1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
|
Internet Engineering Task Force (IETF) K. Kinnear
Request for Comments: 6926 M. Stapp
Category: Standards Track Cisco Systems, Inc.
ISSN: 2070-1721 R. Desetti
B. Joshi
Infosys Ltd.
N. Russell
Sea Street Technologies Inc.
P. Kurapati
Juniper Networks
B. Volz
Cisco Systems, Inc.
April 2013
DHCPv4 Bulk Leasequery
Abstract
The Dynamic Host Configuration Protocol for IPv4 (DHCPv4) Leasequery
protocol allows a requestor to request information about DHCPv4
bindings. This protocol is limited to queries for individual
bindings. In some situations, individual binding queries may not be
efficient or even possible. This document extends the DHCPv4
Leasequery protocol to allow for bulk transfer of DHCPv4 address
binding data via TCP.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc6926.
Kinnear, et al. Standards Track [Page 1]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
Copyright Notice
Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Kinnear, et al. Standards Track [Page 2]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
Table of Contents
1. Introduction ....................................................4
2. Terminology .....................................................5
3. Design Goals ....................................................8
3.1. Information Acquisition before Data Starts .................8
3.2. Lessen Need for Caching and Negative Caching ...............8
3.3. Antispoofing in 'Fast Path' ................................8
3.4. Minimize Data Transmission .................................9
4. Protocol Overview ...............................................9
5. Interaction between UDP Leasequery and Bulk Leasequery .........11
6. Message and Option Definitions .................................12
6.1. Message Framing for TCP ...................................12
6.2. New or Changed Options ....................................13
6.3. Connection and Transmission Parameters ....................20
7. Requestor Behavior .............................................21
7.1. Connecting and General Processing .........................21
7.2. Forming a Bulk Leasequery .................................21
7.3. Processing Bulk Replies ...................................23
7.4. Processing Time Values in Leasequery Messages .............25
7.5. Querying Multiple Servers .................................26
7.6. Making Sense out of Multiple Responses concerning
a Single IPv4 Address .....................................26
7.7. Multiple Queries to a Single Server over One Connection ...27
7.8. Closing Connections .......................................28
8. Server Behavior ................................................29
8.1. Accepting Connections .....................................29
8.2. Replying to a Bulk Leasequery .............................29
8.3. Building a Single Reply for Bulk Leasequery ...............33
8.4. Multiple or Parallel Queries ..............................34
8.5. Closing Connections .......................................35
9. Security Considerations ........................................35
10. IANA Considerations ...........................................37
11. Acknowledgements ..............................................38
12. References ....................................................38
12.1. Normative References .....................................38
12.2. Informative References ...................................39
Kinnear, et al. Standards Track [Page 3]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
1. Introduction
DHCPv4 [RFC2131] [RFC2132] specifies a protocol for the assignment of
IPv4 address and configuration information to IPv4 nodes. DHCPv4
servers maintain authoritative binding information.
+--------+
| DHCPv4 | +--------------+
| Server |-...-| DHCP |
| | | Relay Agent |
+--------+ +--------------+
| |
+------+ +------+
|Modem1| |Modem2|
+------+ +------+
| | |
+-----+ +-----+ +-----+
|Node1| |Node2| |Node3|
+-----+ +-----+ +-----+
Figure 1: Example DHCPv4 Configuration
DHCPv4 relay agents receive DHCPv4 messages and frequently append a
Relay Agent Information option [RFC3046] before relaying them to the
configured DHCPv4 servers (see Figure 1). In this process, some
relay agents also glean lease information sent by the server and
cache it locally. This information is used for a variety of
purposes. Two examples are prevention of spoofing attempts from the
DHCPv4 clients and installation of routes. When a relay agent
reboots, this information is frequently lost.
The DHCPv4 Leasequery capability [RFC4388] extends the basic DHCPv4
capability to allow an external entity, such as a relay agent, to
query a DHCPv4 server to rapidly recover lease state information
about a particular IP address or client.
The existing query types in Leasequery are typically data driven; the
relay agent initiates the Leasequery when it receives data traffic
from or to the client. This approach may not scale well when there
are thousands of clients connected to the relay agent or when the
relay agent has a need to rebuild its internal data store prior to
processing traffic in one direction or another.
Some applications require the ability to query the server without
waiting for traffic from or to clients. This query capability, in
turn, requires an underlying transport more suitable to the bulk
transmission of data.
Kinnear, et al. Standards Track [Page 4]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
This document extends the DHCPv4 Leasequery protocol [RFC4388] to add
support for queries that address these additional requirements.
There may be many thousands of DHCPv4 bindings returned as the result
of a single request, so TCP [RFC4614] is specified for efficiency of
data transfer. We define several additional query types, each of
which can return multiple responses, in order to meet a variety of
requirements.
2. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in RFC
2119 [RFC2119].
This document uses the following terms:
o "absolute time"
Absolute time is a 32-bit quantity containing the number of
seconds since January 1, 1970.
o "access concentrator"
An access concentrator is a router or switch at the broadband
access provider's edge of a public broadband access network. This
document assumes that the access concentrator includes the DHCPv4
relay agent functionality, for example, a CMTS (Cable Modem
Termination System) in a cable environment or a DSLAM (Digital
Subscriber Line Access Multiplexer) in a DSL environment.
o "active binding"
An IP address with an active binding refers to an IP address that
is currently associated with a DHCPv4 client where that DHCPv4
client has the right to use the IP address.
o "Bulk Leasequery"
Bulk Leasequery involves requesting and receiving the existing
DHCPv4 address binding information in an efficient manner.
o "clock skew"
The clock skew for a Bulk Leasequery connection is the difference
between the absolute time on a DHCPv4 server and the absolute time
on the system where a requestor of a Bulk Leasequery is executing.
It is not absolutely constant but is likely to vary only slowly.
Kinnear, et al. Standards Track [Page 5]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
It is possible that, when both systems run NTP, the clock skew is
negligible; this is not only acceptable but desired.
While it is easy to think that this can be calculated precisely
after one message is received by a requestor from a DHCPv4 server,
a more accurate value is derived from continuously examining the
instantaneous value developed from each message received from a
DHCPv4 server and using it to make small adjustments to the
existing value held in the requestor.
o "Default VPN"
A default VPN indicates that the address being described belongs
to the set of addresses not part of any VPN (in other words, the
normal address space operated on by DHCP). This includes Special
Use IPv4 Addresses as defined in [RFC5735].
o "DHCPv4 client"
A DHCPv4 client is an Internet node using DHCPv4 to obtain
configuration parameters such as a network address.
o "DHCPv4 relay agent"
A DHCPv4 relay agent is an agent that is neither a DHCPv4 client
nor a DHCP server that transfers BOOTP and DHCPv4 messages between
clients and servers residing on different subnets, per [RFC951]
and [RFC1542].
o "DHCPv4 server"
A DHCPv4 server is an Internet node that returns configuration
parameters to DHCPv4 clients.
o "DSLAM"
DSLAM stands for Digital Subscriber Line Access Multiplexer.
o "downstream"
Downstream refers to a direction away from the central part of a
network and toward the edge. In a DHCPv4 context, this typically
refers to a network direction that is away from the DHCPv4 server
and toward the DHCPv4 client.
o "Global VPN"
Global VPN is another name for the default VPN.
Kinnear, et al. Standards Track [Page 6]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
o "IP address"
In this document, the term "IP address" refers to an IPv4 IP
address.
o "IP address binding"
An IP address binding is the information that a DHCPv4 server
keeps regarding the relationship between a DHCPv4 client and an IP
address. This includes the identity of the DHCPv4 client and the
expiration time, if any, of any lease that client has on a
particular IP address. In some contexts, this may include
information on IP addresses that are currently associated with
DHCPv4 clients, and in others, it may also include IP addresses
with no current association to a DHCPv4 client.
o "MAC address"
In the context of a DHCPv4 message, a Media Access Control (MAC)
address consists of the fields: hardware type "htype", hardware
length "hlen", and client hardware address "chaddr".
o "upstream"
Upstream refers to a direction toward the central part of a
network and away from the edge. In a DHCPv4 context, this
typically refers to a network direction that is away from the
DHCPv4 client and toward the DHCPv4 server.
o "stable storage"
Stable storage is used to hold information concerning IP address
bindings (among other things) so that this information is not lost
in the event of a failure that requires restart of the network
element. DHCPv4 servers are typically expected to have high-speed
access to stable storage, while relay agents and access
concentrators usually do not have access to stable storage,
although they may have periodic access to such storage.
o "xid"
Transaction-id. The term "xid" refers to the DHCPv4 field
containing the transaction-id of the message.
