summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc7035.txt
blob: 5cba9f1f97a89e6e5591996c7765cb61d73eb91a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
Internet Engineering Task Force (IETF)                        M. Thomson
Request for Comments: 7035                                     Microsoft
Category: Standards Track                                       B. Rosen
ISSN: 2070-1721                                                  Neustar
                                                              D. Stanley
                                                          Aruba Networks
                                                                G. Bajko
                                                                   Nokia
                                                              A. Thomson
                                                            Lookingglass
                                                            October 2013


                    Relative Location Representation

Abstract

   This document defines an extension to the Presence Information Data
   Format Location Object (PIDF-LO) (RFC 4119) for the expression of
   location information that is defined relative to a reference point.
   The reference point may be expressed as a geodetic or civic location,
   and the relative offset may be one of several shapes.  An alternative
   binary representation is described.

   Optionally, a reference to a secondary document (such as a map image)
   can be included, along with the relationship of the map coordinate
   system to the reference/offset coordinate system, to allow display of
   the map with the reference point and the relative offset.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc7035.









Thomson, et al.              Standards Track                    [Page 1]
^L
RFC 7035                    Relative Location               October 2013


Copyright Notice

   Copyright (c) 2013 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.





































Thomson, et al.              Standards Track                    [Page 2]
^L
RFC 7035                    Relative Location               October 2013


Table of Contents

   1. Introduction ....................................................4
   2. Conventions Used in This Document ...............................4
   3. Overview ........................................................4
   4. Relative Location ...............................................7
      4.1. Relative Coordinate System .................................8
      4.2. Placement of XML Elements ..................................8
      4.3. Binary Format ..............................................9
      4.4. Distances and Angles .......................................9
      4.5. Value Encoding ............................................10
      4.6. Relative Location Restrictions ............................10
      4.7. Baseline TLVs .............................................10
      4.8. Reference TLVs ............................................10
      4.9. Shapes ....................................................11
           4.9.1. Point ..............................................11
           4.9.2. Circle or Sphere Shape .............................12
           4.9.3. Ellipse or Ellipsoid Shape .........................13
           4.9.4. Polygon or Prism Shape .............................15
           4.9.5. Arc-Band Shape .....................................18
      4.10. Dynamic Location TLVs ....................................20
           4.10.1. Orientation .......................................20
           4.10.2. Speed .............................................20
           4.10.3. Heading ...........................................20
      4.11. Secondary Map Metadata ...................................21
           4.11.1. Map URL ...........................................21
           4.11.2. Map Coordinate Reference System ...................21
           4.11.3. Map Example .......................................24
   5. Examples .......................................................24
      5.1. Civic PIDF with Polygon Offset ............................24
      5.2. Geo PIDF with Circle Offset ...............................26
      5.3. Civic TLV with Point Offset ...............................27
   6. Schema Definition ..............................................28
   7. Security Considerations ........................................30
   8. IANA Considerations ............................................31
      8.1. Relative Location Registry ................................31
      8.2. URN Sub-Namespace Registration ............................33
      8.3. XML Schema Registration ...................................33
      8.4. Geopriv Identifiers Registry ..............................34
           8.4.1. Registration of Two-Dimensional Relative
                  Coordinate Reference System URN ....................35
           8.4.2. Registration of Three-Dimensional Relative
                  Coordinate Reference System URN ....................35
   9. Acknowledgements ...............................................35
   10. References ....................................................36
      10.1. Normative References .....................................36
      10.2. Informative References ...................................38




Thomson, et al.              Standards Track                    [Page 3]
^L
RFC 7035                    Relative Location               October 2013


1.  Introduction

   This document describes a format for the expression of relative
   location information.

   A relative location is formed of a reference location plus a relative
   offset from that reference location.  The reference location can be
   represented in either civic or geodetic form.  The reference location
   can also have dynamic components such as velocity.  The relative
   offset is specified in meters using a Cartesian coordinate system.

   In addition to the relative location, an optional URI can be provided
   to a document that contains a map, floor plan, or other spatially
   oriented information.  Applications could use this information to
   display the relative location.  Additional fields allow the map to be
   oriented and scaled correctly.

   Two formats are included: an XML form that is intended for use in
   PIDF-LO [RFC4119] and a TLV format for use in other protocols such as
   those that already convey binary representation of location
   information defined in [RFC4776].

2.  Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

3.  Overview

   This document describes an extension to PIDF-LO [RFC4119] as updated
   by [RFC5139] and [RFC5491], to allow the expression of a location as
   an offset relative to a reference.

                                   Reference
                                   Location
                                       o
                                        \
                                         \ Offset
                                          \
                                          _\|
                                            x
                                         Relative
                                         Location

   This extension allows the creator of a location object to include two
   location values plus an offset.  The two location values, named
   "baseline" and "reference", combine to form the origin of the offset.



Thomson, et al.              Standards Track                    [Page 4]
^L
RFC 7035                    Relative Location               October 2013


   The final, relative location is described relative to this reference
   point.

                             ..--"""--..
                          .-'           `-.
                        ,'                 `.
                       / Reference           \
                      /      o                \
                     |        \                |
                     |         \               |
                     |          \              |
                      \         _\|           /
                       `.         x         .'  \_ Baseline
                         `._   Relative  _.'       Location
                            `--..___..--'

   The baseline location is included outside of the <relative-location>
   element.  The baseline location is visible to a client that does not
   understand relative location (i.e., it ignores the
   <relative-location> element).

   A client that does understand relative location will interpret the
   location within the relative element as a refinement of the baseline
   location.  This document defines both a reference location, which
   serves as a refinement of the baseline location and the starting
   point, and an offset, which describes the location of the Target
   based on this starting point.

   Creators of location objects with relative location thus have a
   choice of how much information to put into the baseline location and
   how much to put into the reference location.  For example, the
   baseline location value could be precise enough to specify a building
   that contains the relative location, and the reference location could
   specify a point within the building from which the offset is
   measured.

   Location objects SHOULD NOT have all location information in the
   baseline location.  Doing this would cause clients that do not
   understand relative location to incorrectly interpret the baseline
   location (i.e., the reference point) as the actual, precise location
   of the client.  The baseline location is intended to carry a location
   that encompasses both the reference location and the relative
   location (i.e., the reference location plus offset).

   It is possible to provide a valid relative location with no
   information in the baseline.  However, this provides recipients who
   do not understand relative location with no information.  A baseline
   location SHOULD include sufficient information to encompass both the



Thomson, et al.              Standards Track                    [Page 5]
^L
RFC 7035                    Relative Location               October 2013


   reference and relative locations while providing a baseline that is
   as accurate as possible.

   Both the baseline and the reference location are defined as either a
   geodetic location [OGC.GeoShape] or a civic address [RFC4776].  If
   the baseline location was expressed as a geodetic location, the
   reference MUST be geodetic.  If the baseline location was expressed
   as a civic address, the reference MUST be civic.

   Baseline and reference locations MAY also include dynamic location
   information [RFC5962].

   The relative location can be expressed using a point (2- or
   3-dimensional) or a shape that includes uncertainty: circle, sphere,
   ellipse, ellipsoid, polygon, prism, or arc-band.  Descriptions of
   these shapes can be found in [RFC5491].

   Optionally, a reference to a 'map' document can be provided.  The
   reference is a URI [RFC3986].  The document could be an image or
   dataset that represents a map, floor plan, or other form.  The type
   of document the URI points to is described as a MIME media type
   [RFC2046].  Metadata in the relative location can include the
   location of the reference point in the map as well as an orientation
   (angle from North) and scale to align the document Coordinate
   Reference System (CRS) with the World Geodetic System 1984 (WGS84)
   [WGS84] CRS.  The document is assumed to be usable by the application
   receiving the PIDF with the relative location to locate the reference
   point in the map.  This document does not describe any mechanisms for
   displaying or manipulating the document other than providing the
   reference location, orientation, and scale.

