summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc7540.txt
blob: d28043a369eddb9a867ba1fa159583015fc87ed8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
Internet Engineering Task Force (IETF)                         M. Belshe
Request for Comments: 7540                                         BitGo
Category: Standards Track                                        R. Peon
ISSN: 2070-1721                                              Google, Inc
                                                         M. Thomson, Ed.
                                                                 Mozilla
                                                                May 2015


             Hypertext Transfer Protocol Version 2 (HTTP/2)

Abstract

   This specification describes an optimized expression of the semantics
   of the Hypertext Transfer Protocol (HTTP), referred to as HTTP
   version 2 (HTTP/2).  HTTP/2 enables a more efficient use of network
   resources and a reduced perception of latency by introducing header
   field compression and allowing multiple concurrent exchanges on the
   same connection.  It also introduces unsolicited push of
   representations from servers to clients.

   This specification is an alternative to, but does not obsolete, the
   HTTP/1.1 message syntax.  HTTP's existing semantics remain unchanged.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc7540.














Belshe, et al.               Standards Track                    [Page 1]
^L
RFC 7540                         HTTP/2                         May 2015


Copyright Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1. Introduction ....................................................4
   2. HTTP/2 Protocol Overview ........................................5
      2.1. Document Organization ......................................6
      2.2. Conventions and Terminology ................................6
   3. Starting HTTP/2 .................................................7
      3.1. HTTP/2 Version Identification ..............................8
      3.2. Starting HTTP/2 for "http" URIs ............................8
           3.2.1. HTTP2-Settings Header Field .........................9
      3.3. Starting HTTP/2 for "https" URIs ..........................10
      3.4. Starting HTTP/2 with Prior Knowledge ......................10
      3.5. HTTP/2 Connection Preface .................................11
   4. HTTP Frames ....................................................12
      4.1. Frame Format ..............................................12
      4.2. Frame Size ................................................13
      4.3. Header Compression and Decompression ......................14
   5. Streams and Multiplexing .......................................15
      5.1. Stream States .............................................16
           5.1.1. Stream Identifiers .................................21
           5.1.2. Stream Concurrency .................................22
      5.2. Flow Control ..............................................22
           5.2.1. Flow-Control Principles ............................23
           5.2.2. Appropriate Use of Flow Control ....................24
      5.3. Stream Priority ...........................................24
           5.3.1. Stream Dependencies ................................25
           5.3.2. Dependency Weighting ...............................26
           5.3.3. Reprioritization ...................................26
           5.3.4. Prioritization State Management ....................27
           5.3.5. Default Priorities .................................28
      5.4. Error Handling ............................................28
           5.4.1. Connection Error Handling ..........................29
           5.4.2. Stream Error Handling ..............................29



Belshe, et al.               Standards Track                    [Page 2]
^L
RFC 7540                         HTTP/2                         May 2015


           5.4.3. Connection Termination .............................30
      5.5. Extending HTTP/2 ..........................................30
   6. Frame Definitions ..............................................31
      6.1. DATA ......................................................31
      6.2. HEADERS ...................................................32
      6.3. PRIORITY ..................................................34
      6.4. RST_STREAM ................................................36
      6.5. SETTINGS ..................................................36
           6.5.1. SETTINGS Format ....................................38
           6.5.2. Defined SETTINGS Parameters ........................38
           6.5.3. Settings Synchronization ...........................39
      6.6. PUSH_PROMISE ..............................................40
      6.7. PING ......................................................42
      6.8. GOAWAY ....................................................43
      6.9. WINDOW_UPDATE .............................................46
           6.9.1. The Flow-Control Window ............................47
           6.9.2. Initial Flow-Control Window Size ...................48
           6.9.3. Reducing the Stream Window Size ....................49
      6.10. CONTINUATION .............................................49
   7. Error Codes ....................................................50
   8. HTTP Message Exchanges .........................................51
      8.1. HTTP Request/Response Exchange ............................52
           8.1.1. Upgrading from HTTP/2 ..............................53
           8.1.2. HTTP Header Fields .................................53
           8.1.3. Examples ...........................................57
           8.1.4. Request Reliability Mechanisms in HTTP/2 ...........60
      8.2. Server Push ...............................................60
           8.2.1. Push Requests ......................................61
           8.2.2. Push Responses .....................................63
      8.3. The CONNECT Method ........................................64
   9. Additional HTTP Requirements/Considerations ....................65
      9.1. Connection Management .....................................65
           9.1.1. Connection Reuse ...................................66
           9.1.2. The 421 (Misdirected Request) Status Code ..........66
      9.2. Use of TLS Features .......................................67
           9.2.1. TLS 1.2 Features ...................................67
           9.2.2. TLS 1.2 Cipher Suites ..............................68
   10. Security Considerations .......................................69
      10.1. Server Authority .........................................69
      10.2. Cross-Protocol Attacks ...................................69
      10.3. Intermediary Encapsulation Attacks .......................70
      10.4. Cacheability of Pushed Responses .........................70
      10.5. Denial-of-Service Considerations .........................70
           10.5.1. Limits on Header Block Size .......................71
           10.5.2. CONNECT Issues ....................................72
      10.6. Use of Compression .......................................72
      10.7. Use of Padding ...........................................73
      10.8. Privacy Considerations ...................................73



Belshe, et al.               Standards Track                    [Page 3]
^L
RFC 7540                         HTTP/2                         May 2015


   11. IANA Considerations ...........................................74
      11.1. Registration of HTTP/2 Identification Strings ............74
      11.2. Frame Type Registry ......................................75
      11.3. Settings Registry ........................................75
      11.4. Error Code Registry ......................................76
      11.5. HTTP2-Settings Header Field Registration .................77
      11.6. PRI Method Registration ..................................78
      11.7. The 421 (Misdirected Request) HTTP Status Code ...........78
      11.8. The h2c Upgrade Token ....................................78
   12. References ....................................................79
      12.1. Normative References .....................................79
      12.2. Informative References ...................................81
   Appendix A. TLS 1.2 Cipher Suite Black List .......................83
   Acknowledgements ..................................................95
   Authors' Addresses ................................................96

1.  Introduction

   The Hypertext Transfer Protocol (HTTP) is a wildly successful
   protocol.  However, the way HTTP/1.1 uses the underlying transport
   ([RFC7230], Section 6) has several characteristics that have a
   negative overall effect on application performance today.

   In particular, HTTP/1.0 allowed only one request to be outstanding at
   a time on a given TCP connection.  HTTP/1.1 added request pipelining,
   but this only partially addressed request concurrency and still
   suffers from head-of-line blocking.  Therefore, HTTP/1.0 and HTTP/1.1
   clients that need to make many requests use multiple connections to a
   server in order to achieve concurrency and thereby reduce latency.

   Furthermore, HTTP header fields are often repetitive and verbose,
   causing unnecessary network traffic as well as causing the initial
   TCP [TCP] congestion window to quickly fill.  This can result in
   excessive latency when multiple requests are made on a new TCP
   connection.

   HTTP/2 addresses these issues by defining an optimized mapping of
   HTTP's semantics to an underlying connection.  Specifically, it
   allows interleaving of request and response messages on the same
   connection and uses an efficient coding for HTTP header fields.  It
   also allows prioritization of requests, letting more important
   requests complete more quickly, further improving performance.









Belshe, et al.               Standards Track                    [Page 4]
^L
RFC 7540                         HTTP/2                         May 2015


   The resulting protocol is more friendly to the network because fewer
   TCP connections can be used in comparison to HTTP/1.x.  This means
   less competition with other flows and longer-lived connections, which
   in turn lead to better utilization of available network capacity.

   Finally, HTTP/2 also enables more efficient processing of messages
   through use of binary message framing.

2.  HTTP/2 Protocol Overview

   HTTP/2 provides an optimized transport for HTTP semantics.  HTTP/2
   supports all of the core features of HTTP/1.1 but aims to be more
   efficient in several ways.

   The basic protocol unit in HTTP/2 is a frame (Section 4.1).  Each
   frame type serves a different purpose.  For example, HEADERS and DATA
   frames form the basis of HTTP requests and responses (Section 8.1);
   other frame types like SETTINGS, WINDOW_UPDATE, and PUSH_PROMISE are
   used in support of other HTTP/2 features.

   Multiplexing of requests is achieved by having each HTTP request/
   response exchange associated with its own stream (Section 5).
   Streams are largely independent of each other, so a blocked or
   stalled request or response does not prevent progress on other
   streams.

   Flow control and prioritization ensure that it is possible to
   efficiently use multiplexed streams.  Flow control (Section 5.2)
   helps to ensure that only data that can be used by a receiver is
   transmitted.  Prioritization (Section 5.3) ensures that limited
   resources can be directed to the most important streams first.

   HTTP/2 adds a new interaction mode whereby a server can push
   responses to a client (Section 8.2).  Server push allows a server to
   speculatively send data to a client that the server anticipates the
   client will need, trading off some network usage against a potential
   latency gain.  The server does this by synthesizing a request, which
   it sends as a PUSH_PROMISE frame.  The server is then able to send a
   response to the synthetic request on a separate stream.

   Because HTTP header fields used in a connection can contain large
   amounts of redundant data, frames that contain them are compressed
   (Section 4.3).  This has especially advantageous impact upon request
   sizes in the common case, allowing many requests to be compressed
   into one packet.






Belshe, et al.               Standards Track                    [Page 5]
^L
RFC 7540                         HTTP/2                         May 2015


2.1.  Document Organization

   The HTTP/2 specification is split into four parts:

   o  Starting HTTP/2 (Section 3) covers how an HTTP/2 connection is
      initiated.

   o  The frame (Section 4) and stream (Section 5) layers describe the
      way HTTP/2 frames are structured and formed into multiplexed
      streams.

   o  Frame (Section 6) and error (Section 7) definitions include
      details of the frame and error types used in HTTP/2.

   o  HTTP mappings (Section 8) and additional requirements (Section 9)
      describe how HTTP semantics are expressed using frames and
      streams.

   While some of the frame and stream layer concepts are isolated from
   HTTP, this specification does not define a completely generic frame
   layer.  The frame and stream layers are tailored to the needs of the
   HTTP protocol and server push.

2.2.  Conventions and Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

   All numeric values are in network byte order.  Values are unsigned
   unless otherwise indicated.  Literal values are provided in decimal
   or hexadecimal as appropriate.  Hexadecimal literals are prefixed
   with "0x" to distinguish them from decimal literals.

   The following terms are used:

   client:  The endpoint that initiates an HTTP/2 connection.  Clients
      send HTTP requests and receive HTTP responses.

   connection:  A transport-layer connection between two endpoints.

   connection error:  An error that affects the entire HTTP/2
      connection.

   endpoint:  Either the client or server of the connection.






Belshe, et al.               Standards Track                    [Page 6]
^L
RFC 7540                         HTTP/2                         May 2015


   frame:  The smallest unit of communication within an HTTP/2
      connection, consisting of a header and a variable-length sequence
      of octets structured according to the frame type.

   peer:  An endpoint.  When discussing a particular endpoint, "peer"
      refers to the endpoint that is remote to the primary subject of
      discussion.

   receiver:  An endpoint that is receiving frames.

   sender:  An endpoint that is transmitting frames.

   server:  The endpoint that accepts an HTTP/2 connection.  Servers
      receive HTTP requests and send HTTP responses.

   stream:  A bidirectional flow of frames within the HTTP/2 connection.

   stream error:  An error on the individual HTTP/2 stream.

   Finally, the terms "gateway", "intermediary", "proxy", and "tunnel"
   are defined in Section 2.3 of [RFC7230].  Intermediaries act as both
   client and server at different times.

   The term "payload body" is defined in Section 3.3 of [RFC7230].

3.  Starting HTTP/2

   An HTTP/2 connection is an application-layer protocol running on top
   of a TCP connection ([TCP]).  The client is the TCP connection
   initiator.

   HTTP/2 uses the same "http" and "https" URI schemes used by HTTP/1.1.
   HTTP/2 shares the same default port numbers: 80 for "http" URIs and
   443 for "https" URIs.  As a result, implementations processing
   requests for target resource URIs like "http://example.org/foo" or
   "https://example.com/bar" are required to first discover whether the
   upstream server (the immediate peer to which the client wishes to
   establish a connection) supports HTTP/2.

   The means by which support for HTTP/2 is determined is different for
   "http" and "https" URIs.  Discovery for "http" URIs is described in
   Section 3.2.  Discovery for "https" URIs is described in Section 3.3.









Belshe, et al.               Standards Track                    [Page 7]
^L
RFC 7540                         HTTP/2                         May 2015


3.1.  HTTP/2 Version Identification

   The protocol defined in this document has two identifiers.

   o  The string "h2" identifies the protocol where HTTP/2 uses
      Transport Layer Security (TLS) [TLS12].  This identifier is used
      in the TLS application-layer protocol negotiation (ALPN) extension
      [TLS-ALPN] field and in any place where HTTP/2 over TLS is
      identified.

      The "h2" string is serialized into an ALPN protocol identifier as
      the two-octet sequence: 0x68, 0x32.

   o  The string "h2c" identifies the protocol where HTTP/2 is run over
      cleartext TCP.  This identifier is used in the HTTP/1.1 Upgrade
      header field and in any place where HTTP/2 over TCP is identified.

      The "h2c" string is reserved from the ALPN identifier space but
      describes a protocol that does not use TLS.

   Negotiating "h2" or "h2c" implies the use of the transport, security,
   framing, and message semantics described in this document.

3.2.  Starting HTTP/2 for "http" URIs

   A client that makes a request for an "http" URI without prior
   knowledge about support for HTTP/2 on the next hop uses the HTTP
   Upgrade mechanism (Section 6.7 of [RFC7230]).  The client does so by
   making an HTTP/1.1 request that includes an Upgrade header field with
   the "h2c" token.  Such an HTTP/1.1 request MUST include exactly one
   HTTP2-Settings (Section 3.2.1) header field.

   For example:

     GET / HTTP/1.1
     Host: server.example.com
     Connection: Upgrade, HTTP2-Settings
     Upgrade: h2c
     HTTP2-Settings: <base64url encoding of HTTP/2 SETTINGS payload>

   Requests that contain a payload body MUST be sent in their entirety
   before the client can send HTTP/2 frames.  This means that a large
   request can block the use of the connection until it is completely
   sent.

   If concurrency of an initial request with subsequent requests is
   important, an OPTIONS request can be used to perform the upgrade to
   HTTP/2, at the cost of an additional round trip.



Belshe, et al.               Standards Track                    [Page 8]
^L
RFC 7540                         HTTP/2                         May 2015


   A server that does not support HTTP/2 can respond to the request as
   though the Upgrade header field were absent:

     HTTP/1.1 200 OK
     Content-Length: 243
     Content-Type: text/html

     ...

   A server MUST ignore an "h2" token in an Upgrade header field.
   Presence of a token with "h2" implies HTTP/2 over TLS, which is
   instead negotiated as described in Section 3.3.

   A server that supports HTTP/2 accepts the upgrade with a 101
   (Switching Protocols) response.  After the empty line that terminates
   the 101 response, the server can begin sending HTTP/2 frames.  These
   frames MUST include a response to the request that initiated the
   upgrade.

   For example:

     HTTP/1.1 101 Switching Protocols
     Connection: Upgrade
     Upgrade: h2c

     [ HTTP/2 connection ...

   The first HTTP/2 frame sent by the server MUST be a server connection
   preface (Section 3.5) consisting of a SETTINGS frame (Section 6.5).
   Upon receiving the 101 response, the client MUST send a connection
   preface (Section 3.5), which includes a SETTINGS frame.

   The HTTP/1.1 request that is sent prior to upgrade is assigned a
   stream identifier of 1 (see Section 5.1.1) with default priority
   values (Section 5.3.5).  Stream 1 is implicitly "half-closed" from
   the client toward the server (see Section 5.1), since the request is
   completed as an HTTP/1.1 request.  After commencing the HTTP/2
   connection, stream 1 is used for the response.

3.2.1.  HTTP2-Settings Header Field

   A request that upgrades from HTTP/1.1 to HTTP/2 MUST include exactly
   one "HTTP2-Settings" header field.  The HTTP2-Settings header field
   is a connection-specific header field that includes parameters that
   govern the HTTP/2 connection, provided in anticipation of the server
   accepting the request to upgrade.

     HTTP2-Settings    = token68



Belshe, et al.               Standards Track                    [Page 9]
^L
RFC 7540                         HTTP/2                         May 2015


   A server MUST NOT upgrade the connection to HTTP/2 if this header
   field is not present or if more than one is present.  A server MUST
   NOT send this header field.

   The content of the HTTP2-Settings header field is the payload of a
   SETTINGS frame (Section 6.5), encoded as a base64url string (that is,
   the URL- and filename-safe Base64 encoding described in Section 5 of
   [RFC4648], with any trailing '=' characters omitted).  The ABNF
   [RFC5234] production for "token68" is defined in Section 2.1 of
   [RFC7235].

   Since the upgrade is only intended to apply to the immediate
   connection, a client sending the HTTP2-Settings header field MUST
   also send "HTTP2-Settings" as a connection option in the Connection
   header field to prevent it from being forwarded (see Section 6.1 of
   [RFC7230]).

   A server decodes and interprets these values as it would any other
   SETTINGS frame.  Explicit acknowledgement of these settings
   (Section 6.5.3) is not necessary, since a 101 response serves as
   implicit acknowledgement.  Providing these values in the upgrade
   request gives a client an opportunity to provide parameters prior to
   receiving any frames from the server.

3.3.  Starting HTTP/2 for "https" URIs

   A client that makes a request to an "https" URI uses TLS [TLS12] with
   the application-layer protocol negotiation (ALPN) extension
   [TLS-ALPN].

   HTTP/2 over TLS uses the "h2" protocol identifier.  The "h2c"
   protocol identifier MUST NOT be sent by a client or selected by a
   server; the "h2c" protocol identifier describes a protocol that does
   not use TLS.

   Once TLS negotiation is complete, both the client and the server MUST
   send a connection preface (Section 3.5).

3.4.  Starting HTTP/2 with Prior Knowledge

   A client can learn that a particular server supports HTTP/2 by other
   means.  For example, [ALT-SVC] describes a mechanism for advertising
   this capability.

   A client MUST send the connection preface (Section 3.5) and then MAY
   immediately send HTTP/2 frames to such a server; servers can identify
   these connections by the presence of the connection preface.  This




Belshe, et al.               Standards Track                   [Page 10]
^L
RFC 7540                         HTTP/2                         May 2015


   only affects the establishment of HTTP/2 connections over cleartext
   TCP; implementations that support HTTP/2 over TLS MUST use protocol
   negotiation in TLS [TLS-ALPN].

   Likewise, the server MUST send a connection preface (Section 3.5).

   Without additional information, prior support for HTTP/2 is not a
   strong signal that a given server will support HTTP/2 for future
   connections.  For example, it is possible for server configurations
   to change, for configurations to differ between instances in
   clustered servers, or for network conditions to change.

3.5.  HTTP/2 Connection Preface

   In HTTP/2, each endpoint is required to send a connection preface as
   a final confirmation of the protocol in use and to establish the
   initial settings for the HTTP/2 connection.  The client and server
   each send a different connection preface.

   The client connection preface starts with a sequence of 24 octets,
   which in hex notation is:

     0x505249202a20485454502f322e300d0a0d0a534d0d0a0d0a

   That is, the connection preface starts with the string "PRI *
   HTTP/2.0\r\n\r\nSM\r\n\r\n").  This sequence MUST be followed by a
   SETTINGS frame (Section 6.5), which MAY be empty.  The client sends
   the client connection preface immediately upon receipt of a 101
   (Switching Protocols) response (indicating a successful upgrade) or
   as the first application data octets of a TLS connection.  If
   starting an HTTP/2 connection with prior knowledge of server support
   for the protocol, the client connection preface is sent upon
   connection establishment.

      Note: The client connection preface is selected so that a large
      proportion of HTTP/1.1 or HTTP/1.0 servers and intermediaries do
      not attempt to process further frames.  Note that this does not
      address the concerns raised in [TALKING].

   The server connection preface consists of a potentially empty
   SETTINGS frame (Section 6.5) that MUST be the first frame the server
   sends in the HTTP/2 connection.

   The SETTINGS frames received from a peer as part of the connection
   preface MUST be acknowledged (see Section 6.5.3) after sending the
   connection preface.





Belshe, et al.               Standards Track                   [Page 11]
^L
RFC 7540                         HTTP/2                         May 2015


   To avoid unnecessary latency, clients are permitted to send
   additional frames to the server immediately after sending the client
   connection preface, without waiting to receive the server connection
   preface.  It is important to note, however, that the server
   connection preface SETTINGS frame might include parameters that
   necessarily alter how a client is expected to communicate with the
   server.  Upon receiving the SETTINGS frame, the client is expected to
   honor any parameters established.  In some configurations, it is
   possible for the server to transmit SETTINGS before the client sends
   additional frames, providing an opportunity to avoid this issue.

   Clients and servers MUST treat an invalid connection preface as a
   connection error (Section 5.4.1) of type PROTOCOL_ERROR.  A GOAWAY
   frame (Section 6.8) MAY be omitted in this case, since an invalid
   preface indicates that the peer is not using HTTP/2.

4.  HTTP Frames

   Once the HTTP/2 connection is established, endpoints can begin
   exchanging frames.

4.1.  Frame Format

   All frames begin with a fixed 9-octet header followed by a variable-
   length payload.

    +-----------------------------------------------+
    |                 Length (24)                   |
    +---------------+---------------+---------------+
    |   Type (8)    |   Flags (8)   |
    +-+-------------+---------------+-------------------------------+
    |R|                 Stream Identifier (31)                      |
    +=+=============================================================+
    |                   Frame Payload (0...)                      ...
    +---------------------------------------------------------------+

                          Figure 1: Frame Layout

   The fields of the frame header are defined as:

   Length:  The length of the frame payload expressed as an unsigned
      24-bit integer.  Values greater than 2^14 (16,384) MUST NOT be
      sent unless the receiver has set a larger value for
      SETTINGS_MAX_FRAME_SIZE.

      The 9 octets of the frame header are not included in this value.





Belshe, et al.               Standards Track                   [Page 12]
^L
RFC 7540                         HTTP/2                         May 2015


   Type:  The 8-bit type of the frame.  The frame type determines the
      format and semantics of the frame.  Implementations MUST ignore
      and discard any frame that has a type that is unknown.

   Flags:  An 8-bit field reserved for boolean flags specific to the
      frame type.

      Flags are assigned semantics specific to the indicated frame type.
      Flags that have no defined semantics for a particular frame type
      MUST be ignored and MUST be left unset (0x0) when sending.

   R: A reserved 1-bit field.  The semantics of this bit are undefined,
      and the bit MUST remain unset (0x0) when sending and MUST be
      ignored when receiving.

   Stream Identifier:  A stream identifier (see Section 5.1.1) expressed
      as an unsigned 31-bit integer.  The value 0x0 is reserved for
      frames that are associated with the connection as a whole as
      opposed to an individual stream.