Kinnear, et al. Standards Track [Page 7]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
3. Design Goals
The goal of this document is to provide a lightweight protocol for an
access concentrator or other network element (such as a DHCP relay
agent) to retrieve IP address binding information available in the
DHCPv4 server. The protocol should also allow an access concentrator
or DHCP relay agent to retrieve consolidated IP address binding
information for either the entire access concentrator or a single
connection/circuit. Throughout the discussion below, everything that
applies to an access concentrator also applies to a DHCP relay agent.
3.1. Information Acquisition before Data Starts
The existing data-driven approach required by [RFC4388] means that
the Leasequeries can only be performed after an access concentrator
receives data. To implement antispoofing, the concentrator must drop
messages for each client until it gets lease information from the
DHCPv4 server for that client. If an access concentrator finishes
the Leasequeries before it starts receiving data, then there is no
need to drop legitimate messages. In this way, outage time may be
reduced.
3.2. Lessen Need for Caching and Negative Caching
The result of a single Leasequery should be cached, whether that
results in a positive or negative cache, in order to remember that
the Leasequery was performed. This caching is required to limit the
traffic imposed upon a DHCPv4 server by Leasequeries for information
already received.
These caches not only consume precious resources, they also need to
be managed. Hence, they should be avoided as much as possible. One
of the goals of the DHCPv4 Bulk Leasequery is to reduce the need for
this sort of caching.
3.3. Antispoofing in 'Fast Path'
If antispoofing is not done in the fast path, it will become a
bottleneck and may lead to denial of service of the access
concentrator. The Leasequeries should make it possible to do
antispoofing in the fast path.
Kinnear, et al. Standards Track [Page 8]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
3.4. Minimize Data Transmission
It may be that a network element is able to periodically save its
entire list of assigned IP addresses to some form of stable storage.
In this case, it will wish to recover all of the updates to this
information without duplicating the information it has recovered from
its own stable storage.
Bulk Leasequery allows the specification of a query-start-time as
well as a query-end-time. Use of query times allows a network
element that periodically commits information to stable storage to
recover just what it lost since the last commit.
4. Protocol Overview
The DHCPv4 Bulk Leasequery protocol is modeled on the existing
individual DHCPv4 Leasequery protocol in [RFC4388] as well as related
work on DHCPv6 Bulk Leasequery [RFC5460]. A Bulk Leasequery
requestor opens a TCP connection to a DHCPv4 server using the DHCPv4
port 67. Note that this implies that the Leasequery requestor has
server IP address(es) available via configuration or some other means
and that it has unicast IP reachability to the DHCPv4 server. No
relaying of Bulk Leasequery messages is specified.
After establishing a connection, the requestor sends a
DHCPBULKLEASEQUERY message over the connection.
The server uses the message type and additional data in the DHCPv4
DHCPBULKLEASEQUERY message to identify any relevant bindings.
In order to support some query types, servers may have to maintain
additional data structures or otherwise be able to locate bindings
that have been requested by the Leasequery requestor.
Relevant bindings are returned in DHCPv4 messages with either the
DHCPLEASEACTIVE message type for an IP address with a currently
active lease or, in some situations, a DHCPLEASEUNASSIGNED message
type for an IP address that is controlled by the DHCPv4 server but is
not actively leased by a DHCPv4 client at the present time.
The Bulk Leasequery protocol is designed to provide an external
entity with information concerning existing DHCPv4 IPv4 address
bindings managed by the DHCPv4 server. When complete, the DHCPv4
server will send a DHCPLEASEQUERYDONE message. If a connection is
lost while processing a Bulk Leasequery, the Bulk Leasequery must be
retried as there is no provision for determining the extent of data
already received by the requestor for a Bulk Leasequery.
Kinnear, et al. Standards Track [Page 9]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
Bulk Leasequery supports queries by MAC address and by Client
Identifier in a way similar to [RFC4388]. The Bulk Leasequery
protocol also adds several new queries.
o Query by Relay Identifier
This query asks a server for the bindings associated with a
specific relay agent; the relay agent is identified by a Relay
Agent Identifier carried in a Relay-ID sub-option [RFC6925].
Relay agents can include this sub-option while relaying messages
to DHCPv4 servers. Servers can retain the Relay-ID and associate
it with bindings made on behalf of the relay agent's clients. The
bindings returned are only those for DHCPv4 clients with a
currently active binding.
o Query by Remote ID
This query asks a server for the bindings associated with a relay
agent Remote ID sub-option [RFC3046] value. The bindings returned
are only those for DHCPv4 clients with a currently active binding.
o Query for All Configured IP Addresses
This query asks a server for information concerning all IP
addresses configured in that DHCPv4 server by specifying no other
type of query. In this case, the bindings returned are for all
configured IP addresses, whether or not they contain a currently
active binding to a DHCPv4 client, since one point of this type of
query is to update an existing database with changes after a
particular point in time.
Any of the above queries can be qualified by the specification of a
query-start-time or a query-end-time (or both). When these timers
are used as qualifiers, they indicate that a binding should be
included if it changed on or after the query-start-time and on or
before the query-end-time.
In addition, any of the above queries can be qualified by the
specification of a VPN-ID option [RFC6607] to select the VPN on which
the query should be processed. The VPN-ID option is also extended to
allow queries across all available VPNs. In the absence of any VPN-
ID option, only the default (global) VPN is used to satisfy the
query.
Kinnear, et al. Standards Track [Page 10]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
5. Interaction between UDP Leasequery and Bulk Leasequery
Bulk Leasequery can be seen as an extension of the existing UDP
Leasequery protocol [RFC4388]. This section clarifies the
relationship between the two protocols.
The Bulk Leasequery TCP connection is only designed to handle the
DHCPBULKLEASEQUERY request. It is not intended as an alternative
DHCPv4 communication option for clients seeking other DHCPv4
services. DHCPv4 address allocation could not be performed over a
TCP connection in any case, as a TCP connection requires an IP
address and no IPv4 address exists prior to a successful DHCPv4
address allocation exchange. In addition, the existing DHCPv4 UDP
transmission regime is implemented in untold millions of devices
deployed worldwide, and complicating DHCPv4 services with alternative
transmission approaches (even if it were possible) would be worse
than any perceived benefit to doing so.
Two of the query types introduced in the UDP Leasequery protocol can
be used in the Bulk Leasequery protocol -- Query by MAC address and
Query by Client-identifier.
The contents of the reply messages are similar between the existing
UDP Leasequery protocol and the Bulk Leasequery protocol, though more
information is returned in the Bulk Leasequery messages.
One change in behavior for these existing queries is required when
Bulk Leasequery is used. Sections 6.1, 6.4.1, and 6.4.2 of [RFC4388]
specify the use of an associated-ip option in DHCPLEASEACTIVE
messages in cases where multiple bindings were found. When Bulk
Leasequery is used, this mechanism is not necessary; a server
returning multiple bindings simply does so directly as specified in
this document. The associated-ip option MUST NOT appear in Bulk
Leasequery replies.
Implementors should note that the TCP message framing defined in
Section 6.1 is not compatible with the UDP message format. If a TCP-
framed request is sent as a UDP message, it may not be valid, because
protocol fields will be offset by the message-size prefix.
Kinnear, et al. Standards Track [Page 11]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
6. Message and Option Definitions
6.1. Message Framing for TCP
The use of TCP for the Bulk Leasequery protocol permits multiple
messages to be sent from one end of the connection to the other
without requiring a request/response paradigm as does UDP DHCPv4
[RFC2131]. The receiver needs to be able to determine the size of
each message it receives. Two octets containing the message size in
network byte order are prepended to each DHCPv4 message sent on a
Bulk Leasequery TCP connection. The two message-size octets 'frame'
each DHCPv4 message.
