1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
|
Internet Engineering Task Force (IETF) H. Zhou
Request for Comments: 7170 N. Cam-Winget
Category: Standards Track J. Salowey
ISSN: 2070-1721 Cisco Systems
S. Hanna
Infineon Technologies
May 2014
Tunnel Extensible Authentication Protocol (TEAP) Version 1
Abstract
This document defines the Tunnel Extensible Authentication Protocol
(TEAP) version 1. TEAP is a tunnel-based EAP method that enables
secure communication between a peer and a server by using the
Transport Layer Security (TLS) protocol to establish a mutually
authenticated tunnel. Within the tunnel, TLV objects are used to
convey authentication-related data between the EAP peer and the EAP
server.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7170.
Zhou, et al. Standards Track [Page 1]
^L
RFC 7170 TEAP May 2014
Copyright Notice
Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1. Specification Requirements . . . . . . . . . . . . . . . 5
1.2. Terminology . . . . . . . . . . . . . . . . . . . . . . . 6
2. Protocol Overview . . . . . . . . . . . . . . . . . . . . . . 6
2.1. Architectural Model . . . . . . . . . . . . . . . . . . . 7
2.2. Protocol-Layering Model . . . . . . . . . . . . . . . . . 8
3. TEAP Protocol . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1. Version Negotiation . . . . . . . . . . . . . . . . . . . 9
3.2. TEAP Authentication Phase 1: Tunnel Establishment . . . . 10
3.2.1. TLS Session Resume Using Server State . . . . . . . . 11
3.2.2. TLS Session Resume Using a PAC . . . . . . . . . . . 12
3.2.3. Transition between Abbreviated and Full TLS Handshake 13
3.3. TEAP Authentication Phase 2: Tunneled Authentication . . 14
3.3.1. EAP Sequences . . . . . . . . . . . . . . . . . . . . 14
3.3.2. Optional Password Authentication . . . . . . . . . . 15
3.3.3. Protected Termination and Acknowledged Result
Indication . . . . . . . . . . . . . . . . . . . . . 15
3.4. Determining Peer-Id and Server-Id . . . . . . . . . . . . 16
3.5. TEAP Session Identifier . . . . . . . . . . . . . . . . . 17
3.6. Error Handling . . . . . . . . . . . . . . . . . . . . . 17
3.6.1. Outer-Layer Errors . . . . . . . . . . . . . . . . . 18
3.6.2. TLS Layer Errors . . . . . . . . . . . . . . . . . . 18
3.6.3. Phase 2 Errors . . . . . . . . . . . . . . . . . . . 19
3.7. Fragmentation . . . . . . . . . . . . . . . . . . . . . . 19
3.8. Peer Services . . . . . . . . . . . . . . . . . . . . . . 20
3.8.1. PAC Provisioning . . . . . . . . . . . . . . . . . . 21
3.8.2. Certificate Provisioning within the Tunnel . . . . . 22
3.8.3. Server Unauthenticated Provisioning Mode . . . . . . 23
3.8.4. Channel Binding . . . . . . . . . . . . . . . . . . . 23
Zhou, et al. Standards Track [Page 2]
^L
RFC 7170 TEAP May 2014
4. Message Formats . . . . . . . . . . . . . . . . . . . . . . . 24
4.1. TEAP Message Format . . . . . . . . . . . . . . . . . . . 24
4.2. TEAP TLV Format and Support . . . . . . . . . . . . . . . 26
4.2.1. General TLV Format . . . . . . . . . . . . . . . . . 28
4.2.2. Authority-ID TLV . . . . . . . . . . . . . . . . . . 29
4.2.3. Identity-Type TLV . . . . . . . . . . . . . . . . . . 30
4.2.4. Result TLV . . . . . . . . . . . . . . . . . . . . . 31
4.2.5. NAK TLV . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.6. Error TLV . . . . . . . . . . . . . . . . . . . . . . 33
4.2.7. Channel-Binding TLV . . . . . . . . . . . . . . . . . 36
4.2.8. Vendor-Specific TLV . . . . . . . . . . . . . . . . . 37
4.2.9. Request-Action TLV . . . . . . . . . . . . . . . . . 38
4.2.10. EAP-Payload TLV . . . . . . . . . . . . . . . . . . . 40
4.2.11. Intermediate-Result TLV . . . . . . . . . . . . . . . 41
4.2.12. PAC TLV Format . . . . . . . . . . . . . . . . . . . 42
4.2.12.1. Formats for PAC Attributes . . . . . . . . . . . 43
4.2.12.2. PAC-Key . . . . . . . . . . . . . . . . . . . . 44
4.2.12.3. PAC-Opaque . . . . . . . . . . . . . . . . . . . 44
4.2.12.4. PAC-Info . . . . . . . . . . . . . . . . . . . . 45
4.2.12.5. PAC-Acknowledgement TLV . . . . . . . . . . . . 47
4.2.12.6. PAC-Type TLV . . . . . . . . . . . . . . . . . . 48
4.2.13. Crypto-Binding TLV . . . . . . . . . . . . . . . . . 48
4.2.14. Basic-Password-Auth-Req TLV . . . . . . . . . . . . . 51
4.2.15. Basic-Password-Auth-Resp TLV . . . . . . . . . . . . 52
4.2.16. PKCS#7 TLV . . . . . . . . . . . . . . . . . . . . . 53
4.2.17. PKCS#10 TLV . . . . . . . . . . . . . . . . . . . . . 54
4.2.18. Trusted-Server-Root TLV . . . . . . . . . . . . . . . 55
4.3. TLV Rules . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.1. Outer TLVs . . . . . . . . . . . . . . . . . . . . . 57
4.3.2. Inner TLVs . . . . . . . . . . . . . . . . . . . . . 57
5. Cryptographic Calculations . . . . . . . . . . . . . . . . . 58
5.1. TEAP Authentication Phase 1: Key Derivations . . . . . . 58
5.2. Intermediate Compound Key Derivations . . . . . . . . . . 59
5.3. Computing the Compound MAC . . . . . . . . . . . . . . . 61
5.4. EAP Master Session Key Generation . . . . . . . . . . . . 61
6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 62
7. Security Considerations . . . . . . . . . . . . . . . . . . . 66
7.1. Mutual Authentication and Integrity Protection . . . . . 67
7.2. Method Negotiation . . . . . . . . . . . . . . . . . . . 67
7.3. Separation of Phase 1 and Phase 2 Servers . . . . . . . . 67
7.4. Mitigation of Known Vulnerabilities and Protocol
Deficiencies . . . . . . . . . . . . . . . . . . . . . . 68
7.4.1. User Identity Protection and Verification . . . . . . 69
7.4.2. Dictionary Attack Resistance . . . . . . . . . . . . 70
7.4.3. Protection against Man-in-the-Middle Attacks . . . . 70
7.4.4. PAC Binding to User Identity . . . . . . . . . . . . 71
Zhou, et al. Standards Track [Page 3]
^L
RFC 7170 TEAP May 2014
7.5. Protecting against Forged Cleartext EAP Packets . . . . . 71
7.6. Server Certificate Validation . . . . . . . . . . . . . . 72
7.7. Tunnel PAC Considerations . . . . . . . . . . . . . . . . 72
7.8. Security Claims . . . . . . . . . . . . . . . . . . . . . 73
8. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 74
9. References . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.1. Normative References . . . . . . . . . . . . . . . . . . 75
9.2. Informative References . . . . . . . . . . . . . . . . . 76
Appendix A. Evaluation against Tunnel-Based EAP Method
Requirements . . . . . . . . . . . . . . . . . . . . 79
A.1. Requirement 4.1.1: RFC Compliance . . . . . . . . . . . . 79
A.2. Requirement 4.2.1: TLS Requirements . . . . . . . . . . . 79
A.3. Requirement 4.2.1.1.1: Ciphersuite Negotiation . . . . . 79
A.4. Requirement 4.2.1.1.2: Tunnel Data Protection Algorithms 79
A.5. Requirement 4.2.1.1.3: Tunnel Authentication and Key
Establishment . . . . . . . . . . . . . . . . . . . . . . 79
A.6. Requirement 4.2.1.2: Tunnel Replay Protection . . . . . . 79
A.7. Requirement 4.2.1.3: TLS Extensions . . . . . . . . . . . 80
A.8. Requirement 4.2.1.4: Peer Identity Privacy . . . . . . . 80
A.9. Requirement 4.2.1.5: Session Resumption . . . . . . . . . 80
A.10. Requirement 4.2.2: Fragmentation . . . . . . . . . . . . 80
A.11. Requirement 4.2.3: Protection of Data External to Tunnel 80
A.12. Requirement 4.3.1: Extensible Attribute Types . . . . . . 80
A.13. Requirement 4.3.2: Request/Challenge Response Operation . 80
A.14. Requirement 4.3.3: Indicating Criticality of Attributes . 80
A.15. Requirement 4.3.4: Vendor-Specific Support . . . . . . . 81
A.16. Requirement 4.3.5: Result Indication . . . . . . . . . . 81
A.17. Requirement 4.3.6: Internationalization of Display
Strings . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.18. Requirement 4.4: EAP Channel-Binding Requirements . . . . 81
A.19. Requirement 4.5.1.1: Confidentiality and Integrity . . . 81
A.20. Requirement 4.5.1.2: Authentication of Server . . . . . . 81
A.21. Requirement 4.5.1.3: Server Certificate Revocation
Checking . . . . . . . . . . . . . . . . . . . . . . . . 81
A.22. Requirement 4.5.2: Internationalization . . . . . . . . . 81
A.23. Requirement 4.5.3: Metadata . . . . . . . . . . . . . . . 82
A.24. Requirement 4.5.4: Password Change . . . . . . . . . . . 82
A.25. Requirement 4.6.1: Method Negotiation . . . . . . . . . . 82
A.26. Requirement 4.6.2: Chained Methods . . . . . . . . . . . 82
A.27. Requirement 4.6.3: Cryptographic Binding with the TLS
Tunnel . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.28. Requirement 4.6.4: Peer-Initiated EAP Authentication . . 82
A.29. Requirement 4.6.5: Method Metadata . . . . . . . . . . . 82
Appendix B. Major Differences from EAP-FAST . . . . . . . . . . 83
Appendix C. Examples . . . . . . . . . . . . . . . . . . . . . . 83
C.1. Successful Authentication . . . . . . . . . . . . . . . . 83
C.2. Failed Authentication . . . . . . . . . . . . . . . . . . 85
C.3. Full TLS Handshake Using Certificate-Based Ciphersuite . 86
Zhou, et al. Standards Track [Page 4]
^L
RFC 7170 TEAP May 2014
C.4. Client Authentication during Phase 1 with Identity
Privacy . . . . . . . . . . . . . . . . . . . . . . . . . 88
C.5. Fragmentation and Reassembly . . . . . . . . . . . . . . 89
C.6. Sequence of EAP Methods . . . . . . . . . . . . . . . . . 91
C.7. Failed Crypto-Binding . . . . . . . . . . . . . . . . . . 94
C.8. Sequence of EAP Method with Vendor-Specific TLV Exchange 95
C.9. Peer Requests Inner Method after Server Sends Result TLV 97
C.10. Channel Binding . . . . . . . . . . . . . . . . . . . . . 99
1. Introduction
A tunnel-based Extensible Authentication Protocol (EAP) method is an
EAP method that establishes a secure tunnel and executes other EAP
methods under the protection of that secure tunnel. A tunnel-based
EAP method can be used in any lower-layer protocol that supports EAP
authentication. There are several existing tunnel-based EAP methods
that use Transport Layer Security (TLS) [RFC5246] to establish the
secure tunnel. EAP methods supporting this include Protected EAP
(PEAP) [PEAP], EAP Tunneled Transport Layer Security (EAP-TTLS)
[RFC5281], and EAP Flexible Authentication via Secure Tunneling (EAP-
FAST) [RFC4851]. However, they all are either vendor-specific or
informational, and the industry calls for a Standards Track tunnel-
based EAP method. [RFC6678] outlines the list of requirements for a
standard tunnel-based EAP method.
Since its introduction, EAP-FAST [RFC4851] has been widely adopted in
a variety of devices and platforms. It has been adopted by the EMU
working group as the basis for the standard tunnel-based EAP method.
This document describes the Tunnel Extensible Authentication Protocol
(TEAP) version 1, based on EAP-FAST [RFC4851] with some minor changes
to meet the requirements outlined in [RFC6678] for a standard tunnel-
based EAP method.
1.1. Specification Requirements
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
[RFC2119].
Zhou, et al. Standards Track [Page 5]
^L
RFC 7170 TEAP May 2014
1.2. Terminology
Much of the terminology in this document comes from [RFC3748].
Additional terms are defined below:
Protected Access Credential (PAC)
Credentials distributed to a peer for future optimized network
authentication. The PAC consists of a minimum of two components:
a shared secret and an opaque element. The shared secret
component contains the pre-shared key between the peer and the
authentication server. The opaque part is provided to the peer
and is presented to the authentication server when the peer wishes
to obtain access to network resources. The opaque element and
shared secret are used with TLS stateless session resumption
defined in [RFC5077] to establish a protected TLS session. The
secret key and opaque part may be distributed using [RFC5077]
messages or using TLVs within the TEAP tunnel. Finally, a PAC may
optionally include other information that may be useful to the
peer.
Type-Length-Value (TLV)
The TEAP protocol utilizes objects in TLV format. The TLV format
is defined in Section 4.2.
2. Protocol Overview
TEAP authentication occurs in two phases after the initial EAP
Identity request/response exchange. In the first phase, TEAP employs
the TLS [RFC5246] handshake to provide an authenticated key exchange
and to establish a protected tunnel. Once the tunnel is established,
the second phase begins with the peer and server engaging in further
conversations to establish the required authentication and
authorization policies. TEAP makes use of TLV objects to carry out
the inner authentication, results, and other information, such as
channel-binding information.
TEAP makes use of the TLS SessionTicket extension [RFC5077], which
supports TLS session resumption without requiring session-specific
state stored at the server. In this document, the SessionTicket is
referred to as the Protected Access Credential opaque data (or PAC-
Opaque). The PAC-Opaque may be distributed through the use of the
NewSessionTicket message or through a mechanism that uses TLVs within
Phase 2 of TEAP. The secret key used to resume the session in TEAP
is referred to as the Protected Access Credential key (or PAC-Key).
When the NewSessionTicket message is used to distribute the PAC-
Opaque, the PAC-Key is the master secret for the session. If TEAP
Zhou, et al. Standards Track [Page 6]
^L
RFC 7170 TEAP May 2014
Phase 2 is used to distribute the PAC-Opaque, then the PAC-Key is
distributed along with the PAC-Opaque. TEAP implementations MUST
support the [RFC5077] mechanism for distributing a PAC-Opaque, and it
is RECOMMENDED that implementations support the capability to
distribute the ticket and secret key within the TEAP tunnel.
The TEAP conversation is used to establish or resume an existing
session to typically establish network connectivity between a peer
and the network. Upon successful execution of TEAP, the EAP peer and
EAP server both derive strong session key material that can then be
communicated to the network access server (NAS) for use in
establishing a link-layer security association.
2.1. Architectural Model
The network architectural model for TEAP usage is shown below:
+----------+ +----------+ +----------+ +----------+
| | | | | | | Inner |
| Peer |<---->| Authen- |<---->| TEAP |<---->| Method |
| | | ticator | | server | | server |
| | | | | | | |
+----------+ +----------+ +----------+ +----------+
TEAP Architectural Model
The entities depicted above are logical entities and may or may not
correspond to separate network components. For example, the TEAP
server and inner method server might be a single entity; the
authenticator and TEAP server might be a single entity; or the
functions of the authenticator, TEAP server, and inner method server
might be combined into a single physical device. For example,
typical IEEE 802.11 deployments place the authenticator in an access
point (AP) while a RADIUS server may provide the TEAP and inner
method server components. The above diagram illustrates the division
of labor among entities in a general manner and shows how a
distributed system might be constructed; however, actual systems
might be realized more simply. The security considerations in
Section 7.3 provide an additional discussion of the implications of
separating the TEAP server from the inner method server.
Zhou, et al. Standards Track [Page 7]
^L
RFC 7170 TEAP May 2014
2.2. Protocol-Layering Model
TEAP packets are encapsulated within EAP; EAP in turn requires a
transport protocol. TEAP packets encapsulate TLS, which is then used
to encapsulate user authentication information. Thus, TEAP messaging
can be described using a layered model, where each layer encapsulates
the layer above it. The following diagram clarifies the relationship
between protocols:
+---------------------------------------------------------------+
| Inner EAP Method | Other TLV information |
|---------------------------------------------------------------|
| TLV Encapsulation (TLVs) |
|---------------------------------------------------------------|
| TLS | Optional Outer TLVs |
|---------------------------------------------------------------|
| TEAP |
|---------------------------------------------------------------|
| EAP |
|---------------------------------------------------------------|
| Carrier Protocol (EAP over LAN, RADIUS, Diameter, etc.) |
+---------------------------------------------------------------+
Protocol-Layering Model
The TLV layer is a payload with TLV objects as defined in
Section 4.2. The TLV objects are used to carry arbitrary parameters
between an EAP peer and an EAP server. All conversations in the TEAP
protected tunnel are encapsulated in a TLV layer.
TEAP packets may include TLVs both inside and outside the TLS tunnel.
The term "Outer TLVs" is used to refer to optional TLVs outside the
TLS tunnel, which are only allowed in the first two messages in the
TEAP protocol. That is the first EAP-server-to-peer message and
first peer-to-EAP-server message. If the message is fragmented, the
whole set of messages is counted as one message. The term "Inner
TLVs" is used to refer to TLVs sent within the TLS tunnel. In TEAP
Phase 1, Outer TLVs are used to help establish the TLS tunnel, but no
Inner TLVs are used. In Phase 2 of the TEAP conversation, TLS
records may encapsulate zero or more Inner TLVs, but no Outer TLVs.
Methods for encapsulating EAP within carrier protocols are already
defined. For example, IEEE 802.1X [IEEE.802-1X.2013] may be used to
transport EAP between the peer and the authenticator; RADIUS
[RFC3579] or Diameter [RFC4072] may be used to transport EAP between
the authenticator and the EAP server.
Zhou, et al. Standards Track [Page 8]
^L
RFC 7170 TEAP May 2014
3. TEAP Protocol
The operation of the protocol, including Phase 1 and Phase 2, is the
topic of this section. The format of TEAP messages is given in
Section 4, and the cryptographic calculations are given in Section 5.
3.1. Version Negotiation
TEAP packets contain a 3-bit Version field, following the TLS Flags
field, which enables future TEAP implementations to be backward
compatible with previous versions of the protocol. This
specification documents the TEAP version 1 protocol; implementations
of this specification MUST use a Version field set to 1.
Version negotiation proceeds as follows:
1. In the first EAP-Request sent with EAP type=TEAP, the EAP server
MUST set the Version field to the highest version it supports.
2a. If the EAP peer supports this version of the protocol, it
responds with an EAP-Response of EAP type=TEAP, including the
version number proposed by the TEAP server.
2b. If the TEAP peer does not support the proposed version but
supports a lower version, it responds with an EAP-Response of
EAP type=TEAP and sets the Version field to its highest
supported version.
