1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
|
Independent Submission C. Donley, Ed.
Request for Comments: 7021 CableLabs
Category: Informational L. Howard
ISSN: 2070-1721 Time Warner Cable
V. Kuarsingh
Rogers Communications
J. Berg
CableLabs
J. Doshi
Juniper Networks
September 2013
Assessing the Impact of Carrier-Grade NAT on Network Applications
Abstract
NAT444 is an IPv4 extension technology being considered by Service
Providers as a means to continue offering IPv4 service to customers
while transitioning to IPv6. This technology adds an extra Carrier-
Grade NAT (CGN) in the Service Provider network, often resulting in
two NATs. CableLabs, Time Warner Cable, and Rogers Communications
independently tested the impacts of NAT444 on many popular Internet
services using a variety of test scenarios, network topologies, and
vendor equipment. This document identifies areas where adding a
second layer of NAT disrupts the communication channel for common
Internet applications. This document was updated to include the
Dual-Stack Lite (DS-Lite) impacts also.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This is a contribution to the RFC Series, independently of any other
RFC stream. The RFC Editor has chosen to publish this document at
its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by
the RFC Editor are not a candidate for any level of Internet
Standard; see Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7021.
Donley, et al. Informational [Page 1]
^L
RFC 7021 NAT444 Impacts September 2013
Copyright Notice
Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
Donley, et al. Informational [Page 2]
^L
RFC 7021 NAT444 Impacts September 2013
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 4
2. Testing Scope . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1. Test Cases . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1. Case 1: Single Client, Single Home Network, Single
Service Provider . . . . . . . . . . . . . . . . . . . 5
2.1.2. Case 2: Two Clients, Single Home Network, Single
Service Provider . . . . . . . . . . . . . . . . . . . 6
2.1.3. Case 3: Two Clients, Two Home Networks, Single
Service Provider . . . . . . . . . . . . . . . . . . . 7
2.1.4. Case 4: Two Clients, Two Home Networks, Two
Service Providers Cross ISP . . . . . . . . . . . . . 8
2.2. General Test Environment . . . . . . . . . . . . . . . . . 8
2.3. Test Metrics . . . . . . . . . . . . . . . . . . . . . . . 10
2.4. Test Scenarios Executed . . . . . . . . . . . . . . . . . 11
2.5. General Test Methodologies . . . . . . . . . . . . . . . . 11
3. Observed CGN Impacts . . . . . . . . . . . . . . . . . . . . . 12
3.1. Dropped Services . . . . . . . . . . . . . . . . . . . . . 13
3.2. Performance Impacted Services . . . . . . . . . . . . . . 14
3.3. Improvements since 2010 . . . . . . . . . . . . . . . . . 15
3.4. Additional CGN Challenges . . . . . . . . . . . . . . . . 16
4. 2011 Summary of Results . . . . . . . . . . . . . . . . . . . 17
4.1. NAT444 . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2. DS-Lite . . . . . . . . . . . . . . . . . . . . . . . . . 19
5. 2010 Summary of Results . . . . . . . . . . . . . . . . . . . 22
5.1. Case 1: Single Client, Single Home Network, Single
Service Provider . . . . . . . . . . . . . . . . . . . . . 22
5.2. Case 2: Two Clients, Single Home Network, Single
Service Provider . . . . . . . . . . . . . . . . . . . . . 24
5.3. Case 3: Two Clients, Two Home Networks, Single Service
Provider . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4. Case 4: Two Clients, Two Home Networks, Two Service
Providers Cross ISP . . . . . . . . . . . . . . . . . . . 25
6. CGN Mitigation . . . . . . . . . . . . . . . . . . . . . . . . 25
7. Security Considerations . . . . . . . . . . . . . . . . . . . 26
8. Informative References . . . . . . . . . . . . . . . . . . . . 26
Appendix A. Acknowledgements . . . . . . . . . . . . . . . . . . 28
Donley, et al. Informational [Page 3]
^L
RFC 7021 NAT444 Impacts September 2013
1. Introduction
IANA, APNIC, and RIPE NCC exhausted their IPv4 address space in 2011-
2012. Current projections suggest that ARIN may exhaust its free
pool of IPv4 addresses in 2013. IPv6 is the solution to the IPv4
depletion problem; however, the transition to IPv6 will not be
completed prior to IPv4 exhaustion. NAT444 [NAT444] and Dual-Stack
Lite [RFC6333] are transition mechanisms that will allow Service
Providers to multiplex customers behind a single IPv4 address, which
will allow many legacy devices and applications some IPv4
connectivity. While both NAT444 and Dual-Stack Lite provide basic
IPv4 connectivity, they impact a number of advanced applications.
This document describes suboptimal behaviors of NAT444 and DS-Lite
found in our test environments.
From July through August 2010, CableLabs, Time Warner Cable, and
Rogers Communications tested the impact of NAT444 on common
applications using Carrier-Grade NAT (CGN) devices. This testing was
focused on a wide array of real-time usage scenarios designed to
evaluate the user experience over the public Internet using NAT444 in
both single and dual ISP environments. The purpose of this testing
was to identify applications where the technology either breaks or
significantly impacts the user experience. The testing revealed that
applications, such as video streaming, video gaming, and peer-to-peer
file sharing, are impacted by NAT444.
From June through October 2011, CableLabs conducted additional
testing of CGN technologies, including both NAT444 and Dual-Stack
Lite. The testing focused on working with several vendors including
A10, Alcatel-Lucent, and Juniper to optimize the performance of those
applications that experienced negative impacts during earlier CGN
testing and to expand the testing to DS-Lite.