The maximum message size is 65535 octets.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| message-size | op (1) | htype (1) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| hlen (1) | hops (1) | .... |
+---------------+---------------+ +
| |
. remainder of DHCPv4 message,
. from Figure 1 of [RFC2131] .
. .
. (variable) .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
message-size the number of octets in the message that
follows, as a 16-bit unsigned integer in
network byte order.
All other fields are as specified in DHCPv4 [RFC2131].
Figure 2: Format of a DHCPv4 Message in TCP
The intent in using this format is that code that currently knows how
to deal with sending or receiving a message in [RFC2131] format will
easily be able to deal with the message contained in the TCP framing.
Kinnear, et al. Standards Track [Page 12]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
6.2. New or Changed Options
The existing messages DHCPLEASEUNASSIGNED and DHCPLEASEACTIVE are
used as the value of the dhcp-message-type option to indicate an IP
address that is currently not leased or currently leased to a DHCPv4
client, respectively [RFC4388].
Additional options have also been defined to enable the Bulk
Leasequery protocol to communicate useful information to the
requestor.
6.2.1. dhcp-message-type
The dhcp-message-type option (option 53) from Section 9.6 of
[RFC2132] requires new values. The values of these message types are
shown below in an extension of the table from Section 9.6 of
[RFC2132]:
Value Message Type
----- ------------
14 DHCPBULKLEASEQUERY
15 DHCPLEASEQUERYDONE
6.2.2. status-code
The status-code option allows a machine-readable value to be returned
regarding the status of a DHCPBULKLEASEQUERY request.
This option has two possible scopes when used with Bulk Leasequery,
depending on the context in which it appears. It refers to the
information in a single Leasequery reply if the value of the dhcp-
message-type is DHCPLEASEACTIVE or DHCPLEASEUNASSIGNED. It refers to
the message stream related to an entire request if the value of the
dhcp-message-type is DHCPLEASEQUERYDONE.
The code for this option is 151. The length of this option is a
minimum of 1 octet.
Status Status
Code Len Code Message
+------+------+------+------+------+-- --+-----+
| 151 | n+1 |status| s1 | s2 | ... | sn |
+------+------+------+------+------+-- --+-----+
Kinnear, et al. Standards Track [Page 13]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
The status-code is indicated in one octet as defined in the table
below. The Status Message is an optional UTF-8-encoded text string
suitable for display to an end user. This text string MUST NOT
contain a termination character (e.g., a null). The Len field
describes the length of the Status Message without any terminator
character. Null characters MUST NOT appear in the Status Message
string, and it is a protocol violation for them to appear in any
position in the Status Message, including at the end.
Name Status Code Description
---- ----------- -----------
Success 000 Success. Also signaled by absence of
a status-code option.
UnspecFail 001 Failure, reason unspecified.
QueryTerminated 002 Indicates that the server is unable to
perform a query or has prematurely terminated
the query for some reason (which should be
communicated in the text message).
MalformedQuery 003 The query was not understood.
NotAllowed 004 The query or request was understood but was
not allowed in this context.
A status-code option MAY appear in the options field of a DHCPv4
message. If the status-code option does not appear, it is assumed
that the operation was successful. The status-code option SHOULD NOT
appear in a message that is successful unless there is some text
string that needs to be communicated to the requestor.
6.2.3. base-time
The base-time option is the current time the message was created to
be sent by the DHCPv4 server to the requestor of the Bulk Leasequery.
This MUST be an absolute time. All of the other time-based options
in the reply message are relative to this time, including the dhcp-
lease-time [RFC2132] and client-last-transaction-time [RFC4388].
This time is in the context of the DHCPv4 server that placed this
option in a message.
This is an unsigned integer in network byte order.
Kinnear, et al. Standards Track [Page 14]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
The code for this option is 152. The length of this option is 4
octets.
DHCPv4 Server
Code Len base-time
+-----+-----+-----+-----+-----+-----+
| 152 | 4 | t1 | t2 | t3 | t4 |
+-----+-----+-----+-----+-----+-----+
6.2.4. start-time-of-state
The start-time-of-state option allows the receiver to determine the
time at which the IP address made the transition into its current
state.
This MUST NOT be an absolute time, which is equivalent to saying that
this MUST NOT be an absolute number of seconds since January 1, 1970.
Instead, this MUST be the unsigned integer number of seconds from the
time the IP address transitioned its current state to the time
specified in the base-time option in the same message.
This is an unsigned integer in network byte order.
The code for this option is 153. The length of this option is 4
octets.
Seconds in the past
Code Len from base-time
+-----+-----+-----+-----+-----+-----+
| 153 | 4 | t1 | t2 | t3 | t4 |
+-----+-----+-----+-----+-----+-----+
6.2.5. query-start-time
The query-start-time option specifies a start query time to the
DHCPv4 server. If specified, only bindings that have changed on or
after the query-start-time should be included in the response to the
query.
The requestor MUST determine the query-start-time using lease
information it has received from the DHCPv4 server. This MUST be an
absolute time in the DHCPv4 server's context (see Section 7.4).
Typically (though this is not a requirement), the query-start-time
option will contain the value most recently received in a base-time
option by the requestor, as this will indicate the last successful
communication with the DHCP server.
Kinnear, et al. Standards Track [Page 15]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
This MUST be an absolute time.
This is an unsigned integer in network byte order.
The code for this option is 154. The length of this option is 4
octets.
DHCPv4 Server
Code Len query-start-time
+-----+-----+-----+-----+-----+-----+
| 154 | 4 | t1 | t2 | t3 | t4 |
+-----+-----+-----+-----+-----+-----+
6.2.6. query-end-time
The query-end-time option specifies an end query time to the DHCPv4
server. If specified, only bindings that have changed on or before
the query-end-time should be included in the response to the query.
The requestor MUST determine the query-end-time based on lease
information it has received from the DHCPv4 server. This MUST be an
absolute time in the context of the DHCPv4 server.
In the absence of information to the contrary, the requestor SHOULD
assume that the time context of the DHCPv4 server is identical to the
time context of the requestor (see Section 7.4).
This is an unsigned integer in network byte order.
The code for this option is 155. The length of this option is 4
octets.
DHCPv4 Server
Code Len query-end-time
+-----+-----+-----+-----+-----+-----+
| 155 | 4 | t1 | t2 | t3 | t4 |
+-----+-----+-----+-----+-----+-----+
Kinnear, et al. Standards Track [Page 16]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
6.2.7. dhcp-state
The dhcp-state option allows greater detail to be returned than
allowed by the DHCPLEASEACTIVE and DHCPLEASEUNASSIGNED message types.
The code for this option is 156. The length of this option is 1
octet.
0 1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 156 | Length | State |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
156 The option code.
Length The option length, 1 octet.
State The state of the IP address.
Value State
----- -----
1 AVAILABLE Address is available to local DHCPv4 server
2 ACTIVE Address is assigned to a DHCPv4 client
3 EXPIRED Lease has expired
4 RELEASED Lease has been released by DHCPv4 client
5 ABANDONED Server or client flagged address as unusable
6 RESET Lease was freed by some external agent
7 REMOTE Address is available to a remote DHCPv4 server
8 TRANSITIONING Address is moving between states
Note that some of these states may be transient and may not appear in
normal use. A DHCPv4 server MUST implement at least the AVAILABLE
and ACTIVE states and SHOULD implement at least the ABANDONED and
RESET states.
Note the states AVAILABLE and REMOTE are relative to the current
server. An address that is available to the current server should
show AVAILABLE on that server, and if another server is involved with
that address as well, it should show as REMOTE on that other server.
The dhcp-state option SHOULD contain ACTIVE when it appears in a
DHCPLEASEACTIVE message. A DHCPv4 server MAY choose to not send a
dhcp-state option in a DHCPLEASEACTIVE message, and a requestor
SHOULD assume that the dhcp-state is ACTIVE if no dhcp-state option
appears in a DHCPLEASEACTIVE message.