2c. If the TEAP peer only supports versions higher than the version
proposed by the TEAP server, then use of TEAP will not be
possible. In this case, the TEAP peer sends back an EAP-Nak
either to negotiate a different EAP type or to indicate no other
EAP types are available.
3a. If the TEAP server does not support the version number proposed
by the TEAP peer, it MUST either terminate the conversation with
an EAP Failure or negotiate a new EAP type.
3b. If the TEAP server does support the version proposed by the TEAP
peer, then the conversation continues using the version proposed
by the TEAP peer.
The version negotiation procedure guarantees that the TEAP peer and
server will agree to the latest version supported by both parties.
If version negotiation fails, then use of TEAP will not be possible,
and another mutually acceptable EAP method will need to be negotiated
if authentication is to proceed.
Zhou, et al. Standards Track [Page 9]
^L
RFC 7170 TEAP May 2014
The TEAP version is not protected by TLS and hence can be modified in
transit. In order to detect a modification of the TEAP version, the
peers MUST exchange the TEAP version number received during version
negotiation using the Crypto-Binding TLV described in Section 4.2.13.
The receiver of the Crypto-Binding TLV MUST verify that the version
received in the Crypto-Binding TLV matches the version sent by the
receiver in the TEAP version negotiation. If the Crypto-Binding TLV
fails to be validated, then it is a fatal error and is handled as
described in Section 3.6.3.
3.2. TEAP Authentication Phase 1: Tunnel Establishment
TEAP relies on the TLS handshake [RFC5246] to establish an
authenticated and protected tunnel. The TLS version offered by the
peer and server MUST be TLS version 1.2 [RFC5246] or later. This
version of the TEAP implementation MUST support the following TLS
ciphersuites:
TLS_RSA_WITH_AES_128_CBC_SHA [RFC5246]
TLS_DHE_RSA_WITH_AES_128_CBC_SHA [RFC5246]
This version of the TEAP implementation SHOULD support the following
TLS ciphersuite:
TLS_RSA_WITH_AES_256_CBC_SHA [RFC5246]
Other ciphersuites MAY be supported. It is REQUIRED that anonymous
ciphersuites such as TLS_DH_anon_WITH_AES_128_CBC_SHA [RFC5246] only
be used in the case when the inner authentication method provides
mutual authentication, key generation, and resistance to man-in-the-
middle and dictionary attacks. TLS ciphersuites that do not provide
confidentiality MUST NOT be used. During the TEAP Phase 1
conversation, the TEAP endpoints MAY negotiate TLS compression.
During TLS tunnel establishment, TLS extensions MAY be used. For
instance, the Certificate Status Request extension [RFC6066] and the
Multiple Certificate Status Request extension [RFC6961] can be used
to leverage a certificate-status protocol such as Online Certificate
Status Protocol (OCSP) [RFC6960] to check the validity of server
certificates. TLS renegotiation indications defined in RFC 5746
[RFC5746] MUST be supported.
The EAP server initiates the TEAP conversation with an EAP request
containing a TEAP/Start packet. This packet includes a set Start (S)
bit, the TEAP version as specified in Section 3.1, and an authority
identity TLV. The TLS payload in the initial packet is empty. The
authority identity TLV (Authority-ID TLV) is used to provide the peer
a hint of the server's identity that may be useful in helping the
Zhou, et al. Standards Track [Page 10]
^L
RFC 7170 TEAP May 2014
peer select the appropriate credential to use. Assuming that the
peer supports TEAP, the conversation continues with the peer sending
an EAP-Response packet with EAP type of TEAP with the Start (S) bit
clear and the version as specified in Section 3.1. This message
encapsulates one or more TLS handshake messages. If the TEAP version
negotiation is successful, then the TEAP conversation continues until
the EAP server and EAP peer are ready to enter Phase 2. When the
full TLS handshake is performed, then the first payload of TEAP Phase
2 MAY be sent along with a server-finished handshake message to
reduce the number of round trips.
TEAP implementations MUST support mutual peer authentication during
tunnel establishment using the TLS ciphersuites specified in this
section. The TEAP peer does not need to authenticate as part of the
TLS exchange but can alternatively be authenticated through
additional exchanges carried out in Phase 2.
The TEAP tunnel protects peer identity information exchanged during
Phase 2 from disclosure outside the tunnel. Implementations that
wish to provide identity privacy for the peer identity need to
carefully consider what information is disclosed outside the tunnel
prior to Phase 2. TEAP implementations SHOULD support the immediate
renegotiation of a TLS session to initiate a new handshake message
exchange under the protection of the current ciphersuite. This
allows support for protection of the peer's identity when using TLS
client authentication. An example of the exchanges using TLS
renegotiation to protect privacy is shown in Appendix C.
The following sections describe resuming a TLS session based on
server-side or client-side state.
3.2.1. TLS Session Resume Using Server State
TEAP session resumption is achieved in the same manner TLS achieves
session resume. To support session resumption, the server and peer
minimally cache the Session ID, master secret, and ciphersuite. The
peer attempts to resume a session by including a valid Session ID
from a previous TLS handshake in its ClientHello message. If the
server finds a match for the Session ID and is willing to establish a
new connection using the specified session state, the server will
respond with the same Session ID and proceed with the TEAP Phase 1
tunnel establishment based on a TLS abbreviated handshake. After a
successful conclusion of the TEAP Phase 1 conversation, the
conversation then continues on to Phase 2.
Zhou, et al. Standards Track [Page 11]
^L
RFC 7170 TEAP May 2014
3.2.2. TLS Session Resume Using a PAC
TEAP supports the resumption of sessions based on server state being
stored on the client side using the TLS SessionTicket extension
techniques described in [RFC5077]. This version of TEAP supports the
provisioning of a ticket called a Protected Access Credential (PAC)
through the use of the NewSessionTicket handshake described in
[RFC5077], as well as provisioning of a PAC inside the protected
tunnel. Implementations MUST support the TLS Ticket extension
[RFC5077] mechanism for distributing a PAC and may provide additional
ways to provision the PAC, such as manual configuration. Since the
PAC mentioned here is used for establishing the TLS tunnel, it is
more specifically referred to as the Tunnel PAC. The Tunnel PAC is a
security credential provided by the EAP server to a peer and
comprised of:
1. PAC-Key: this is the key used by the peer as the TLS master
secret to establish the TEAP Phase 1 tunnel. The PAC-Key is a
strong, high-entropy, at minimum 48-octet key and is typically
the master secret from a previous TLS session. The PAC-Key is a
secret and MUST be treated accordingly. Otherwise, if leaked, it
could lead to user credentials being compromised if sent within
the tunnel established using the PAC-Key. In the case that a
PAC-Key is provisioned to the peer through another means, it MUST
have its confidentiality and integrity protected by a mechanism,
such as the TEAP Phase 2 tunnel. The PAC-Key MUST be stored
securely by the peer.
2. PAC-Opaque: this is a variable-length field containing the ticket
that is sent to the EAP server during the TEAP Phase 1 tunnel
establishment based on [RFC5077]. The PAC-Opaque can only be
interpreted by the EAP server to recover the required information
for the server to validate the peer's identity and
authentication. The PAC-Opaque includes the PAC-Key and other
TLS session parameters. It may contain the PAC's peer identity.
The PAC-Opaque format and contents are specific to the PAC
issuing server. The PAC-Opaque may be presented in the clear, so
an attacker MUST NOT be able to gain useful information from the
PAC-Opaque itself. The server issuing the PAC-Opaque needs to
ensure it is protected with strong cryptographic keys and
algorithms. The PAC-Opaque may be distributed using the
NewSessionTicket message defined in [RFC5077], or it may be
distributed through another mechanism such as the Phase 2 TLVs
defined in this document.
Zhou, et al. Standards Track [Page 12]
^L
RFC 7170 TEAP May 2014
3. PAC-Info: this is an optional variable-length field used to
provide, at a minimum, the authority identity of the PAC issuer.
Other useful but not mandatory information, such as the PAC-Key
lifetime, may also be conveyed by the PAC-issuing server to the
peer during PAC provisioning or refreshment. PAC-Info is not
included if the NewSessionTicket message is used to provision the
PAC.
The use of the PAC is based on the SessionTicket extension defined in
[RFC5077]. The EAP server initiates the TEAP conversation as normal.
Upon receiving the Authority-ID TLV from the server, the peer checks
to see if it has an existing valid PAC-Key and PAC-Opaque for the
server. If it does, then it obtains the PAC-Opaque and puts it in
the SessionTicket extension in the ClientHello. It is RECOMMENDED in
TEAP that the peer include an empty Session ID in a ClientHello
containing a PAC-Opaque. This version of TEAP supports the
NewSessionTicket Handshake message as described in [RFC5077] for
distribution of a new PAC, as well as the provisioning of PAC inside
the protected tunnel. If the PAC-Opaque included in the
SessionTicket extension is valid and the EAP server permits the
abbreviated TLS handshake, it will select the ciphersuite from
information within the PAC-Opaque and finish with the abbreviated TLS
handshake. If the server receives a Session ID and a PAC-Opaque in
the SessionTicket extension in a ClientHello, it should place the
same Session ID in the ServerHello if it is resuming a session based
on the PAC-Opaque. The conversation then proceeds as described in
[RFC5077] until the handshake completes or a fatal error occurs.
After the abbreviated handshake completes, the peer and the server
are ready to commence Phase 2.
3.2.3. Transition between Abbreviated and Full TLS Handshake
If session resumption based on server-side or client-side state
fails, the server can gracefully fall back to a full TLS handshake.
If the ServerHello received by the peer contains an empty Session ID
or a Session ID that is different than in the ClientHello, the server
may fall back to a full handshake. The peer can distinguish the
server's intent to negotiate a full or abbreviated TLS handshake by
checking the next TLS handshake messages in the server response to
the ClientHello. If ChangeCipherSpec follows the ServerHello in
response to the ClientHello, then the server has accepted the session
resumption and intends to negotiate the abbreviated handshake.
Otherwise, the server intends to negotiate the full TLS handshake. A
peer can request that a new PAC be provisioned after the full TLS
handshake and mutual authentication of the peer and the server. A
peer SHOULD NOT request that a new PAC be provisioned after the
abbreviated handshake, as requesting a new session ticket based on
resumed session is not permitted. In order to facilitate the
Zhou, et al. Standards Track [Page 13]
^L
RFC 7170 TEAP May 2014
fallback to a full handshake, the peer SHOULD include ciphersuites
that allow for a full handshake and possibly PAC provisioning so the
server can select one of these in case session resumption fails. An
example of the transition is shown in Appendix C.
3.3. TEAP Authentication Phase 2: Tunneled Authentication
The second portion of the TEAP authentication occurs immediately
after successful completion of Phase 1. Phase 2 occurs even if both
peer and authenticator are authenticated in the Phase 1 TLS
negotiation. Phase 2 MUST NOT occur if the Phase 1 TLS handshake
fails, as that will compromise the security as the tunnel has not
been established successfully. Phase 2 consists of a series of
requests and responses encapsulated in TLV objects defined in
Section 4.2. Phase 2 MUST always end with a Crypto-Binding TLV
exchange described in Section 4.2.13 and a protected termination
exchange described in Section 3.3.3. The TLV exchange may include
the execution of zero or more EAP methods within the protected tunnel
as described in Section 3.3.1. A server MAY proceed directly to the
protected termination exchange if it does not wish to request further
authentication from the peer. However, the peer and server MUST NOT
assume that either will skip inner EAP methods or other TLV
exchanges, as the other peer might have a different security policy.
The peer may have roamed to a network that requires conformance with
a different authentication policy, or the peer may request the server
take additional action (e.g., channel binding) through the use of the
Request-Action TLV as defined in Section 4.2.9.
3.3.1. EAP Sequences
EAP [RFC3748] prohibits use of multiple authentication methods within
a single EAP conversation in order to limit vulnerabilities to man-
in-the-middle attacks. TEAP addresses man-in-the-middle attacks
through support for cryptographic protection of the inner EAP
exchange and cryptographic binding of the inner authentication
method(s) to the protected tunnel. EAP methods are executed serially
in a sequence. This version of TEAP does not support initiating
multiple EAP methods simultaneously in parallel. The methods need
not be distinct. For example, EAP-TLS could be run twice as an inner
method, first using machine credentials followed by a second instance
using user credentials.
EAP method messages are carried within EAP-Payload TLVs defined in
Section 4.2.10. If more than one method is going to be executed in
the tunnel, then upon method completion, the server MUST send an
Intermediate-Result TLV indicating the result. The peer MUST respond
to the Intermediate-Result TLV indicating its result. If the result
indicates success, the Intermediate-Result TLV MUST be accompanied by
Zhou, et al. Standards Track [Page 14]
^L
RFC 7170 TEAP May 2014
a Crypto-Binding TLV. The Crypto-Binding TLV is further discussed in
Sections 4.2.13 and 5.3. The Intermediate-Result TLVs can be
included with other TLVs such as EAP-Payload TLVs starting a new EAP
conversation or with the Result TLV used in the protected termination
exchange.
If both peer and server indicate success, then the method is
considered complete. If either indicates failure, then the method is
considered failed. The result of failure of an EAP method does not
always imply a failure of the overall authentication. If one
authentication method fails, the server may attempt to authenticate
the peer with a different method.
3.3.2. Optional Password Authentication
The use of EAP-FAST-GTC as defined in RFC 5421 [RFC5421] is NOT
RECOMMENDED with TEAPv1 because EAP-FAST-GTC is not compliant with
EAP-GTC defined in [RFC3748]. Implementations should instead make
use of the password authentication TLVs defined in this
specification. The authentication server initiates password
authentication by sending a Basic-Password-Auth-Req TLV defined in
Section 4.2.14. If the peer wishes to participate in password
authentication, then it responds with a Basic-Password-Auth-Resp TLV
as defined in Section 4.2.15 that contains the username and password.
If it does not wish to perform password authentication, then it
responds with a NAK TLV indicating the rejection of the Basic-
Password-Auth-Req TLV. Upon receiving the response, the server
indicates the success or failure of the exchange using an
Intermediate-Result TLV. Multiple round trips of password
authentication requests and responses MAY be used to support some
"housecleaning" functions such as a password or pin change before a
user is authenticated.
3.3.3. Protected Termination and Acknowledged Result Indication
A successful TEAP Phase 2 conversation MUST always end in a
successful Crypto-Binding TLV and Result TLV exchange. A TEAP server
may initiate the Crypto-Binding TLV and Result TLV exchange without
initiating any EAP conversation in TEAP Phase 2. After the final
Result TLV exchange, the TLS tunnel is terminated, and a cleartext
EAP Success or EAP Failure is sent by the server. Peers implementing
TEAP MUST NOT accept a cleartext EAP Success or failure packet prior
to the peer and server reaching synchronized protected result
indication.
The Crypto-Binding TLV exchange is used to prove that both the peer
and server participated in the tunnel establishment and sequence of
authentications. It also provides verification of the TEAP type,
Zhou, et al. Standards Track [Page 15]
^L
RFC 7170 TEAP May 2014
version negotiated, and Outer TLVs exchanged before the TLS tunnel
establishment. The Crypto-Binding TLV MUST be exchanged and verified
before the final Result TLV exchange, regardless of whether or not
there is an inner EAP method authentication. The Crypto-Binding TLV
and Intermediate-Result TLV MUST be included to perform cryptographic
binding after each successful EAP method in a sequence of one or more
EAP methods. The server may send the final Result TLV along with an
Intermediate-Result TLV and a Crypto-Binding TLV to indicate its
intention to end the conversation. If the peer requires nothing more
from the server, it will respond with a Result TLV indicating success
accompanied by a Crypto-Binding TLV and Intermediate-Result TLV if
necessary. The server then tears down the tunnel and sends a
cleartext EAP Success or EAP Failure.
If the peer receives a Result TLV indicating success from the server,
but its authentication policies are not satisfied (for example, it
requires a particular authentication mechanism be run or it wants to
request a PAC), it may request further action from the server using
the Request-Action TLV. The Request-Action TLV is sent with a Status
field indicating what EAP Success/Failure result the peer would
expect if the requested action is not granted. The value of the
Action field indicates what the peer would like to do next. The
format and values for the Request-Action TLV are defined in
Section 4.2.9.
Upon receiving the Request-Action TLV, the server may process the
request or ignore it, based on its policy. If the server ignores the
request, it proceeds with termination of the tunnel and sends the
cleartext EAP Success or Failure message based on the Status field of
the peer's Request-Action TLV. If the server honors and processes
the request, it continues with the requested action. The
conversation completes with a Result TLV exchange. The Result TLV
may be included with the TLV that completes the requested action.
Error handling for Phase 2 is discussed in Section 3.6.3.
3.4. Determining Peer-Id and Server-Id
The Peer-Id and Server-Id [RFC5247] may be determined based on the
types of credentials used during either the TEAP tunnel creation or
authentication. In the case of multiple peer authentications, all
authenticated peer identities and their corresponding identity types
(Section 4.2.3) need to be exported. In the case of multiple server
authentications, all authenticated server identities need to be
exported.
Zhou, et al. Standards Track [Page 16]
^L
RFC 7170 TEAP May 2014
When X.509 certificates are used for peer authentication, the Peer-Id
is determined by the subject and subjectAltName fields in the peer
certificate. As noted in [RFC5280]:
The subject field identifies the entity associated with the public
key stored in the subject public key field. The subject name MAY
be carried in the subject field and/or the subjectAltName
extension. . . . If subject naming information is present only in
the subjectAltName extension (e.g., a key bound only to an email
address or URI), then the subject name MUST be an empty sequence
and the subjectAltName extension MUST be critical.
Where it is non-empty, the subject field MUST contain an X.500
distinguished name (DN).
If an inner EAP method is run, then the Peer-Id is obtained from the
inner method.
When the server uses an X.509 certificate to establish the TLS
tunnel, the Server-Id is determined in a similar fashion as stated
above for the Peer-Id, e.g., the subject and subjectAltName fields in
the server certificate define the Server-Id.
3.5. TEAP Session Identifier
The EAP session identifier [RFC5247] is constructed using the tls-
unique from the Phase 1 outer tunnel at the beginning of Phase 2 as
defined by Section 3.1 of [RFC5929]. The Session-Id is defined as
follows:
Session-Id = teap_type || tls-unique
where teap_type is the EAP Type assigned to TEAP
tls-unique = tls-unique from the Phase 1 outer tunnel at the
beginning of Phase 2 as defined by Section 3.1 of [RFC5929]
|| means concatenation
3.6. Error Handling
TEAP uses the error-handling rules summarized below:
1. Errors in the outer EAP packet layer are handled as defined in
Section 3.6.1.
2. Errors in the TLS layer are communicated via TLS alert messages
in all phases of TEAP.
Zhou, et al. Standards Track [Page 17]
^L
RFC 7170 TEAP May 2014
3. The Intermediate-Result TLVs carry success or failure indications
of the individual EAP methods in TEAP Phase 2. Errors within the
EAP conversation in Phase 2 are expected to be handled by
individual EAP methods.
4. Violations of the Inner TLV rules are handled using Result TLVs
together with Error TLVs.
5. Tunnel-compromised errors (errors caused by a failed or missing
Crypto-Binding) are handled using Result TLVs and Error TLVs.
3.6.1. Outer-Layer Errors
Errors on the TEAP outer-packet layer are handled in the following
ways:
1. If Outer TLVs are invalid or contain unknown values, they will be
ignored.
