1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
|
Internet Engineering Task Force (IETF) J. Kaippallimalil
Request for Comments: 7561 Huawei
Category: Informational R. Pazhyannur
ISSN: 2070-1721 Cisco
P. Yegani
Juniper
June 2015
Mapping Quality of Service (QoS) Procedures
of Proxy Mobile IPv6 (PMIPv6) and WLAN
Abstract
This document provides guidelines for achieving end-to-end Quality of
Service (QoS) in a Proxy Mobile IPv6 (PMIPv6) domain where the access
network is based on IEEE 802.11. RFC 7222 describes QoS negotiation
between a Mobile Access Gateway (MAG) and Local Mobility Anchor (LMA)
in a PMIPv6 mobility domain. The negotiated QoS parameters can be
used for QoS policing and marking of packets to enforce QoS
differentiation on the path between the MAG and LMA. IEEE 802.11 and
Wi-Fi Multimedia - Admission Control (WMM-AC) describe methods for
QoS negotiation between a Wi-Fi Station (MN in PMIPv6 terminology)
and an Access Point. This document provides a mapping between the
above two sets of QoS procedures and the associated QoS parameters.
This document is intended to be used as a companion document to RFC
7222 to enable implementation of end-to-end QoS.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are a candidate for any level of Internet
Standard; see Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7561.
Kaippallimalil, et al. Informational [Page 1]
^L
RFC 7561 Wi-Fi PMIPv6 QoS June 2015
Copyright Notice
Copyright (c) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1. Abbreviations . . . . . . . . . . . . . . . . . . . . . . 4
1.2. Definitions . . . . . . . . . . . . . . . . . . . . . . . 5
2. Overview of IEEE 802.11 QoS . . . . . . . . . . . . . . . . . 7
3. Mapping QoS Procedures between IEEE 802.11 and PMIPv6 . . . . 7
3.1. MN-Initiated QoS Service Request . . . . . . . . . . . . 8
3.1.1. MN-Initiated QoS Reservation Request . . . . . . . . 8
3.1.2. MN-Initiated QoS De-allocation Request . . . . . . . 11
3.2. LMA-Initiated QoS Service Request . . . . . . . . . . . . 12
3.2.1. LMA-Initiated QoS Reservation Request . . . . . . . . 12
3.2.2. Discussion on QoS Request Handling with IEEE 802.11aa 13
3.2.3. LMA-Initiated QoS De-allocation Request . . . . . . . 14
4. Mapping between IEEE 802.11 QoS and PMIPv6 QoS Parameters . . 15
4.1. Connection Parameters . . . . . . . . . . . . . . . . . . 15
4.2. QoS Class . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3. Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . 17
5. Security Considerations . . . . . . . . . . . . . . . . . . . 18
6. References . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.1. Normative References . . . . . . . . . . . . . . . . . . 19
6.2. Informative References . . . . . . . . . . . . . . . . . 19
Appendix A. LMA-Initiated QoS Service Flow with IEEE 802.11aa . 21
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 23
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 23
Kaippallimalil, et al. Informational [Page 2]
^L
RFC 7561 Wi-Fi PMIPv6 QoS June 2015
1. Introduction
PMIPv6 QoS [1] describes an access-network-independent way to
negotiate Quality of Service (QoS) for Proxy Mobile IPv6 (PMIPv6)
mobility sessions. IEEE 802.11, Wi-Fi Multimedia (WMM), and Wi-Fi
Multimedia - Admission Control (WMM-AC) describe ways to provide QoS
for Wi-Fi traffic between the Wi-Fi Station (STA) and Access Point
(AP). This document describes how QoS can be implemented in a
network where the access network is based on IEEE 802.11 (Wi-Fi). It
requires a mapping between QoS procedures and information elements in
two segments: 1) the Wi-Fi segment and 2) the PMIPv6 segment. (See
Figure 1.) The recommendations here allow for dynamic QoS policy
information per Mobile Node (MN) and session to be configured by the
IEEE 802.11 access network. PMIPv6 QoS signaling between the Mobile
Access Gateway (MAG) and Local Mobility Anchor (LMA) provisions the
per-MN QoS policies in the MAG. Further details on policy
configuration and the Policy Control Function (PCF) can be found in
[1], Section 6.1. In the IEEE 802.11 access network modeled here,
the MAG is located at the AP / Wireless LAN Controller (WLC).
Figure 1 below provides an overview of the entities and protocols.
+-----+ +-------+
| AAA | | PCF |
+--+--+ +---+---+
| |
| |
+----+ +--+--------+ +---+---+
| | IEEE 802.11, WMM-AC |+-++ +---+| PMIPv6 | |
| MN <---------------------->|AP+--+MAG|<==========> LMA |
| | (ADDTS, DELTS) |+--+ +---+| QoS | |
+----+ +-----------+ +-------+
Figure 1: End-to-End QoS in Networks with IEEE 802.11 Access
The MN and Access Point (AP) use IEEE 802.11 QoS mechanisms to set up
QoS flows in the Wi-Fi segment. The MAG and LMA set up QoS flows
using PMIPv6 QoS procedures. The protocols and mechanisms between
the AP and MAG are outside the scope of this document. Some
implementations may have the AP and MAG in the same network node.