Kinnear, et al. Standards Track [Page 17]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
The reference to local and remote relate to possible use in an
environment that includes multiple servers cooperating to provide an
increased availability solution. In this case, an IP address with
the state of AVAILABLE is available to the local server, while one
with the state of REMOTE is available to a remote server. Usually,
an IP address that is AVAILABLE on one server would be REMOTE on any
remote server. The TRANSITIONING state is also likely to be useful
in multiple server deployments, where sometimes one server must
interlock a state change with one or more other servers. Should a
Bulk Leasequery need to send information concerning the state of the
IP address during this period, it SHOULD use the TRANSITIONING state,
since the IP address is likely to be neither ACTIVE or AVAILABLE.
There is no requirement for the state of an IP address to transition
in a well-defined way from state to state. To put this another way,
you cannot draw a simple state transition graph for the states of an
IP address, and the requestor of a Leasequery MUST NOT depend on one
certain state always following a particular previous state. While a
state transition diagram can be drawn, it would be fully connected
and therefore conveys no useful information. Every state can (at
times) follow every other state.
6.2.8. data-source
The data-source option contains information about the source of the
data in a DHCPLEASEACTIVE or a DHCPLEASEUNASSIGNED message. It
SHOULD be used when there are two or more servers that might have
information about a particular IP address binding. Frequently, two
servers work together to provide an increased availability solution
for the DHCPv4 service, and in these cases, both servers will respond
to Bulk Leasequery requests for the same IP address. When one server
is working with another server and both may respond with information
about the same IP address, each server SHOULD return the data-source
option with the other information provided about the IP address.
The data contained in this option will allow an external process to
better discriminate between the information provided by each of the
servers servicing this IPv4 address.
Kinnear, et al. Standards Track [Page 18]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
The code for this option is 157. The length of this option is 1
octet.
0 1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 157 | Length | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
157 The option code.
Length The option length, 1 octet.
Flags The source information for this message.
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| UNA |R|
+-+-+-+-+-+-+-+-+
R: REMOTE flag
remote = 1
local = 0
UNA: UNASSIGNED
The REMOTE flag is used to indicate where the most recent change of
state (or other interesting change) concerning this IPv4 address took
place. If the value is local, then the change took place on the
server from which this message was transmitted. If the value is
remote, then the change took place on some other server and was made
known to the server from which this message was transmitted.
If this option was requested and it doesn't appear, the requestor
MUST consider that the data-source was local.
Unassigned bits MUST be ignored.
Kinnear, et al. Standards Track [Page 19]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
6.2.9. Virtual Subnet Selection Type and Information
All of the (sub-)options defined in [RFC6607] carry identical
payloads, consisting of a type and additional VSS (Virtual Subnet
Selection) information. The existing table is extended (see below)
with a new type 254 to allow specification of a type code that
indicates that all VPNs are to be used to process the Bulk
Leasequery.
Type VSS Information Format
----------------------------------------------------------
0 Network Virtual Terminal (NVT) ASCII VPN identifier
1 RFC 2685 VPN-ID
CHANGED -> 2-253 Unassigned
NEW -> 254 All VPNs (wildcard)
255 Global, default VPN
6.3. Connection and Transmission Parameters
DHCPv4 servers that support Bulk Leasequery SHOULD listen for
incoming TCP connections on the DHCPv4 server port 67.
Implementations MAY offer to make the incoming port configurable, but
port 67 MUST be the default. Requestors SHOULD make TCP connections
to port 67 and MAY offer to make the destination server port
configurable.
This section presents a table of values used to control Bulk
Leasequery behavior, including recommended defaults. Implementations
MAY make these values configurable. However, configuring too-small
timeout values may lead to harmful behavior both to this application
as well as to other traffic in the network. As a result, timeout
values smaller than the default values are NOT RECOMMENDED.
Parameter Default Description
--------------------------------------------------------------------
BULK_LQ_DATA_TIMEOUT 300 secs Bulk Leasequery data timeout
for both client and server
(see Sections 7 and 8)
BULK_LQ_MAX_CONNS 10 Max Bulk Leasequery TCP connections
at the server side (see Section 8.1)
Kinnear, et al. Standards Track [Page 20]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
7. Requestor Behavior
7.1. Connecting and General Processing
A requestor attempts to establish a TCP connection to a DHCPv4 server
in order to initiate a Leasequery exchange. If the attempt fails,
the requestor MAY retry.
If Bulk Leasequery is terminated prematurely by a DHCPLEASEQUERYDONE
with a status-code option with a status code of QueryTerminated or by
the failure of the connection over which it was being submitted, the
requestor MAY retry the request after the creation of a new
connection.
Messages from the DHCPv4 server come as multiple responses to a
single DHCPBULKLEASEQUERY message. Thus, each DHCPBULKLEASEQUERY
request MUST have an xid (transaction-id) unique on the connection on
which it is sent. All of the messages that come as a response to
that message will contain the same xid as the request. The xid
allows the data-streams of two different DHCPBULKLEASEQUERY requests
to be demultiplexed by the requestor.
7.2. Forming a Bulk Leasequery
Bulk Leasequery is designed to create a connection that will transfer
the state of some subset (or possibly all) of the IP address bindings
from the DHCPv4 server to the requestor. The DHCPv4 server will send
all of the requested IPv4 address bindings across this connection
with minimal delay after it receives the request. In this context,
"all IP address binding information" means information about all IPv4
addresses configured within the DHCPv4 server that meet the specified
query criteria. For some query criteria, this may include IP address
binding information for IP addresses that may not now have or ever
have had an association with a specific DHCPv4 client.
To form the Bulk query, a DHCPv4 request is constructed with a dhcp-
message-type of DHCPBULKLEASEQUERY. The query SHOULD have a dhcp-
parameter-request-list to inform the DHCPv4 server which DHCPv4
options are of interest to the requestor sending the
DHCPBULKLEASEQUERY message. The dhcp-parameter-request-list in a
DHCPBULKLEASEQUERY message SHOULD contain the codes for base-time,
dhcp-lease-time, start-time-of-state, and client-last-transaction-
time.
A DHCPBULKLEASEQUERY request is constructed of one primary query and
optionally one or more qualifiers for it.
Kinnear, et al. Standards Track [Page 21]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
The possible primary queries are listed below. Each
DHCPBULKLEASEQUERY request MUST contain only one of these primary
queries.
o Query by MAC address
In a Query by MAC address, the chaddr, htype, and hlen of the
DHCPv4 packet are filled in with the values requested.
o Query by Client-identifier
In a Query by Client-identifier, a Client-identifier option
containing the requested value is included in the
DHCPBULKLEASEQUERY request.
o Query by Remote ID
In a Query by Remote ID, a Remote ID sub-option containing the
requested value is included in the relay-agent-information option
of the DHCPBULKLEASEQUERY request.
o Query by Relay-ID
In a Query by Relay-ID, a Relay-ID sub-option [RFC6925] containing
the requested value is included in the relay-agent-information
option of the DHCPBULKLEASEQUERY request.
o Query for All Configured IP Addresses
A Query for All Configured IP addresses is signaled by the absence
of any other primary query.
There are three qualifiers that can be applied to any of the above
primary queries. These qualifiers can appear individually or
together in any combination, but only one of each can appear.
o Query Start Time
Inclusion of a query-start-time option specifies that only IP
address bindings that have changed on or after the time specified
in the query-start-time option should be returned.
o Query End Time
Inclusion of a query-end-time option specifies that only IP
address bindings that have changed on or before the time specified
in the query-end-time option should be returned.
Kinnear, et al. Standards Track [Page 22]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
o VPN-ID
If no VPN-ID option appears in the DHCPBULKLEASEQUERY, the default
(global) VPN is searched to satisfy the query specified by the
DHCPBULKLEASEQUERY. Using the VPN-ID option [RFC6607] allows the
requestor to specify a single VPN other than the default VPN. In
addition, the VPN-ID option has been extended as part of this
document to allow specification that all configured VPNs be
searched in order to satisfy the query specified in the
DHCPBULKLEASEQUERY.
In all cases, any message returned from a DHCPBULKLEASEQUERY
request containing information about an IP address for other than
the default (global) VPN MUST contain a VPN-ID option in the
message.
Use of the query-start-time or the query-end-time options or both can
serve to reduce the amount of data transferred over the TCP
connection by a considerable amount. Note that the times specified
in the query-start-time or query-end-time options are absolute times,
not durations offset from "now".