2. The entire TEAP packet will be ignored if other fields (version,
length, flags, etc.) are inconsistent with this specification.
3.6.2. TLS Layer Errors
If the TEAP server detects an error at any point in the TLS handshake
or the TLS layer, the server SHOULD send a TEAP request encapsulating
a TLS record containing the appropriate TLS alert message rather than
immediately terminating the conversation so as to allow the peer to
inform the user of the cause of the failure and possibly allow for a
restart of the conversation. The peer MUST send a TEAP response to
an alert message. The EAP-Response packet sent by the peer may
encapsulate a TLS ClientHello handshake message, in which case the
TEAP server MAY allow the TEAP conversation to be restarted, or it
MAY contain a TEAP response with a zero-length message, in which case
the server MUST terminate the conversation with an EAP Failure
packet. It is up to the TEAP server whether or not to allow
restarts, and, if allowed, how many times the conversation can be
restarted. Per TLS [RFC5246], TLS restart is only allowed for non-
fatal alerts. A TEAP server implementing restart capability SHOULD
impose a limit on the number of restarts, so as to protect against
denial-of-service attacks. If the TEAP server does not allow
restarts, it MUST terminate the conversation with an EAP Failure
packet.
If the TEAP peer detects an error at any point in the TLS layer, the
TEAP peer SHOULD send a TEAP response encapsulating a TLS record
containing the appropriate TLS alert message. The server may restart
the conversation by sending a TEAP request packet encapsulating the
Zhou, et al. Standards Track [Page 18]
^L
RFC 7170 TEAP May 2014
TLS HelloRequest handshake message. The peer may allow the TEAP
conversation to be restarted, or it may terminate the conversation by
sending a TEAP response with a zero-length message.
3.6.3. Phase 2 Errors
Any time the peer or the server finds a fatal error outside of the
TLS layer during Phase 2 TLV processing, it MUST send a Result TLV of
failure and an Error TLV with the appropriate error code. For errors
involving the processing of the sequence of exchanges, such as a
violation of TLV rules (e.g., multiple EAP-Payload TLVs), the error
code is Unexpected TLVs Exchanged. For errors involving a tunnel
compromise, the error code is Tunnel Compromise Error. Upon sending
a Result TLV with a fatal Error TLV, the sender terminates the TLS
tunnel. Note that a server will still wait for a message from the
peer after it sends a failure; however, the server does not need to
process the contents of the response message.
For the inner method, retransmission is not needed and SHOULD NOT be
attempted, as the Outer TLS tunnel can be considered a reliable
transport. If there is a non-fatal error handling the inner method,
instead of silently dropping the inner method request or response and
not responding, the receiving side SHOULD use an Error TLV with error
code Inner Method Error to indicate an error processing the current
inner method. The side receiving the Error TLV MAY decide to start a
new inner method instead or send back a Result TLV to terminate the
TEAP authentication session.
If a server receives a Result TLV of failure with a fatal Error TLV,
it MUST send a cleartext EAP Failure. If a peer receives a Result
TLV of failure, it MUST respond with a Result TLV indicating failure.
If the server has sent a Result TLV of failure, it ignores the peer
response, and it MUST send a cleartext EAP Failure.
3.7. Fragmentation
A single TLS record may be up to 16384 octets in length, but a TLS
message may span multiple TLS records, and a TLS certificate message
may, in principle, be as long as 16 MB. This is larger than the
maximum size for a message on most media types; therefore, it is
desirable to support fragmentation. Note that in order to protect
against reassembly lockup and denial-of-service attacks, it may be
desirable for an implementation to set a maximum size for one such
group of TLS messages. Since a typical certificate chain is rarely
longer than a few thousand octets, and no other field is likely to be
anywhere near as long, a reasonable choice of maximum acceptable
message length might be 64 KB. This is still a fairly large message
packet size so a TEAP implementation MUST provide its own support for
Zhou, et al. Standards Track [Page 19]
^L
RFC 7170 TEAP May 2014
fragmentation and reassembly. Section 3.1 of [RFC3748] discusses
determining the MTU usable by EAP, and Section 4.3 discusses
retransmissions in EAP.
Since EAP is a lock-step protocol, fragmentation support can be added
in a simple manner. In EAP, fragments that are lost or damaged in
transit will be retransmitted, and since sequencing information is
provided by the Identifier field in EAP, there is no need for a
fragment offset field.
TEAP fragmentation support is provided through the addition of flag
bits within the EAP-Response and EAP-Request packets, as well as a
Message Length field of four octets. Flags include the Length
included (L), More fragments (M), and TEAP Start (S) bits. The L
flag is set to indicate the presence of the four-octet Message Length
field and MUST be set for the first fragment of a fragmented TLS
message or set of messages. It MUST NOT be present for any other
message. The M flag is set on all but the last fragment. The S flag
is set only within the TEAP start message sent from the EAP server to
the peer. The Message Length field is four octets and provides the
total length of the message that may be fragmented over the data
fields of multiple packets; this simplifies buffer allocation.
When a TEAP peer receives an EAP-Request packet with the M bit set,
it MUST respond with an EAP-Response with EAP Type of TEAP and no
data. This serves as a fragment ACK. The EAP server MUST wait until
it receives the EAP-Response before sending another fragment. In
order to prevent errors in processing of fragments, the EAP server
MUST increment the Identifier field for each fragment contained
within an EAP-Request, and the peer MUST include this Identifier
value in the fragment ACK contained within the EAP-Response.
Retransmitted fragments will contain the same Identifier value.
Similarly, when the TEAP server receives an EAP-Response with the M
bit set, it responds with an EAP-Request with EAP Type of TEAP and no
data. This serves as a fragment ACK. The EAP peer MUST wait until
it receives the EAP-Request before sending another fragment. In
order to prevent errors in the processing of fragments, the EAP
server MUST increment the Identifier value for each fragment ACK
contained within an EAP-Request, and the peer MUST include this
Identifier value in the subsequent fragment contained within an EAP-
Response.
3.8. Peer Services
Several TEAP services, including server unauthenticated provisioning,
PAC provisioning, certificate provisioning, and channel binding,
depend on the peer trusting the TEAP server. Peers MUST authenticate
Zhou, et al. Standards Track [Page 20]
^L
RFC 7170 TEAP May 2014
the server before these peer services are used. TEAP peer
implementations MUST have a configuration where authentication fails
if server authentication cannot be achieved. In many cases, the
server will want to authenticate the peer before providing these
services as well.
TEAP peers MUST track whether or not server authentication has taken
place. Server authentication results if the peer trusts the provided
server certificate. Typically, this involves both validating the
certificate to a trust anchor and confirming the entity named by the
certificate is the intended server. Server authentication also
results when the procedures in Section 3.2 are used to resume a
session in which the peer and server were previously mutually
authenticated. Alternatively, peer services can be used if an inner
EAP method providing mutual authentication and an Extended Master
Session Key (EMSK) is executed and cryptographic binding with the
EMSK Compound Message Authentication Code (MAC) is correctly
validated (Section 4.2.13). This is further described in
Section 3.8.3.
An additional complication arises when a tunnel method authenticates
multiple parties such as authenticating both the peer machine and the
peer user to the EAP server. Depending on how authentication is
achieved, only some of these parties may have confidence in it. For
example, if a strong shared secret is used to mutually authenticate
the user and the EAP server, the machine may not have confidence that
the EAP server is the authenticated party if the machine cannot trust
the user not to disclose the shared secret to an attacker. In these
cases, the parties who participate in the authentication need to be
considered when evaluating whether to use peer services.
3.8.1. PAC Provisioning
To request provisioning of a PAC, a peer sends a PAC TLV as defined
in Section 4.2.12 containing a PAC Attribute as defined in
Section 4.2.12.1 of PAC-Type set to the appropriate value. The peer
MUST successfully authenticate the EAP server and validate the
Crypto-Binding TLV as defined in Section 4.2.13 before issuing the
request. The peer MUST send separate PAC TLVs for each type of PAC
it wants to be provisioned. Multiple PAC TLVs can be sent in the
same packet or in different packets. The EAP server will send the
PACs after its internal policy has been satisfied, or it MAY ignore
the request or request additional authentications if its policy
dictates. The server MAY cache the request and provision the PACs
requested after all of its internal policies have been satisfied. If
a peer receives a PAC with an unknown type, it MUST ignore it.
Zhou, et al. Standards Track [Page 21]
^L
RFC 7170 TEAP May 2014
A PAC TLV containing a PAC-Acknowledge attribute MUST be sent by the
peer to acknowledge the receipt of the Tunnel PAC. A PAC TLV
containing a PAC-Acknowledge attribute MUST NOT be used by the peer
to acknowledge the receipt of other types of PACs. If the peer
receives a PAC TLV with an unknown attribute, it SHOULD ignore the
unknown attribute.
3.8.2. Certificate Provisioning within the Tunnel
Provisioning of a peer's certificate is supported in TEAP by
performing the Simple PKI Request/Response from [RFC5272] using
PKCS#10 and PKCS#7 TLVs, respectively. A peer sends the Simple PKI
Request using a PKCS#10 CertificateRequest [RFC2986] encoded into the
body of a PKCS#10 TLV (see Section 4.2.17). The TEAP server issues a
Simple PKI Response using a PKCS#7 [RFC2315] degenerate "Certificates
Only" message encoded into the body of a PKCS#7 TLV (see
Section 4.2.16), only after an authentication method has run and
provided an identity proof on the peer prior to a certificate is
being issued.
In order to provide linking identity and proof-of-possession by
including information specific to the current authenticated TLS
session within the signed certification request, the peer generating
the request SHOULD obtain the tls-unique value from the TLS subsystem
as defined in "Channel Bindings for TLS" [RFC5929]. The TEAP peer
operations between obtaining the tls_unique value through generation
of the Certification Signing Request (CSR) that contains the current
tls_unique value and the subsequent verification of this value by the
TEAP server are the "phases of the application protocol during which
application-layer authentication occurs" that are protected by the
synchronization interoperability mechanism described in the
interoperability note in "Channel Bindings for TLS" ([RFC5929],
Section 3.1). When performing renegotiation, TLS
"secure_renegotiation" [RFC5746] MUST be used.
The tls-unique value is base-64-encoded as specified in Section 4 of
[RFC4648], and the resulting string is placed in the certification
request challengePassword field ([RFC2985], Section 5.4.1). The
challengePassword field is limited to 255 octets (Section 7.4.9 of
[RFC5246] indicates that no existing ciphersuite would result in an
issue with this limitation). If tls-unique information is not
embedded within the certification request, the challengePassword
field MUST be empty to indicate that the peer did not include the
optional channel-binding information (any value submitted is verified
by the server as tls-unique information).
Zhou, et al. Standards Track [Page 22]
^L
RFC 7170 TEAP May 2014
The server SHOULD verify the tls-unique information. This ensures
that the authenticated TEAP peer is in possession of the private key
used to sign the certification request.
The Simple PKI Request/Response generation and processing rules of
[RFC5272] SHALL apply to TEAP, with the exception of error
conditions. In the event of an error, the TEAP server SHOULD respond
with an Error TLV using the most descriptive error code possible; it
MAY ignore the PKCS#10 request that generated the error.
3.8.3. Server Unauthenticated Provisioning Mode
In Server Unauthenticated Provisioning Mode, an unauthenticated
tunnel is established in Phase 1, and the peer and server negotiate
an EAP method in Phase 2 that supports mutual authentication and key
derivation that is resistant to attacks such as man-in-the-middle and
dictionary attacks. This provisioning mode enables the bootstrapping
of peers when the peer lacks the ability to authenticate the server
during Phase 1. This includes both cases in which the ciphersuite
negotiated does not provide authentication and in which the
ciphersuite negotiated provides the authentication but the peer is
unable to validate the identity of the server for some reason.
Upon successful completion of the EAP method in Phase 2, the peer and
server exchange a Crypto-Binding TLV to bind the inner method with
the outer tunnel and ensure that a man-in-the-middle attack has not
been attempted.
Support for the Server Unauthenticated Provisioning Mode is optional.
The ciphersuite TLS_DH_anon_WITH_AES_128_CBC_SHA is RECOMMENDED when
using Server Unauthenticated Provisioning Mode, but other anonymous
ciphersuites MAY be supported as long as the TLS pre-master secret is
generated from contribution from both peers. Phase 2 EAP methods
used in Server Unauthenticated Provisioning Mode MUST provide mutual
authentication, provide key generation, and be resistant to
dictionary attack. Example inner methods include EAP-pwd [RFC5931]
and EAP-EKE [RFC6124].
3.8.4. Channel Binding
[RFC6677] defines EAP channel bindings to solve the "lying NAS" and
the "lying provider" problems, using a process in which the EAP peer
gives information about the characteristics of the service provided
by the authenticator to the Authentication, Authorization, and
Accounting (AAA) server protected within the EAP method. This allows
the server to verify the authenticator is providing information to
Zhou, et al. Standards Track [Page 23]
^L
RFC 7170 TEAP May 2014
the peer that is consistent with the information received from this
authenticator as well as the information stored about this
authenticator.
TEAP supports EAP channel binding using the Channel-Binding TLV
defined in Section 4.2.7. If the TEAP server wants to request the
channel-binding information from the peer, it sends an empty Channel-
Binding TLV to indicate the request. The peer responds to the
request by sending a Channel-Binding TLV containing a channel-binding
message as defined in [RFC6677]. The server validates the channel-
binding message and sends back a Channel-Binding TLV with a result
code. If the server didn't initiate the channel-binding request and
the peer still wants to send the channel-binding information to the
server, it can do that by using the Request-Action TLV along with the
Channel-Binding TLV. The peer MUST only send channel-binding
information after it has successfully authenticated the server and
established the protected tunnel.
4. Message Formats
The following sections describe the message formats used in TEAP.
The fields are transmitted from left to right in network byte order.
4.1. TEAP Message Format
A summary of the TEAP Request/Response packet format is shown below.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Code | Identifier | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Flags | Ver | Message Length :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: Message Length | Outer TLV Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: Outer TLV Length | TLS Data...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Outer TLVs...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Code
The Code field is one octet in length and is defined as follows:
1 Request
2 Response
Zhou, et al. Standards Track [Page 24]
^L
RFC 7170 TEAP May 2014
Identifier
The Identifier field is one octet and aids in matching responses
with requests. The Identifier field MUST be changed on each
Request packet. The Identifier field in the Response packet MUST
match the Identifier field from the corresponding request.
Length
The Length field is two octets and indicates the length of the EAP
packet including the Code, Identifier, Length, Type, Flags, Ver,
Message Length, TLS Data, and Outer TLVs fields. Octets outside
the range of the Length field should be treated as Data Link Layer
padding and should be ignored on reception.
Type
55 for TEAP
Flags
0 1 2 3 4
+-+-+-+-+-+
|L M S O R|
+-+-+-+-+-+
L Length included; set to indicate the presence of the four-octet
Message Length field. It MUST be present for the first
fragment of a fragmented message. It MUST NOT be present for
any other message.
M More fragments; set on all but the last fragment.
S TEAP start; set in a TEAP Start message sent from the server to
the peer.
O Outer TLV length included; set to indicate the presence of the
four-octet Outer TLV Length field. It MUST be present only in
the initial request and response messages. If the initial
message is fragmented, then it MUST be present only on the
first fragment.
R Reserved (MUST be zero and ignored upon receipt)
Ver
This field contains the version of the protocol. This document
describes version 1 (001 in binary) of TEAP.
Zhou, et al. Standards Track [Page 25]
^L
RFC 7170 TEAP May 2014
Message Length
The Message Length field is four octets and is present only if the
L bit is set. This field provides the total length of the message
that may be fragmented over the data fields of multiple packets.
Outer TLV Length
The Outer TLV Length field is four octets and is present only if
the O bit is set. This field provides the total length of the
Outer TLVs if present.
TLS Data
When the TLS Data field is present, it consists of an encapsulated
TLS packet in TLS record format. A TEAP packet with Flags and
Version fields, but with zero length TLS Data field, is used to
indicate TEAP acknowledgement for either a fragmented message, a
TLS Alert message, or a TLS Finished message.
Outer TLVs
The Outer TLVs consist of the optional data used to help establish
the TLS tunnel in TLV format. They are only allowed in the first
two messages in the TEAP protocol. That is the first EAP-server-
to-peer message and first peer-to-EAP-server message. The start
of the Outer TLVs can be derived from the EAP Length field and
Outer TLV Length field.
4.2. TEAP TLV Format and Support
The TLVs defined here are TLV objects. The TLV objects could be used
to carry arbitrary parameters between an EAP peer and EAP server
within the protected TLS tunnel.
The EAP peer may not necessarily implement all the TLVs supported by
the EAP server. To allow for interoperability, TLVs are designed to
allow an EAP server to discover if a TLV is supported by the EAP peer
using the NAK TLV. The mandatory bit in a TLV indicates whether
support of the TLV is required. If the peer or server does not
support a TLV marked mandatory, then it MUST send a NAK TLV in the
response, and all the other TLVs in the message MUST be ignored. If
an EAP peer or server finds an unsupported TLV that is marked as
optional, it can ignore the unsupported TLV. It MUST NOT send a NAK
TLV for a TLV that is not marked mandatory. If all TLVs in a message
are marked optional and none are understood by the peer, then a NAK
TLV or Result TLV could be sent to the other side in order to
continue the conversation.
Zhou, et al. Standards Track [Page 26]
^L
RFC 7170 TEAP May 2014
Note that a peer or server may support a TLV with the mandatory bit
set but may not understand the contents. The appropriate response to
a supported TLV with content that is not understood is defined by the
individual TLV specification.
EAP implementations compliant with this specification MUST support
TLV exchanges as well as the processing of mandatory/optional
settings on the TLV. Implementations conforming to this
specification MUST support the following TLVs:
Authority-ID TLV
Identity-Type TLV
Result TLV
NAK TLV
Error TLV
Request-Action TLV
EAP-Payload TLV
Intermediate-Result TLV
Crypto-Binding TLV
Basic-Password-Auth-Req TLV
Basic-Password-Auth-Resp TLV
Zhou, et al. Standards Track [Page 27]
^L
RFC 7170 TEAP May 2014
4.2.1. General TLV Format
TLVs are defined as described below. The fields are transmitted from
left to right.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Value...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
M
0 Optional TLV
1 Mandatory TLV
R
Reserved, set to zero (0)
TLV Type
A 14-bit field, denoting the TLV type. Allocated types include:
0 Unassigned
1 Authority-ID TLV (Section 4.2.2)
2 Identity-Type TLV (Section 4.2.3)
3 Result TLV (Section 4.2.4)
4 NAK TLV (Section 4.2.5)
5 Error TLV (Section 4.2.6)
6 Channel-Binding TLV (Section 4.2.7)
7 Vendor-Specific TLV (Section 4.2.8)
8 Request-Action TLV (Section 4.2.9)
9 EAP-Payload TLV (Section 4.2.10)
10 Intermediate-Result TLV (Section 4.2.11)
Zhou, et al. Standards Track [Page 28]
^L
RFC 7170 TEAP May 2014
11 PAC TLV (Section 4.2.12)
12 Crypto-Binding TLV (Section 4.2.13)
13 Basic-Password-Auth-Req TLV (Section 4.2.14)
14 Basic-Password-Auth-Resp TLV (Section 4.2.15)
15 PKCS#7 TLV (Section 4.2.16)
16 PKCS#10 TLV (Section 4.2.17)
17 Trusted-Server-Root TLV (Section 4.2.18)
Length
The length of the Value field in octets.
