1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
|
Independent Submission S. Kiyomoto
Request for Comments: 7008 W. Shin
Category: Informational KDDI R&D Laboratories, Inc.
ISSN: 2070-1721 August 2013
A Description of the KCipher-2 Encryption Algorithm
Abstract
This document describes the KCipher-2 encryption algorithm.
KCipher-2 is a stream cipher with a 128-bit key and a 128-bit
initialization vector. Since the algorithm for KCipher-2 was
published in 2007, security and efficiency have been rigorously
evaluated through academic and industrial studies. As of the
publication of this document, no security vulnerabilities have been
found. KCipher-2 offers fast encryption and decryption by means of
simple operations that enable efficient implementation. KCipher-2
has been used for industrial applications, especially for mobile
health monitoring and diagnostic services in Japan.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This is a contribution to the RFC Series, independently of any other
RFC stream. The RFC Editor has chosen to publish this document at
its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by
the RFC Editor are not a candidate for any level of Internet
Standard; see Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7008.
Copyright Notice
Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
Kiyomoto & Shin Informational [Page 1]
^L
RFC 7008 A Description of KCipher-2 August 2013
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Algorithm Description . . . . . . . . . . . . . . . . . . . . 3
2.1. Notations . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2. Internal State . . . . . . . . . . . . . . . . . . . . . . 4
2.2.1. Feedback Shift Registers . . . . . . . . . . . . . . . 4
2.2.2. Internal Registers . . . . . . . . . . . . . . . . . . 5
2.3. Operations . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.1. next() . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.2. init() . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.3. stream() . . . . . . . . . . . . . . . . . . . . . . . 8
2.4. Subroutines . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.1. NLF() . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.2. sub_K2() . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.3. S_box() . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.4. Multiplications in GF(2#32) . . . . . . . . . . . . . 11
2.5. Encryption and Decryption Scheme . . . . . . . . . . . . . 13
2.5.1. Key Stream Generation . . . . . . . . . . . . . . . . 13
2.5.2. Encryption and Decryption of a Message . . . . . . . . 14
3. Security Considerations . . . . . . . . . . . . . . . . . . . 14
4. References . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1. Normative References . . . . . . . . . . . . . . . . . . . 14
4.2. Informative References . . . . . . . . . . . . . . . . . . 14
Appendix A. Tables for Multiplication in GF(2#32) . . . . . . . . 16
A.1. The table amul0 . . . . . . . . . . . . . . . . . . . . . 16
A.2. The table amul1 . . . . . . . . . . . . . . . . . . . . . 17
A.3. The table amul2 . . . . . . . . . . . . . . . . . . . . . 19
A.4. The table amul3 . . . . . . . . . . . . . . . . . . . . . 20
Appendix B. A Simple Implementation Example of KCipher-2 . . . . 22
B.1. Code Components I - Definitions and Declarations . . . . . 22
B.2. Code Components II - Functions . . . . . . . . . . . . . . 23
B.3. Use Case . . . . . . . . . . . . . . . . . . . . . . . . . 28
Appendix C. Test Vectors . . . . . . . . . . . . . . . . . . . . 28
C.1. Key Stream Generation Examples . . . . . . . . . . . . . . 28
C.2. Another Key Stream Generation with the State Values . . . 29
C.2.1. S after init(1) . . . . . . . . . . . . . . . . . . . 30
C.2.2. S after init(2) . . . . . . . . . . . . . . . . . . . 30
C.2.3. S after init(3) . . . . . . . . . . . . . . . . . . . 30
C.2.4. S after init(4) . . . . . . . . . . . . . . . . . . . 31
C.2.5. S after init(5) . . . . . . . . . . . . . . . . . . . 31
C.2.6. S after init(6) . . . . . . . . . . . . . . . . . . . 31
C.2.7. S after init(7) . . . . . . . . . . . . . . . . . . . 31
C.2.8. S after init(8) . . . . . . . . . . . . . . . . . . . 32
C.2.9. S after init(9) . . . . . . . . . . . . . . . . . . . 32
C.2.10. S after init(10) . . . . . . . . . . . . . . . . . . . 32
C.2.11. S after init(11) . . . . . . . . . . . . . . . . . . . 32
C.2.12. S after init(12) . . . . . . . . . . . . . . . . . . . 33
Kiyomoto & Shin Informational [Page 2]
^L
RFC 7008 A Description of KCipher-2 August 2013
C.2.13. S after init(13) . . . . . . . . . . . . . . . . . . . 33
C.2.14. S after init(14) . . . . . . . . . . . . . . . . . . . 33
C.2.15. S after init(15) . . . . . . . . . . . . . . . . . . . 33
C.2.16. S after init(16) . . . . . . . . . . . . . . . . . . . 34
C.2.17. S after init(17) . . . . . . . . . . . . . . . . . . . 34
C.2.18. S after init(18) . . . . . . . . . . . . . . . . . . . 34
C.2.19. S after init(19) . . . . . . . . . . . . . . . . . . . 34
C.2.20. S after init(20) . . . . . . . . . . . . . . . . . . . 35
C.2.21. S after init(21) . . . . . . . . . . . . . . . . . . . 35
C.2.22. S after init(22) . . . . . . . . . . . . . . . . . . . 35
C.2.23. S after init(23) . . . . . . . . . . . . . . . . . . . 35
C.2.24. S(0) after init(24) . . . . . . . . . . . . . . . . . 36
C.2.25. S(1) and the Key Stream at S(1) . . . . . . . . . . . 36
C.2.26. S(2) and the Key Stream at S(2) . . . . . . . . . . . 37
1. Introduction
KCipher-2 is a stream cipher that uses a 128-bit secret key and a
128-bit initialization vector. Since the algorithm for KCipher-2 was
published in 2007 [SASC07], it has been evaluated in academic and
industrial studies. The security and performance of KCipher-2 have
been rigorously evaluated by its developers and other institutions
[SECRYPT07] [ICETE07] [CRYPTEC] [SIIS11]. As of the publication of
this document, no attack on KCipher-2 has been successful. KCipher-2
can be efficiently implemented in software to provide fast encryption
and decryption, owing to its uncomplicated design. Only four simple
operations are used: exclusive-OR, addition, shift, and table lookup.
When the algorithm is implemented in hardware, internal computations
can be parallel to yield greater efficiency. Moreover, since its
internal state representation only amounts to several hundred bits,
KCipher-2 is suitable for resource-limited environments. KCipher-2
has been actively used in several industrial applications in Japan,
has been published by an international standardization body (ISO/IEC
18033-4 [ISO18033]), and has been designated a Japanese e-Government
recommended cipher [CRYPTECLIST].
2. Algorithm Description
In this section, we describe the internal components of KCipher-2 and
define the operations for deriving key streams from an input key and
an initialization vector. We illustrate the detailed operations,
mostly in pseudocode format, but also provide code snippets written
in the C language syntax when necessary.
Kiyomoto & Shin Informational [Page 3]
^L
RFC 7008 A Description of KCipher-2 August 2013
2.1. Notations
All values in this document are stored in big-endian order (aka
network byte order). We use the following notations in the
description of KCipher-2.
^ Bitwise exclusive-OR
n#m mth power of n
+n Integer addition modulo 2#n
<<_r n n-bit left circular shift in an r-bit register
0x Hexadecimal representation
E[i] The (i + 1)th element of E when E is composed of
consecutive multiple elements
GF Galois field. GF(n#m) means the finite field of exactly
n#m elements
** Multiplication of elements on the finite field GF(2#32)
NOTE: Many texts denote "the mth power of n" by "n^m", but we write
it using '#', instead of '^', to avoid reader confusion with the
power operator and the XOR operator of the C language syntax.
2.2. Internal State
The internal state of KCipher-2 can be denoted by S. The internal
state consists of six sub-components: two feedback shift registers,
FSR-A and FSR-B, and four internal registers, L1, R1, L2, and R2.
We, therefore, often write S = (A, B, L1, R1, L2, R2), where A and B
refer to FSR-A and FSR-B, respectively.
2.2.1. Feedback Shift Registers
The two feedback shift registers (FSRs) are separately called
Feedback Shift Register A (FSR-A) and Feedback Shift Register B
(FSR-B). FSR-A is composed of five 32-bit units that are
consecutively arranged. Each unit can be identified by A[0], A[1],
A[2], A[3], and A[4]. Likewise, FSR-B is composed of eleven
consecutive 32-bit units, B[0], ..., B[10]. All values stored in
each 32-bit unit of FSR is in GF(2#32).
Kiyomoto & Shin Informational [Page 4]
^L
RFC 7008 A Description of KCipher-2 August 2013
2.2.2. Internal Registers
Besides FSR, KCipher-2 has four internal registers to store
intermediate computation results during operation. The four
registers are named L1, R1, L2, and R2.
2.3. Operations
Three major operations constitute the behavior of KCipher-2: init(),
next(), and stream(). The init() operation initializes the internal
values of the system. The next() operation derives new values of S'
from the values of S, where S' and S refer to the internal state.
The stream() operation derives a key stream from the current state S.
2.3.1. next()
The next() operation takes the current state S = (A, B, L1, R1, L2,
R2) as input. The size of the input amounts to twenty of the 32-bit
units in total (five units for A, eleven for B, and one for L1, R1,
L2, and R2). It produces the next state S' = (A', B', L1', R1', L2',
R2'). This operation is mainly used to generate secure key streams
by applying non-linear functions (NLFs) for every cycle of KCipher-2.
Additionally, it is used to initialize the system. The behaviors are
distinguished by the input parameter that indicates the operation
modes.
Inside the next() operation, the internal registers are updated by
the result of the substitution function described in Section 2.4.2.
The feedback shift registers are also updated by feedback functions.
The feedback functions include the multiplication of register units
and the fixed elements a0, a1, a2, and a3 in a finite field. The
fixed elements a0, ..., a3 are carefully chosen to provide the
maximum length of the feedback shift registers. The theory behind
the selection of fixed elements and the way to simplify the necessary
multiplications are briefly described in Section 2.4.4.
The operation takes the following inputs:
o S = (A, B, L1, R1, L2, R2)
o mode = {INIT, NORMAL}, where INIT means the operation is used for
initialization, and NORMAL means it is used for generating secure
key streams.