   As an example, consider a relative location expressed as a point,
   relative to a civic location:

   <presence xmlns="urn:ietf:params:xml:ns:pidf"
             xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model"
             xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10"
             xmlns:ca="urn:ietf:params:xml:ns:pidf:geopriv10:civicAddr"
             xmlns:rel="urn:ietf:params:xml:ns:pidf:geopriv10:relative"
             xmlns:gml="http://www.opengis.net/gml"
             xmlns:gs="http://www.opengis.net/pidflo/1.0"
             entity="pres:relative@example.com">
     <dm:device id="relative1">
       <gp:geopriv>
         <gp:location-info>
           <ca:civicAddress xml:lang="en-AU">
             <ca:country>AU</ca:country>
             <ca:A1>NSW</ca:A1>



Thomson, et al.              Standards Track                    [Page 6]
^L
RFC 7035                    Relative Location               October 2013


             <ca:A3>Wollongong</ca:A3>
             <ca:A4>North Wollongong</ca:A4>
             <ca:RD>Flinders</ca:RD>
             <ca:STS>Street</ca:STS>
             <ca:HNO>123</ca:HNO>
           </ca:civicAddress>
           <rel:relative-location>
             <rel:reference>
               <ca:civicAddress xml:lang="en-AU">
                 <ca:LMK>Front Door</ca:LMK>
               </ca:civicAddress>
             </rel:reference>
             <rel:offset>
               <gml:Point xmlns:gml="http://www.opengis.net/gml"
                          srsName="urn:ietf:params:geopriv:relative:2d">
                 <gml:pos>100 50</gml:pos>
               </gml:Point>
             </rel:offset>
           </rel:relative-location>
         </gp:location-info>
         <gp:usage-rules/>
         <gp:method>GPS</gp:method>
         <rel:map>
           <rel:url type="image/png">
              http://example.com/location/map.png
           </rel:url>
           <rel:offset>20. 120.</rel:offset>
           <rel:orientation>29.</rel:orientation>
           <rel:scale>20. -20.</rel:scale>
         </rel:map>
       </gp:geopriv>
       <dm:deviceID>mac:1234567890ab</dm:deviceID>
       <dm:timestamp>2007-06-22T20:57:29Z</dm:timestamp>
     </dm:device>
   </presence>

4.  Relative Location

   Relative location is a shape (e.g., point, circle, ellipse).  The
   shape is defined with a CRS that has a datum defined as the reference
   (which appears as a civic address or geodetic location in the tuple)
   and the shape coordinates as meter offsets North/East of the datum
   measured in meters (with an optional Z offset relative to datum
   altitude).  An optional angle allows the reference CRS be to rotated
   with respect to North.






Thomson, et al.              Standards Track                    [Page 7]
^L
RFC 7035                    Relative Location               October 2013


4.1.  Relative Coordinate System

   The relative coordinate reference system uses a coordinate system
   with two or three axes.

   The baseline and reference locations are used to define a relative
   datum.  The reference location defines the origin of the coordinate
   system.  The centroid of the reference location is used when the
   reference location contains any uncertainty.

   The axes in this coordinate system are originally oriented based on
   the directions of East, North, and Up from the reference location:
   the first (x) axis increases to the East, the second (y) axis points
   North, and the optional third (z) axis points Up.  All axes of the
   coordinate system use meters as a basic unit.

   Any coordinates in the relative shapes use the described Cartesian
   coordinate system.  In the XML form, this uses a URN of
   "urn:ietf:params:geopriv:relative:2d" for two-dimensional shapes and
   "urn:ietf:params:geopriv:relative:3d" for three-dimensional shapes.
   The binary form uses different shape type identifiers for 2D and 3D
   shapes.

   Dynamic location information [RFC5962] in the baseline or reference
   location alters the relative coordinate system.  The resulting
   Cartesian coordinate system axes are rotated so that the y axis is
   oriented along the direction described by the <orientation> element.
   The coordinate system also moves as described by the <speed> and
   <heading> elements.

   The single timestamp included in the tuple (or equivalent) element
   applies to all location elements, including all three components of a
   relative location: baseline, reference, and relative.  This is
   particularly important when there are dynamic components to these
   items.  A location generator is responsible for ensuring the
   consistency of these fields.

4.2.  Placement of XML Elements

   The baseline of the reference location is represented as
   <location-info> like a normal PIDF-LO.  Relative location adds a new
   <relative-location> element to <location-info>.  Within
   <relative-location>, <reference> and <offset> elements are described.
   Within <offset> are the shape elements described below.  This
   document extends PIDF-LO as described in [RFC6848].






Thomson, et al.              Standards Track                    [Page 8]
^L
RFC 7035                    Relative Location               October 2013


4.3.  Binary Format

   This document describes a way to encode the relative location in a
   binary TLV form for use in other protocols that use TLVs to represent
   location.

   A type-length-value encoding is used.

            +------+------+------+------+------+------+------+
            | Type |Length|  Value                         ...
            +------+------+------+------+------+------+------+
            |  T   |  N   |  Value                         ...
            +------+------+------+------+------+------+------+

                        Figure 1: TLV Tuple Format

   The Type field (T) is an 8-bit unsigned integer.  The type codes used
   are registered in an IANA-managed "Relative Location Parameters"
   registry defined by this document and restricted to not include the
   values defined by the "Civic Address Types (CAtypes)" registry.  This
   restriction permits a location reference and offset to be coded
   within the same object without type collisions.

   The Length field (N) is defined as an 8-bit unsigned integer.  This
   field can encode values from 0 to 255.  The length field describes
   the number of bytes in the Value.  Length does not count the bytes
   used for the Type or Length.

   The Value field is defined separately for each type.

   Each element of the relative location has a unique TLV assignment.  A
   relative location encoded in TLV form includes both baseline and
   reference location TLVs and relative location TLVs.  The reference
   TLVs are followed by the relative offset and optional map TLVs
   described in this document.

4.4.  Distances and Angles

   All distance measures used in shapes are expressed in meters.

   All orientation angles used in shapes are expressed in degrees.
   Orientation angles are measured from WGS84 Northing to Easting with
   zero at Northing.  Orientation angles in the relative coordinate
   system start from the second coordinate axis (y or Northing) and
   increase toward the first axis (x or Easting).






Thomson, et al.              Standards Track                    [Page 9]
^L
RFC 7035                    Relative Location               October 2013


4.5.  Value Encoding

   The binary form uses single-precision floating-point values
   [IEEE.754] to represent coordinates, distance, and angle measures.
   Single-precision values are 32-bit values with a sign bit, 8 exponent
   bits, and 23 fractional bits.  This uses the interchange format
   defined in [IEEE.754] and Section 3.6 of [RFC1014], that is: sign,
   biased exponent and significand, with the most significant bit first.

   Binary-encoded coordinate values are considered to be a single value
   without uncertainty.  When encoding a value that cannot be exactly
   represented, the best approximation MUST be selected according to
   [Clinger1990].

4.6.  Relative Location Restrictions

   More than one relative shape MUST NOT be included in either a PIDF-LO
   or TLV encoding of location for a given reference point.

   Any error in the reference point transfers to the location described
   by the relative location.  Any errors arising from an implementation
   not supporting or understanding elements of the reference point
   directly increases the error (or uncertainty) in the resulting
   location.

4.7.  Baseline TLVs

   Baseline locations are described using the formats defined in
   [RFC4776] or [RFC6225].

4.8.  Reference TLVs

   When a reference is encoded in binary form, the baseline and
   reference locations are combined in a reference TLV.  This TLV is
   identified with the code 111 and contains civic address TLVs (if the
   baseline was a civic) or geo TLVs (if the baseline was a geo).