Value
The value of the TLV.
4.2.2. Authority-ID TLV
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ID...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
M
Mandatory, set to one (1)
R
Reserved, set to zero (0)
TLV Type
1 - Authority-ID
Length
The Length field is two octets and contains the length of the ID
field in octets.
Zhou, et al. Standards Track [Page 29]
^L
RFC 7170 TEAP May 2014
ID
Hint of the identity of the server to help the peer to match the
credentials available for the server. It should be unique across
the deployment.
4.2.3. Identity-Type TLV
The Identity-Type TLV allows an EAP server to send a hint to help the
EAP peer select the right type of identity, for example, user or
machine. TEAPv1 implementations MUST support this TLV. Only one
Identity-Type TLV SHOULD be present in the TEAP request or response
packet. The Identity-Type TLV request MUST come with an EAP-Payload
TLV or Basic-Password-Auth-Req TLV. If the EAP peer does have an
identity corresponding to the identity type requested, then the peer
SHOULD respond with an Identity-Type TLV with the requested type. If
the Identity-Type field does not contain one of the known values or
if the EAP peer does not have an identity corresponding to the
identity type requested, then the peer SHOULD respond with an
Identity-Type TLV with the one of available identity types. If the
server receives an identity type in the response that does not match
the requested type, then the peer does not possess the requested
credential type, and the server SHOULD proceed with authentication
for the credential type proposed by the peer, proceed with requesting
another credential type, or simply apply the network policy based on
the configured policy, e.g., sending Result TLV with Failure.
The Identity-Type TLV is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identity-Type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
M
0 (Optional)
R
Reserved, set to zero (0)
TLV Type
2 - Identity-Type TLV
Zhou, et al. Standards Track [Page 30]
^L
RFC 7170 TEAP May 2014
Length
2
Identity-Type
The Identity-Type field is two octets. Values include:
1 User
2 Machine
4.2.4. Result TLV
The Result TLV provides support for acknowledged success and failure
messages for protected termination within TEAP. If the Status field
does not contain one of the known values, then the peer or EAP server
MUST treat this as a fatal error of Unexpected TLVs Exchanged. The
behavior of the Result TLV is further discussed in Sections 3.3.3 and
3.6.3. A Result TLV indicating failure MUST NOT be accompanied by
the following TLVs: NAK, EAP-Payload TLV, or Crypto-Binding TLV. The
Result TLV is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Status |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
M
Mandatory, set to one (1)
R
Reserved, set to zero (0)
TLV Type
3 - Result TLV
Length
2
Zhou, et al. Standards Track [Page 31]
^L
RFC 7170 TEAP May 2014
Status
The Status field is two octets. Values include:
1 Success
2 Failure
4.2.5. NAK TLV
The NAK TLV allows a peer to detect TLVs that are not supported by
the other peer. A TEAP packet can contain 0 or more NAK TLVs. A NAK
TLV should not be accompanied by other TLVs. A NAK TLV MUST NOT be
sent in response to a message containing a Result TLV, instead a
Result TLV of failure should be sent indicating failure and an Error
TLV of Unexpected TLVs Exchanged. The NAK TLV is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Vendor-Id |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| NAK-Type | TLVs...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
M
Mandatory, set to one (1)
R
Reserved, set to zero (0)
TLV Type
4 - NAK TLV
Length
>=6
Vendor-Id
The Vendor-Id field is four octets and contains the Vendor-Id of
the TLV that was not supported. The high-order octet is 0, and
the low-order three octets are the Structure of Management
Zhou, et al. Standards Track [Page 32]
^L
RFC 7170 TEAP May 2014
Information (SMI) Network Management Private Enterprise Number of
the Vendor in network byte order. The Vendor-Id field MUST be
zero for TLVs that are not Vendor-Specific TLVs.
NAK-Type
The NAK-Type field is two octets. The field contains the type of
the TLV that was not supported. A TLV of this type MUST have been
included in the previous packet.
TLVs
This field contains a list of zero or more TLVs, each of which
MUST NOT have the mandatory bit set. These optional TLVs are for
future extensibility to communicate why the offending TLV was
determined to be unsupported.
4.2.6. Error TLV
The Error TLV allows an EAP peer or server to indicate errors to the
other party. A TEAP packet can contain 0 or more Error TLVs. The
Error-Code field describes the type of error. Error codes 1-999
represent successful outcomes (informative messages), 1000-1999
represent warnings, and 2000-2999 represent fatal errors. A fatal
Error TLV MUST be accompanied by a Result TLV indicating failure, and
the conversation is terminated as described in Section 3.6.3.
Many of the error codes below refer to errors in inner method
processing that may be retrieved if made available by the inner
method. Implementations MUST take care that error messages do not
reveal too much information to an attacker. For example, the usage
of error message 1031 (User account credentials incorrect) is NOT
RECOMMENDED, because it allows an attacker to determine valid
usernames by differentiating this response from other responses. It
should only be used for troubleshooting purposes.
The Error TLV is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Error-Code |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Zhou, et al. Standards Track [Page 33]
^L
RFC 7170 TEAP May 2014
M
Mandatory, set to one (1)
R
Reserved, set to zero (0)
TLV Type
5 - Error TLV
Length
4
Error-Code
The Error-Code field is four octets. Currently defined values for
Error-Code include:
1 User account expires soon
2 User account credential expires soon
3 User account authorizations change soon
4 Clock skew detected
5 Contact administrator
6 User account credentials change required
1001 Inner Method Error
1002 Unspecified authentication infrastructure problem
1003 Unspecified authentication failure
1004 Unspecified authorization failure
1005 User account credentials unavailable
1006 User account expired
1007 User account locked: try again later
1008 User account locked: admin intervention required
Zhou, et al. Standards Track [Page 34]
^L
RFC 7170 TEAP May 2014
1009 Authentication infrastructure unavailable
1010 Authentication infrastructure not trusted
1011 Clock skew too great
1012 Invalid inner realm
1013 Token out of sync: administrator intervention required
1014 Token out of sync: PIN change required
1015 Token revoked
1016 Tokens exhausted
1017 Challenge expired
1018 Challenge algorithm mismatch
1019 Client certificate not supplied
1020 Client certificate rejected
1021 Realm mismatch between inner and outer identity
1022 Unsupported Algorithm In Certificate Signing Request
1023 Unsupported Extension In Certificate Signing Request
1024 Bad Identity In Certificate Signing Request
1025 Bad Certificate Signing Request
1026 Internal CA Error
1027 General PKI Error
1028 Inner method's channel-binding data required but not
supplied
1029 Inner method's channel-binding data did not include required
information
1030 Inner method's channel binding failed
1031 User account credentials incorrect [USAGE NOT RECOMMENDED]
Zhou, et al. Standards Track [Page 35]
^L
RFC 7170 TEAP May 2014
2001 Tunnel Compromise Error
2002 Unexpected TLVs Exchanged
4.2.7. Channel-Binding TLV
The Channel-Binding TLV provides a mechanism for carrying channel-
binding data from the peer to the EAP server and a channel-binding
response from the EAP server to the peer as described in [RFC6677].
TEAPv1 implementations MAY support this TLV, which cannot be
responded to with a NAK TLV. If the Channel-Binding data field does
not contain one of the known values or if the EAP server does not
support this TLV, then the server MUST ignore the value. The
Channel-Binding TLV is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
M
0 (Optional)
R
Reserved, set to zero (0)
TLV Type
6 - Channel-Binding TLV
Length
variable
Data
The data field contains a channel-binding message as defined in
Section 5.3 of [RFC6677].
Zhou, et al. Standards Track [Page 36]
^L
RFC 7170 TEAP May 2014
4.2.8. Vendor-Specific TLV
The Vendor-Specific TLV is available to allow vendors to support
their own extended attributes not suitable for general usage. A
Vendor-Specific TLV attribute can contain one or more TLVs, referred
to as Vendor TLVs. The TLV type of a Vendor-TLV is defined by the
vendor. All the Vendor TLVs inside a single Vendor-Specific TLV
belong to the same vendor. There can be multiple Vendor-Specific
TLVs from different vendors in the same message. Error handling in
the Vendor TLV could use the vendor's own specific error-handling
mechanism or use the standard TEAP error codes defined.
Vendor TLVs may be optional or mandatory. Vendor TLVs sent with
Result TLVs MUST be marked as optional. If the Vendor-Specific TLV
is marked as mandatory, then it is expected that the receiving side
needs to recognize the vendor ID, parse all Vendor TLVs within, and
deal with error handling within the Vendor-Specific TLV as defined by
the vendor.
The Vendor-Specific TLV is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Vendor-Id |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Vendor TLVs....
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
M
0 or 1
R
Reserved, set to zero (0)
TLV Type
7 - Vendor-Specific TLV
Length
4 + cumulative length of all included Vendor TLVs
Vendor-Id
Zhou, et al. Standards Track [Page 37]
^L
RFC 7170 TEAP May 2014
The Vendor-Id field is four octets and contains the Vendor-Id of
the TLV. The high-order octet is 0, and the low-order 3 octets
are the SMI Network Management Private Enterprise Number of the
Vendor in network byte order.
Vendor TLVs
This field is of indefinite length. It contains Vendor-Specific
TLVs, in a format defined by the vendor.
4.2.9. Request-Action TLV
The Request-Action TLV MAY be sent by both the peer and the server in
response to a successful or failed Result TLV. It allows the peer or
server to request the other side to negotiate additional EAP methods
or process TLVs specified in the response packet. The receiving side
MUST process this TLV. The processing for the TLV is as follows:
The receiving entity MAY choose to process any of the TLVs that
are included in the message.
If the receiving entity chooses NOT to process any TLV in the
list, then it sends back a Result TLV with the same code in the
Status field of the Request-Action TLV.
If multiple Request-Action TLVs are in the request, the session
can continue if any of the TLVs in any Request-Action TLV are
processed.
If multiple Request-Action TLVs are in the request and none of
them is processed, then the most fatal status should be used in
the Result TLV returned. If a status code in the Request-Action
TLV is not understood by the receiving entity, then it should be
treated as a fatal error.
After processing the TLVs or EAP method in the request, another
round of Result TLV exchange would occur to synchronize the final
status on both sides.
The peer or the server MAY send multiple Request-Action TLVs to the
other side. Two Request-Action TLVs MUST NOT occur in the same TEAP
packet if they have the same Status value. The order of processing
multiple Request-Action TLVs is implementation dependent. If the
receiving side processes the optional (non-fatal) items first, it is
possible that the fatal items will disappear at a later time. If the
receiving side processes the fatal items first, the communication
time will be shorter.
Zhou, et al. Standards Track [Page 38]
^L
RFC 7170 TEAP May 2014
The peer or the server MAY return a new set of Request-Action TLVs
after one or more of the requested items has been processed and the
other side has signaled it wants to end the EAP conversation.
The Request-Action TLV is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Status | Action | TLVs....
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-
M
Mandatory, set to one (1)
R
Reserved, set to zero (0)
TLV Type
8 - Request-Action TLV
Length
2 + cumulative length of all included TLVs
Status
The Status field is one octet. This indicates the result if the
server does not process the action requested by the peer. Values
include:
1 Success
2 Failure
Action
The Action field is one octet. Values include:
1 Process-TLV
2 Negotiate-EAP
Zhou, et al. Standards Track [Page 39]
^L
RFC 7170 TEAP May 2014
TLVs
This field is of indefinite length. It contains TLVs that the
peer wants the server to process.
4.2.10. EAP-Payload TLV
To allow piggybacking an EAP request or response with other TLVs, the
EAP-Payload TLV is defined, which includes an encapsulated EAP packet
and a list of optional TLVs. The optional TLVs are provided for
future extensibility to provide hints about the current EAP
authentication. Only one EAP-Payload TLV is allowed in a message.
The EAP-Payload TLV is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| EAP packet...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TLVs...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
M
Mandatory, set to one (1)
R
Reserved, set to zero (0)
TLV Type
9 - EAP-Payload TLV
Length
length of embedded EAP packet + cumulative length of additional
TLVs
EAP packet
This field contains a complete EAP packet, including the EAP
header (Code, Identifier, Length, Type) fields. The length of
this field is determined by the Length field of the encapsulated
EAP packet.
Zhou, et al. Standards Track [Page 40]
^L
RFC 7170 TEAP May 2014
TLVs
This (optional) field contains a list of TLVs associated with the
EAP packet field. The TLVs MUST NOT have the mandatory bit set.
The total length of this field is equal to the Length field of the
EAP-Payload TLV, minus the Length field in the EAP header of the
EAP packet field.
4.2.11. Intermediate-Result TLV
The Intermediate-Result TLV provides support for acknowledged
intermediate Success and Failure messages between multiple inner EAP
methods within EAP. An Intermediate-Result TLV indicating success
MUST be accompanied by a Crypto-Binding TLV. The optional TLVs
associated with this TLV are provided for future extensibility to
provide hints about the current result. The Intermediate-Result TLV
is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Status | TLVs...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
M
Mandatory, set to one (1)
R
Reserved, set to zero (0)
TLV Type
10 - Intermediate-Result TLV
Length
2 + cumulative length of the embedded associated TLVs
Status
The Status field is two octets. Values include:
1 Success
Zhou, et al. Standards Track [Page 41]
^L
RFC 7170 TEAP May 2014
2 Failure
TLVs
This field is of indeterminate length and contains zero or more of
the TLVs associated with the Intermediate Result TLV. The TLVs in
this field MUST NOT have the mandatory bit set.
4.2.12. PAC TLV Format
The PAC TLV provides support for provisioning the Protected Access
Credential (PAC). The PAC TLV carries the PAC and related
information within PAC attribute fields. Additionally, the PAC TLV
MAY be used by the peer to request provisioning of a PAC of the type
specified in the PAC-Type PAC attribute. The PAC TLV MUST only be
used in a protected tunnel providing encryption and integrity
protection. A general PAC TLV format is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PAC Attributes...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
M
0 or 1
R
Reserved, set to zero (0)
TLV Type
11 - PAC TLV
Length
Two octets containing the length of the PAC Attributes field in
octets.
PAC Attributes
A list of PAC attributes in the TLV format.
Zhou, et al. Standards Track [Page 42]
^L
RFC 7170 TEAP May 2014
4.2.12.1. Formats for PAC Attributes
Each PAC attribute in a PAC TLV is formatted as a TLV defined as
follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Value...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type
The Type field is two octets, denoting the attribute type.
Allocated types include:
1 - PAC-Key
2 - PAC-Opaque
3 - PAC-Lifetime
4 - A-ID
5 - I-ID
6 - Reserved
7 - A-ID-Info
8 - PAC-Acknowledgement
9 - PAC-Info
10 - PAC-Type
Length
Two octets containing the length of the Value field in octets.
Value
The value of the PAC attribute.
Zhou, et al. Standards Track [Page 43]
^L
RFC 7170 TEAP May 2014
4.2.12.2. PAC-Key
The PAC-Key is a secret key distributed in a PAC attribute of type
PAC-Key. The PAC-Key attribute is included within the PAC TLV
whenever the server wishes to issue or renew a PAC that is bound to a
key such as a Tunnel PAC. The key is a randomly generated octet
string that is 48 octets in length. The generator of this key is the
issuer of the credential, which is identified by the Authority
Identifier (A-ID).
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
~ Key ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type
1 - PAC-Key
Length
2-octet length indicating the length of the key.
Key
The value of the PAC-Key.
4.2.12.3. PAC-Opaque
The PAC-Opaque attribute is included within the PAC TLV whenever the
server wishes to issue or renew a PAC.
The PAC-Opaque is opaque to the peer, and thus the peer MUST NOT
attempt to interpret it. A peer that has been issued a PAC-Opaque by
a server stores that data and presents it back to the server
according to its PAC-Type. The Tunnel PAC is used in the ClientHello
SessionTicket extension field defined in [RFC5077]. If a peer has
opaque data issued to it by multiple servers, then it stores the data
issued by each server separately according to the A-ID. This
requirement allows the peer to maintain and use each opaque datum as
an independent PAC pairing, with a PAC-Key mapping to a PAC-Opaque
identified by the A-ID. As there is a one-to-one correspondence
between the PAC-Key and PAC-Opaque, the peer determines the PAC-Key
Zhou, et al. Standards Track [Page 44]
^L
RFC 7170 TEAP May 2014
and corresponding PAC-Opaque based on the A-ID provided in the
TEAP/Start message and the A-ID provided in the PAC-Info when it was
provisioned with a PAC-Opaque.
The PAC-Opaque attribute format is summarized as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Value ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type
2 - PAC-Opaque
Length
The Length field is two octets, which contains the length of the
Value field in octets.
Value
The Value field contains the actual data for the PAC-Opaque. It
is specific to the server implementation.
4.2.12.4. PAC-Info
The PAC-Info is comprised of a set of PAC attributes as defined in
Section 4.2.12.1. The PAC-Info attribute MUST contain the A-ID,
A-ID-Info, and PAC-Type attributes. Other attributes MAY be included
in the PAC-Info to provide more information to the peer. The
PAC-Info attribute MUST NOT contain the PAC-Key, PAC-Acknowledgement,
PAC-Info, or PAC-Opaque attributes. The PAC-Info attribute is
included within the PAC TLV whenever the server wishes to issue or
renew a PAC.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Attributes...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Zhou, et al. Standards Track [Page 45]
^L
RFC 7170 TEAP May 2014
Type
9 - PAC-Info
Length
2-octet field containing the length of the Attributes field in
octets.
Attributes
The Attributes field contains a list of PAC attributes. Each
mandatory and optional field type is defined as follows:
3 - PAC-Lifetime
This is a 4-octet quantity representing the expiration time of
the credential expressed as the number of seconds, excluding
leap seconds, after midnight UTC, January 1, 1970. This
attribute MAY be provided to the peer as part of the PAC-Info.
4 - A-ID
The A-ID is the identity of the authority that issued the PAC.
The A-ID is intended to be unique across all issuing servers to
avoid namespace collisions. The A-ID is used by the peer to
determine which PAC to employ. The A-ID is treated as an
opaque octet string. This attribute MUST be included in the
PAC-Info attribute. The A-ID MUST match the Authority-ID the
server used to establish the tunnel. One method for generating
the A-ID is to use a high-quality random number generator to
generate a random number. An alternate method would be to take
the hash of the public key or public key certificate belonging
to a server represented by the A-ID.
5 - I-ID
Initiator Identifier (I-ID) is the peer identity associated
with the credential. This identity is derived from the inner
authentication or from the client-side authentication during
tunnel establishment if inner authentication is not used. The
server employs the I-ID in the TEAP Phase 2 conversation to
validate that the same peer identity used to execute TEAP Phase
1 is also used in at minimum one inner authentication in TEAP
Phase 2. If the server is enforcing the I-ID validation on the
inner authentication, then the I-ID MUST be included in the
PAC-Info, to enable the peer to also enforce a unique PAC for
each unique user. If the I-ID is missing from the PAC-Info, it
Zhou, et al. Standards Track [Page 46]
^L
RFC 7170 TEAP May 2014
is assumed that the Tunnel PAC can be used for multiple users
and the peer will not enforce the unique-Tunnel-PAC-per-user
policy.