   The structure and content of the frame payload is dependent entirely
   on the frame type.

4.2.  Frame Size

   The size of a frame payload is limited by the maximum size that a
   receiver advertises in the SETTINGS_MAX_FRAME_SIZE setting.  This
   setting can have any value between 2^14 (16,384) and 2^24-1
   (16,777,215) octets, inclusive.

   All implementations MUST be capable of receiving and minimally
   processing frames up to 2^14 octets in length, plus the 9-octet frame
   header (Section 4.1).  The size of the frame header is not included
   when describing frame sizes.

      Note: Certain frame types, such as PING (Section 6.7), impose
      additional limits on the amount of payload data allowed.

   An endpoint MUST send an error code of FRAME_SIZE_ERROR if a frame
   exceeds the size defined in SETTINGS_MAX_FRAME_SIZE, exceeds any
   limit defined for the frame type, or is too small to contain
   mandatory frame data.  A frame size error in a frame that could alter
   the state of the entire connection MUST be treated as a connection
   error (Section 5.4.1); this includes any frame carrying a header
   block (Section 4.3) (that is, HEADERS, PUSH_PROMISE, and
   CONTINUATION), SETTINGS, and any frame with a stream identifier of 0.





Belshe, et al.               Standards Track                   [Page 13]
^L
RFC 7540                         HTTP/2                         May 2015


   Endpoints are not obligated to use all available space in a frame.
   Responsiveness can be improved by using frames that are smaller than
   the permitted maximum size.  Sending large frames can result in
   delays in sending time-sensitive frames (such as RST_STREAM,
   WINDOW_UPDATE, or PRIORITY), which, if blocked by the transmission of
   a large frame, could affect performance.

4.3.  Header Compression and Decompression

   Just as in HTTP/1, a header field in HTTP/2 is a name with one or
   more associated values.  Header fields are used within HTTP request
   and response messages as well as in server push operations (see
   Section 8.2).

   Header lists are collections of zero or more header fields.  When
   transmitted over a connection, a header list is serialized into a
   header block using HTTP header compression [COMPRESSION].  The
   serialized header block is then divided into one or more octet
   sequences, called header block fragments, and transmitted within the
   payload of HEADERS (Section 6.2), PUSH_PROMISE (Section 6.6), or
   CONTINUATION (Section 6.10) frames.

   The Cookie header field [COOKIE] is treated specially by the HTTP
   mapping (see Section 8.1.2.5).

   A receiving endpoint reassembles the header block by concatenating
   its fragments and then decompresses the block to reconstruct the
   header list.

   A complete header block consists of either:

   o  a single HEADERS or PUSH_PROMISE frame, with the END_HEADERS flag
      set, or

   o  a HEADERS or PUSH_PROMISE frame with the END_HEADERS flag cleared
      and one or more CONTINUATION frames, where the last CONTINUATION
      frame has the END_HEADERS flag set.

   Header compression is stateful.  One compression context and one
   decompression context are used for the entire connection.  A decoding
   error in a header block MUST be treated as a connection error
   (Section 5.4.1) of type COMPRESSION_ERROR.

   Each header block is processed as a discrete unit.  Header blocks
   MUST be transmitted as a contiguous sequence of frames, with no
   interleaved frames of any other type or from any other stream.  The
   last frame in a sequence of HEADERS or CONTINUATION frames has the




Belshe, et al.               Standards Track                   [Page 14]
^L
RFC 7540                         HTTP/2                         May 2015


   END_HEADERS flag set.  The last frame in a sequence of PUSH_PROMISE
   or CONTINUATION frames has the END_HEADERS flag set.  This allows a
   header block to be logically equivalent to a single frame.

   Header block fragments can only be sent as the payload of HEADERS,
   PUSH_PROMISE, or CONTINUATION frames because these frames carry data
   that can modify the compression context maintained by a receiver.  An
   endpoint receiving HEADERS, PUSH_PROMISE, or CONTINUATION frames
   needs to reassemble header blocks and perform decompression even if
   the frames are to be discarded.  A receiver MUST terminate the
   connection with a connection error (Section 5.4.1) of type
   COMPRESSION_ERROR if it does not decompress a header block.

5.  Streams and Multiplexing

   A "stream" is an independent, bidirectional sequence of frames
   exchanged between the client and server within an HTTP/2 connection.
   Streams have several important characteristics:

   o  A single HTTP/2 connection can contain multiple concurrently open
      streams, with either endpoint interleaving frames from multiple
      streams.

   o  Streams can be established and used unilaterally or shared by
      either the client or server.

   o  Streams can be closed by either endpoint.

   o  The order in which frames are sent on a stream is significant.
      Recipients process frames in the order they are received.  In
      particular, the order of HEADERS and DATA frames is semantically
      significant.

   o  Streams are identified by an integer.  Stream identifiers are
      assigned to streams by the endpoint initiating the stream.
















Belshe, et al.               Standards Track                   [Page 15]
^L
RFC 7540                         HTTP/2                         May 2015


5.1.  Stream States

   The lifecycle of a stream is shown in Figure 2.

                                +--------+
                        send PP |        | recv PP
                       ,--------|  idle  |--------.
                      /         |        |         \
                     v          +--------+          v
              +----------+          |           +----------+
              |          |          | send H /  |          |
       ,------| reserved |          | recv H    | reserved |------.
       |      | (local)  |          |           | (remote) |      |
       |      +----------+          v           +----------+      |
       |          |             +--------+             |          |
       |          |     recv ES |        | send ES     |          |
       |   send H |     ,-------|  open  |-------.     | recv H   |
       |          |    /        |        |        \    |          |
       |          v   v         +--------+         v   v          |
       |      +----------+          |           +----------+      |
       |      |   half   |          |           |   half   |      |
       |      |  closed  |          | send R /  |  closed  |      |
       |      | (remote) |          | recv R    | (local)  |      |
       |      +----------+          |           +----------+      |
       |           |                |                 |           |
       |           | send ES /      |       recv ES / |           |
       |           | send R /       v        send R / |           |
       |           | recv R     +--------+   recv R   |           |
       | send R /  `----------->|        |<-----------'  send R / |
       | recv R                 | closed |               recv R   |
       `----------------------->|        |<----------------------'
                                +--------+

          send:   endpoint sends this frame
          recv:   endpoint receives this frame

          H:  HEADERS frame (with implied CONTINUATIONs)
          PP: PUSH_PROMISE frame (with implied CONTINUATIONs)
          ES: END_STREAM flag
          R:  RST_STREAM frame

                          Figure 2: Stream States

   Note that this diagram shows stream state transitions and the frames
   and flags that affect those transitions only.  In this regard,
   CONTINUATION frames do not result in state transitions; they are
   effectively part of the HEADERS or PUSH_PROMISE that they follow.




Belshe, et al.               Standards Track                   [Page 16]
^L
RFC 7540                         HTTP/2                         May 2015


   For the purpose of state transitions, the END_STREAM flag is
   processed as a separate event to the frame that bears it; a HEADERS
   frame with the END_STREAM flag set can cause two state transitions.

   Both endpoints have a subjective view of the state of a stream that
   could be different when frames are in transit.  Endpoints do not
   coordinate the creation of streams; they are created unilaterally by
   either endpoint.  The negative consequences of a mismatch in states
   are limited to the "closed" state after sending RST_STREAM, where
   frames might be received for some time after closing.

   Streams have the following states:

   idle:
      All streams start in the "idle" state.

      The following transitions are valid from this state:

      *  Sending or receiving a HEADERS frame causes the stream to
         become "open".  The stream identifier is selected as described
         in Section 5.1.1.  The same HEADERS frame can also cause a
         stream to immediately become "half-closed".

      *  Sending a PUSH_PROMISE frame on another stream reserves the
         idle stream that is identified for later use.  The stream state
         for the reserved stream transitions to "reserved (local)".

      *  Receiving a PUSH_PROMISE frame on another stream reserves an
         idle stream that is identified for later use.  The stream state
         for the reserved stream transitions to "reserved (remote)".

      *  Note that the PUSH_PROMISE frame is not sent on the idle stream
         but references the newly reserved stream in the Promised Stream
         ID field.

      Receiving any frame other than HEADERS or PRIORITY on a stream in
      this state MUST be treated as a connection error (Section 5.4.1)
      of type PROTOCOL_ERROR.

   reserved (local):
      A stream in the "reserved (local)" state is one that has been
      promised by sending a PUSH_PROMISE frame.  A PUSH_PROMISE frame
      reserves an idle stream by associating the stream with an open
      stream that was initiated by the remote peer (see Section 8.2).







Belshe, et al.               Standards Track                   [Page 17]
^L
RFC 7540                         HTTP/2                         May 2015


      In this state, only the following transitions are possible:

      *  The endpoint can send a HEADERS frame.  This causes the stream
         to open in a "half-closed (remote)" state.

      *  Either endpoint can send a RST_STREAM frame to cause the stream
         to become "closed".  This releases the stream reservation.


      An endpoint MUST NOT send any type of frame other than HEADERS,
      RST_STREAM, or PRIORITY in this state.

      A PRIORITY or WINDOW_UPDATE frame MAY be received in this state.
      Receiving any type of frame other than RST_STREAM, PRIORITY, or
      WINDOW_UPDATE on a stream in this state MUST be treated as a
      connection error (Section 5.4.1) of type PROTOCOL_ERROR.

   reserved (remote):
      A stream in the "reserved (remote)" state has been reserved by a
      remote peer.

      In this state, only the following transitions are possible:

      *  Receiving a HEADERS frame causes the stream to transition to
         "half-closed (local)".

      *  Either endpoint can send a RST_STREAM frame to cause the stream
         to become "closed".  This releases the stream reservation.

      An endpoint MAY send a PRIORITY frame in this state to
      reprioritize the reserved stream.  An endpoint MUST NOT send any
      type of frame other than RST_STREAM, WINDOW_UPDATE, or PRIORITY in
      this state.

      Receiving any type of frame other than HEADERS, RST_STREAM, or
      PRIORITY on a stream in this state MUST be treated as a connection
      error (Section 5.4.1) of type PROTOCOL_ERROR.

   open:
      A stream in the "open" state may be used by both peers to send
      frames of any type.  In this state, sending peers observe
      advertised stream-level flow-control limits (Section 5.2).

      From this state, either endpoint can send a frame with an
      END_STREAM flag set, which causes the stream to transition into
      one of the "half-closed" states.  An endpoint sending an





Belshe, et al.               Standards Track                   [Page 18]
^L
RFC 7540                         HTTP/2                         May 2015


      END_STREAM flag causes the stream state to become "half-closed
      (local)"; an endpoint receiving an END_STREAM flag causes the
      stream state to become "half-closed (remote)".

      Either endpoint can send a RST_STREAM frame from this state,
      causing it to transition immediately to "closed".

   half-closed (local):
      A stream that is in the "half-closed (local)" state cannot be used
      for sending frames other than WINDOW_UPDATE, PRIORITY, and
      RST_STREAM.

      A stream transitions from this state to "closed" when a frame that
      contains an END_STREAM flag is received or when either peer sends
      a RST_STREAM frame.

      An endpoint can receive any type of frame in this state.
      Providing flow-control credit using WINDOW_UPDATE frames is
      necessary to continue receiving flow-controlled frames.  In this
      state, a receiver can ignore WINDOW_UPDATE frames, which might
      arrive for a short period after a frame bearing the END_STREAM
      flag is sent.

      PRIORITY frames received in this state are used to reprioritize
      streams that depend on the identified stream.

   half-closed (remote):
      A stream that is "half-closed (remote)" is no longer being used by
      the peer to send frames.  In this state, an endpoint is no longer
      obligated to maintain a receiver flow-control window.

      If an endpoint receives additional frames, other than
      WINDOW_UPDATE, PRIORITY, or RST_STREAM, for a stream that is in
      this state, it MUST respond with a stream error (Section 5.4.2) of
      type STREAM_CLOSED.

      A stream that is "half-closed (remote)" can be used by the
      endpoint to send frames of any type.  In this state, the endpoint
      continues to observe advertised stream-level flow-control limits
      (Section 5.2).

      A stream can transition from this state to "closed" by sending a
      frame that contains an END_STREAM flag or when either peer sends a
      RST_STREAM frame.







Belshe, et al.               Standards Track                   [Page 19]
^L
RFC 7540                         HTTP/2                         May 2015


   closed:
      The "closed" state is the terminal state.

      An endpoint MUST NOT send frames other than PRIORITY on a closed
      stream.  An endpoint that receives any frame other than PRIORITY
      after receiving a RST_STREAM MUST treat that as a stream error
      (Section 5.4.2) of type STREAM_CLOSED.  Similarly, an endpoint
      that receives any frames after receiving a frame with the
      END_STREAM flag set MUST treat that as a connection error
      (Section 5.4.1) of type STREAM_CLOSED, unless the frame is
      permitted as described below.

      WINDOW_UPDATE or RST_STREAM frames can be received in this state
      for a short period after a DATA or HEADERS frame containing an
      END_STREAM flag is sent.  Until the remote peer receives and
      processes RST_STREAM or the frame bearing the END_STREAM flag, it
      might send frames of these types.  Endpoints MUST ignore
      WINDOW_UPDATE or RST_STREAM frames received in this state, though
      endpoints MAY choose to treat frames that arrive a significant
      time after sending END_STREAM as a connection error
      (Section 5.4.1) of type PROTOCOL_ERROR.

      PRIORITY frames can be sent on closed streams to prioritize
      streams that are dependent on the closed stream.  Endpoints SHOULD
      process PRIORITY frames, though they can be ignored if the stream
      has been removed from the dependency tree (see Section 5.3.4).

      If this state is reached as a result of sending a RST_STREAM
      frame, the peer that receives the RST_STREAM might have already
      sent -- or enqueued for sending -- frames on the stream that
      cannot be withdrawn.  An endpoint MUST ignore frames that it
      receives on closed streams after it has sent a RST_STREAM frame.
      An endpoint MAY choose to limit the period over which it ignores
      frames and treat frames that arrive after this time as being in
      error.

      Flow-controlled frames (i.e., DATA) received after sending
      RST_STREAM are counted toward the connection flow-control window.
      Even though these frames might be ignored, because they are sent
      before the sender receives the RST_STREAM, the sender will
      consider the frames to count against the flow-control window.

      An endpoint might receive a PUSH_PROMISE frame after it sends
      RST_STREAM.  PUSH_PROMISE causes a stream to become "reserved"
      even if the associated stream has been reset.  Therefore, a
      RST_STREAM is needed to close an unwanted promised stream.





Belshe, et al.               Standards Track                   [Page 20]
^L
RFC 7540                         HTTP/2                         May 2015


   In the absence of more specific guidance elsewhere in this document,
   implementations SHOULD treat the receipt of a frame that is not
   expressly permitted in the description of a state as a connection
   error (Section 5.4.1) of type PROTOCOL_ERROR.  Note that PRIORITY can
   be sent and received in any stream state.  Frames of unknown types
   are ignored.

   An example of the state transitions for an HTTP request/response
   exchange can be found in Section 8.1.  An example of the state
   transitions for server push can be found in Sections 8.2.1 and 8.2.2.

5.1.1.  Stream Identifiers

   Streams are identified with an unsigned 31-bit integer.  Streams
   initiated by a client MUST use odd-numbered stream identifiers; those
   initiated by the server MUST use even-numbered stream identifiers.  A
   stream identifier of zero (0x0) is used for connection control
   messages; the stream identifier of zero cannot be used to establish a
   new stream.

   HTTP/1.1 requests that are upgraded to HTTP/2 (see Section 3.2) are
   responded to with a stream identifier of one (0x1).  After the
   upgrade completes, stream 0x1 is "half-closed (local)" to the client.
   Therefore, stream 0x1 cannot be selected as a new stream identifier
   by a client that upgrades from HTTP/1.1.

   The identifier of a newly established stream MUST be numerically
   greater than all streams that the initiating endpoint has opened or
   reserved.  This governs streams that are opened using a HEADERS frame
   and streams that are reserved using PUSH_PROMISE.  An endpoint that
   receives an unexpected stream identifier MUST respond with a
   connection error (Section 5.4.1) of type PROTOCOL_ERROR.

   The first use of a new stream identifier implicitly closes all
   streams in the "idle" state that might have been initiated by that
   peer with a lower-valued stream identifier.  For example, if a client
   sends a HEADERS frame on stream 7 without ever sending a frame on
   stream 5, then stream 5 transitions to the "closed" state when the
   first frame for stream 7 is sent or received.

   Stream identifiers cannot be reused.  Long-lived connections can
   result in an endpoint exhausting the available range of stream
   identifiers.  A client that is unable to establish a new stream
   identifier can establish a new connection for new streams.  A server
   that is unable to establish a new stream identifier can send a GOAWAY
   frame so that the client is forced to open a new connection for new
   streams.




Belshe, et al.               Standards Track                   [Page 21]
^L
RFC 7540                         HTTP/2                         May 2015


5.1.2.  Stream Concurrency

   A peer can limit the number of concurrently active streams using the
   SETTINGS_MAX_CONCURRENT_STREAMS parameter (see Section 6.5.2) within
   a SETTINGS frame.  The maximum concurrent streams setting is specific
   to each endpoint and applies only to the peer that receives the
   setting.  That is, clients specify the maximum number of concurrent
   streams the server can initiate, and servers specify the maximum
   number of concurrent streams the client can initiate.

   Streams that are in the "open" state or in either of the "half-
   closed" states count toward the maximum number of streams that an
   endpoint is permitted to open.  Streams in any of these three states
   count toward the limit advertised in the
   SETTINGS_MAX_CONCURRENT_STREAMS setting.  Streams in either of the
   "reserved" states do not count toward the stream limit.

   Endpoints MUST NOT exceed the limit set by their peer.  An endpoint
   that receives a HEADERS frame that causes its advertised concurrent
   stream limit to be exceeded MUST treat this as a stream error
   (Section 5.4.2) of type PROTOCOL_ERROR or REFUSED_STREAM.  The choice
   of error code determines whether the endpoint wishes to enable
   automatic retry (see Section 8.1.4) for details).

   An endpoint that wishes to reduce the value of
   SETTINGS_MAX_CONCURRENT_STREAMS to a value that is below the current
   number of open streams can either close streams that exceed the new
   value or allow streams to complete.

5.2.  Flow Control

   Using streams for multiplexing introduces contention over use of the
   TCP connection, resulting in blocked streams.  A flow-control scheme
   ensures that streams on the same connection do not destructively
   interfere with each other.  Flow control is used for both individual
   streams and for the connection as a whole.

   HTTP/2 provides for flow control through use of the WINDOW_UPDATE
   frame (Section 6.9).












Belshe, et al.               Standards Track                   [Page 22]
^L
RFC 7540                         HTTP/2                         May 2015


5.2.1.  Flow-Control Principles

   HTTP/2 stream flow control aims to allow a variety of flow-control
   algorithms to be used without requiring protocol changes.  Flow
   control in HTTP/2 has the following characteristics:

   1.  Flow control is specific to a connection.  Both types of flow
       control are between the endpoints of a single hop and not over
       the entire end-to-end path.

   2.  Flow control is based on WINDOW_UPDATE frames.  Receivers
       advertise how many octets they are prepared to receive on a
       stream and for the entire connection.  This is a credit-based
       scheme.

   3.  Flow control is directional with overall control provided by the
       receiver.  A receiver MAY choose to set any window size that it
       desires for each stream and for the entire connection.  A sender
       MUST respect flow-control limits imposed by a receiver.  Clients,
       servers, and intermediaries all independently advertise their
       flow-control window as a receiver and abide by the flow-control
       limits set by their peer when sending.

   4.  The initial value for the flow-control window is 65,535 octets
       for both new streams and the overall connection.

   5.  The frame type determines whether flow control applies to a
       frame.  Of the frames specified in this document, only DATA
       frames are subject to flow control; all other frame types do not
       consume space in the advertised flow-control window.  This
       ensures that important control frames are not blocked by flow
       control.

   6.  Flow control cannot be disabled.

   7.  HTTP/2 defines only the format and semantics of the WINDOW_UPDATE
       frame (Section 6.9).  This document does not stipulate how a
       receiver decides when to send this frame or the value that it
       sends, nor does it specify how a sender chooses to send packets.
       Implementations are able to select any algorithm that suits their
       needs.

   Implementations are also responsible for managing how requests and
   responses are sent based on priority, choosing how to avoid head-of-
   line blocking for requests, and managing the creation of new streams.
   Algorithm choices for these could interact with any flow-control
   algorithm.




Belshe, et al.               Standards Track                   [Page 23]
^L
RFC 7540                         HTTP/2                         May 2015


5.2.2.  Appropriate Use of Flow Control

   Flow control is defined to protect endpoints that are operating under
   resource constraints.  For example, a proxy needs to share memory
   between many connections and also might have a slow upstream
   connection and a fast downstream one.  Flow-control addresses cases
   where the receiver is unable to process data on one stream yet wants
   to continue to process other streams in the same connection.

   Deployments that do not require this capability can advertise a flow-
   control window of the maximum size (2^31-1) and can maintain this
   window by sending a WINDOW_UPDATE frame when any data is received.
   This effectively disables flow control for that receiver.
   Conversely, a sender is always subject to the flow-control window
   advertised by the receiver.

   Deployments with constrained resources (for example, memory) can
   employ flow control to limit the amount of memory a peer can consume.
   Note, however, that this can lead to suboptimal use of available
   network resources if flow control is enabled without knowledge of the
   bandwidth-delay product (see [RFC7323]).

   Even with full awareness of the current bandwidth-delay product,
   implementation of flow control can be difficult.  When using flow
   control, the receiver MUST read from the TCP receive buffer in a
   timely fashion.  Failure to do so could lead to a deadlock when
   critical frames, such as WINDOW_UPDATE, are not read and acted upon.

5.3.  Stream Priority

   A client can assign a priority for a new stream by including
   prioritization information in the HEADERS frame (Section 6.2) that
   opens the stream.  At any other time, the PRIORITY frame
   (Section 6.3) can be used to change the priority of a stream.

   The purpose of prioritization is to allow an endpoint to express how
   it would prefer its peer to allocate resources when managing
   concurrent streams.  Most importantly, priority can be used to select
   streams for transmitting frames when there is limited capacity for
   sending.

   Streams can be prioritized by marking them as dependent on the
   completion of other streams (Section 5.3.1).  Each dependency is
   assigned a relative weight, a number that is used to determine the
   relative proportion of available resources that are assigned to
   streams dependent on the same stream.





Belshe, et al.               Standards Track                   [Page 24]
^L
RFC 7540                         HTTP/2                         May 2015


   Explicitly setting the priority for a stream is input to a
   prioritization process.  It does not guarantee any particular
   processing or transmission order for the stream relative to any other
   stream.  An endpoint cannot force a peer to process concurrent
   streams in a particular order using priority.  Expressing priority is
   therefore only a suggestion.

   Prioritization information can be omitted from messages.  Defaults
   are used prior to any explicit values being provided (Section 5.3.5).