Applications that were tested included, but were not necessarily
limited to, the following:
1. Video/Audio streaming, e.g., Silverlight-based applications,
Netflix, YouTube, Pandora 2
2. Peer-to-peer applications, e.g., video gaming, uTorrent
3. Online gaming, e.g., Xbox
4. Large file transfers using File Transfer Protocol (FTP)
5. Session Initiation Protocol (SIP) calls via X-Lite, Skype
Donley, et al. Informational [Page 4]
^L
RFC 7021 NAT444 Impacts September 2013
6. Social Networking, e.g., Facebook, Webkinz
7. Video chat, e.g., Skype
8. Web conferencing
2. Testing Scope
2.1. Test Cases
The diagrams below depict the general network architecture used for
testing NAT444 and Dual-Stack Lite coexistence technologies at
CableLabs.
2.1.1. Case 1: Single Client, Single Home Network, Single Service
Provider
^^^^^^^^
(Internet)
vvvvvvvv
|
|
+---------------+
| CGN |
+---------------+
|
+---------------+
| CMTS |
+---------------+
|
+---------------+
| CM |
+---------------+
|
+-------------------------+
| Home Router |
+-------------------------+
|
+---------------+
| Client |
+---------------+
This is a typical case for a client accessing content on the
Internet. For this case, we focused on basic web browsing, voice and
video chat, instant messaging, video streaming (using YouTube, Google
Videos, etc.), torrent leeching and seeding, FTP, and gaming.
Donley, et al. Informational [Page 5]
^L
RFC 7021 NAT444 Impacts September 2013
2.1.2. Case 2: Two Clients, Single Home Network, Single Service
Provider
^^^^^^^^
(Internet)
vvvvvvvv
|
|
+---------------+
| CGN |
+---------------+
|
+---------------+
| CMTS |
+---------------+
|
+---------------+
| CM |
+---------------+
|
+-------------------------+
| Home Router |
+-------------------------+
| |
+---------------+ +---------------+
| Client | | Client |
+---------------+ +---------------+
This is similar to Case 1, except that two clients are behind the
same Large-Scale NAT (LSN) and in the same home network. This test
case was conducted to observe any change in speed in basic web
browsing and video streaming.
Donley, et al. Informational [Page 6]
^L
RFC 7021 NAT444 Impacts September 2013
2.1.3. Case 3: Two Clients, Two Home Networks, Single Service Provider
^^^^^^^^
(Internet)
vvvvvvvv
|
|
+---------------+
| CGN |
+---------------+
|
+---------------+
| CMTS |
+---------------+
|
----------------------------------------
| |
+---------------+ +---------------+
| CM | | CM |
+---------------+ +---------------+
| |
+-------------------------+ +-------------------------+
| Home Router | | Home Router |
+-------------------------+ +-------------------------+
| |
+---------------+ +---------------+
| Client | | Client |
+---------------+ +---------------+
In this scenario, the two clients are under the same LSN but behind
two different gateways. This simulates connectivity between two
residential subscribers on the same ISP. We tested peer-to-peer
applications.
Donley, et al. Informational [Page 7]
^L
RFC 7021 NAT444 Impacts September 2013
2.1.4. Case 4: Two Clients, Two Home Networks, Two Service Providers
Cross ISP
^^^^^^^^ ^^^^^^^^
( ISP A ) ( ISP B )
Vvvvvvvv vvvvvvvv
| |
+---------------+ +---------------+
| LSN | | LSN |
+---------------+ +---------------+
| |
+---------------+ +---------------+
| CMTS | | CMTS |
+---------------+ +---------------+
| |
+---------------+ +---------------+
| CM | | CM |
+---------------+ +---------------+
| |
+-------------------------+ +-------------------------+
| Home Router | | Home Router |
+-------------------------+ +-------------------------+
| |
+---------------+ +---------------+
| Client | | Client |
+---------------+ +---------------+
This test case is similar to Case 1 but with the addition of another
identical ISP. This topology allows us to test traffic between two
residential customers connected across the Internet. We focused on
client-to-client applications such as IM and peer-to-peer.
2.2. General Test Environment
The lab environment was intended to emulate multiple Service Provider
networks with a CGN deployed and with connectivity to the public IPv4
or IPv6 Internet (as dictated by the coexistence technology under
test). This was accomplished by configuring a CGN behind multiple
cable modem termination systems (CMTSs) and setting up multiple home
networks for each ISP. Testing involved sending traffic to and from
the public Internet in both single and dual ISP environments, using
both single and multiple home networks. The following equipment was
used for testing:
o CGN
o CMTS
Donley, et al. Informational [Page 8]
^L
RFC 7021 NAT444 Impacts September 2013
o Cable Modem (CM)
o IP sniffer
o RF (radio frequency) sniffer
o Metrics tools (for network performance)
o CPE (Customer Premises Equipment) gateway devices
o Laptop or desktop computers (multiple OSs used)
o Gaming consoles
o iPad or tablet devices
o other Customer Edge (CE) equipment, e.g., Blu-ray players
supporting miscellaneous applications
One or more CPE gateway devices were configured in the home network.
One or more host devices behind the gateways were also configured in
order to test conditions, such as multiple users on multiple home
networks in the CGN architecture, both in single and dual ISP
environments.
The scope of testing was honed down to the specific types of
applications and network conditions that demonstrated a high
probability of diminishing user experience based on prior testing.