However, this document does not exclude various deployments including
those in which the AP and WLC are separate nodes or in which the MAG
control and data planes are separate.
The recommendations in this document use IEEE 802.11 QoS and PMIPv6
QoS mechanisms [1]. State machines for QoS policy setup in IEEE
802.11 and PMIPv6 operate differently. Guidelines for installing QoS
in the MN using IEEE 802.11 and PMIPv6 segments and for mapping
parameters between them are outlined below.
Kaippallimalil, et al. Informational [Page 3]
^L
RFC 7561 Wi-Fi PMIPv6 QoS June 2015
- Procedure Mapping:
PMIPv6-defined procedures for QoS setup, as specified in [1], may
be triggered by the LMA or MAG. IEEE 802.11 QoS setup, on the
other hand, is always triggered by the MN (IEEE 802.11 QoS
Station (QSTA)). The end-to-end QoS setup across these network
segments should accommodate QoS that is triggered by the network
or by the end user.
- Parameter Mapping:
There is no systematic method of mapping of specific parameters
between PMIPv6 QoS parameters and IEEE 802.11 QoS. For example,
parameters like Allocation and Retention Priority (AARP) in
PMIPv6 QoS have no equivalent in IEEE 802.11.
The primary emphasis of this specification is to handle the
interworking between WMM-AC signaling/procedures and PMIPv6 QoS
signaling/procedures. When the client does not support WMM-AC, then
the AP/MAG uses the connection mapping in Table 2 and DSCP-to-AC
mapping as shown in Table 3.
The rest of the document is organized as follows. Section 2 provides
an overview of IEEE 802.11 QoS. Section 3 describes a mapping of QoS
signaling procedures between IEEE 802.11 and PMIPv6. The mapping of
parameters between IEEE 802.11 and PMIPv6 QoS is described in
Section 4.
1.1. Abbreviations
AAA Authentication, Authorization, and Accounting
AARP Allocation and Retention Priority
AC Access Category
ADDTS ADD Traffic Stream
AIFS Arbitration Inter-Frame Space
ALG Application Layer Gateway
AMBR Aggregate Maximum Bit Rate
AP Access Point
CW Contention Window
DELTS DELete Traffic Stream
DL DownLink
DSCP Differentiated Services Code Point
DPI Deep Packet Inspection
EDCA Enhanced Distributed Channel Access
EPC Evolved Packet Core
GBR Guaranteed Bit Rate
MAC Media Access Control
MAG Mobile Access Gateway
Kaippallimalil, et al. Informational [Page 4]
^L
RFC 7561 Wi-Fi PMIPv6 QoS June 2015
MBR Maximum Bit Rate
MN Mobile Node
MSDU Media Access Control Service Data Unit
PBA Proxy Binding Acknowledgement
PBU Proxy Binding Update
PCF Policy Control Function
PHY Physical Layer
QCI QoS Class Identifier
QoS Quality of Service
QSTA QoS Station
SIP Session Initiation Protocol
STA Station
TC Traffic Class
TCLAS Type Classification
TCP Transmission Control Protocol
TS Traffic Stream
TSPEC Traffic Conditioning Specification
UDP User Datagram Protocol
UL UpLink
UP User Priority
WLAN Wireless Local Area Network
WLC Wireless Controller
WMM Wi-Fi MultiMedia
WMM-AC Wi-Fi MultiMedia Admission Control
1.2. Definitions
Peak Data Rate
In WMM-AC, Peak Data Rate specifies the maximum data rate in bits
per second. The Maximum Data Rate does not include the MAC and
PHY overheads [4]. Data rate includes the transport of the IP
packet and header.
TSPECs for both uplink and downlink may contain Peak Data Rate.
Mean Data Rate
This is the average data rate in bits per second. The Mean Data
Rate does not include the MAC and PHY overheads [4]. Data rate
includes the transport of the IP packet and header.
TSPECs for both uplink and downlink must contain the Mean Data
Rate.
Kaippallimalil, et al. Informational [Page 5]
^L
RFC 7561 Wi-Fi PMIPv6 QoS June 2015
Minimum Data Rate
In WMM-AC, Minimum Data Rate specifies the minimum data rate in
bits per second. The Minimum Data Rate does not include the MAC
and PHY overheads [4]. Data rate includes the transport of the IP
packet and header.
Minimum Data Rate is not used in QoS provisioning as it is
described here.
QCI
The QoS Class Identifier (QCI) is a scalar parameter that points
to standardized characteristics of QoS as opposed to signaling
separate parameters for resource type, priority, delay, and loss
[8].