5.3.1.  Stream Dependencies

   Each stream can be given an explicit dependency on another stream.
   Including a dependency expresses a preference to allocate resources
   to the identified stream rather than to the dependent stream.

   A stream that is not dependent on any other stream is given a stream
   dependency of 0x0.  In other words, the non-existent stream 0 forms
   the root of the tree.

   A stream that depends on another stream is a dependent stream.  The
   stream upon which a stream is dependent is a parent stream.  A
   dependency on a stream that is not currently in the tree -- such as a
   stream in the "idle" state -- results in that stream being given a
   default priority (Section 5.3.5).

   When assigning a dependency on another stream, the stream is added as
   a new dependency of the parent stream.  Dependent streams that share
   the same parent are not ordered with respect to each other.  For
   example, if streams B and C are dependent on stream A, and if stream
   D is created with a dependency on stream A, this results in a
   dependency order of A followed by B, C, and D in any order.

       A                 A
      / \      ==>      /|\
     B   C             B D C

             Figure 3: Example of Default Dependency Creation

   An exclusive flag allows for the insertion of a new level of
   dependencies.  The exclusive flag causes the stream to become the
   sole dependency of its parent stream, causing other dependencies to
   become dependent on the exclusive stream.  In the previous example,
   if stream D is created with an exclusive dependency on stream A, this
   results in D becoming the dependency parent of B and C.






Belshe, et al.               Standards Track                   [Page 25]
^L
RFC 7540                         HTTP/2                         May 2015


                         A
       A                 |
      / \      ==>       D
     B   C              / \
                       B   C

            Figure 4: Example of Exclusive Dependency Creation

   Inside the dependency tree, a dependent stream SHOULD only be
   allocated resources if either all of the streams that it depends on
   (the chain of parent streams up to 0x0) are closed or it is not
   possible to make progress on them.

   A stream cannot depend on itself.  An endpoint MUST treat this as a
   stream error (Section 5.4.2) of type PROTOCOL_ERROR.

5.3.2.  Dependency Weighting

   All dependent streams are allocated an integer weight between 1 and
   256 (inclusive).

   Streams with the same parent SHOULD be allocated resources
   proportionally based on their weight.  Thus, if stream B depends on
   stream A with weight 4, stream C depends on stream A with weight 12,
   and no progress can be made on stream A, stream B ideally receives
   one-third of the resources allocated to stream C.

5.3.3.  Reprioritization

   Stream priorities are changed using the PRIORITY frame.  Setting a
   dependency causes a stream to become dependent on the identified
   parent stream.

   Dependent streams move with their parent stream if the parent is
   reprioritized.  Setting a dependency with the exclusive flag for a
   reprioritized stream causes all the dependencies of the new parent
   stream to become dependent on the reprioritized stream.

   If a stream is made dependent on one of its own dependencies, the
   formerly dependent stream is first moved to be dependent on the
   reprioritized stream's previous parent.  The moved dependency retains
   its weight.

   For example, consider an original dependency tree where B and C
   depend on A, D and E depend on C, and F depends on D.  If A is made
   dependent on D, then D takes the place of A.  All other dependency
   relationships stay the same, except for F, which becomes dependent on
   A if the reprioritization is exclusive.



Belshe, et al.               Standards Track                   [Page 26]
^L
RFC 7540                         HTTP/2                         May 2015


       x                x                x                 x
       |               / \               |                 |
       A              D   A              D                 D
      / \            /   / \            / \                |
     B   C     ==>  F   B   C   ==>    F   A       OR      A
        / \                 |             / \             /|\
       D   E                E            B   C           B C F
       |                                     |             |
       F                                     E             E
                  (intermediate)   (non-exclusive)    (exclusive)

                Figure 5: Example of Dependency Reordering

5.3.4.  Prioritization State Management

   When a stream is removed from the dependency tree, its dependencies
   can be moved to become dependent on the parent of the closed stream.
   The weights of new dependencies are recalculated by distributing the
   weight of the dependency of the closed stream proportionally based on
   the weights of its dependencies.

   Streams that are removed from the dependency tree cause some
   prioritization information to be lost.  Resources are shared between
   streams with the same parent stream, which means that if a stream in
   that set closes or becomes blocked, any spare capacity allocated to a
   stream is distributed to the immediate neighbors of the stream.
   However, if the common dependency is removed from the tree, those
   streams share resources with streams at the next highest level.

   For example, assume streams A and B share a parent, and streams C and
   D both depend on stream A.  Prior to the removal of stream A, if
   streams A and D are unable to proceed, then stream C receives all the
   resources dedicated to stream A.  If stream A is removed from the
   tree, the weight of stream A is divided between streams C and D.  If
   stream D is still unable to proceed, this results in stream C
   receiving a reduced proportion of resources.  For equal starting
   weights, C receives one third, rather than one half, of available
   resources.

   It is possible for a stream to become closed while prioritization
   information that creates a dependency on that stream is in transit.
   If a stream identified in a dependency has no associated priority
   information, then the dependent stream is instead assigned a default
   priority (Section 5.3.5).  This potentially creates suboptimal
   prioritization, since the stream could be given a priority that is
   different from what is intended.





Belshe, et al.               Standards Track                   [Page 27]
^L
RFC 7540                         HTTP/2                         May 2015


   To avoid these problems, an endpoint SHOULD retain stream
   prioritization state for a period after streams become closed.  The
   longer state is retained, the lower the chance that streams are
   assigned incorrect or default priority values.

   Similarly, streams that are in the "idle" state can be assigned
   priority or become a parent of other streams.  This allows for the
   creation of a grouping node in the dependency tree, which enables
   more flexible expressions of priority.  Idle streams begin with a
   default priority (Section 5.3.5).

   The retention of priority information for streams that are not
   counted toward the limit set by SETTINGS_MAX_CONCURRENT_STREAMS could
   create a large state burden for an endpoint.  Therefore, the amount
   of prioritization state that is retained MAY be limited.

   The amount of additional state an endpoint maintains for
   prioritization could be dependent on load; under high load,
   prioritization state can be discarded to limit resource commitments.
   In extreme cases, an endpoint could even discard prioritization state
   for active or reserved streams.  If a limit is applied, endpoints
   SHOULD maintain state for at least as many streams as allowed by
   their setting for SETTINGS_MAX_CONCURRENT_STREAMS.  Implementations
   SHOULD also attempt to retain state for streams that are in active
   use in the priority tree.

   If it has retained enough state to do so, an endpoint receiving a
   PRIORITY frame that changes the priority of a closed stream SHOULD
   alter the dependencies of the streams that depend on it.

5.3.5.  Default Priorities

   All streams are initially assigned a non-exclusive dependency on
   stream 0x0.  Pushed streams (Section 8.2) initially depend on their
   associated stream.  In both cases, streams are assigned a default
   weight of 16.

5.4.  Error Handling

   HTTP/2 framing permits two classes of error:

   o  An error condition that renders the entire connection unusable is
      a connection error.

   o  An error in an individual stream is a stream error.

   A list of error codes is included in Section 7.




Belshe, et al.               Standards Track                   [Page 28]
^L
RFC 7540                         HTTP/2                         May 2015


5.4.1.  Connection Error Handling

   A connection error is any error that prevents further processing of
   the frame layer or corrupts any connection state.

   An endpoint that encounters a connection error SHOULD first send a
   GOAWAY frame (Section 6.8) with the stream identifier of the last
   stream that it successfully received from its peer.  The GOAWAY frame
   includes an error code that indicates why the connection is
   terminating.  After sending the GOAWAY frame for an error condition,
   the endpoint MUST close the TCP connection.

   It is possible that the GOAWAY will not be reliably received by the
   receiving endpoint ([RFC7230], Section 6.6 describes how an immediate
   connection close can result in data loss).  In the event of a
   connection error, GOAWAY only provides a best-effort attempt to
   communicate with the peer about why the connection is being
   terminated.

   An endpoint can end a connection at any time.  In particular, an
   endpoint MAY choose to treat a stream error as a connection error.
   Endpoints SHOULD send a GOAWAY frame when ending a connection,
   providing that circumstances permit it.

5.4.2.  Stream Error Handling

   A stream error is an error related to a specific stream that does not
   affect processing of other streams.

   An endpoint that detects a stream error sends a RST_STREAM frame
   (Section 6.4) that contains the stream identifier of the stream where
   the error occurred.  The RST_STREAM frame includes an error code that
   indicates the type of error.

   A RST_STREAM is the last frame that an endpoint can send on a stream.
   The peer that sends the RST_STREAM frame MUST be prepared to receive
   any frames that were sent or enqueued for sending by the remote peer.
   These frames can be ignored, except where they modify connection
   state (such as the state maintained for header compression
   (Section 4.3) or flow control).

   Normally, an endpoint SHOULD NOT send more than one RST_STREAM frame
   for any stream.  However, an endpoint MAY send additional RST_STREAM
   frames if it receives frames on a closed stream after more than a
   round-trip time.  This behavior is permitted to deal with misbehaving
   implementations.





Belshe, et al.               Standards Track                   [Page 29]
^L
RFC 7540                         HTTP/2                         May 2015


   To avoid looping, an endpoint MUST NOT send a RST_STREAM in response
   to a RST_STREAM frame.

5.4.3.  Connection Termination

   If the TCP connection is closed or reset while streams remain in
   "open" or "half-closed" state, then the affected streams cannot be
   automatically retried (see Section 8.1.4 for details).

5.5.  Extending HTTP/2

   HTTP/2 permits extension of the protocol.  Within the limitations
   described in this section, protocol extensions can be used to provide
   additional services or alter any aspect of the protocol.  Extensions
   are effective only within the scope of a single HTTP/2 connection.

   This applies to the protocol elements defined in this document.  This
   does not affect the existing options for extending HTTP, such as
   defining new methods, status codes, or header fields.

   Extensions are permitted to use new frame types (Section 4.1), new
   settings (Section 6.5.2), or new error codes (Section 7).  Registries
   are established for managing these extension points: frame types
   (Section 11.2), settings (Section 11.3), and error codes
   (Section 11.4).

   Implementations MUST ignore unknown or unsupported values in all
   extensible protocol elements.  Implementations MUST discard frames
   that have unknown or unsupported types.  This means that any of these
   extension points can be safely used by extensions without prior
   arrangement or negotiation.  However, extension frames that appear in
   the middle of a header block (Section 4.3) are not permitted; these
   MUST be treated as a connection error (Section 5.4.1) of type
   PROTOCOL_ERROR.

   Extensions that could change the semantics of existing protocol
   components MUST be negotiated before being used.  For example, an
   extension that changes the layout of the HEADERS frame cannot be used
   until the peer has given a positive signal that this is acceptable.
   In this case, it could also be necessary to coordinate when the
   revised layout comes into effect.  Note that treating any frames
   other than DATA frames as flow controlled is such a change in
   semantics and can only be done through negotiation.

   This document doesn't mandate a specific method for negotiating the
   use of an extension but notes that a setting (Section 6.5.2) could be
   used for that purpose.  If both peers set a value that indicates
   willingness to use the extension, then the extension can be used.  If



Belshe, et al.               Standards Track                   [Page 30]
^L
RFC 7540                         HTTP/2                         May 2015


   a setting is used for extension negotiation, the initial value MUST
   be defined in such a fashion that the extension is initially
   disabled.

6.  Frame Definitions

   This specification defines a number of frame types, each identified
   by a unique 8-bit type code.  Each frame type serves a distinct
   purpose in the establishment and management either of the connection
   as a whole or of individual streams.

   The transmission of specific frame types can alter the state of a
   connection.  If endpoints fail to maintain a synchronized view of the
   connection state, successful communication within the connection will
   no longer be possible.  Therefore, it is important that endpoints
   have a shared comprehension of how the state is affected by the use
   any given frame.

6.1.  DATA

   DATA frames (type=0x0) convey arbitrary, variable-length sequences of
   octets associated with a stream.  One or more DATA frames are used,
   for instance, to carry HTTP request or response payloads.

   DATA frames MAY also contain padding.  Padding can be added to DATA
   frames to obscure the size of messages.  Padding is a security
   feature; see Section 10.7.

    +---------------+
    |Pad Length? (8)|
    +---------------+-----------------------------------------------+
    |                            Data (*)                         ...
    +---------------------------------------------------------------+
    |                           Padding (*)                       ...
    +---------------------------------------------------------------+

                       Figure 6: DATA Frame Payload

   The DATA frame contains the following fields:

   Pad Length:  An 8-bit field containing the length of the frame
      padding in units of octets.  This field is conditional (as
      signified by a "?" in the diagram) and is only present if the
      PADDED flag is set.

   Data:  Application data.  The amount of data is the remainder of the
      frame payload after subtracting the length of the other fields
      that are present.



Belshe, et al.               Standards Track                   [Page 31]
^L
RFC 7540                         HTTP/2                         May 2015


   Padding:  Padding octets that contain no application semantic value.
      Padding octets MUST be set to zero when sending.  A receiver is
      not obligated to verify padding but MAY treat non-zero padding as
      a connection error (Section 5.4.1) of type PROTOCOL_ERROR.

   The DATA frame defines the following flags:

   END_STREAM (0x1):  When set, bit 0 indicates that this frame is the
      last that the endpoint will send for the identified stream.
      Setting this flag causes the stream to enter one of the "half-
      closed" states or the "closed" state (Section 5.1).

   PADDED (0x8):  When set, bit 3 indicates that the Pad Length field
      and any padding that it describes are present.

   DATA frames MUST be associated with a stream.  If a DATA frame is
   received whose stream identifier field is 0x0, the recipient MUST
   respond with a connection error (Section 5.4.1) of type
   PROTOCOL_ERROR.

   DATA frames are subject to flow control and can only be sent when a
   stream is in the "open" or "half-closed (remote)" state.  The entire
   DATA frame payload is included in flow control, including the Pad
   Length and Padding fields if present.  If a DATA frame is received
   whose stream is not in "open" or "half-closed (local)" state, the
   recipient MUST respond with a stream error (Section 5.4.2) of type
   STREAM_CLOSED.

   The total number of padding octets is determined by the value of the
   Pad Length field.  If the length of the padding is the length of the
   frame payload or greater, the recipient MUST treat this as a
   connection error (Section 5.4.1) of type PROTOCOL_ERROR.

      Note: A frame can be increased in size by one octet by including a
      Pad Length field with a value of zero.

6.2.  HEADERS

   The HEADERS frame (type=0x1) is used to open a stream (Section 5.1),
   and additionally carries a header block fragment.  HEADERS frames can
   be sent on a stream in the "idle", "reserved (local)", "open", or
   "half-closed (remote)" state.









Belshe, et al.               Standards Track                   [Page 32]
^L
RFC 7540                         HTTP/2                         May 2015


    +---------------+
    |Pad Length? (8)|
    +-+-------------+-----------------------------------------------+
    |E|                 Stream Dependency? (31)                     |
    +-+-------------+-----------------------------------------------+
    |  Weight? (8)  |
    +-+-------------+-----------------------------------------------+
    |                   Header Block Fragment (*)                 ...
    +---------------------------------------------------------------+
    |                           Padding (*)                       ...
    +---------------------------------------------------------------+

                      Figure 7: HEADERS Frame Payload

   The HEADERS frame payload has the following fields:

   Pad Length:  An 8-bit field containing the length of the frame
      padding in units of octets.  This field is only present if the
      PADDED flag is set.

   E: A single-bit flag indicating that the stream dependency is
      exclusive (see Section 5.3).  This field is only present if the
      PRIORITY flag is set.

   Stream Dependency:  A 31-bit stream identifier for the stream that
      this stream depends on (see Section 5.3).  This field is only
      present if the PRIORITY flag is set.

   Weight:  An unsigned 8-bit integer representing a priority weight for
      the stream (see Section 5.3).  Add one to the value to obtain a
      weight between 1 and 256.  This field is only present if the
      PRIORITY flag is set.

   Header Block Fragment:  A header block fragment (Section 4.3).

   Padding:  Padding octets.

   The HEADERS frame defines the following flags:

   END_STREAM (0x1):  When set, bit 0 indicates that the header block
      (Section 4.3) is the last that the endpoint will send for the
      identified stream.

      A HEADERS frame carries the END_STREAM flag that signals the end
      of a stream.  However, a HEADERS frame with the END_STREAM flag
      set can be followed by CONTINUATION frames on the same stream.
      Logically, the CONTINUATION frames are part of the HEADERS frame.




Belshe, et al.               Standards Track                   [Page 33]
^L
RFC 7540                         HTTP/2                         May 2015


   END_HEADERS (0x4):  When set, bit 2 indicates that this frame
      contains an entire header block (Section 4.3) and is not followed
      by any CONTINUATION frames.

      A HEADERS frame without the END_HEADERS flag set MUST be followed
      by a CONTINUATION frame for the same stream.  A receiver MUST
      treat the receipt of any other type of frame or a frame on a
      different stream as a connection error (Section 5.4.1) of type
      PROTOCOL_ERROR.

   PADDED (0x8):  When set, bit 3 indicates that the Pad Length field
      and any padding that it describes are present.

   PRIORITY (0x20):  When set, bit 5 indicates that the Exclusive Flag
      (E), Stream Dependency, and Weight fields are present; see
      Section 5.3.

   The payload of a HEADERS frame contains a header block fragment
   (Section 4.3).  A header block that does not fit within a HEADERS
   frame is continued in a CONTINUATION frame (Section 6.10).

   HEADERS frames MUST be associated with a stream.  If a HEADERS frame
   is received whose stream identifier field is 0x0, the recipient MUST
   respond with a connection error (Section 5.4.1) of type
   PROTOCOL_ERROR.

   The HEADERS frame changes the connection state as described in
   Section 4.3.

   The HEADERS frame can include padding.  Padding fields and flags are
   identical to those defined for DATA frames (Section 6.1).  Padding
   that exceeds the size remaining for the header block fragment MUST be
   treated as a PROTOCOL_ERROR.

   Prioritization information in a HEADERS frame is logically equivalent
   to a separate PRIORITY frame, but inclusion in HEADERS avoids the
   potential for churn in stream prioritization when new streams are
   created.  Prioritization fields in HEADERS frames subsequent to the
   first on a stream reprioritize the stream (Section 5.3.3).

6.3.  PRIORITY

   The PRIORITY frame (type=0x2) specifies the sender-advised priority
   of a stream (Section 5.3).  It can be sent in any stream state,
   including idle or closed streams.






Belshe, et al.               Standards Track                   [Page 34]
^L
RFC 7540                         HTTP/2                         May 2015


    +-+-------------------------------------------------------------+
    |E|                  Stream Dependency (31)                     |
    +-+-------------+-----------------------------------------------+
    |   Weight (8)  |
    +-+-------------+

                     Figure 8: PRIORITY Frame Payload

   The payload of a PRIORITY frame contains the following fields:

   E: A single-bit flag indicating that the stream dependency is
      exclusive (see Section 5.3).

   Stream Dependency:  A 31-bit stream identifier for the stream that
      this stream depends on (see Section 5.3).

   Weight:  An unsigned 8-bit integer representing a priority weight for
      the stream (see Section 5.3).  Add one to the value to obtain a
      weight between 1 and 256.

   The PRIORITY frame does not define any flags.

   The PRIORITY frame always identifies a stream.  If a PRIORITY frame
   is received with a stream identifier of 0x0, the recipient MUST
   respond with a connection error (Section 5.4.1) of type
   PROTOCOL_ERROR.

   The PRIORITY frame can be sent on a stream in any state, though it
   cannot be sent between consecutive frames that comprise a single
   header block (Section 4.3).  Note that this frame could arrive after
   processing or frame sending has completed, which would cause it to
   have no effect on the identified stream.  For a stream that is in the
   "half-closed (remote)" or "closed" state, this frame can only affect
   processing of the identified stream and its dependent streams; it
   does not affect frame transmission on that stream.

   The PRIORITY frame can be sent for a stream in the "idle" or "closed"
   state.  This allows for the reprioritization of a group of dependent
   streams by altering the priority of an unused or closed parent
   stream.

   A PRIORITY frame with a length other than 5 octets MUST be treated as
   a stream error (Section 5.4.2) of type FRAME_SIZE_ERROR.








Belshe, et al.               Standards Track                   [Page 35]
^L
RFC 7540                         HTTP/2                         May 2015


6.4.  RST_STREAM

   The RST_STREAM frame (type=0x3) allows for immediate termination of a
   stream.  RST_STREAM is sent to request cancellation of a stream or to
   indicate that an error condition has occurred.

    +---------------------------------------------------------------+
    |                        Error Code (32)                        |
    +---------------------------------------------------------------+

                    Figure 9: RST_STREAM Frame Payload

   The RST_STREAM frame contains a single unsigned, 32-bit integer
   identifying the error code (Section 7).  The error code indicates why
   the stream is being terminated.

   The RST_STREAM frame does not define any flags.

   The RST_STREAM frame fully terminates the referenced stream and
   causes it to enter the "closed" state.  After receiving a RST_STREAM
   on a stream, the receiver MUST NOT send additional frames for that
   stream, with the exception of PRIORITY.  However, after sending the
   RST_STREAM, the sending endpoint MUST be prepared to receive and
   process additional frames sent on the stream that might have been
   sent by the peer prior to the arrival of the RST_STREAM.

   RST_STREAM frames MUST be associated with a stream.  If a RST_STREAM
   frame is received with a stream identifier of 0x0, the recipient MUST
   treat this as a connection error (Section 5.4.1) of type
   PROTOCOL_ERROR.

   RST_STREAM frames MUST NOT be sent for a stream in the "idle" state.
   If a RST_STREAM frame identifying an idle stream is received, the
   recipient MUST treat this as a connection error (Section 5.4.1) of
   type PROTOCOL_ERROR.

   A RST_STREAM frame with a length other than 4 octets MUST be treated
   as a connection error (Section 5.4.1) of type FRAME_SIZE_ERROR.

6.5.  SETTINGS

   The SETTINGS frame (type=0x4) conveys configuration parameters that
   affect how endpoints communicate, such as preferences and constraints
   on peer behavior.  The SETTINGS frame is also used to acknowledge the
   receipt of those parameters.  Individually, a SETTINGS parameter can
   also be referred to as a "setting".





Belshe, et al.               Standards Track                   [Page 36]
^L
RFC 7540                         HTTP/2                         May 2015


   SETTINGS parameters are not negotiated; they describe characteristics
   of the sending peer, which are used by the receiving peer.  Different
   values for the same parameter can be advertised by each peer.  For
   example, a client might set a high initial flow-control window,
   whereas a server might set a lower value to conserve resources.

   A SETTINGS frame MUST be sent by both endpoints at the start of a
   connection and MAY be sent at any other time by either endpoint over
   the lifetime of the connection.  Implementations MUST support all of
   the parameters defined by this specification.

   Each parameter in a SETTINGS frame replaces any existing value for
   that parameter.  Parameters are processed in the order in which they
   appear, and a receiver of a SETTINGS frame does not need to maintain
   any state other than the current value of its parameters.  Therefore,
   the value of a SETTINGS parameter is the last value that is seen by a
   receiver.