The TCP connection may become blocked or stop being writable while
the requestor is sending its query. Should this happen, the
implementation's behavior is controlled by the current value of
BULK_LQ_DATA_TIMEOUT. The default value is given elsewhere in this
document, and this value may be overridden by local configuration of
the operator.
If this situation is detected, the requestor SHOULD start a timer
using the current value of BULK_LQ_DATA_TIMEOUT. If that timer
expires, the requestor SHOULD terminate the connection. This timer
is completely independent of any TCP timeout established by the TCP
protocol connection.
7.3. Processing Bulk Replies
The requestor attempts to read a DHCPv4 Leasequery reply message from
the TCP connection.
The TCP connection may stop delivering reply data (i.e., the
connection stops being readable). Should this happen, the
implementation's behavior is controlled by the current value of
BULK_LQ_DATA_TIMEOUT. The default value is given elsewhere in this
document, and this value may be overridden by local configuration of
the operator.
Kinnear, et al. Standards Track [Page 23]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
If this situation is detected, the requestor SHOULD start a timer
using the current value of BULK_LQ_DATA_TIMEOUT. If that timer
expires, the requestor SHOULD terminate the connection.
A single Bulk Leasequery can, and usually will, result in a large
number of replies. The requestor MUST be prepared to receive more
than one reply with an xid matching a single DHCPBULKLEASEQUERY
message from a single DHCPv4 server. If the xid in the received
message does not match an outstanding DHCPBULKLEASEQUERY message, the
requestor MUST close the TCP connection.
If the requestor receives more data than it can process, it can
simply abort the connection and try again with a more specific
request. It can also simply read the TCP connection more slowly and
match the rate at which it can digest the information returned in the
Bulk Leasequery packets with the rate at which it reads those packets
from the TCP connection.
The DHCPv4 server MUST send a server-identifier option (option 54) in
the first response to any DHCPBULKLEASEQUERY message. The DHCPv4
server SHOULD NOT send server-identifier options in subsequent
responses to that DHCPBULKLEASEQUERY message. The requestor MUST
cache the server-identifier option from the first response and apply
it to any subsequent responses.
The response messages generated by a DHCPBULKLEASEQUERY request are:
o DHCPLEASEACTIVE
A Bulk Leasequery will generate DHCPLEASEACTIVE messages
containing binding data for bound IP addresses that match the
specified query criteria. The IP address that is bound to a
DHCPv4 client will appear in the ciaddr field of the
DHCPLEASEACTIVE message. The message may contain a non-zero
chaddr, htype, hlen, and possibly additional options.
o DHCPLEASEUNASSIGNED
Some queries will also generate DHCPLEASEUNASSIGNED messages for
IP addresses that match the query criteria. These messages
indicate that the IP address is managed by the DHCPv4 server but
is not currently bound to any DHCPv4 client. The IP address to
which this message refers will appear in the ciaddr field of the
DHCPLEASEUNASSIGNED message. A DHCPLEASEUNASSGINED message MAY
also contain information about the last DHCPv4 client that was
bound to this IP address. The message may contain a non-zero
chaddr, htype, hlen, and possibly additional options in this case.
Kinnear, et al. Standards Track [Page 24]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
o DHCPLEASEQUERYDONE
A response of DHCPLEASEQUERYDONE indicates that the server has
completed its response to the query and that no more messages will
be sent in response to the DHCPBULKLEASEQUERY. More details will
sometimes be available in the received status-code option in the
DHCPLEASEQUERYDONE message. If there is no status-code option in
the DHCPLEASEQUERYDONE message, then the query completed
successfully.
Note that a query that returned no data, that is, a
DHCPBULKLEASEQUERY request followed by a DHCPLEASEQUERYDONE
response, is considered a successful query in that no errors
occurred during the processing. It is not considered an error to
have no information to return to a DHCPBULKLEASEQUERY request.
The DHCPLEASEUNKNOWN message MUST NOT appear in a response to a Bulk
Leasequery.
The requestor MUST NOT assume that there is any inherent order in the
IP address binding information that is sent in response to a
DHCPBULKLEASEQUERY. While the base-time will tend to increase
monotonically (as it is the current time on the DHCPv4 server), the
actual time that any IP address binding information changed is
unrelated to the base-time.
The DHCPLEASEQUERYDONE message always ends a successful
DHCPBULKLEASEQUERY request and any unsuccessful DHCPBULKLEASEQUERY
requests not terminated by a dropped connection. After receiving a
DHCPLEASEQUERYDONE from a server, the requestor MAY close the TCP
connection to that server if no other DHCPBULKLEASEQUERY is
outstanding on that TCP connection.
The DHCPv4 Leasequery protocol [RFC4388] uses the associated-ip
option as an indicator that multiple bindings were present in
response to a single DHCPv4 client-based query. For Bulk Leasequery,
a separate message is returned for each binding, so the associated-ip
option is not used.
7.4. Processing Time Values in Leasequery Messages
Bulk Leasequery requests may be made to a DHCPv4 server whose
absolute time may not be synchronized with the local time of the
requestor. Thus, there are at least two time contexts in even the
simplest Bulk Leasequery response, and in the situation where
multiple DHCPv4 servers are queried, the situation becomes even more
complex.
Kinnear, et al. Standards Track [Page 25]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
If the requestor of a Bulk Leasequery is saving the data returned in
some form, it has a requirement to store a variety of time values;
some of these will be time in the context of the requestor, and some
will be time in the context of the DHCPv4 server.
When receiving a DHCPLEASEACTIVE or DHCPLEASEUNASSIGNED message from
the DHCPv4 server, the message will contain a base-time option. The
time contained in this base-time option is in the context of the
DHCPv4 server. As such, it is an ideal time to save and use as input
to a DHCPBULKLEASEQUERY in the query-start-time or query-end-time
options, should the requestor ever need to issue a DHCPBULKLEASEQUERY
message using those options as part of a later query, since those
options require a time in the context of the DHCPv4 server.
In addition to saving the base-time for possible future use in a
query-start-time or query-end-time option, the base-time is used as
part of the conversion of the other times in the Leasequery message
to values that are meaningful in the context of the requestor. These
other time values are specified as a offset (duration) from the base-
time value and not as an absolute time.
In systems whose clocks are synchronized, perhaps using NTP, the
clock skew will usually be zero.
7.5. Querying Multiple Servers
A Bulk Leasequery requestor MAY be configured to attempt to connect
to and query from multiple DHCPv4 servers in parallel. The DHCPv4
Leasequery specification [RFC4388] includes a discussion about
reconciling binding data received from multiple DHCPv4 servers.
In addition, the algorithm in Section 7.6 should be used.
7.6. Making Sense out of Multiple Responses concerning a Single IPv4
Address
Any requestor of an Bulk Leasequery MUST be prepared for multiple
responses to arrive for a particular IPv4 address from multiple
different DHCPv4 servers. The following algorithm SHOULD be used to
decide if the information just received is more up to date (i.e.,
better) than the best existing information. In the discussion below,
the information that is received from a DHCPv4 server about a
particular IPv4 address is termed a "record". The times used in the
algorithm below SHOULD have been converted into the requestor's
context, and the time comparisons SHOULD be performed in a manner
consistent with the information in Section 7.4.
Kinnear, et al. Standards Track [Page 26]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
o If both the existing and the new record contain client-last-
transaction-time information, the record with the later client-
last-transaction-time is considered better.
o If one of the records contains client-last-transaction-time
information and the other one doesn't, then compare the client-
last-transaction-time in the record that contains it against the
other record's start-time-of-state. The record with the later
time is considered better.
o If neither record contains client-last-transaction-time
information, compare their start-time-of-state information. The
record with the later start-time-of-state is considered better.
o If none of the comparisons above yield a clear answer as to which
record is later, then compare the value of the REMOTE flag from
the data-source option for each record. If the values of the
REMOTE flag are different between the two records, the record with
the REMOTE flag value of local is considered better.
The above algorithm does not necessarily determine which record is
better. In the event that the algorithm is inconclusive with regard
to a record that was just received by the requestor, the requestor
SHOULD use additional information in the two records to make a
determination as to which record is better.