The following use cases were tested:
1. Video streaming over Netflix
2. Video streaming over YouTube
3. Video streaming over Joost
4. Online gaming with Xbox (one user)
5. Peer-to-peer gaming with Xbox (two users)
6. BitTorrent/uTorrent file seeding/leeching
7. Pandora Internet Radio
8. FTP server
9. Web conferencing GoToMeeting (GTM), WebEx
Donley, et al. Informational [Page 9]
^L
RFC 7021 NAT444 Impacts September 2013
10. Social Networking -- Facebook, Webkinz (chat, YouTube, file
transfer)
11. Internet Archive -- Video and Audio streaming; large file
downloads
12. Video streaming using iClips
13. SIP Calls -- X-Lite, Skype, PJSIP
14. Microsoft Smooth Streaming (Silverlight)
15. Video chat -- Skype, ooVoo
The following CPE devices were used for testing these applications on
one or more home networks:
1. Windows 7, XP, and Vista-based laptops
2. Mac OS X laptop
3. iPad
4. Xbox gaming consoles
5. iPhone and Android smartphones
6. LG Blu-ray player (test applications such as Netflix, Vudu, etc.)
7. Home routers -- Netgear, Linksys, D-Link, Cisco, Apple
2.3. Test Metrics
Metrics data that were collected during the course of testing were
related to throughput, latency, and jitter. These metrics were
evaluated under three conditions:
1. Initial finding on the CGN configuration used for testing
2. Retest of the same test scenario with the CGN removed from the
network
3. Retest with a new configuration (optimized) on the CGN (when
possible)
In our testing, we found only slight differences with respect to
latency or jitter when the CGN was in the network versus when it was
not present in the network. It should be noted that we did not
Donley, et al. Informational [Page 10]
^L
RFC 7021 NAT444 Impacts September 2013
conduct any performance testing and metrics gathered were limited to
single session scenarios. Also, bandwidth was not restricted on the
Data Over Cable Service Interface Specification (DOCSIS) network.
Simulated homes shared a single DOCSIS upstream and downstream
channel. (In the following table, "us" stands for microsecond.)
+---------+---------+---------+---------+-----------------+---------+
| Case | Avg | Min | Max | [RFC4689] | Max |
| | Latency | Latency | Latency | Absolute Avg | Jitter |
| | | | | Jitter | |
+---------+---------+---------+---------+-----------------+---------+
| With | 240.32 | 233.77 | 428.40 | 1.86 us | 191.22 |
| CGN | us | us | us | | us |
+---------+---------+---------+---------+-----------------+---------+
| Without | 211.88 | 190.39 | 402.69 | 0.07 us | 176.16 |
| CGN | us | us | us | | us |
+---------+---------+---------+---------+-----------------+---------+
CGN Performance
Note: Performance testing as defined by CableLabs includes load
testing, induction of impairments on the network, etc. This type of
testing was out of scope for CGN testing.
2.4. Test Scenarios Executed
The following test scenarios were executed using the aforementioned
applications and test equipment:
1. Single ISP, Single Home Network, with Single User
2. Single ISP, Two Home Networks, with One User on Each Network
3. Dual ISPs, Single Home Network, with Single User on Each ISP
4. Dual ISPs, One Home Network, with One User connected to ISP-A;
Two Home Networks, with One User on Each connected to ISP-B
These test scenarios were executed for both NAT444 and DS-Lite
technologies.
2.5. General Test Methodologies
The CGN was configured for the optimal setting for the specific test
being executed for NAT444 or DS-Lite. Individual vendors provided
validation of the configuration used for the coexistence technology
under test prior to the start of testing. Some NAT444 testing used
private [RFC1918] IPv4 space between the CGN and CPE router; other
Donley, et al. Informational [Page 11]
^L
RFC 7021 NAT444 Impacts September 2013
tests used public (non-[RFC1918]) IPv4 space between the CGN and CPE
router. With the exception of 6to4 [RFC3056] traffic, we observed no
difference in test results whether private or public address space
was used. 6to4 failed when public space was used between the CGN and
the CPE router was public, but CPE routers did not initiate 6to4 when
private space was used.
CPE gateways and client devices were configured with IPv4 or IPv6
addresses using DHCP or manual configuration, as required by each of
the devices used in the test.
All devices were brought to operational state. Connectivity of CPE
devices to provider network and public Internet was verified prior to
the start of each test.
IP sniffers and metrics tools were configured as required before
starting tests. IP capture and metrics data was collected for all
failed test scenarios. Sniffing was configured behind the home
routers, north and south of the CMTS, and north and south of the CGN.
The test technician executed test scenarios listed above, for single
and dual ISP environments, testing multiple users on multiple home
networks, using the applications described above where applicable to
the each specific test scenario. Results and checklists were
compiled for all tests executed and for each combination of devices
tested.
3. Observed CGN Impacts
CGN testing revealed that basic services such as email and web
browsing worked normally and as expected. However, there were some
service-affecting issues noted for applications that fall into two
categories: dropped service and performance impacted service. In
addition, for some specific applications in which the performance was
impacted, throughput, latency, and jitter measurements were taken.
We observed that performance often differs from vendor to vendor and
from test environment to test environment, and the results are
somewhat difficult to predict. So as to not become a comparison
between different vendor implementations, these results are presented
in summary form. When issues were identified, we worked with the
vendors involved to confirm the specific issues and explore
workarounds. Except where noted, impacts to NAT444 and DS-Lite were
similar.
In 2010 testing, we identified that IPv6 transition technologies such
as 6to4 [RFC3056] and Teredo [RFC4380] fail outright or are subject
to severe service degradation. We did not repeat transition
technology testing in 2011.