   SETTINGS parameters are acknowledged by the receiving peer.  To
   enable this, the SETTINGS frame defines the following flag:

   ACK (0x1):  When set, bit 0 indicates that this frame acknowledges
      receipt and application of the peer's SETTINGS frame.  When this
      bit is set, the payload of the SETTINGS frame MUST be empty.
      Receipt of a SETTINGS frame with the ACK flag set and a length
      field value other than 0 MUST be treated as a connection error
      (Section 5.4.1) of type FRAME_SIZE_ERROR.  For more information,
      see Section 6.5.3 ("Settings Synchronization").

   SETTINGS frames always apply to a connection, never a single stream.
   The stream identifier for a SETTINGS frame MUST be zero (0x0).  If an
   endpoint receives a SETTINGS frame whose stream identifier field is
   anything other than 0x0, the endpoint MUST respond with a connection
   error (Section 5.4.1) of type PROTOCOL_ERROR.

   The SETTINGS frame affects connection state.  A badly formed or
   incomplete SETTINGS frame MUST be treated as a connection error
   (Section 5.4.1) of type PROTOCOL_ERROR.

   A SETTINGS frame with a length other than a multiple of 6 octets MUST
   be treated as a connection error (Section 5.4.1) of type
   FRAME_SIZE_ERROR.









Belshe, et al.               Standards Track                   [Page 37]
^L
RFC 7540                         HTTP/2                         May 2015


6.5.1.  SETTINGS Format

   The payload of a SETTINGS frame consists of zero or more parameters,
   each consisting of an unsigned 16-bit setting identifier and an
   unsigned 32-bit value.

    +-------------------------------+
    |       Identifier (16)         |
    +-------------------------------+-------------------------------+
    |                        Value (32)                             |
    +---------------------------------------------------------------+

                         Figure 10: Setting Format

6.5.2.  Defined SETTINGS Parameters

   The following parameters are defined:

   SETTINGS_HEADER_TABLE_SIZE (0x1):  Allows the sender to inform the
      remote endpoint of the maximum size of the header compression
      table used to decode header blocks, in octets.  The encoder can
      select any size equal to or less than this value by using
      signaling specific to the header compression format inside a
      header block (see [COMPRESSION]).  The initial value is 4,096
      octets.

   SETTINGS_ENABLE_PUSH (0x2):  This setting can be used to disable
      server push (Section 8.2).  An endpoint MUST NOT send a
      PUSH_PROMISE frame if it receives this parameter set to a value of
      0.  An endpoint that has both set this parameter to 0 and had it
      acknowledged MUST treat the receipt of a PUSH_PROMISE frame as a
      connection error (Section 5.4.1) of type PROTOCOL_ERROR.

      The initial value is 1, which indicates that server push is
      permitted.  Any value other than 0 or 1 MUST be treated as a
      connection error (Section 5.4.1) of type PROTOCOL_ERROR.

   SETTINGS_MAX_CONCURRENT_STREAMS (0x3):  Indicates the maximum number
      of concurrent streams that the sender will allow.  This limit is
      directional: it applies to the number of streams that the sender
      permits the receiver to create.  Initially, there is no limit to
      this value.  It is recommended that this value be no smaller than
      100, so as to not unnecessarily limit parallelism.

      A value of 0 for SETTINGS_MAX_CONCURRENT_STREAMS SHOULD NOT be
      treated as special by endpoints.  A zero value does prevent the
      creation of new streams; however, this can also happen for any




Belshe, et al.               Standards Track                   [Page 38]
^L
RFC 7540                         HTTP/2                         May 2015


      limit that is exhausted with active streams.  Servers SHOULD only
      set a zero value for short durations; if a server does not wish to
      accept requests, closing the connection is more appropriate.

   SETTINGS_INITIAL_WINDOW_SIZE (0x4):  Indicates the sender's initial
      window size (in octets) for stream-level flow control.  The
      initial value is 2^16-1 (65,535) octets.

      This setting affects the window size of all streams (see
      Section 6.9.2).

      Values above the maximum flow-control window size of 2^31-1 MUST
      be treated as a connection error (Section 5.4.1) of type
      FLOW_CONTROL_ERROR.

   SETTINGS_MAX_FRAME_SIZE (0x5):  Indicates the size of the largest
      frame payload that the sender is willing to receive, in octets.

      The initial value is 2^14 (16,384) octets.  The value advertised
      by an endpoint MUST be between this initial value and the maximum
      allowed frame size (2^24-1 or 16,777,215 octets), inclusive.
      Values outside this range MUST be treated as a connection error
      (Section 5.4.1) of type PROTOCOL_ERROR.

   SETTINGS_MAX_HEADER_LIST_SIZE (0x6):  This advisory setting informs a
      peer of the maximum size of header list that the sender is
      prepared to accept, in octets.  The value is based on the
      uncompressed size of header fields, including the length of the
      name and value in octets plus an overhead of 32 octets for each
      header field.

      For any given request, a lower limit than what is advertised MAY
      be enforced.  The initial value of this setting is unlimited.

   An endpoint that receives a SETTINGS frame with any unknown or
   unsupported identifier MUST ignore that setting.

6.5.3.  Settings Synchronization

   Most values in SETTINGS benefit from or require an understanding of
   when the peer has received and applied the changed parameter values.
   In order to provide such synchronization timepoints, the recipient of
   a SETTINGS frame in which the ACK flag is not set MUST apply the
   updated parameters as soon as possible upon receipt.

   The values in the SETTINGS frame MUST be processed in the order they
   appear, with no other frame processing between values.  Unsupported
   parameters MUST be ignored.  Once all values have been processed, the



Belshe, et al.               Standards Track                   [Page 39]
^L
RFC 7540                         HTTP/2                         May 2015


   recipient MUST immediately emit a SETTINGS frame with the ACK flag
   set.  Upon receiving a SETTINGS frame with the ACK flag set, the
   sender of the altered parameters can rely on the setting having been
   applied.

   If the sender of a SETTINGS frame does not receive an acknowledgement
   within a reasonable amount of time, it MAY issue a connection error
   (Section 5.4.1) of type SETTINGS_TIMEOUT.

6.6.  PUSH_PROMISE

   The PUSH_PROMISE frame (type=0x5) is used to notify the peer endpoint
   in advance of streams the sender intends to initiate.  The
   PUSH_PROMISE frame includes the unsigned 31-bit identifier of the
   stream the endpoint plans to create along with a set of headers that
   provide additional context for the stream.  Section 8.2 contains a
   thorough description of the use of PUSH_PROMISE frames.

    +---------------+
    |Pad Length? (8)|
    +-+-------------+-----------------------------------------------+
    |R|                  Promised Stream ID (31)                    |
    +-+-----------------------------+-------------------------------+
    |                   Header Block Fragment (*)                 ...
    +---------------------------------------------------------------+
    |                           Padding (*)                       ...
    +---------------------------------------------------------------+

                  Figure 11: PUSH_PROMISE Payload Format

   The PUSH_PROMISE frame payload has the following fields:

   Pad Length:  An 8-bit field containing the length of the frame
      padding in units of octets.  This field is only present if the
      PADDED flag is set.

   R: A single reserved bit.

   Promised Stream ID:  An unsigned 31-bit integer that identifies the
      stream that is reserved by the PUSH_PROMISE.  The promised stream
      identifier MUST be a valid choice for the next stream sent by the
      sender (see "new stream identifier" in Section 5.1.1).

   Header Block Fragment:  A header block fragment (Section 4.3)
      containing request header fields.

   Padding:  Padding octets.




Belshe, et al.               Standards Track                   [Page 40]
^L
RFC 7540                         HTTP/2                         May 2015


   The PUSH_PROMISE frame defines the following flags:

   END_HEADERS (0x4):  When set, bit 2 indicates that this frame
      contains an entire header block (Section 4.3) and is not followed
      by any CONTINUATION frames.

      A PUSH_PROMISE frame without the END_HEADERS flag set MUST be
      followed by a CONTINUATION frame for the same stream.  A receiver
      MUST treat the receipt of any other type of frame or a frame on a
      different stream as a connection error (Section 5.4.1) of type
      PROTOCOL_ERROR.

   PADDED (0x8):  When set, bit 3 indicates that the Pad Length field
      and any padding that it describes are present.

   PUSH_PROMISE frames MUST only be sent on a peer-initiated stream that
   is in either the "open" or "half-closed (remote)" state.  The stream
   identifier of a PUSH_PROMISE frame indicates the stream it is
   associated with.  If the stream identifier field specifies the value
   0x0, a recipient MUST respond with a connection error (Section 5.4.1)
   of type PROTOCOL_ERROR.

   Promised streams are not required to be used in the order they are
   promised.  The PUSH_PROMISE only reserves stream identifiers for
   later use.

   PUSH_PROMISE MUST NOT be sent if the SETTINGS_ENABLE_PUSH setting of
   the peer endpoint is set to 0.  An endpoint that has set this setting
   and has received acknowledgement MUST treat the receipt of a
   PUSH_PROMISE frame as a connection error (Section 5.4.1) of type
   PROTOCOL_ERROR.

   Recipients of PUSH_PROMISE frames can choose to reject promised
   streams by returning a RST_STREAM referencing the promised stream
   identifier back to the sender of the PUSH_PROMISE.

   A PUSH_PROMISE frame modifies the connection state in two ways.
   First, the inclusion of a header block (Section 4.3) potentially
   modifies the state maintained for header compression.  Second,
   PUSH_PROMISE also reserves a stream for later use, causing the
   promised stream to enter the "reserved" state.  A sender MUST NOT
   send a PUSH_PROMISE on a stream unless that stream is either "open"
   or "half-closed (remote)"; the sender MUST ensure that the promised
   stream is a valid choice for a new stream identifier (Section 5.1.1)
   (that is, the promised stream MUST be in the "idle" state).






Belshe, et al.               Standards Track                   [Page 41]
^L
RFC 7540                         HTTP/2                         May 2015


   Since PUSH_PROMISE reserves a stream, ignoring a PUSH_PROMISE frame
   causes the stream state to become indeterminate.  A receiver MUST
   treat the receipt of a PUSH_PROMISE on a stream that is neither
   "open" nor "half-closed (local)" as a connection error
   (Section 5.4.1) of type PROTOCOL_ERROR.  However, an endpoint that
   has sent RST_STREAM on the associated stream MUST handle PUSH_PROMISE
   frames that might have been created before the RST_STREAM frame is
   received and processed.

   A receiver MUST treat the receipt of a PUSH_PROMISE that promises an
   illegal stream identifier (Section 5.1.1) as a connection error
   (Section 5.4.1) of type PROTOCOL_ERROR.  Note that an illegal stream
   identifier is an identifier for a stream that is not currently in the
   "idle" state.

   The PUSH_PROMISE frame can include padding.  Padding fields and flags
   are identical to those defined for DATA frames (Section 6.1).

6.7.  PING

   The PING frame (type=0x6) is a mechanism for measuring a minimal
   round-trip time from the sender, as well as determining whether an
   idle connection is still functional.  PING frames can be sent from
   any endpoint.

    +---------------------------------------------------------------+
    |                                                               |
    |                      Opaque Data (64)                         |
    |                                                               |
    +---------------------------------------------------------------+

                      Figure 12: PING Payload Format

   In addition to the frame header, PING frames MUST contain 8 octets of
   opaque data in the payload.  A sender can include any value it
   chooses and use those octets in any fashion.

   Receivers of a PING frame that does not include an ACK flag MUST send
   a PING frame with the ACK flag set in response, with an identical
   payload.  PING responses SHOULD be given higher priority than any
   other frame.

   The PING frame defines the following flags:

   ACK (0x1):  When set, bit 0 indicates that this PING frame is a PING
      response.  An endpoint MUST set this flag in PING responses.  An
      endpoint MUST NOT respond to PING frames containing this flag.




Belshe, et al.               Standards Track                   [Page 42]
^L
RFC 7540                         HTTP/2                         May 2015


   PING frames are not associated with any individual stream.  If a PING
   frame is received with a stream identifier field value other than
   0x0, the recipient MUST respond with a connection error
   (Section 5.4.1) of type PROTOCOL_ERROR.

   Receipt of a PING frame with a length field value other than 8 MUST
   be treated as a connection error (Section 5.4.1) of type
   FRAME_SIZE_ERROR.

6.8.  GOAWAY

   The GOAWAY frame (type=0x7) is used to initiate shutdown of a
   connection or to signal serious error conditions.  GOAWAY allows an
   endpoint to gracefully stop accepting new streams while still
   finishing processing of previously established streams.  This enables
   administrative actions, like server maintenance.

   There is an inherent race condition between an endpoint starting new
   streams and the remote sending a GOAWAY frame.  To deal with this
   case, the GOAWAY contains the stream identifier of the last peer-
   initiated stream that was or might be processed on the sending
   endpoint in this connection.  For instance, if the server sends a
   GOAWAY frame, the identified stream is the highest-numbered stream
   initiated by the client.

   Once sent, the sender will ignore frames sent on streams initiated by
   the receiver if the stream has an identifier higher than the included
   last stream identifier.  Receivers of a GOAWAY frame MUST NOT open
   additional streams on the connection, although a new connection can
   be established for new streams.

   If the receiver of the GOAWAY has sent data on streams with a higher
   stream identifier than what is indicated in the GOAWAY frame, those
   streams are not or will not be processed.  The receiver of the GOAWAY
   frame can treat the streams as though they had never been created at
   all, thereby allowing those streams to be retried later on a new
   connection.

   Endpoints SHOULD always send a GOAWAY frame before closing a
   connection so that the remote peer can know whether a stream has been
   partially processed or not.  For example, if an HTTP client sends a
   POST at the same time that a server closes a connection, the client
   cannot know if the server started to process that POST request if the
   server does not send a GOAWAY frame to indicate what streams it might
   have acted on.

   An endpoint might choose to close a connection without sending a
   GOAWAY for misbehaving peers.



Belshe, et al.               Standards Track                   [Page 43]
^L
RFC 7540                         HTTP/2                         May 2015


   A GOAWAY frame might not immediately precede closing of the
   connection; a receiver of a GOAWAY that has no more use for the
   connection SHOULD still send a GOAWAY frame before terminating the
   connection.

    +-+-------------------------------------------------------------+
    |R|                  Last-Stream-ID (31)                        |
    +-+-------------------------------------------------------------+
    |                      Error Code (32)                          |
    +---------------------------------------------------------------+
    |                  Additional Debug Data (*)                    |
    +---------------------------------------------------------------+

                     Figure 13: GOAWAY Payload Format

   The GOAWAY frame does not define any flags.

   The GOAWAY frame applies to the connection, not a specific stream.
   An endpoint MUST treat a GOAWAY frame with a stream identifier other
   than 0x0 as a connection error (Section 5.4.1) of type
   PROTOCOL_ERROR.

   The last stream identifier in the GOAWAY frame contains the highest-
   numbered stream identifier for which the sender of the GOAWAY frame
   might have taken some action on or might yet take action on.  All
   streams up to and including the identified stream might have been
   processed in some way.  The last stream identifier can be set to 0 if
   no streams were processed.

      Note: In this context, "processed" means that some data from the
      stream was passed to some higher layer of software that might have
      taken some action as a result.

   If a connection terminates without a GOAWAY frame, the last stream
   identifier is effectively the highest possible stream identifier.

   On streams with lower- or equal-numbered identifiers that were not
   closed completely prior to the connection being closed, reattempting
   requests, transactions, or any protocol activity is not possible,
   with the exception of idempotent actions like HTTP GET, PUT, or
   DELETE.  Any protocol activity that uses higher-numbered streams can
   be safely retried using a new connection.

   Activity on streams numbered lower or equal to the last stream
   identifier might still complete successfully.  The sender of a GOAWAY
   frame might gracefully shut down a connection by sending a GOAWAY
   frame, maintaining the connection in an "open" state until all in-
   progress streams complete.



Belshe, et al.               Standards Track                   [Page 44]
^L
RFC 7540                         HTTP/2                         May 2015


   An endpoint MAY send multiple GOAWAY frames if circumstances change.
   For instance, an endpoint that sends GOAWAY with NO_ERROR during
   graceful shutdown could subsequently encounter a condition that
   requires immediate termination of the connection.  The last stream
   identifier from the last GOAWAY frame received indicates which
   streams could have been acted upon.  Endpoints MUST NOT increase the
   value they send in the last stream identifier, since the peers might
   already have retried unprocessed requests on another connection.

   A client that is unable to retry requests loses all requests that are
   in flight when the server closes the connection.  This is especially
   true for intermediaries that might not be serving clients using
   HTTP/2.  A server that is attempting to gracefully shut down a
   connection SHOULD send an initial GOAWAY frame with the last stream
   identifier set to 2^31-1 and a NO_ERROR code.  This signals to the
   client that a shutdown is imminent and that initiating further
   requests is prohibited.  After allowing time for any in-flight stream
   creation (at least one round-trip time), the server can send another
   GOAWAY frame with an updated last stream identifier.  This ensures
   that a connection can be cleanly shut down without losing requests.

   After sending a GOAWAY frame, the sender can discard frames for
   streams initiated by the receiver with identifiers higher than the
   identified last stream.  However, any frames that alter connection
   state cannot be completely ignored.  For instance, HEADERS,
   PUSH_PROMISE, and CONTINUATION frames MUST be minimally processed to
   ensure the state maintained for header compression is consistent (see
   Section 4.3); similarly, DATA frames MUST be counted toward the
   connection flow-control window.  Failure to process these frames can
   cause flow control or header compression state to become
   unsynchronized.

   The GOAWAY frame also contains a 32-bit error code (Section 7) that
   contains the reason for closing the connection.

   Endpoints MAY append opaque data to the payload of any GOAWAY frame.
   Additional debug data is intended for diagnostic purposes only and
   carries no semantic value.  Debug information could contain security-
   or privacy-sensitive data.  Logged or otherwise persistently stored
   debug data MUST have adequate safeguards to prevent unauthorized
   access.










Belshe, et al.               Standards Track                   [Page 45]
^L
RFC 7540                         HTTP/2                         May 2015


6.9.  WINDOW_UPDATE

   The WINDOW_UPDATE frame (type=0x8) is used to implement flow control;
   see Section 5.2 for an overview.

   Flow control operates at two levels: on each individual stream and on
   the entire connection.

   Both types of flow control are hop by hop, that is, only between the
   two endpoints.  Intermediaries do not forward WINDOW_UPDATE frames
   between dependent connections.  However, throttling of data transfer
   by any receiver can indirectly cause the propagation of flow-control
   information toward the original sender.

   Flow control only applies to frames that are identified as being
   subject to flow control.  Of the frame types defined in this
   document, this includes only DATA frames.  Frames that are exempt
   from flow control MUST be accepted and processed, unless the receiver
   is unable to assign resources to handling the frame.  A receiver MAY
   respond with a stream error (Section 5.4.2) or connection error
   (Section 5.4.1) of type FLOW_CONTROL_ERROR if it is unable to accept
   a frame.

    +-+-------------------------------------------------------------+
    |R|              Window Size Increment (31)                     |
    +-+-------------------------------------------------------------+

                  Figure 14: WINDOW_UPDATE Payload Format

   The payload of a WINDOW_UPDATE frame is one reserved bit plus an
   unsigned 31-bit integer indicating the number of octets that the
   sender can transmit in addition to the existing flow-control window.
   The legal range for the increment to the flow-control window is 1 to
   2^31-1 (2,147,483,647) octets.

   The WINDOW_UPDATE frame does not define any flags.

   The WINDOW_UPDATE frame can be specific to a stream or to the entire
   connection.  In the former case, the frame's stream identifier
   indicates the affected stream; in the latter, the value "0" indicates
   that the entire connection is the subject of the frame.

   A receiver MUST treat the receipt of a WINDOW_UPDATE frame with an
   flow-control window increment of 0 as a stream error (Section 5.4.2)
   of type PROTOCOL_ERROR; errors on the connection flow-control window
   MUST be treated as a connection error (Section 5.4.1).





Belshe, et al.               Standards Track                   [Page 46]
^L
RFC 7540                         HTTP/2                         May 2015


   WINDOW_UPDATE can be sent by a peer that has sent a frame bearing the
   END_STREAM flag.  This means that a receiver could receive a
   WINDOW_UPDATE frame on a "half-closed (remote)" or "closed" stream.
   A receiver MUST NOT treat this as an error (see Section 5.1).

   A receiver that receives a flow-controlled frame MUST always account
   for its contribution against the connection flow-control window,
   unless the receiver treats this as a connection error
   (Section 5.4.1).  This is necessary even if the frame is in error.
   The sender counts the frame toward the flow-control window, but if
   the receiver does not, the flow-control window at the sender and
   receiver can become different.

   A WINDOW_UPDATE frame with a length other than 4 octets MUST be
   treated as a connection error (Section 5.4.1) of type
   FRAME_SIZE_ERROR.

6.9.1.  The Flow-Control Window

   Flow control in HTTP/2 is implemented using a window kept by each
   sender on every stream.  The flow-control window is a simple integer
   value that indicates how many octets of data the sender is permitted
   to transmit; as such, its size is a measure of the buffering capacity
   of the receiver.

   Two flow-control windows are applicable: the stream flow-control
   window and the connection flow-control window.  The sender MUST NOT
   send a flow-controlled frame with a length that exceeds the space
   available in either of the flow-control windows advertised by the
   receiver.  Frames with zero length with the END_STREAM flag set (that
   is, an empty DATA frame) MAY be sent if there is no available space
   in either flow-control window.

   For flow-control calculations, the 9-octet frame header is not
   counted.

   After sending a flow-controlled frame, the sender reduces the space
   available in both windows by the length of the transmitted frame.

   The receiver of a frame sends a WINDOW_UPDATE frame as it consumes
   data and frees up space in flow-control windows.  Separate
   WINDOW_UPDATE frames are sent for the stream- and connection-level
   flow-control windows.

   A sender that receives a WINDOW_UPDATE frame updates the
   corresponding window by the amount specified in the frame.





Belshe, et al.               Standards Track                   [Page 47]
^L
RFC 7540                         HTTP/2                         May 2015


   A sender MUST NOT allow a flow-control window to exceed 2^31-1
   octets.  If a sender receives a WINDOW_UPDATE that causes a flow-
   control window to exceed this maximum, it MUST terminate either the
   stream or the connection, as appropriate.  For streams, the sender
   sends a RST_STREAM with an error code of FLOW_CONTROL_ERROR; for the
   connection, a GOAWAY frame with an error code of FLOW_CONTROL_ERROR
   is sent.

   Flow-controlled frames from the sender and WINDOW_UPDATE frames from
   the receiver are completely asynchronous with respect to each other.
   This property allows a receiver to aggressively update the window
   size kept by the sender to prevent streams from stalling.

6.9.2.  Initial Flow-Control Window Size

   When an HTTP/2 connection is first established, new streams are
   created with an initial flow-control window size of 65,535 octets.
   The connection flow-control window is also 65,535 octets.  Both
   endpoints can adjust the initial window size for new streams by
   including a value for SETTINGS_INITIAL_WINDOW_SIZE in the SETTINGS
   frame that forms part of the connection preface.  The connection
   flow-control window can only be changed using WINDOW_UPDATE frames.