                +------+------+------+------+------+------+
                |  111 |Length|  Reference TLVs           |
                +------+------+------+------+------+------+

                          Figure 2: Reference TLV









Thomson, et al.              Standards Track                   [Page 10]
^L
RFC 7035                    Relative Location               October 2013


4.9.  Shapes

   Shape data is used to represent regions of uncertainty for the
   reference and relative locations.  Shape data in the reference
   location uses a WGS84 [WGS84] CRS.  Shape data in the relative
   location uses a relative CRS.

   The XML form for shapes uses Geography Markup Language (GML)
   [OGC.GML-3.1.1], consistent with the rules in [RFC5491].  Reference
   locations use the CRS URNs specified in [RFC5491]; relative locations
   use either a 2D CRS ("urn:ietf:params:geopriv:relative:2d") or a 3D
   ("urn:ietf:params:geopriv:relative:3d"), depending on the shape type.

   The binary form of each shape uses a different shape type for 2D and
   3D shapes.

   Nine shape type codes are defined.

4.9.1.  Point

   A point "shape" describes a single point with unknown uncertainty.
   It consists of a single set of coordinates.

   In a two-dimensional CRS, the coordinate includes two values; in a
   three-dimensional CRS, the coordinate includes three values.

4.9.1.1.  XML Encoding

   A point is represented in GML using the following template:

   <gml:Point xmlns:gml="http://www.opengis.net/gml"
              srsName="$CRS-URN$">
     <gml:pos>$Coordinate-1 $Coordinate-2$ $Coordinate-3$</gml:pos>
   </gml:Point>

                       Figure 3: GML Point Template

   Where "$CRS-URN$" is replaced by a
   "urn:ietf:params:geopriv:relative:2d" or
   "urn:ietf:params:geopriv:relative:3d" and "$Coordinate-3$" is omitted
   if the CRS is two-dimensional.










Thomson, et al.              Standards Track                   [Page 11]
^L
RFC 7035                    Relative Location               October 2013


4.9.1.2.  TLV Encoding

   The point shape is introduced by a TLV of 113 for a 2D point and 114
   for a 3D point.

                       +------+------+
                       | 113/4|Length|
                       +------+------+------+------+
                       |  Coordinate-1             |
                       +------+------+------+------+
                       |  Coordinate-2             |
                       +------+------+------+------+
                       |  (3D-only) Coordinate-3   |
                       +------+------+------+------+

                         Figure 4: Point Encoding

4.9.2.  Circle or Sphere Shape

   A circle or sphere describes a single point with a single uncertainty
   value in meters.

   In a two-dimensional CRS, the coordinate includes two values, and the
   resulting shape forms a circle.  In a three-dimensional CRS, the
   coordinate includes three values, and the resulting shape forms a
   sphere.

4.9.2.1.  XML Encoding

   A circle is represented in and converted from GML using the following
   template:

   <gs:Circle xmlns:gml="http://www.opengis.net/gml"
              xmlns:gs="http://www.opengis.net/pidflo/1.0"
              srsName="urn:ietf:params:geopriv:relative:2d">
     <gml:pos>$Coordinate-1 $Coordinate-2$</gml:pos>
     <gs:radius uom="urn:ogc:def:uom:EPSG::9001">
       $Radius$
     </gs:radius>
   </gs:Circle>

                       Figure 5: GML Circle Template









Thomson, et al.              Standards Track                   [Page 12]
^L
RFC 7035                    Relative Location               October 2013


   A sphere is represented in and converted from GML using the following
   template:

   <gs:Sphere xmlns:gml="http://www.opengis.net/gml"
              xmlns:gs="http://www.opengis.net/pidflo/1.0"
              srsName="urn:ietf:params:geopriv:relative:3d">
     <gml:pos>$Coordinate-1 $Coordinate-2$ $Coordinate-3$</gml:pos>
     <gs:radius uom="urn:ogc:def:uom:EPSG::9001">
       $Radius$
     </gs:radius>
   </gs:Sphere>

                       Figure 6: GML Sphere Template

4.9.2.2.  TLV Encoding

   A circular shape is introduced by a type code of 115.  A spherical
   shape is introduced by a type code of 116.

                       +------+------+
                       | 115/6|Length|
                       +------+------+------+------+
                       |  Coordinate-1             |
                       +------+------+------+------+
                       |  Coordinate-2             |
                       +------+------+------+------+
                       |  (3D-only) Coordinate-3   |
                       +------+------+------+------+
                       |  Radius                   |
                       +------+------+------+------+

                    Figure 7: Circle or Sphere Encoding

4.9.3.  Ellipse or Ellipsoid Shape

   An ellipse or ellipsoid describes a point with an elliptical or
   ellipsoidal uncertainty region.

   In a two-dimensional CRS, the coordinate includes two values plus a
   semi-major axis, a semi-minor axis, a semi-major axis orientation
   (clockwise from North).  In a three-dimensional CRS, the coordinate
   includes three values, and in addition to the two-dimensional values,
   an altitude uncertainty (semi-vertical) is added.








Thomson, et al.              Standards Track                   [Page 13]
^L
RFC 7035                    Relative Location               October 2013


4.9.3.1.  XML Encoding

   An ellipse is represented in and converted from GML using the
   following template:

   <gs:Ellipse xmlns:gml="http://www.opengis.net/gml"
               xmlns:gs="http://www.opengis.net/pidflo/1.0"
               srsName="urn:ietf:params:geopriv:relative:2d">
     <gml:pos>$Coordinate-1 $Coordinate-2$</gml:pos>
     <gs:semiMajorAxis uom="urn:ogc:def:uom:EPSG::9001">
       $Semi-Major$
     </gs:semiMajorAxis>
     <gs:semiMinorAxis uom="urn:ogc:def:uom:EPSG::9001">
       $Semi-Minor$
     </gs:semiMinorAxis>
     <gs:orientation uom="urn:ogc:def:uom:EPSG::9102">
       $Orientation$
     </gs:orientation>
   </gs:Ellipse>

                      Figure 8: GML Ellipse Template

   An ellipsoid is represented in and converted from GML using the
   following template:

   <gs:Ellipsoid xmlns:gml="http://www.opengis.net/gml"
                 xmlns:gs="http://www.opengis.net/pidflo/1.0"
                 srsName="urn:ietf:params:geopriv:relative:3d">
     <gml:pos>$Coordinate-1 $Coordinate-2$ $Coordinate-3$</gml:pos>
     <gs:semiMajorAxis uom="urn:ogc:def:uom:EPSG::9001">
       $Semi-Major$
     </gs:semiMajorAxis>
     <gs:semiMinorAxis uom="urn:ogc:def:uom:EPSG::9001">
       $Semi-Minor$
     </gs:semiMinorAxis>
     <gs:verticalAxis uom="urn:ogc:def:uom:EPSG::9001">
       $Semi-Vertical$
     </gs:verticalAxis>
     <gs:orientation uom="urn:ogc:def:uom:EPSG::9102">
       $Orientation$
     </gs:orientation>
   </gs:Ellipsoid>

                     Figure 9: GML Ellipsoid Template







Thomson, et al.              Standards Track                   [Page 14]
^L
RFC 7035                    Relative Location               October 2013


4.9.3.2.  TLV Encoding

   An ellipse is introduced by a type code of 117, and an ellipsoid is
   introduced by a type code of 118.