7 - A-ID-Info
Authority Identifier Information is intended to provide a user-
friendly name for the A-ID. It may contain the enterprise name
and server name in a human-readable format. This TLV serves as
an aid to the peer to better inform the end user about the
A-ID. The name is encoded in UTF-8 [RFC3629] format. This
attribute MUST be included in the PAC-Info.
10 - PAC-Type
The PAC-Type is intended to provide the type of PAC. This
attribute SHOULD be included in the PAC-Info. If the PAC-Type
is not present, then it defaults to a Tunnel PAC (Type 1).
4.2.12.5. PAC-Acknowledgement TLV
The PAC-Acknowledgement is used to acknowledge the receipt of the
Tunnel PAC by the peer. The peer includes the PAC-Acknowledgement
TLV in a PAC TLV sent to the server to indicate the result of the
processing and storing of a newly provisioned Tunnel PAC. This TLV
is only used when Tunnel PAC is provisioned.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Result |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type
8 - PAC-Acknowledgement
Length
The length of this field is two octets containing a value of 2.
Result
The resulting value MUST be one of the following:
1 - Success
Zhou, et al. Standards Track [Page 47]
^L
RFC 7170 TEAP May 2014
2 - Failure
4.2.12.6. PAC-Type TLV
The PAC-Type TLV is a TLV intended to specify the PAC-Type. It is
included in a PAC TLV sent by the peer to request PAC provisioning
from the server. Its format is described below:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PAC-Type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type
10 - PAC-Type
Length
2-octet field with a value of 2.
PAC-Type
This 2-octet field defines the type of PAC being requested or
provisioned. The following values are defined:
1 - Tunnel PAC
4.2.13. Crypto-Binding TLV
The Crypto-Binding TLV is used to prove that both the peer and server
participated in the tunnel establishment and sequence of
authentications. It also provides verification of the TEAP type,
version negotiated, and Outer TLVs exchanged before the TLS tunnel
establishment.
The Crypto-Binding TLV MUST be exchanged and verified before the
final Result TLV exchange, regardless of whether there is an inner
EAP method authentication or not. It MUST be included with the
Intermediate-Result TLV to perform cryptographic binding after each
successful EAP method in a sequence of EAP methods, before proceeding
with another inner EAP method. The Crypto-Binding TLV is valid only
if the following checks pass:
o The Crypto-Binding TLV version is supported.
Zhou, et al. Standards Track [Page 48]
^L
RFC 7170 TEAP May 2014
o The MAC verifies correctly.
o The received version in the Crypto-Binding TLV matches the version
sent by the receiver during the EAP version negotiation.
o The subtype is set to the correct value.
If any of the above checks fails, then the TLV is invalid. An
invalid Crypto-Binding TLV is a fatal error and is handled as
described in Section 3.6.3
The Crypto-Binding TLV is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved | Version | Received Ver.| Flags|Sub-Type|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
~ Nonce ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
~ EMSK Compound MAC ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
~ MSK Compound MAC ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
M
Mandatory, set to one (1)
R
Reserved, set to zero (0)
TLV Type
12 - Crypto-Binding TLV
Length
76
Zhou, et al. Standards Track [Page 49]
^L
RFC 7170 TEAP May 2014
Reserved
Reserved, set to zero (0)
Version
The Version field is a single octet, which is set to the version
of Crypto-Binding TLV the TEAP method is using. For an
implementation compliant with this version of TEAP, the version
number MUST be set to one (1).
Received Ver
The Received Ver field is a single octet and MUST be set to the
TEAP version number received during version negotiation. Note
that this field only provides protection against downgrade
attacks, where a version of EAP requiring support for this TLV is
required on both sides.
Flags
The Flags field is four bits. Defined values include
1 EMSK Compound MAC is present
2 MSK Compound MAC is present
3 Both EMSK and MSK Compound MAC are present
Sub-Type
The Sub-Type field is four bits. Defined values include
0 Binding Request
1 Binding Response
Nonce
The Nonce field is 32 octets. It contains a 256-bit nonce that is
temporally unique, used for Compound MAC key derivation at each
end. The nonce in a request MUST have its least significant bit
set to zero (0), and the nonce in a response MUST have the same
value as the request nonce except the least significant bit MUST
be set to one (1).
Zhou, et al. Standards Track [Page 50]
^L
RFC 7170 TEAP May 2014
EMSK Compound MAC
The EMSK Compound MAC field is 20 octets. This can be the Server
MAC (B1_MAC) or the Client MAC (B2_MAC). The computation of the
MAC is described in Section 5.3.
MSK Compound MAC
The MSK Compound MAC field is 20 octets. This can be the Server
MAC (B1_MAC) or the Client MAC (B2_MAC). The computation of the
MAC is described in Section 5.3.
4.2.14. Basic-Password-Auth-Req TLV
The Basic-Password-Auth-Req TLV is used by the authentication server
to request a username and password from the peer. It contains an
optional user prompt message for the request. The peer is expected
to obtain the username and password and send them in a Basic-
Password-Auth-Resp TLV.
The Basic-Password-Auth-Req TLV is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Prompt ....
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
M
0 (Optional)
R
Reserved, set to zero (0)
TLV Type
13 - Basic-Password-Auth-Req TLV
Length
variable
Zhou, et al. Standards Track [Page 51]
^L
RFC 7170 TEAP May 2014
Prompt
optional user prompt message in UTF-8 [RFC3629] format
4.2.15. Basic-Password-Auth-Resp TLV
The Basic-Password-Auth-Resp TLV is used by the peer to respond to a
Basic-Password-Auth-Req TLV with a username and password. The TLV
contains a username and password. The username and password are in
UTF-8 [RFC3629] format.
The Basic-Password-Auth-Resp TLV is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Userlen | Username
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
... Username ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Passlen | Password
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
... Password ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
M
0 (Optional)
R
Reserved, set to zero (0)
TLV Type
14 - Basic-Password-Auth-Resp TLV
Length
variable
Userlen
Length of Username field in octets
Zhou, et al. Standards Track [Page 52]
^L
RFC 7170 TEAP May 2014
Username
Username in UTF-8 [RFC3629] format
Passlen
Length of Password field in octets
Password
Password in UTF-8 [RFC3629] format
4.2.16. PKCS#7 TLV
The PKCS#7 TLV is used by the EAP server to deliver certificate(s) to
the peer. The format consists of a certificate or certificate chain
in binary DER encoding [X.690] in a degenerate Certificates Only
PKCS#7 SignedData Content as defined in [RFC5652].
When used in response to a Trusted-Server-Root TLV request from the
peer, the EAP server MUST send the PKCS#7 TLV inside a Trusted-
Server-Root TLV. When used in response to a PKCS#10 certificate
enrollment request from the peer, the EAP server MUST send the PKCS#7
TLV without a Trusted-Server-Root TLV. The PKCS#7 TLV is always
marked as optional, which cannot be responded to with a NAK TLV.
TEAP implementations that support the Trusted-Server-Root TLV or the
PKCS#10 TLV MUST support this TLV. Peers MUST NOT assume that the
certificates in a PKCS#7 TLV are in any order.
TEAP servers MAY return self-signed certificates. Peers that handle
self-signed certificates or trust anchors MUST NOT implicitly trust
these certificates merely due to their presence in the certificate
bag. Note: Peers are advised to take great care in deciding whether
to use a received certificate as a trust anchor. The authenticated
nature of the tunnel in which a PKCS#7 bag is received can provide a
level of authenticity to the certificates contained therein. Peers
are advised to take into account the implied authority of the EAP
server and to constrain the trust it can achieve through the trust
anchor received in a PKCS#7 TLV.
Zhou, et al. Standards Track [Page 53]
^L
RFC 7170 TEAP May 2014
The PKCS#7 TLV is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PKCS#7 Data...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
M
0 - Optional TLV
R
Reserved, set to zero (0)
TLV Type
15 - PKCS#7 TLV
Length
The length of the PKCS#7 Data field.
PKCS#7 Data
This field contains the DER-encoded X.509 certificate or
certificate chain in a Certificates-Only PKCS#7 SignedData
message.
4.2.17. PKCS#10 TLV
The PKCS#10 TLV is used by the peer to initiate the "simple PKI"
Request/Response from [RFC5272]. The format of the request is as
specified in Section 6.4 of [RFC4945]. The PKCS#10 TLV is always
marked as optional, which cannot be responded to with a NAK TLV.
The PKCS#10 TLV is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PKCS#10 Data...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
Zhou, et al. Standards Track [Page 54]
^L
RFC 7170 TEAP May 2014
M
0 - Optional TLV
R
Reserved, set to zero (0)
TLV Type
16 - PKCS#10 TLV
Length
The length of the PKCS#10 Data field.
PKCS#10 Data
This field contains the DER-encoded PKCS#10 certificate request.
4.2.18. Trusted-Server-Root TLV
Trusted-Server-Root TLV facilitates the request and delivery of a
trusted server root certificate. The Trusted-Server-Root TLV can be
exchanged in regular TEAP authentication mode or provisioning mode.
The Trusted-Server-Root TLV is always marked as optional and cannot
be responded to with a Negative Acknowledgement (NAK) TLV. The
Trusted-Server-Root TLV MUST only be sent as an Inner TLV (inside the
protection of the tunnel).
After the peer has determined that it has successfully authenticated
the EAP server and validated the Crypto-Binding TLV, it MAY send one
or more Trusted-Server-Root TLVs (marked as optional) to request the
trusted server root certificates from the EAP server. The EAP server
MAY send one or more root certificates with a Public Key
Cryptographic System #7 (PKCS#7) TLV inside the Trusted-Server-Root
TLV. The EAP server MAY also choose not to honor the request.
The Trusted-Server-Root TLV allows the peer to send a request to the
EAP server for a list of trusted roots. The server may respond with
one or more root certificates in PKCS#7 [RFC2315] format.
If the EAP server sets the credential format to PKCS#7-Server-
Certificate-Root, then the Trusted-Server-Root TLV should contain the
root of the certificate chain of the certificate issued to the EAP
server packaged in a PKCS#7 TLV. If the server certificate is a
self-signed certificate, then the root is the self-signed
certificate.
Zhou, et al. Standards Track [Page 55]
^L
RFC 7170 TEAP May 2014
If the Trusted-Server-Root TLV credential format contains a value
unknown to the peer, then the EAP peer should ignore the TLV.
The Trusted-Server-Root TLV is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|R| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Credential-Format | Cred TLVs...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
M
0 - Optional TLV
R
Reserved, set to zero (0)
TLV Type
17 - Trusted-Server-Root TLV
Length
>=2 octets
Credential-Format
The Credential-Format field is two octets. Values include:
1 - PKCS#7-Server-Certificate-Root
Cred TLVs
This field is of indefinite length. It contains TLVs associated
with the credential format. The peer may leave this field empty
when using this TLV to request server trust roots.
4.3. TLV Rules
To save round trips, multiple TLVs can be sent in a single TEAP
packet. However, multiple EAP Payload TLVs, multiple Basic Password
Authentication TLVs, or an EAP Payload TLV with a Basic Password
Authentication TLV within one single TEAP packet is not supported in
this version and MUST NOT be sent. If the peer or EAP server
Zhou, et al. Standards Track [Page 56]
^L
RFC 7170 TEAP May 2014
receives multiple EAP Payload TLVs, then it MUST terminate the
connection with the Result TLV. The order of TLVs in TEAP does not
matter, except one should always process the Identity-Type TLV before
processing the EAP TLV or Basic Password Authentication TLV as the
Identity-Type TLV is a hint to the type of identity that is to be
authenticated.
The following define the meaning of the table entries in the sections
below:
0 This TLV MUST NOT be present in the message.
0+ Zero or more instances of this TLV MAY be present in the
message.
0-1 Zero or one instance of this TLV MAY be present in the message.
1 Exactly one instance of this TLV MUST be present in the
message.
4.3.1. Outer TLVs
The following table provides a guide to which TLVs may be included in
the TEAP packet outside the TLS channel, which kind of packets, and
in what quantity:
Request Response Success Failure TLVs
0-1 0 0 0 Authority-ID
0-1 0-1 0 0 Identity-Type
0+ 0+ 0 0 Vendor-Specific
Outer TLVs MUST be marked as optional. Vendor-TLVs inside Vendor-
Specific TLV MUST be marked as optional when included in Outer TLVs.
Outer TLVs MUST NOT be included in messages after the first two TEAP
messages sent by peer and EAP-server respectively. That is the first
EAP-server-to-peer message and first peer-to-EAP-server message. If
the message is fragmented, the whole set of messages is counted as
one message. If Outer TLVs are included in messages after the first
two TEAP messages, they MUST be ignored.
4.3.2. Inner TLVs
The following table provides a guide to which Inner TLVs may be
encapsulated in TLS in TEAP Phase 2, in which kind of packets, and in
what quantity. The messages are as follows: Request is a TEAP
Request, Response is a TEAP Response, Success is a message containing
a successful Result TLV, and Failure is a message containing a failed
Result TLV.
Zhou, et al. Standards Track [Page 57]
^L
RFC 7170 TEAP May 2014
Request Response Success Failure TLVs
0-1 0-1 0 0 Identity-Type
0-1 0-1 1 1 Result
0+ 0+ 0 0 NAK
0+ 0+ 0+ 0+ Error
0-1 0-1 0 0 Channel-Binding
0+ 0+ 0+ 0+ Vendor-Specific
0+ 0+ 0+ 0+ Request-Action
0-1 0-1 0 0 EAP-Payload
0-1 0-1 0-1 0-1 Intermediate-Result
0+ 0+ 0+ 0 PAC TLV
0-1 0-1 0-1 0-1 Crypto-Binding
0-1 0 0 0 Basic-Password-Auth-Req
0 0-1 0 0 Basic-Password-Auth-Resp
0-1 0 0-1 0 PKCS#7
0 0-1 0 0 PKCS#10
0-1 0-1 0-1 0 Trusted-Server-Root
NOTE: Vendor TLVs (included in Vendor-Specific TLVs) sent with a
Result TLV MUST be marked as optional.
5. Cryptographic Calculations
For key derivation and crypto-binding, TEAP uses the Pseudorandom
Function (PRF) and MAC algorithms negotiated in the underlying TLS
session. Since these algorithms depend on the TLS version and
ciphersuite, TEAP implementations need a mechanism to determine the
version and ciphersuite in use for a particular session. The
implementation can then use this information to determine which PRF
and MAC algorithm to use.
5.1. TEAP Authentication Phase 1: Key Derivations
With TEAPv1, the TLS master secret is generated as specified in TLS.
If a PAC is used, then the master secret is obtained as described in
[RFC5077].
TEAPv1 makes use of the TLS Keying Material Exporters defined in
[RFC5705] to derive the session_key_seed. The label used in the
derivation is "EXPORTER: teap session key seed". The length of the
session key seed material is 40 octets. No context data is used in
the export process.
The session_key_seed is used by the TEAP authentication Phase 2
conversation to both cryptographically bind the inner method(s) to
the tunnel as well as generate the resulting TEAP session keys. The
other TLS keying materials are derived and used as defined in
[RFC5246].
Zhou, et al. Standards Track [Page 58]
^L
RFC 7170 TEAP May 2014
5.2. Intermediate Compound Key Derivations
The session_key_seed derived as part of TEAP Phase 2 is used in TEAP
Phase 2 to generate an Intermediate Compound Key (IMCK) used to
verify the integrity of the TLS tunnel after each successful inner
authentication and in the generation of Master Session Key (MSK) and
Extended Master Session Key (EMSK) defined in [RFC3748]. Note that
the IMCK MUST be recalculated after each successful inner EAP method.
The first step in these calculations is the generation of the base
compound key, IMCK[n] from the session_key_seed, and any session keys
derived from the successful execution of nth inner EAP methods. The
inner EAP method(s) may provide Inner Method Session Keys (IMSKs),
IMSK1..IMSKn, corresponding to inner method 1 through n.
If an inner method supports export of an Extended Master Session Key
(EMSK), then the IMSK SHOULD be derived from the EMSK as defined in
[RFC5295]. The usage label used is "TEAPbindkey@ietf.org", and the
length is 64 octets. Optional data parameter is not used in the
derivation.
IMSK = First 32 octets of TLS-PRF(EMSK, "TEAPbindkey@ietf.org" |
"\0" | 64)
where "|" denotes concatenation, EMSK is the EMSK from the inner
method, "TEAPbindkey@ietf.org" consists the ASCII value for the
label "TEAPbindkey@ietf.org" (without quotes), "\0" = is a NULL
octet (0x00 in hex), length is the 2-octet unsigned integer in
network byte order, and TLS-PRF is the PRF negotiated as part of
TLS handshake [RFC5246].
If an inner method does not support export of an Extended Master
Session Key (EMSK), then IMSK is the MSK of the inner method. The
MSK is truncated at 32 octets if it is longer than 32 octets or
padded to a length of 32 octets with zeros if it is less than 32
octets.
However, it's possible that the peer and server sides might not have
the same capability to export EMSK. In order to maintain maximum
flexibility while prevent downgrading attack, the following mechanism
is in place.
On the sender of the Crypto-Binding TLV side:
If the EMSK is not available, then the sender computes the Compound
MAC using the MSK of the inner method.
Zhou, et al. Standards Track [Page 59]
^L
RFC 7170 TEAP May 2014
If the EMSK is available and the sender's policy accepts MSK-based
MAC, then the sender computes two Compound MAC values. The first
is computed with the EMSK. The second one is computed using the
MSK. Both MACs are then sent to the other side.
If the EMSK is available but the sender's policy does not allow
downgrading to MSK-generated MAC, then the sender SHOULD only send
EMSK-based MAC.
On the receiver of the Crypto-Binding TLV side:
If the EMSK is not available and an MSK-based Compound MAC was
sent, then the receiver validates the Compound MAC and sends back
an MSK-based Compound MAC response.
If the EMSK is not available and no MSK-based Compound MAC was
sent, then the receiver handles like an invalid Crypto-Binding TLV
with a fatal error.
If the EMSK is available and an EMSK-based Compound MAC was sent,
then the receiver validates it and creates a response Compound MAC
using the EMSK.
If the EMSK is available but no EMSK-based Compound MAC was sent
and its policy accepts MSK-based MAC, then the receiver validates
it using the MSK and, if successful, generates and returns an MSK-
based Compound MAC.
If the EMSK is available but no EMSK Compound MAC was sent and its
policy does not accept MSK-based MAC, then the receiver handles
like an invalid Crypto-Binding TLV with a fatal error.
If the ith inner method does not generate an EMSK or MSK, then IMSKi
is set to zero (e.g., MSKi = 32 octets of 0x00s). If an inner method
fails, then it is not included in this calculation. The derivation
of S-IMCK is as follows:
S-IMCK[0] = session_key_seed
For j = 1 to n-1 do
IMCK[j] = TLS-PRF(S-IMCK[j-1], "Inner Methods Compound Keys",
IMSK[j], 60)
S-IMCK[j] = first 40 octets of IMCK[j]
CMK[j] = last 20 octets of IMCK[j]
where TLS-PRF is the PRF negotiated as part of TLS handshake
[RFC5246].
