proves useful.  The web site provider has to ensure the
   security of the client secret on the site.

   For native applications, things are more complicated because every
   copy of a particular application on any device is a different
   installation.  Installation-specific secrets in this scenario will
   require obtaining a "client_id" and "client_secret" either

   1.  during the download process from the application market, or

   2.  during installation on the device.

   Either approach will require an automated mechanism for issuing
   client ids and secrets, which is currently not defined by OAuth.

   The first approach would allow the achievement of a certain level of
   trust in the authenticity of the application, whereas the second
   option only allows the authentication of the installation but not the
   validation of properties of the client.  But this would at least help



Lodderstedt, et al.           Informational                    [Page 61]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   to prevent several replay attacks.  Moreover, installation-specific
   "client_ids" and secrets allow the selective revocation of all
   refresh tokens of a specific installation at once.

5.2.3.5.  Validate Pre-Registered "redirect_uri"

   An authorization server should require all clients to register their
   "redirect_uri", and the "redirect_uri" should be the full URI as
   defined in [RFC6749].  The way that this registration is performed is
   out of scope of this document.  As per the core spec, every actual
   redirect URI sent with the respective "client_id" to the end-user
   authorization endpoint must match the registered redirect URI.  Where
   it does not match, the authorization server should assume that the
   inbound GET request has been sent by an attacker and refuse it.
   Note: The authorization server should not redirect the user agent
   back to the redirect URI of such an authorization request.
   Validating the pre-registered "redirect_uri" is a countermeasure
   against the following threats:

   o  Authorization "code" leakage through counterfeit web site: allows
      authorization servers to detect attack attempts after the first
      redirect to an end-user authorization endpoint (Section 4.4.1.7).

   o  Open redirector attack via a client redirection endpoint
      (Section 4.1.5).

   o  Open redirector phishing attack via an authorization server
      redirection endpoint (Section 4.2.4).

   The underlying assumption of this measure is that an attacker will
   need to use another redirect URI in order to get access to the
   authorization "code".  Deployments might consider the possibility of
   an attacker using spoofing attacks to a victim's device to circumvent
   this security measure.

   Note: Pre-registering clients might not scale in some deployments
   (manual process) or require dynamic client registration (not
   specified yet).  With the lack of dynamic client registration, a
   pre-registered "redirect_uri" only works for clients bound to certain
   deployments at development/configuration time.  As soon as dynamic
   resource server discovery is required, the pre-registered
   "redirect_uri" may no longer be feasible.









Lodderstedt, et al.           Informational                    [Page 62]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


5.2.3.6.  Revoke Client Secrets

   An authorization server may revoke a client's secret in order to
   prevent abuse of a revealed secret.

   Note: This measure will immediately invalidate any authorization
   "code" or refresh token issued to the respective client.  This might
   unintentionally impact client identifiers and secrets used across
   multiple deployments of a particular native or web application.

   This a countermeasure against:

   o  Abuse of revealed client secrets for private clients

5.2.3.7.  Use Strong Client Authentication (e.g., client_assertion/
          client_token)

   By using an alternative form of authentication such as client
   assertion [OAuth-ASSERTIONS], the need to distribute a
   "client_secret" is eliminated.  This may require the use of a secure
   private key store or other supplemental authentication system as
   specified by the client assertion issuer in its authentication
   process.

5.2.4.  End-User Authorization

   This section includes considerations for authorization flows
   involving the end user.

5.2.4.1.  Automatic Processing of Repeated Authorizations Requires
          Client Validation

   Authorization servers should NOT automatically process repeat
   authorizations where the client is not authenticated through a client
   secret or some other authentication mechanism such as a signed
   authentication assertion certificate (Section 5.2.3.7) or validation
   of a pre-registered redirect URI (Section 5.2.3.5).

5.2.4.2.  Informed Decisions Based on Transparency

   The authorization server should clearly explain to the end user what
   happens in the authorization process and what the consequences are.
   For example, the user should understand what access he is about to
   grant to which client for what duration.  It should also be obvious
   to the user whether the server is able to reliably certify certain
   client properties (web site URL, security policy).