The operation outputs a new state,
o S' = (A', B', L1', R1', L2', R2')
Kiyomoto & Shin Informational [Page 5]
^L
RFC 7008 A Description of KCipher-2 August 2013
by performing the following steps:
1. Set registers in the nonlinear functions
L1' = sub_K2(R2 +32 B[4]);
R1' = sub_K2(L2 +32 B[9]);
L2' = sub_K2(L1);
R2' = sub_K2(R1);
for m from 0 to 3
A'[m] = A[m + 1];
for m from 0 to 9
B'[m] = B[m + 1];
NOTE: sub_K2 is a substitution function described in
Section 2.4.2.
2. Depending on the value of the operation mode, do the following:
a. When the mode is NORMAL, A'[4] and B'[10] are computed as
follows:
A'[4] = (a0 ** A[0]) ^ A[3];
if A[2][30] is 1:
if A[2][31] is 1:
B'[10] = (a1 ** B[0]) ^ B[1] ^ B[6] ^ (a3 ** B[8]);
else if A[2][31] is 0:
B'[10] = (a1 ** B[0]) ^ B[1] ^ B[6] ^ B[8];
else if A[2][30] is 0:
if A[2][31] is 1:
B'[10] = (a2 ** B[0]) ^ B[1] ^ B[6] ^ (a3 ** B[8]);
else if A[2][31] is 0:
B'[10] = (a2 ** B[0]) ^ B[1] ^ B[6] ^ B[8];
b. When the mode is INIT, A'[4] and B'[10] are XOR-ed with the
non-linear function output described in Section 2.4.1.
A'[4] = (a0 ** A[0]) ^ A[3] ^ NLF(B[0], R2, R1, A[4]);
if A[2][30] is 1:
if A[2][31] is 1:
B'[10] = (a1 ** B[0]) ^ B[1] ^ B[6] ^ (a3 ** B[8]) ^
NLF(B[10], L2, L1, A[0]);
else if A[2][31] is 0:
B'[10] = (a1 ** B[0]) ^ B[1] ^ B[6] ^ B[8] ^
NLF(B[10], L2, L1, A[0]);
Kiyomoto & Shin Informational [Page 6]
^L
RFC 7008 A Description of KCipher-2 August 2013
else if A[2][30] is 0:
if A[2][31] is 1:
B'[10] = (a2 ** B[0]) ^ B[1] ^ B[6] ^ (a3 ** B[8]) ^
NLF(B[10], L2, L1, A[0]);
else if A[2][31] is 0:
B'[10] = (a2 ** B[0]) ^ B[1] ^ B[6] ^ B[8] ^
NLF(B[10], L2, L1, A[0]);
3. Output S' = (A', B', L1', R1', L2', R2').
Note that A[2] is a 32-bit unit. Thus, A[2][j] is the value of the
jth least significant bit of A[2], where 0 <= j <= 31.
The corresponding code snippets written in the C language syntax can
be found in Section 2.4.4 and Appendix B.
2.3.2. init()
The init() operation takes a 128-bit key (K) and a 128-bit
initialization vector (IV) and prepares the values of the state
variables for generating key streams.
o K = (K[0], K[1], K[2], K[3]), where each K[i] is a 32-bit unit and
0 <= i <= 3
o IV =(IV[0], IV[1], IV[2], IV[3]), where each IV[i] is a 32-bit
unit and 0 <= i <= 3,
and the output is an initialized state S, which will be referenced as
S(0). The output is derived from the following steps:
1. Expand K to the 384-bit internal key IK = (IK[0], ..., IK[11]),
where IK[i] is a 32-bit unit and 0 <= i <= 11. The expansion
procedure is as follows:
for m from 0 to 11
if m is 0, 1, 2, or 3:
IK[m] = K[m];
else if m is 5, 6, 7, 9, 10, or 11:
IK[m] = IK[m - 4] ^ IK[m - 1];
else if m is 4:
IK[4] = IK[0] ^ sub_K2(IK[3] <<_32 8) ^
(0x01, 0x00, 0x00, 0x00);
else if m is 8:
IK[8] = IK[4] ^ sub_K2(IK[7] <<_32 8) ^
(0x02, 0x00, 0x00, 0x00);
Kiyomoto & Shin Informational [Page 7]
^L
RFC 7008 A Description of KCipher-2 August 2013
NOTE: sub_K2 is the substitution function described in
Section 2.4.2.
2. Initialize the feedback shift registers and the internal
registers using the values of IK and IV as follows:
for m from 0 to 4
A[m] = IK[4 - m];
B[0] = IK[10]; B[1] = IK[11]; B[2] = IV[0]; B[3] = IV[1];
B[4] = IK[8]; B[5] = IK[9]; B[6] = IV[2]; B[7] = IV[3];
B[8] = IK[7]; B[9] = IK[5]; B[10] = IK[6];
L1 = R1 = L2 = R2 = 0x00000000;
Set S as (A, B, L1, R1, L2, R2).
3. Prepare the state values by applying the next() operation 24
times as follows:
for m from 1 to 24
Set S' as next(S, INIT);
Set S as S';
4. Output S.
2.3.3. stream()
The stream() function derives a 64-bit key stream, Z, from the state
values. Its input is an initialized state,
o S = (A, B, L1, R1, L2, R2)
and its output is Z = (ZH, ZL), where ZH and ZL are 32-bit units.
stream() performs the following:
1. Set register values
ZH = NLF(B[10], L2, L1, A[0]);
ZL = NLF(B[0], R2, R1, A[4]);
2. Output Z = (ZH, ZL).
NOTE: The function NLF is described in Section 2.4.1.
Kiyomoto & Shin Informational [Page 8]
^L
RFC 7008 A Description of KCipher-2 August 2013
2.4. Subroutines
We explain the functions used above: sub_K2(), NLF(), and S_box().
2.4.1. NLF()
NLF() is a non-linear function that takes the four 32-bit values, A,
B, C, D, and outputs the 32-bit value, Q. The output Q is calculated
as follows.
Q = (A +32 B) ^ C ^ D;
2.4.2. sub_K2()
sub_K2() is a substitution function that is a permutation of
GF(2#32), based on components from the Advanced Encryption Standard
(AES) [FIPS-AES]. Its input is a 32-bit value divided into four
8-bit strings. Inside sub_K2(), an 8-to-8-bit substitution function,
S_box(), is applied to each 8-bit string separately, and then a 32-
to-32-bit linear permutation is applied to the whole 32-bit string.
Our S_box() function is identical to the S-Box operation of AES, and
our linear permutation is identical to the AES Mix Column operation.
Consider the input of sub_K2 as a 32-bit value W = (w[3], w[2], w[1],
w[0]), where each subelement of w is an 8-bit unit. Prepare two
32-bit temporary storages, T = (t[3], t[2], t[1], t[0]) and Q =
(q[3], q[2], q[1], q[0]), where t[i] and q[i] are 8-bit units and 0
<= i <= 3.
The 32-bit output Q is obtained from the following procedures:
1. Apply S_box() to each 8-bit input string. Note that S_box() is
defined in Section 2.4.3.
for m from 0 to 3
t[m] = S_box(w[m]);
2. Calculate q by the matrix multiplication, Q = M * T in GF(2#8) of
the irreducible polynomial f(x) = x#8 + x#4 + x#3 + x + 1, where
o Q is a 1x4 matrix, (q[0], q[1], q[2], q[3))
o M is a 4x4 matrix,
(02, 03, 01, 01,
01, 02, 03, 01,
01, 01, 02, 03,
03, 01, 01, 02)
Kiyomoto & Shin Informational [Page 9]
^L
RFC 7008 A Description of KCipher-2 August 2013
o T is a 1x4 matrix, (t[0], t[1], t[2], t[3]).
Namely, the procedure that calculates (q[3], q[2], q[1], q[0])
can be written in the C language syntax as:
q[0] = GF_mult_by_2(t[0]) ^ GF_mult_by_3(t[1]) ^ t[2] ^ t[3];
q[1] = t[0] ^ GF_mult_by_2(t[1]) ^ GF_mult_by_3(t[2]) ^ t[3];
q[2] = t[0] ^ t[1] ^ GF_mult_by_2(t[2]) ^ GF_mult_by_3(t[3]);
q[3] = GF_mult_by_3(t[0]) ^ t[1] ^ t[2] ^ GF_mult_by_2(t[3]);
where GF_mult_by_2 and GF_mult_by_3 are multiplication functions
in GF(2#8), defined as follows:
o The function GF_mult_by_2(t) multiplies 2 by the given 8-bit
value t in GF(2#8) and returns an 8-bit value q as follows (lq
is a temporary 32-bit variable):
lq = t << 1;
if ((lq & 0x100) != 0) lq ^= 0x011B;
q = lq ^ 0xFF;
o The function GF_mult_by_3(t) multiplies 3 by the given 8-bit
value t in GF(2#8) and returns an 8-bit value q as follows (lq
is a temporary 32-bit variable):
lq = (t << 1) ^ t;
if ((lq & 0x100) != 0) lq ^= 0x011B;
q = lq ^ 0xFF;
3. Output Q = (q[3], q[2], q[1], q[0]).
2.4.3. S_box()
S_box() is a substitution that can be done by a simple table lookup
operation. Thus, S_box() can be defined by the following value
table:
S_box[256] = {
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
Kiyomoto & Shin Informational [Page 10]
^L
RFC 7008 A Description of KCipher-2 August 2013
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
2.4.4. Multiplications in GF(2#32)
FSR-A and FSR-B are word-oriented linear feedback shift registers
(LFSRs). In the next() operation of Section 2.3.1, the feedback
functions to the two LFSRs are shown, which include multiplication of
fixed elements a0, a1, a2, or a3 in GF(2#32). The fixed elements are
carefully chosen to maximize the period of the key stream generated
by the two registers. Here, we briefly explain how we obtain the
fixed elements. Further details and theories can be found in
[SECRYPT07].
We obtain a0 as follows. First, to guarantee that the period is
maximized for an 8-bit unit, we consider p as the root of the
primitive polynomial:
x#8 + x#7 + x#6, + x + 1 in GF(2).
Therefore, an 8-bit string y = (y7, ..., y0), where y7 is the most
significant bit, can be written as:
y = y7(p#7) + y6(p#6) + ... + y1(p) + y0
Next, a0 is the root of irreducible polynomial of degree four:
x#4 + p#24(x#3) + p#3(x#2) + p#12(x) + p#71 in GF(2#8).