Zhou, et al. Standards Track [Page 60]
^L
RFC 7170 TEAP May 2014
5.3. Computing the Compound MAC
For authentication methods that generate keying material, further
protection against man-in-the-middle attacks is provided through
cryptographically binding keying material established by both TEAP
Phase 1 and TEAP Phase 2 conversations. After each successful inner
EAP authentication, EAP EMSK and/or MSKs are cryptographically
combined with key material from TEAP Phase 1 to generate a Compound
Session Key (CMK). The CMK is used to calculate the Compound MAC as
part of the Crypto-Binding TLV described in Section 4.2.13, which
helps provide assurance that the same entities are involved in all
communications in TEAP. During the calculation of the Compound MAC,
the MAC field is filled with zeros.
The Compound MAC computation is as follows:
CMK = CMK[j]
Compound-MAC = MAC( CMK, BUFFER )
where j is the number of the last successfully executed inner EAP
method, MAC is the MAC function negotiated in TLS 1.2 [RFC5246], and
BUFFER is created after concatenating these fields in the following
order:
1 The entire Crypto-Binding TLV attribute with both the EMSK and MSK
Compound MAC fields zeroed out.
2 The EAP Type sent by the other party in the first TEAP message.
3 All the Outer TLVs from the first TEAP message sent by EAP server
to peer. If a single TEAP message is fragmented into multiple
TEAP packets, then the Outer TLVs in all the fragments of that
message MUST be included.
4 All the Outer TLVs from the first TEAP message sent by the peer to
the EAP server. If a single TEAP message is fragmented into
multiple TEAP packets, then the Outer TLVs in all the fragments of
that message MUST be included.
5.4. EAP Master Session Key Generation
TEAP authentication assures the Master Session Key (MSK) and Extended
Master Session Key (EMSK) output from the EAP method are the result
of all authentication conversations by generating an Intermediate
Compound Key (IMCK). The IMCK is mutually derived by the peer and
the server as described in Section 5.2 by combining the MSKs from
Zhou, et al. Standards Track [Page 61]
^L
RFC 7170 TEAP May 2014
inner EAP methods with key material from TEAP Phase 1. The resulting
MSK and EMSK are generated as part of the IMCKn key hierarchy as
follows:
MSK = TLS-PRF(S-IMCK[j], "Session Key Generating Function", 64)
EMSK = TLS-PRF(S-IMCK[j],
"Extended Session Key Generating Function", 64)
where j is the number of the last successfully executed inner EAP
method.
The EMSK is typically only known to the TEAP peer and server and is
not provided to a third party. The derivation of additional keys and
transportation of these keys to a third party are outside the scope
of this document.
If no EAP methods have been negotiated inside the tunnel or no EAP
methods have been successfully completed inside the tunnel, the MSK
and EMSK will be generated directly from the session_key_seed meaning
S-IMCK = session_key_seed.
6. IANA Considerations
This section provides guidance to the Internet Assigned Numbers
Authority (IANA) regarding registration of values related to the TEAP
protocol, in accordance with BCP 26 [RFC5226].
The EAP Method Type number 55 has been assigned for TEAP.
The document defines a registry for TEAP TLV types, which may be
assigned by Specification Required as defined in [RFC5226].
Section 4.2 defines the TLV types that initially populate the
registry. A summary of the TEAP TLV types is given below:
0 Unassigned
1 Authority-ID TLV
2 Identity-Type TLV
3 Result TLV
4 NAK TLV
5 Error TLV
6 Channel-Binding TLV
Zhou, et al. Standards Track [Page 62]
^L
RFC 7170 TEAP May 2014
7 Vendor-Specific TLV
8 Request-Action TLV
9 EAP-Payload TLV
10 Intermediate-Result TLV
11 PAC TLV
12 Crypto-Binding TLV
13 Basic-Password-Auth-Req TLV
14 Basic-Password-Auth-Resp TLV
15 PKCS#7 TLV
16 PKCS#10 TLV
17 Trusted-Server-Root TLV
The Identity-Type defined in Section 4.2.3 contains an identity type
code that is assigned on a Specification Required basis as defined in
[RFC5226]. The initial types defined are:
1 User
2 Machine
The Result TLV defined in Section 4.2.4, Request-Action TLV defined
in Section 4.2.9, and Intermediate-Result TLV defined in
Section 4.2.11 contain a Status code that is assigned on a
Specification Required basis as defined in [RFC5226]. The initial
types defined are:
1 Success
2 Failure
The Error-TLV defined in Section 4.2.6 requires an error code. TEAP
Error-TLV error codes are assigned based on a Specification Required
basis as defined in [RFC5226]. The initial list of error codes is as
follows:
1 User account expires soon
2 User account credential expires soon
Zhou, et al. Standards Track [Page 63]
^L
RFC 7170 TEAP May 2014
3 User account authorizations change soon
4 Clock skew detected
5 Contact administrator
6 User account credentials change required
1001 Inner Method Error
1002 Unspecified authentication infrastructure problem
1003 Unspecified authentication failure
1004 Unspecified authorization failure
1005 User account credentials unavailable
1006 User account expired
1007 User account locked: try again later
1008 User account locked: admin intervention required
1009 Authentication infrastructure unavailable
1010 Authentication infrastructure not trusted
1011 Clock skew too great
1012 Invalid inner realm
1013 Token out of sync: administrator intervention required
1014 Token out of sync: PIN change required
1015 Token revoked
1016 Tokens exhausted
1017 Challenge expired
1018 Challenge algorithm mismatch
1019 Client certificate not supplied
1020 Client certificate rejected
Zhou, et al. Standards Track [Page 64]
^L
RFC 7170 TEAP May 2014
1021 Realm mismatch between inner and outer identity
1022 Unsupported Algorithm In Certificate Signing Request
1023 Unsupported Extension In Certificate Signing Request
1024 Bad Identity In Certificate Signing Request
1025 Bad Certificate Signing Request
1026 Internal CA Error
1027 General PKI Error
1028 Inner method's channel-binding data required but not supplied
1029 Inner method's channel-binding data did not include required
information
1030 Inner method's channel binding failed
1031 User account credentials incorrect [USAGE NOT RECOMMENDED]
2001 Tunnel Compromise Error
2002 Unexpected TLVs Exchanged
The Request-Action TLV defined in Section 4.2.9 contains an action
code that is assigned on a Specification Required basis as defined in
[RFC5226]. The initial actions defined are:
1 Process-TLV
2 Negotiate-EAP
The PAC Attribute defined in Section 4.2.12.1 contains a Type code
that is assigned on a Specification Required basis as defined in
[RFC5226]. The initial types defined are:
1 PAC-Key
2 PAC-Opaque
3 PAC-Lifetime
4 A-ID
5 I-ID
Zhou, et al. Standards Track [Page 65]
^L
RFC 7170 TEAP May 2014
6 Reserved
7 A-ID-Info
8 PAC-Acknowledgement
9 PAC-Info
10 PAC-Type
The PAC-Type defined in Section 4.2.12.6 contains a type code that is
assigned on a Specification Required basis as defined in [RFC5226].
The initial type defined is:
1 Tunnel PAC
The Trusted-Server-Root TLV defined in Section 4.2.18 contains a
Credential-Format code that is assigned on a Specification Required
basis as defined in [RFC5226]. The initial type defined is:
1 PKCS#7-Server-Certificate-Root
The various values under the Vendor-Specific TLV are assigned by
Private Use and do not need to be assigned by IANA.
TEAP registers the label "EXPORTER: teap session key seed" in the TLS
Exporter Label Registry [RFC5705]. This label is used in derivation
as defined in Section 5.1.
TEAP registers a TEAP binding usage label from the "User Specific
Root Keys (USRK) Key Labels" name space defined in [RFC5295] with a
value "TEAPbindkey@ietf.org".
7. Security Considerations
TEAP is designed with a focus on wireless media, where the medium
itself is inherent to eavesdropping. Whereas in wired media an
attacker would have to gain physical access to the wired medium,
wireless media enables anyone to capture information as it is
transmitted over the air, enabling passive attacks. Thus, physical
security can not be assumed, and security vulnerabilities are far
greater. The threat model used for the security evaluation of TEAP
is defined in EAP [RFC3748].
Zhou, et al. Standards Track [Page 66]
^L
RFC 7170 TEAP May 2014
7.1. Mutual Authentication and Integrity Protection
As a whole, TEAP provides message and integrity protection by
establishing a secure tunnel for protecting the authentication
method(s). The confidentiality and integrity protection is defined
by TLS and provides the same security strengths afforded by TLS
employing a strong entropy shared master secret. The integrity of
the key generating authentication methods executed within the TEAP
tunnel is verified through the calculation of the Crypto-Binding TLV.
This ensures that the tunnel endpoints are the same as the inner
method endpoints.
The Result TLV is protected and conveys the true Success or Failure
of TEAP, and it should be used as the indicator of its success or
failure respectively. However, as EAP terminates with either a
cleartext EAP Success or Failure, a peer will also receive a
cleartext EAP Success or Failure. The received cleartext EAP Success
or Failure MUST match that received in the Result TLV; the peer
SHOULD silently discard those cleartext EAP Success or Failure
messages that do not coincide with the status sent in the protected
Result TLV.
7.2. Method Negotiation
As is true for any negotiated EAP protocol, NAK packets used to
suggest an alternate authentication method are sent unprotected and,
as such, are subject to spoofing. During unprotected EAP method
negotiation, NAK packets may be interjected as active attacks to
negotiate down to a weaker form of authentication, such as EAP-MD5
(which only provides one-way authentication and does not derive a
key). Both the peer and server should have a method selection policy
that prevents them from negotiating down to weaker methods. Inner
method negotiation resists attacks because it is protected by the
mutually authenticated TLS tunnel established. Selection of TEAP as
an authentication method does not limit the potential inner
authentication methods, so TEAP should be selected when available.
An attacker cannot readily determine the inner EAP method used,
except perhaps by traffic analysis. It is also important that peer
implementations limit the use of credentials with an unauthenticated
or unauthorized server.
7.3. Separation of Phase 1 and Phase 2 Servers
Separation of the TEAP Phase 1 from the Phase 2 conversation is NOT
RECOMMENDED. Allowing the Phase 1 conversation to be terminated at a
different server than the Phase 2 conversation can introduce
vulnerabilities if there is not a proper trust relationship and
Zhou, et al. Standards Track [Page 67]
^L
RFC 7170 TEAP May 2014
protection for the protocol between the two servers. Some
vulnerabilities include:
o Loss of identity protection
o Offline dictionary attacks
o Lack of policy enforcement
o Man-in-the-middle attacks (as described in [RFC7029])
There may be cases where a trust relationship exists between the
Phase 1 and Phase 2 servers, such as on a campus or between two
offices within the same company, where there is no danger in
revealing the inner identity and credentials of the peer to entities
between the two servers. In these cases, using a proxy solution
without end-to-end protection of TEAP MAY be used. The TEAP
encrypting/decrypting gateway MUST, at a minimum, provide support for
IPsec, TLS, or similar protection in order to provide confidentiality
for the portion of the conversation between the gateway and the EAP
server. In addition, separation of the inner and outer method
servers allows for crypto-binding based on the inner method MSK to be
thwarted as described in [RFC7029]. Implementation and deployment
SHOULD adopt various mitigation strategies described in [RFC7029].
If the inner method is deriving EMSK, then this threat is mitigated
as TEAP utilizes the mutual crypto-binding based on EMSK as described
in [RFC7029].
7.4. Mitigation of Known Vulnerabilities and Protocol Deficiencies
TEAP addresses the known deficiencies and weaknesses in the EAP
method. By employing a shared secret between the peer and server to
establish a secured tunnel, TEAP enables:
o Per-packet confidentiality and integrity protection
o User identity protection
o Better support for notification messages
o Protected EAP inner method negotiation
o Sequencing of EAP methods
o Strong mutually derived MSKs
o Acknowledged success/failure indication
Zhou, et al. Standards Track [Page 68]
^L
RFC 7170 TEAP May 2014
o Faster re-authentications through session resumption
o Mitigation of dictionary attacks
o Mitigation of man-in-the-middle attacks
o Mitigation of some denial-of-service attacks
It should be noted that in TEAP, as in many other authentication
protocols, a denial-of-service attack can be mounted by adversaries
sending erroneous traffic to disrupt the protocol. This is a problem
in many authentication or key agreement protocols and is therefore
noted for TEAP as well.
TEAP was designed with a focus on protected authentication methods
that typically rely on weak credentials, such as password-based
secrets. To that extent, the TEAP authentication mitigates several
vulnerabilities, such as dictionary attacks, by protecting the weak
credential-based authentication method. The protection is based on
strong cryptographic algorithms in TLS to provide message
confidentiality and integrity. The keys derived for the protection
relies on strong random challenges provided by both peer and server
as well as an established key with strong entropy. Implementations
should follow the recommendation in [RFC4086] when generating random
numbers.
7.4.1. User Identity Protection and Verification
The initial identity request response exchange is sent in cleartext
outside the protection of TEAP. Typically, the Network Access
Identifier (NAI) [RFC4282] in the identity response is useful only
for the realm of information that is used to route the authentication
requests to the right EAP server. This means that the identity
response may contain an anonymous identity and just contain realm
information. In other cases, the identity exchange may be eliminated
altogether if there are other means for establishing the destination
realm of the request. In no case should an intermediary place any
trust in the identity information in the identity response since it
is unauthenticated and may not have any relevance to the
authenticated identity. TEAP implementations should not attempt to
compare any identity disclosed in the initial cleartext EAP Identity
response packet with those Identities authenticated in Phase 2.
Identity request/response exchanges sent after the TEAP tunnel is
established are protected from modification and eavesdropping by
attackers.
Zhou, et al. Standards Track [Page 69]
^L
RFC 7170 TEAP May 2014
Note that since TLS client certificates are sent in the clear, if
identity protection is required, then it is possible for the TLS
authentication to be renegotiated after the first server
authentication. To accomplish this, the server will typically not
request a certificate in the server_hello; then, after the
server_finished message is sent and before TEAP Phase 2, the server
MAY send a TLS hello_request. This allows the peer to perform client
authentication by sending a client_hello if it wants to or send a
no_renegotiation alert to the server indicating that it wants to
continue with TEAP Phase 2 instead. Assuming that the peer permits
renegotiation by sending a client_hello, then the server will respond
with server_hello, certificate, and certificate_request messages.
The peer replies with certificate, client_key_exchange, and
certificate_verify messages. Since this renegotiation occurs within
the encrypted TLS channel, it does not reveal client certificate
details. It is possible to perform certificate authentication using
an EAP method (for example, EAP-TLS) within the TLS session in TEAP
Phase 2 instead of using TLS handshake renegotiation.
7.4.2. Dictionary Attack Resistance
TEAP was designed with a focus on protected authentication methods
that typically rely on weak credentials, such as password-based
secrets. TEAP mitigates dictionary attacks by allowing the
establishment of a mutually authenticated encrypted TLS tunnel
providing confidentiality and integrity to protect the weak
credential-based authentication method.
7.4.3. Protection against Man-in-the-Middle Attacks
Allowing methods to be executed both with and without the protection
of a secure tunnel opens up a possibility of a man-in-the-middle
attack. To avoid man-in-the-middle attacks it is recommended to
always deploy authentication methods with the protection of TEAP.
TEAP provides protection from man-in-the-middle attacks even if a
deployment chooses to execute inner EAP methods both with and without
TEAP protection. TEAP prevents this attack in two ways:
1. By using the PAC-Key to mutually authenticate the peer and server
during TEAP authentication Phase 1 establishment of a secure
tunnel.
2. By using the keys generated by the inner authentication method
(if the inner methods are key generating) in the crypto-binding
exchange and in the generation of the key material exported by
the EAP method described in Section 5.
Zhou, et al. Standards Track [Page 70]
^L
RFC 7170 TEAP May 2014
TEAP crypto binding does not guarantee man-in-the-middle protection
if the client allows a connection to an untrusted server, such as in
the case where the client does not properly validate the server's
certificate. If the TLS ciphersuite derives the master secret solely
from the contribution of secret data from one side of the
conversation (such as ciphersuites based on RSA key transport), then
an attacker who can convince the client to connect and engage in
authentication can impersonate the client to another server even if a
strong inner method is executed within the tunnel. If the TLS
ciphersuite derives the master secret from the contribution of
secrets from both sides of the conversation (such as in ciphersuites
based on Diffie-Hellman), then crypto binding can detect an attacker
in the conversation if a strong inner method is used.
7.4.4. PAC Binding to User Identity
A PAC may be bound to a user identity. A compliant implementation of
TEAP MUST validate that an identity obtained in the PAC-Opaque field
matches at minimum one of the identities provided in the TEAP Phase 2
authentication method. This validation provides another binding to
ensure that the intended peer (based on identity) has successfully
completed the TEAP Phase 1 and proved identity in the Phase 2
conversations.
7.5. Protecting against Forged Cleartext EAP Packets
EAP Success and EAP Failure packets are, in general, sent in
cleartext and may be forged by an attacker without detection. Forged
EAP Failure packets can be used to attempt to convince an EAP peer to
disconnect. Forged EAP Success packets may be used to attempt to
convince a peer that authentication has succeeded, even though the
authenticator has not authenticated itself to the peer.
By providing message confidentiality and integrity, TEAP provides
protection against these attacks. Once the peer and authentication
server (AS) initiate the TEAP authentication Phase 2, compliant TEAP
implementations MUST silently discard all cleartext EAP messages,
unless both the TEAP peer and server have indicated success or
failure using a protected mechanism. Protected mechanisms include
the TLS alert mechanism and the protected termination mechanism
described in Section 3.3.3.
The success/failure decisions within the TEAP tunnel indicate the
final decision of the TEAP authentication conversation. After a
success/failure result has been indicated by a protected mechanism,
the TEAP peer can process unprotected EAP Success and EAP Failure
messages; however, the peer MUST ignore any unprotected EAP Success
Zhou, et al. Standards Track [Page 71]
^L
RFC 7170 TEAP May 2014
or Failure messages where the result does not match the result of the
protected mechanism.
To abide by [RFC3748], the server sends a cleartext EAP Success or
EAP Failure packet to terminate the EAP conversation. However, since
EAP Success and EAP Failure packets are not retransmitted, the final
packet may be lost. While a TEAP-protected EAP Success or EAP
Failure packet should not be a final packet in a TEAP conversation,
it may occur based on the conditions stated above, so an EAP peer
should not rely upon the unprotected EAP Success and Failure
messages.
7.6. Server Certificate Validation
As part of the TLS negotiation, the server presents a certificate to
the peer. The peer SHOULD verify the validity of the EAP server
certificate and SHOULD also examine the EAP server name presented in
the certificate in order to determine whether the EAP server can be
trusted. When performing server certificate validation,
implementations MUST provide support for the rules in [RFC5280] for
validating certificates against a known trust anchor. In addition,
implementations MUST support matching the realm portion of the peer's
NAI against a SubjectAltName of type dNSName within the server
certificate. However, in certain deployments, this might not be
turned on. Please note that in the case where the EAP authentication
is remote, the EAP server will not reside on the same machine as the
authenticator, and therefore, the name in the EAP server's
certificate cannot be expected to match that of the intended
destination. In this case, a more appropriate test might be whether
the EAP server's certificate is signed by a certification authority
(CA) controlling the intended domain and whether the authenticator
can be authorized by a server in that domain.