Lodderstedt, et al.           Informational                    [Page 63]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


5.2.4.3.  Validation of Client Properties by End User

   In the authorization process, the user is typically asked to approve
   a client's request for authorization.  This is an important security
   mechanism by itself because the end user can be involved in the
   validation of client properties, such as whether the client name
   known to the authorization server fits the name of the web site or
   the application the end user is using.  This measure is especially
   helpful in situations where the authorization server is unable to
   authenticate the client.  It is a countermeasure against:

   o  A malicious application

   o  A client application masquerading as another client

5.2.4.4.  Binding of Authorization "code" to "client_id"

   The authorization server should bind every authorization "code" to
   the id of the respective client that initiated the end-user
   authorization process.  This measure is a countermeasure against:

   o  Replay of authorization "codes" with different client credentials,
      since an attacker cannot use another "client_id" to exchange an
      authorization "code" into a token

   o  Online guessing of authorization "codes"

   Note: This binding should be protected from unauthorized
   modifications (e.g., using protected memory and/or a secure
   database).

5.2.4.5.  Binding of Authorization "code" to "redirect_uri"

   The authorization server should be able to bind every authorization
   "code" to the actual redirect URI used as the redirect target of the
   client in the end-user authorization process.  This binding should be
   validated when the client attempts to exchange the respective
   authorization "code" for an access token.  This measure is a
   countermeasure against authorization "code" leakage through
   counterfeit web sites, since an attacker cannot use another redirect
   URI to exchange an authorization "code" into a token.










Lodderstedt, et al.           Informational                    [Page 64]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


5.3.  Client App Security

   This section deals with considerations for client applications.

5.3.1.  Don't Store Credentials in Code or Resources Bundled with
        Software Packages

   Because of the number of copies of client software, there is limited
   benefit in creating a single client id and secret that is shared by
   all installations of an application.  Such an application by itself
   would be considered a "public" client, as it cannot be presumed to be
   able to keep client secrets.  A secret, burned into the source code
   of the application or an associated resource bundle, cannot be
   protected from reverse engineering.  Secondly, such secrets cannot be
   revoked, since this would immediately put all installations out of
   work.  Moreover, since the authorization server cannot really trust
   the client's identifier, it would be dangerous to indicate to end
   users the trustworthiness of the client.

5.3.2.  Use Standard Web Server Protection Measures (for Config Files
        and Databases)

   Use standard web server protection and configuration measures to
   protect the integrity of the server, databases, configuration files,
   and other operational components of the server.

5.3.3.  Store Secrets in Secure Storage

   There are different ways to store secrets of all kinds (tokens,
   client secrets) securely on a device or server.

   Most multi-user operating systems segregate the personal storage of
   different system users.  Moreover, most modern smartphone operating
   systems even support the storage of application-specific data in
   separate areas of file systems and protect the data from access by
   other applications.  Additionally, applications can implement
   confidential data by using a user-supplied secret, such as a PIN or
   password.

   Another option is to swap refresh token storage to a trusted backend
   server.  This option in turn requires a resilient authentication
   mechanism between the client and backend server.  Note: Applications
   should ensure that confidential data is kept confidential even after
   reading from secure storage, which typically means keeping this data
   in the local memory of the application.






Lodderstedt, et al.           Informational                    [Page 65]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


5.3.4.  Utilize Device Lock to Prevent Unauthorized Device Access

   On a typical modern phone, there are many "device lock" options that
   can be utilized to provide additional protection when a device is
   stolen or misplaced.  These include PINs, passwords, and other
   biometric features such as "face recognition".  These are not equal
   in the level of security they provide.

5.3.5.  Link the "state" Parameter to User Agent Session

   The "state" parameter is used to link client requests and prevent
   CSRF attacks, for example, attacks against the redirect URI.  An
   attacker could inject their own authorization "code" or access token,
   which can result in the client using an access token associated with
   the attacker's protected resources rather than the victim's (e.g.,
   save the victim's bank account information to a protected resource
   controlled by the attacker).

   The client should utilize the "state" request parameter to send the
   authorization server a value that binds the request to the user
   agent's authenticated state (e.g., a hash of the session cookie used
   to authenticate the user agent) when making an authorization request.
   Once authorization has been obtained from the end user, the
   authorization server redirects the end-user's user agent back to the
   client with the required binding value contained in the "state"
   parameter.

   The binding value enables the client to verify the validity of the
   request by matching the binding value to the user agent's
   authenticated state.

5.4.  Resource Servers

   The following section details security considerations for resource
   servers.

5.4.1.  Authorization Headers

   Authorization headers are recognized and specially treated by HTTP
   proxies and servers.  Thus, the usage of such headers for sending
   access tokens to resource servers reduces the likelihood of leakage
   or unintended storage of authenticated requests in general, and
   especially Authorization headers.