Donley, et al. Informational [Page 12]
^L
RFC 7021 NAT444 Impacts September 2013
Note: While email and web browsing operated as expected within our
environment, there have been reports that anti-spam/anti-abuse
measures limiting the number of connections from a single address can
cause problems in a CGN environment by improperly interpreting
address sharing as too many connections from a single device. Care
should be taken when deploying CGNs to mitigate the impact of address
sharing when configuring anti-spam/anti-abuse measures. See Section
3.4.
3.1. Dropped Services
Several peer-to-peer applications, specifically peer-to-peer gaming
using Xbox and peer-to-peer SIP calls using the PJSIP client, failed
in both the NAT444 and Dual-Stack Lite environments. Many CGN
devices use "full cone" NAT so that once the CGN maps a port for
outbound services, it will accept incoming connections to that port.
However, some applications did not first send outgoing traffic and
hence did not open an incoming port through the CGN. Other
applications try to open a particular fixed port through the CGN;
while service will work for a single subscriber behind the CGN, it
fails when multiple subscribers try to use that port.
PJSIP and other SIP software worked when clients used a registration
server to initiate calls, provided that the client inside the CGN
initiated the traffic first and that only one SIP user was active
behind a single IPv4 address at any given time. However, in our
testing, we observed that when making a direct client-to-client SIP
call across two home networks on a single ISP, or when calling from a
single home network across dual ISPs, calls could neither be
initiated nor received.
In the case of peer-to-peer gaming between two Xbox 360 users in
different home networks on the same ISP, the game could not be
connected between the two users. Both users shared an outside IP
address and tried to connect to the same port, causing a connection
failure. There are some interesting nuances to this problem. In the
case where two users are in the same home network and the scenario is
through a single ISP, when the Xbox tries to register with the Xbox
server, the server sees that both Xboxes are coming through the same
public IP address and directs the devices to connect using their
internal IP addresses. So, the connection ultimately gets
established directly between both Xboxes via the home gateway, rather
than the Xbox server. In the case where there are two Xbox users on
two different home networks using a single ISP and the CGN is
configured with only one public IPv4 address, this scenario will not
work because the route between the two users cannot be determined.
However, if the CGN is configured with two public NAT IP addresses,
this scenario will work because now there is a unique IP address with
Donley, et al. Informational [Page 13]
^L
RFC 7021 NAT444 Impacts September 2013
which to communicate. This is not an ideal solution, however,
because it means that there is a one-to-one relationship between IP
addresses in the public NAT and the number of Xbox users on each
network.
Update: in December 2011, Microsoft released an update for Xbox.
While we did not conduct thorough testing using the new release,
preliminary testing indicates that Xboxes that upgraded to the latest
version can play head-to-head behind a CGN, at least for some games.
Other peer-to-peer applications that were noted to fail were seeding
sessions initiated on BitTorrent and uTorrent. In our test, torrent
seeding was initiated on a client inside the CGN. Leeching was
initiated using a client on the public Internet. It was observed
that direct peer-to-peer seeding did not work. However, the torrent
session typically redirected the leeching client to a proxy server,
in which case the torrent session was set up successfully.
Additionally, with the proxy in the network, re-seeding via
additional leech clients worked as would be expected for a typical
torrent session. Finally, uTorrent tries to use Session Traversal
Utilities for NAT (STUN) to identify its outside address. In working
with vendors, we learned that increasing the STUN timeout to 4
minutes improved uTorrent seeding performance behind a CGN, resulting
in the ability for the uTorrent client to open a port and
successfully seed content.
FTP sessions to servers located inside the home (e.g., behind two
layers of NAT) failed. When the CGN was bypassed and traffic only
needed to flow through one layer of NAT, clients were able to
connect. Finally, multicast traffic was not forwarded through the
CGN.
3.2. Performance Impacted Services
Large size file transfers and multiple video streaming sessions
initiated on a single client on the same home network behind the CGN
experienced reduced performance in our environment. We measured
these variations in user experience against a baseline IPv4
environment where NAT is not deployed.
In our testing, we tried large file transfers from several FTP sites,
as well as downloading sizable audio and video files (750 MB to 1.4
GB) from the Internet Archive. We observed that when Dual-Stack Lite
was implemented for some specific home router and client
combinations, the transfer rate was markedly slower. For example,
PC1 using one operating system behind the same home router as PC2
using a different operating system yielded a transfer rate of 120
kbps for PC1, versus 250 kbps for PC2. Our conclusion is that
Donley, et al. Informational [Page 14]
^L
RFC 7021 NAT444 Impacts September 2013
varying combinations of home routers and CE-client devices may result
in a user experience that is less than what the user would expect for
typical applications. It is also difficult to predict which
combinations of CPE routers and CE devices will produce a reduced
experience for the user. We did not analyze the root cause of the
divergence in performance across CE devices, as this was beyond the
scope of our testing. However, as this issue was specific to Dual-
Stack Lite, we suspect that it is related to the MTU.
While video streaming sessions for a single user generally performed
well, testing revealed that video streaming sessions such as
Microsoft Smooth Streaming technology (i.e., Silverlight) or Netflix
might also exhibit some service impacting behavior. In particular,
this was observed on one older, yet popular and well-known CPE router
where the first session was severely degraded when a second session
was initiated in the same home network. Traffic from the first
session ceased for 8 s once the second session was initiated. While
we are tempted to write this off as a problematic home router, its
popularity suggests that home router interactions may cause issues in
NAT444 deployments (newer routers that support DS-Lite were not
observed to experience this condition). Overall, longer buffering
times for video sessions were noted for most client devices behind
all types of home routers. However, once the initial buffering was
complete, the video streams were consistently smooth. In addition,
there were varying degrees as to how well multiple video sessions
were displayed on various client devices across the CPE routers
tested. Some video playback devices performed better than others.