         +------+------+
         | 117/8|Length|
         +------+------+------+------+
         |  Coordinate-1             |
         +------+------+------+------+
         |  Coordinate-2             |
         +------+------+------+------+
         |  (3D-only) Coordinate-3   |
         +------+------+------+------+------+------+------+------+
         |  Semi-Major Axis          |  Semi-Minor Axis          |
         +------+------+------+------+------+------+------+------+
         |  Orientation              |  (3D) Semi-Vertical Axis  |
         +------+------+------+------+------+------+------+------+

                 Figure 10: Ellipse or Ellipsoid Encoding

4.9.4.  Polygon or Prism Shape

   A polygon or prism includes a number of points that describe the
   outer boundary of an uncertainty region.  A prism also includes an
   altitude for each point and prism height.

   At least 3 points MUST be included in a polygon.  In order to
   interoperate with existing systems, an encoding SHOULD include 15 or
   fewer points, unless the recipient is known to support larger
   numbers.




















Thomson, et al.              Standards Track                   [Page 15]
^L
RFC 7035                    Relative Location               October 2013


4.9.4.1.  XML Encoding

   A polygon is represented in and converted from GML using the
   following template:

   <gml:Polygon xmlns:gml="http://www.opengis.net/gml"
                srsName="urn:ietf:params:geopriv:relative:2d">
     <gml:exterior>
       <gml:LinearRing>
         <gml:posList>
           $Coordinate1-1$ $Coordinate1-2$
           $Coordinate2-1$ $Coordinate2-2$
           $Coordinate3-1$ ...
           ...
           $CoordinateN-1$ $CoordinateN-2$
           $Coordinate1-1$ $Coordinate1-2$
         </gml:posList>
       </gml:LinearRing>
     </gml:exterior>
   </gml:Polygon>

                      Figure 11: GML Polygon Template

   Alternatively, a series of <pos> elements can be used in place of the
   single "posList".  Each <pos> element contains two or three
   coordinate values.

   Note that the first point is repeated at the end of the sequence of
   coordinates and no explicit count of the number of points is
   provided.

   A GML polygon that includes altitude cannot be represented perfectly
   in TLV form.  When converting to the binary representation, a two-
   dimensional CRS is used, and altitude is removed from each
   coordinate.
















Thomson, et al.              Standards Track                   [Page 16]
^L
RFC 7035                    Relative Location               October 2013


   A prism is represented in and converted from GML using the following
   template:

   <gs:Prism xmlns:gml="http://www.opengis.net/gml"
             xmlns:gs="http://www.opengis.net/pidflo/1.0"
             srsName="urn:ietf:params:geopriv:relative:3d">
     <gs:base>
       <gml:Polygon>
         <gml:exterior>
           <gml:LinearRing>
             <gml:posList>
               $Coordinate1-1$ $Coordinate1-2$ $Coordinate1-3$
               $Coordinate2-1$ $Coordinate2-2$ $Coordinate2-3$
               $Coordinate2-1$ ... ...
               ...
               $CoordinateN-1$ $CoordinateN-2$ $CoordinateN-3$
               $Coordinate1-1$ $Coordinate1-2$ $Coordinate1-3$
             </gml:posList>
           </gml:LinearRing>
         </gml:exterior>
       </gml:Polygon>
     </gs:base>
     <gs:height uom="urn:ogc:def:uom:EPSG::9001">
       $Height$
     </gs:height>
   </gs:Prism>

                       Figure 12: GML Prism Template

   Alternatively, a series of <pos> elements can be used in place of the
   single "posList".  Each <pos> element contains three coordinate
   values.



















Thomson, et al.              Standards Track                   [Page 17]
^L
RFC 7035                    Relative Location               October 2013


4.9.4.2.  TLV Encoding

   A polygon containing 2D points uses a type code of 119.  A polygon
   with 3D points uses a type code of 120.  A prism uses a type code of
   121.  The number of points can be inferred from the length of the
   TLV.

                       +------+------+
                       |119-21|Length|
                       +------+------+------+------+
                       |  (3D-only) Height         |
                       +------+------+------+------+
                       |  Coordinate1-1            |
                       +------+------+------+------+
                       |  Coordinate1-2            |
                       +------+------+------+------+
                       |  (3D-only) Coordinate1-3  |
                       +------+------+------+------+
                       |  Coordinate2-1            |
                       +------+------+------+------+
                        ...
                       +------+------+------+------+
                       |  CoordinateN-1            |
                       +------+------+------+------+
                       |  CoordinateN-2            |
                       +------+------+------+------+
                       |  (3D-only) CoordinateN-3  |
                       +------+------+------+------+

                   Figure 13: Polygon or Prism Encoding

   Note that unlike the polygon representation in GML, the first and
   last points are not the same point in the TLV representation.  The
   duplicated point is removed from the binary form.

4.9.5.  Arc-Band Shape

   An arc-band describes a region constrained by a range of angles and
   distances from a predetermined point.  This shape can only be
   provided for a two-dimensional CRS.

   Distance and angular measures are defined in meters and degrees,
   respectively.  Both are encoded as single-precision floating-point
   values.







Thomson, et al.              Standards Track                   [Page 18]
^L
RFC 7035                    Relative Location               October 2013


4.9.5.1.  XML Encoding

   An arc-band is represented in and converted from GML using the
   following template:

   <gs:ArcBand xmlns:gml="http://www.opengis.net/gml"
               xmlns:gs="http://www.opengis.net/pidflo/1.0"
               srsName="urn:ietf:params:geopriv:relative:2d">
     <gml:pos>$Coordinate-1$ $Coordinate-2$</gml:pos>
     <gs:innerRadius uom="urn:ogc:def:uom:EPSG::9001">
       $Inner-Radius$
     </gs:innerRadius>
     <gs:outerRadius uom="urn:ogc:def:uom:EPSG::9001">
       $Outer-Radius$
     </gs:outerRadius>
     <gs:startAngle uom="urn:ogc:def:uom:EPSG::9102">
      $Start-Angle$
     </gs:startAngle>
     <gs:openingAngle uom="urn:ogc:def:uom:EPSG::9102">
       $Opening-Angle$
     </gs:openingAngle>
   </gs:ArcBand>

                     Figure 14: GML Arc-Band Template

4.9.5.2.  TLV Encoding

   An arc-band is introduced by a type code of 122.

         +------+------+
         | 122  |Length|
         +------+------+------+------+
         |  Coordinate               |
         +------+------+------+------+
         |  Coordinate               |
         +------+------+------+------+------+------+------+------+
         |  Inner Radius             |  Outer Radius             |
         +------+------+------+------+------+------+------+------+
         |  Start Angle              |  Opening Angle            |
         +------+------+------+------+------+------+------+------+

                       Figure 15: Arc-Band Encoding









Thomson, et al.              Standards Track                   [Page 19]
^L
RFC 7035                    Relative Location               October 2013


4.10.  Dynamic Location TLVs

   Dynamic location elements use the definitions in [RFC5962].

4.10.1.  Orientation

   The orientation of the Target is described using one or two angles.
   Orientation uses a type code of 123.

                       +------+------+
                       | 123  |Length|
                       +------+------+------+------+
                       |         Angle             |
                       +------+------+------+------+
                       |   (Optional) Angle        |
                       +------+------+------+------+

                    Figure 16: Dynamic Orientation TLVs

4.10.2.  Speed

   The speed of the Target is a scalar value in meters per second.
   Speed uses a type code of 124.

                       +------+------+
                       | 124  |Length|
                       +------+------+------+------+
                       |         Speed             |
                       +------+------+------+------+

                       Figure 17: Dynamic Speed TLVs

4.10.3.  Heading

   The heading, or direction of travel, is described using one or two
   angles.  Heading uses a type code of 125.

