1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
|
Internet Engineering Task Force (IETF) C. Bormann
Request for Comments: 7400 Universitaet Bremen TZI
Category: Standards Track November 2014
ISSN: 2070-1721
6LoWPAN-GHC: Generic Header Compression for IPv6
over Low-Power Wireless Personal Area Networks (6LoWPANs)
Abstract
RFC 6282 defines header compression in 6LoWPAN packets (where
"6LoWPAN" refers to "IPv6 over Low-Power Wireless Personal Area
Network"). The present document specifies a simple addition that
enables the compression of generic headers and header-like payloads,
without a need to define a new header compression scheme for each
such new header or header-like payload.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7400.
Copyright Notice
Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Bormann Standards Track [Page 1]
^L
RFC 7400 6LoWPAN-GHC November 2014
Table of Contents
1. Introduction ....................................................2
1.1. The Header Compression Coupling Problem ....................2
1.2. Compression Approach .......................................3
1.3. Terminology ................................................3
1.4. Notation ...................................................4
2. 6LoWPAN-GHC .....................................................4
3. Integrating 6LoWPAN-GHC into 6LoWPAN-HC .........................6
3.1. Compressing Payloads (UDP and ICMPv6) ......................6
3.2. Compressing Extension Headers ..............................6
3.3. Indicating GHC Capability ..................................7
3.4. Using the 6CIO .............................................8
4. IANA Considerations .............................................9
5. Security Considerations ........................................10
6. References .....................................................11
6.1. Normative References ......................................11
6.2. Informative References ....................................12
Appendix A. Examples ..............................................14
Acknowledgements ..................................................24
Author's Address ..................................................24
1. Introduction
1.1. The Header Compression Coupling Problem
[RFC6282] defines a scheme for header compression in 6LoWPAN
[RFC4944] packets; in this document, we refer to that scheme as
6LoWPAN Header Compression, or 6LoWPAN-HC (where "6LoWPAN" refers to
"IPv6 over Low-Power Wireless Personal Area Network"). As with most
header compression schemes, a new specification is necessary for
every new kind of header that needs to be compressed. In addition,
[RFC6282] does not define an extensibility scheme like the Robust
Header Compression (ROHC) profiles defined in ROHC [RFC3095]
[RFC5795]. This leads to the difficult situation in which 6LoWPAN-HC
tended to be reopened and reexamined each time a new header receives
consideration (or an old header is changed and reconsidered) in the
6LoWPAN/roll/CoRE cluster of IETF working groups. Although [RFC6282]
was finally completed and published, the underlying problem remains
unsolved.
The purpose of the present contribution is to plug into [RFC6282] as
is, using its Next Header Compression (NHC) concept. We add a
slightly less efficient, but vastly more general, form of compression
for headers of any kind and even for header-like payloads such as
those exhibited by routing protocols, DHCP, etc.: Generic Header
Compression (GHC). The objective is an extremely simple
Bormann Standards Track [Page 2]
^L
RFC 7400 6LoWPAN-GHC November 2014
specification that can be defined on a single page and implemented in
a small number of lines of code, as opposed to a general data
compression scheme such as that defined in [RFC1951].
1.2. Compression Approach
The basic approach of GHC's compression function is to define a
bytecode for LZ77-style compression [LZ77]. The bytecode is a series
of simple instructions for the decompressor to reconstitute the
uncompressed payload. These instructions include:
o appending bytes to the reconstituted payload that are literally
given with the instruction in the compressed data
o appending a given number of zero bytes to the reconstituted
payload
o appending bytes to the reconstituted payload by copying a
contiguous sequence from the payload being reconstituted
("backreferencing")
o an ancillary instruction for setting up parameters for the
backreferencing instruction in "decompression variables"
o a stop code (optional; see Section 3.2)
The buffer for the reconstituted payload ("destination buffer") is
prefixed by a predefined dictionary that can be used in the
backreferencing as if it were a prefix of the payload. This
predefined dictionary is built from the IPv6 addresses of the packet
being reconstituted, followed by a static component, the "static
dictionary".
As usual, this specification defines the decompressor operation in
detail but leaves the detailed operation of the compressor open to
implementation. The compressor can be implemented as with a
classical LZ77 compressor, or it can be a simple protocol encoder
that just makes use of known compression opportunities.
1.3. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
RFC 2119 [RFC2119].
The term "byte" is used in its now-customary sense as a synonym for
"octet".
Bormann Standards Track [Page 3]
^L
RFC 7400 6LoWPAN-GHC November 2014
Terms from [RFC7228] are used in Section 5.
1.4. Notation
This specification uses a trivial notation for code bytes and the
bitfields in them, the meaning of which should be mostly obvious.
More formally, the meaning of the notation is as follows:
Potential values for the code bytes themselves are expressed by
templates that represent 8-bit most-significant-bit-first binary
numbers (without any special prefix), where 0 stands for 0, 1 for 1,
and variable segments in these code byte templates are indicated by
sequences of the same letter, such as kkkkkkk or ssss, the length of
which indicates the length of the variable segment in bits.
In the notation of values derived from the code bytes, 0b is used as
a prefix for expressing binary numbers in most-significant-bit-first
notation (akin to the use of 0x for most-significant-digit-first
hexadecimal numbers in the C programming language). Where the above-
mentioned sequences of letters are then referenced in such a binary
number in the text, the intention is that the value from these
bitfields in the actual code byte be inserted.