Kiyomoto & Shin Informational [Page 11]
^L
RFC 7008 A Description of KCipher-2 August 2013
Then, hierarchically, a 32-bit unit Y = (Y3, Y2, Y1, Y0), where Y3 is
the most significant byte, can be written as:
Y3(a0#3) + Y2(a0#2) + Y1(a0) + Y0
The feedback polynomial to FSR-A,
f(x) = a0(x#5) + x#2 + 1
produces the maximum-length period of the key stream with a0.
Similarly, a1, a2, and a3 are the roots of irreducible polynomials of
degree four of
x#4 + q#230(x#3) + q#156(x#2) + q#93(x) + q#29 in GF(2#8)
x#4 + r#34(x#3) + r#16(x#2) + r#199(x) + r#248 in GF(2#8)
x#4 + s#157(x#3) + s#253(x#2) + s#56(x) + s#16 in GF(2#8)
respectively. The feedback polynomial to FSR-B that uses a1, a2, and
a3 can produce the maximum-length period. The feedback polynomials
to FSR-A and FSR-B are as written in Step 2 of the next() operation,
and the mathematical notations of these polynomials can also be found
in [SECRYPT07].
Calculation of the original feedback polynomials might be time-
consuming because it includes multiplications in finite fields.
However, these multiplications can be done faster if the multiples of
a0, ..., a3 were already calculated for all possible inputs. The
tables of amul0, ..., amul3 in Appendix A provide such pre-
calculation results. As shown in Step 2 of next(), we can utilize
these tables to finish the necessary calculations efficiently.
For example, consider the input as a 32-bit value w, which represents
an element of GF(2#32). The 32-bit output string w' = a0 ** w can be
obtained using the amul0 table in Appendix A.1 as follows:
w' = (w << 8) ^ amul0[w >> 24];
Likewise, multiplications of (a1 ** w), (a2 ** w), and (a3 ** w) can
be obtained in the same way, simply by using the amul1, amul2, and
amul3 tables that we provide in Appendixes A.2, A.3, and A.4.
Eventually, Step 2 of the next() operation, which updates A'[4] and
B'[10], can be written in the C language syntax as follows. Note
that nA[4] and nB[10] correspond to A'[4] and B'[10], respectively,
and temp1 and temp2 are 32-bit variables.
Kiyomoto & Shin Informational [Page 12]
^L
RFC 7008 A Description of KCipher-2 August 2013
nA[4] = ((A[0] << 8) ^ amul0[(A[0] >> 24)]) ^ A[3];
if (mode == INIT)
nA[4] ^= NLF(B[0], R2, R1, A[4]);
if (A[2] & 0x40000000) {
temp1 = (B[0] << 8) ^ amul1[(B[0] >> 24)];
} else {
temp1 = (B[0] << 8) ^ amul2[(B[0] >> 24)];
}
if (A[2] & 0x80000000) {
temp2 = (B[8] << 8) ^ amul3[(B[8] >> 24)];
} else {
temp2 = B[8];
}
nB[10] = temp1 ^ B[1] ^ B[6] ^ temp2;
if (mode == INIT)
nB[10] ^= NLF(B[10], L2, L1, A[0]);
2.5. Encryption and Decryption Scheme
In this section, we use the notation S(i) to specifically reference
the values of the internal state at i (where i >= 0), which is an
arbitrary, discrete temporal moment (aka cycle) after the
initialization.
2.5.1. Key Stream Generation
Given a 128-bit key K, a 128-bit initialization vector (IV),
KCipher-2 is initialized as follows:
S(0) = init(K, IV);
where S(0) is a state representation. With an initialized state
S(i), where i >= 0, a 64-bit key stream X(i) can be obtained using
the stream() operation, as follows:
X(i) = stream(S(i));
To generate a new key stream X(i + 1), use the next() operation and
the stream() operation as follows:
S(i + 1) = next(S(i), NORMAL);
X(i + 1) = stream(S(i + 1));
Kiyomoto & Shin Informational [Page 13]
^L
RFC 7008 A Description of KCipher-2 August 2013
2.5.2. Encryption and Decryption of a Message
Given a 64-bit message block M and a key stream X, an encrypted
message E is obtained by
E = M ^ X;
Conversely, the decrypted message D is obtained by
D = E ^ X;
The original message M and the decrypted message D are identical when
the same key stream is used.
3. Security Considerations
We recommend reinitializing and rekeying after 2#58 cycles of
KCipher-2, which means after generating 2#64 key stream bits. It is
important to make sure that no IV is ever reused under the same key.
4. References
4.1. Normative References
[ISO18033] "Information technology -- Security techniques --
Encryption algorithms -- Part 4: Stream ciphers", ISO/
IEC 18033-4:2012 Ed. 2, December 2012.
[FIPS-AES] National Institute of Standards and Technology,
"Advanced Encryption Standard (AES)", FIPS PUB 197,
November 2001, <http://csrc.nist.gov/publications/
fips/fips197/fips-197.pdf>.
4.2. Informative References
[SECRYPT07] Kiyomoto, S., Tanaka, T., and K. Sakurai, "K2: A
Stream Cipher Algorithm Using Dynamic Feedback
Control", Proc. SECRYPT 2007, pp. 204-213.
[ICETE07] Kiyomoto, S., Tanaka, T., and K. Sakurai, "K2 Stream
Cipher", Proc. ICETE 2007, pp. 214-226.
[CRYPTEC] Bogdanov, A., Preneel, B., and V. Rijmen, "Security
Evaluation of the K2 Stream Cipher", 2010,
<http://www.cryptrec.go.jp/english/estimation.html>.
[CRYPTECLIST] "Cryptography Research and Evaluation Committees",
<http://www.cryptrec.go.jp/english/estimation.html>.
Kiyomoto & Shin Informational [Page 14]
^L
RFC 7008 A Description of KCipher-2 August 2013
[SIIS11] Priemuth-Schmid, D., "Attacks on Simplified Versions
of K2", Proc. SIIS 2011, LNCS 7053, pp. 117-127.
[SASC07] Kiyomoto, S., Tanaka, T., and K. Sakurai, "A Word-
Oriented Stream Cipher Using Clock Control", Proc.
SASC 2007, pp. 260-274.
Kiyomoto & Shin Informational [Page 15]
^L
RFC 7008 A Description of KCipher-2 August 2013
Appendix A. Tables for Multiplication in GF(2#32)
A.1. The table amul0
amul0[256] = {
0x00000000,0xB6086D1A,0xAF10DA34,0x1918B72E,
0x9D207768,0x2B281A72,0x3230AD5C,0x8438C046,
0xF940EED0,0x4F4883CA,0x565034E4,0xE05859FE,
0x646099B8,0xD268F4A2,0xCB70438C,0x7D782E96,
0x31801F63,0x87887279,0x9E90C557,0x2898A84D,
0xACA0680B,0x1AA80511,0x03B0B23F,0xB5B8DF25,
0xC8C0F1B3,0x7EC89CA9,0x67D02B87,0xD1D8469D,
0x55E086DB,0xE3E8EBC1,0xFAF05CEF,0x4CF831F5,
0x62C33EC6,0xD4CB53DC,0xCDD3E4F2,0x7BDB89E8,
0xFFE349AE,0x49EB24B4,0x50F3939A,0xE6FBFE80,
0x9B83D016,0x2D8BBD0C,0x34930A22,0x829B6738,
0x06A3A77E,0xB0ABCA64,0xA9B37D4A,0x1FBB1050,
0x534321A5,0xE54B4CBF,0xFC53FB91,0x4A5B968B,
0xCE6356CD,0x786B3BD7,0x61738CF9,0xD77BE1E3,
0xAA03CF75,0x1C0BA26F,0x05131541,0xB31B785B,
0x3723B81D,0x812BD507,0x98336229,0x2E3B0F33,
0xC4457C4F,0x724D1155,0x6B55A67B,0xDD5DCB61,
0x59650B27,0xEF6D663D,0xF675D113,0x407DBC09,
0x3D05929F,0x8B0DFF85,0x921548AB,0x241D25B1,
0xA025E5F7,0x162D88ED,0x0F353FC3,0xB93D52D9,
0xF5C5632C,0x43CD0E36,0x5AD5B918,0xECDDD402,
0x68E51444,0xDEED795E,0xC7F5CE70,0x71FDA36A,