                       +------+------+
                       | 125  |Length|
                       +------+------+------+------+
                       |         Angle             |
                       +------+------+------+------+
                       |   (Optional) Angle        |
                       +------+------+------+------+

                      Figure 18: Dynamic Heading TLVs





Thomson, et al.              Standards Track                   [Page 20]
^L
RFC 7035                    Relative Location               October 2013


4.11.  Secondary Map Metadata

   The optional "map" URL can be used to provide a user of relative
   location with a visual reference for the location information.  This
   document does not describe how the recipient uses the map nor how it
   locates the reference or offset within the map.  Maps can be simple
   images, vector files, 2D or 3D geospatial databases, or any other
   form of representation understood by both the sender and recipient.

4.11.1.  Map URL

   In XML, the map is a <map> element defined within <relative-location>
   and contains the URL.  The URL is encoded as a UTF-8-encoded string.
   An "http:" [RFC2616] or "https:" [RFC2818] URL MUST be used unless
   the entity creating the PIDF-LO is able to ensure that authorized
   recipients of this data are able to use other URI schemes.  A "type"
   attribute MUST be present and specifies the kind of map the URL
   points to.  Map types are specified as MIME media types as recorded
   in the IANA Media Types registry, for example, <map type="image/png">
   https://www.example.com/floorplans/123South/floor-2</map>.

   In binary, the map type is a separate TLV from the map URL.  The
   media type uses a type code of 126; the URL uses a type code of 127.

            +------+------+------+------+------+------+------+
            |  126 |Length|   Map Media Type               ...
            +------+------+------+------+------+------+------+
            |  127 |Length|   Map Image URL                ...
            +------+------+------+------+------+------+------+

                          Figure 19: Map URL TLVs

   Note that the binary form restricts data to 255 octets.  This
   restriction could be problematic for URLs in particular.
   Applications that use the XML form, but cannot guarantee that a
   binary form won't be used, are encouraged to limit the size of the
   URL to fit within this restriction.

4.11.2.  Map Coordinate Reference System

   The CRS used by the map depends on the type of map.  For example, a
   map described by a 3-D geometric model of the building may contain a
   complete CRS description in it.  For some kinds of maps, typically
   described as images, the CRS used within the map must define the
   following:






Thomson, et al.              Standards Track                   [Page 21]
^L
RFC 7035                    Relative Location               October 2013


   o  The CRS origin

   o  The CRS axes used and their orientation

   o  The unit of measure used

   This document provides elements that allow for a mapping between the
   local coordinate reference system used for the relative location and
   the coordinate reference system used for the map where they are not
   the same.

4.11.2.1.  Map Reference Point Offset

   This optional element identifies the coordinates of the reference
   point as it appears in the map.  This value is measured in a map-
   type-dependent manner, using the coordinate system of the map.

   For image maps, coordinates start from the upper left corner, and
   coordinates are first counted by column with positive values to the
   right; then, rows are counted with positive values toward the bottom
   of the image.  For such an image, the first item is columns, the
   second rows, and any third value applies to any third dimension used
   in the image coordinate space.

   The <offset> element contains 2 (or 3) coordinates similar to a GML
   <pos>.  For example:

     <offset> 2670.0 1124.0 1022.0</offset>

   The map reference point uses a type code of 129.

                        +------+------+
                        | 129  |Length|
                        +------+------+------+------+
                        |  Coordinate-1             |
                        +------+------+------+------+
                        |  Coordinate-2             |
                        +------+------+------+------+
                        |  (3D-only) Coordinate-3   |
                        +------+------+------+------+

              Figure 20: Map Reference Point Coordinates TLV

   If omitted, a value containing all zeros is assumed.  If the
   coordinates provided contain fewer values than are needed, the first
   value from the set is applied in place of any absent values.  Thus,
   if a single value is provided, that value is used for Coordinate-2




Thomson, et al.              Standards Track                   [Page 22]
^L
RFC 7035                    Relative Location               October 2013


   and Coordinate-3 (if required).  If two values are provided and three
   are required, the value of Coordinate-1 is used in place of
   Coordinate-3.

4.11.2.2.  Map Orientation

   The map orientation includes the orientation of the map direction in
   relation to the Earth.  Map orientation is expressed relative to the
   orientation of the relative coordinate system.  This means that map
   orientation with respect to WGS84 North is the sum of the orientation
   field and any orientation included in a dynamic portion of the
   reference location.  Both values default to zero if no value is
   specified.

   This type uses a single-precision floating-point value of degrees
   relative to North.

   In XML, the <orientation> element contains a single floating-point
   value, for example, <orientation>67.00</orientation>.  In TLV form,
   map orientation uses the code 130:

                +------+------+------+------+------+------+
                |  130 |Length|  Angle                    |
                +------+------+------+------+------+------+

                      Figure 21: Map Orientation TLV

4.11.2.3.  Map Scale

   The optional map scale describes the relationship between the units
   of measure used in the map, relative to the meters unit used in the
   relative coordinate system.

   This type uses a sequence of IEEE 754 [IEEE.754] single-precision
   floating-point values to represent scale as a sequence of numeric
   values.  The units of these values are dependent on the type of map
   and could, for example, be pixels per meter for an image.

   A scaling factor is provided for each axis in the coordinate system.
   For a two-dimensional coordinate system, two values are included to
   allow for different scaling along the x and y axes independently.
   For a three-dimensional coordinate system, three values are specified
   for the x, y, and z axes.  Decoders can determine the number of
   scaling factors by examining the length field.

   Alternatively, a single scaling value MAY be used to apply the same
   scaling factor to all coordinate components.




Thomson, et al.              Standards Track                   [Page 23]
^L
RFC 7035                    Relative Location               October 2013


   Images that use a rows/columns coordinate system often use a left-
   handed coordinate system.  A negative value for the y/rows axis
   scaling value can be used to account for any change in direction
   between the y axis used in the relative coordinate system and the
   rows axis of the image coordinate system.

   In XML, the <scale> element MAY contain a single scale value or MAY
   contain 2 (or 3) values in XML list form.  In TLV form, scale uses a
   type code of 131.  The length of the TLV determines how many scale
   values are present:

                +------+------+------+------+------+------+
                |  131 |Length|  Scale(s)               ...
                +------+------+------+------+------+------+

                         Figure 22: Map Scale TLV

4.11.3.  Map Example

   An example of expressing a map is:

        <rel:map>
          <rel:url type="image/jpeg">
            http://example.com/map.jpg
          </rel:url>
          <rel:offset>200 210</rel:offset>
          <rel:orientation>68</rel:orientation>
          <rel:scale>2.90 -2.90</rel:scale>
        </rel:map>

                          Figure 23: Map Example

5.  Examples

   The examples in this section combine elements from [RFC3863],
   [RFC4119], [RFC4479], [RFC5139], and [OGC.GeoShape].