Example: The code byte template
101nssss
stands for a byte that starts (most-significant-bit-first) with the
bits 1, 0, and 1, and continues with five variable bits, the first of
which is referenced as "n" and the next four of which are referenced
as "ssss". Based on this code byte template, a reference to
0b0ssss000
means a binary number composed from a zero bit; the four bits that
are in the "ssss" field (for 101nssss, the four least significant
bits) in the actual byte encountered, kept in the same order; and
three more zero bits.
2. 6LoWPAN-GHC
The format of a GHC-compressed header or payload is a simple
bytecode. A compressed header consists of a sequence of pieces, each
of which begins with a code byte, which may be followed by zero or
more bytes as its argument. Some code bytes cause bytes to be laid
out in the destination buffer, and some simply modify some
decompression variables.
Bormann Standards Track [Page 4]
^L
RFC 7400 6LoWPAN-GHC November 2014
At the start of decompressing a header or payload within an L2 packet
(= fragment), the decompression variables "sa" and "na" are
initialized as zero.
The code bytes are defined as follows (Table 1):
+----------+---------------------------------------------+----------+
| code | Action | Argument |
| byte | | |
+----------+---------------------------------------------+----------+
| 0kkkkkkk | Append k = 0b0kkkkkkk bytes of data in the | k bytes |
| | bytecode argument (k < 96) | of data |
| | | |
| 1000nnnn | Append 0b0000nnnn+2 bytes of zeroes | |
| | | |
| 10010000 | stop code (end of compressed data; see | |
| | Section 3.2) | |
| | | |
| 101nssss | Set up extended arguments for a | |
| | backreference: sa += 0b0ssss000, | |
| | na += 0b0000n000 | |
| | | |
| 11nnnkkk | Backreference: n = na+0b00000nnn+2; | |
| | s = 0b00000kkk+sa+n; append n bytes from | |
| | previously output bytes, starting s bytes | |
| | to the left of the current output pointer; | |
| | set sa = 0, na = 0 | |
+----------+---------------------------------------------+----------+
Table 1: Bytecodes for Generic Header Compression
Note that the following bit combinations are reserved at this time:
o 011xxxxx
o 1001nnnn (where 0b0000nnnn > 0)
For the purposes of the backreferences, the expansion buffer is
initialized with a predefined dictionary, at the end of which the
reconstituted payload begins. This dictionary is composed of the
source and destination IPv6 addresses of the packet being
reconstituted, followed by a 16-byte static dictionary (Figure 1).
These 48 dictionary bytes are therefore available for backreferencing
but not copied into the final reconstituted payload.
16 fe fd 17 fe fd 00 01 00 00 00 00 00 01 00 00
Figure 1: The 16 Bytes of Static Dictionary (in Hex)
Bormann Standards Track [Page 5]
^L
RFC 7400 6LoWPAN-GHC November 2014
3. Integrating 6LoWPAN-GHC into 6LoWPAN-HC
6LoWPAN-GHC plugs in as an NHC format for 6LoWPAN-HC [RFC6282].
3.1. Compressing Payloads (UDP and ICMPv6)
By definition, GHC is generic and can be applied to different kinds
of packets. Many of the examples given in Appendix A are for ICMPv6
packets; a single NHC value suffices to define an NHC format for
ICMPv6 based on GHC (see below).
In addition, it is useful to include an NHC format for UDP, as many
header-like payloads (e.g., DHCPv6, Datagram Transport Layer Security
(DTLS)) are carried in UDP. [RFC6282] already defines an NHC format
for UDP (11110CPP). GHC uses an analogous NHC byte formatted as
shown in Figure 2. The difference to the existing UDP NHC
specification is that for 11010CPP NHC bytes, the UDP payload is not
supplied literally but compressed by 6LoWPAN-GHC.
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 1 | 1 | 0 | 1 | 0 | C | P |
+---+---+---+---+---+---+---+---+
Figure 2: NHC Byte for UDP GHC (11010CPP)
To stay in the same general numbering space, we use 11011111 as the
NHC byte for ICMPv6 GHC (Figure 3).
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
+---+---+---+---+---+---+---+---+
Figure 3: NHC Byte for ICMPv6 GHC (11011111)
3.2. Compressing Extension Headers
Compression of specific extension headers is added in a similar way
(Figure 4) (however, probably only Extension Header ID (EID) 0 to 3
[RFC6282] need to be assigned). As there is no easy way to extract
the Length field from the GHC-encoded header before decoding, this
would make detecting the end of the extension header somewhat
complex. The easiest (and most efficient) approach is to completely
elide the Length field (in the same way NHC already elides the Next
Header field in certain cases) and reconstruct it only on
decompression. To serve as a terminator for the extension header,
the bytecode 0b10010000 has been assigned as a stop code. Note that
Bormann Standards Track [Page 6]
^L
RFC 7400 6LoWPAN-GHC November 2014
the stop code is only needed for extension headers, not for the final
payloads discussed in the previous subsection, the decompression of
which is automatically stopped by the end of the packet.
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 1 | 0 | 1 | 1 | EID |NH |
+---+---+---+---+---+---+---+---+
Figure 4: NHC Byte for Extension Header GHC
3.3. Indicating GHC Capability
The 6LoWPAN baseline includes just [RFC4944], [RFC6282], and
[RFC6775] (see [Roadmap-6LoWPAN]). To enable the use of GHC towards
a neighbor, a 6LoWPAN node needs to know that the neighbor implements
it. While this can also simply be administratively required, a
transition strategy as well as a way to support mixed networks is
required.