7.7. Multiple Queries to a Single Server over One Connection
Bulk Leasequery requestors may need to make multiple queries in order
to recover binding information. A requestor MAY use a single
connection to issue multiple queries to a server willing to support
them. Each query MUST have a unique xid.
A server SHOULD allow configuration of the number of queries that can
be processed simultaneously over a single connection. A server
SHOULD read the number of queries it is configured to process
simultaneously and only read any subsequent queries as current
queries are processed.
A server that is processing multiple queries simultaneously MUST NOT
block sending replies on new queries until all replies for the
existing query are complete. Requestors need to be aware that
replies for multiple queries may be interleaved within the stream of
reply messages. Requestors that are not able to process interleaved
replies (based on xid) MUST NOT send more than one query over a
single connection prior to the completion of the previous query.
Kinnear, et al. Standards Track [Page 27]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
Requestors should be aware that servers are not required to process
more than one query over a connection at a time (the limiting case
for the configuration described above) and that servers are likely to
limit the rate at which they process queries from any one requestor.
7.7.1. Example
This example illustrates what a series of queries and responses might
look like. This is only an example -- there is no requirement that
this sequence must be followed or that requestors or servers must
support parallel queries.
In the example session, the client sends four queries after
establishing a connection. Query 1 returns no results; query 2
returns 3 messages, and the stream of replies concludes before the
client issues any new query. Query 3 and query 4 overlap, and the
server interleaves its replies to those two queries.
Requestor Server
--------- ------
DHCPBULKLEASEQUERY xid 1 ----->
<----- DHCPLEASEQUERYDONE xid 1
DHCPBULKLEASEQUERY xid 2 ----->
<----- DHCPLEASEACTIVE xid 2
<----- DHCPLEASEACTIVE xid 2
<----- DHCPLEASEACTIVE xid 2
<----- DHCPLEASEQUERYDONE xid 2
DHCPBULKLEASEQUERY xid 3 ----->
DHCPBULKLEASEQUERY xid 4 ----->
<----- DHCPLEASEACTIVE xid 4
<----- DHCPLEASEACTIVE xid 4
<----- DHCPLEASEACTIVE xid 3
<----- DHCPLEASEACTIVE xid 4
<----- DHCPLEASEUNASSIGNED xid 3
<----- DHCPLEASEACTIVE xid 4
<----- DHCPLEASEACTIVE xid 3
<----- DHCPLEASEQUERYDONE xid 3
<----- DHCPLEASEACTIVE xid 4
<----- DHCPLEASEQUERYDONE xid 4
7.8. Closing Connections
If a requestor has no additional queries to send, or doesn't know if
it has additional queries to send or not, then it SHOULD close the
connection after receiving the DHCPLEASEQUERYDONE message for the
last outstanding query that it sent.
Kinnear, et al. Standards Track [Page 28]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
The requestor SHOULD close connections in a graceful manner and not
an abort. The requestor SHOULD NOT assume that the manner in which
the DHCP server closed a connection carries any special meaning.
Typically, the requestor is the entity that will close the
connection, as servers will often wait with an open connection in
case the requestor has additional queries.
If a server closes a connection with an exception condition, the
requestor SHOULD consider as valid any completely received
intermediate results, and the requestor MAY retry the Bulk Leasequery
operation.
8. Server Behavior
8.1. Accepting Connections
Servers that implement DHCPv4 Bulk Leasequery listen for incoming TCP
connections. Port numbers are discussed in Section 6.3. Servers
MUST be able to limit the number of concurrently accepted and active
connections. The value BULK_LQ_MAX_CONNS SHOULD be the default;
implementations MAY permit the value to be configurable. Connections
SHOULD be accepted and, if the number of connections is over
BULK_LQ_MAX_CONNS, they SHOULD be closed immediately.
Servers MAY restrict Bulk Leasequery connections and
DHCPBULKLEASEQUERY messages to certain requestors. Connections not
from permitted requestors SHOULD be closed immediately to avoid
server connection resource exhaustion. Servers MAY restrict some
requestors to certain query types. Servers MAY reply to queries that
are not permitted with the DHCPLEASEQUERYDONE message with a status-
code option status of NotAllowed or MAY simply close the connection.
If the TCP connection becomes blocked while the server is accepting a
connection or reading a query, it SHOULD be prepared to terminate the
connection after a BULK_LQ_DATA_TIMEOUT. We make this recommendation
to allow servers to control the period of time they are willing to
wait before abandoning an inactive connection, independent of the TCP
implementations they may be using.
8.2. Replying to a Bulk Leasequery
If the connection becomes blocked while the server is attempting to
send reply messages, the server SHOULD be prepared to terminate the
TCP connection after a BULK_LQ_DATA_TIMEOUT.
Kinnear, et al. Standards Track [Page 29]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
Every Bulk Leasequery request MUST be terminated by sending a final
DHCPLEASEQUERYDONE message if such a message can be sent. The
DHCPLEASEQUERYDONE message MUST have a status-code option status if
the termination was other than successful, and SHOULD NOT contain a
status-code option status if the termination was successful.
If the DHCPv4 server encounters an error during processing of the
DHCPBULKLEASEQUERY message, either during initial processing or later
during the message processing, it SHOULD send a DHCPLEASEQUERYDONE
containing a status-code option. It MAY close the connection after
this error is signaled, but that is not required.
If the server does not find any bindings satisfying a query, it MUST
send a DHCPLEASEQUERYDONE. It SHOULD NOT include a status-code
option with a Success status unless there is a useful string to
include in the status-code option. Otherwise, the server sends each
binding's data in a DHCPLEASEACTIVE or DHCPLEASEUNASSIGNED message.
The response to a DHCPBULKLEASEQUERY may involve examination of
multiple DHCPv4 IP address bindings maintained by the DHCPv4 server.
The Bulk Leasequery protocol does not require any ordering of the IP
addresses returned in DHCPLEASEACTIVE or DHCPLEASEUNASSIGNED
messages.
When responding to a DHCPBULKLEASEQUERY message, the DHCPv4 server
MUST NOT send more than one message for each applicable IP address,
even if the state of some of those IP addresses changes during the
processing of the message. Updates to such IP address state are
already handled by normal protocol processing, so no special effort
is needed here.
If the ciaddr, yiaddr, or siaddr is non-zero in a DHCPBULKLEASEQUERY
request, the request must be terminated immediately by a
DHCPLEASEQUERYDONE message with a status-code option status of
MalformedQuery.
Any DHCPBULKLEASEQUERY that has more than one of the following
primary query types specified MUST be terminated immediately by a
DHCPLEASEQUERYDONE message with a status-code option status code of
NotAllowed.
The allowable queries in a DHCPBULKLEASEQUERY message are processed
as follows. Note that the descriptions of the primary queries below
must be constrained by the actions of any of the three qualifiers
described subsequently as well.
Kinnear, et al. Standards Track [Page 30]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
The following table discusses how to process the various queries.
For information on how to identify the query, see the information in
Section 7.2.
o Query by MAC address
Every IP address that has a current binding to a DHCPv4 client
matching the chaddr, htype, and hlen in the DHCPBULKLEASEQUERY
request MUST be returned in a DHCPLEASEACTIVE message.
o Query by Client-identifier
Every IP address that has a current binding to a DHCPv4 client
matching the Client-identifier option in the DHCPBULKLEASEQUERY
request MUST be returned in a DHCPLEASEACTIVE message.
o Query by Remote ID
Every IP address that has a current binding to a DHCPv4 client
matching the Remote ID sub-option of the relay-agent-information
option in the DHCPBULKLEASEQUERY request MUST be returned in a
DHCPLEASEACTIVE message.
o Query by Relay-ID
Every IP address that has a current binding to a DHCPv4 client
matching the Relay-ID sub-option of the relay-agent-information
option in the DHCPBULKLEASEQUERY request MUST be returned in a
DHCPLEASEACTIVE message.
o Query for All Configured IP Addresses
A Query for All Configured IP addresses is signaled by the absence
of any other primary query. That is, if there is no value in the
chaddr, hlen, htype, no Client-identifier option, and no Remote ID
sub-option or Relay-ID sub-option of the relay-agent-information
option, then the request is a query for information concerning all
configured IP addresses. In this case, every configured IP
address that has a current binding to a DHCPv4 client MUST be
returned in a DHCPLEASEACTIVE message. In addition, every
configured IP address that does not have a current binding to a
DHCPv4 client MUST be returned in a DHCPLEASEUNASSIGNED message.