3.3. Improvements since 2010
Since CableLabs completed initial CGN testing in 2010, there have
been quantifiable improvements in performance over CGN since that
time. These improvements may be categorized as follows:
o Content provider updates
o Application updates
o Improvements on the CGNs themselves
In terms of content provider updates, we have noted improvements in
the overall performance of streaming applications in the CGN
environment. Whereas applications such as streaming video were very
problematic a year ago with regard to jitter and latency, our most
recent testing revealed that there is less of an issue with these
conditions, except in some cases when multiple video streaming
Donley, et al. Informational [Page 15]
^L
RFC 7021 NAT444 Impacts September 2013
sessions were initiated on the same client using specific types of
home routers. Applications such as MS Smooth Streaming appear to
have addressed these issues to some degree.
As far as application updates, use of STUN and/or proxy servers to
offset some of the limitations of NAT and tunneling in the network
are more evident as workarounds to the peer-to-peer issues.
Applications appear to have incorporated other mechanisms for
delivering content faster, even if buffering times are somewhat
slower and the content is not rendered as quickly.
CGN vendors have also upgraded their devices to mitigate several
known issues with specific applications. With regard to addressing
peer-to-peer SIP call applications, port reservations appear to be a
workaround to the problem. However, this approach has limitations
because there are limited numbers of users that can have port
reservations at any given time. For example, one CGN implementation
allowed a port reservation to be made on port 5060 (default SIP
port), but this was the only port that could be configured for the
SIP client. This means that only one user can be granted the port
reservation.
3.4. Additional CGN Challenges
There are other challenges that arise when using shared IPv4 address
space, as with NAT444. Some of these challenges include:
o Loss of geolocation information - Often, translation zones will
cross traditional geographic boundaries. Since the source
addresses of packets traversing an LSN are set to the external
address of the LSN, it is difficult for external entities to
associate IP/Port information to specific locations/areas.
o Lawful Intercept/Abuse Response - Due to the nature of NAT444
address sharing, it will be hard to determine the customer/
endpoint responsible for initiating a specific IPv4 flow based on
source IP address alone. Content providers, Service Providers,
and law enforcement agencies will need to use new mechanisms
(e.g., logging source port and timestamp in addition to source IP
address) to potentially mitigate this new problem. This may
impact the timely response to various identification requests.
See [RFC6269].
o Anti-spoofing - Multiplexing users behind a single IP address can
lead to situations where traffic from that address triggers anti-
spoofing/DDoS-protection mechanisms, resulting in unintentional
loss of connectivity for some users. We have received reports of
Donley, et al. Informational [Page 16]
^L
RFC 7021 NAT444 Impacts September 2013
such anti-spoofing/DDoS mechanisms affecting email and web
services in some instances, but did not experience them in our
environment.
4. 2011 Summary of Results
4.1. NAT444
+---------------------+--------+--------+--------+----------+---------+
| Test Scenario | Single | Single | Dual | Dual | Notes |
| (per Test Plan) | ISP, | ISP, | ISP, | ISP, One | |
| | Single | Two | One HN | HN+One | |
| | HN, | HN, | with | User on | |
| | Single | Single | One | ISP-A, | |
| | User | User | User | Two HN | |
| | | on | on | with One | |
| | | Each | Each | User on | |
| | | | ISP | Each on | |
| | | | | ISP-B | |
+---------------------+--------+--------+--------+----------+---------+
| Video streaming | Pass | Pass | Pass | Pass | fails |
| over Netflix | | | | | behind |
| | | | | | one |
| | | | | | router |
+---------------------+--------+--------+--------+----------+---------+
| Video streaming | Pass | Pass | Pass | Pass | |
| over YouTube | | | | | |
+---------------------+--------+--------+--------+----------+---------+
| Video streaming | Pass | Pass | Pass | Pass | |
| over Joost | | | | | |
+---------------------+--------+--------+--------+----------+---------+
| Online gaming with | Pass | Pass | Pass | NT | |
| one user | | | | | |
+---------------------+--------+--------+--------+----------+---------+
| Peer-to-peer gaming | Pass | Fail | Pass | NT | fails |
| with two users | | | | | when |
| | | | | | both |
| | | | | | users |
| | | | | | NAT to |
| | | | | | same |
| | | | | | address |
+---------------------+--------+--------+--------+----------+---------+
| BitTorrent/uTorrent | Fail | Fail | Fail | Fail | |
| file seeding | | | | | |
+---------------------+--------+--------+--------+----------+---------+
Donley, et al. Informational [Page 17]
^L
RFC 7021 NAT444 Impacts September 2013
(continued)
+---------------------+--------+--------+--------+----------+---------+
| BitTorrent/uTorrent | Pass | Pass | Pass | Pass | |
| file leeching | | | | | |
+---------------------+--------+--------+--------+----------+---------+
| Pandora Internet | Pass | Pass | Pass | Pass | |
| Radio | | | | | |
+---------------------+--------+--------+--------+----------+---------+
| FTP server | Pass | Pass | Pass | Pass | |
+---------------------+--------+--------+--------+----------+---------+
| Web conferencing | Pass | Pass | Pass | Pass | |
| GTM | | | | | |
+---------------------+--------+--------+--------+----------+---------+
| Social Networking | Pass | Pass | Pass | Pass | |
| Facebook | | | | | |
+---------------------+--------+--------+--------+----------+---------+
| Social Networking | Pass | Pass | Pass | Pass | |
| Webkinz | | | | | |