One way to know that a neighbor does implement GHC is receiving a
packet from that neighbor with GHC in it ("implicit capability
detection"). However, there needs to be a way to bootstrap this, as
nobody would ever start sending packets with GHC otherwise.
To minimize the impact on [RFC6775], we define a Neighbor Discovery
(ND) option called the 6LoWPAN Capability Indication Option (6CIO),
as illustrated in Figure 5. (For the fields marked by an underscore
in Figure 5, see Section 3.4.)
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length = 1 |_____________________________|G|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|_______________________________________________________________|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 5: 6LoWPAN Capability Indication Option (6CIO)
The G bit indicates whether the node sending the option is GHC
capable.
Once a node receives either an explicit or implicit indication of GHC
capability from another node, it may send GHC-compressed packets to
that node. Where that capability has not been recently confirmed,
similar to the way Packetization Layer Path MTU Discovery (PLPMTUD)
Bormann Standards Track [Page 7]
^L
RFC 7400 6LoWPAN-GHC November 2014
[RFC4821] finds out about changes in the network, a node SHOULD make
use of Neighbor Unreachability Detection (NUD) failures to switch
back to basic 6LoWPAN header compression [RFC6282].
3.4. Using the 6CIO
The 6CIO will typically only be sent in 6LoWPAN-ND Router
Solicitation (RS) packets (which cannot themselves be GHC compressed
unless the host desires to limit itself to talking to GHC-capable
routers). The resulting 6LoWPAN-ND Router Advertisement (RA) can
then already make use of GHC and thus indicate GHC capability
implicitly, which in turn allows both nodes to use GHC in the
6LoWPAN-ND Neighbor Solicitation / Neighbor Advertisement (NS/NA)
exchange.
The 6CIO can also be used for future options that need to be
negotiated between 6LoWPAN peers; an IANA registry is used to assign
the flags. Bits marked by underscores in Figure 5 are unassigned and
available for future assignment. They MUST be sent as zero and MUST
be ignored on reception until assigned by IANA. Length values larger
than 1 MUST be accepted by implementations in order to enable future
extensions; the additional bits in the option are then deemed
unassigned in the same way. For the purposes of the IANA registry,
the bits are numbered in most-significant-bit-first order from the
16th bit of the option onward: the 16th bit is flag number 0, the
31st bit (the G bit) is flag number 15, up to the 63rd bit for flag
number 47. (Additional bits may also be used by a follow-on version
of this document if some bit combinations that have been left
unassigned here are then used in an upward-compatible manner.)
Flag numbers 0 to 7 are reserved for experimental use. They MUST NOT
be used for actual deployments.
Where the use of this option by other specifications or for
experimental use is envisioned, the following items have to be kept
in mind:
o The option can be used in any ND packet.
o Specific bits are set in the option to indicate that a capability
is present in the sender. (There may be other ways to infer this
information, as is the case in this specification.) Bit
combinations may be used as desired. The absence of the
capability _indication_ is signaled by setting these bits to zero;
this does not necessarily mean that the capability is absent.
Bormann Standards Track [Page 8]
^L
RFC 7400 6LoWPAN-GHC November 2014
o The intention is not to modify the semantics of the specific ND
packet carrying the option but to provide the general capability
indication described above.
o Specifications have to be designed such that receivers that do not
receive or do not process such a capability indication can still
interoperate (presumably without exploiting the indicated
capability).
o The option is meant to be used sparsely, i.e., once a sender has
reason to believe the capability indication has been received,
there is no longer a need to continue sending it.
4. IANA Considerations
IANA has added the assignments listed in Figure 6 in the "LOWPAN_NHC
Header Type" registry (under "IPv6 Low Power Personal Area Network
Parameters").
10110EEN: Extension header GHC [RFC7400]
11010CPP: UDP GHC [RFC7400]
11011111: ICMPv6 GHC [RFC7400]
Figure 6: IANA Assignments for the NHC Byte
IANA has allocated ND option number 36 for the "6LoWPAN Capability
Indication Option (6CIO)" ND option format in the "IPv6 Neighbor
Discovery Option Formats" registry [RFC4861].
IANA has created a subregistry for "6LoWPAN capability Bits" under
the "Internet Control Message Protocol version 6 (ICMPv6) Parameters"
registry. The bits are assigned by giving their numbers as small,
non-negative integers as defined in Section 3.4, in the range 0-47.
The policy is "IETF Review" or "IESG Approval" [RFC5226]. The
initial content of the registry is as shown in Figure 7:
0-7: Reserved for Experimental Use [RFC7400]
8-14: Unassigned
15: GHC capable bit (G bit) [RFC7400]
16-47: Unassigned
Figure 7: IANA Assignments for the 6LoWPAN Capability Bits
Bormann Standards Track [Page 9]
^L
RFC 7400 6LoWPAN-GHC November 2014
5. Security Considerations
The security considerations of [RFC4944] and [RFC6282] apply. As
usual in protocols with packet parsing/construction, care must be
taken in implementations to avoid buffer overflows and, in particular
(with respect to the backreferencing), out-of-area references during
decompression.
One additional consideration is that an attacker may send a forged
packet that makes a second node believe a third victim node is GHC
capable. If it is not, this may prevent packets sent by the second
node from reaching the third node (at least until robustness features
such as those discussed in Section 3.3 kick in).