In this form of query, each configured IP address MUST be returned
at most one time. In the absence of qualifiers restricting the
number of IP addresses returned, every configured IP address MUST
be returned exactly once.
Kinnear, et al. Standards Track [Page 31]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
There are three qualifiers that can be applied to any of the above
primary queries. These qualifiers can appear individually or
together in any combination, but only one of each can appear.
o Query Start Time
If a query-start-time option appears in the DHCPBULKLEASEQUERY
request, only IP address bindings that have changed on or after
the time specified in the query-start-time option should be
returned.
o Query End Time
If a query-end-time option appears in the DHCPBULKLEASEQUERY
request, only IP address bindings that have changed on or before
the time specified in the query-end-time option should be
returned.
o VPN-ID
If no VPN-ID option appears in the DHCPBULKLEASEQUERY, the default
(global) VPN is used to satisfy the query. A VPN-ID option
[RFC6607] value other than the wildcard value (254) allows the
requestor to specify a single VPN other than the default VPN. In
addition, the VPN-ID option has been extended as part of this
document to allow specification of a type 254, which indicates
that all configured VPNs be searched in order to satisfy the
primary query.
In all cases, if the information returned in a DHCPLEASEACTIVE or
DHCPLEASEUNASSIGNED message is for a VPN other than the default
(global) VPN, a VPN-ID option MUST appear in the packet.
The query-start-time and query-end-time qualifiers are used to
constrain the amount of data returned by a Bulk Leasequery request by
returning only IP addresses whose address bindings have changed in
some way during the time window specified by the query-start-time and
query-end-time.
A DHCPv4 server SHOULD consider an address binding to have changed
during a specified time window if either the client-last-
transaction-time or the start-time-of-state of the address binding
changed during that time window.
The DHCPv4 server MAY return address binding data in any order, as
long as binding information for any given IP address is not repeated.
When all binding data for a given DHCPBULKLEASEQUERY has been sent,
the DHCPv4 server MUST send a DHCPBULKLEASEQUERYDONE message.
Kinnear, et al. Standards Track [Page 32]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
8.3. Building a Single Reply for Bulk Leasequery
The DHCPv4 Leasequery specification [RFC4388] describes the initial
construction of DHCPLEASEQUERY reply messages using the
DHCPLEASEACTIVE and DHCPLEASEUNASSIGNED message types in Section
6.4.2. All of the reply messages in Bulk Leasequery are similar to
the reply messages for an IP address query. Message transmission and
framing for TCP are described in this document in Section 6.1.
[RFC2131] and [RFC4388] specify that every response message MUST
contain the server-identifier option. However, that option will be
the same for every response from a particular DHCPBULKLEASEQUERY
request. Thus, the DHCPv4 server MUST include the server-identifier
option in the first message sent in response to a DHCPBULKLEASEQUERY.
It SHOULD NOT include the server-identifier option in later messages.
The message type of DHCPLEASEACTIVE or DHCPLEASEUNASSIGNED is based
on the value of the dhcp-state option. If the dhcp-state option
value is ACTIVE, then the message type is DHCPLEASEACTIVE; otherwise,
the message type is DHCPLEASEUNASSIGNED.
In addition to the basic message construction described in [RFC4388],
the following guidelines exist:
1. If the dhcp-state option code appears in the dhcp-parameter-
request-list, the DHCPv4 server SHOULD include a dhcp-state
option whose value corresponds most closely to the state held by
the DHCPv4 server for the IP address associated with this reply.
If the state is ACTIVE and the message being returned is
DHCPLEASEACTIVE, then the DHCPv4 server MAY choose to not send
the dhcp-state option. The requestor SHOULD assume that any
DHCPLEASEACTIVE message arriving without a requested dhcp-state
option has a dhcp-state of ACTIVE.
2. If the base-time option code appears in the dhcp-parameter-
request-list, the DHCPv4 server MUST include a base-time option,
which is the current time in the DHCPv4 server's context and the
time from which the start-time-of-state, dhcp-lease-time, client-
last-transaction-time, and other duration-style times are based
upon.
3. If the start-time-of-state option code appears in the dhcp-
parameter-request-list, the DHCPv4 server MUST include a start-
time-of-state option whose value represents the time at which the
dhcp-state option's state became valid.
Kinnear, et al. Standards Track [Page 33]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
4. If the dhcp-lease-time option code appears in the dhcp-
parameter-request-list, the DHCPv4 server MUST include a dhcp-
lease-time option for any state that has a timeout value
associated with it.
5. If the data-source option code appears in the dhcp-parameter-
request-list, the DHCPv4 server MUST include the data-source
option in any situation where any of the bits would be non-zero.
Thus, in the absence of the data-source option, the assumption is
that all of the flags are zero.
6. If the client-last-transaction-time option code appears in the
dhcp-parameter-request-list, the DHCPv4 server MUST include the
client-last-transaction-time option in any situation where the
information is available.
7. If there is a dhcp-parameter-request-list in the initial
DHCPBULKLEASEQUERY request, then it should be used for all of the
replies generated by that request. Some options can be sent from
a DHCPv4 client to the server or from the DHCPv4 server to a
DHCPv4 client. Option 125 is such an option. If the option code
for one of these options appears in the dhcp-parameter-request-
list, it SHOULD result in returning the value of the option sent
by the DHCPv4 client to the server if one exists.
Note that there may be other requirements for a reply to a
DHCPBULKLEASEQUERY request, as discussed in Section 8.2.
8.4. Multiple or Parallel Queries
As discussed in Section 7.3, requestors may want to use a connection
that has already been established when they need to make additional
queries. Servers SHOULD support reading and processing multiple
queries from a single connection and SHOULD allow configuration of
the number of simultaneous queries it may process. A server MUST NOT
read more query messages from a connection than it is prepared to
process simultaneously.
This SHOULD be a feature that is administratively controlled.
Servers SHOULD offer configuration that limits the number of
simultaneous queries permitted from any one requestor, in order to
control resource use if there are multiple requestors seeking
service.
Kinnear, et al. Standards Track [Page 34]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
8.5. Closing Connections
The DHCPv4 server SHOULD close connections in a graceful manner and
not abort the connection. The DHCPv4 server SHOULD NOT assume that
the manner in which the requestor closed a connection carries any
special meaning.
Typically, the DHCPv4 server will only close the connection after
some form of an exception or a timeout on the connection.
Using a timer to detect when a connection is idle and then closing
that connection is designed to protect the DHCPv4 server from
consuming unnecessary resources.
The DHCPv4 server should start a timer for BULK_LQ_DATA_TIMEOUT
seconds for a particular connection after it sends a
DHCPLEASEQUERYDONE message over that connection if there is no
current query outstanding for that connection. It should restart
this timer if a query arrives over that connection. If the timer
expires, the DHCPv4 server should close the connection.
The server MUST close its end of the TCP connection if it encounters
an error sending data on the connection. The server MUST close its
end of the TCP connection if it finds that it has to abort an in-
process request. A server aborting an in-process request SHOULD
attempt to signal that to its requestors by using the QueryTerminated
status code in the status-code option in a DHCPLEASEQUERYDONE
message, including a message string indicating details of the reason
for the abort. If the connection is closed for any reason, all of
the data flows associated with any currently outstanding
DHCPBULKLEASEQUERY messages will be terminated.
If the server detects that the requesting end of the connection has
been closed, the server MUST close its end of the connection.
9. Security Considerations
The Security Considerations section of [RFC2131] details the general
threats to DHCPv4. The DHCPv4 Leasequery specification [RFC4388]
describes recommendations for the Leasequery protocol, especially
with regard to authentication of LEASEQUERY messages, mitigation of
packet-flooding DoS attacks, and restriction to trusted requestors.