+---------------------+--------+--------+--------+----------+---------+
| X-Lite for SIP | Pass | Pass | Pass | Pass | |
| calls with proxy | | | | | |
+---------------------+--------+--------+--------+----------+---------+
| X-Lite for SIP | Fail | Fail | Fail | Fail | |
| calls no proxy | | | | | |
+---------------------+--------+--------+--------+----------+---------+
| Skype text chat | Pass | Pass | Pass | Pass | |
+---------------------+--------+--------+--------+----------+---------+
| Skype video chat | Pass | Pass | Pass | Pass | |
+---------------------+--------+--------+--------+----------+---------+
| ooVoo | Pass | Pass | Pass | Pass | |
+---------------------+--------+--------+--------+----------+---------+
| MS Smooth streaming | Pass | Pass | Pass | Pass | |
+---------------------+--------+--------+--------+----------+---------+
| Internet Archive | Pass | Pass | Pass | Pass | |
| video streaming | | | | | |
+---------------------+--------+--------+--------+----------+---------+
| Internet Archive | Pass | Pass | Pass | Pass | |
| audio streaming | | | | | |
+---------------------+--------+--------+--------+----------+---------+
| Internet Archive | Pass | Pass | Pass | Pass | |
| file download | | | | | |
+---------------------+--------+--------+--------+----------+---------+
| iClips | Pass | Pass | Pass | Pass | |
+---------------------+--------+--------+--------+----------+---------+
NAT444
Donley, et al. Informational [Page 18]
^L
RFC 7021 NAT444 Impacts September 2013
4.2. DS-Lite
+--------------+---------+-----------+---------------+---------------+
| Test | DS-Lite | Duration | Description | General |
| Scenario | Test | of Test | of Test | Observations |
| (per Test | Results | Performed | Execution | and Notes |
| Plan) | | | | |
+--------------+---------+-----------+---------------+---------------+
| Video | Pass | 15 min. | | |
| streaming | | | | |
| over Netflix | | | | |
+--------------+---------+-----------+---------------+---------------+
| Video | Pass | 10 min. | | |
| streaming | | | | |
| over YouTube | | | | |
+--------------+---------+-----------+---------------+---------------+
| Video | Pass | 10 min. | | |
| streaming | | | | |
| over Joost | | | | |
+--------------+---------+-----------+---------------+---------------+
| Online | Pass | 15 min. | | |
| gaming with | | | | |
| one user | | | | |
+--------------+---------+-----------+---------------+---------------+
| Peer-to-peer | Fail | NA | user inside | Users inside |
| gaming with | | | HN1 playing | both HN are |
| two users | | | game against | not able to |
| | | | user inside | connect. The |
| | | | HN2 | error shown |
| | | | | on console, |
| | | | | "The game |
| | | | | session is no |
| | | | | longer |
| | | | | available" |
+--------------+---------+-----------+---------------+---------------+
| BitTorrent | Fail | 12 min. | user on the | |
| or uTorrent | | | Internet is | |
| file seeding | | | able to | |
| | | | download file | |
| | | | using proxy | |
| | | | server and | |
| | | | not | |
| | | | peer-to-peer | |
+--------------+---------+-----------+---------------+---------------+
Donley, et al. Informational [Page 19]
^L
RFC 7021 NAT444 Impacts September 2013
(continued)
+--------------+---------+-----------+---------------+---------------+
| BitTorrent | Pass | 10 min. | | |
| or uTorrent | | | | |
| file | | | | |
| leeching | | | | |
+--------------+---------+-----------+---------------+---------------+
| Pandora | Pass | 10 min. | | |
| Internet | | | | |
| Radio | | | | |
+--------------+---------+-----------+---------------+---------------+
| FTP server | Pass | 700 Mb | | |
+--------------+---------+-----------+---------------+---------------+
| Web | Pass | 10 min. | | |
| conferencing | | | | |
| (GTM) | | | | |
+--------------+---------+-----------+---------------+---------------+
| Social | Pass | NA | | |
| Networking | | | | |
| Facebook | | | | |
+--------------+---------+-----------+---------------+---------------+
| Social | Pass | NA | | |
| Networking | | | | |
| Webkinz | | | | |
+--------------+---------+-----------+---------------+---------------+
| X-Lite for | Pass | 10 min. | | |
| SIP calls | | | | |
| with proxy | | | | |
| given | | | | |
+--------------+---------+-----------+---------------+---------------+
| X-Lite for | Fail | NA | | |
| SIP calls no | | | | |
| proxy | | | | |
+--------------+---------+-----------+---------------+---------------+
| Skype text | Pass | NA | | |
| chat | | | | |
+--------------+---------+-----------+---------------+---------------+
| Skype video | Pass | 20 min. | | |
| chat | | | | |
+--------------+---------+-----------+---------------+---------------+
| ooVoo | Pass | 15 min. | | |
+--------------+---------+-----------+---------------+---------------+
| MS Smooth | Pass | 10 min. | | |
| streaming | | | | |
+--------------+---------+-----------+---------------+---------------+
Donley, et al. Informational [Page 20]
^L
RFC 7021 NAT444 Impacts September 2013
(continued)
+--------------+---------+-----------+---------------+---------------+
| Internet | Pass | 10 min. | | |
| Archive | | | | |
| video | | | | |
| streaming | | | | |
+--------------+---------+-----------+---------------+---------------+
| Internet | Pass | 5 min. | | |
| Archive | | | | |
| audio | | | | |
| streaming | | | | |
+--------------+---------+-----------+---------------+---------------+
| Internet | Pass | 80 Mb | | |
| Archive file | | | | |
| download | | | | |
+--------------+---------+-----------+---------------+---------------+
| iClips | Pass | 10 min. | | |
+--------------+---------+-----------+---------------+---------------+
DS-Lite
Donley, et al. Informational [Page 21]
^L
RFC 7021 NAT444 Impacts September 2013
5. 2010 Summary of Results
The tables below summarize results from the 2010 NAT444 testing at
CableLabs, Time Warner Cable, and Rogers Communications. They are
included for comparison with 2011 results, documented above.