STA
A station (STA) is a device that has the capability to use the
IEEE 802.11 protocol. For example, a station maybe a laptop, a
desktop PC, an access point, or a Wi-Fi phone [3].
An STA that implements the QoS facility is a QoS Station (QSTA)
[3].
TSPEC
The TSPEC element in IEEE 802.11 contains the set of parameters
that define the characteristics and QoS expectations of a traffic
flow [3].
TCLAS
The TCLAS element specifies an element that contains a set of
parameters necessary to identify incoming MSDUs (MAC Service Data
Units) that belong to a particular TS (Traffic Stream) [3].
Kaippallimalil, et al. Informational [Page 6]
^L
RFC 7561 Wi-Fi PMIPv6 QoS June 2015
2. Overview of IEEE 802.11 QoS
IEEE 802.11 defines a way of providing prioritized access for
different traffic classes (video, voice, etc.) by a mechanism called
EDCA (Enhanced Distributed Channel Access). The levels of priority
in EDCA are called access categories (ACs) and there are four levels
(in decreasing order of priority): Voice, Video, Best-Effort, and
Background. Prioritized access is achieved by using AC-specific
values for Contention Window (CW) and Arbitration Inter-Frame Space
(AIFS). (Higher-priority categories have smaller values for minimum
and maximum CW and AIFS.)
A subset of the QoS mechanisms is defined in WMM -- a Wi-Fi Alliance
certification of support for a set of features from an IEEE 802.11e
draft (now part of IEEE 802.11). This certification is for both
clients and APs and certifies the operation of WMM. WMM is primarily
the implementation of the EDCA component of IEEE 802.11e. WMM uses
the IEEE 802.1P classification scheme developed by the IEEE (which is
now a part of the 802.1D specification). The IEEE 802.1P
classification scheme has eight priorities, which WMM maps to four
access categories: AC_BK, AC_BE, AC_VI, and AC_VO. The lack of
support in WMM for the TCLAS (used in identifying an IP flow) has an
impact on the QoS provisioning. The impact on WMM-based QoS
provisioning is described in Sections 3 and 4.
IEEE 802.11 defines the way a (non-AP) STA can request QoS to be
reserved for an access category. Correspondingly, the AP can
determine whether to admit or deny the request depending on the
available resources. Further, the AP may require that Admission
Control is mandatory for an access category. In such a case, the STA
is expected to use the access category only after being successfully
admitted. WMM-AC is a Wi-Fi Alliance certification of support for
Admission Control based on a set of features in IEEE 802.11.
The QoS signaling in IEEE 802.11 is initiated by the (non-AP) STA (by
sending an ADDTS request). This specification references procedures
in IEEE 802.11, WMM, and WMM-AC.
3. Mapping QoS Procedures between IEEE 802.11 and PMIPv6
There are two main types of interaction possible to provision QoS for
flows that require Admission Control -- one where the MN initiates
the QoS request and the network provisions the resources. The second
is where the network provisions resources as a result of a PMIPv6 QoS
request. In the second scenario, the LMA can push the QoS
configuration to the MAG. However, there is no standard way for the
AP to initiate a QoS service request to the MN. Recommendations to
set up QoS in both these cases are described in this section.
Kaippallimalil, et al. Informational [Page 7]
^L
RFC 7561 Wi-Fi PMIPv6 QoS June 2015
3.1. MN-Initiated QoS Service Request
3.1.1. MN-Initiated QoS Reservation Request
This procedure outlines the case where the MN is configured to start
the QoS signaling. In this case, the MN sends an ADDTS request
indicating the QoS required for the flow. The AP/MAG obtains the
corresponding level of QoS to be granted to the flow by using the
PMIPv6 PBU/PBA sequence that contains the QoS options exchanged with
the LMA. Details of the QoS provisioning for the flow are provided
below.
+-----------+
+----+ |+--+ +---+| +-------+
| MN | ||AP| |MAG|| | LMA |
+-+--+ ++-++--+-+-++ +---+---+
| | | |
+-------------------------------------------------------------+
| (0) establish session with mobile network |
+-------------------------------------------------------------+
| | | |
+-------------+ | | |
|upper-layer | | | |
|notification | | | |
+-+-+-+-+-+-+-+ | | |
| | | |
| ADDTS Request(TCLAS(opt),TSPEC),AC| |
|---------------------------->| | |
| (1) |---->|PBU(QoS options)(2)|
| | |------------------>|
| | | | Policy
| | |PBA(QoS option)(3) |<----->
| | |<------------------|
| |<----| |
|ADDTS Response(TCLAS(opt),TSPEC),AC| |
|<----------------------------| | |
| (4) | |
Figure 2: MS-Initiated QoS Service Request
In the use case shown in Figure 2, the MN initiates the QoS service
request.
(0) The MN establishes a session as described in steps 1-4 of Use
Case 2 (MAG-Initiated QoS Service Request) in Section 3.1 of [1].
At this point, a connection with a PMIPv6 tunnel is established
to the LMA. This allows the MN to start application-level
signaling.