5.1.  Civic PIDF with Polygon Offset

   <presence xmlns="urn:ietf:params:xml:ns:pidf"
             xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model"
             xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10"
             xmlns:ca="urn:ietf:params:xml:ns:pidf:geopriv10:civicAddr"
             xmlns:rel="urn:ietf:params:xml:ns:pidf:geopriv10:relative"
             xmlns:gml="http://www.opengis.net/gml"
             xmlns:gs="http://www.opengis.net/pidflo/1.0"
             entity="pres:ness@example.com">
     <dm:device id="nesspc-1">



Thomson, et al.              Standards Track                   [Page 24]
^L
RFC 7035                    Relative Location               October 2013


       <gp:geopriv>
         <gp:location-info>
           <ca:civicAddress xml:lang="en-AU">
             <ca:country>AU</ca:country>
             <ca:A1>NSW</ca:A1>
             <ca:A3>Wollongong</ca:A3>
             <ca:A4>North Wollongong</ca:A4>
             <ca:RD>Flinders</ca:RD>
             <ca:STS>Street</ca:STS>
             <ca:HNO>123</ca:HNO>
           </ca:civicAddress>
           <rel:relative-location>
             <rel:reference>
               <ca:civicAddress xml:lang="en-AU">
                 <ca:LMK>Front Door</ca:LMK>
                 <ca:BLD>A</ca:BLD>
                 <ca:FLR>I</ca:FLR>
                 <ca:ROOM>113</ca:ROOM>
               </ca:civicAddress>
             </rel:reference>
             <rel:offset>
                <gml:Polygon xmlns:gml="http://www.opengis.net/gml"
                     srsName="urn:ietf:params:geopriv:relative:2d">
                  <gml:exterior>
                    <gml:LinearRing>
                      <gml:pos>433.0 -734.0</gml:pos> <!--A-->
                      <gml:pos>431.0 -733.0</gml:pos> <!--F-->
                      <gml:pos>431.0 -732.0</gml:pos> <!--E-->
                      <gml:pos>433.0 -731.0</gml:pos> <!--D-->
                      <gml:pos>434.0 -732.0</gml:pos> <!--C-->
                      <gml:pos>434.0 -733.0</gml:pos> <!--B-->
                      <gml:pos>433.0 -734.0</gml:pos> <!--A-->
                    </gml:LinearRing>
                  </gml:exterior>
               </gml:Polygon>
             </rel:offset>
           </rel:relative-location>
         </gp:location-info>
        <gp:usage-rules/>
         <gp:method>GPS</gp:method>
       </gp:geopriv>
       <dm:deviceID>mac:1234567890ab</dm:deviceID>
       <dm:timestamp>2007-06-22T20:57:29Z</dm:timestamp>
     </dm:device>
   </presence>






Thomson, et al.              Standards Track                   [Page 25]
^L
RFC 7035                    Relative Location               October 2013


5.2.  Geo PIDF with Circle Offset

   <?xml version="1.0" encoding="UTF-8"?>
       <presence xmlns="urn:ietf:params:xml:ns:pidf"
            xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model"
            xmlns:gp="urn:ietf:params:xml:ns:pidf:geopriv10"
            xmlns:rel="urn:ietf:params:xml:ns:pidf:geopriv10:relative"
            xmlns:gml="http://www.opengis.net/gml"
            xmlns:gs="http://www.opengis.net/pidflo/1.0"
            entity="pres:point2d@example.com">
         <dm:device id="point2d">
           <gp:geopriv>
             <gp:location-info>
               <gs:Circle srsName="urn:ogc:def:crs:EPSG::4326">
                 <gml:pos>-34.407 150.883</gml:pos>
                 <gs:radius uom="urn:ogc:def:uom:EPSG::9001">
                        50.0
                 </gs:radius>
               </gs:Circle>
               <rel:relative-location>
                 <rel:reference>
                   <gml:Point srsName="urn:ogc:def:crs:EPSG::4326">
                     <gml:pos>-34.407 150.883</gml:pos>
                   </gml:Point>
                 </rel:reference>
                 <rel:offset>
                   <gs:Circle xmlns:gml="http://www.opengis.net/gml"
                         srsName="urn:ietf:params:geopriv:relative:2d">
                       <gml:pos>500.0 750.0</gml:pos>
                       <gs:radius uom="urn:ogc:def:uom:EPSG::9001">
                          5.0
                        </gs:radius>
                  </gs:Circle>
                </rel:offset>
                <rel:map>
                   <rel:url type="image/png">
                     https://www.example.com/flrpln/123South/flr-2
                   </rel:url>
                   <rel:offset>2670.0 1124.0 1022.0</rel:offset>
                   <rel:orientation>67.00</rel:orientation>
                   <rel:scale>10 -10</rel:scale>
                </rel:map>
               </rel:relative-location>
             </gp:location-info>
             <gp:usage-rules/>
             <gp:method>Wiremap</gp:method>
           </gp:geopriv>
           <dm:deviceID>mac:1234567890ab</dm:deviceID>



Thomson, et al.              Standards Track                   [Page 26]
^L
RFC 7035                    Relative Location               October 2013


           <dm:timestamp>2007-06-22T20:57:29Z</dm:timestamp>
         </dm:device>
       </presence>

5.3.  Civic TLV with Point Offset

        +--------+-------------------------------------------------+
        | Type   | Value                                           |
        +--------+-------------------------------------------------+
        | 0      | en                                              |
        |        |                                                 |
        | 1      | IL                                              |
        |        |                                                 |
        | 3      | Chicago                                         |
        |        |                                                 |
        | 34     | Wacker                                          |
        |        |                                                 |
        | 18     | Drive                                           |
        |        |                                                 |
        | 19     | 3400                                            |
        |        |                                                 |
        | 112    | Reference                                       |
        |        |                                                 |
        | 25     | Building A                                      |
        |        |                                                 |
        | 27     | Floor 6                                         |
        |        |                                                 |
        | 26     | Suite 213                                       |
        |        |                                                 |
        | 28     | Reception Area                                  |
        |        |                                                 |
        | 115    | 100 70                                          |
        |        |                                                 |
        | 126    | image/png                                       |
        |        |                                                 |
        | 127    | http://maps.example.com/3400Wacker/A6           |
        |        |                                                 |
        | 129    | 0.0 4120.0                                      |
        |        |                                                 |
        | 130    | 113.0                                           |
        |        |                                                 |
        | 131    | 10.6                                            |
        +--------+-------------------------------------------------+








Thomson, et al.              Standards Track                   [Page 27]
^L
RFC 7035                    Relative Location               October 2013


6.  Schema Definition

      Note: The pattern value for "mimeType" has been folded onto
      multiple lines.  Whitespace has been added to conform to comply
      with document formatting restrictions.  Extra whitespace around
      the line endings MUST be removed before using this schema.

   <?xml version="1.0"?>
   <xs:schema
       xmlns:rel="urn:ietf:params:xml:ns:pidf:geopriv10:relative"
       xmlns:xs="http://www.w3.org/2001/XMLSchema"
       xmlns:gml="http://www.opengis.net/gml"
       targetNamespace="urn:ietf:params:xml:ns:pidf:geopriv10:relative"
       elementFormDefault="qualified"
       attributeFormDefault="unqualified">

     <xs:annotation>
       <xs:appinfo
           source="urn:ietf:params:xml:schema:pidf:geopriv10:relative">
         Relative Location for PIDF-LO
       </xs:appinfo>
       <xs:documentation source="http://ietf.org/rfc/rfc7035.txt">
         This schema defines a location representation that allows for
         the description of locations that are relative to another.
         An optional map reference is also defined.
       </xs:documentation>
     </xs:annotation>

     <xs:import namespace="http://www.opengis.net/gml"/>

     <xs:element name="relative-location" type="rel:relativeType"/>

     <xs:complexType name="relativeType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:sequence>
             <xs:element name="reference" type="rel:referenceType"/>
             <xs:element name="offset" type="rel:offsetType"/>
             <xs:any namespace="##any" processContents="lax"
                     minOccurs="0" maxOccurs="unbounded"/>
           </xs:sequence>
           <xs:anyAttribute namespace="##other" processContents="lax"/>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>

     <xs:complexType name="referenceType">
       <xs:complexContent>



Thomson, et al.              Standards Track                   [Page 28]
^L
RFC 7035                    Relative Location               October 2013


         <xs:restriction base="xs:anyType">
           <xs:sequence>
             <xs:any namespace="##other" processContents="lax"
                     minOccurs="0" maxOccurs="unbounded"/>
           </xs:sequence>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>

     <xs:complexType name="offsetType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:sequence>
             <xs:element ref="gml:_Geometry"/>
             <xs:any namespace="##other" processContents="lax"
                     minOccurs="0" maxOccurs="unbounded"/>
           </xs:sequence>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>