7.7. Tunnel PAC Considerations
Since the Tunnel PAC is stored by the peer, special care should be
given to the overall security of the peer. The Tunnel PAC MUST be
securely stored by the peer to prevent theft or forgery of any of the
Tunnel PAC components. In particular, the peer MUST securely store
the PAC-Key and protect it from disclosure or modification.
Disclosure of the PAC-Key enables an attacker to establish the TEAP
tunnel; however, disclosure of the PAC-Key does not reveal the peer
or server identity or compromise any other peer's PAC credentials.
Modification of the PAC-Key or PAC-Opaque components of the Tunnel
PAC may also lead to denial of service as the tunnel establishment
will fail. The PAC-Opaque component is the effective TLS ticket
extension used to establish the tunnel using the techniques of
[RFC5077]. Thus, the security considerations defined by [RFC5077]
Zhou, et al. Standards Track [Page 72]
^L
RFC 7170 TEAP May 2014
also apply to the PAC-Opaque. The PAC-Info may contain information
about the Tunnel PAC such as the identity of the PAC issuer and the
Tunnel PAC lifetime for use in the management of the Tunnel PAC. The
PAC-Info should be securely stored by the peer to protect it from
disclosure and modification.
7.8. Security Claims
This section provides the needed security claim requirement for EAP
[RFC3748].
Auth. mechanism: Certificate-based, shared-secret-based, and
various tunneled authentication mechanisms.
Ciphersuite negotiation: Yes
Mutual authentication: Yes
Integrity protection: Yes. Any method executed within the TEAP
tunnel is integrity protected. The
cleartext EAP headers outside the tunnel are
not integrity protected.
Replay protection: Yes
Confidentiality: Yes
Key derivation: Yes
Key strength: See Note 1 below.
Dictionary attack prot.: Yes
Fast reconnect: Yes
Cryptographic binding: Yes
Session independence: Yes
Fragmentation: Yes
Key Hierarchy: Yes
Channel binding: Yes
Zhou, et al. Standards Track [Page 73]
^L
RFC 7170 TEAP May 2014
Notes
1. BCP 86 [RFC3766] offers advice on appropriate key sizes. The
National Institute for Standards and Technology (NIST) also
offers advice on appropriate key sizes in [NIST-SP-800-57].
[RFC3766], Section 5 advises use of the following required RSA or
DH (Diffie-Hellman) module and DSA (Digital Signature Algorithm)
subgroup size in bits for a given level of attack resistance in
bits. Based on the table below, a 2048-bit RSA key is required
to provide 112-bit equivalent key strength:
Attack Resistance RSA or DH Modulus DSA subgroup
(bits) size (bits) size (bits)
----------------- ----------------- ------------
70 947 129
80 1228 148
90 1553 167
100 1926 186
150 4575 284
200 8719 383
250 14596 482
8. Acknowledgements
This specification is based on EAP-FAST [RFC4851], which included the
ideas and efforts of Nancy Cam-Winget, David McGrew, Joe Salowey, Hao
Zhou, Pad Jakkahalli, Mark Krischer, Doug Smith, and Glen Zorn of
Cisco Systems, Inc.
The TLV processing was inspired from work on the Protected Extensible
Authentication Protocol version 2 (PEAPv2) with Ashwin Palekar, Dan
Smith, Sean Turner, and Simon Josefsson.
The method for linking identity and proof-of-possession by placing
the tls-unique value in the challengePassword field of the CSR as
described in Section 3.8.2 was inspired by the technique described in
"Enrollment over Secure Transport" [RFC7030].
Helpful review comments were provided by Russ Housley, Jari Arkko,
Ilan Frenkel, Jeremy Steiglitz, Dan Harkins, Sam Hartman, Jim Schaad,
Barry Leiba, Stephen Farrell, Chris Lonvick, and Josh Howlett.
Zhou, et al. Standards Track [Page 74]
^L
RFC 7170 TEAP May 2014
9. References
9.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
Levkowetz, "Extensible Authentication Protocol (EAP)", RFC
3748, June 2004.
[RFC5077] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
"Transport Layer Security (TLS) Session Resumption without
Server-Side State", RFC 5077, January 2008.
[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", BCP 26, RFC 5226,
May 2008.
[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.
[RFC5295] Salowey, J., Dondeti, L., Narayanan, V., and M. Nakhjiri,
"Specification for the Derivation of Root Keys from an
Extended Master Session Key (EMSK)", RFC 5295, August
2008.
[RFC5705] Rescorla, E., "Keying Material Exporters for Transport
Layer Security (TLS)", RFC 5705, March 2010.
[RFC5746] Rescorla, E., Ray, M., Dispensa, S., and N. Oskov,
"Transport Layer Security (TLS) Renegotiation Indication
Extension", RFC 5746, February 2010.
[RFC5929] Altman, J., Williams, N., and L. Zhu, "Channel Bindings
for TLS", RFC 5929, July 2010.
[RFC6677] Hartman, S., Clancy, T., and K. Hoeper, "Channel-Binding
Support for Extensible Authentication Protocol (EAP)
Methods", RFC 6677, July 2012.
Zhou, et al. Standards Track [Page 75]
^L
RFC 7170 TEAP May 2014
9.2. Informative References
[IEEE.802-1X.2013]
IEEE, "Local and Metropolitan Area Networks: Port-Based
Network Access Control", IEEE Standard 802.1X, December
2013.
[NIST-SP-800-57]
National Institute of Standards and Technology,
"Recommendation for Key Management", NIST Special
Publication 800-57, July 2012.
[PEAP] Microsoft Corporation, "[MS-PEAP]: Protected Extensible
Authentication Protocol (PEAP)", February 2014.
[RFC2315] Kaliski, B., "PKCS #7: Cryptographic Message Syntax
Version 1.5", RFC 2315, March 1998.
[RFC2985] Nystrom, M. and B. Kaliski, "PKCS #9: Selected Object
Classes and Attribute Types Version 2.0", RFC 2985,
November 2000.
[RFC2986] Nystrom, M. and B. Kaliski, "PKCS #10: Certification
Request Syntax Specification Version 1.7", RFC 2986,
November 2000.
[RFC3579] Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication
Dial In User Service) Support For Extensible
Authentication Protocol (EAP)", RFC 3579, September 2003.
[RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
10646", STD 63, RFC 3629, November 2003.
[RFC3766] Orman, H. and P. Hoffman, "Determining Strengths For
Public Keys Used For Exchanging Symmetric Keys", BCP 86,
RFC 3766, April 2004.
[RFC4017] Stanley, D., Walker, J., and B. Aboba, "Extensible
Authentication Protocol (EAP) Method Requirements for
Wireless LANs", RFC 4017, March 2005.
[RFC4072] Eronen, P., Hiller, T., and G. Zorn, "Diameter Extensible
Authentication Protocol (EAP) Application", RFC 4072,
August 2005.
[RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
Requirements for Security", BCP 106, RFC 4086, June 2005.
Zhou, et al. Standards Track [Page 76]
^L
RFC 7170 TEAP May 2014
[RFC4282] Aboba, B., Beadles, M., Arkko, J., and P. Eronen, "The
Network Access Identifier", RFC 4282, December 2005.
[RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
Encodings", RFC 4648, October 2006.
[RFC4851] Cam-Winget, N., McGrew, D., Salowey, J., and H. Zhou, "The
Flexible Authentication via Secure Tunneling Extensible
Authentication Protocol Method (EAP-FAST)", RFC 4851, May
2007.
[RFC4945] Korver, B., "The Internet IP Security PKI Profile of IKEv1
/ISAKMP, IKEv2, and PKIX", RFC 4945, August 2007.
[RFC4962] Housley, R. and B. Aboba, "Guidance for Authentication,
Authorization, and Accounting (AAA) Key Management", BCP
132, RFC 4962, July 2007.
[RFC5247] Aboba, B., Simon, D., and P. Eronen, "Extensible
Authentication Protocol (EAP) Key Management Framework",
RFC 5247, August 2008.
[RFC5272] Schaad, J. and M. Myers, "Certificate Management over CMS
(CMC)", RFC 5272, June 2008.
[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, "Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 5280, May 2008.
[RFC5281] Funk, P. and S. Blake-Wilson, "Extensible Authentication
Protocol Tunneled Transport Layer Security Authenticated
Protocol Version 0 (EAP-TTLSv0)", RFC 5281, August 2008.
[RFC5421] Cam-Winget, N. and H. Zhou, "Basic Password Exchange
within the Flexible Authentication via Secure Tunneling
Extensible Authentication Protocol (EAP-FAST)", RFC 5421,
March 2009.
[RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, September 2009.
[RFC5931] Harkins, D. and G. Zorn, "Extensible Authentication
Protocol (EAP) Authentication Using Only a Password", RFC
5931, August 2010.
[RFC6066] Eastlake, D., "Transport Layer Security (TLS) Extensions:
Extension Definitions", RFC 6066, January 2011.
Zhou, et al. Standards Track [Page 77]
^L
RFC 7170 TEAP May 2014
[RFC6124] Sheffer, Y., Zorn, G., Tschofenig, H., and S. Fluhrer, "An
EAP Authentication Method Based on the Encrypted Key
Exchange (EKE) Protocol", RFC 6124, February 2011.
[RFC6678] Hoeper, K., Hanna, S., Zhou, H., and J. Salowey,
"Requirements for a Tunnel-Based Extensible Authentication
Protocol (EAP) Method", RFC 6678, July 2012.
[RFC6960] Santesson, S., Myers, M., Ankney, R., Malpani, A.,
Galperin, S., and C. Adams, "X.509 Internet Public Key
Infrastructure Online Certificate Status Protocol - OCSP",
RFC 6960, June 2013.
[RFC6961] Pettersen, Y., "The Transport Layer Security (TLS)
Multiple Certificate Status Request Extension", RFC 6961,
June 2013.
[RFC7029] Hartman, S., Wasserman, M., and D. Zhang, "Extensible
Authentication Protocol (EAP) Mutual Cryptographic
Binding", RFC 7029, October 2013.
[RFC7030] Pritikin, M., Yee, P., and D. Harkins, "Enrollment over
Secure Transport", RFC 7030, October 2013.
[X.690] ITU-T, "ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER)", ITU-T Recommendation
X.690, November 2008.
Zhou, et al. Standards Track [Page 78]
^L
RFC 7170 TEAP May 2014
Appendix A. Evaluation against Tunnel-Based EAP Method Requirements
This section evaluates all tunnel-based EAP method requirements
described in [RFC6678] against TEAP version 1.
A.1. Requirement 4.1.1: RFC Compliance
TEAPv1 meets this requirement by being compliant with RFC 3748
[RFC3748], RFC 4017 [RFC4017], RFC 5247 [RFC5247], and RFC 4962
[RFC4962]. It is also compliant with the "cryptographic algorithm
agility" requirement by leveraging TLS 1.2 for all cryptographic
algorithm negotiation.
A.2. Requirement 4.2.1: TLS Requirements
TEAPv1 meets this requirement by mandating TLS version 1.2 support as
defined in Section 3.2.
A.3. Requirement 4.2.1.1.1: Ciphersuite Negotiation
TEAPv1 meets this requirement by using TLS to provide protected
ciphersuite negotiation.
A.4. Requirement 4.2.1.1.2: Tunnel Data Protection Algorithms
TEAPv1 meets this requirement by mandating
TLS_RSA_WITH_AES_128_CBC_SHA as a mandatory-to-implement ciphersuite
as defined in Section 3.2.
A.5. Requirement 4.2.1.1.3: Tunnel Authentication and Key Establishment
TEAPv1 meets this requirement by mandating
TLS_RSA_WITH_AES_128_CBC_SHA as a mandatory-to-implement ciphersuite
that provides certificate-based authentication of the server and is
approved by NIST. The mandatory-to-implement ciphersuites only
include ciphersuites that use strong cryptographic algorithms. They
do not include ciphersuites providing mutually anonymous
authentication or static Diffie-Hellman ciphersuites as defined in
Section 3.2.
A.6. Requirement 4.2.1.2: Tunnel Replay Protection
TEAPv1 meets this requirement by using TLS to provide sufficient
replay protection.
Zhou, et al. Standards Track [Page 79]
^L
RFC 7170 TEAP May 2014
A.7. Requirement 4.2.1.3: TLS Extensions
TEAPv1 meets this requirement by allowing TLS extensions, such as TLS
Certificate Status Request extension [RFC6066] and SessionTicket
extension [RFC5077], to be used during TLS tunnel establishment.
A.8. Requirement 4.2.1.4: Peer Identity Privacy
TEAPv1 meets this requirement by establishment of the TLS tunnel and
protection identities specific to the inner method. In addition, the
peer certificate can be sent confidentially (i.e., encrypted).
A.9. Requirement 4.2.1.5: Session Resumption
TEAPv1 meets this requirement by mandating support of TLS session
resumption as defined in Section 3.2.1 and TLS session resume using a
PAC as defined in Section 3.2.2 .
A.10. Requirement 4.2.2: Fragmentation
TEAPv1 meets this requirement by leveraging fragmentation support
provided by TLS as defined in Section 3.7.
A.11. Requirement 4.2.3: Protection of Data External to Tunnel
TEAPv1 meets this requirement by including the TEAP version number
received in the computation of the Crypto-Binding TLV as defined in
Section 4.2.13.
A.12. Requirement 4.3.1: Extensible Attribute Types
TEAPv1 meets this requirement by using an extensible TLV data layer
inside the tunnel as defined in Section 4.2.
A.13. Requirement 4.3.2: Request/Challenge Response Operation
TEAPv1 meets this requirement by allowing multiple TLVs to be sent in
a single EAP request or response packet, while maintaining the half-
duplex operation typical of EAP.
A.14. Requirement 4.3.3: Indicating Criticality of Attributes
TEAPv1 meets this requirement by having a mandatory bit in each TLV
to indicate whether it is mandatory to support or not as defined in
Section 4.2.
Zhou, et al. Standards Track [Page 80]
^L
RFC 7170 TEAP May 2014
A.15. Requirement 4.3.4: Vendor-Specific Support
TEAPv1 meets this requirement by having a Vendor-Specific TLV to
allow vendors to define their own attributes as defined in
Section 4.2.8.
A.16. Requirement 4.3.5: Result Indication
TEAPv1 meets this requirement by having a Result TLV to exchange the
final result of the EAP authentication so both the peer and server
have a synchronized state as defined in Section 4.2.4.
A.17. Requirement 4.3.6: Internationalization of Display Strings
TEAPv1 meets this requirement by supporting UTF-8 format in the
Basic-Password-Auth-Req TLV as defined in Section 4.2.14 and the
Basic-Password-Auth-Resp TLV as defined in Section 4.2.15.
A.18. Requirement 4.4: EAP Channel-Binding Requirements
TEAPv1 meets this requirement by having a Channel-Binding TLV to
exchange the EAP channel-binding data as defined in Section 4.2.7.
A.19. Requirement 4.5.1.1: Confidentiality and Integrity
TEAPv1 meets this requirement by running the password authentication
inside a protected TLS tunnel.
A.20. Requirement 4.5.1.2: Authentication of Server
TEAPv1 meets this requirement by mandating authentication of the
server before establishment of the protected TLS and then running
inner password authentication as defined in Section 3.2.
A.21. Requirement 4.5.1.3: Server Certificate Revocation Checking
TEAPv1 meets this requirement by supporting TLS Certificate Status
Request extension [RFC6066] during tunnel establishment.
A.22. Requirement 4.5.2: Internationalization
TEAPv1 meets this requirement by supporting UTF-8 format in Basic-
Password-Auth-Req TLV as defined in Section 4.2.14 and Basic-
Password-Auth-Resp TLV as defined in Section 4.2.15.
Zhou, et al. Standards Track [Page 81]
^L
RFC 7170 TEAP May 2014
A.23. Requirement 4.5.3: Metadata
TEAPv1 meets this requirement by supporting Identity-Type TLV as
defined in Section 4.2.3 to indicate whether the authentication is
for a user or a machine.
A.24. Requirement 4.5.4: Password Change
TEAPv1 meets this requirement by supporting multiple Basic-Password-
Auth-Req TLV and Basic-Password-Auth-Resp TLV exchanges within a
single EAP authentication, which allows "housekeeping"" functions
such as password change.
A.25. Requirement 4.6.1: Method Negotiation
TEAPv1 meets this requirement by supporting inner EAP method
negotiation within the protected TLS tunnel.
A.26. Requirement 4.6.2: Chained Methods
TEAPv1 meets this requirement by supporting inner EAP method chaining
within protected TLS tunnels as defined in Section 3.3.1.
A.27. Requirement 4.6.3: Cryptographic Binding with the TLS Tunnel
TEAPv1 meets this requirement by supporting cryptographic binding of
the inner EAP method keys with the keys derived from the TLS tunnel
as defined in Section 4.2.13.
A.28. Requirement 4.6.4: Peer-Initiated EAP Authentication
TEAPv1 meets this requirement by supporting the Request-Action TLV as
defined in Section 4.2.9 to allow a peer to initiate another inner
EAP method.
A.29. Requirement 4.6.5: Method Metadata
TEAPv1 meets this requirement by supporting the Identity-Type TLV as
defined in Section 4.2.3 to indicate whether the authentication is
for a user or a machine.
Zhou, et al. Standards Track [Page 82]
^L
RFC 7170 TEAP May 2014
Appendix B. Major Differences from EAP-FAST
This document is a new standard tunnel EAP method based on revision
of EAP-FAST version 1 [RFC4851] that contains improved flexibility,
particularly for negotiation of cryptographic algorithms. The major
changes are:
1. The EAP method name has been changed from EAP-FAST to TEAP; this
change thus requires that a new EAP Type be assigned.
2. This version of TEAP MUST support TLS 1.2 [RFC5246].
3. The key derivation now makes use of TLS keying material exporters
[RFC5705] and the PRF and hash function negotiated in TLS. This
is to simplify implementation and better support cryptographic
algorithm agility.
4. TEAP is in full conformance with TLS ticket extension [RFC5077]
as described in Section 3.2.2.
5. Support is provided for passing optional Outer TLVs in the first
two message exchanges, in addition to the Authority-ID TLV data
in EAP-FAST.
6. Basic password authentication on the TLV level has been added in
addition to the existing inner EAP method.
7. Additional TLV types have been defined to support EAP channel
binding and metadata. They are the Identity-Type TLV and
Channel-Binding TLVs, defined in Section 4.2.
Appendix C. Examples
C.1. Successful Authentication
The following exchanges show a successful TEAP authentication with
basic password authentication and optional PAC refreshment. The
conversation will appear as follows:
Authenticating Peer Authenticator
------------------- -------------
<- EAP-Request/
Identity
EAP-Response/
Identity (MyID1) ->
Zhou, et al. Standards Track [Page 83]
^L
RFC 7170 TEAP May 2014
<- EAP-Request/
EAP-Type=TEAP, V=1
(TEAP Start, S bit set, Authority-ID)
EAP-Response/
EAP-Type=TEAP, V=1
(TLS client_hello with
PAC-Opaque in SessionTicket extension)->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS server_hello,
(TLS change_cipher_spec,
TLS finished)
EAP-Response/
EAP-Type=TEAP, V=1 ->
(TLS change_cipher_spec,
TLS finished)
TLS channel established
(messages sent within the TLS channel)
<- Basic-Password-Auth-Req TLV, Challenge
Basic-Password-Auth-Resp TLV, Response with both
username and password) ->
optional additional exchanges (new pin mode,
password change, etc.) ...