Kaippallimalil, et al. Informational [Page 8]
^L
RFC 7561 Wi-Fi PMIPv6 QoS June 2015
(1) The trigger for the MN to request QoS is an upper-layer
notification. This may be the result of end-to-end application
signaling and setup procedures (e.g., SIP [10]).
Since the MN is configured to start QoS signaling, it sends an
ADDTS request with TSPEC and TCLAS identifying the flow for which
QoS is requested.
It should be noted that WMM-AC specifications do not contain
TCLAS. When TCLAS is not present, there is no direct way to
derive flow-specific attributes like Traffic Selector in PMIPv6.
In this case, functionality to derive IP flow details from
information in upper-layer protocols (e.g., SIP [10]) and
associate them with a subsequent QoS request may be used. This
is not described further here, but it may be functionality in an
Application Layer Gateway (ALG) or Deep Packet Inspection (DPI).
It should be noted that an ALG or DPI can increase the complexity
of the AP/MAG implementation and affect its scalability. If no
TCLAS is derived, the reservation applies to all flows of the MN.
Parameter mapping in this case is shown in Table 2.
(2) If there are sufficient resources at the AP/WLC to satisfy the
request, the MAG sends a PBU with QoS options, Operational Code
ALLOCATE, and the Traffic Selector identifying the flow. The
Traffic Selector is derived from the TCLAS to identify the flow
requesting QoS. IEEE 802.11 QoS parameters in TSPEC are mapped
to PMIPv6 parameters. The mapping of TCLAS to PMIPv6 is shown in
Table 1. TSPEC parameter mapping is shown in Table 4.
If TCLAS is not present (when WMM-AC is used), TCLAS may be
derived from information in upper-layer protocols (as described
in step 1) and populated in the Traffic Selector. If TCLAS
cannot be derived, the Traffic Selector field is not included in
the QoS options.
(3) The LMA obtains the authorized QoS for the flow and responds to
the MAG with Operational Code set to RESPONSE. Mapping of PMIPv6
to IEEE 802.11 TCLAS is shown in Table 1, and mapping of TSPEC
parameters is shown in Table 4.
Reserved bandwidth for flows is calculated separately from the
non-reserved session bandwidth. The Traffic Selector identifies
the flow for which the QoS reservations are made.
If the LMA offers downgraded QoS values to the MAG, it should
send a PBU to the LMA with Operational Code set to DE-ALLOCATE.
(The LMA would respond with PBA to confirm completion of the
request.)
Kaippallimalil, et al. Informational [Page 9]
^L
RFC 7561 Wi-Fi PMIPv6 QoS June 2015
(4) The AP/MAG provisions the corresponding QoS and replies with
ADDTS Response containing authorized QoS in TSPEC, the flow
identification in TSPEC, and ResultCode set to SUCCESS.
The AP polices these flows according to the QoS provisioning.
In step 3, if the LMA sends a downgraded QoS or a PBA message
with status code CANNOT_MEET_QOS_SERVICE_REQUEST (179), then the
AP should respond to the MN with ADDTS Response and ResultCode
set as follows:
- for downgraded QoS from LMA, ResultCode is set to
REJECTED_WITH_SUGGESTED_CHANGES. Downgraded QoS values from
LMA are mapped to TSPEC as per Table 4. This is still a
rejection, but the MN may revise the QoS to a lower level and
repeat this sequence if the application can adapt.
- if LMA cannot meet the QoS service request, ResultCode is set
to TCLAS_RESOURCES_EXHAUSTED.
Either REJECTED_WITH_SUGGESTED_CHANGES or
TCLAS_RESOURCES_EXHAUSTED results in the rejection of the QoS
reservation, but it does not cause the removal of the session
itself.
Kaippallimalil, et al. Informational [Page 10]
^L
RFC 7561 Wi-Fi PMIPv6 QoS June 2015
3.1.2. MN-Initiated QoS De-allocation Request
QoS resources reserved for a session are released on completion of
the session. When the application session completes, the LMA or the
MN may signal for the release of resources. In the use case shown in
Figure 3, the MN initiates the release of QoS resources.
+-----------+
+----+ |+--+ +---+| +-------+
| MN | ||AP| |MAG|| | LMA |
+-+--+ ++-++--+-+-++ +---+---+
| | | |
+-------------------------------------------------------------+
| (0) Establishment of application session |
| and reservation of QoS resources |
| |
| (Session in progress) |
| |
| Release of application session |
+-------------------------------------------------------------+
| | | |
| DELTS Request (TS INFO)(1) | | |
|---------------------------->| | |
| |---->| |
| |<----| |
| DELTS Response (TS INFO)(2) | | |
|<----------------------------| | |
| | |PBU(QoS,DE-ALLOC)(3)|
| | |------------------->|Policy
| | | |<---->
| | | |Update
| | |PBA(QoS,RESPONSE)(4)|
| | |<-------------------|
| | | |
Figure 3: MN-Initiated QoS Resource Release
(0) The MN establishes and reserves QoS resources. When the
application session terminates, the MN prepares to release QoS
resources.