No mitigation is proposed (or known) for this attack, except that a
victim node that does implement GHC is not vulnerable. However, with
unsecured ND, a number of attacks with similar outcomes are already
possible, so there is little incentive to make use of this additional
attack. With secured ND, the 6CIO is also secured; nodes relying on
secured ND therefore should use the 6CIO bidirectionally (and limit
the implicit capability detection to secured ND packets carrying GHC)
instead of basing their neighbor capability assumptions on receiving
any kind of unprotected packet.
As with any LZ77 scheme, decompression bombs (compressed packets
crafted to expand so much that the decompressor is overloaded) are a
problem. An attacker cannot send a GHC decompressor into a tight
loop for too long, because the MTU will be reached quickly. Some
amplification of an attack from inside the compressed link is
possible, though. Using a constrained node in a constrained network
as a DoS attack source is usually not very useful, though, except
maybe against other nodes in that constrained network. The worst
case for an attack to the outside is a not-so-constrained device
using a (typically not-so-constrained) edge router to attack by
forwarding out of its Ethernet interface. The worst-case
amplification of GHC is 17, so an MTU-size packet can be generated
from a 6LoWPAN packet of 76 bytes. The 6LoWPAN network is still
constrained, so the amplification at the edge router turns an entire
250 kbit/s 802.15.4 network (assuming a theoretical upper bound of
225 kbit/s throughput to a single-hop adjacent node) into a
3.8 Mbit/s attacker.
The amplification may be more important inside the 6LoWPAN, if there
is a way to obtain reflection (otherwise, the packet is likely to
simply stay compressed on the way and do little damage), e.g., by
pinging a node using a decompression bomb, somehow keeping that node
from re-compressing the ping response (which would probably require
something more complex than simple runs of zeroes, so the worst-case
Bormann Standards Track [Page 10]
^L
RFC 7400 6LoWPAN-GHC November 2014
amplification is likely closer to 9). Or, if there are nodes that do
not support GHC, those can be attacked via a router that is then
forced to decompress.
All these attacks are mitigated by some form of network access
control.
In a 6LoWPAN stack, sensitive information will normally be protected
by transport- or application-layer (or even IP-layer) security, which
are all above the adaptation layer, leaving no sensitive information
to compress at the GHC level. However, a 6LoWPAN deployment that
entirely depends on Media Access Control (MAC) layer security may be
vulnerable to attacks that exploit redundancy information disclosed
by compression to recover information about secret values. The
attacker would need to be in radio range to observe the compressed
packets. Since compression is stateless, the attacker would need to
entice the party sending the secret value to also send some value
controlled (or at least usefully varying and knowable) by the
attacker in (what becomes the first adaptation-layer fragment of) the
same packet. This attack is fully mitigated by not exposing secret
values to the adaptation layer or by not using GHC in deployments
where this is done.
6. References
6.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997,
<http://www.rfc-editor.org/info/rfc2119>.
[RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
"Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
September 2007, <http://www.rfc-editor.org/info/rfc4861>.
[RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
"Transmission of IPv6 Packets over IEEE 802.15.4
Networks", RFC 4944, September 2007,
<http://www.rfc-editor.org/info/rfc4944>.
[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", BCP 26, RFC 5226,
May 2008, <http://www.rfc-editor.org/info/rfc5226>.
Bormann Standards Track [Page 11]
^L
RFC 7400 6LoWPAN-GHC November 2014
[RFC6282] Hui, J. and P. Thubert, "Compression Format for IPv6
Datagrams over IEEE 802.15.4-Based Networks", RFC 6282,
September 2011, <http://www.rfc-editor.org/info/rfc6282>.
[RFC6775] Shelby, Z., Chakrabarti, S., Nordmark, E., and C. Bormann,
"Neighbor Discovery Optimization for IPv6 over Low-Power
Wireless Personal Area Networks (6LoWPANs)", RFC 6775,
November 2012, <http://www.rfc-editor.org/info/rfc6775>.
6.2. Informative References
[ICMPv6-ND]
O'Flynn, C., "ICMPv6/ND Compression for 6LoWPAN Networks",
Work in Progress, draft-oflynn-6lowpan-icmphc-00,
July 2010.
[LZ77] Ziv, J. and A. Lempel, "A Universal Algorithm for
Sequential Data Compression", IEEE Transactions on
Information Theory, Vol. 23, No. 3, pp. 337-343, May 1977.
[RFC1951] Deutsch, P., "DEFLATE Compressed Data Format Specification
version 1.3", RFC 1951, May 1996,
<http://www.rfc-editor.org/info/rfc1951>.
[RFC3095] Bormann, C., Burmeister, C., Degermark, M., Fukushima, H.,
Hannu, H., Jonsson, L-E., Hakenberg, R., Koren, T., Le,
K., Liu, Z., Martensson, A., Miyazaki, A., Svanbro, K.,
Wiebke, T., Yoshimura, T., and H. Zheng, "RObust Header
Compression (ROHC): Framework and four profiles: RTP, UDP,
ESP, and uncompressed", RFC 3095, July 2001,
<http://www.rfc-editor.org/info/rfc3095>.
[RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
Discovery", RFC 4821, March 2007,
<http://www.rfc-editor.org/info/rfc4821>.
[RFC5795] Sandlund, K., Pelletier, G., and L-E. Jonsson, "The RObust
Header Compression (ROHC) Framework", RFC 5795,
March 2010, <http://www.rfc-editor.org/info/rfc5795>.