<- Crypto-Binding TLV (Request),
Result TLV (Success),
(Optional PAC TLV)
Crypto-Binding TLV(Response),
Result TLV (Success),
(PAC-Acknowledgement TLV) ->
TLS channel torn down
(messages sent in cleartext)
<- EAP-Success
Zhou, et al. Standards Track [Page 84]
^L
RFC 7170 TEAP May 2014
C.2. Failed Authentication
The following exchanges show a failed TEAP authentication due to
wrong user credentials. The conversation will appear as follows:
Authenticating Peer Authenticator
------------------- -------------
<- EAP-Request/Identity
EAP-Response/
Identity (MyID1) ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TEAP Start, S bit set, Authority-ID)
EAP-Response/
EAP-Type=TEAP, V=1
(TLS client_hello with
PAC-Opaque in SessionTicket extension)->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS server_hello,
(TLS change_cipher_spec,
TLS finished)
EAP-Response/
EAP-Type=TEAP, V=1 ->
(TLS change_cipher_spec,
TLS finished)
TLS channel established
(messages sent within the TLS channel)
<- Basic-Password-Auth-Req TLV, Challenge
Basic-Password-Auth-Resp TLV, Response with both
username and password) ->
<- Result TLV (Failure)
Zhou, et al. Standards Track [Page 85]
^L
RFC 7170 TEAP May 2014
Result TLV (Failure) ->
TLS channel torn down
(messages sent in cleartext)
<- EAP-Failure
C.3. Full TLS Handshake Using Certificate-Based Ciphersuite
In the case within TEAP Phase 1 where an abbreviated TLS handshake is
tried, fails, and falls back to the certificate-based full TLS
handshake, the conversation will appear as follows:
Authenticating Peer Authenticator
------------------- -------------
<- EAP-Request/Identity
EAP-Response/
Identity (MyID1) ->
// Identity sent in the clear. May be a hint to help route
the authentication request to EAP server, instead of the
full user identity.
<- EAP-Request/
EAP-Type=TEAP, V=1
(TEAP Start, S bit set, Authority-ID)
EAP-Response/
EAP-Type=TEAP, V=1
(TLS client_hello with
PAC-Opaque in SessionTicket extension)->
// Peer sends PAC-Opaque of Tunnel PAC along with a list of
ciphersuites supported. If the server rejects the PAC-
Opaque, it falls through to the full TLS handshake.
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS server_hello,
TLS certificate,
[TLS server_key_exchange,]
[TLS certificate_request,]
TLS server_hello_done)
Zhou, et al. Standards Track [Page 86]
^L
RFC 7170 TEAP May 2014
EAP-Response/
EAP-Type=TEAP, V=1
([TLS certificate,]
TLS client_key_exchange,
[TLS certificate_verify,]
TLS change_cipher_spec,
TLS finished) ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS change_cipher_spec,
TLS finished,
EAP-Payload-TLV[EAP-Request/
Identity])
// TLS channel established
(messages sent within the TLS channel)
// First EAP Payload TLV is piggybacked to the TLS Finished as
Application Data and protected by the TLS tunnel.
EAP-Payload-TLV
[EAP-Response/Identity (MyID2)]->
// identity protected by TLS.
<- EAP-Payload-TLV
[EAP-Request/EAP-Type=X]
EAP-Payload-TLV
[EAP-Response/EAP-Type=X] ->
// Method X exchanges followed by Protected Termination
<- Intermediate-Result-TLV (Success),
Crypto-Binding TLV (Request),
Result TLV (Success)
Intermediate-Result-TLV (Success),
Crypto-Binding TLV (Response),
Result-TLV (Success) ->
// TLS channel torn down
(messages sent in cleartext)
<- EAP-Success
Zhou, et al. Standards Track [Page 87]
^L
RFC 7170 TEAP May 2014
C.4. Client Authentication during Phase 1 with Identity Privacy
In the case where a certificate-based TLS handshake occurs within
TEAP Phase 1 and client certificate authentication and identity
privacy is desired (and therefore TLS renegotiation is being used to
transmit the peer credentials in the protected TLS tunnel), the
conversation will appear as follows:
Authenticating Peer Authenticator
------------------- -------------
<- EAP-Request/Identity
EAP-Response/
Identity (MyID1) ->
// Identity sent in the clear. May be a hint to help route
the authentication request to EAP server, instead of the
full user identity.
<- EAP-Request/
EAP-Type=TEAP, V=1
(TEAP Start, S bit set, Authority-ID)
EAP-Response/
EAP-Type=TEAP, V=1
(TLS client_hello)->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS server_hello,
TLS certificate,
[TLS server_key_exchange,]
[TLS certificate_request,]
TLS server_hello_done)
EAP-Response/
EAP-Type=TEAP, V=1
(TLS client_key_exchange,
TLS change_cipher_spec,
TLS finished) ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS change_cipher_spec,
TLS finished,
EAP-Payload-TLV[EAP-Request/
Identity])
// TLS channel established
(EAP Payload messages sent within the TLS channel)
// peer sends TLS client_hello to request TLS renegotiation
Zhou, et al. Standards Track [Page 88]
^L
RFC 7170 TEAP May 2014
TLS client_hello ->
<- TLS server_hello,
TLS certificate,
[TLS server_key_exchange,]
[TLS certificate_request,]
TLS server_hello_done
[TLS certificate,]
TLS client_key_exchange,
[TLS certificate_verify,]
TLS change_cipher_spec,
TLS finished ->
<- TLS change_cipher_spec,
TLS finished,
Crypto-Binding TLV (Request),
Result TLV (Success)
Crypto-Binding TLV (Response),
Result-TLV (Success)) ->
//TLS channel torn down
(messages sent in cleartext)
<- EAP-Success
C.5. Fragmentation and Reassembly
In the case where TEAP fragmentation is required, the conversation
will appear as follows:
Authenticating Peer Authenticator
------------------- -------------
<- EAP-Request/
Identity
EAP-Response/
Identity (MyID) ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TEAP Start, S bit set, Authority-ID)
EAP-Response/
EAP-Type=TEAP, V=1
(TLS client_hello)->
Zhou, et al. Standards Track [Page 89]
^L
RFC 7170 TEAP May 2014
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS server_hello,
TLS certificate,
[TLS server_key_exchange,]
[TLS certificate_request,]
TLS server_hello_done)
(Fragment 1: L, M bits set)
EAP-Response/
EAP-Type=TEAP, V=1 ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(Fragment 2: M bit set)
EAP-Response/
EAP-Type=TEAP, V=1 ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(Fragment 3)
EAP-Response/
EAP-Type=TEAP, V=1
([TLS certificate,]
TLS client_key_exchange,
[TLS certificate_verify,]
TLS change_cipher_spec,
TLS finished)
(Fragment 1: L, M bits set)->
<- EAP-Request/
EAP-Type=TEAP, V=1
EAP-Response/
EAP-Type=TEAP, V=1
(Fragment 2)->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS change_cipher_spec,
TLS finished,
[EAP-Payload-TLV[
EAP-Request/Identity]])
// TLS channel established
(messages sent within the TLS channel)
// First EAP Payload TLV is piggybacked to the TLS Finished as
Application Data and protected by the TLS tunnel.
Zhou, et al. Standards Track [Page 90]
^L
RFC 7170 TEAP May 2014
EAP-Payload-TLV
[EAP-Response/Identity (MyID2)]->
// identity protected by TLS.
<- EAP-Payload-TLV
[EAP-Request/EAP-Type=X]
EAP-Payload-TLV
[EAP-Response/EAP-Type=X] ->
// Method X exchanges followed by Protected Termination
<- Intermediate-Result-TLV (Success),
Crypto-Binding TLV (Request),
Result TLV (Success)
Intermediate-Result-TLV (Success),
Crypto-Binding TLV (Response),
Result-TLV (Success) ->
// TLS channel torn down
(messages sent in cleartext)
<- EAP-Success
C.6. Sequence of EAP Methods
When TEAP is negotiated with a sequence of EAP method X followed by
method Y, the conversation will occur as follows:
Authenticating Peer Authenticator
------------------- -------------
<- EAP-Request/
Identity
EAP-Response/
Identity (MyID1) ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TEAP Start, S bit set, Authority-ID)
EAP-Response/
EAP-Type=TEAP, V=1
(TLS client_hello)->
Zhou, et al. Standards Track [Page 91]
^L
RFC 7170 TEAP May 2014
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS server_hello,
TLS certificate,
[TLS server_key_exchange,]
[TLS certificate_request,]
TLS server_hello_done)
EAP-Response/
EAP-Type=TEAP, V=1
([TLS certificate,]
TLS client_key_exchange,
[TLS certificate_verify,]
TLS change_cipher_spec,
TLS finished) ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS change_cipher_spec,
TLS finished,
Identity-Type TLV,
EAP-Payload-TLV[
EAP-Request/Identity])
// TLS channel established
(messages sent within the TLS channel)
// First EAP Payload TLV is piggybacked to the TLS Finished as
Application Data and protected by the TLS tunnel
Identity_Type TLV
EAP-Payload-TLV
[EAP-Response/Identity] ->
<- EAP-Payload-TLV
[EAP-Request/EAP-Type=X]
EAP-Payload-TLV
[EAP-Response/EAP-Type=X] ->
// Optional additional X Method exchanges...
<- EAP-Payload-TLV
[EAP-Request/EAP-Type=X]
EAP-Payload-TLV
[EAP-Response/EAP-Type=X]->
Zhou, et al. Standards Track [Page 92]
^L
RFC 7170 TEAP May 2014
<- Intermediate Result TLV (Success),
Crypto-Binding TLV (Request),
Identity-Type TLV,
EAP Payload TLV [EAP-Type=Y],
// Next EAP conversation started after successful completion
of previous method X. The Intermediate-Result and Crypto-
Binding TLVs are sent in next packet to minimize round
trips. In this example, an identity request is not sent
before negotiating EAP-Type=Y.
// Compound MAC calculated using keys generated from
EAP method X and the TLS tunnel.
Intermediate Result TLV (Success),
Crypto-Binding TLV (Response),
EAP-Payload-TLV [EAP-Type=Y] ->
// Optional additional Y Method exchanges...
<- EAP Payload TLV [
EAP-Type=Y]
EAP Payload TLV
[EAP-Type=Y] ->
<- Intermediate-Result-TLV (Success),
Crypto-Binding TLV (Request),
Result TLV (Success)
Intermediate-Result-TLV (Success),
Crypto-Binding TLV (Response),
Result-TLV (Success) ->
// Compound MAC calculated using keys generated from EAP
methods X and Y and the TLS tunnel. Compound keys are
generated using keys generated from EAP methods X and Y
and the TLS tunnel.
// TLS channel torn down (messages sent in cleartext)
<- EAP-Success
Zhou, et al. Standards Track [Page 93]
^L
RFC 7170 TEAP May 2014
C.7. Failed Crypto-Binding
The following exchanges show a failed crypto-binding validation. The
conversation will appear as follows:
Authenticating Peer Authenticator
------------------- -------------
<- EAP-Request/
Identity
EAP-Response/
Identity (MyID1) ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TEAP Start, S bit set, Authority-ID)
EAP-Response/
EAP-Type=TEAP, V=1
(TLS client_hello without
PAC-Opaque in SessionTicket extension)->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS Server Key Exchange
TLS Server Hello Done)
EAP-Response/
EAP-Type=TEAP, V=1 ->
(TLS Client Key Exchange
TLS change_cipher_spec,
TLS finished)
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS change_cipher_spec
TLS finished)
EAP-Payload-TLV[
EAP-Request/Identity])
// TLS channel established
(messages sent within the TLS channel)
// First EAP Payload TLV is piggybacked to the TLS Finished as
Application Data and protected by the TLS tunnel.
EAP-Payload TLV/
EAP Identity Response ->
<- EAP Payload TLV, EAP-Request,
(EAP-MSCHAPV2, Challenge)
Zhou, et al. Standards Track [Page 94]
^L
RFC 7170 TEAP May 2014
EAP Payload TLV, EAP-Response,
(EAP-MSCHAPV2, Response) ->
<- EAP Payload TLV, EAP-Request,
(EAP-MSCHAPV2, Success Request)
EAP Payload TLV, EAP-Response,
(EAP-MSCHAPV2, Success Response) ->
<- Intermediate-Result-TLV (Success),
Crypto-Binding TLV (Request),
Result TLV (Success)
Intermediate-Result-TLV (Success),
Result TLV (Failure)
Error TLV with
(Error Code = 2001) ->
// TLS channel torn down
(messages sent in cleartext)
<- EAP-Failure
C.8. Sequence of EAP Method with Vendor-Specific TLV Exchange
When TEAP is negotiated with a sequence of EAP methods followed by a
Vendor-Specific TLV exchange, the conversation will occur as follows:
Authenticating Peer Authenticator
------------------- -------------
<- EAP-Request/
Identity
EAP-Response/
Identity (MyID1) ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TEAP Start, S bit set, Authority-ID)
EAP-Response/
EAP-Type=TEAP, V=1
(TLS client_hello)->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS server_hello,
TLS certificate,
[TLS server_key_exchange,]
[TLS certificate_request,]
TLS server_hello_done)
Zhou, et al. Standards Track [Page 95]
^L
RFC 7170 TEAP May 2014
EAP-Response/
EAP-Type=TEAP, V=1
([TLS certificate,]
TLS client_key_exchange,
[TLS certificate_verify,]
TLS change_cipher_spec,
TLS finished) ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS change_cipher_spec,
TLS finished,
EAP-Payload-TLV[
EAP-Request/Identity])
// TLS channel established
(messages sent within the TLS channel)
// First EAP Payload TLV is piggybacked to the TLS Finished as
Application Data and protected by the TLS tunnel.
EAP-Payload-TLV
[EAP-Response/Identity] ->
<- EAP-Payload-TLV
[EAP-Request/EAP-Type=X]
EAP-Payload-TLV
[EAP-Response/EAP-Type=X] ->
<- EAP-Payload-TLV
[EAP-Request/EAP-Type=X]
EAP-Payload-TLV
[EAP-Response/EAP-Type=X]->
<- Intermediate Result TLV (Success),
Crypto-Binding TLV (Request),
Vendor-Specific TLV,
// Vendor-Specific TLV exchange started after successful
completion of previous method X. The Intermediate-Result
and Crypto-Binding TLVs are sent with Vendor-Specific TLV
in next packet to minimize round trips.
// Compound MAC calculated using keys generated from
EAP method X and the TLS tunnel.
Zhou, et al. Standards Track [Page 96]
^L
RFC 7170 TEAP May 2014
Intermediate Result TLV (Success),
Crypto-Binding TLV (Response),
Vendor-Specific TLV ->
// Optional additional Vendor-Specific TLV exchanges...
<- Vendor-Specific TLV
Vendor-Specific TLV ->
<- Result TLV (Success)
Result-TLV (Success) ->
// TLS channel torn down (messages sent in cleartext)
<- EAP-Success
C.9. Peer Requests Inner Method after Server Sends Result TLV
In the case where the peer is authenticated during Phase 1 and the
server sends back a Result TLV but the peer wants to request another
inner method, the conversation will appear as follows:
Authenticating Peer Authenticator
------------------- -------------
<- EAP-Request/Identity
EAP-Response/
Identity (MyID1) ->
// Identity sent in the clear. May be a hint to help route
the authentication request to EAP server, instead of the
full user identity.
<- EAP-Request/
EAP-Type=TEAP, V=1
(TEAP Start, S bit set, Authority-ID)
EAP-Response/
EAP-Type=TEAP, V=1
(TLS client_hello)->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS server_hello,
TLS certificate,
[TLS server_key_exchange,]
[TLS certificate_request,]
TLS server_hello_done)
Zhou, et al. Standards Track [Page 97]
^L
RFC 7170 TEAP May 2014
EAP-Response/
EAP-Type=TEAP, V=1
[TLS certificate,]
TLS client_key_exchange,
[TLS certificate_verify,]
TLS change_cipher_spec,
TLS finished ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS change_cipher_spec,
TLS finished,
Crypto-Binding TLV (Request),
Result TLV (Success))
// TLS channel established
(TLV Payload messages sent within the TLS channel)
Crypto-Binding TLV(Response),
Request-Action TLV
(Status=Failure, Action=Negotiate-EAP)->
<- EAP-Payload-TLV
[EAP-Request/Identity]
EAP-Payload-TLV
[EAP-Response/Identity] ->
<- EAP-Payload-TLV
[EAP-Request/EAP-Type=X]
EAP-Payload-TLV
[EAP-Response/EAP-Type=X] ->
<- EAP-Payload-TLV
[EAP-Request/EAP-Type=X]
EAP-Payload-TLV
[EAP-Response/EAP-Type=X]->
<- Intermediate Result TLV (Success),
Crypto-Binding TLV (Request),
Result TLV (Success)
Intermediate Result TLV (Success),
Crypto-Binding TLV (Response),
Result-TLV (Success)) ->
Zhou, et al. Standards Track [Page 98]
^L
RFC 7170 TEAP May 2014
// TLS channel torn down
(messages sent in cleartext)
<- EAP-Success
C.10. Channel Binding
The following exchanges show a successful TEAP authentication with
basic password authentication and channel binding using a Request-
Action TLV. The conversation will appear as follows:
Authenticating Peer Authenticator
------------------- -------------
<- EAP-Request/
Identity
EAP-Response/
Identity (MyID1) ->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TEAP Start, S bit set, Authority-ID)
EAP-Response/
EAP-Type=TEAP, V=1
(TLS client_hello with
PAC-Opaque in SessionTicket extension)->
<- EAP-Request/
EAP-Type=TEAP, V=1
(TLS server_hello,
(TLS change_cipher_spec,
TLS finished)
EAP-Response/
EAP-Type=TEAP, V=1 ->
(TLS change_cipher_spec,
TLS finished)
TLS channel established
(messages sent within the TLS channel)
<- Basic-Password-Auth-Req TLV, Challenge
Basic-Password-Auth-Resp TLV, Response with both
username and password) ->
optional additional exchanges (new pin mode,
password change, etc.) ...
Zhou, et al. Standards Track [Page 99]
^L
RFC 7170 TEAP May 2014
<- Crypto-Binding TLV (Request),
Result TLV (Success),
Crypto-Binding TLV(Response),
Request-Action TLV
(Status=Failure, Action=Process-TLV,
TLV=Channel-Binding TLV)->
<- Channel-Binding TLV (Response),
Result TLV (Success),
Result-TLV (Success) ->
TLS channel torn down
(messages sent in cleartext)
<- EAP-Success
Zhou, et al. Standards Track [Page 100]
^L
RFC 7170 TEAP May 2014
Authors' Addresses
Hao Zhou
Cisco Systems
4125 Highlander Parkway
Richfield, OH 44286
US
EMail: hzhou@cisco.com
Nancy Cam-Winget
Cisco Systems
3625 Cisco Way
San Jose, CA 95134
US
EMail: ncamwing@cisco.com
Joseph Salowey
Cisco Systems
2901 3rd Ave
Seattle, WA 98121
US
EMail: jsalowey@cisco.com
Stephen Hanna
Infineon Technologies
79 Parsons Street
Brighton, MA 02135
US
EMail: steve.hanna@infineon.com
Zhou, et al. Standards Track [Page 101]
^L
|