(1) The MN releases its own internal resources and sends a DELTS
Request to the AP with TS (Traffic Stream) INFO.
(2) The AP receives the DELTS request, releases local resources, and
responds to the MN with a DELTS response.
Kaippallimalil, et al. Informational [Page 11]
^L
RFC 7561 Wi-Fi PMIPv6 QoS June 2015
(3) The MAG initiates a PBU, with the Operational Code set to
DE-ALLOCATE, and with the Traffic Selector constructed from TCLAS
and PMIPv6 QoS parameters from TSPEC.
When TCLAS is not present, the MAG should de-allocate all flows
with the same access category as indicated in the DELTS Request.
In the typical case, if the client does not support TCLAS and
only MN-initiated QoS Service requests are supported, then the
MAG will have at most one QoS Service request per access
category.
(4) LMA receives the PBU and releases local resources. The LMA then
responds with a PBA.
It should be noted that steps 3 and 4 can proceed independently of
the DELTS Response (step 2).
3.2. LMA-Initiated QoS Service Request
3.2.1. LMA-Initiated QoS Reservation Request
This section describes the case when the QoS service request is
initiated by the LMA. For example, an application such as voice may
request the network to initiate configuration of additional QoS
policy as in [8], Section 7.4.2. In the current WLAN specifications,
there is no standard-defined way for the AP to initiate a QoS service
request to the MN. As a result, when the MAG receives a QoS request
from the LMA, it does not have any standard mechanisms to initiate
any QoS requests to the MN over the access network. Given this, the
PMIPv6 QoS service requests and any potential WLAN service requests
(such as described in Section 3.1) are handled asynchronously.
The PMIPv6 QoS service requests and WLAN QoS service request could
still be coordinated to provide an end-to-end QoS. If the MAG
receives an Update Notification (UPN) request from the LMA to reserve
QoS resources for which it has no corresponding QoS request from the
MN, the MAG may, in consultation with the AP, provision a policy that
can grant a subsequent QoS request from the MN. If the MN initiates
QoS procedures after the completion of PMIPv6 QoS procedures, the AP/
MAG can ensure consistency between the QoS resources in the access
network and QoS resources between the MAG and LMA.
For example, if the MN is requesting a mean data rate of x Mbps, the
AP and MAG can ensure that the rate can be supported on the network
between MAG and LMA based on previous PMIPv6 QoS procedures. If the
MN subsequently requests data rates of x Mbps or less, the AP can
accept a request based on the earlier PMIPv6 QoS provisioning. For
the case where there is a mismatch, i.e., the network does not
Kaippallimalil, et al. Informational [Page 12]
^L
RFC 7561 Wi-Fi PMIPv6 QoS June 2015
support the x Mbps, then either the MAG should renegotiate the QoS
resource and ask for increased QoS resources or the AP should reject
the QoS request.
3.2.2. Discussion on QoS Request Handling with IEEE 802.11aa
The network-initiated QoS service request scenario poses some
challenges outlined here. IEEE 802.11 does not provide any
mechanisms for the AP to initiate a QoS request. As a result, the
AP/MAG cannot explicitly make any reservations in response to a QoS
reservation request made using UPN. IEEE 802.11aa [5] (which is an
amendment to IEEE 802.11) has a mechanism that enables the AP to ask
the client to reserve QoS for a traffic stream. It does this via the
ADDTS Reserve Request. The ADDTS Reserve Request contains a TSPEC,
an optional TCLAS, and a mandatory stream identifier. The
specification does not describe how the AP would obtain such a stream
identifier. As a result, there needs to be a new higher-layer
protocol defined that is understood by the MN and AP and that
provides a common stream identifier to both ends. Alternately, the
IEEE 802.11aa specification could be modified to make the usage
optional. When (or if) the stream identifier is made optional, the
TCLAS can provide information about the traffic stream.
Appendix A outlines a protocol sequence with PMIPv6 UPN / Update
Notification Acknowledgement (UPA) if the above IEEE 802.11aa issues
can be resolved.
Kaippallimalil, et al. Informational [Page 13]
^L
RFC 7561 Wi-Fi PMIPv6 QoS June 2015
3.2.3. LMA-Initiated QoS De-allocation Request
QoS resources reserved for a session are released on completion of
the session. When the application session completes, the LMA or the
MN may signal for the release of resources. In this use case, the
network initiates the release of QoS resources.