5.1. Case 1: Single Client, Single Home Network, Single Service
Provider
+--------------+-------------+--------------------------------------+
| Test Case | Results | Notes |
+--------------+-------------+--------------------------------------+
| Web browsing | pass | |
+--------------+-------------+--------------------------------------+
| Email | pass | |
+--------------+-------------+--------------------------------------+
| FTP download | pass | performance degraded on very large |
| | | downloads |
+--------------+-------------+--------------------------------------+
| BitTorrent | pass | |
| leeching | | |
+--------------+-------------+--------------------------------------+
| BitTorrent | fail | |
| seeding | | |
+--------------+-------------+--------------------------------------+
| Video | pass | |
| streaming | | |
+--------------+-------------+--------------------------------------+
| Voice chat | pass | |
+--------------+-------------+--------------------------------------+
| Netflix | pass | |
| streaming | | |
+--------------+-------------+--------------------------------------+
| Instant | pass | |
| Messaging | | |
+--------------+-------------+--------------------------------------+
| Ping | pass | |
+--------------+-------------+--------------------------------------+
| Traceroute | pass | |
+--------------+-------------+--------------------------------------+
| Remote | pass | |
| desktop | | |
+--------------+-------------+--------------------------------------+
| VPN | pass | |
+--------------+-------------+--------------------------------------+
| Xbox Live | pass | |
+--------------+-------------+--------------------------------------+
Donley, et al. Informational [Page 22]
^L
RFC 7021 NAT444 Impacts September 2013
(continued)
+--------------+-------------+--------------------------------------+
| Xbox online | pass | Blocked by some LSNs. |
+--------------+-------------+--------------------------------------+
| Xbox network | fail | Your NAT type is moderate. For best |
| test | | online experience you need an open |
| | | NAT configuration. You should enable|
| | | Universal Plug and Play (UPnP) on |
| | | the router. |
+--------------+-------------+--------------------------------------+
| Nintendo Wii | pass behind | |
| | one LSN, | |
| | fail behind | |
| | another | |
+--------------+-------------+--------------------------------------+
| PlayStation | pass | |
| 3 | | |
+--------------+-------------+--------------------------------------+
| Team | fail | pass behind one LSN, but performance |
| Fortress 2 | | degraded |
+--------------+-------------+--------------------------------------+
| StarCraft II | pass | |
+--------------+-------------+--------------------------------------+
| World of | pass | |
| Warcraft | | |
+--------------+-------------+--------------------------------------+
| Call of Duty | pass | performance degraded behind one LSN |
+--------------+-------------+--------------------------------------+
| SlingCatcher | fail | |
+--------------+-------------+--------------------------------------+
| Netflix | fail | pass behind one LSN |
| Party (Xbox) | | |
+--------------+-------------+--------------------------------------+
| Hulu | pass | performance degraded behind one LSN |
+--------------+-------------+--------------------------------------+
| AIM File | pass | performance degraded |
| Transfer | | |
+--------------+-------------+--------------------------------------+
| Webcam | fail | |
+--------------+-------------+--------------------------------------+
| 6to4 | fail | |
+--------------+-------------+--------------------------------------+
| Teredo | fail | |
+--------------+-------------+--------------------------------------+
Case 1
Donley, et al. Informational [Page 23]
^L
RFC 7021 NAT444 Impacts September 2013
5.2. Case 2: Two Clients, Single Home Network, Single Service Provider
+-----------------+---------+---------------------------------------+
| Test Case | Results | Notes |
+-----------------+---------+---------------------------------------+
| BitTorrent | pass | |
| leeching | | |
+-----------------+---------+---------------------------------------+
| BitTorrent | fail | |
| seeding | | |
+-----------------+---------+---------------------------------------+
| Video streaming | fail | |
+-----------------+---------+---------------------------------------+
| Voice chat | pass | |
+-----------------+---------+---------------------------------------+
| Netflix | pass | performance severely impacted, |
| streaming | | eventually failed |
+-----------------+---------+---------------------------------------+
| IM | pass | |
+-----------------+---------+---------------------------------------+
| Limewire | pass | |
| leeching | | |
+-----------------+---------+---------------------------------------+
| Limewire | fail | |
| seeding | | |
+-----------------+---------+---------------------------------------+
Case 2
5.3. Case 3: Two Clients, Two Home Networks, Single Service Provider
+-------------------+---------+-------+
| Test Case | Results | Notes |
+-------------------+---------+-------+
| Limewire leeching | pass | |
+-------------------+---------+-------+
| Limewire seeding | fail | |
+-------------------+---------+-------+
| uTorrent leeching | pass | |
+-------------------+---------+-------+
| uTorrent seeding | fail | |
+-------------------+---------+-------+
Case 3
Donley, et al. Informational [Page 24]
^L
RFC 7021 NAT444 Impacts September 2013
5.4. Case 4: Two Clients, Two Home Networks, Two Service Providers
Cross ISP
+------------------+---------+-------+
| Test Case | Results | Notes |
+------------------+---------+-------+
| Skype voice call | pass | |
+------------------+---------+-------+
| IM | pass | |
+------------------+---------+-------+
| FTP | fail | |
+------------------+---------+-------+
| Facebook chat | pass | |
+------------------+---------+-------+
| Skype video | pass | |
+------------------+---------+-------+
Case 4
6. CGN Mitigation
Our testing did not focus on mitigating the impact of Carrier-Grade
NAT, as described above. As such, mitigation is not the focus of
this document. However, there are several approaches that could
lessen the impacts described above.