Lodderstedt, et al.           Informational                    [Page 66]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


5.4.2.  Authenticated Requests

   An authorization server may bind tokens to a certain client
   identifier and enable resource servers to validate that association
   on resource access.  This will require the resource server to
   authenticate the originator of a request as the legitimate owner of a
   particular token.  There are several options to implement this
   countermeasure:

   o  The authorization server may associate the client identifier with
      the token (either internally or in the payload of a self-contained
      token).  The client then uses client certificate-based HTTP
      authentication on the resource server's endpoint to authenticate
      its identity, and the resource server validates the name with the
      name referenced by the token.

   o  Same as the option above, but the client uses his private key to
      sign the request to the resource server (the public key is either
      contained in the token or sent along with the request).

   o  Alternatively, the authorization server may issue a token-bound
      key, which the client uses in a Holder-of-Key proof to
      authenticate the client's use of the token.  The resource server
      obtains the secret directly from the authorization server, or the
      secret is contained in an encrypted section of the token.  In that
      way, the resource server does not "know" the client but is able to
      validate whether the authorization server issued the token to that
      client.

   Authenticated requests are a countermeasure against abuse of tokens
   by counterfeit resource servers.

5.4.3.  Signed Requests

   A resource server may decide to accept signed requests only, either
   to replace transport-level security measures or to complement such
   measures.  Every signed request should be uniquely identifiable and
   should not be processed twice by the resource server.  This
   countermeasure helps to mitigate:

   o  modifications of the message and

   o  replay attempts








Lodderstedt, et al.           Informational                    [Page 67]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


5.5.  A Word on User Interaction and User-Installed Apps

   OAuth, as a security protocol, is distinctive in that its flow
   usually involves significant user interaction, making the end user a
   part of the security model.  This creates some important difficulties
   in defending against some of the threats discussed above.  Some of
   these points have already been made, but it's worth repeating and
   highlighting them here.

   o  End users must understand what they are being asked to approve
      (see Section 5.2.4.2).  Users often do not have the expertise to
      understand the ramifications of saying "yes" to an authorization
      request and are likely not to be able to see subtle differences in
      the wording of requests.  Malicious software can confuse the user,
      tricking the user into approving almost anything.

   o  End-user devices are prone to software compromise.  This has been
      a long-standing problem, with frequent attacks on web browsers and
      other parts of the user's system.  But with the increasing
      popularity of user-installed "apps", the threat posed by
      compromised or malicious end-user software is very strong and is
      one that is very difficult to mitigate.

   o  Be aware that users will demand to install and run such apps, and
      that compromised or malicious ones can steal credentials at many
      points in the data flow.  They can intercept the very user login
      credentials that OAuth is designed to protect.  They can request
      authorization far beyond what they have led the user to understand
      and approve.  They can automate a response on behalf of the user,
      hiding the whole process.  No solution is offered here, because
      none is known; this remains in the space between better security
      and better usability.

   o  Addressing these issues by restricting the use of user-installed
      software may be practical in some limited environments and can be
      used as a countermeasure in those cases.  Such restrictions are
      not practical in the general case, and mechanisms for after-the-
      fact recovery should be in place.

   o  While end users are mostly incapable of properly vetting
      applications they load onto their devices, those who deploy
      authorization servers might have tools at their disposal to
      mitigate malicious clients.  For example, a well-run authorization
      server must only assert client properties to the end user it is
      effectively capable of validating, explicitly point out which
      properties it cannot validate, and indicate to the end user the
      risk associated with granting access to the particular client.




Lodderstedt, et al.           Informational                    [Page 68]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


6.  Acknowledgements

   We would like to thank Stephen Farrell, Barry Leiba, Hui-Lan Lu,
   Francisco Corella, Peifung E. Lam, Shane B. Weeden, Skylar Woodward,
   Niv Steingarten, Tim Bray, and James H. Manger for their comments and
   contributions.

7.  References

7.1.  Normative References

   [RFC6749]  Hardt, D., "The OAuth 2.0 Authorization Framework",
              RFC 6749, October 2012.

   [RFC6750]  Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
              Framework: Bearer Token Usage", RFC 6750, October 2012.

7.2.  Informative References

   [Framebusting]
              Rydstedt, G., Bursztein, Boneh, D., and C. Jackson,
              "Busting Frame Busting: a Study of Clickjacking
              Vulnerabilities on Popular Sites", IEEE 3rd Web 2.0
              Security and Privacy Workshop, May 2010, <http://elie.im/
              publication/busting-frame-busting-a-study-of-
              clickjacking-vulnerabilities-on-popular-sites>.