+-----------+
+----+ |+--+ +---+| +-------+
| MN | ||AP| |MAG|| | LMA |
+-+--+ ++-++--+-+-++ +---+---+
| | | |
+-------------------------------------------------------------+
| Establishment of application session |
| and reservation of QoS resources |
| |
| (Session in progress) |
| |
| Release of application session |
+-------------------------------------------------------------+
| | | | Policy
| | | |<------
| | |UPN(QoS,DE-ALLOC) |
| | |<------------------|
| |<----| (1) |
| |---->|UPA(QoS,RESPONSE) |
| | |------------------>|
| | | (2) |
| | | |
| DELTS Request (TS INFO)(3) | | |
|<----------------------------| | |
| DELTS Response (TS INFO)(4) | | |
|---------------------------->| | |
| | | |
Figure 4: LMA-Initiated QoS Resource Release
In the use case shown in Figure 4, the network initiates the release
of QoS resources. When the application session terminates, the LMA
receives notification of that event. The LMA releases local QoS
resources associated with the flow and initiates signaling to release
QoS resources in the network.
(1) The LMA sends a UPN with QoS options identifying the flow for
which QoS resources are to be released and Operational Code set
to DE-ALLOCATE. No additional LMA QoS parameters are sent.
Kaippallimalil, et al. Informational [Page 14]
^L
RFC 7561 Wi-Fi PMIPv6 QoS June 2015
(2) The MAG replies with a UPA confirming the acceptance and
Operational Code set to RESPONSE.
(3) The AP/WLC (MAG) releases local QoS resources associated with the
flow. The AP derives the corresponding access category from the
Traffic Class (TC) field provided in the QoS option. In
addition, if the AP supports TCLAS and the QoS option contains a
Traffic Selector field, then the AP shall map the Traffic
Selector into a TCLAS element. In the case where the AP does not
support TCLAS (for example, an AP compliant with WMM-AC), then
the AP shall only use the access category. The AP sends a DELTS
Request with TS INFO identifying the reservation.
(4) The MN sends DELTS Response confirming release.
It should be noted that steps 3 and 4 can proceed independently of
the UPA (step 2).
4. Mapping between IEEE 802.11 QoS and PMIPv6 QoS Parameters
4.1. Connection Parameters
TSPEC in IEEE 802.11 is used to reserve QoS for a traffic stream (MN
MAC, TS ID). The IEEE 802.11 QoS reservation is for IEEE 802.11
frames associated with an MN's MAC address.
The TCLAS element with Classifier 1 (TCP/UDP Parameters) is used to
identify a PMIPv6 QoS flow. We should note that WMM-AC procedures do
not support TCLAS. When TCLAS is present, a one-to-one mapping
between the TCLAS-defined flow and the Traffic Selector is given
below.
QoS reservations in IEEE 802.11 are made for a traffic stream
(identified in TCLAS) and correspond to PMIPv6 QoS session parameters
(identified by the Traffic Selector). PMIPv6 QoS [1] specifies that
when QoS-Traffic-Selector is included along with the per-session
bandwidth attributes described in Section 4.3 below, the attributes
apply at a per-session level.
+--------------------------------+----------------------------+
| MN <--> AP (IEEE 802.11) | MAG <--> LMA (PMIPv6) |
+--------------------------------+----------------------------+
| (TCLAS Classifier 1)TCP/UDP IP | Traffic Selector (IP flow) |
| (TCLAS Classifier 1) DSCP | Traffic Class (TC) |
+--------------------------------+----------------------------+
Table 1: IEEE 802.11 - PMIPv6 QoS Connection Mapping
Kaippallimalil, et al. Informational [Page 15]
^L
RFC 7561 Wi-Fi PMIPv6 QoS June 2015
If the MN or AP is not able to convey flow parameters in TCLAS, the
QoS reservation request in IEEE 802.11 is derived as shown in
Table 2.
+------------------------------+--------------------------+
| MN <--> AP (WMM) | MAG <--> LMA (PMIPv6) |
+------------------------------+--------------------------+
| (no IP flow parameter/TCLAS) | (a) applies to all flows |
| | (b) derived out-of-band |
| | |
| User Priority (802.1D) | Traffic Class (TC) |
| | (derived using Table 3) |
+------------------------------+--------------------------+
Table 2: WMM - PMIPv6 QoS Connection Mapping
When WMM [4] is used, and TCLAS is not present to specify IP flow,
one of two options apply for the MAG - LMA (PMIPv6) segment:
(a) Bandwidth parameters described in Section 4.3 apply to all flows
of the MN. This is not a preferred mode of operation if the LMA
performs reservation for a single flow, e.g., a voice flow
identified by an IP 5-tuple.
(b) The IP flow for which the MN requests reservation is derived out-
of-band. For example, the AP/MAG observes application-level
signaling (e.g., SIP [10]) or session-level signaling (e.g., 3GPP
WLCP (WLAN Control Protocol) [7]), associates subsequent ADDTS
requests using heuristics, and then derives the IP flow / Traffic
Selector field.
4.2. QoS Class
Table 3 contains a mapping between access category (AC) and IEEE
802.1D User Priority (UP) tag in IEEE 802.11 frames, and DSCP in IP
data packets. The table also provides the mapping between AC and
DSCP for use in IEEE 802.11 TSPEC and PMIPv6 QoS (Traffic Class).