     <xs:element name="map" type="rel:mapType"/>
     <xs:complexType name="mapType">
       <xs:complexContent>
         <xs:restriction base="xs:anyType">
           <xs:sequence>
             <xs:element name="url" type="rel:mapUrlType"/>
             <xs:element name="offset" type="rel:doubleList"
                         minOccurs="0"/>
             <xs:element name="orientation" type="rel:doubleList"
                         minOccurs="0"/>
             <xs:element name="scale" type="rel:doubleList"
                         minOccurs="0"/>
           </xs:sequence>
         </xs:restriction>
       </xs:complexContent>
     </xs:complexType>

     <xs:complexType name="mapUrlType">
       <xs:simpleContent>
         <xs:extension base="xs:anyURI">
           <xs:attribute name="type" type="rel:mimeType"
                         default="application/octet-stream"/>
         </xs:extension>
       </xs:simpleContent>
     </xs:complexType>

     <xs:simpleType name="mimeType">



Thomson, et al.              Standards Track                   [Page 29]
^L
RFC 7035                    Relative Location               October 2013


       <xs:restriction base="xs:token">
        <xs:pattern value="[!#$%&amp;'\*\+\-\.\dA-Z^_`a-z\|~]+
        /[!#$%&amp;'\*\+\-\.\dA-Z^_`a-z\|~]+([\t ]*;([\t ])*[!#$%&amp;
        '\*\+\-\.\dA-Z^_`a-z\|~]+=([!#$%&amp;'\*\+\-\.\dA-Z^_`a-z\|~]+|
         &quot;([!#-\[\]-~]|[\t ]*|\\[\t !-~])*&quot;))*"/>
       </xs:restriction>
     </xs:simpleType>

     <xs:simpleType name="doubleList">
       <xs:list itemType="xs:double"/>
     </xs:simpleType>

   </xs:schema>

7.  Security Considerations

   This document describes a data format.  To a large extent, security
   properties of this depend on how this data is used.

   Privacy for location data is typically important.  Adding relative
   location may increase the precision of the location but does not
   otherwise alter its privacy considerations, which are discussed in
   [RFC4119].

   The map URL provided in a relative location could accidentally reveal
   information if a Location Recipient uses the URL to acquire the map.
   The coverage area of a map, or parameters of the URL itself, could
   provide information about the location of a Target.  In combination
   with other information that could reveal the set of potential Targets
   that the Location Recipient has location information for, acquiring a
   map could leak significant information.  In particular, it is
   important to note that the Target and Location Recipient are often
   the same entity.

   Access to map URLs MUST be secured with TLS [RFC5246] (that is,
   restricting the map URL to be an https URI), unless the map URL
   cannot leak information about the Target's location.  This restricts
   information about the map URL to the entity serving the map request.
   If the map URL conveys more information about a Target than a map
   server is authorized to receive, that URL MUST NOT be included in the
   PIDF-LO.










Thomson, et al.              Standards Track                   [Page 30]
^L
RFC 7035                    Relative Location               October 2013


8.  IANA Considerations

8.1.  Relative Location Registry

   This document creates a new registry called "Relative Location
   Parameters".  This shares a page, titled "Civic Address Types
   Registry" with the existing "Civic Address Types (CAtypes)" registry.
   As defined in [RFC5226], this new registry operates under "IETF
   Review" rules.

   The content of this registry includes:

   Relative Location Code (RLtype):  Numeric identifier, assigned by
      IANA.

   Brief description:  Short description identifying the meaning of the
      element.

   Reference to published specification:  A stable reference to an RFC
      that describes the value in sufficient detail so that
      interoperability between independent implementations is possible.

   Values requested to be assigned into this registry MUST NOT conflict
   with values assigned in the "Civic Address Types (CAtypes)" registry
   or vice versa, unless the IANA Considerations section for the new
   value explicitly overrides this prohibition and the document defining
   the value describes how conflicting TLV codes will be interpreted by
   implementations.  To ensure this, the CAtypes entries are explicitly
   reserved in the initial values table below.  Those reserved entries
   can be changed, but only with caution, as explained here.

   To make this clear for future users of the registry, the following
   note is added to the "Civic Address Types (CAtypes)" registry:

      The registration of new values should be accompanied by a
      corresponding reservation in the Relative Location Parameters
      registry.

   Similarly, the "Relative Location Parameters" registry bears the
   note:

      The registration of new values should be accompanied by a
      corresponding reservation in the Civic Address Types (CAtypes)
      registry.







Thomson, et al.              Standards Track                   [Page 31]
^L
RFC 7035                    Relative Location               October 2013


   The values defined are:

   +--------+----------------------------------------+-----------+
   | RLtype | description                            | Reference |
   +--------+----------------------------------------+-----------+
   | 0-40   | RESERVED by CAtypes registry           | RFC 7035 &|
   | 128    |                                        | RFC 4776  |
   +--------+----------------------------------------+-----------+
   | 111    | relative location reference            | RFC 7035  |
   | 113    | relative location shape 2D point       | RFC 7035  |
   | 114    | relative location shape 3D point       | RFC 7035  |
   | 115    | relative location shape circular       | RFC 7035  |
   | 116    | relative location shape spherical      | RFC 7035  |
   | 117    | relative location shape elliptical     | RFC 7035  |
   | 118    | relative location shape ellipsoid      | RFC 7035  |
   | 119    | relative location shape 2D polygon     | RFC 7035  |
   | 120    | relative location shape 3D polygon     | RFC 7035  |
   | 121    | relative location shape prism          | RFC 7035  |
   | 122    | relative location shape arc-band       | RFC 7035  |
   | 123    | relative location dynamic orientation  | RFC 7035  |
   | 124    | relative location dynamic speed        | RFC 7035  |
   | 125    | relative location dynamic heading      | RFC 7035  |
   | 126    | relative location map type             | RFC 7035  |
   | 127    | relative location map URI              | RFC 7035  |
   | 129    | relative location map coordinates      | RFC 7035  |
   | 130    | relative location map angle            | RFC 7035  |
   | 131    | relative location map scale            | RFC 7035  |
   +--------+----------------------------------------+-----------+























Thomson, et al.              Standards Track                   [Page 32]
^L
RFC 7035                    Relative Location               October 2013


8.2.  URN Sub-Namespace Registration

   This document registers a new XML namespace, as per the guidelines in
   [RFC3688].

    URI:  urn:ietf:params:xml:ns:pidf:geopriv10:relative

    Registrant Contact:  IETF, GEOPRIV working group (geopriv@ietf.org),
       Martin Thomson (martin.thomson@skype.net).

    XML:

       BEGIN
         <?xml version="1.0"?>
         <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
              "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
         <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
           <head>
             <title>GEOPRIV Relative Location</title>
           </head>
           <body>
             <h1>Format for representing relative location</h1>
             <h2>urn:ietf:params:xml:ns:pidf:geopriv10:relative</h2>
             <p>See <a href="http://www.rfc-editor.org/rfc/rfc7035.txt">
                    RFC 7035</a>.</p>
           </body>
         </html>

          END

8.3.  XML Schema Registration

   This section registers an XML schema as per the procedures in
   [RFC3688].

   URI:  urn:ietf:params:xml:schema:pidf:geopriv10:relative

   Registrant Contact:  IETF, GEOPRIV working group (geopriv@ietf.org),
      Martin Thomson (martin.thomson@skype.net)

   Schema:  The XML for this schema is found in Section 6 of this
      document.









Thomson, et al.              Standards Track                   [Page 33]
^L
RFC 7035                    Relative Location               October 2013


8.4.  Geopriv Identifiers Registry

   This section registers two URNs for use in identifying relative
   coordinate reference systems.  These are added to a new "Geopriv
   Identifiers" registry according to the procedures in Section 4 of
   [RFC3553].  The "Geopriv Identifiers" registry is entered under the
   "Uniform Resource Name (URN) Namespace for IETF Use" category.