The use of TCP introduces some additional concerns. Attacks that
attempt to exhaust the DHCPv4 server's available TCP connection
resources, such as SYN flooding attacks, can compromise the ability
of legitimate requestors to receive service. Malicious requestors
who succeed in establishing connections but who then send invalid
Kinnear, et al. Standards Track [Page 35]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
queries, partial queries, or no queries at all can also exhaust a
server's pool of available connections. We recommend that servers
offer configuration to limit the sources of incoming connections,
that they limit the number of accepted connections and the number of
in-process queries from any one connection, and that they limit the
period of time during which an idle connection will be left open.
There are two specific issues regarding Bulk Leasequery security that
deserve explicit mention. The first is preventing information that
Bulk Leasequery can provide from reaching clients who are not
authorized to receive such information. The second is ensuring that
authorized clients of the Bulk Leasequery capability receive accurate
information from the server (and that this information is not
disrupted in transit).
To prevent information leakage to unauthorized clients, servers
SHOULD restrict Bulk Leasequery connections and DHCPBULKLEASEQUERY
messages to certain requestors, either through explicit configuration
of the server itself or by employing external network elements to
provide such restrictions. In particular, the typical DHCPv4 client
SHOULD NOT be allowed to receive a response to a Bulk Leasequery
request, and some technique MUST exist to allow prevention of such
access in any environment where Bulk Leasequery is deployed.
Connections not from permitted requestors SHOULD be closed
immediately to avoid server connection resource exhaustion or
alternatively, simply not be allowed to reach the server at all.
Servers SHOULD have the capability to restrict certain requestors to
certain query types. Servers MAY reply to queries that are not
permitted with the DHCPLEASEQUERYDONE message with a status-code
option status of NotAllowed or MAY simply close the connection.
To prevent disruption and malicious corruption of Bulk Leasequery
data flows between the server and authorized clients, these data
flows SHOULD transit only secured networks. These data flows are
typically infrastructure oriented, and there is usually no reason to
have them flowing over networks where such attacks are likely. In
the rare cases where these data flows might need to be sent through
unsecured networks, they MUST be sent over connections secured
through means external to the DHCPv4/DHCPv6 server and its client(s)
(e.g., through VPNs).
Authentication for DHCP messages [RFC3118] MUST NOT be used to
attempt to secure transmission of the messages described in this
document. In particular, the message framing would not be protected
by using the mechanisms described in [RFC3118] (which was designed
only with UDP transport in mind).
Kinnear, et al. Standards Track [Page 36]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
10. IANA Considerations
IANA has assigned the following new DHCPv4 option codes from the
registry "BOOTP Vendor Extensions and DHCP Options" maintained at
http://www.iana.org/assignments/bootp-dhcp-parameters.
1. An option code of 151 for status-code.
2. An option code of 152 for base-time.
3. An option code of 153 for start-time-of-state.
4. An option code of 154 for query-start-time.
5. An option code of 155 for query-end-time.
6. An option code of 156 for dhcp-state.
7. An option code of 157 for data-source.
IANA has assigned the following new DHCP message types from the
registry "DHCP Message Type 53 Values" maintained at
http://www.iana.org/assignments/bootp-dhcp-parameters.
1. A dhcp-message-type of 14 for DHCPBULKLEASEQUERY.
2. A dhcp-message-type of 15 for DHCPLEASEQUERYDONE.
IANA has created a new registry on the same assignments page, titled
"DHCP State 156 Values" (where 156 corresponds to the assigned value
of the dhcp-state option above). This registry has the following
initial values:
State
-----
1 AVAILABLE
2 ACTIVE
3 EXPIRED
4 RELEASED
5 ABANDONED
6 RESET
7 REMOTE
8 TRANSITIONING
New values for this namespace may only be defined by IETF Review, as
described in [RFC5226].
Kinnear, et al. Standards Track [Page 37]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
IANA has created a new registry on the same assignments page, titled
"DHCP Status Code 151 Values" (where 151 corresponds to the assigned
value of the status-code option above). This registry has the
following initial values:
Name status-code
---- -----------
Success 000
UnspecFail 001
QueryTerminated 002
MalformedQuery 003
NotAllowed 004
New values for this namespace may only be defined by IETF Review, as
described in [RFC5226].
IANA has revised the registry "VSS Type Options" created by [RFC6607]
in the overall area "Dynamic Host Configuration Protocol (DHCP) and
Bootstrap Protocol (BOOTP) Parameters". It has been revised to
appear as follows. Note that the number range for "Unassigned" has
changed, and a new line for "All VPNs (wildcard)" was added.
Type VSS Information Format
------------------------------------------------------------
0 Network Virtual Terminal (NVT) ASCII VPN identifier
1 RFC 2685 VPN-ID
2-253 Unassigned
254 All VPNs (wildcard)
255 Global, default VPN
11. Acknowledgements
Significant text as well as important ideas were borrowed in whole or
in part from "DHCPv6 Bulk Leasequery" [RFC5460], written by Mark
Stapp. Further suggestions and improvements were made by
participants in the DHC Working Group, including Alfred Hoenes.
12. References
12.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2131] Droms, R., "Dynamic Host Configuration Protocol", RFC
2131, March 1997.
Kinnear, et al. Standards Track [Page 38]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
[RFC2132] Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor
Extensions", RFC 2132, March 1997.
[RFC3046] Patrick, M., "DHCP Relay Agent Information Option", RFC
3046, January 2001.
[RFC3118] Droms, R., Ed., and W. Arbaugh, Ed., "Authentication for
DHCP Messages", RFC 3118, June 2001.
[RFC4388] Woundy, R. and K. Kinnear, "Dynamic Host Configuration
Protocol (DHCP) Leasequery", RFC 4388, February 2006.
[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", BCP 26, RFC 5226,
May 2008.
[RFC5735] Cotton, M. and L. Vegoda, "Special Use IPv4 Addresses",
BCP 153, RFC 5735, January 2010.
[RFC6607] Kinnear, K., Johnson, R., and M. Stapp, "Virtual Subnet
Selection Options for DHCPv4 and DHCPv6", RFC 6607, April
2012.
[RFC6925] Joshi, B., Desetti, R., and M. Stapp, "The DHCPv4 Relay
Agent Identifier Sub-Option", RFC 6925, April 2013.
12.2. Informative References
[RFC951] Croft, W. and J. Gilmore, "Bootstrap Protocol", RFC 951,
September 1985.
[RFC1542] Wimer, W., "Clarifications and Extensions for the
Bootstrap Protocol", RFC 1542, October 1993.
[RFC4614] Duke, M., Braden, R., Eddy, W., and E. Blanton, "A Roadmap
for Transmission Control Protocol (TCP) Specification
Documents", RFC 4614, September 2006.
[RFC5460] Stapp, M., "DHCPv6 Bulk Leasequery", RFC 5460, February
2009.
Kinnear, et al. Standards Track [Page 39]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
Authors' Addresses
Kim Kinnear
Cisco Systems, Inc.
1414 Massachusetts Ave.
Boxborough, Massachusetts 01719
USA
Phone: (978) 936-0000
EMail: kkinnear@cisco.com
Mark Stapp
Cisco Systems, Inc.
1414 Massachusetts Ave.
Boxborough, Massachusetts 01719
USA
Phone: (978) 936-0000
EMail: mjs@cisco.com
D.T.V Ramakrishna Rao
Infosys Ltd.
44 Electronics City, Hosur Road
Bangalore 560 100
India
EMail: ramakrishnadtv@infosys.com
URI: http://www.infosys.com/
Bharat Joshi
Infosys Ltd.
44 Electronics City, Hosur Road
Bangalore 560 100
India
EMail: bharat_joshi@infosys.com
URI: http://www.infosys.com/
Neil Russell
Sea Street Technologies Inc.
EMail: neil.e.russell@gmail.com
Kinnear, et al. Standards Track [Page 40]
^L
RFC 6926 DHCPv4 Bulk Leasequery April 2013
Pavan Kurapati
Juniper Networks
1194 N. Mathilda Ave.
Sunnyvale, CA 94089
USA
EMail: kurapati@juniper.net
URI: http://www.juniper.net/
Bernie Volz
Cisco Systems, Inc.
1414 Massachusetts Ave.
Boxborough, Massachusetts 01719
USA
Phone: (978) 936-0000
EMail: volz@cisco.com
Kinnear, et al. Standards Track [Page 41]
^L
|