Mapping of QCI to DSCP uses the tables in [6].
Kaippallimalil, et al. Informational [Page 16]
^L
RFC 7561 Wi-Fi PMIPv6 QoS June 2015
+-----+------+-----------+---------+----------------------+
| QCI | DSCP | 802.1D UP | AC | Example Services |
+-----+------+-----------+---------+----------------------+
| 1 | EF | 6(VO) | 3 AC_VO | conversational voice |
| 2 | EF | 6(VO) | 3 AC_VO | conversational video |
| 3 | EF | 6(VO) | 3 AC_VO | real-time gaming |
| 4 | AF41 | 5(VI) | 2 AC_VI | buffered streaming |
| 5 | AF31 | 4(CL) | 2 AC_VI | signaling |
| 6 | AF32 | 4(CL) | 2 AC_VI | buffered streaming |
| 7 | AF21 | 3(EE) | 0 AC_BE | interactive gaming |
| 8 | AF11 | 1(BE) | 0 AC_BE | web access |
| 9 | BE | 0(BK) | 1 AC_BK | email |
+-----+------+-----------+---------+----------------------+
Table 3: QoS Mapping between QCI/DSCP, 802.1D UP, AC
The MN tags all data packets with DSCP and IEEE 802.1D UP
corresponding to the application and the subscribed policy or
authorization. The AP polices sessions and flows based on the
configured QoS policy values for the MN.
For QoS reservations, TSPEC uses WMM-AC values and PMIPv6 QoS uses
corresponding DSCP values in Traffic Class (TC). IEEE 802.11 QoS
Access Category AC_VO and AC_VI are used for QoS reservations. AC_BE
and AC_BK should not be used in reservations.
When WMM-AC specifications that do not contain TCLAS are used, it is
only possible to have one reservation per Traffic Class / access
category. PMIPv6 QoS will not contain any flow-specific attributes
like Traffic Selector.
4.3. Bandwidth
Bandwidth parameters that need to be mapped between IEEE 802.11 and
PMIPv6 QoS are shown in Table 4.
+-------------------------+---------------------------+
| MN <--> AP(IEEE 802.11) | MAG <--> LMA (PMIPv6) |
+-------------------------+---------------------------+
| Mean Data Rate, DL | Guaranteed-DL-Bit-Rate |
| Mean Data Rate, UL | Guaranteed-UL-Bit-Rate |
| Peak Data Rate, DL | Aggregate-Max-DL-Bit-Rate |
| Peak Data Rate, UL | Aggregate-Max-UL-Bit-Rate |
+-------------------------+---------------------------+
Table 4: Bandwidth Parameters for Admission-Controlled Flows
Kaippallimalil, et al. Informational [Page 17]
^L
RFC 7561 Wi-Fi PMIPv6 QoS June 2015
In PMIPv6 QoS [1], services using a sending rate smaller than or
equal to the Guaranteed Bit Rate (GBR) can assume, in general, that
congestion-related packet drops will not occur [8]. If the rate
offered by the service exceeds this threshold, there are no
guarantees provided. IEEE 802.11 radio networks do not offer such a
guarantee, but [4] notes that the application (service) requirements
are captured in TSPEC by the MSDU (MAC Service Data Unit) and Mean
Data Rate. The TSPEC should contain Mean Data Rate, and it is
recommended that it be mapped to the GBR parameters, Guaranteed-DL-
Bit-Rate and Guaranteed-UL-Bit-Rate in PMIPv6 QoS [1].
IEEE 802.11 TSPEC requests do not require all fields to be completed.
[4] specifies a list of TSPEC parameters that are required in the
specification. Peak Data Rate is not required in WMM; however, for
MNs and APs that are capable of specifying the Peak Data Rate, it
should be mapped to MBR (Maximum Bit Rate) in PMIPv6 QoS. The AP
should use the MBR parameters Aggregate-Max-DL-Bit-Rate and
Aggregate-Max-UL-Bit-Rate to police these flows on the backhaul
segment between MAG and LMA.
During the QoS reservation procedure, if the MN requests Mean Data
Rate, or Peak Data Rate in excess of values authorized in PMIPv6 QoS,
the AP should deny the request in an ADDTS response. The AP may set
the reject cause code to REJECTED_WITH_SUGGESTED_CHANGES and send a
revised TSPEC with Mean Data Rate and Peak Data Rate set to
acceptable GBR and MBR, respectively, in PMIPv6 QoS.
5. Security Considerations
This document describes mapping of PMIPv6 QoS parameters to IEEE
802.11 QoS parameters. Thus, the security in the WLAN and PMIPv6
signaling segments and the functional entities that map the two
protocols need to be considered. IEEE 802.11 [3] provides the means
to secure management frames that are used for ADDTS and DELTS. The
PMIPv6 specification [9] recommends using IPsec and IKEv2 to secure
protocol messages. The security of the node(s) that implement the
QoS mapping functionality should be considered in actual deployments.