[RFC6550] Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R.,
Levis, P., Pister, K., Struik, R., Vasseur, JP., and R.
Alexander, "RPL: IPv6 Routing Protocol for Low-Power and
Lossy Networks", RFC 6550, March 2012,
<http://www.rfc-editor.org/info/rfc6550>.
Bormann Standards Track [Page 12]
^L
RFC 7400 6LoWPAN-GHC November 2014
[RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
Constrained-Node Networks", RFC 7228, May 2014,
<http://www.rfc-editor.org/info/rfc7228>.
[Roadmap-6LoWPAN]
Bormann, C., "6LoWPAN Roadmap and Implementation Guide",
Work in Progress, draft-bormann-6lo-6lowpan-roadmap-00,
October 2013.
Bormann Standards Track [Page 13]
^L
RFC 7400 6LoWPAN-GHC November 2014
Appendix A. Examples
This section demonstrates some relatively realistic examples derived
from actual packet captures taken at previous interops.
For the Routing Protocol for Low-Power and Lossy Networks (RPL)
[RFC6550], Figure 8 shows a Destination-Oriented Directed Acyclic
Graph (DODAG) Information Solicitation (DIS), a quite short RPL
message that obviously cannot be improved much.
IP header:
60 00 00 00 00 08 3a ff fe 80 00 00 00 00 00 00
02 1c da ff fe 00 20 24 ff 02 00 00 00 00 00 00
00 00 00 00 00 00 00 1a
Payload:
9b 00 6b de 00 00 00 00
Dictionary:
fe 80 00 00 00 00 00 00 02 1c da ff fe 00 20 24
ff 02 00 00 00 00 00 00 00 00 00 00 00 00 00 1a
16 fe fd 17 fe fd 00 01 00 00 00 00 00 01 00 00
copy: 04 9b 00 6b de
4 nulls: 82
Compressed:
04 9b 00 6b de 82
Was 8 bytes; compressed to 6 bytes, compression factor 1.33
Figure 8: A Simple RPL Example
Figure 9 shows a RPL DODAG Information Object, a longer RPL control
message that is improved a bit more. Note that the compressed output
exposes an inefficiency in the simple-minded compressor used to
generate it; this does not devalue the example, since constrained
nodes are quite likely to make use of simple-minded compressors.
Bormann Standards Track [Page 14]
^L
RFC 7400 6LoWPAN-GHC November 2014
IP header:
60 00 00 00 00 5c 3a ff fe 80 00 00 00 00 00 00
02 1c da ff fe 00 30 23 ff 02 00 00 00 00 00 00
00 00 00 00 00 00 00 1a
Payload:
9b 01 7a 5f 00 f0 01 00 88 00 00 00 20 02 0d b8
00 00 00 00 00 00 00 ff fe 00 fa ce 04 0e 00 14
09 ff 00 00 01 00 00 00 00 00 00 00 08 1e 80 20
ff ff ff ff ff ff ff ff 00 00 00 00 20 02 0d b8
00 00 00 00 00 00 00 ff fe 00 fa ce 03 0e 40 00
ff ff ff ff 20 02 0d b8 00 00 00 00
Dictionary:
fe 80 00 00 00 00 00 00 02 1c da ff fe 00 30 23
ff 02 00 00 00 00 00 00 00 00 00 00 00 00 00 1a
16 fe fd 17 fe fd 00 01 00 00 00 00 00 01 00 00
copy: 06 9b 01 7a 5f 00 f0
ref(9): 01 00 -> ref 11nnnkkk 0 7: c7
copy: 01 88
3 nulls: 81
copy: 04 20 02 0d b8
7 nulls: 85
ref(60): ff fe 00 -> ref 101nssss 0 7/11nnnkkk 1 1: a7 c9
copy: 08 fa ce 04 0e 00 14 09 ff
ref(39): 00 00 01 00 00 -> ref 101nssss 0 4/11nnnkkk 3 2: a4 da
5 nulls: 83
copy: 06 08 1e 80 20 ff ff
ref(2): ff ff -> ref 11nnnkkk 0 0: c0
ref(4): ff ff ff ff -> ref 11nnnkkk 2 0: d0
4 nulls: 82
ref(48): 20 02 0d b8 00 00 00 00 00 00 00 ff fe 00 fa ce
-> ref 101nssss 1 4/11nnnkkk 6 0: b4 f0
copy: 03 03 0e 40
ref(9): 00 ff -> ref 11nnnkkk 0 7: c7
ref(28): ff ff ff -> ref 101nssss 0 3/11nnnkkk 1 1: a3 c9
ref(24): 20 02 0d b8 00 00 00 00
-> ref 101nssss 0 2/11nnnkkk 6 0: a2 f0
Compressed:
06 9b 01 7a 5f 00 f0 c7 01 88 81 04 20 02 0d b8
85 a7 c9 08 fa ce 04 0e 00 14 09 ff a4 da 83 06
08 1e 80 20 ff ff c0 d0 82 b4 f0 03 03 0e 40 c7
a3 c9 a2 f0
Was 92 bytes; compressed to 52 bytes, compression factor 1.77
Figure 9: A Longer RPL Example
Bormann Standards Track [Page 15]
^L
RFC 7400 6LoWPAN-GHC November 2014
Similarly, Figure 10 shows a RPL Destination Advertisement Object
(DAO) message. One of the embedded addresses is copied right out of
the pseudo-header; the other one is effectively converted from global
to local by providing the prefix FE80 literally, inserting a number
of nulls, and copying (some of) the Interface Identifier part again
out of the pseudo-header. Note that a simple implementation would
probably emit fewer nulls and copy the entire Interface Identifier;
there are multiple ways to encode this 50-byte payload into 27 bytes.