0x0C858DFC,0xBA8DE0E6,0xA39557C8,0x159D3AD2,
0x91A5FA94,0x27AD978E,0x3EB520A0,0x88BD4DBA,
0xA6864289,0x108E2F93,0x099698BD,0xBF9EF5A7,
0x3BA635E1,0x8DAE58FB,0x94B6EFD5,0x22BE82CF,
0x5FC6AC59,0xE9CEC143,0xF0D6766D,0x46DE1B77,
0xC2E6DB31,0x74EEB62B,0x6DF60105,0xDBFE6C1F,
0x97065DEA,0x210E30F0,0x381687DE,0x8E1EEAC4,
0x0A262A82,0xBC2E4798,0xA536F0B6,0x133E9DAC,
0x6E46B33A,0xD84EDE20,0xC156690E,0x775E0414,
0xF366C452,0x456EA948,0x5C761E66,0xEA7E737C,
0x4B8AF89E,0xFD829584,0xE49A22AA,0x52924FB0,
0xD6AA8FF6,0x60A2E2EC,0x79BA55C2,0xCFB238D8,
0xB2CA164E,0x04C27B54,0x1DDACC7A,0xABD2A160,
0x2FEA6126,0x99E20C3C,0x80FABB12,0x36F2D608,
0x7A0AE7FD,0xCC028AE7,0xD51A3DC9,0x631250D3,
0xE72A9095,0x5122FD8F,0x483A4AA1,0xFE3227BB,
0x834A092D,0x35426437,0x2C5AD319,0x9A52BE03,
0x1E6A7E45,0xA862135F,0xB17AA471,0x0772C96B,
0x2949C658,0x9F41AB42,0x86591C6C,0x30517176,
0xB469B130,0x0261DC2A,0x1B796B04,0xAD71061E,
0xD0092888,0x66014592,0x7F19F2BC,0xC9119FA6,
Kiyomoto & Shin Informational [Page 16]
^L
RFC 7008 A Description of KCipher-2 August 2013
0x4D295FE0,0xFB2132FA,0xE23985D4,0x5431E8CE,
0x18C9D93B,0xAEC1B421,0xB7D9030F,0x01D16E15,
0x85E9AE53,0x33E1C349,0x2AF97467,0x9CF1197D,
0xE18937EB,0x57815AF1,0x4E99EDDF,0xF89180C5,
0x7CA94083,0xCAA12D99,0xD3B99AB7,0x65B1F7AD,
0x8FCF84D1,0x39C7E9CB,0x20DF5EE5,0x96D733FF,
0x12EFF3B9,0xA4E79EA3,0xBDFF298D,0x0BF74497,
0x768F6A01,0xC087071B,0xD99FB035,0x6F97DD2F,
0xEBAF1D69,0x5DA77073,0x44BFC75D,0xF2B7AA47,
0xBE4F9BB2,0x0847F6A8,0x115F4186,0xA7572C9C,
0x236FECDA,0x956781C0,0x8C7F36EE,0x3A775BF4,
0x470F7562,0xF1071878,0xE81FAF56,0x5E17C24C,
0xDA2F020A,0x6C276F10,0x753FD83E,0xC337B524,
0xED0CBA17,0x5B04D70D,0x421C6023,0xF4140D39,
0x702CCD7F,0xC624A065,0xDF3C174B,0x69347A51,
0x144C54C7,0xA24439DD,0xBB5C8EF3,0x0D54E3E9,
0x896C23AF,0x3F644EB5,0x267CF99B,0x90749481,
0xDC8CA574,0x6A84C86E,0x739C7F40,0xC594125A,
0x41ACD21C,0xF7A4BF06,0xEEBC0828,0x58B46532,
0x25CC4BA4,0x93C426BE,0x8ADC9190,0x3CD4FC8A,
0xB8EC3CCC,0x0EE451D6,0x17FCE6F8,0xA1F48BE2 };
A.2. The table amul1
amul1[256] = {
0x00000000,0xA0F5FC2E,0x6DC7D55C,0xCD322972,
0xDAA387B8,0x7A567B96,0xB76452E4,0x1791AECA,
0x996B235D,0x399EDF73,0xF4ACF601,0x54590A2F,
0x43C8A4E5,0xE33D58CB,0x2E0F71B9,0x8EFA8D97,
0x1FD646BA,0xBF23BA94,0x721193E6,0xD2E46FC8,
0xC575C102,0x65803D2C,0xA8B2145E,0x0847E870,
0x86BD65E7,0x264899C9,0xEB7AB0BB,0x4B8F4C95,
0x5C1EE25F,0xFCEB1E71,0x31D93703,0x912CCB2D,
0x3E818C59,0x9E747077,0x53465905,0xF3B3A52B,
0xE4220BE1,0x44D7F7CF,0x89E5DEBD,0x29102293,
0xA7EAAF04,0x071F532A,0xCA2D7A58,0x6AD88676,
0x7D4928BC,0xDDBCD492,0x108EFDE0,0xB07B01CE,
0x2157CAE3,0x81A236CD,0x4C901FBF,0xEC65E391,
0xFBF44D5B,0x5B01B175,0x96339807,0x36C66429,
0xB83CE9BE,0x18C91590,0xD5FB3CE2,0x750EC0CC,
0x629F6E06,0xC26A9228,0x0F58BB5A,0xAFAD4774,
0x7C2F35B2,0xDCDAC99C,0x11E8E0EE,0xB11D1CC0,
0xA68CB20A,0x06794E24,0xCB4B6756,0x6BBE9B78,
0xE54416EF,0x45B1EAC1,0x8883C3B3,0x28763F9D,
0x3FE79157,0x9F126D79,0x5220440B,0xF2D5B825,
0x63F97308,0xC30C8F26,0x0E3EA654,0xAECB5A7A,
0xB95AF4B0,0x19AF089E,0xD49D21EC,0x7468DDC2,
0xFA925055,0x5A67AC7B,0x97558509,0x37A07927,
Kiyomoto & Shin Informational [Page 17]
^L
RFC 7008 A Description of KCipher-2 August 2013
0x2031D7ED,0x80C42BC3,0x4DF602B1,0xED03FE9F,
0x42AEB9EB,0xE25B45C5,0x2F696CB7,0x8F9C9099,
0x980D3E53,0x38F8C27D,0xF5CAEB0F,0x553F1721,
0xDBC59AB6,0x7B306698,0xB6024FEA,0x16F7B3C4,
0x01661D0E,0xA193E120,0x6CA1C852,0xCC54347C,
0x5D78FF51,0xFD8D037F,0x30BF2A0D,0x904AD623,
0x87DB78E9,0x272E84C7,0xEA1CADB5,0x4AE9519B,
0xC413DC0C,0x64E62022,0xA9D40950,0x0921F57E,
0x1EB05BB4,0xBE45A79A,0x73778EE8,0xD38272C6,
0xF85E6A49,0x58AB9667,0x9599BF15,0x356C433B,
0x22FDEDF1,0x820811DF,0x4F3A38AD,0xEFCFC483,
0x61354914,0xC1C0B53A,0x0CF29C48,0xAC076066,
0xBB96CEAC,0x1B633282,0xD6511BF0,0x76A4E7DE,
0xE7882CF3,0x477DD0DD,0x8A4FF9AF,0x2ABA0581,
0x3D2BAB4B,0x9DDE5765,0x50EC7E17,0xF0198239,
0x7EE30FAE,0xDE16F380,0x1324DAF2,0xB3D126DC,
0xA4408816,0x04B57438,0xC9875D4A,0x6972A164,
0xC6DFE610,0x662A1A3E,0xAB18334C,0x0BEDCF62,
0x1C7C61A8,0xBC899D86,0x71BBB4F4,0xD14E48DA,
0x5FB4C54D,0xFF413963,0x32731011,0x9286EC3F,
0x851742F5,0x25E2BEDB,0xE8D097A9,0x48256B87,
0xD909A0AA,0x79FC5C84,0xB4CE75F6,0x143B89D8,
0x03AA2712,0xA35FDB3C,0x6E6DF24E,0xCE980E60,
0x406283F7,0xE0977FD9,0x2DA556AB,0x8D50AA85,
0x9AC1044F,0x3A34F861,0xF706D113,0x57F32D3D,
0x84715FFB,0x2484A3D5,0xE9B68AA7,0x49437689,
0x5ED2D843,0xFE27246D,0x33150D1F,0x93E0F131,
0x1D1A7CA6,0xBDEF8088,0x70DDA9FA,0xD02855D4,
0xC7B9FB1E,0x674C0730,0xAA7E2E42,0x0A8BD26C,
0x9BA71941,0x3B52E56F,0xF660CC1D,0x56953033,
0x41049EF9,0xE1F162D7,0x2CC34BA5,0x8C36B78B,
0x02CC3A1C,0xA239C632,0x6F0BEF40,0xCFFE136E,
0xD86FBDA4,0x789A418A,0xB5A868F8,0x155D94D6,
0xBAF0D3A2,0x1A052F8C,0xD73706FE,0x77C2FAD0,
0x6053541A,0xC0A6A834,0x0D948146,0xAD617D68,
0x239BF0FF,0x836E0CD1,0x4E5C25A3,0xEEA9D98D,
0xF9387747,0x59CD8B69,0x94FFA21B,0x340A5E35,
0xA5269518,0x05D36936,0xC8E14044,0x6814BC6A,
0x7F8512A0,0xDF70EE8E,0x1242C7FC,0xB2B73BD2,
0x3C4DB645,0x9CB84A6B,0x518A6319,0xF17F9F37,
0xE6EE31FD,0x461BCDD3,0x8B29E4A1,0x2BDC188F };
Kiyomoto & Shin Informational [Page 18]
^L
RFC 7008 A Description of KCipher-2 August 2013
A.3. The table amul2
amul2[256] = {
0x00000000,0x5BF87F93,0xB6BDFE6B,0xED4581F8,
0x2137B1D6,0x7ACFCE45,0x978A4FBD,0xCC72302E,
0x426E2FE1,0x19965072,0xF4D3D18A,0xAF2BAE19,
0x63599E37,0x38A1E1A4,0xD5E4605C,0x8E1C1FCF,
0x84DC5E8F,0xDF24211C,0x3261A0E4,0x6999DF77,
0xA5EBEF59,0xFE1390CA,0x13561132,0x48AE6EA1,
0xC6B2716E,0x9D4A0EFD,0x700F8F05,0x2BF7F096,
0xE785C0B8,0xBC7DBF2B,0x51383ED3,0x0AC04140,
0x45F5BC53,0x1E0DC3C0,0xF3484238,0xA8B03DAB,
0x64C20D85,0x3F3A7216,0xD27FF3EE,0x89878C7D,
0x079B93B2,0x5C63EC21,0xB1266DD9,0xEADE124A,
0x26AC2264,0x7D545DF7,0x9011DC0F,0xCBE9A39C,
0xC129E2DC,0x9AD19D4F,0x77941CB7,0x2C6C6324,
0xE01E530A,0xBBE62C99,0x56A3AD61,0x0D5BD2F2,
0x8347CD3D,0xD8BFB2AE,0x35FA3356,0x6E024CC5,
0xA2707CEB,0xF9880378,0x14CD8280,0x4F35FD13,
0x8AA735A6,0xD15F4A35,0x3C1ACBCD,0x67E2B45E,
0xAB908470,0xF068FBE3,0x1D2D7A1B,0x46D50588,
0xC8C91A47,0x933165D4,0x7E74E42C,0x258C9BBF,
0xE9FEAB91,0xB206D402,0x5F4355FA,0x04BB2A69,
0x0E7B6B29,0x558314BA,0xB8C69542,0xE33EEAD1,
0x2F4CDAFF,0x74B4A56C,0x99F12494,0xC2095B07,
0x4C1544C8,0x17ED3B5B,0xFAA8BAA3,0xA150C530,
0x6D22F51E,0x36DA8A8D,0xDB9F0B75,0x806774E6,
0xCF5289F5,0x94AAF666,0x79EF779E,0x2217080D,
0xEE653823,0xB59D47B0,0x58D8C648,0x0320B9DB,
0x8D3CA614,0xD6C4D987,0x3B81587F,0x607927EC,