   Prior to receiving a SETTINGS frame that sets a value for
   SETTINGS_INITIAL_WINDOW_SIZE, an endpoint can only use the default
   initial window size when sending flow-controlled frames.  Similarly,
   the connection flow-control window is set to the default initial
   window size until a WINDOW_UPDATE frame is received.

   In addition to changing the flow-control window for streams that are
   not yet active, a SETTINGS frame can alter the initial flow-control
   window size for streams with active flow-control windows (that is,
   streams in the "open" or "half-closed (remote)" state).  When the
   value of SETTINGS_INITIAL_WINDOW_SIZE changes, a receiver MUST adjust
   the size of all stream flow-control windows that it maintains by the
   difference between the new value and the old value.

   A change to SETTINGS_INITIAL_WINDOW_SIZE can cause the available
   space in a flow-control window to become negative.  A sender MUST
   track the negative flow-control window and MUST NOT send new flow-
   controlled frames until it receives WINDOW_UPDATE frames that cause
   the flow-control window to become positive.

   For example, if the client sends 60 KB immediately on connection
   establishment and the server sets the initial window size to be 16
   KB, the client will recalculate the available flow-control window to





Belshe, et al.               Standards Track                   [Page 48]
^L
RFC 7540                         HTTP/2                         May 2015


   be -44 KB on receipt of the SETTINGS frame.  The client retains a
   negative flow-control window until WINDOW_UPDATE frames restore the
   window to being positive, after which the client can resume sending.

   A SETTINGS frame cannot alter the connection flow-control window.

   An endpoint MUST treat a change to SETTINGS_INITIAL_WINDOW_SIZE that
   causes any flow-control window to exceed the maximum size as a
   connection error (Section 5.4.1) of type FLOW_CONTROL_ERROR.

6.9.3.  Reducing the Stream Window Size

   A receiver that wishes to use a smaller flow-control window than the
   current size can send a new SETTINGS frame.  However, the receiver
   MUST be prepared to receive data that exceeds this window size, since
   the sender might send data that exceeds the lower limit prior to
   processing the SETTINGS frame.

   After sending a SETTINGS frame that reduces the initial flow-control
   window size, a receiver MAY continue to process streams that exceed
   flow-control limits.  Allowing streams to continue does not allow the
   receiver to immediately reduce the space it reserves for flow-control
   windows.  Progress on these streams can also stall, since
   WINDOW_UPDATE frames are needed to allow the sender to resume
   sending.  The receiver MAY instead send a RST_STREAM with an error
   code of FLOW_CONTROL_ERROR for the affected streams.

6.10.  CONTINUATION

   The CONTINUATION frame (type=0x9) is used to continue a sequence of
   header block fragments (Section 4.3).  Any number of CONTINUATION
   frames can be sent, as long as the preceding frame is on the same
   stream and is a HEADERS, PUSH_PROMISE, or CONTINUATION frame without
   the END_HEADERS flag set.

    +---------------------------------------------------------------+
    |                   Header Block Fragment (*)                 ...
    +---------------------------------------------------------------+

                   Figure 15: CONTINUATION Frame Payload

   The CONTINUATION frame payload contains a header block fragment
   (Section 4.3).








Belshe, et al.               Standards Track                   [Page 49]
^L
RFC 7540                         HTTP/2                         May 2015


   The CONTINUATION frame defines the following flag:

   END_HEADERS (0x4):  When set, bit 2 indicates that this frame ends a
      header block (Section 4.3).

      If the END_HEADERS bit is not set, this frame MUST be followed by
      another CONTINUATION frame.  A receiver MUST treat the receipt of
      any other type of frame or a frame on a different stream as a
      connection error (Section 5.4.1) of type PROTOCOL_ERROR.

   The CONTINUATION frame changes the connection state as defined in
   Section 4.3.

   CONTINUATION frames MUST be associated with a stream.  If a
   CONTINUATION frame is received whose stream identifier field is 0x0,
   the recipient MUST respond with a connection error (Section 5.4.1) of
   type PROTOCOL_ERROR.

   A CONTINUATION frame MUST be preceded by a HEADERS, PUSH_PROMISE or
   CONTINUATION frame without the END_HEADERS flag set.  A recipient
   that observes violation of this rule MUST respond with a connection
   error (Section 5.4.1) of type PROTOCOL_ERROR.

7.  Error Codes

   Error codes are 32-bit fields that are used in RST_STREAM and GOAWAY
   frames to convey the reasons for the stream or connection error.

   Error codes share a common code space.  Some error codes apply only
   to either streams or the entire connection and have no defined
   semantics in the other context.

   The following error codes are defined:

   NO_ERROR (0x0):  The associated condition is not a result of an
      error.  For example, a GOAWAY might include this code to indicate
      graceful shutdown of a connection.

   PROTOCOL_ERROR (0x1):  The endpoint detected an unspecific protocol
      error.  This error is for use when a more specific error code is
      not available.

   INTERNAL_ERROR (0x2):  The endpoint encountered an unexpected
      internal error.

   FLOW_CONTROL_ERROR (0x3):  The endpoint detected that its peer
      violated the flow-control protocol.




Belshe, et al.               Standards Track                   [Page 50]
^L
RFC 7540                         HTTP/2                         May 2015


   SETTINGS_TIMEOUT (0x4):  The endpoint sent a SETTINGS frame but did
      not receive a response in a timely manner.  See Section 6.5.3
      ("Settings Synchronization").

   STREAM_CLOSED (0x5):  The endpoint received a frame after a stream
      was half-closed.

   FRAME_SIZE_ERROR (0x6):  The endpoint received a frame with an
      invalid size.

   REFUSED_STREAM (0x7):  The endpoint refused the stream prior to
      performing any application processing (see Section 8.1.4 for
      details).

   CANCEL (0x8):  Used by the endpoint to indicate that the stream is no
      longer needed.

   COMPRESSION_ERROR (0x9):  The endpoint is unable to maintain the
      header compression context for the connection.

   CONNECT_ERROR (0xa):  The connection established in response to a
      CONNECT request (Section 8.3) was reset or abnormally closed.

   ENHANCE_YOUR_CALM (0xb):  The endpoint detected that its peer is
      exhibiting a behavior that might be generating excessive load.

   INADEQUATE_SECURITY (0xc):  The underlying transport has properties
      that do not meet minimum security requirements (see Section 9.2).

   HTTP_1_1_REQUIRED (0xd):  The endpoint requires that HTTP/1.1 be used
      instead of HTTP/2.

   Unknown or unsupported error codes MUST NOT trigger any special
   behavior.  These MAY be treated by an implementation as being
   equivalent to INTERNAL_ERROR.

8.  HTTP Message Exchanges

   HTTP/2 is intended to be as compatible as possible with current uses
   of HTTP.  This means that, from the application perspective, the
   features of the protocol are largely unchanged.  To achieve this, all
   request and response semantics are preserved, although the syntax of
   conveying those semantics has changed.

   Thus, the specification and requirements of HTTP/1.1 Semantics and
   Content [RFC7231], Conditional Requests [RFC7232], Range Requests
   [RFC7233], Caching [RFC7234], and Authentication [RFC7235] are
   applicable to HTTP/2.  Selected portions of HTTP/1.1 Message Syntax



Belshe, et al.               Standards Track                   [Page 51]
^L
RFC 7540                         HTTP/2                         May 2015


   and Routing [RFC7230], such as the HTTP and HTTPS URI schemes, are
   also applicable in HTTP/2, but the expression of those semantics for
   this protocol are defined in the sections below.

8.1.  HTTP Request/Response Exchange

   A client sends an HTTP request on a new stream, using a previously
   unused stream identifier (Section 5.1.1).  A server sends an HTTP
   response on the same stream as the request.

   An HTTP message (request or response) consists of:

   1.  for a response only, zero or more HEADERS frames (each followed
       by zero or more CONTINUATION frames) containing the message
       headers of informational (1xx) HTTP responses (see [RFC7230],
       Section 3.2 and [RFC7231], Section 6.2),

   2.  one HEADERS frame (followed by zero or more CONTINUATION frames)
       containing the message headers (see [RFC7230], Section 3.2),

   3.  zero or more DATA frames containing the payload body (see
       [RFC7230], Section 3.3), and

   4.  optionally, one HEADERS frame, followed by zero or more
       CONTINUATION frames containing the trailer-part, if present (see
       [RFC7230], Section 4.1.2).

   The last frame in the sequence bears an END_STREAM flag, noting that
   a HEADERS frame bearing the END_STREAM flag can be followed by
   CONTINUATION frames that carry any remaining portions of the header
   block.

   Other frames (from any stream) MUST NOT occur between the HEADERS
   frame and any CONTINUATION frames that might follow.

   HTTP/2 uses DATA frames to carry message payloads.  The "chunked"
   transfer encoding defined in Section 4.1 of [RFC7230] MUST NOT be
   used in HTTP/2.

   Trailing header fields are carried in a header block that also
   terminates the stream.  Such a header block is a sequence starting
   with a HEADERS frame, followed by zero or more CONTINUATION frames,
   where the HEADERS frame bears an END_STREAM flag.  Header blocks
   after the first that do not terminate the stream are not part of an
   HTTP request or response.






Belshe, et al.               Standards Track                   [Page 52]
^L
RFC 7540                         HTTP/2                         May 2015


   A HEADERS frame (and associated CONTINUATION frames) can only appear
   at the start or end of a stream.  An endpoint that receives a HEADERS
   frame without the END_STREAM flag set after receiving a final (non-
   informational) status code MUST treat the corresponding request or
   response as malformed (Section 8.1.2.6).

   An HTTP request/response exchange fully consumes a single stream.  A
   request starts with the HEADERS frame that puts the stream into an
   "open" state.  The request ends with a frame bearing END_STREAM,
   which causes the stream to become "half-closed (local)" for the
   client and "half-closed (remote)" for the server.  A response starts
   with a HEADERS frame and ends with a frame bearing END_STREAM, which
   places the stream in the "closed" state.

   An HTTP response is complete after the server sends -- or the client
   receives -- a frame with the END_STREAM flag set (including any
   CONTINUATION frames needed to complete a header block).  A server can
   send a complete response prior to the client sending an entire
   request if the response does not depend on any portion of the request
   that has not been sent and received.  When this is true, a server MAY
   request that the client abort transmission of a request without error
   by sending a RST_STREAM with an error code of NO_ERROR after sending
   a complete response (i.e., a frame with the END_STREAM flag).
   Clients MUST NOT discard responses as a result of receiving such a
   RST_STREAM, though clients can always discard responses at their
   discretion for other reasons.

8.1.1.  Upgrading from HTTP/2

   HTTP/2 removes support for the 101 (Switching Protocols)
   informational status code ([RFC7231], Section 6.2.2).

   The semantics of 101 (Switching Protocols) aren't applicable to a
   multiplexed protocol.  Alternative protocols are able to use the same
   mechanisms that HTTP/2 uses to negotiate their use (see Section 3).

8.1.2.  HTTP Header Fields

   HTTP header fields carry information as a series of key-value pairs.
   For a listing of registered HTTP headers, see the "Message Header
   Field" registry maintained at <https://www.iana.org/assignments/
   message-headers>.

   Just as in HTTP/1.x, header field names are strings of ASCII
   characters that are compared in a case-insensitive fashion.  However,
   header field names MUST be converted to lowercase prior to their
   encoding in HTTP/2.  A request or response containing uppercase
   header field names MUST be treated as malformed (Section 8.1.2.6).



Belshe, et al.               Standards Track                   [Page 53]
^L
RFC 7540                         HTTP/2                         May 2015


8.1.2.1.  Pseudo-Header Fields

   While HTTP/1.x used the message start-line (see [RFC7230],
   Section 3.1) to convey the target URI, the method of the request, and
   the status code for the response, HTTP/2 uses special pseudo-header
   fields beginning with ':' character (ASCII 0x3a) for this purpose.

   Pseudo-header fields are not HTTP header fields.  Endpoints MUST NOT
   generate pseudo-header fields other than those defined in this
   document.

   Pseudo-header fields are only valid in the context in which they are
   defined.  Pseudo-header fields defined for requests MUST NOT appear
   in responses; pseudo-header fields defined for responses MUST NOT
   appear in requests.  Pseudo-header fields MUST NOT appear in
   trailers.  Endpoints MUST treat a request or response that contains
   undefined or invalid pseudo-header fields as malformed
   (Section 8.1.2.6).

   All pseudo-header fields MUST appear in the header block before
   regular header fields.  Any request or response that contains a
   pseudo-header field that appears in a header block after a regular
   header field MUST be treated as malformed (Section 8.1.2.6).

8.1.2.2.  Connection-Specific Header Fields

   HTTP/2 does not use the Connection header field to indicate
   connection-specific header fields; in this protocol, connection-
   specific metadata is conveyed by other means.  An endpoint MUST NOT
   generate an HTTP/2 message containing connection-specific header
   fields; any message containing connection-specific header fields MUST
   be treated as malformed (Section 8.1.2.6).

   The only exception to this is the TE header field, which MAY be
   present in an HTTP/2 request; when it is, it MUST NOT contain any
   value other than "trailers".

   This means that an intermediary transforming an HTTP/1.x message to
   HTTP/2 will need to remove any header fields nominated by the
   Connection header field, along with the Connection header field
   itself.  Such intermediaries SHOULD also remove other connection-
   specific header fields, such as Keep-Alive, Proxy-Connection,
   Transfer-Encoding, and Upgrade, even if they are not nominated by the
   Connection header field.

      Note: HTTP/2 purposefully does not support upgrade to another
      protocol.  The handshake methods described in Section 3 are
      believed sufficient to negotiate the use of alternative protocols.



Belshe, et al.               Standards Track                   [Page 54]
^L
RFC 7540                         HTTP/2                         May 2015


8.1.2.3.  Request Pseudo-Header Fields

   The following pseudo-header fields are defined for HTTP/2 requests:

   o  The ":method" pseudo-header field includes the HTTP method
      ([RFC7231], Section 4).

   o  The ":scheme" pseudo-header field includes the scheme portion of
      the target URI ([RFC3986], Section 3.1).

      ":scheme" is not restricted to "http" and "https" schemed URIs.  A
      proxy or gateway can translate requests for non-HTTP schemes,
      enabling the use of HTTP to interact with non-HTTP services.

   o  The ":authority" pseudo-header field includes the authority
      portion of the target URI ([RFC3986], Section 3.2).  The authority
      MUST NOT include the deprecated "userinfo" subcomponent for "http"
      or "https" schemed URIs.

      To ensure that the HTTP/1.1 request line can be reproduced
      accurately, this pseudo-header field MUST be omitted when
      translating from an HTTP/1.1 request that has a request target in
      origin or asterisk form (see [RFC7230], Section 5.3).  Clients
      that generate HTTP/2 requests directly SHOULD use the ":authority"
      pseudo-header field instead of the Host header field.  An
      intermediary that converts an HTTP/2 request to HTTP/1.1 MUST
      create a Host header field if one is not present in a request by
      copying the value of the ":authority" pseudo-header field.

   o  The ":path" pseudo-header field includes the path and query parts
      of the target URI (the "path-absolute" production and optionally a
      '?' character followed by the "query" production (see Sections 3.3
      and 3.4 of [RFC3986]).  A request in asterisk form includes the
      value '*' for the ":path" pseudo-header field.

      This pseudo-header field MUST NOT be empty for "http" or "https"
      URIs; "http" or "https" URIs that do not contain a path component
      MUST include a value of '/'.  The exception to this rule is an
      OPTIONS request for an "http" or "https" URI that does not include
      a path component; these MUST include a ":path" pseudo-header field
      with a value of '*' (see [RFC7230], Section 5.3.4).










Belshe, et al.               Standards Track                   [Page 55]
^L
RFC 7540                         HTTP/2                         May 2015


   All HTTP/2 requests MUST include exactly one valid value for the
   ":method", ":scheme", and ":path" pseudo-header fields, unless it is
   a CONNECT request (Section 8.3).  An HTTP request that omits
   mandatory pseudo-header fields is malformed (Section 8.1.2.6).

   HTTP/2 does not define a way to carry the version identifier that is
   included in the HTTP/1.1 request line.

8.1.2.4.  Response Pseudo-Header Fields

   For HTTP/2 responses, a single ":status" pseudo-header field is
   defined that carries the HTTP status code field (see [RFC7231],
   Section 6).  This pseudo-header field MUST be included in all
   responses; otherwise, the response is malformed (Section 8.1.2.6).

   HTTP/2 does not define a way to carry the version or reason phrase
   that is included in an HTTP/1.1 status line.

8.1.2.5.  Compressing the Cookie Header Field

   The Cookie header field [COOKIE] uses a semi-colon (";") to delimit
   cookie-pairs (or "crumbs").  This header field doesn't follow the
   list construction rules in HTTP (see [RFC7230], Section 3.2.2), which
   prevents cookie-pairs from being separated into different name-value
   pairs.  This can significantly reduce compression efficiency as
   individual cookie-pairs are updated.

   To allow for better compression efficiency, the Cookie header field
   MAY be split into separate header fields, each with one or more
   cookie-pairs.  If there are multiple Cookie header fields after
   decompression, these MUST be concatenated into a single octet string
   using the two-octet delimiter of 0x3B, 0x20 (the ASCII string "; ")
   before being passed into a non-HTTP/2 context, such as an HTTP/1.1
   connection, or a generic HTTP server application.

   Therefore, the following two lists of Cookie header fields are
   semantically equivalent.

     cookie: a=b; c=d; e=f

     cookie: a=b
     cookie: c=d
     cookie: e=f








Belshe, et al.               Standards Track                   [Page 56]
^L
RFC 7540                         HTTP/2                         May 2015


8.1.2.6.  Malformed Requests and Responses

   A malformed request or response is one that is an otherwise valid
   sequence of HTTP/2 frames but is invalid due to the presence of
   extraneous frames, prohibited header fields, the absence of mandatory
   header fields, or the inclusion of uppercase header field names.

   A request or response that includes a payload body can include a
   content-length header field.  A request or response is also malformed
   if the value of a content-length header field does not equal the sum
   of the DATA frame payload lengths that form the body.  A response
   that is defined to have no payload, as described in [RFC7230],
   Section 3.3.2, can have a non-zero content-length header field, even
   though no content is included in DATA frames.

   Intermediaries that process HTTP requests or responses (i.e., any
   intermediary not acting as a tunnel) MUST NOT forward a malformed
   request or response.  Malformed requests or responses that are
   detected MUST be treated as a stream error (Section 5.4.2) of type
   PROTOCOL_ERROR.

   For malformed requests, a server MAY send an HTTP response prior to
   closing or resetting the stream.  Clients MUST NOT accept a malformed
   response.  Note that these requirements are intended to protect
   against several types of common attacks against HTTP; they are
   deliberately strict because being permissive can expose
   implementations to these vulnerabilities.

8.1.3.  Examples

   This section shows HTTP/1.1 requests and responses, with
   illustrations of equivalent HTTP/2 requests and responses.

   An HTTP GET request includes request header fields and no payload
   body and is therefore transmitted as a single HEADERS frame, followed
   by zero or more CONTINUATION frames containing the serialized block
   of request header fields.  The HEADERS frame in the following has
   both the END_HEADERS and END_STREAM flags set; no CONTINUATION frames
   are sent.

     GET /resource HTTP/1.1           HEADERS
     Host: example.org          ==>     + END_STREAM
     Accept: image/jpeg                 + END_HEADERS
                                          :method = GET
                                          :scheme = https
                                          :path = /resource
                                          host = example.org
                                          accept = image/jpeg



Belshe, et al.               Standards Track                   [Page 57]
^L
RFC 7540                         HTTP/2                         May 2015


   Similarly, a response that includes only response header fields is
   transmitted as a HEADERS frame (again, followed by zero or more
   CONTINUATION frames) containing the serialized block of response
   header fields.

     HTTP/1.1 304 Not Modified        HEADERS
     ETag: "xyzzy"              ==>     + END_STREAM
     Expires: Thu, 23 Jan ...           + END_HEADERS
                                          :status = 304
                                          etag = "xyzzy"
                                          expires = Thu, 23 Jan ...

   An HTTP POST request that includes request header fields and payload
   data is transmitted as one HEADERS frame, followed by zero or more
   CONTINUATION frames containing the request header fields, followed by
   one or more DATA frames, with the last CONTINUATION (or HEADERS)
   frame having the END_HEADERS flag set and the final DATA frame having
   the END_STREAM flag set:

     POST /resource HTTP/1.1          HEADERS
     Host: example.org          ==>     - END_STREAM
     Content-Type: image/jpeg           - END_HEADERS
     Content-Length: 123                  :method = POST
                                          :path = /resource
     {binary data}                        :scheme = https

                                      CONTINUATION
                                        + END_HEADERS
                                          content-type = image/jpeg
                                          host = example.org
                                          content-length = 123

                                      DATA
                                        + END_STREAM
                                      {binary data}

   Note that data contributing to any given header field could be spread
   between header block fragments.  The allocation of header fields to
   frames in this example is illustrative only.

   A response that includes header fields and payload data is
   transmitted as a HEADERS frame, followed by zero or more CONTINUATION
   frames, followed by one or more DATA frames, with the last DATA frame
   in the sequence having the END_STREAM flag set:







Belshe, et al.               Standards Track                   [Page 58]
^L
RFC 7540                         HTTP/2                         May 2015


     HTTP/1.1 200 OK                  HEADERS
     Content-Type: image/jpeg   ==>     - END_STREAM
     Content-Length: 123                + END_HEADERS
                                          :status = 200
     {binary data}                        content-type = image/jpeg
                                          content-length = 123

                                      DATA
                                        + END_STREAM
                                      {binary data}

   An informational response using a 1xx status code other than 101 is
   transmitted as a HEADERS frame, followed by zero or more CONTINUATION
   frames.

   Trailing header fields are sent as a header block after both the
   request or response header block and all the DATA frames have been
   sent.  The HEADERS frame starting the trailers header block has the
   END_STREAM flag set.

   The following example includes both a 100 (Continue) status code,
   which is sent in response to a request containing a "100-continue"
   token in the Expect header field, and trailing header fields:

     HTTP/1.1 100 Continue            HEADERS
     Extension-Field: bar       ==>     - END_STREAM
                                        + END_HEADERS
                                          :status = 100
                                          extension-field = bar

     HTTP/1.1 200 OK                  HEADERS
     Content-Type: image/jpeg   ==>     - END_STREAM
     Transfer-Encoding: chunked         + END_HEADERS
     Trailer: Foo                         :status = 200
                                          content-length = 123
     123                                  content-type = image/jpeg
     {binary data}                        trailer = Foo
     0
     Foo: bar                         DATA
                                        - END_STREAM
                                      {binary data}

                                      HEADERS
                                        + END_STREAM
                                        + END_HEADERS
                                          foo = bar





Belshe, et al.               Standards Track                   [Page 59]
^L
RFC 7540                         HTTP/2                         May 2015


8.1.4.  Request Reliability Mechanisms in HTTP/2

   In HTTP/1.1, an HTTP client is unable to retry a non-idempotent
   request when an error occurs because there is no means to determine
   the nature of the error.  It is possible that some server processing
   occurred prior to the error, which could result in undesirable
   effects if the request were reattempted.