IP header:
60 00 00 00 00 32 3a ff 20 02 0d b8 00 00 00 00
00 00 00 ff fe 00 33 44 20 02 0d b8 00 00 00 00
00 00 00 ff fe 00 11 22
Payload:
9b 02 58 7d 01 80 00 f1 05 12 00 80 20 02 0d b8
00 00 00 00 00 00 00 ff fe 00 33 44 06 14 00 80
f1 00 fe 80 00 00 00 00 00 00 00 00 00 ff fe 00
11 22
Dictionary:
20 02 0d b8 00 00 00 00 00 00 00 ff fe 00 33 44
20 02 0d b8 00 00 00 00 00 00 00 ff fe 00 11 22
16 fe fd 17 fe fd 00 01 00 00 00 00 00 01 00 00
copy: 0c 9b 02 58 7d 01 80 00 f1 05 12 00 80
ref(60): 20 02 0d b8 00 00 00 00 00 00 00 ff fe 00 33 44
-> ref 101nssss 1 5/11nnnkkk 6 4: b5 f4
copy: 08 06 14 00 80 f1 00 fe 80
9 nulls: 87
ref(66): ff fe 00 11 22 -> ref 101nssss 0 7/11nnnkkk 3 5: a7 dd
Compressed:
0c 9b 02 58 7d 01 80 00 f1 05 12 00 80 b5 f4 08
06 14 00 80 f1 00 fe 80 87 a7 dd
Was 50 bytes; compressed to 27 bytes, compression factor 1.85
Figure 10: A RPL DAO Message
Bormann Standards Track [Page 16]
^L
RFC 7400 6LoWPAN-GHC November 2014
Figure 11 shows the effect of compressing a simple ND neighbor
solicitation.
IP header:
60 00 00 00 00 30 3a ff 20 02 0d b8 00 00 00 00
00 00 00 ff fe 00 3b d3 fe 80 00 00 00 00 00 00
02 1c da ff fe 00 30 23
Payload:
87 00 a7 68 00 00 00 00 fe 80 00 00 00 00 00 00
02 1c da ff fe 00 30 23 01 01 3b d3 00 00 00 00
1f 02 00 00 00 00 00 06 00 1c da ff fe 00 20 24
Dictionary:
20 02 0d b8 00 00 00 00 00 00 00 ff fe 00 3b d3
fe 80 00 00 00 00 00 00 02 1c da ff fe 00 30 23
16 fe fd 17 fe fd 00 01 00 00 00 00 00 01 00 00
copy: 04 87 00 a7 68
4 nulls: 82
ref(40): fe 80 00 00 00 00 00 00 02 1c da ff fe 00 30 23
-> ref 101nssss 1 3/11nnnkkk 6 0: b3 f0
copy: 04 01 01 3b d3
4 nulls: 82
copy: 02 1f 02
5 nulls: 83
copy: 02 06 00
ref(24): 1c da ff fe 00 -> ref 101nssss 0 2/11nnnkkk 3 3: a2 db
copy: 02 20 24
Compressed:
04 87 00 a7 68 82 b3 f0 04 01 01 3b d3 82 02 1f
02 83 02 06 00 a2 db 02 20 24
Was 48 bytes; compressed to 26 bytes, compression factor 1.85
Figure 11: An ND Neighbor Solicitation
Bormann Standards Track [Page 17]
^L
RFC 7400 6LoWPAN-GHC November 2014
Figure 12 shows the compression of an ND neighbor advertisement.
IP header:
60 00 00 00 00 30 3a fe fe 80 00 00 00 00 00 00
02 1c da ff fe 00 30 23 20 02 0d b8 00 00 00 00
00 00 00 ff fe 00 3b d3
Payload:
88 00 26 6c c0 00 00 00 fe 80 00 00 00 00 00 00
02 1c da ff fe 00 30 23 02 01 fa ce 00 00 00 00
1f 02 00 00 00 00 00 06 00 1c da ff fe 00 20 24
Dictionary:
fe 80 00 00 00 00 00 00 02 1c da ff fe 00 30 23
20 02 0d b8 00 00 00 00 00 00 00 ff fe 00 3b d3
16 fe fd 17 fe fd 00 01 00 00 00 00 00 01 00 00
copy: 05 88 00 26 6c c0
3 nulls: 81
ref(56): fe 80 00 00 00 00 00 00 02 1c da ff fe 00 30 23
-> ref 101nssss 1 5/11nnnkkk 6 0: b5 f0
copy: 04 02 01 fa ce
4 nulls: 82
copy: 02 1f 02
5 nulls: 83
copy: 02 06 00
ref(24): 1c da ff fe 00 -> ref 101nssss 0 2/11nnnkkk 3 3: a2 db
copy: 02 20 24
Compressed:
05 88 00 26 6c c0 81 b5 f0 04 02 01 fa ce 82 02
1f 02 83 02 06 00 a2 db 02 20 24
Was 48 bytes; compressed to 27 bytes, compression factor 1.78
Figure 12: An ND Neighbor Advertisement
Bormann Standards Track [Page 18]
^L
RFC 7400 6LoWPAN-GHC November 2014
Figure 13 shows the compression of an ND router solicitation. Note
that the relatively good compression is not caused by the many zero
bytes in the link-layer address of this particular capture (which are
unlikely to occur in practice): 7 of these 8 bytes are copied from
the pseudo-header (the 8th byte cannot be copied, as the universal/
local bit needs to be inverted).