0xAC0B17C2,0xF7F36851,0x1AB6E9A9,0x414E963A,
0x4B8ED77A,0x1076A8E9,0xFD332911,0xA6CB5682,
0x6AB966AC,0x3141193F,0xDC0498C7,0x87FCE754,
0x09E0F89B,0x52188708,0xBF5D06F0,0xE4A57963,
0x28D7494D,0x732F36DE,0x9E6AB726,0xC592C8B5,
0x59036A01,0x02FB1592,0xEFBE946A,0xB446EBF9,
0x7834DBD7,0x23CCA444,0xCE8925BC,0x95715A2F,
0x1B6D45E0,0x40953A73,0xADD0BB8B,0xF628C418,
0x3A5AF436,0x61A28BA5,0x8CE70A5D,0xD71F75CE,
0xDDDF348E,0x86274B1D,0x6B62CAE5,0x309AB576,
0xFCE88558,0xA710FACB,0x4A557B33,0x11AD04A0,
0x9FB11B6F,0xC44964FC,0x290CE504,0x72F49A97,
0xBE86AAB9,0xE57ED52A,0x083B54D2,0x53C32B41,
0x1CF6D652,0x470EA9C1,0xAA4B2839,0xF1B357AA,
0x3DC16784,0x66391817,0x8B7C99EF,0xD084E67C,
0x5E98F9B3,0x05608620,0xE82507D8,0xB3DD784B,
0x7FAF4865,0x245737F6,0xC912B60E,0x92EAC99D,
0x982A88DD,0xC3D2F74E,0x2E9776B6,0x756F0925,
Kiyomoto & Shin Informational [Page 19]
^L
RFC 7008 A Description of KCipher-2 August 2013
0xB91D390B,0xE2E54698,0x0FA0C760,0x5458B8F3,
0xDA44A73C,0x81BCD8AF,0x6CF95957,0x370126C4,
0xFB7316EA,0xA08B6979,0x4DCEE881,0x16369712,
0xD3A45FA7,0x885C2034,0x6519A1CC,0x3EE1DE5F,
0xF293EE71,0xA96B91E2,0x442E101A,0x1FD66F89,
0x91CA7046,0xCA320FD5,0x27778E2D,0x7C8FF1BE,
0xB0FDC190,0xEB05BE03,0x06403FFB,0x5DB84068,
0x57780128,0x0C807EBB,0xE1C5FF43,0xBA3D80D0,
0x764FB0FE,0x2DB7CF6D,0xC0F24E95,0x9B0A3106,
0x15162EC9,0x4EEE515A,0xA3ABD0A2,0xF853AF31,
0x34219F1F,0x6FD9E08C,0x829C6174,0xD9641EE7,
0x9651E3F4,0xCDA99C67,0x20EC1D9F,0x7B14620C,
0xB7665222,0xEC9E2DB1,0x01DBAC49,0x5A23D3DA,
0xD43FCC15,0x8FC7B386,0x6282327E,0x397A4DED,
0xF5087DC3,0xAEF00250,0x43B583A8,0x184DFC3B,
0x128DBD7B,0x4975C2E8,0xA4304310,0xFFC83C83,
0x33BA0CAD,0x6842733E,0x8507F2C6,0xDEFF8D55,
0x50E3929A,0x0B1BED09,0xE65E6CF1,0xBDA61362,
0x71D4234C,0x2A2C5CDF,0xC769DD27,0x9C91A2B4 };
A.4. The table amul3
amul3[256] = {
0x00000000,0x4559568B,0x8AB2AC73,0xCFEBFAF8,
0x71013DE6,0x34586B6D,0xFBB39195,0xBEEAC71E,
0xE2027AA9,0xA75B2C22,0x68B0D6DA,0x2DE98051,
0x9303474F,0xD65A11C4,0x19B1EB3C,0x5CE8BDB7,
0xA104F437,0xE45DA2BC,0x2BB65844,0x6EEF0ECF,
0xD005C9D1,0x955C9F5A,0x5AB765A2,0x1FEE3329,
0x43068E9E,0x065FD815,0xC9B422ED,0x8CED7466,
0x3207B378,0x775EE5F3,0xB8B51F0B,0xFDEC4980,
0x27088D6E,0x6251DBE5,0xADBA211D,0xE8E37796,
0x5609B088,0x1350E603,0xDCBB1CFB,0x99E24A70,
0xC50AF7C7,0x8053A14C,0x4FB85BB4,0x0AE10D3F,
0xB40BCA21,0xF1529CAA,0x3EB96652,0x7BE030D9,
0x860C7959,0xC3552FD2,0x0CBED52A,0x49E783A1,
0xF70D44BF,0xB2541234,0x7DBFE8CC,0x38E6BE47,
0x640E03F0,0x2157557B,0xEEBCAF83,0xABE5F908,
0x150F3E16,0x5056689D,0x9FBD9265,0xDAE4C4EE,
0x4E107FDC,0x0B492957,0xC4A2D3AF,0x81FB8524,
0x3F11423A,0x7A4814B1,0xB5A3EE49,0xF0FAB8C2,
0xAC120575,0xE94B53FE,0x26A0A906,0x63F9FF8D,
0xDD133893,0x984A6E18,0x57A194E0,0x12F8C26B,
0xEF148BEB,0xAA4DDD60,0x65A62798,0x20FF7113,
0x9E15B60D,0xDB4CE086,0x14A71A7E,0x51FE4CF5,
0x0D16F142,0x484FA7C9,0x87A45D31,0xC2FD0BBA,
0x7C17CCA4,0x394E9A2F,0xF6A560D7,0xB3FC365C,
0x6918F2B2,0x2C41A439,0xE3AA5EC1,0xA6F3084A,
Kiyomoto & Shin Informational [Page 20]
^L
RFC 7008 A Description of KCipher-2 August 2013
0x1819CF54,0x5D4099DF,0x92AB6327,0xD7F235AC,
0x8B1A881B,0xCE43DE90,0x01A82468,0x44F172E3,
0xFA1BB5FD,0xBF42E376,0x70A9198E,0x35F04F05,
0xC81C0685,0x8D45500E,0x42AEAAF6,0x07F7FC7D,
0xB91D3B63,0xFC446DE8,0x33AF9710,0x76F6C19B,
0x2A1E7C2C,0x6F472AA7,0xA0ACD05F,0xE5F586D4,
0x5B1F41CA,0x1E461741,0xD1ADEDB9,0x94F4BB32,
0x9C20FEDD,0xD979A856,0x169252AE,0x53CB0425,
0xED21C33B,0xA87895B0,0x67936F48,0x22CA39C3,
0x7E228474,0x3B7BD2FF,0xF4902807,0xB1C97E8C,
0x0F23B992,0x4A7AEF19,0x859115E1,0xC0C8436A,
0x3D240AEA,0x787D5C61,0xB796A699,0xF2CFF012,
0x4C25370C,0x097C6187,0xC6979B7F,0x83CECDF4,
0xDF267043,0x9A7F26C8,0x5594DC30,0x10CD8ABB,
0xAE274DA5,0xEB7E1B2E,0x2495E1D6,0x61CCB75D,
0xBB2873B3,0xFE712538,0x319ADFC0,0x74C3894B,
0xCA294E55,0x8F7018DE,0x409BE226,0x05C2B4AD,
0x592A091A,0x1C735F91,0xD398A569,0x96C1F3E2,
0x282B34FC,0x6D726277,0xA299988F,0xE7C0CE04,
0x1A2C8784,0x5F75D10F,0x909E2BF7,0xD5C77D7C,
0x6B2DBA62,0x2E74ECE9,0xE19F1611,0xA4C6409A,
0xF82EFD2D,0xBD77ABA6,0x729C515E,0x37C507D5,
0x892FC0CB,0xCC769640,0x039D6CB8,0x46C43A33,
0xD2308101,0x9769D78A,0x58822D72,0x1DDB7BF9,
0xA331BCE7,0xE668EA6C,0x29831094,0x6CDA461F,
0x3032FBA8,0x756BAD23,0xBA8057DB,0xFFD90150,
0x4133C64E,0x046A90C5,0xCB816A3D,0x8ED83CB6,
0x73347536,0x366D23BD,0xF986D945,0xBCDF8FCE,
0x023548D0,0x476C1E5B,0x8887E4A3,0xCDDEB228,
0x91360F9F,0xD46F5914,0x1B84A3EC,0x5EDDF567,
0xE0373279,0xA56E64F2,0x6A859E0A,0x2FDCC881,
0xF5380C6F,0xB0615AE4,0x7F8AA01C,0x3AD3F697,
0x84393189,0xC1606702,0x0E8B9DFA,0x4BD2CB71,
0x173A76C6,0x5263204D,0x9D88DAB5,0xD8D18C3E,
0x663B4B20,0x23621DAB,0xEC89E753,0xA9D0B1D8,
0x543CF858,0x1165AED3,0xDE8E542B,0x9BD702A0,
0x253DC5BE,0x60649335,0xAF8F69CD,0xEAD63F46,
0xB63E82F1,0xF367D47A,0x3C8C2E82,0x79D57809,
0xC73FBF17,0x8266E99C,0x4D8D1364,0x08D445EF };
Kiyomoto & Shin Informational [Page 21]
^L
RFC 7008 A Description of KCipher-2 August 2013
Appendix B. A Simple Implementation Example of KCipher-2
We provide an example implementation of KCipher-2 written in C. The
implementation is simple; we do not consider storage or time
complexity, nor do we consider software engineering-related issues,
such as encapsulation, modularity, and so on.
B.1. Code Components I - Definitions and Declarations
#include <stdio.h>
#include <stdint.h>
#define INIT 0
#define NORMAL 1
void init (unsigned int *, unsigned int *);
void next(int);
void stream (unsigned int *, unsigned int *);
static const uint8_t S_box[256] = {
...
// as defined in Section 2.4.3
};
static const uint32_t amul0[256] = {
...
// as defined in Appendix A.1
};
static const uint32_t amul1[256] = {
...
// as defined in Appendix A.2
};
static const uint32_t amul2[256] = {
...
// as defined in Appendix A.3
};
static const uint32_t amul3[256] = {
...
// as defined in Appendix A.4
};
/* Global variables */
// State S
uint32_t A[5]; // five 32-bit units
Kiyomoto & Shin Informational [Page 22]
^L
RFC 7008 A Description of KCipher-2 August 2013
uint32_t B[11]; // eleven 32-bit units
uint32_t L1, R1, L2, R2; // one 32-bit unit for each
// The internal key (IK) and the initialization vector (IV)
uint32_t IK[12]; // (12*32) bits
uint32_t IV[4]; // (4*32) bits
B.2. Code Components II - Functions
/**
* Do multiplication in GF(2#8) of the irreducible polynomial,
* f(x) = x#8 + x#4 + x#3 + x + 1. The given parameter is multiplied
* by 2.