   [IMEI]     3GPP, "International Mobile station Equipment Identities
              (IMEI)", 3GPP TS 22.016 11.0.0, September 2012,
              <http://www.3gpp.org/ftp/Specs/html-info/22016.htm>.

   [OASIS.saml-core-2.0-os]
              Cantor, S., Ed., Kemp, J., Ed., Philpott, R., Ed., and E.
              Maler, Ed., "Assertions and Protocols for the OASIS
              Security Assertion Markup Language (SAML) V2.0", OASIS
              Standard saml-core-2.0-os, March 2005,
              <http://docs.oasis-open.org/security/saml/
              v2.0/saml-core-2.0-os.pdf>.

   [OASIS.sstc-saml-bindings-1.1]
              Maler, E., Ed., Mishra, P., Ed., and R. Philpott, Ed.,
              "Bindings and Profiles for the OASIS Security Assertion
              Markup Language (SAML) V1.1", September 2003,
              <http://www.oasis-open.org/committees/download.php/3405/
              oasis-sstc-saml-bindings-1.1.pdf>.






Lodderstedt, et al.           Informational                    [Page 69]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   [OASIS.sstc-sec-analysis-response-01]
              Linn, J., Ed., and P. Mishra, Ed., "SSTC Response to
              "Security Analysis of the SAML Single Sign-on Browser/
              Artifact Profile"", January 2005,
              <http://www.oasis-open.org/committees/download.php/
              11191/sstc-gross-sec-analysis-response-01.pdf>.

   [OAuth-ASSERTIONS]
              Campbell, B., Mortimore, C., Jones, M., and Y. Goland,
              "Assertion Framework for OAuth 2.0", Work in Progress,
              December 2012.

   [OAuth-HTTP-MAC]
              Richer, J., Ed., Mills, W., Ed., and H. Tschofenig, Ed.,
              "OAuth 2.0 Message Authentication Code (MAC) Tokens", Work
              in Progress, November 2012.

   [OAuth-JWT]
              Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
              (JWT)", Work in Progress, December 2012.

   [OAuth-REVOCATION]
              Lodderstedt, T., Ed., Dronia, S., and M. Scurtescu, "Token
              Revocation", Work in Progress, November 2012.

   [OPENID]   "OpenID Foundation Home Page", <http://openid.net/>.

   [OWASP]    "Open Web Application Security Project Home Page",
              <https://www.owasp.org/>.

   [Portable-Contacts]
              Smarr, J., "Portable Contacts 1.0 Draft C", August 2008,
              <http://portablecontacts.net/>.

   [RFC2616]  Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
              Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
              Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

   [RFC2818]  Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

   [RFC4086]  Eastlake, D., Schiller, J., and S. Crocker, "Randomness
              Requirements for Security", BCP 106, RFC 4086, June 2005.

   [RFC4120]  Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
              Kerberos Network Authentication Service (V5)", RFC 4120,
              July 2005.





Lodderstedt, et al.           Informational                    [Page 70]
^L
RFC 6819                   OAuth 2.0 Security               January 2013


   [RFC4301]  Kent, S. and K. Seo, "Security Architecture for the
              Internet Protocol", RFC 4301, December 2005.

   [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
              (TLS) Protocol Version 1.2", RFC 5246, August 2008.

   [SSL-Latency]
              Sissel, J., Ed., "SSL handshake latency and HTTPS
              optimizations", June 2010.

   [Sec-Analysis]
              Gross, T., "Security Analysis of the SAML Single Sign-on
              Browser/Artifact Profile", 19th Annual Computer Security
              Applications Conference, Las Vegas, December 2003.

   [X-Frame-Options]
              Ross, D. and T. Gondrom, "HTTP Header X-Frame-Options",
              Work in Progress, October 2012.

   [iFrame]   World Wide Web Consortium, "Frames in HTML documents",
              W3C HTML 4.01, December 1999,
              <http://www.w3.org/TR/html4/present/frames.html#h-16.5>.

Authors' Addresses

   Torsten Lodderstedt (editor)
   Deutsche Telekom AG

   EMail: torsten@lodderstedt.net


   Mark McGloin
   IBM

   EMail: mark.mcgloin@ie.ibm.com


   Phil Hunt
   Oracle Corporation

   EMail: phil.hunt@yahoo.com










Lodderstedt, et al.           Informational                    [Page 71]
^L