   HTTP/2 provides two mechanisms for providing a guarantee to a client
   that a request has not been processed:

   o  The GOAWAY frame indicates the highest stream number that might
      have been processed.  Requests on streams with higher numbers are
      therefore guaranteed to be safe to retry.

   o  The REFUSED_STREAM error code can be included in a RST_STREAM
      frame to indicate that the stream is being closed prior to any
      processing having occurred.  Any request that was sent on the
      reset stream can be safely retried.

   Requests that have not been processed have not failed; clients MAY
   automatically retry them, even those with non-idempotent methods.

   A server MUST NOT indicate that a stream has not been processed
   unless it can guarantee that fact.  If frames that are on a stream
   are passed to the application layer for any stream, then
   REFUSED_STREAM MUST NOT be used for that stream, and a GOAWAY frame
   MUST include a stream identifier that is greater than or equal to the
   given stream identifier.

   In addition to these mechanisms, the PING frame provides a way for a
   client to easily test a connection.  Connections that remain idle can
   become broken as some middleboxes (for instance, network address
   translators or load balancers) silently discard connection bindings.
   The PING frame allows a client to safely test whether a connection is
   still active without sending a request.

8.2.  Server Push

   HTTP/2 allows a server to pre-emptively send (or "push") responses
   (along with corresponding "promised" requests) to a client in
   association with a previous client-initiated request.  This can be
   useful when the server knows the client will need to have those
   responses available in order to fully process the response to the
   original request.






Belshe, et al.               Standards Track                   [Page 60]
^L
RFC 7540                         HTTP/2                         May 2015


   A client can request that server push be disabled, though this is
   negotiated for each hop independently.  The SETTINGS_ENABLE_PUSH
   setting can be set to 0 to indicate that server push is disabled.

   Promised requests MUST be cacheable (see [RFC7231], Section 4.2.3),
   MUST be safe (see [RFC7231], Section 4.2.1), and MUST NOT include a
   request body.  Clients that receive a promised request that is not
   cacheable, that is not known to be safe, or that indicates the
   presence of a request body MUST reset the promised stream with a
   stream error (Section 5.4.2) of type PROTOCOL_ERROR.  Note this could
   result in the promised stream being reset if the client does not
   recognize a newly defined method as being safe.

   Pushed responses that are cacheable (see [RFC7234], Section 3) can be
   stored by the client, if it implements an HTTP cache.  Pushed
   responses are considered successfully validated on the origin server
   (e.g., if the "no-cache" cache response directive is present
   ([RFC7234], Section 5.2.2)) while the stream identified by the
   promised stream ID is still open.

   Pushed responses that are not cacheable MUST NOT be stored by any
   HTTP cache.  They MAY be made available to the application
   separately.

   The server MUST include a value in the ":authority" pseudo-header
   field for which the server is authoritative (see Section 10.1).  A
   client MUST treat a PUSH_PROMISE for which the server is not
   authoritative as a stream error (Section 5.4.2) of type
   PROTOCOL_ERROR.

   An intermediary can receive pushes from the server and choose not to
   forward them on to the client.  In other words, how to make use of
   the pushed information is up to that intermediary.  Equally, the
   intermediary might choose to make additional pushes to the client,
   without any action taken by the server.

   A client cannot push.  Thus, servers MUST treat the receipt of a
   PUSH_PROMISE frame as a connection error (Section 5.4.1) of type
   PROTOCOL_ERROR.  Clients MUST reject any attempt to change the
   SETTINGS_ENABLE_PUSH setting to a value other than 0 by treating the
   message as a connection error (Section 5.4.1) of type PROTOCOL_ERROR.

8.2.1.  Push Requests

   Server push is semantically equivalent to a server responding to a
   request; however, in this case, that request is also sent by the
   server, as a PUSH_PROMISE frame.




Belshe, et al.               Standards Track                   [Page 61]
^L
RFC 7540                         HTTP/2                         May 2015


   The PUSH_PROMISE frame includes a header block that contains a
   complete set of request header fields that the server attributes to
   the request.  It is not possible to push a response to a request that
   includes a request body.

   Pushed responses are always associated with an explicit request from
   the client.  The PUSH_PROMISE frames sent by the server are sent on
   that explicit request's stream.  The PUSH_PROMISE frame also includes
   a promised stream identifier, chosen from the stream identifiers
   available to the server (see Section 5.1.1).

   The header fields in PUSH_PROMISE and any subsequent CONTINUATION
   frames MUST be a valid and complete set of request header fields
   (Section 8.1.2.3).  The server MUST include a method in the ":method"
   pseudo-header field that is safe and cacheable.  If a client receives
   a PUSH_PROMISE that does not include a complete and valid set of
   header fields or the ":method" pseudo-header field identifies a
   method that is not safe, it MUST respond with a stream error
   (Section 5.4.2) of type PROTOCOL_ERROR.

   The server SHOULD send PUSH_PROMISE (Section 6.6) frames prior to
   sending any frames that reference the promised responses.  This
   avoids a race where clients issue requests prior to receiving any
   PUSH_PROMISE frames.

   For example, if the server receives a request for a document
   containing embedded links to multiple image files and the server
   chooses to push those additional images to the client, sending
   PUSH_PROMISE frames before the DATA frames that contain the image
   links ensures that the client is able to see that a resource will be
   pushed before discovering embedded links.  Similarly, if the server
   pushes responses referenced by the header block (for instance, in
   Link header fields), sending a PUSH_PROMISE before sending the header
   block ensures that clients do not request those resources.

   PUSH_PROMISE frames MUST NOT be sent by the client.

   PUSH_PROMISE frames can be sent by the server in response to any
   client-initiated stream, but the stream MUST be in either the "open"
   or "half-closed (remote)" state with respect to the server.
   PUSH_PROMISE frames are interspersed with the frames that comprise a
   response, though they cannot be interspersed with HEADERS and
   CONTINUATION frames that comprise a single header block.

   Sending a PUSH_PROMISE frame creates a new stream and puts the stream
   into the "reserved (local)" state for the server and the "reserved
   (remote)" state for the client.




Belshe, et al.               Standards Track                   [Page 62]
^L
RFC 7540                         HTTP/2                         May 2015


8.2.2.  Push Responses

   After sending the PUSH_PROMISE frame, the server can begin delivering
   the pushed response as a response (Section 8.1.2.4) on a server-
   initiated stream that uses the promised stream identifier.  The
   server uses this stream to transmit an HTTP response, using the same
   sequence of frames as defined in Section 8.1.  This stream becomes
   "half-closed" to the client (Section 5.1) after the initial HEADERS
   frame is sent.

   Once a client receives a PUSH_PROMISE frame and chooses to accept the
   pushed response, the client SHOULD NOT issue any requests for the
   promised response until after the promised stream has closed.

   If the client determines, for any reason, that it does not wish to
   receive the pushed response from the server or if the server takes
   too long to begin sending the promised response, the client can send
   a RST_STREAM frame, using either the CANCEL or REFUSED_STREAM code
   and referencing the pushed stream's identifier.

   A client can use the SETTINGS_MAX_CONCURRENT_STREAMS setting to limit
   the number of responses that can be concurrently pushed by a server.
   Advertising a SETTINGS_MAX_CONCURRENT_STREAMS value of zero disables
   server push by preventing the server from creating the necessary
   streams.  This does not prohibit a server from sending PUSH_PROMISE
   frames; clients need to reset any promised streams that are not
   wanted.

   Clients receiving a pushed response MUST validate that either the
   server is authoritative (see Section 10.1) or the proxy that provided
   the pushed response is configured for the corresponding request.  For
   example, a server that offers a certificate for only the
   "example.com" DNS-ID or Common Name is not permitted to push a
   response for "https://www.example.org/doc".

   The response for a PUSH_PROMISE stream begins with a HEADERS frame,
   which immediately puts the stream into the "half-closed (remote)"
   state for the server and "half-closed (local)" state for the client,
   and ends with a frame bearing END_STREAM, which places the stream in
   the "closed" state.

      Note: The client never sends a frame with the END_STREAM flag for
      a server push.








Belshe, et al.               Standards Track                   [Page 63]
^L
RFC 7540                         HTTP/2                         May 2015


8.3.  The CONNECT Method

   In HTTP/1.x, the pseudo-method CONNECT ([RFC7231], Section 4.3.6) is
   used to convert an HTTP connection into a tunnel to a remote host.
   CONNECT is primarily used with HTTP proxies to establish a TLS
   session with an origin server for the purposes of interacting with
   "https" resources.

   In HTTP/2, the CONNECT method is used to establish a tunnel over a
   single HTTP/2 stream to a remote host for similar purposes.  The HTTP
   header field mapping works as defined in Section 8.1.2.3 ("Request
   Pseudo-Header Fields"), with a few differences.  Specifically:

   o  The ":method" pseudo-header field is set to "CONNECT".

   o  The ":scheme" and ":path" pseudo-header fields MUST be omitted.

   o  The ":authority" pseudo-header field contains the host and port to
      connect to (equivalent to the authority-form of the request-target
      of CONNECT requests (see [RFC7230], Section 5.3)).

   A CONNECT request that does not conform to these restrictions is
   malformed (Section 8.1.2.6).

   A proxy that supports CONNECT establishes a TCP connection [TCP] to
   the server identified in the ":authority" pseudo-header field.  Once
   this connection is successfully established, the proxy sends a
   HEADERS frame containing a 2xx series status code to the client, as
   defined in [RFC7231], Section 4.3.6.

   After the initial HEADERS frame sent by each peer, all subsequent
   DATA frames correspond to data sent on the TCP connection.  The
   payload of any DATA frames sent by the client is transmitted by the
   proxy to the TCP server; data received from the TCP server is
   assembled into DATA frames by the proxy.  Frame types other than DATA
   or stream management frames (RST_STREAM, WINDOW_UPDATE, and PRIORITY)
   MUST NOT be sent on a connected stream and MUST be treated as a
   stream error (Section 5.4.2) if received.

   The TCP connection can be closed by either peer.  The END_STREAM flag
   on a DATA frame is treated as being equivalent to the TCP FIN bit.  A
   client is expected to send a DATA frame with the END_STREAM flag set
   after receiving a frame bearing the END_STREAM flag.  A proxy that
   receives a DATA frame with the END_STREAM flag set sends the attached
   data with the FIN bit set on the last TCP segment.  A proxy that
   receives a TCP segment with the FIN bit set sends a DATA frame with
   the END_STREAM flag set.  Note that the final TCP segment or DATA
   frame could be empty.



Belshe, et al.               Standards Track                   [Page 64]
^L
RFC 7540                         HTTP/2                         May 2015


   A TCP connection error is signaled with RST_STREAM.  A proxy treats
   any error in the TCP connection, which includes receiving a TCP
   segment with the RST bit set, as a stream error (Section 5.4.2) of
   type CONNECT_ERROR.  Correspondingly, a proxy MUST send a TCP segment
   with the RST bit set if it detects an error with the stream or the
   HTTP/2 connection.

9.  Additional HTTP Requirements/Considerations

   This section outlines attributes of the HTTP protocol that improve
   interoperability, reduce exposure to known security vulnerabilities,
   or reduce the potential for implementation variation.

9.1.  Connection Management

   HTTP/2 connections are persistent.  For best performance, it is
   expected that clients will not close connections until it is
   determined that no further communication with a server is necessary
   (for example, when a user navigates away from a particular web page)
   or until the server closes the connection.

   Clients SHOULD NOT open more than one HTTP/2 connection to a given
   host and port pair, where the host is derived from a URI, a selected
   alternative service [ALT-SVC], or a configured proxy.

   A client can create additional connections as replacements, either to
   replace connections that are near to exhausting the available stream
   identifier space (Section 5.1.1), to refresh the keying material for
   a TLS connection, or to replace connections that have encountered
   errors (Section 5.4.1).

   A client MAY open multiple connections to the same IP address and TCP
   port using different Server Name Indication [TLS-EXT] values or to
   provide different TLS client certificates but SHOULD avoid creating
   multiple connections with the same configuration.

   Servers are encouraged to maintain open connections for as long as
   possible but are permitted to terminate idle connections if
   necessary.  When either endpoint chooses to close the transport-layer
   TCP connection, the terminating endpoint SHOULD first send a GOAWAY
   (Section 6.8) frame so that both endpoints can reliably determine
   whether previously sent frames have been processed and gracefully
   complete or terminate any necessary remaining tasks.








Belshe, et al.               Standards Track                   [Page 65]
^L
RFC 7540                         HTTP/2                         May 2015


9.1.1.  Connection Reuse

   Connections that are made to an origin server, either directly or
   through a tunnel created using the CONNECT method (Section 8.3), MAY
   be reused for requests with multiple different URI authority
   components.  A connection can be reused as long as the origin server
   is authoritative (Section 10.1).  For TCP connections without TLS,
   this depends on the host having resolved to the same IP address.

   For "https" resources, connection reuse additionally depends on
   having a certificate that is valid for the host in the URI.  The
   certificate presented by the server MUST satisfy any checks that the
   client would perform when forming a new TLS connection for the host
   in the URI.

   An origin server might offer a certificate with multiple
   "subjectAltName" attributes or names with wildcards, one of which is
   valid for the authority in the URI.  For example, a certificate with
   a "subjectAltName" of "*.example.com" might permit the use of the
   same connection for requests to URIs starting with
   "https://a.example.com/" and "https://b.example.com/".

   In some deployments, reusing a connection for multiple origins can
   result in requests being directed to the wrong origin server.  For
   example, TLS termination might be performed by a middlebox that uses
   the TLS Server Name Indication (SNI) [TLS-EXT] extension to select an
   origin server.  This means that it is possible for clients to send
   confidential information to servers that might not be the intended
   target for the request, even though the server is otherwise
   authoritative.

   A server that does not wish clients to reuse connections can indicate
   that it is not authoritative for a request by sending a 421
   (Misdirected Request) status code in response to the request (see
   Section 9.1.2).

   A client that is configured to use a proxy over HTTP/2 directs
   requests to that proxy through a single connection.  That is, all
   requests sent via a proxy reuse the connection to the proxy.

9.1.2.  The 421 (Misdirected Request) Status Code

   The 421 (Misdirected Request) status code indicates that the request
   was directed at a server that is not able to produce a response.
   This can be sent by a server that is not configured to produce
   responses for the combination of scheme and authority that are
   included in the request URI.




Belshe, et al.               Standards Track                   [Page 66]
^L
RFC 7540                         HTTP/2                         May 2015


   Clients receiving a 421 (Misdirected Request) response from a server
   MAY retry the request -- whether the request method is idempotent or
   not -- over a different connection.  This is possible if a connection
   is reused (Section 9.1.1) or if an alternative service is selected
   [ALT-SVC].

   This status code MUST NOT be generated by proxies.

   A 421 response is cacheable by default, i.e., unless otherwise
   indicated by the method definition or explicit cache controls (see
   Section 4.2.2 of [RFC7234]).

9.2.  Use of TLS Features

   Implementations of HTTP/2 MUST use TLS version 1.2 [TLS12] or higher
   for HTTP/2 over TLS.  The general TLS usage guidance in [TLSBCP]
   SHOULD be followed, with some additional restrictions that are
   specific to HTTP/2.

   The TLS implementation MUST support the Server Name Indication (SNI)
   [TLS-EXT] extension to TLS.  HTTP/2 clients MUST indicate the target
   domain name when negotiating TLS.

   Deployments of HTTP/2 that negotiate TLS 1.3 or higher need only
   support and use the SNI extension; deployments of TLS 1.2 are subject
   to the requirements in the following sections.  Implementations are
   encouraged to provide defaults that comply, but it is recognized that
   deployments are ultimately responsible for compliance.

9.2.1.  TLS 1.2 Features

   This section describes restrictions on the TLS 1.2 feature set that
   can be used with HTTP/2.  Due to deployment limitations, it might not
   be possible to fail TLS negotiation when these restrictions are not
   met.  An endpoint MAY immediately terminate an HTTP/2 connection that
   does not meet these TLS requirements with a connection error
   (Section 5.4.1) of type INADEQUATE_SECURITY.

   A deployment of HTTP/2 over TLS 1.2 MUST disable compression.  TLS
   compression can lead to the exposure of information that would not
   otherwise be revealed [RFC3749].  Generic compression is unnecessary
   since HTTP/2 provides compression features that are more aware of
   context and therefore likely to be more appropriate for use for
   performance, security, or other reasons.

   A deployment of HTTP/2 over TLS 1.2 MUST disable renegotiation.  An
   endpoint MUST treat a TLS renegotiation as a connection error
   (Section 5.4.1) of type PROTOCOL_ERROR.  Note that disabling



Belshe, et al.               Standards Track                   [Page 67]
^L
RFC 7540                         HTTP/2                         May 2015


   renegotiation can result in long-lived connections becoming unusable
   due to limits on the number of messages the underlying cipher suite
   can encipher.

   An endpoint MAY use renegotiation to provide confidentiality
   protection for client credentials offered in the handshake, but any
   renegotiation MUST occur prior to sending the connection preface.  A
   server SHOULD request a client certificate if it sees a renegotiation
   request immediately after establishing a connection.

   This effectively prevents the use of renegotiation in response to a
   request for a specific protected resource.  A future specification
   might provide a way to support this use case.  Alternatively, a
   server might use an error (Section 5.4) of type HTTP_1_1_REQUIRED to
   request the client use a protocol that supports renegotiation.

   Implementations MUST support ephemeral key exchange sizes of at least
   2048 bits for cipher suites that use ephemeral finite field Diffie-
   Hellman (DHE) [TLS12] and 224 bits for cipher suites that use
   ephemeral elliptic curve Diffie-Hellman (ECDHE) [RFC4492].  Clients
   MUST accept DHE sizes of up to 4096 bits.  Endpoints MAY treat
   negotiation of key sizes smaller than the lower limits as a
   connection error (Section 5.4.1) of type INADEQUATE_SECURITY.

9.2.2.  TLS 1.2 Cipher Suites

   A deployment of HTTP/2 over TLS 1.2 SHOULD NOT use any of the cipher
   suites that are listed in the cipher suite black list (Appendix A).

   Endpoints MAY choose to generate a connection error (Section 5.4.1)
   of type INADEQUATE_SECURITY if one of the cipher suites from the
   black list is negotiated.  A deployment that chooses to use a black-
   listed cipher suite risks triggering a connection error unless the
   set of potential peers is known to accept that cipher suite.

   Implementations MUST NOT generate this error in reaction to the
   negotiation of a cipher suite that is not on the black list.
   Consequently, when clients offer a cipher suite that is not on the
   black list, they have to be prepared to use that cipher suite with
   HTTP/2.

   The black list includes the cipher suite that TLS 1.2 makes
   mandatory, which means that TLS 1.2 deployments could have non-
   intersecting sets of permitted cipher suites.  To avoid this problem
   causing TLS handshake failures, deployments of HTTP/2 that use TLS
   1.2 MUST support TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 [TLS-ECDHE]
   with the P-256 elliptic curve [FIPS186].




Belshe, et al.               Standards Track                   [Page 68]
^L
RFC 7540                         HTTP/2                         May 2015


   Note that clients might advertise support of cipher suites that are
   on the black list in order to allow for connection to servers that do
   not support HTTP/2.  This allows servers to select HTTP/1.1 with a
   cipher suite that is on the HTTP/2 black list.  However, this can
   result in HTTP/2 being negotiated with a black-listed cipher suite if
   the application protocol and cipher suite are independently selected.

10.  Security Considerations

10.1.  Server Authority

   HTTP/2 relies on the HTTP/1.1 definition of authority for determining
   whether a server is authoritative in providing a given response (see
   [RFC7230], Section 9.1).  This relies on local name resolution for
   the "http" URI scheme and the authenticated server identity for the
   "https" scheme (see [RFC2818], Section 3).

10.2.  Cross-Protocol Attacks

   In a cross-protocol attack, an attacker causes a client to initiate a
   transaction in one protocol toward a server that understands a
   different protocol.  An attacker might be able to cause the
   transaction to appear as a valid transaction in the second protocol.
   In combination with the capabilities of the web context, this can be
   used to interact with poorly protected servers in private networks.

   Completing a TLS handshake with an ALPN identifier for HTTP/2 can be
   considered sufficient protection against cross-protocol attacks.
   ALPN provides a positive indication that a server is willing to
   proceed with HTTP/2, which prevents attacks on other TLS-based
   protocols.

   The encryption in TLS makes it difficult for attackers to control the
   data that could be used in a cross-protocol attack on a cleartext
   protocol.

   The cleartext version of HTTP/2 has minimal protection against cross-
   protocol attacks.  The connection preface (Section 3.5) contains a
   string that is designed to confuse HTTP/1.1 servers, but no special
   protection is offered for other protocols.  A server that is willing
   to ignore parts of an HTTP/1.1 request containing an Upgrade header
   field in addition to the client connection preface could be exposed
   to a cross-protocol attack.








Belshe, et al.               Standards Track                   [Page 69]
^L
RFC 7540                         HTTP/2                         May 2015


10.3.  Intermediary Encapsulation Attacks

   The HTTP/2 header field encoding allows the expression of names that
   are not valid field names in the Internet Message Syntax used by
   HTTP/1.1.  Requests or responses containing invalid header field
   names MUST be treated as malformed (Section 8.1.2.6).  An
   intermediary therefore cannot translate an HTTP/2 request or response
   containing an invalid field name into an HTTP/1.1 message.

   Similarly, HTTP/2 allows header field values that are not valid.
   While most of the values that can be encoded will not alter header
   field parsing, carriage return (CR, ASCII 0xd), line feed (LF, ASCII
   0xa), and the zero character (NUL, ASCII 0x0) might be exploited by
   an attacker if they are translated verbatim.  Any request or response
   that contains a character not permitted in a header field value MUST
   be treated as malformed (Section 8.1.2.6).  Valid characters are
   defined by the "field-content" ABNF rule in Section 3.2 of [RFC7230].

10.4.  Cacheability of Pushed Responses

   Pushed responses do not have an explicit request from the client; the
   request is provided by the server in the PUSH_PROMISE frame.

   Caching responses that are pushed is possible based on the guidance
   provided by the origin server in the Cache-Control header field.
   However, this can cause issues if a single server hosts more than one
   tenant.  For example, a server might offer multiple users each a
   small portion of its URI space.

   Where multiple tenants share space on the same server, that server
   MUST ensure that tenants are not able to push representations of
   resources that they do not have authority over.  Failure to enforce
   this would allow a tenant to provide a representation that would be
   served out of cache, overriding the actual representation that the
   authoritative tenant provides.

   Pushed responses for which an origin server is not authoritative (see
   Section 10.1) MUST NOT be used or cached.

10.5.  Denial-of-Service Considerations

   An HTTP/2 connection can demand a greater commitment of resources to
   operate than an HTTP/1.1 connection.  The use of header compression
   and flow control depend on a commitment of resources for storing a
   greater amount of state.  Settings for these features ensure that
   memory commitments for these features are strictly bounded.