* @param t : (INPUT). 8 bits. The number will be multiplied by 2
* @return : (OUTPUT). 8 bits. The multiplication result
*/
uint8_t GF_mult_by_2 (uint8_t t) {
uint8_t q;
uint32_t lq;
lq = t << 1;
if ((lq & 0x100) != 0) lq ^= 0x011B;
q = lq ^ 0xFF;
return q;
}
/**
* Do multiplication in GF(2#8) of the irreducible polynomial,
* f(x) = x#8 + x#4 + x#3 + x + 1. The given parameter is multiplied
* by 3.
* @param t : (INPUT). 8 bits. The number will be multiplied by 3
* @return : (OUTPUT). 8 bits. The multiplication result
*/
uint8_t GF_mult_by_3 (uint8_t t) {
uint8_t q;
uint32_t lq;
lq = (t << 1) ^ t;
if ((lq & 0x100) != 0) lq ^= 0x011B;
q = lq ^ 0xFF;
return q;
}
Kiyomoto & Shin Informational [Page 23]
^L
RFC 7008 A Description of KCipher-2 August 2013
/**
* Do substitution on a given input. See Section 2.4.2.
* @param t : (INPUT), (1*32) bits
* @return : (OUTPUT), (1*32) bits
*/
uint32_t sub_k2 (uint32_t in) {
uint32_t out;
uint8_t w0 = in & 0x000000ff;
uint8_t w1 = (in >> 8) & 0x000000ff;
uint8_t w2 = (in >> 16) & 0x000000ff;
uint8_t w3 = (in >> 24) & 0x000000ff;
uint8_t t3, t2, t1, t0;
uint8_t q3, q2, q1, q0;
t0 = S_box[w0]; t1 = S_box[w1]; t2 = S_box[w2]; t3 = S_box[w3];
q0 = GF_mult_by_2(t0) ^ GF_mult_by_3(t1) ^ t2 ^ t3;
q1 = t0 ^ GF_mult_by_2(t1) ^ GF_mult_by_3(t2) ^ t3;
q2 = t0 ^ t1 ^ GF_mult_by_2(t2) ^ GF_mult_by_3(t3);
q3 = GF_mult_by_3(t0) ^ t1 ^ t2 ^ GF_mult_by_2(t3);
out = (q3 << 24) | (q2 << 16) | (q1 << 8) | q0;
return out;
}
/**
* Expand a given 128-bit key (K) to a 384-bit internal key
* information (IK).
* See Step 1 of init() in Section 2.3.2.
* @param key[4] : (INPUT), (4*32) bits
* @param iv[4] : (INPUT), (4*32) bits
* @modify IK[12] : (OUTPUT), (12*32) bits
* @modify IV[12] : (OUTPUT), (4*32) bits
*/
void key_expansion (uint32_t *key, uint32_t *iv) {
// copy iv to IV
IV[0] = iv[0]; IV[1] = iv[1]; IV[2] = iv[2]; IV[3] = iv[3];
// m = 0 ... 3
IK[0] = key[0]; IK[1] = key[1];
IK[2] = key[2]; IK[3] = key[3];
// m = 4
IK[4] = IK[0] ^ sub_k2((IK[3] << 8) ^ (IK[3] >> 24)) ^
0x01000000;
Kiyomoto & Shin Informational [Page 24]
^L
RFC 7008 A Description of KCipher-2 August 2013
// m = 4 ... 11, but not 4 nor 8
IK[5] = IK[1] ^ IK[4]; IK[6] = IK[2] ^ IK[5];
IK[7] = IK[3] ^ IK[6];
// m = 8
IK[8] = IK[4] ^ sub_k2((IK[7] << 8) ^ (IK[7] >> 24)) ^
0x02000000;
// m = 4 ... 11, but not 4 nor 8
IK[9] = IK[5] ^ IK[8]; IK[10] = IK[6] ^ IK[9];
IK[11] = IK[7] ^ IK[10];
}
/**
* Set up the initial state value using IK and IV. See Step 2 of
* init() in Section 2.3.2.
* @param key[4] : (INPUT), (4*32) bits
* @param iv[4] : (INPUT), (4*32) bits
* @modify S : (OUTPUT), (A, B, L1, R1, L2, R2)
*/
void setup_state_values (uint32_t *key, uint32_t *iv) {
// setting up IK and IV by calling key_expansion(key, iv)
key_expansion(key, iv);
// setting up the internal state values
A[0] = IK[4]; A[1] = IK[3]; A[2] = IK[2];
A[3] = IK[1]; A[4] = IK[0];
B[0] = IK[10]; B[1] = IK[11]; B[2] = IV[0]; B[3] = IV[1];
B[4] = IK[8]; B[5] = IK[9]; B[6] = IV[2]; B[7] = IV[3];
B[8] = IK[7]; B[9] = IK[5]; B[10] = IK[6];
L1 = R1 = L2 = R2 = 0x00000000;
}
/**
* Initialize the system with a 128-bit key (K) and a 128-bit
* initialization vector (IV). It sets up the internal state value
* and invokes next(INIT) iteratively 24 times. After this,
* the system is ready to produce key streams. See Section 2.3.2.
* @param key[12] : (INPUT), (4*32) bits
* @param iv[4] : (INPUT), (4*32) bits
* @modify IK : (12*32) bits, by calling setup_state_values()
* @modify IV : (4*32) bits, by calling setup_state_values()
* @modify S : (OUTPUT), (A, B, L1, R1, L2, R2)
*/
void init (uint32_t *k, uint32_t *iv) {
int i;
Kiyomoto & Shin Informational [Page 25]
^L
RFC 7008 A Description of KCipher-2 August 2013
setup_state_values(k, iv);
for(i=0; i < 24; i++) {
next(INIT);
}
}
/**
* Non-linear function. See Section 2.4.1.
* @param A : (INPUT), 8 bits
* @param B : (INPUT), 8 bits
* @param C : (INPUT), 8 bits
* @param D : (INPUT), 8 bits
* @return : (OUTPUT), 8 bits
*/
uint32_t NLF (uint32_t A, uint32_t B,
uint32_t C, uint32_t D ) {
uint32_t Q;
Q = (A + B) ^ C ^ D;
return Q;
}
/**
* Derive a new state from the current state values.
* See Section 2.3.1.
* @param mode : (INPUT) INIT (= 0) or NORMAL (= 1)
* @modify S : (OUTPUT)
*/
void next (int mode) {
uint32_t nA[5];
uint32_t nB[11];
uint32_t nL1, nR1, nL2, nR2;
uint32_t temp1, temp2;
nL1 = sub_k2(R2 + B[4]);
nR1 = sub_k2(L2 + B[9]);
nL2 = sub_k2(L1);
nR2 = sub_k2(R1);
// m = 0 ... 3
nA[0] = A[1]; nA[1] = A[2]; nA[2] = A[3]; nA[3] = A[4];
// m = 0 ... 9
nB[0] = B[1]; nB[1] = B[2]; nB[2] = B[3]; nB[3] = B[4];
nB[4] = B[5]; nB[5] = B[6]; nB[6] = B[7]; nB[7] = B[8];
nB[8] = B[9]; nB[9] = B[10];
Kiyomoto & Shin Informational [Page 26]
^L
RFC 7008 A Description of KCipher-2 August 2013
// update nA[4]
temp1 = (A[0] << 8) ^ amul0[(A[0] >> 24)];
nA[4] = temp1 ^ A[3];
if (mode == INIT)
nA[4] ^= NLF(B[0], R2, R1, A[4]);
// update nB[10]
if (A[2] & 0x40000000) /* if A[2][30] == 1 */ {
temp1 = (B[0] << 8) ^ amul1[(B[0] >> 24)];
} else /*if A[2][30] == 0*/ {
temp1 = (B[0] << 8) ^ amul2[(B[0] >> 24)];
}
if (A[2] & 0x80000000) /* if A[2][31] == 1 */ {
temp2 = (B[8] << 8) ^ amul3[(B[8] >> 24)];
} else /* if A[2][31] == 0 */ {
temp2 = B[8];
}
nB[10] = temp1 ^ B[1] ^ B[6] ^ temp2;
if (mode == INIT)
nB[10] ^= NLF(B[10], L2, L1, A[0]);
/* copy S' to S */
A[0] = nA[0]; A[1] = nA[1]; A[2] = nA[2];
A[3] = nA[3]; A[4] = nA[4];
B[0] = nB[0]; B[1] = nB[1]; B[2] = nB[2]; B[3] = nB[3];
B[4] = nB[4]; B[5] = nB[5]; B[6] = nB[6]; B[7] = nB[7];
B[8] = nB[8]; B[9] = nB[9]; B[10] = nB[10];
L1 = nL1; R1 = nR1; L2 = nL2; R2 = nR2;
}
/**
* Obtain a key stream = (ZH, ZL) from the current state values.
* See Section 2.3.3.
* @param ZH : (OUTPUT) (1 * 32)-bit
* @modify ZL : (OUTPUT) (1 * 32)-bit
*/
void stream (uint32_t *ZH, uint32_t *ZL) {
*ZH = NLF(B[10], L2, L1, A[0]);
*ZL = NLF(B[0], R2, R1, A[4]);
}
Kiyomoto & Shin Informational [Page 27]
^L
RFC 7008 A Description of KCipher-2 August 2013
B.3. Use Case
void main (void) {
// Set the key and the iv
uint32_t key[4] = ...;
uint32_t iv[4] = ...;
init(key, iv);
// produce a key stream
stream(&zh, &zl);
next(NORMAL);
// produce another key stream
stream(&zh, &zl);
next(NORMAL);
...
}
Appendix C. Test Vectors
This appendix provides running examples of KCipher-2 obtained from
the naive implementation. All values are written in hexadecimal
form.
C.1. Key Stream Generation Examples
The following is a series of the 64-bit key streams generated from
the given 8-bit keys (K) and 128-bit initialization vectors (IVs).