IP header:
60 00 00 00 00 18 3a ff fe 80 00 00 00 00 00 00
ae de 48 00 00 00 00 01 ff 02 00 00 00 00 00 00
00 00 00 00 00 00 00 02
Payload:
85 00 90 65 00 00 00 00 01 02 ac de 48 00 00 00
00 01 00 00 00 00 00 00
Dictionary:
fe 80 00 00 00 00 00 00 ae de 48 00 00 00 00 01
ff 02 00 00 00 00 00 00 00 00 00 00 00 00 00 02
16 fe fd 17 fe fd 00 01 00 00 00 00 00 01 00 00
copy: 04 85 00 90 65
ref(11): 00 00 00 00 01 -> ref 11nnnkkk 3 6: de
copy: 02 02 ac
ref(50): de 48 00 00 00 00 01
-> ref 101nssss 0 5/11nnnkkk 5 3: a5 eb
6 nulls: 84
Compressed:
04 85 00 90 65 de 02 02 ac a5 eb 84
Was 24 bytes; compressed to 12 bytes, compression factor 2.00
Figure 13: An ND Router Solicitation
Figure 14 shows the compression of an ND router advertisement. The
indefinite lifetime is compressed to four bytes by backreferencing;
this could be improved (at the cost of minor additional decompressor
complexity) by including some simple runlength mechanism.
Bormann Standards Track [Page 19]
^L
RFC 7400 6LoWPAN-GHC November 2014
IP header:
60 00 00 00 00 60 3a ff fe 80 00 00 00 00 00 00
10 34 00 ff fe 00 11 22 fe 80 00 00 00 00 00 00
ae de 48 00 00 00 00 01
Payload:
86 00 55 c9 40 00 0f a0 1c 5a 38 17 00 00 07 d0
01 01 11 22 00 00 00 00 03 04 40 40 ff ff ff ff
ff ff ff ff 00 00 00 00 20 02 0d b8 00 00 00 00
00 00 00 00 00 00 00 00 20 02 40 10 00 00 03 e8
20 02 0d b8 00 00 00 00 21 03 00 01 00 00 00 00
20 02 0d b8 00 00 00 00 00 00 00 ff fe 00 11 22
Dictionary:
fe 80 00 00 00 00 00 00 10 34 00 ff fe 00 11 22
fe 80 00 00 00 00 00 00 ae de 48 00 00 00 00 01
16 fe fd 17 fe fd 00 01 00 00 00 00 00 01 00 00
copy: 0c 86 00 55 c9 40 00 0f a0 1c 5a 38 17
2 nulls: 80
copy: 06 07 d0 01 01 11 22
4 nulls: 82
copy: 06 03 04 40 40 ff ff
ref(2): ff ff -> ref 11nnnkkk 0 0: c0
ref(4): ff ff ff ff -> ref 11nnnkkk 2 0: d0
4 nulls: 82
copy: 04 20 02 0d b8
12 nulls: 8a
copy: 04 20 02 40 10
ref(38): 00 00 03 -> ref 101nssss 0 4/11nnnkkk 1 3: a4 cb
copy: 01 e8
ref(24): 20 02 0d b8 00 00 00 00
-> ref 101nssss 0 2/11nnnkkk 6 0: a2 f0
copy: 02 21 03
ref(84): 00 01 00 00 00 00
-> ref 101nssss 0 9/11nnnkkk 4 6: a9 e6
ref(40): 20 02 0d b8 00 00 00 00 00 00 00
-> ref 101nssss 1 3/11nnnkkk 1 5: b3 cd
ref(128): ff fe 00 11 22
-> ref 101nssss 0 15/11nnnkkk 3 3: af db
Compressed:
0c 86 00 55 c9 40 00 0f a0 1c 5a 38 17 80 06 07
d0 01 01 11 22 82 06 03 04 40 40 ff ff c0 d0 82
04 20 02 0d b8 8a 04 20 02 40 10 a4 cb 01 e8 a2
f0 02 21 03 a9 e6 b3 cd af db
Was 96 bytes; compressed to 58 bytes, compression factor 1.66
Figure 14: An ND Router Advertisement
Bormann Standards Track [Page 20]
^L
RFC 7400 6LoWPAN-GHC November 2014
Figure 15 shows the compression of a DTLS application data packet
with a net payload of 13 bytes of cleartext and 8 bytes of
authenticator (note that the IP header is not relevant for this
example and has been set to 0). This makes good use of the static
dictionary and is quite effective crunching out the redundancy in the
TLS_PSK_WITH_AES_128_CCM_8 header, leading to a net reduction by 15
bytes.