Belshe, et al.               Standards Track                   [Page 70]
^L
RFC 7540                         HTTP/2                         May 2015


   The number of PUSH_PROMISE frames is not constrained in the same
   fashion.  A client that accepts server push SHOULD limit the number
   of streams it allows to be in the "reserved (remote)" state.  An
   excessive number of server push streams can be treated as a stream
   error (Section 5.4.2) of type ENHANCE_YOUR_CALM.

   Processing capacity cannot be guarded as effectively as state
   capacity.

   The SETTINGS frame can be abused to cause a peer to expend additional
   processing time.  This might be done by pointlessly changing SETTINGS
   parameters, setting multiple undefined parameters, or changing the
   same setting multiple times in the same frame.  WINDOW_UPDATE or
   PRIORITY frames can be abused to cause an unnecessary waste of
   resources.

   Large numbers of small or empty frames can be abused to cause a peer
   to expend time processing frame headers.  Note, however, that some
   uses are entirely legitimate, such as the sending of an empty DATA or
   CONTINUATION frame at the end of a stream.

   Header compression also offers some opportunities to waste processing
   resources; see Section 7 of [COMPRESSION] for more details on
   potential abuses.

   Limits in SETTINGS parameters cannot be reduced instantaneously,
   which leaves an endpoint exposed to behavior from a peer that could
   exceed the new limits.  In particular, immediately after establishing
   a connection, limits set by a server are not known to clients and
   could be exceeded without being an obvious protocol violation.

   All these features -- i.e., SETTINGS changes, small frames, header
   compression -- have legitimate uses.  These features become a burden
   only when they are used unnecessarily or to excess.

   An endpoint that doesn't monitor this behavior exposes itself to a
   risk of denial-of-service attack.  Implementations SHOULD track the
   use of these features and set limits on their use.  An endpoint MAY
   treat activity that is suspicious as a connection error
   (Section 5.4.1) of type ENHANCE_YOUR_CALM.

10.5.1.  Limits on Header Block Size

   A large header block (Section 4.3) can cause an implementation to
   commit a large amount of state.  Header fields that are critical for
   routing can appear toward the end of a header block, which prevents
   streaming of header fields to their ultimate destination.  This
   ordering and other reasons, such as ensuring cache correctness, mean



Belshe, et al.               Standards Track                   [Page 71]
^L
RFC 7540                         HTTP/2                         May 2015


   that an endpoint might need to buffer the entire header block.  Since
   there is no hard limit to the size of a header block, some endpoints
   could be forced to commit a large amount of available memory for
   header fields.

   An endpoint can use the SETTINGS_MAX_HEADER_LIST_SIZE to advise peers
   of limits that might apply on the size of header blocks.  This
   setting is only advisory, so endpoints MAY choose to send header
   blocks that exceed this limit and risk having the request or response
   being treated as malformed.  This setting is specific to a
   connection, so any request or response could encounter a hop with a
   lower, unknown limit.  An intermediary can attempt to avoid this
   problem by passing on values presented by different peers, but they
   are not obligated to do so.

   A server that receives a larger header block than it is willing to
   handle can send an HTTP 431 (Request Header Fields Too Large) status
   code [RFC6585].  A client can discard responses that it cannot
   process.  The header block MUST be processed to ensure a consistent
   connection state, unless the connection is closed.

10.5.2.  CONNECT Issues

   The CONNECT method can be used to create disproportionate load on an
   proxy, since stream creation is relatively inexpensive when compared
   to the creation and maintenance of a TCP connection.  A proxy might
   also maintain some resources for a TCP connection beyond the closing
   of the stream that carries the CONNECT request, since the outgoing
   TCP connection remains in the TIME_WAIT state.  Therefore, a proxy
   cannot rely on SETTINGS_MAX_CONCURRENT_STREAMS alone to limit the
   resources consumed by CONNECT requests.

10.6.  Use of Compression

   Compression can allow an attacker to recover secret data when it is
   compressed in the same context as data under attacker control.
   HTTP/2 enables compression of header fields (Section 4.3); the
   following concerns also apply to the use of HTTP compressed content-
   codings ([RFC7231], Section 3.1.2.1).

   There are demonstrable attacks on compression that exploit the
   characteristics of the web (e.g., [BREACH]).  The attacker induces
   multiple requests containing varying plaintext, observing the length
   of the resulting ciphertext in each, which reveals a shorter length
   when a guess about the secret is correct.






Belshe, et al.               Standards Track                   [Page 72]
^L
RFC 7540                         HTTP/2                         May 2015


   Implementations communicating on a secure channel MUST NOT compress
   content that includes both confidential and attacker-controlled data
   unless separate compression dictionaries are used for each source of
   data.  Compression MUST NOT be used if the source of data cannot be
   reliably determined.  Generic stream compression, such as that
   provided by TLS, MUST NOT be used with HTTP/2 (see Section 9.2).

   Further considerations regarding the compression of header fields are
   described in [COMPRESSION].

10.7.  Use of Padding

   Padding within HTTP/2 is not intended as a replacement for general
   purpose padding, such as might be provided by TLS [TLS12].  Redundant
   padding could even be counterproductive.  Correct application can
   depend on having specific knowledge of the data that is being padded.

   To mitigate attacks that rely on compression, disabling or limiting
   compression might be preferable to padding as a countermeasure.

   Padding can be used to obscure the exact size of frame content and is
   provided to mitigate specific attacks within HTTP, for example,
   attacks where compressed content includes both attacker-controlled
   plaintext and secret data (e.g., [BREACH]).

   Use of padding can result in less protection than might seem
   immediately obvious.  At best, padding only makes it more difficult
   for an attacker to infer length information by increasing the number
   of frames an attacker has to observe.  Incorrectly implemented
   padding schemes can be easily defeated.  In particular, randomized
   padding with a predictable distribution provides very little
   protection; similarly, padding payloads to a fixed size exposes
   information as payload sizes cross the fixed-sized boundary, which
   could be possible if an attacker can control plaintext.

   Intermediaries SHOULD retain padding for DATA frames but MAY drop
   padding for HEADERS and PUSH_PROMISE frames.  A valid reason for an
   intermediary to change the amount of padding of frames is to improve
   the protections that padding provides.

10.8.  Privacy Considerations

   Several characteristics of HTTP/2 provide an observer an opportunity
   to correlate actions of a single client or server over time.  These
   include the value of settings, the manner in which flow-control
   windows are managed, the way priorities are allocated to streams, the
   timing of reactions to stimulus, and the handling of any features
   that are controlled by settings.



Belshe, et al.               Standards Track                   [Page 73]
^L
RFC 7540                         HTTP/2                         May 2015


   As far as these create observable differences in behavior, they could
   be used as a basis for fingerprinting a specific client, as defined
   in Section 1.8 of [HTML5].

   HTTP/2's preference for using a single TCP connection allows
   correlation of a user's activity on a site.  Reusing connections for
   different origins allows tracking across those origins.

   Because the PING and SETTINGS frames solicit immediate responses,
   they can be used by an endpoint to measure latency to their peer.
   This might have privacy implications in certain scenarios.

11.  IANA Considerations

   A string for identifying HTTP/2 is entered into the "Application-
   Layer Protocol Negotiation (ALPN) Protocol IDs" registry established
   in [TLS-ALPN].

   This document establishes a registry for frame types, settings, and
   error codes.  These new registries appear in the new "Hypertext
   Transfer Protocol version 2 (HTTP/2) Parameters" section.

   This document registers the HTTP2-Settings header field for use in
   HTTP; it also registers the 421 (Misdirected Request) status code.

   This document registers the "PRI" method for use in HTTP to avoid
   collisions with the connection preface (Section 3.5).

11.1.  Registration of HTTP/2 Identification Strings

   This document creates two registrations for the identification of
   HTTP/2 (see Section 3.3) in the "Application-Layer Protocol
   Negotiation (ALPN) Protocol IDs" registry established in [TLS-ALPN].

   The "h2" string identifies HTTP/2 when used over TLS:

   Protocol:  HTTP/2 over TLS

   Identification Sequence:  0x68 0x32 ("h2")

   Specification:  This document

   The "h2c" string identifies HTTP/2 when used over cleartext TCP:

   Protocol:  HTTP/2 over TCP






Belshe, et al.               Standards Track                   [Page 74]
^L
RFC 7540                         HTTP/2                         May 2015


   Identification Sequence:  0x68 0x32 0x63 ("h2c")

   Specification:  This document

11.2.  Frame Type Registry

   This document establishes a registry for HTTP/2 frame type codes.
   The "HTTP/2 Frame Type" registry manages an 8-bit space.  The "HTTP/2
   Frame Type" registry operates under either of the "IETF Review" or
   "IESG Approval" policies [RFC5226] for values between 0x00 and 0xef,
   with values between 0xf0 and 0xff being reserved for Experimental
   Use.

   New entries in this registry require the following information:

   Frame Type:  A name or label for the frame type.

   Code:  The 8-bit code assigned to the frame type.

   Specification:  A reference to a specification that includes a
      description of the frame layout, its semantics, and flags that the
      frame type uses, including any parts of the frame that are
      conditionally present based on the value of flags.

   The entries in the following table are registered by this document.

   +---------------+------+--------------+
   | Frame Type    | Code | Section      |
   +---------------+------+--------------+
   | DATA          | 0x0  | Section 6.1  |
   | HEADERS       | 0x1  | Section 6.2  |
   | PRIORITY      | 0x2  | Section 6.3  |
   | RST_STREAM    | 0x3  | Section 6.4  |
   | SETTINGS      | 0x4  | Section 6.5  |
   | PUSH_PROMISE  | 0x5  | Section 6.6  |
   | PING          | 0x6  | Section 6.7  |
   | GOAWAY        | 0x7  | Section 6.8  |
   | WINDOW_UPDATE | 0x8  | Section 6.9  |
   | CONTINUATION  | 0x9  | Section 6.10 |
   +---------------+------+--------------+

11.3.  Settings Registry

   This document establishes a registry for HTTP/2 settings.  The
   "HTTP/2 Settings" registry manages a 16-bit space.  The "HTTP/2
   Settings" registry operates under the "Expert Review" policy
   [RFC5226] for values in the range from 0x0000 to 0xefff, with values
   between and 0xf000 and 0xffff being reserved for Experimental Use.



Belshe, et al.               Standards Track                   [Page 75]
^L
RFC 7540                         HTTP/2                         May 2015


   New registrations are advised to provide the following information:

   Name:  A symbolic name for the setting.  Specifying a setting name is
      optional.

   Code:  The 16-bit code assigned to the setting.

   Initial Value:  An initial value for the setting.

   Specification:  An optional reference to a specification that
      describes the use of the setting.

   The entries in the following table are registered by this document.

   +------------------------+------+---------------+---------------+
   | Name                   | Code | Initial Value | Specification |
   +------------------------+------+---------------+---------------+
   | HEADER_TABLE_SIZE      | 0x1  | 4096          | Section 6.5.2 |
   | ENABLE_PUSH            | 0x2  | 1             | Section 6.5.2 |
   | MAX_CONCURRENT_STREAMS | 0x3  | (infinite)    | Section 6.5.2 |
   | INITIAL_WINDOW_SIZE    | 0x4  | 65535         | Section 6.5.2 |
   | MAX_FRAME_SIZE         | 0x5  | 16384         | Section 6.5.2 |
   | MAX_HEADER_LIST_SIZE   | 0x6  | (infinite)    | Section 6.5.2 |
   +------------------------+------+---------------+---------------+

11.4.  Error Code Registry

   This document establishes a registry for HTTP/2 error codes.  The
   "HTTP/2 Error Code" registry manages a 32-bit space.  The "HTTP/2
   Error Code" registry operates under the "Expert Review" policy
   [RFC5226].

   Registrations for error codes are required to include a description
   of the error code.  An expert reviewer is advised to examine new
   registrations for possible duplication with existing error codes.
   Use of existing registrations is to be encouraged, but not mandated.

   New registrations are advised to provide the following information:

   Name:  A name for the error code.  Specifying an error code name is
      optional.

   Code:  The 32-bit error code value.

   Description:  A brief description of the error code semantics, longer
      if no detailed specification is provided.





Belshe, et al.               Standards Track                   [Page 76]
^L
RFC 7540                         HTTP/2                         May 2015


   Specification:  An optional reference for a specification that
      defines the error code.

   The entries in the following table are registered by this document.

   +---------------------+------+----------------------+---------------+
   | Name                | Code | Description          | Specification |
   +---------------------+------+----------------------+---------------+
   | NO_ERROR            | 0x0  | Graceful shutdown    | Section 7     |
   | PROTOCOL_ERROR      | 0x1  | Protocol error       | Section 7     |
   |                     |      | detected             |               |
   | INTERNAL_ERROR      | 0x2  | Implementation fault | Section 7     |
   | FLOW_CONTROL_ERROR  | 0x3  | Flow-control limits  | Section 7     |
   |                     |      | exceeded             |               |
   | SETTINGS_TIMEOUT    | 0x4  | Settings not         | Section 7     |
   |                     |      | acknowledged         |               |
   | STREAM_CLOSED       | 0x5  | Frame received for   | Section 7     |
   |                     |      | closed stream        |               |
   | FRAME_SIZE_ERROR    | 0x6  | Frame size incorrect | Section 7     |
   | REFUSED_STREAM      | 0x7  | Stream not processed | Section 7     |
   | CANCEL              | 0x8  | Stream cancelled     | Section 7     |
   | COMPRESSION_ERROR   | 0x9  | Compression state    | Section 7     |
   |                     |      | not updated          |               |
   | CONNECT_ERROR       | 0xa  | TCP connection error | Section 7     |
   |                     |      | for CONNECT method   |               |
   | ENHANCE_YOUR_CALM   | 0xb  | Processing capacity  | Section 7     |
   |                     |      | exceeded             |               |
   | INADEQUATE_SECURITY | 0xc  | Negotiated TLS       | Section 7     |
   |                     |      | parameters not       |               |
   |                     |      | acceptable           |               |
   | HTTP_1_1_REQUIRED   | 0xd  | Use HTTP/1.1 for the | Section 7     |
   |                     |      | request              |               |
   +---------------------+------+----------------------+---------------+

11.5.  HTTP2-Settings Header Field Registration

   This section registers the HTTP2-Settings header field in the
   "Permanent Message Header Field Names" registry [BCP90].

   Header field name:  HTTP2-Settings

   Applicable protocol:  http

   Status:  standard

   Author/Change controller:  IETF





Belshe, et al.               Standards Track                   [Page 77]
^L
RFC 7540                         HTTP/2                         May 2015


   Specification document(s):  Section 3.2.1 of this document

   Related information:  This header field is only used by an HTTP/2
      client for Upgrade-based negotiation.

11.6.  PRI Method Registration

   This section registers the "PRI" method in the "HTTP Method Registry"
   ([RFC7231], Section 8.1).

   Method Name:  PRI

   Safe:  Yes

   Idempotent:  Yes

   Specification document(s):  Section 3.5 of this document

   Related information:  This method is never used by an actual client.
      This method will appear to be used when an HTTP/1.1 server or
      intermediary attempts to parse an HTTP/2 connection preface.

11.7.  The 421 (Misdirected Request) HTTP Status Code

   This document registers the 421 (Misdirected Request) HTTP status
   code in the "HTTP Status Codes" registry ([RFC7231], Section 8.2).

   Status Code:  421

   Short Description:  Misdirected Request

   Specification:  Section 9.1.2 of this document

11.8.  The h2c Upgrade Token

   This document registers the "h2c" upgrade token in the "HTTP Upgrade
   Tokens" registry ([RFC7230], Section 8.6).

   Value:  h2c

   Description:  Hypertext Transfer Protocol version 2 (HTTP/2)

   Expected Version Tokens:  None

   Reference:  Section 3.2 of this document






Belshe, et al.               Standards Track                   [Page 78]
^L
RFC 7540                         HTTP/2                         May 2015


12.  References

12.1.  Normative References

   [COMPRESSION] Peon, R. and H. Ruellan, "HPACK: Header Compression for
                 HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,
                 <http://www.rfc-editor.org/info/rfc7541>.

   [COOKIE]      Barth, A., "HTTP State Management Mechanism", RFC 6265,
                 DOI 10.17487/RFC6265, April 2011,
                 <http://www.rfc-editor.org/info/rfc6265>.

   [FIPS186]     NIST, "Digital Signature Standard (DSS)", FIPS PUB
                 186-4, July 2013,
                 <http://dx.doi.org/10.6028/NIST.FIPS.186-4>.

   [RFC2119]     Bradner, S., "Key words for use in RFCs to Indicate
                 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
                 RFC2119, March 1997,
                 <http://www.rfc-editor.org/info/rfc2119>.

   [RFC2818]     Rescorla, E., "HTTP Over TLS", RFC 2818, DOI 10.17487/
                 RFC2818, May 2000,
                 <http://www.rfc-editor.org/info/rfc2818>.

   [RFC3986]     Berners-Lee, T., Fielding, R., and L. Masinter,
                 "Uniform Resource Identifier (URI): Generic Syntax",
                 STD 66, RFC 3986, DOI 10.17487/RFC3986, January 2005,
                 <http://www.rfc-editor.org/info/rfc3986>.

   [RFC4648]     Josefsson, S., "The Base16, Base32, and Base64 Data
                 Encodings", RFC 4648, DOI 10.17487/RFC4648, October
                 2006, <http://www.rfc-editor.org/info/rfc4648>.

   [RFC5226]     Narten, T. and H. Alvestrand, "Guidelines for Writing
                 an IANA Considerations Section in RFCs", BCP 26,
                 RFC 5226, DOI 10.17487/RFC5226, May 2008,
                 <http://www.rfc-editor.org/info/rfc5226>.

   [RFC5234]     Crocker, D., Ed. and P. Overell, "Augmented BNF for
                 Syntax Specifications: ABNF", STD 68, RFC 5234,
                 DOI 10.17487/ RFC5234, January 2008,
                 <http://www.rfc-editor.org/info/rfc5234>.

   [RFC7230]     Fielding, R., Ed. and J. Reschke, Ed., "Hypertext
                 Transfer Protocol (HTTP/1.1): Message Syntax and
                 Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,
                 <http://www.rfc-editor.org/info/rfc7230>.



Belshe, et al.               Standards Track                   [Page 79]
^L
RFC 7540                         HTTP/2                         May 2015


   [RFC7231]     Fielding, R., Ed. and J. Reschke, Ed., "Hypertext
                 Transfer Protocol (HTTP/1.1): Semantics and Content",
                 RFC 7231, DOI 10.17487/RFC7231, June 2014,
                 <http://www.rfc-editor.org/info/rfc7231>.

   [RFC7232]     Fielding, R., Ed. and J. Reschke, Ed., "Hypertext
                 Transfer Protocol (HTTP/1.1): Conditional Requests",
                 RFC 7232, DOI 10.17487/RFC7232, June 2014,
                 <http://www.rfc-editor.org/info/rfc7232>.

   [RFC7233]     Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
                 "Hypertext Transfer Protocol (HTTP/1.1): Range
                 Requests", RFC 7233, DOI 10.17487/RFC7233, June 2014,
                 <http://www.rfc-editor.org/info/rfc7233>.

   [RFC7234]     Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
                 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",
                 RFC 7234, DOI 10.17487/RFC7234, June 2014,
                 <http://www.rfc-editor.org/info/rfc7234>.

   [RFC7235]     Fielding, R., Ed. and J. Reschke, Ed., "Hypertext
                 Transfer Protocol (HTTP/1.1): Authentication",
                 RFC 7235, DOI 10.17487/RFC7235, June 2014,
                 <http://www.rfc-editor.org/info/rfc7235>.

   [TCP]         Postel, J., "Transmission Control Protocol", STD 7, RFC
                 793, DOI 10.17487/RFC0793, September 1981,
                 <http://www.rfc-editor.org/info/rfc793>.

   [TLS-ALPN]    Friedl, S., Popov, A., Langley, A., and E. Stephan,
                 "Transport Layer Security (TLS) Application-Layer
                 Protocol Negotiation Extension", RFC 7301,
                 DOI 10.17487/RFC7301, July 2014,
                 <http://www.rfc-editor.org/info/rfc7301>.

   [TLS-ECDHE]   Rescorla, E., "TLS Elliptic Curve Cipher Suites with
                 SHA-256/384 and AES Galois Counter Mode (GCM)",
                 RFC 5289, DOI 10.17487/RFC5289, August 2008,
                 <http://www.rfc-editor.org/info/rfc5289>.

   [TLS-EXT]     Eastlake 3rd, D., "Transport Layer Security (TLS)
                 Extensions: Extension Definitions", RFC 6066,
                 DOI 10.17487/RFC6066, January 2011,
                 <http://www.rfc-editor.org/info/rfc6066>.







Belshe, et al.               Standards Track                   [Page 80]
^L
RFC 7540                         HTTP/2                         May 2015


   [TLS12]       Dierks, T. and E. Rescorla, "The Transport Layer
                 Security (TLS) Protocol Version 1.2", RFC 5246,
                 DOI 10.17487/ RFC5246, August 2008,
                 <http://www.rfc-editor.org/info/rfc5246>.

12.2.  Informative References

   [ALT-SVC]     Nottingham, M., McManus, P., and J. Reschke, "HTTP
                 Alternative Services", Work in Progress, draft-ietf-
                 httpbis-alt-svc-06, February 2015.

   [BCP90]       Klyne, G., Nottingham, M., and J. Mogul, "Registration
                 Procedures for Message Header Fields", BCP 90,
                 RFC 3864, September 2004,
                 <http://www.rfc-editor.org/info/bcp90>.

   [BREACH]      Gluck, Y., Harris, N., and A. Prado, "BREACH: Reviving
                 the CRIME Attack", July 2013,
                 <http://breachattack.com/resources/
                 BREACH%20-%20SSL,%20gone%20in%2030%20seconds.pdf>.

   [HTML5]       Hickson, I., Berjon, R., Faulkner, S., Leithead, T.,
                 Doyle Navara, E., O'Connor, E., and S. Pfeiffer,
                 "HTML5", W3C Recommendation REC-html5-20141028, October
                 2014, <http://www.w3.org/TR/2014/REC-html5-20141028/>.

   [RFC3749]     Hollenbeck, S., "Transport Layer Security Protocol
                 Compression Methods", RFC 3749, DOI 10.17487/RFC3749,
                 May 2004, <http://www.rfc-editor.org/info/rfc3749>.

   [RFC4492]     Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and
                 B.  Moeller, "Elliptic Curve Cryptography (ECC) Cipher
                 Suites for Transport Layer Security (TLS)", RFC 4492,
                 DOI 10.17487/RFC4492, May 2006,
                 <http://www.rfc-editor.org/info/rfc4492>.

   [RFC6585]     Nottingham, M. and R. Fielding, "Additional HTTP Status
                 Codes", RFC 6585, DOI 10.17487/RFC6585, April 2012,
                 <http://www.rfc-editor.org/info/rfc6585>.