- K : 00000000 00000000 00000000 00000000
- IV: 00000000 00000000 00000000 00000000
- Generated key streams at S(i) are as follows
S(0): F871EBEF 945B7272
S(1): E40C0494 1DFF0537
S(2): 0B981A59 FBC8AC57
S(3): 566D3B02 C179DBB4
S(4): 3B46F1F0 33554C72
S(5): 5DE68BCC 9872858F
S(6): 57549602 4062F0E9
S(7): F932C998 226DB6BA
...
- K : A37B7D01 2F897076 FE08C22D 142BB2CF
- IV: 33A6EE60 E57927E0 8B45CC4C A30EDE4A
- Generated key streams at S(i) are as follows
S(0): 60E9A6B6 7B4C2524
Kiyomoto & Shin Informational [Page 28]
^L
RFC 7008 A Description of KCipher-2 August 2013
S(1): FE726D44 AD5B402E
S(2): 31D0D1BA 5CA233A4
S(3): AFC74BE7 D6069D36
S(4): 4A75BB6C D8D5B7F0
S(5): 38AAAA28 4AE4CD2F
S(6): E2E5313D FC6CCD8F
S(7): 9D2484F2 0F86C50D
...
- K : 3D62E9B1 8E5B042F 42DF43CC 7175C96E
- IV: 777CEFE4 541300C8 ADCACA8A 0B48CD55
- Generated key streams at S(i) are as follows
S(0): 690F108D 84F44AC7
S(1): BF257BD7 E394F6C9
S(2): AA1192C3 8E200C6E
S(3): 073C8078 AC18AAD1
S(4): D4B8DADE 68802368
S(5): 2FA42076 83DEA5A4
S(6): 4C1D95EA E959F5B4
S(7): 2611F41E A40F0A58
...
C.2. Another Key Stream Generation with the State Values
In this section, the initialization procedure and the key stream
generation are illustrated in detail. The given 128-bit key (K) and
the 128-bit initialization vector (IV) are as follows:
- K : 0F1E2D3C 4B5A6978 8796A5B4 C3D2E1F0
- IV: F0E0D0C0 B0A09080 70605040 30201000.
Based on K and IV, the init() operation (Section 2.3.2) sets up
the internal state values, S = (A, B, L1, R1, L2, R2), as follows:
A[0]: 7993A6A2 A[1]: C3D2E1F0 A[2]: 8796A5B4
A[3]: 4B5A6978 A[4]: 0F1E2D3C
B[0]: 38AB371B B[1] : 4E26BC85 B[2]: F0E0D0C0
B[3]: B0A09080 B[4] : BF3D92AF B[5]: 8DF45D75
B[6]: 70605040 B[7] : 30201000 B[8]: 768D8B9E
B[9]: 32C9CFDA B[10]: B55F6A6E
L1: 00000000 R1: 00000000 L2: 00000000 R2: 00000000
Kiyomoto & Shin Informational [Page 29]
^L
RFC 7008 A Description of KCipher-2 August 2013
To complete the initialization, the next() operation is applied to
the state values 24 times (in Section 2.3.2, Step 3). Let us denote
each repeated application of the next() operation by init(i), where 1
<= i <= 24. The internal state values resulting from each init(i)
are shown in Appendixes C.2.1 - C.2.24.
C.2.1. S after init(1)
A[0]: C3D2E1F0 A[1]: 8796A5B4 A[2]: 4B5A6978
A[3]: 0F1E2D3C A[4]: 37070F7F
B[0]: 4E26BC85 B[1] : F0E0D0C0 B[2]: B0A09080
B[3]: BF3D92AF B[4] : 8DF45D75 B[5]: 70605040
B[6]: 30201000 B[7] : 768D8B9E B[8]: 32C9CFDA
B[9]: B55F6A6E B[10]: 64DEFF24
L1: F360860C R1: E81907D5 L2: 63636363 R2: 63636363
C.2.2. S after init(2)
A[0]: 8796A5B4 A[1]: 4B5A6978 A[2]: 0F1E2D3C
A[3]: 37070F7F A[4]: 25BCF981
B[0]: F0E0D0C0 B[1] : B0A09080 B[2]: BF3D92AF
B[3]: 8DF45D75 B[4] : 70605040 B[5]: 30201000
B[6]: 768D8B9E B[7] : 32C9CFDA B[8]: B55F6A6E
B[9]: 64DEFF24 B[10]: 7E65CB6A
L1: 1B9542ED R1: 9B259D28 L2: 971610F6 R2: 39C36E1D
C.2.3. S after init(3)
A[0]: 4B5A6978 A[1]: 0F1E2D3C A[2]: 37070F7F
A[3]: 25BCF981 A[4]: FA2DD9D3
B[0]: B0A09080 B[1] : BF3D92AF B[2]: 8DF45D75
B[3]: 70605040 B[4] : 30201000 B[5]: 768D8B9E
B[6]: 32C9CFDA B[7] : B55F6A6E B[8]: 64DEFF24
B[9]: 7E65CB6A B[10]: 08573732
L1: 1F41CDFB R1: CFAE13F3 L2: BCC7DC5B R2: 1528DDA1
Kiyomoto & Shin Informational [Page 30]
^L
RFC 7008 A Description of KCipher-2 August 2013
C.2.4. S after init(4)
A[0]: 0F1E2D3C A[1]: 37070F7F A[2]: 25BCF981
A[3]: FA2DD9D3 A[4]: AB820031
B[0]: BF3D92AF B[1] : 8DF45D75 B[2]: 70605040
B[3]: 30201000 B[4] : 768D8B9E B[5]: 32C9CFDA
B[6]: B55F6A6E B[7] : 64DEFF24 B[8]: 7E65CB6A
B[9]: 08573732 B[10]: 40941D82
L1: 8D7100A7 R1: AA6C8F89 L2: B4F43081 R2: 81264AF3
C.2.5. S after init(5)
A[0]: 37070F7F A[1]: 25BCF981 A[2]: FA2DD9D3
A[3]: AB820031 A[4]: D8F5995F
B[0]: 8DF45D75 B[1] : 70605040 B[2]: 30201000
B[3]: 768D8B9E B[4] : 32C9CFDA B[5]: B55F6A6E
B[6]: 64DEFF24 B[7] : 7E65CB6A B[8]: 08573732
B[9]: 40941D82 B[10]: 1A8DA7FB
L1: D315A91D R1: 751BC887 L2: 9E8539E3 R2: 929B1D3C
C.2.6. S after init(6)
A[0]: 25BCF981 A[1]: FA2DD9D3 A[2]: AB820031
A[3]: D8F5995F A[4]: F697B5BB
B[0]: 70605040 B[1] : 30201000 B[2]: 768D8B9E
B[3]: 32C9CFDA B[4] : B55F6A6E B[5]: 64DEFF24
B[6]: 7E65CB6A B[7] : 08573732 B[8]: 40941D82
B[9]: 1A8DA7FB B[10]: 13B5E7F3
L1: 88658E94 R1: 7F1C023D L2: B16F9402 R2: 5F06AB3F
C.2.7. S after init(7)
A[0]: FA2DD9D3 A[1]: AB820031 A[2]: D8F5995F
A[3]: F697B5BB A[4]: 6B0A7012
B[0]: 30201000 B[1] : 768D8B9E B[2]: 32C9CFDA
B[3]: B55F6A6E B[4] : 64DEFF24 B[5]: 7E65CB6A
B[6]: 08573732 B[7] : 40941D82 B[8]: 1A8DA7FB
B[9]: 13B5E7F3 B[10]: D76ABD2C
L1: 21BF8813 R1: 743F68DE L2: A1F603E6 R2: 3D1EA499
Kiyomoto & Shin Informational [Page 31]
^L
RFC 7008 A Description of KCipher-2 August 2013
C.2.8. S after init(8)
A[0]: AB820031 A[1]: D8F5995F A[2]: F697B5BB
A[3]: 6B0A7012 A[4]: 23995B7E
B[0]: 768D8B9E B[1] : 32C9CFDA B[2]: B55F6A6E
B[3]: 64DEFF24 B[4] : 7E65CB6A B[5]: 08573732
B[6]: 40941D82 B[7] : 1A8DA7FB B[8]: 13B5E7F3
B[9]: D76ABD2C B[10]: 997C3F70
L1: B48EA08C R1: 657C8FFD L2: AAB50B58 R2: 281F9A12
C.2.9. S after init(9)
A[0]: D8F5995F A[1]: F697B5BB A[2]: 6B0A7012
A[3]: 23995B7E A[4]: F8532F87
B[0]: 32C9CFDA B[1] : B55F6A6E B[2]: 64DEFF24
B[3]: 7E65CB6A B[4] : 08573732 B[5]: 40941D82
B[6]: 1A8DA7FB B[7] : 13B5E7F3 B[8]: D76ABD2C
B[9]: 997C3F70 B[10]: 95FFF657
L1: A2040C44 R1: EF19DC4E L2: 543A1967 R2: 05D0CF60
C.2.10. S after init(10)
A[0]: F697B5BB A[1]: 6B0A7012 A[2]: 23995B7E
A[3]: F8532F87 A[4]: BEDF1DEF
B[0]: B55F6A6E B[1] : 64DEFF24 B[2]: 7E65CB6A
B[3]: 08573732 B[4] : 40941D82 B[5]: 1A8DA7FB
B[6]: 13B5E7F3 B[7] : D76ABD2C B[8]: 997C3F70
B[9]: 95FFF657 B[10]: 6D2C2FA3
L1: C7AE66B0 R1: 9C075DB9 L2: 5554CBE7 R2: 866080C4
C.2.11. S after init(11)
A[0]: 6B0A7012 A[1]: 23995B7E A[2]: F8532F87
A[3]: BEDF1DEF A[4]: 983D37.