IP header:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
Payload:
17 fe fd 00 01 00 00 00 00 00 01 00 1d 00 01 00
00 00 00 00 01 09 b2 0e 82 c1 6e b6 96 c5 1f 36
8d 17 61 e2 b5 d4 22 d4 ed 2b
Dictionary:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
16 fe fd 17 fe fd 00 01 00 00 00 00 00 01 00 00
ref(13): 17 fe fd 00 01 00 00 00 00 00 01 00
-> ref 101nssss 1 0/11nnnkkk 2 1: b0 d1
copy: 01 1d
ref(10): 00 01 00 00 00 00 00 01 -> ref 11nnnkkk 6 2: f2
copy: 15 09 b2 0e 82 c1 6e b6 96 c5 1f 36 8d 17 61 e2
copy: b5 d4 22 d4 ed 2b
Compressed:
b0 d1 01 1d f2 15 09 b2 0e 82 c1 6e b6 96 c5 1f
36 8d 17 61 e2 b5 d4 22 d4 ed 2b
Was 42 bytes; compressed to 27 bytes, compression factor 1.56
Figure 15: A DTLS Application Data Packet
Bormann Standards Track [Page 21]
^L
RFC 7400 6LoWPAN-GHC November 2014
Figure 16 shows that the compression is slightly worse in a
subsequent packet (containing 6 bytes of cleartext and 8 bytes of
authenticator, yielding a net compression of 13 bytes). The total
overhead does stay at a quite acceptable 8 bytes.
IP header:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
Payload:
17 fe fd 00 01 00 00 00 00 00 05 00 16 00 01 00
00 00 00 00 05 ae a0 15 56 67 92 4d ff 8a 24 e4
cb 35 b9
Dictionary:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
16 fe fd 17 fe fd 00 01 00 00 00 00 00 01 00 00
ref(13): 17 fe fd 00 01 00 00 00 00 00
-> ref 101nssss 1 0/11nnnkkk 0 3: b0 c3
copy: 03 05 00 16
ref(10): 00 01 00 00 00 00 00 05 -> ref 11nnnkkk 6 2: f2
copy: 0e ae a0 15 56 67 92 4d ff 8a 24 e4 cb 35 b9
Compressed:
b0 c3 03 05 00 16 f2 0e ae a0 15 56 67 92 4d ff
8a 24 e4 cb 35 b9
Was 35 bytes; compressed to 22 bytes, compression factor 1.59
Figure 16: Another DTLS Application Data Packet
Bormann Standards Track [Page 22]
^L
RFC 7400 6LoWPAN-GHC November 2014
Figure 17 shows the compression of a DTLS handshake message, here a
client hello. There is little that can be compressed about the 32
bytes of randomness. Still, the net reduction is by 14 bytes.
IP header:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
Payload:
16 fe fd 00 00 00 00 00 00 00 00 00 36 01 00 00
2a 00 00 00 00 00 00 00 2a fe fd 51 52 ed 79 a4
20 c9 62 56 11 47 c9 39 ee 6c c0 a4 fe c6 89 2f
32 26 9a 16 4e 31 7e 9f 20 92 92 00 00 00 02 c0
a8 01 00
Dictionary:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
16 fe fd 17 fe fd 00 01 00 00 00 00 00 01 00 00
ref(16): 16 fe fd -> ref 101nssss 0 1/11nnnkkk 1 5: a1 cd
9 nulls: 87
copy: 01 36
ref(16): 01 00 00 -> ref 101nssss 0 1/11nnnkkk 1 5: a1 cd
copy: 01 2a
7 nulls: 85
copy: 23 2a fe fd 51 52 ed 79 a4 20 c9 62 56 11 47 c9
copy: 39 ee 6c c0 a4 fe c6 89 2f 32 26 9a 16 4e 31 7e
copy: 9f 20 92 92
3 nulls: 81
copy: 05 02 c0 a8 01 00
Compressed:
a1 cd 87 01 36 a1 cd 01 2a 85 23 2a fe fd 51 52
ed 79 a4 20 c9 62 56 11 47 c9 39 ee 6c c0 a4 fe
c6 89 2f 32 26 9a 16 4e 31 7e 9f 20 92 92 81 05
02 c0 a8 01 00
Was 67 bytes; compressed to 53 bytes, compression factor 1.26
Figure 17: A DTLS Handshake Packet (Client Hello)
Bormann Standards Track [Page 23]
^L
RFC 7400 6LoWPAN-GHC November 2014
Acknowledgements
Colin O'Flynn has repeatedly insisted that some form of compression
for ICMPv6 and ND packets might be beneficial. He actually wrote his
own document, [ICMPv6-ND], which compresses better, but that document
only addresses basic ICMPv6/ND and needs a much longer specification
(around 17 pages of detailed specification, as compared to the single
page of core specification here). This motivated the author to try
something simple, yet general. Special thanks go to Colin for
indicating that he indeed considers his document superseded by
this one.
The examples given are based on packet capture files that Colin
O'Flynn, Owen Kirby, Olaf Bergmann, and others provided.
Using these files as a corpus, the static dictionary was developed,
and the bit allocations validated, based on research by Sebastian
Dominik.
Erik Nordmark provided input that helped shape the 6CIO. Thomas
Bjorklund proposed simplifying the predefined dictionary.
Yoshihiro Ohba insisted on clarifying the notation used for the
definition of the bytecodes and their bitfields. Ulrich Herberg
provided some additional review and suggested expanding the
introductory material, and with Hannes Tschofenig and Brian Haberman
he helped come up with the IANA policy for the "6LoWPAN capability
bits" assignments in the 6CIO.
The IESG reviewers Richard Barnes and Stephen Farrell contributed
topics to the Security Considerations section; they and Barry Leiba,
as well as GEN-ART reviewer Vijay K. Gurbani, also provided editorial
improvements.
Author's Address
Carsten Bormann
Universitaet Bremen TZI
Postfach 330440
D-28359 Bremen
Germany
Phone: +49-421-218-63921
EMail: cabo@tzi.org
Bormann Standards Track [Page 24]
^L
|