   Registrations in this registry follow the "IETF Review" [RFC5226]
   policy.

   Registry name:  Geopriv Identifiers

   URN Prefix:  urn:ietf:params:geopriv:

   Specification:  RFC 7035 (this document)

   Repository:  http://www.iana.org/assignments/geopriv-identifiers

   Index value:  Values in this registry are URNs or URN prefixes that
      start with the prefix "urn:ietf:params:geopriv:".  Each is
      registered independently.

   Each registration in the "Geopriv Identifiers" registry requires the
   following information:

   URN:  The complete URN that is used or the prefix for that URN.

   Description:  A summary description for the URN or URN prefix.

   Specification:  A reference to a specification describing the URN or
      URN prefix.

   Contact:  Email for the person or groups making the registration.

   Index value:  As described in [RFC3553], URN prefixes that are
      registered include a description of how the URN is constructed.
      This is not applicable for specific URNs.

   The "Geopriv Identifiers" registry has two initial registrations,
   included in the following sections.










Thomson, et al.              Standards Track                   [Page 34]
^L
RFC 7035                    Relative Location               October 2013


8.4.1.  Registration of Two-Dimensional Relative Coordinate Reference
        System URN

   This section registers the "urn:ietf:params:geopriv:relative:2d" URN
   in the "Geopriv Identifiers" registry.

   URN:  urn:ietf:params:geopriv:relative:2d

   Description:  A two-dimensional relative coordinate reference system

   Specification:  RFC 7035 (this document)

   Contact:  IETF, GEOPRIV working group (geopriv@ietf.org), Martin
      Thomson (martin.thomson@skype.net)

   Index value:  N/A

8.4.2.  Registration of Three-Dimensional Relative Coordinate Reference
        System URN

   This section registers the "urn:ietf:params:geopriv:relative:3d" URN
   in the "Geopriv Identifiers" registry.

   URN:  urn:ietf:params:geopriv:relative:3d

   Description:  A three-dimensional relative coordinate reference
      system

   Specification:  RFC 7035 (this document)

   Contact:  IETF, GEOPRIV working group (geopriv@ietf.org), Martin
      Thomson (martin.thomson@skype.net)

   Index value:  N/A

9.  Acknowledgements

   This document is the product of a design team on relative location.
   Besides the authors, this team included Marc Linsner, James Polk, and
   James Winterbottom.











Thomson, et al.              Standards Track                   [Page 35]
^L
RFC 7035                    Relative Location               October 2013


10.  References

10.1.  Normative References

   [Clinger1990]
              Clinger, W., "How to Read Floating Point Numbers
              Accurately", Proceedings of Conference on Programming
              Language Design and Implementation, pp. 92-101, 1990.

   [IEEE.754] IEEE, "IEEE Standard for Floating-Point Arithmetic", IEEE
              Standard 754-2008, August 2008.

   [OGC.GML-3.1.1]
              Cox, S., Daisey, P., Lake, R., Portele, C., and A.
              Whiteside, "Geographic information - Geography Markup
              Language (GML)", OpenGIS 03-105r1, April 2004,
              <http://portal.opengeospatial.org/files/
              ?artifact_id=4700>.

   [OGC.GeoShape]
              Thomson, M. and C. Reed, "GML 3.1.1 PIDF-LO Shape
              Application Schema for use by the Internet Engineering
              Task Force (IETF)", OGC Best Practice 06-142r1, Version:
              1.0, April 2007.

   [RFC1014]  Sun Microsystems, Inc., "XDR: External Data Representation
              standard", RFC 1014, June 1987.

   [RFC2046]  Freed, N. and N. Borenstein, "Multipurpose Internet Mail
              Extensions (MIME) Part Two: Media Types", RFC 2046,
              November 1996.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2616]  Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
              Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
              Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

   [RFC2818]  Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

   [RFC3553]  Mealling, M., Masinter, L., Hardie, T., and G. Klyne, "An
              IETF URN Sub-namespace for Registered Protocol
              Parameters", BCP 73, RFC 3553, June 2003.

   [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
              January 2004.




Thomson, et al.              Standards Track                   [Page 36]
^L
RFC 7035                    Relative Location               October 2013


   [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
              Resource Identifier (URI): Generic Syntax", STD 66, RFC
              3986, January 2005.

   [RFC4119]  Peterson, J., "A Presence-based GEOPRIV Location Object
              Format", RFC 4119, December 2005.

   [RFC4776]  Schulzrinne, H., "Dynamic Host Configuration Protocol
              (DHCPv4 and DHCPv6) Option for Civic Addresses
              Configuration Information", RFC 4776, November 2006.

   [RFC5139]  Thomson, M. and J. Winterbottom, "Revised Civic Location
              Format for Presence Information Data Format Location
              Object (PIDF-LO)", RFC 5139, February 2008.

   [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
              IANA Considerations Section in RFCs", BCP 26, RFC 5226,
              May 2008.

   [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
              (TLS) Protocol Version 1.2", RFC 5246, August 2008.

   [RFC5491]  Winterbottom, J., Thomson, M., and H. Tschofenig, "GEOPRIV
              Presence Information Data Format Location Object (PIDF-LO)
              Usage Clarification, Considerations, and Recommendations",
              RFC 5491, March 2009.

   [RFC5962]  Schulzrinne, H., Singh, V., Tschofenig, H., and M.
              Thomson, "Dynamic Extensions to the Presence Information
              Data Format Location Object (PIDF-LO)", RFC 5962,
              September 2010.

   [RFC6225]  Polk, J., Linsner, M., Thomson, M., and B. Aboba, "Dynamic
              Host Configuration Protocol Options for Coordinate-Based
              Location Configuration Information", RFC 6225, July 2011.

   [RFC6848]  Winterbottom, J., Thomson, M., Barnes, R., Rosen, B., and
              R. George, "Specifying Civic Address Extensions in the
              Presence Information Data Format Location Object (PIDF-
              LO)", RFC 6848, January 2013.

   [WGS84]    US National Imagery and Mapping Agency, "Department of
              Defense (DoD) World Geodetic System 1984 (WGS 84), Third
              Edition", NIMA TR8350.2, January 2000.







Thomson, et al.              Standards Track                   [Page 37]
^L
RFC 7035                    Relative Location               October 2013


10.2.  Informative References

   [RFC3863]  Sugano, H., Fujimoto, S., Klyne, G., Bateman, A., Carr,
              W., and J. Peterson, "Presence Information Data Format
              (PIDF)", RFC 3863, August 2004.

   [RFC4479]  Rosenberg, J., "A Data Model for Presence", RFC 4479, July
              2006.











































Thomson, et al.              Standards Track                   [Page 38]
^L
RFC 7035                    Relative Location               October 2013


Authors' Addresses

   Martin Thomson
   Microsoft
   3210 Porter Drive
   Palo Alto, CA  94304
   US

   Phone: +1 650-353-1925
   EMail: martin.thomson@skype.net


   Brian Rosen
   Neustar
   470 Conrad Dr
   Mars, PA  16046
   US

   EMail: br@brianrosen.net

   Dorothy Stanley
   Aruba Networks
   1322 Crossman Ave
   Sunnyvale, CA  94089
   US

   EMail: dstanley@arubanetworks.com

   Gabor Bajko
   Nokia
   323 Fairchild Drive
   Mountain View, CA  94043
   US

   EMail: gabor.bajko@nokia.com


   Allan Thomson
   Lookingglass Cyber Solutions
   1001 S Kenwood Avenue
   Baltimore, MD  21224
   US

   EMail: athomson@lgscout.com







Thomson, et al.              Standards Track                   [Page 39]
^L