B[0]: 64DEFF24 B[1] : 7E65CB6A B[2]: 08573732
B[3]: 40941D82 B[4] : 1A8DA7FB B[5]: 13B5E7F3
B[6]: D76ABD2C B[7] : 997C3F70 B[8]: 95FFF657
B[9]: 6D2C2FA3 B[10]: A02127BE
L1: 29F322A2 R1: 01F771D9 L2: 725670A2 R2: D4F24463
Kiyomoto & Shin Informational [Page 32]
^L
RFC 7008 A Description of KCipher-2 August 2013
C.2.12. S after init(12)
A[0]: 23995B7E A[1]: F8532F87 A[2]: BEDF1DEF
A[3]: 983D37CB A[4]: 526A110D
B[0]: 7E65CB6A B[1] : 08573732 B[2]: 40941D82
B[3]: 1A8DA7FB B[4] : 13B5E7F3 B[5]: D76ABD2C
B[6]: 997C3F70 B[7] : 95FFF657 B[8]: 6D2C2FA3
B[9]: A02127BE B[10]: 49F99042
L1: 51536DF4 R1: 66111E6A L2: 8147B572 R2: 6CC2AC80
C.2.13. S after init(13)
A[0]: F8532F87 A[1]: BEDF1DEF A[2]: 983D37CB
A[3]: 526A110D A[4]: A5EEB8AE
B[0]: 08573732 B[1] : 40941D82 B[2]: 1A8DA7FB
B[3]: 13B5E7F3 B[4] : D76ABD2C B[5]: 997C3F70
B[6]: 95FFF657 B[7] : 6D2C2FA3 B[8]: A02127BE
B[9]: 49F99042 B[10]: 406CE62C
L1: 9582D912 R1: 6953AFE8 L2: B22A3A1D R2: 903A4823
C.2.14. S after init(14)
A[0]: BEDF1DEF A[1]: 983D37CB A[2]: 526A110D
A[3]: A5EEB8AE A[4]: 70A5B5BA
B[0]: 40941D82 B[1] : 1A8DA7FB B[2]: 13B5E7F3
B[3]: D76ABD2C B[4] : 997C3F70 B[5]: 95FFF657
B[6]: 6D2C2FA3 B[7] : A02127BE B[8]: 49F99042
B[9]: 406CE62C B[10]: C57BED5B
L1: EB77DD2D R1: 633CFD8F L2: 32A4BCEF R2: CB33BCB2
C.2.15. S after init(15)
A[0]: 983D37CB A[1]: 526A110D A[2]: A5EEB8AE
A[3]: 70A5B5BA A[4]: B1145F18
B[0]: 1A8DA7FB B[1] : 13B5E7F3 B[2]: D76ABD2C
B[3]: 997C3F70 B[4] : 95FFF657 B[5]: 6D2C2FA3
B[6]: A02127BE B[7] : 49F99042 B[8]: 406CE62C
B[9]: C57BED5B B[10]: 7BE2C520
L1: E11420CC R1: 6730A956 L2: 8EC8ACEF R2: C7FC060A
Kiyomoto & Shin Informational [Page 33]
^L
RFC 7008 A Description of KCipher-2 August 2013
C.2.16. S after init(16)
A[0]: 526A110D A[1]: A5EEB8AE A[2]: 70A5B5BA
A[3]: B1145F18 A[4]: FA752FDC
B[0]: 13B5E7F3 B[1] : D76ABD2C B[2]: 997C3F70
B[3]: 95FFF657 B[4] : 6D2C2FA3 B[5]: A02127BE
B[6]: 49F99042 B[7] : 406CE62C B[8]: C57BED5B
B[9]: 7BE2C520 B[10]: 1F48829C
L1: 0D95C94D R1: 8238B05F L2: 7B00D356 R2: 0EFE8596
C.2.17. S after init(17)
A[0]: A5EEB8AE A[1]: 70A5B5BA A[2]: B1145F18
A[3]: FA752FDC A[4]: DB29190A
B[0]: D76ABD2C B[1] : 997C3F70 B[2]: 95FFF657
B[3]: 6D2C2FA3 B[4] : A02127BE B[5]: 49F99042
B[6]: 406CE62C B[7] : C57BED5B B[8]: 7BE2C520
B[9]: 1F48829C B[10]: F95DD14F
L1: 262687B5 R1: 9B9AC5E9 L2: 7C08EB5C R2: 8C1300A3
C.2.18. S after init(18)
A[0]: 70A5B5BA A[1]: B1145F18 A[2]: FA752FDC
A[3]: DB29190A A[4]: 35623CDA
B[0]: 997C3F70 B[1] : 95FFF657 B[2]: 6D2C2FA3
B[3]: A02127BE B[4] : 49F99042 B[5]: 406CE62C
B[6]: C57BED5B B[7] : 7BE2C520 B[8]: 1F48829C
B[9]: F95DD14F B[10]: D939E13E
L1: E478DEF0 R1: 06F84503 L2: 71350E88 R2: 14EF8E61
C.2.19. S after init(19)
A[0]: B1145F18 A[1]: FA752FDC A[2]: DB29190A
A[3]: 35623CDA A[4]: 746B4AE8
B[0]: 95FFF657 B[1] : 6D2C2FA3 B[2]: A02127BE
B[3]: 49F99042 B[4] : 406CE62C B[5]: C57BED5B
B[6]: 7BE2C520 B[7] : 1F48829C B[8]: F95DD14F
B[9]: D939E13E B[10]: 9970C980
L1: C2AC94C4 R1: C708FAE8 L2: FC4900F1 R2: 7C260B6A
Kiyomoto & Shin Informational [Page 34]
^L
RFC 7008 A Description of KCipher-2 August 2013
C.2.20. S after init(20)
A[0]: FA752FDC A[1]: DB29190A A[2]: 35623CDA
A[3]: 746B4AE8 A[4]: 2EB9213A
B[0]: 6D2C2FA3 B[1] : A02127BE B[2]: 49F99042
B[3]: 406CE62C B[4] : C57BED5B B[5]: 7BE2C520
B[6]: 1F48829C B[7] : F95DD14F B[8]: D939E13E
B[9]: 9970C980 B[10]: 3C517031
L1: 8F007DE9 R1: B2AE0889 L2: DD68D5EA R2: 3C8757AC
C.2.21. S after init(21)
A[0]: DB29190A A[1]: 35623CDA A[2]: 746B4AE8
A[3]: 2EB9213A A[4]: BE3CA984
B[0]: A02127BE B[1] : 49F99042 B[2]: 406CE62C
B[3]: C57BED5B B[4] : 7BE2C520 B[5]: 1F48829C
B[6]: F95DD14F B[7] : D939E13E B[8]: 9970C980
B[9]: 3C517031 B[10]: D1439B63
L1: AFC4E32F R1: 98FBC87F L2: 58B22D36 R2: 481DC7D6
C.2.22. S after init(22)
A[0]: 35623CDA A[1]: 746B4AE8 A[2]: 2EB9213A
A[3]: BE3CA984 A[4]: 974E6719
B[0]: 49F99042 B[1] : 406CE62C B[2]: C57BED5B
B[3]: 7BE2C520 B[4] : 1F48829C B[5]: F95DD14F
B[6]: D939E13E B[7] : 9970C980 B[8]: 3C517031
B[9]: D1439B63 B[10]: 9334E221
L1: F9C43357 R1: E5539EA2 L2: C0B76A7C R2: 06EE4ED5
C.2.23. S after init(23)
A[0]: 746B4AE8 A[1]: 2EB9213A A[2]: BE3CA984
A[3]: 974E6719 A[4]: 86916EFF
B[0]: 406CE62C B[1] : C57BED5B B[2]: 7BE2C520
B[3]: 1F48829C B[4] : F95DD14F B[5]: D939E13E
B[6]: 9970C980 B[7] : 3C517031 B[8]: D1439B63
B[9]: 9334E221 B[10]: 50EF13E7
L1: 309527ED R1: C473D814 L2: 1B107B6D R2: 0180D95D
Kiyomoto & Shin Informational [Page 35]
^L
RFC 7008 A Description of KCipher-2 August 2013
C.2.24. S(0) after init(24)
A[0]: 2EB9213A A[1]: BE3CA984 A[2]: 974E6719
A[3]: 86916EFF A[4]: F52DACF9
B[0]: C57BED5B B[1] : 7BE2C520 B[2]: 1F48829C
B[3]: F95DD14F B[4] : D939E13E B[5]: 9970C980
B[6]: 3C517031 B[7] : D1439B63 B[8]: 9334E221
B[9]: 50EF13E7 B[10]: E0BD9F91
L1: 4370D8E6 R1: DABED76C L2: 11C1ACCB R2: C3BAAEDF
Note that the result of init(24) is also referred to as S(0) (in
Section 2.3.2). Since the state is S(0), the stream() operation (in
Section 2.3.3) can be applied and generate key streams.
Key stream at S(0) : 9FB6B580A6A5E7AF
Henceforth, a new key stream can be produced by 1) obtaining a new
state by applying the next() operation to the current state, and 2)
generating a new key stream by applying the stream() operation to the
new state.
C.2.25. S(1) and the Key Stream at S(1)
A[0]: BE3CA984 A[1]: 974E6719 A[2]: 86916EFF
A[3]: F52DACF9 A[4]: 960329B5
B[0]: 7BE2C520 B[1] : 1F48829C B[2]: F95DD14F
B[3]: D939E13E B[4] : 9970C980 B[5]: 3C517031
B[6]: D1439B63 B[7] : 9334E221 B[8]: 50EF13E7
B[9]: E0BD9F91 B[10]: 5318AEE1
L1: 8FD86092 R1: 4BBDC0F6 L2: 8D63A5EF R2: FEE0F24B
Key stream at S(1) : D1989DC6A77D5E28
Kiyomoto & Shin Informational [Page 36]
^L
RFC 7008 A Description of KCipher-2 August 2013
C.2.26. S(2) and the Key Stream at S(2)
A[0]: 974E6719 A[1]: 86916EFF A[2]: F52DACF9
A[3]: 960329B5 A[4]: 1A3DB24E
B[0]: 1F48829C B[1] : F95DD14F B[2]: D939E13E
B[3]: 9970C980 B[4] : 3C517031 B[5]: D1439B63
B[6]: 9334E221 B[7] : 50EF13E7 B[8]: E0BD9F91
B[9]: 5318AEE1 B[10]: C86C2C77
L1: 9686FE8C R1: FAF89251 L2: 86C824E7 R2: 7BC21098
Key stream at S(2) : 4EFCC8CB7BCFB32B
Authors' Addresses
Shinsaku Kiyomoto
KDDI R&D Laboratories, Inc.
2-1-15 Ohara
Fujimino-shi, Saitama 356-8502
Japan
Phone: +81-49-278-7885
Fax: +81-49-278-7510
EMail: kiyomoto@kddilabs.jp
Wook Shin
KDDI R&D Laboratories, Inc.
2-1-15 Ohara
Fujimino-shi, Saitama 356-8502
Japan
EMail: ohpato@hanmail.net
Kiyomoto & Shin Informational [Page 37]
^L
|