   [RFC7323]     Borman, D., Braden, B., Jacobson, V., and R.
                 Scheffenegger, Ed., "TCP Extensions for High
                 Performance", RFC 7323, DOI 10.17487/RFC7323, September
                 2014, <http://www.rfc-editor.org/info/rfc7323>.

   [TALKING]     Huang, L., Chen, E., Barth, A., Rescorla, E., and C.
                 Jackson, "Talking to Yourself for Fun and Profit",
                 2011, <http://w2spconf.com/2011/papers/websocket.pdf>.



Belshe, et al.               Standards Track                   [Page 81]
^L
RFC 7540                         HTTP/2                         May 2015


   [TLSBCP]      Sheffer, Y., Holz, R., and P. Saint-Andre,
                 "Recommendations for Secure Use of Transport Layer
                 Security (TLS) and Datagram Transport Layer Security
                 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
                 2015, <http://www.rfc-editor.org/info/rfc7525>.














































Belshe, et al.               Standards Track                   [Page 82]
^L
RFC 7540                         HTTP/2                         May 2015


Appendix A.  TLS 1.2 Cipher Suite Black List

   An HTTP/2 implementation MAY treat the negotiation of any of the
   following cipher suites with TLS 1.2 as a connection error
   (Section 5.4.1) of type INADEQUATE_SECURITY:

   o  TLS_NULL_WITH_NULL_NULL

   o  TLS_RSA_WITH_NULL_MD5

   o  TLS_RSA_WITH_NULL_SHA

   o  TLS_RSA_EXPORT_WITH_RC4_40_MD5

   o  TLS_RSA_WITH_RC4_128_MD5

   o  TLS_RSA_WITH_RC4_128_SHA

   o  TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

   o  TLS_RSA_WITH_IDEA_CBC_SHA

   o  TLS_RSA_EXPORT_WITH_DES40_CBC_SHA

   o  TLS_RSA_WITH_DES_CBC_SHA

   o  TLS_RSA_WITH_3DES_EDE_CBC_SHA

   o  TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA

   o  TLS_DH_DSS_WITH_DES_CBC_SHA

   o  TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA

   o  TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA

   o  TLS_DH_RSA_WITH_DES_CBC_SHA

   o  TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA

   o  TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

   o  TLS_DHE_DSS_WITH_DES_CBC_SHA

   o  TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA

   o  TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA




Belshe, et al.               Standards Track                   [Page 83]
^L
RFC 7540                         HTTP/2                         May 2015


   o  TLS_DHE_RSA_WITH_DES_CBC_SHA

   o  TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA

   o  TLS_DH_anon_EXPORT_WITH_RC4_40_MD5

   o  TLS_DH_anon_WITH_RC4_128_MD5

   o  TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA

   o  TLS_DH_anon_WITH_DES_CBC_SHA

   o  TLS_DH_anon_WITH_3DES_EDE_CBC_SHA

   o  TLS_KRB5_WITH_DES_CBC_SHA

   o  TLS_KRB5_WITH_3DES_EDE_CBC_SHA

   o  TLS_KRB5_WITH_RC4_128_SHA

   o  TLS_KRB5_WITH_IDEA_CBC_SHA

   o  TLS_KRB5_WITH_DES_CBC_MD5

   o  TLS_KRB5_WITH_3DES_EDE_CBC_MD5

   o  TLS_KRB5_WITH_RC4_128_MD5

   o  TLS_KRB5_WITH_IDEA_CBC_MD5

   o  TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA

   o  TLS_KRB5_EXPORT_WITH_RC2_CBC_40_SHA

   o  TLS_KRB5_EXPORT_WITH_RC4_40_SHA

   o  TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5

   o  TLS_KRB5_EXPORT_WITH_RC2_CBC_40_MD5

   o  TLS_KRB5_EXPORT_WITH_RC4_40_MD5

   o  TLS_PSK_WITH_NULL_SHA

   o  TLS_DHE_PSK_WITH_NULL_SHA

   o  TLS_RSA_PSK_WITH_NULL_SHA




Belshe, et al.               Standards Track                   [Page 84]
^L
RFC 7540                         HTTP/2                         May 2015


   o  TLS_RSA_WITH_AES_128_CBC_SHA

   o  TLS_DH_DSS_WITH_AES_128_CBC_SHA

   o  TLS_DH_RSA_WITH_AES_128_CBC_SHA

   o  TLS_DHE_DSS_WITH_AES_128_CBC_SHA

   o  TLS_DHE_RSA_WITH_AES_128_CBC_SHA

   o  TLS_DH_anon_WITH_AES_128_CBC_SHA

   o  TLS_RSA_WITH_AES_256_CBC_SHA

   o  TLS_DH_DSS_WITH_AES_256_CBC_SHA

   o  TLS_DH_RSA_WITH_AES_256_CBC_SHA

   o  TLS_DHE_DSS_WITH_AES_256_CBC_SHA

   o  TLS_DHE_RSA_WITH_AES_256_CBC_SHA

   o  TLS_DH_anon_WITH_AES_256_CBC_SHA

   o  TLS_RSA_WITH_NULL_SHA256

   o  TLS_RSA_WITH_AES_128_CBC_SHA256

   o  TLS_RSA_WITH_AES_256_CBC_SHA256

   o  TLS_DH_DSS_WITH_AES_128_CBC_SHA256

   o  TLS_DH_RSA_WITH_AES_128_CBC_SHA256

   o  TLS_DHE_DSS_WITH_AES_128_CBC_SHA256

   o  TLS_RSA_WITH_CAMELLIA_128_CBC_SHA

   o  TLS_DH_DSS_WITH_CAMELLIA_128_CBC_SHA

   o  TLS_DH_RSA_WITH_CAMELLIA_128_CBC_SHA

   o  TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA

   o  TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA

   o  TLS_DH_anon_WITH_CAMELLIA_128_CBC_SHA




Belshe, et al.               Standards Track                   [Page 85]
^L
RFC 7540                         HTTP/2                         May 2015


   o  TLS_DHE_RSA_WITH_AES_128_CBC_SHA256

   o  TLS_DH_DSS_WITH_AES_256_CBC_SHA256

   o  TLS_DH_RSA_WITH_AES_256_CBC_SHA256

   o  TLS_DHE_DSS_WITH_AES_256_CBC_SHA256

   o  TLS_DHE_RSA_WITH_AES_256_CBC_SHA256

   o  TLS_DH_anon_WITH_AES_128_CBC_SHA256

   o  TLS_DH_anon_WITH_AES_256_CBC_SHA256

   o  TLS_RSA_WITH_CAMELLIA_256_CBC_SHA

   o  TLS_DH_DSS_WITH_CAMELLIA_256_CBC_SHA

   o  TLS_DH_RSA_WITH_CAMELLIA_256_CBC_SHA

   o  TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA

   o  TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA

   o  TLS_DH_anon_WITH_CAMELLIA_256_CBC_SHA

   o  TLS_PSK_WITH_RC4_128_SHA

   o  TLS_PSK_WITH_3DES_EDE_CBC_SHA

   o  TLS_PSK_WITH_AES_128_CBC_SHA

   o  TLS_PSK_WITH_AES_256_CBC_SHA

   o  TLS_DHE_PSK_WITH_RC4_128_SHA

   o  TLS_DHE_PSK_WITH_3DES_EDE_CBC_SHA

   o  TLS_DHE_PSK_WITH_AES_128_CBC_SHA

   o  TLS_DHE_PSK_WITH_AES_256_CBC_SHA

   o  TLS_RSA_PSK_WITH_RC4_128_SHA

   o  TLS_RSA_PSK_WITH_3DES_EDE_CBC_SHA

   o  TLS_RSA_PSK_WITH_AES_128_CBC_SHA




Belshe, et al.               Standards Track                   [Page 86]
^L
RFC 7540                         HTTP/2                         May 2015


   o  TLS_RSA_PSK_WITH_AES_256_CBC_SHA

   o  TLS_RSA_WITH_SEED_CBC_SHA

   o  TLS_DH_DSS_WITH_SEED_CBC_SHA

   o  TLS_DH_RSA_WITH_SEED_CBC_SHA

   o  TLS_DHE_DSS_WITH_SEED_CBC_SHA

   o  TLS_DHE_RSA_WITH_SEED_CBC_SHA

   o  TLS_DH_anon_WITH_SEED_CBC_SHA

   o  TLS_RSA_WITH_AES_128_GCM_SHA256

   o  TLS_RSA_WITH_AES_256_GCM_SHA384

   o  TLS_DH_RSA_WITH_AES_128_GCM_SHA256

   o  TLS_DH_RSA_WITH_AES_256_GCM_SHA384

   o  TLS_DH_DSS_WITH_AES_128_GCM_SHA256

   o  TLS_DH_DSS_WITH_AES_256_GCM_SHA384

   o  TLS_DH_anon_WITH_AES_128_GCM_SHA256

   o  TLS_DH_anon_WITH_AES_256_GCM_SHA384

   o  TLS_PSK_WITH_AES_128_GCM_SHA256

   o  TLS_PSK_WITH_AES_256_GCM_SHA384

   o  TLS_RSA_PSK_WITH_AES_128_GCM_SHA256

   o  TLS_RSA_PSK_WITH_AES_256_GCM_SHA384

   o  TLS_PSK_WITH_AES_128_CBC_SHA256

   o  TLS_PSK_WITH_AES_256_CBC_SHA384

   o  TLS_PSK_WITH_NULL_SHA256

   o  TLS_PSK_WITH_NULL_SHA384

   o  TLS_DHE_PSK_WITH_AES_128_CBC_SHA256




Belshe, et al.               Standards Track                   [Page 87]
^L
RFC 7540                         HTTP/2                         May 2015


   o  TLS_DHE_PSK_WITH_AES_256_CBC_SHA384

   o  TLS_DHE_PSK_WITH_NULL_SHA256

   o  TLS_DHE_PSK_WITH_NULL_SHA384

   o  TLS_RSA_PSK_WITH_AES_128_CBC_SHA256

   o  TLS_RSA_PSK_WITH_AES_256_CBC_SHA384

   o  TLS_RSA_PSK_WITH_NULL_SHA256

   o  TLS_RSA_PSK_WITH_NULL_SHA384

   o  TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256

   o  TLS_DH_DSS_WITH_CAMELLIA_128_CBC_SHA256

   o  TLS_DH_RSA_WITH_CAMELLIA_128_CBC_SHA256

   o  TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA256

   o  TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256

   o  TLS_DH_anon_WITH_CAMELLIA_128_CBC_SHA256

   o  TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256

   o  TLS_DH_DSS_WITH_CAMELLIA_256_CBC_SHA256

   o  TLS_DH_RSA_WITH_CAMELLIA_256_CBC_SHA256

   o  TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA256

   o  TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256

   o  TLS_DH_anon_WITH_CAMELLIA_256_CBC_SHA256

   o  TLS_EMPTY_RENEGOTIATION_INFO_SCSV

   o  TLS_ECDH_ECDSA_WITH_NULL_SHA

   o  TLS_ECDH_ECDSA_WITH_RC4_128_SHA

   o  TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA

   o  TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA




Belshe, et al.               Standards Track                   [Page 88]
^L
RFC 7540                         HTTP/2                         May 2015


   o  TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA

   o  TLS_ECDHE_ECDSA_WITH_NULL_SHA

   o  TLS_ECDHE_ECDSA_WITH_RC4_128_SHA

   o  TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA

   o  TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA

   o  TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA

   o  TLS_ECDH_RSA_WITH_NULL_SHA

   o  TLS_ECDH_RSA_WITH_RC4_128_SHA

   o  TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA

   o  TLS_ECDH_RSA_WITH_AES_128_CBC_SHA

   o  TLS_ECDH_RSA_WITH_AES_256_CBC_SHA

   o  TLS_ECDHE_RSA_WITH_NULL_SHA

   o  TLS_ECDHE_RSA_WITH_RC4_128_SHA

   o  TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA

   o  TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

   o  TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

   o  TLS_ECDH_anon_WITH_NULL_SHA

   o  TLS_ECDH_anon_WITH_RC4_128_SHA

   o  TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA

   o  TLS_ECDH_anon_WITH_AES_128_CBC_SHA

   o  TLS_ECDH_anon_WITH_AES_256_CBC_SHA

   o  TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA

   o  TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA

   o  TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA




Belshe, et al.               Standards Track                   [Page 89]
^L
RFC 7540                         HTTP/2                         May 2015


   o  TLS_SRP_SHA_WITH_AES_128_CBC_SHA

   o  TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA

   o  TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHA

   o  TLS_SRP_SHA_WITH_AES_256_CBC_SHA

   o  TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA

   o  TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHA

   o  TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

   o  TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

   o  TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256

   o  TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384

   o  TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

   o  TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384

   o  TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256

   o  TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384

   o  TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256

   o  TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384

   o  TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256

   o  TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384

   o  TLS_ECDHE_PSK_WITH_RC4_128_SHA

   o  TLS_ECDHE_PSK_WITH_3DES_EDE_CBC_SHA

   o  TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA

   o  TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA

   o  TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256

   o  TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384




Belshe, et al.               Standards Track                   [Page 90]
^L
RFC 7540                         HTTP/2                         May 2015


   o  TLS_ECDHE_PSK_WITH_NULL_SHA

   o  TLS_ECDHE_PSK_WITH_NULL_SHA256

   o  TLS_ECDHE_PSK_WITH_NULL_SHA384

   o  TLS_RSA_WITH_ARIA_128_CBC_SHA256

   o  TLS_RSA_WITH_ARIA_256_CBC_SHA384

   o  TLS_DH_DSS_WITH_ARIA_128_CBC_SHA256

   o  TLS_DH_DSS_WITH_ARIA_256_CBC_SHA384

   o  TLS_DH_RSA_WITH_ARIA_128_CBC_SHA256

   o  TLS_DH_RSA_WITH_ARIA_256_CBC_SHA384

   o  TLS_DHE_DSS_WITH_ARIA_128_CBC_SHA256

   o  TLS_DHE_DSS_WITH_ARIA_256_CBC_SHA384

   o  TLS_DHE_RSA_WITH_ARIA_128_CBC_SHA256

   o  TLS_DHE_RSA_WITH_ARIA_256_CBC_SHA384

   o  TLS_DH_anon_WITH_ARIA_128_CBC_SHA256

   o  TLS_DH_anon_WITH_ARIA_256_CBC_SHA384

   o  TLS_ECDHE_ECDSA_WITH_ARIA_128_CBC_SHA256

   o  TLS_ECDHE_ECDSA_WITH_ARIA_256_CBC_SHA384

   o  TLS_ECDH_ECDSA_WITH_ARIA_128_CBC_SHA256

   o  TLS_ECDH_ECDSA_WITH_ARIA_256_CBC_SHA384

   o  TLS_ECDHE_RSA_WITH_ARIA_128_CBC_SHA256

   o  TLS_ECDHE_RSA_WITH_ARIA_256_CBC_SHA384

   o  TLS_ECDH_RSA_WITH_ARIA_128_CBC_SHA256

   o  TLS_ECDH_RSA_WITH_ARIA_256_CBC_SHA384

   o  TLS_RSA_WITH_ARIA_128_GCM_SHA256




Belshe, et al.               Standards Track                   [Page 91]
^L
RFC 7540                         HTTP/2                         May 2015


   o  TLS_RSA_WITH_ARIA_256_GCM_SHA384

   o  TLS_DH_RSA_WITH_ARIA_128_GCM_SHA256

   o  TLS_DH_RSA_WITH_ARIA_256_GCM_SHA384

   o  TLS_DH_DSS_WITH_ARIA_128_GCM_SHA256

   o  TLS_DH_DSS_WITH_ARIA_256_GCM_SHA384

   o  TLS_DH_anon_WITH_ARIA_128_GCM_SHA256

   o  TLS_DH_anon_WITH_ARIA_256_GCM_SHA384

   o  TLS_ECDH_ECDSA_WITH_ARIA_128_GCM_SHA256

   o  TLS_ECDH_ECDSA_WITH_ARIA_256_GCM_SHA384

   o  TLS_ECDH_RSA_WITH_ARIA_128_GCM_SHA256

   o  TLS_ECDH_RSA_WITH_ARIA_256_GCM_SHA384

   o  TLS_PSK_WITH_ARIA_128_CBC_SHA256

   o  TLS_PSK_WITH_ARIA_256_CBC_SHA384

   o  TLS_DHE_PSK_WITH_ARIA_128_CBC_SHA256

   o  TLS_DHE_PSK_WITH_ARIA_256_CBC_SHA384

   o  TLS_RSA_PSK_WITH_ARIA_128_CBC_SHA256

   o  TLS_RSA_PSK_WITH_ARIA_256_CBC_SHA384

   o  TLS_PSK_WITH_ARIA_128_GCM_SHA256

   o  TLS_PSK_WITH_ARIA_256_GCM_SHA384

   o  TLS_RSA_PSK_WITH_ARIA_128_GCM_SHA256

   o  TLS_RSA_PSK_WITH_ARIA_256_GCM_SHA384

   o  TLS_ECDHE_PSK_WITH_ARIA_128_CBC_SHA256

   o  TLS_ECDHE_PSK_WITH_ARIA_256_CBC_SHA384

   o  TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_CBC_SHA256




Belshe, et al.               Standards Track                   [Page 92]
^L
RFC 7540                         HTTP/2                         May 2015


   o  TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_CBC_SHA384

   o  TLS_ECDH_ECDSA_WITH_CAMELLIA_128_CBC_SHA256

   o  TLS_ECDH_ECDSA_WITH_CAMELLIA_256_CBC_SHA384

   o  TLS_ECDHE_RSA_WITH_CAMELLIA_128_CBC_SHA256

   o  TLS_ECDHE_RSA_WITH_CAMELLIA_256_CBC_SHA384

   o  TLS_ECDH_RSA_WITH_CAMELLIA_128_CBC_SHA256

   o  TLS_ECDH_RSA_WITH_CAMELLIA_256_CBC_SHA384

   o  TLS_RSA_WITH_CAMELLIA_128_GCM_SHA256

   o  TLS_RSA_WITH_CAMELLIA_256_GCM_SHA384

   o  TLS_DH_RSA_WITH_CAMELLIA_128_GCM_SHA256

   o  TLS_DH_RSA_WITH_CAMELLIA_256_GCM_SHA384

   o  TLS_DH_DSS_WITH_CAMELLIA_128_GCM_SHA256

   o  TLS_DH_DSS_WITH_CAMELLIA_256_GCM_SHA384

   o  TLS_DH_anon_WITH_CAMELLIA_128_GCM_SHA256

   o  TLS_DH_anon_WITH_CAMELLIA_256_GCM_SHA384

   o  TLS_ECDH_ECDSA_WITH_CAMELLIA_128_GCM_SHA256

   o  TLS_ECDH_ECDSA_WITH_CAMELLIA_256_GCM_SHA384

   o  TLS_ECDH_RSA_WITH_CAMELLIA_128_GCM_SHA256

   o  TLS_ECDH_RSA_WITH_CAMELLIA_256_GCM_SHA384

   o  TLS_PSK_WITH_CAMELLIA_128_GCM_SHA256

   o  TLS_PSK_WITH_CAMELLIA_256_GCM_SHA384

   o  TLS_RSA_PSK_WITH_CAMELLIA_128_GCM_SHA256

   o  TLS_RSA_PSK_WITH_CAMELLIA_256_GCM_SHA384

   o  TLS_PSK_WITH_CAMELLIA_128_CBC_SHA256




Belshe, et al.               Standards Track                   [Page 93]
^L
RFC 7540                         HTTP/2                         May 2015


   o  TLS_PSK_WITH_CAMELLIA_256_CBC_SHA384

   o  TLS_DHE_PSK_WITH_CAMELLIA_128_CBC_SHA256

   o  TLS_DHE_PSK_WITH_CAMELLIA_256_CBC_SHA384

   o  TLS_RSA_PSK_WITH_CAMELLIA_128_CBC_SHA256

   o  TLS_RSA_PSK_WITH_CAMELLIA_256_CBC_SHA384

   o  TLS_ECDHE_PSK_WITH_CAMELLIA_128_CBC_SHA256

   o  TLS_ECDHE_PSK_WITH_CAMELLIA_256_CBC_SHA384

   o  TLS_RSA_WITH_AES_128_CCM

   o  TLS_RSA_WITH_AES_256_CCM

   o  TLS_RSA_WITH_AES_128_CCM_8

   o  TLS_RSA_WITH_AES_256_CCM_8

   o  TLS_PSK_WITH_AES_128_CCM

   o  TLS_PSK_WITH_AES_256_CCM

   o  TLS_PSK_WITH_AES_128_CCM_8

   o  TLS_PSK_WITH_AES_256_CCM_8

      Note: This list was assembled from the set of registered TLS
      cipher suites at the time of writing.  This list includes those
      cipher suites that do not offer an ephemeral key exchange and
      those that are based on the TLS null, stream, or block cipher type
      (as defined in Section 6.2.3 of [TLS12]).  Additional cipher
      suites with these properties could be defined; these would not be
      explicitly prohibited.














Belshe, et al.               Standards Track                   [Page 94]
^L
RFC 7540                         HTTP/2                         May 2015


Acknowledgements

   This document includes substantial input from the following
   individuals:

   o  Adam Langley, Wan-Teh Chang, Jim Morrison, Mark Nottingham, Alyssa
      Wilk, Costin Manolache, William Chan, Vitaliy Lvin, Joe Chan, Adam
      Barth, Ryan Hamilton, Gavin Peters, Kent Alstad, Kevin Lindsay,
      Paul Amer, Fan Yang, and Jonathan Leighton (SPDY contributors).

   o  Gabriel Montenegro and Willy Tarreau (Upgrade mechanism).

   o  William Chan, Salvatore Loreto, Osama Mazahir, Gabriel Montenegro,
      Jitu Padhye, Roberto Peon, and Rob Trace (Flow control).

   o  Mike Bishop (Extensibility).

   o  Mark Nottingham, Julian Reschke, James Snell, Jeff Pinner, Mike
      Bishop, and Herve Ruellan (Substantial editorial contributions).

   o  Kari Hurtta, Tatsuhiro Tsujikawa, Greg Wilkins, Poul-Henning Kamp,
      and Jonathan Thackray.

   o  Alexey Melnikov, who was an editor of this document in 2013.

   A substantial proportion of Martin's contribution was supported by
   Microsoft during his employment there.

   The Japanese HTTP/2 community provided invaluable contributions,
   including a number of implementations as well as numerous technical
   and editorial contributions.




















Belshe, et al.               Standards Track                   [Page 95]
^L
RFC 7540                         HTTP/2                         May 2015


Authors' Addresses

   Mike Belshe
   BitGo

   EMail: mike@belshe.com


   Roberto Peon
   Google, Inc

   EMail: fenix@google.com


   Martin Thomson (editor)
   Mozilla
   331 E Evelyn Street
   Mountain View, CA  94041
   United States

   EMail: martin.thomson@gmail.com






























Belshe, et al.               Standards Track                   [Page 96]
^L