+-----------------------+-------------------------------------------+
| Challenge | Potential Workaround(s) |
+-----------------------+-------------------------------------------+
| Peer-to-peer | Use a proxy server; [RFC6887] |
+-----------------------+-------------------------------------------+
| Gaming | [RFC6887] |
+-----------------------+-------------------------------------------+
| Negative impact to | Deploy CGN close to the edge of the |
| geolocation services | network; use regional IP and port |
| | assignments |
+-----------------------+-------------------------------------------+
| Logging requirements | Deterministic Logging [DETERMINE]; data |
| for lawful intercept | compression [NAT-LOG]; bulk port logging |
+-----------------------+-------------------------------------------+
CGN Mitigation
Other mitigation techniques that are currently being researched, such
as [STATELESS], may also improve performance.
Donley, et al. Informational [Page 25]
^L
RFC 7021 NAT444 Impacts September 2013
7. Security Considerations
Security considerations are described in [RFC6264] and [RFC6269].
In general, since a CGN device shares a single IPv4 address with
multiple subscribers, CGN devices may provide an attractive target
for denial-of-service attacks. In addition, as described in
[DETERMINE], abuse attribution is more challenging with CGN and
requires content providers to log IP address, source port, and time
to correlate with Service Provider CGN logs. Also, if a CGN public
IP address is added to a blacklist (e.g., for SPAM) or if a server
limits the number of connections per IP address, it could negatively
impact legitimate users.
8. Informative References
[DETERMINE] Donley, C., Grundemann, C., Sarawat, V., Sundaresan, K.,
and O. Vautrin, "Deterministic Address Mapping to Reduce
Logging in Carrier Grade NAT Deployments", Work in
Progress, July 2013.
[NAT-LOG] Sivakumar, S. and R. Penno, "IPFIX Information Elements
for logging NAT Events", Work in Progress, August 2013.
[NAT444] Yamagata, I., Shirasaki, Y., Nakagawa, A., Yamaguchi,
J., and H. Ashida, "NAT444", Work in Progress,
July 2012.
[RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G.,
and E. Lear, "Address Allocation for Private Internets",
BCP 5, RFC 1918, February 1996.
[RFC3056] Carpenter, B. and K. Moore, "Connection of IPv6 Domains
via IPv4 Clouds", RFC 3056, February 2001.
[RFC4380] Huitema, C., "Teredo: Tunneling IPv6 over UDP through
Network Address Translations (NATs)", RFC 4380,
February 2006.
[RFC4689] Poretsky, S., Perser, J., Erramilli, S., and S. Khurana,
"Terminology for Benchmarking Network-layer Traffic
Control Mechanisms", RFC 4689, October 2006.
[RFC6264] Jiang, S., Guo, D., and B. Carpenter, "An Incremental
Carrier-Grade NAT (CGN) for IPv6 Transition", RFC 6264,
June 2011.
Donley, et al. Informational [Page 26]
^L
RFC 7021 NAT444 Impacts September 2013
[RFC6269] Ford, M., Boucadair, M., Durand, A., Levis, P., and P.
Roberts, "Issues with IP Address Sharing", RFC 6269,
June 2011.
[RFC6333] Durand, A., Droms, R., Woodyatt, J., and Y. Lee, "Dual-
Stack Lite Broadband Deployments Following IPv4
Exhaustion", RFC 6333, August 2011.
[RFC6887] Wing, D., Cheshire, S., Boucadair, M., Penno, R., and P.
Selkirk, "Port Control Protocol (PCP)", RFC 6887,
April 2013.
[STATELESS] Tsou, T., Liu, W., Perreault, S., Penno, R., and M.
Chen, "Stateless IPv4 Network Address Translation", Work
in Progress, October 2012.
Donley, et al. Informational [Page 27]
^L
RFC 7021 NAT444 Impacts September 2013
Appendix A. Acknowledgements
Thanks to the following people for their testing, guidance, and
feedback:
Paul Eldridge
Abishek Chandrasekaran
Vivek Ganti
Joey Padden
Lane Johnson
Also, thanks to Noel Chiappa for his comments.
Donley, et al. Informational [Page 28]
^L
RFC 7021 NAT444 Impacts September 2013
Authors' Addresses
Chris Donley (editor)
CableLabs
858 Coal Creek Circle
Louisville, CO 80027
USA
EMail: c.donley@cablelabs.com
Lee Howard
Time Warner Cable
13241 Woodland Park Rd
Herndon, VA 20171
USA
EMail: william.howard@twcable.com
Victor Kuarsingh
Rogers Communications
8200 Dixie Road
Brampton, ON L6T 0C1
Canada
EMail: victor@jvknet.com
John Berg
CableLabs
858 Coal Creek Circle
Louisville, CO 80027
USA
EMail: j.berg@cablelabs.com
Jinesh Doshi
Juniper Networks
1194 N. Mathilda Ave
Sunnyvale, CA 94089
USA
EMail: jineshd@juniper.net
Donley, et al. Informational [Page 29]
^L
|