The QoS mappings themselves do not introduce additional security
concerns.
Kaippallimalil, et al. Informational [Page 18]
^L
RFC 7561 Wi-Fi PMIPv6 QoS June 2015
6. References
6.1. Normative References
[1] Liebsch, M., Seite, P., Yokota, H., Korhonen, J., and S.
Gundavelli, "Quality-of-Service Option for Proxy Mobile IPv6",
RFC 7222, DOI 10.17487/RFC7222, May 2014,
<http://www.rfc-editor.org/info/rfc7222>.
[2] Krishnan, S., Gundavelli, S., Liebsch, M., Yokota, H., and J.
Korhonen, "Update Notifications for Proxy Mobile IPv6",
RFC 7077, DOI 10.17487/RFC7077, November 2013,
<http://www.rfc-editor.org/info/rfc7077>.
6.2. Informative References
[3] IEEE, "IEEE Standard for Information Technology -
Telecommunications and information exchange between systems -
Local and metropolitan area networks - Specific requirements
Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications", IEEE Standard 802.11.
[4] Wi-Fi Alliance, "Wi-Fi Multimedia Technical Specification (with
WMM-Power Save and WMM-Admission Control)", Version 1.2.0, May
2012.
[5] IEEE, "Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specification, Amendment 2: MAC Enhancements for
Robust Audio Video Streaming", IEEE 802.11aa.
[6] 3GPP, "Guidelines for IPX Provider networks (Previously
Inter-Service Provider IP Backbone Guidelines)", GSMA Official
Document IR.34 v11.0, November 2014,
<http://www.gsma.com/newsroom/wp-content/uploads/
IR.34-v11.0.pdf>.
[7] 3GPP, "Technical Specification Group Core Network and Services;
Wireless LAN control plane protocols for trusted WLAN access to
EPC; Stage 3 (Release 12)", 3GPP TS 23.244 12.1.0, December
2014, <http://www.3gpp.org/ftp/specs/archive/24_series/24.244/>.
[8] 3GPP, "Technical Specification Group Services and System
Aspects; Policy and Charging Control Architecture (Release 13)",
3GPP TS 23.203 13.2.0, December 2014,
<http://www.3gpp.org/ftp/specs/archive/23_series/23.203/>.
Kaippallimalil, et al. Informational [Page 19]
^L
RFC 7561 Wi-Fi PMIPv6 QoS June 2015
[9] Gundavelli, S., Ed., Leung, K., Devarapalli, V., Chowdhury, K.,
and B. Patil, "Proxy Mobile IPv6", RFC 5213,
DOI 10.17487/RFC5213, August 2008,
<http://www.rfc-editor.org/info/rfc5213>.
[10] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
Session Initiation Protocol", RFC 3261, DOI 10.17487/RFC3261,
June 2002, <http://www.rfc-editor.org/info/rfc3261>.
Kaippallimalil, et al. Informational [Page 20]
^L
RFC 7561 Wi-Fi PMIPv6 QoS June 2015
Appendix A. LMA-Initiated QoS Service Flow with IEEE 802.11aa
+-----------+
+----+ |+--+ +---+| +-------+
| MN | ||AP| |MAG|| | LMA |
+-+--+ ++-++--+-+-++ +---+---+
| | | |
+----------------------------------------------------------------+
| (0) establish session with mobile network |
+----------------------------------------------------------------+
| | | |
| | | | Policy
| | | |<----------
| | |UPN(QoS opt(2) | Update(1)
| ADDTS Reserve Request | |<-----------------|
| (TCLAS, TSPEC)(3) |<----| |
|<-------------------------| | |
| ADDTS Reserve Response | | |
| (TCLAS, TSPEC)(4) | | |
|------------------------->| | |
| |---->|UPA(QoS opt)(5) |
| | |----------------->|
| | | |
Figure 5: LMA-Initiated QoS Service Request with 802.11aa
In the use case shown in Figure 5, the LMA initiates the QoS service
request and IEEE 802.11aa is used to set up the QoS reservation in
the Wi-Fi segment.
(0) The MN sets up a best-effort session. This allows the MN to
perform application-level signaling and setup.
(1) The policy server sends a QoS reservation request to the LMA.
This is usually sent in response to an application that requests
the policy server for higher QoS for some of its flows.
The LMA reserves resources for the flow requested.
(2) The LMA sends a PMIPv6 UPN (Update Notification) [2], as outlined
in Section 3.2.1, to the MAG with Notification Reason set to
QOS_SERVICE_REQUEST and Acknowledgement Requested flag set to 1.
The Operational Code in the QoS option is set to ALLOCATE, and
the Traffic Selector identifies the flow for QoS.
Kaippallimalil, et al. Informational [Page 21]
^L
RFC 7561 Wi-Fi PMIPv6 QoS June 2015
The LMA QoS parameters include Guaranteed-DL-Bit-Rate/Guaranteed-
UL-Bit-Rate and Aggregate-Max-DL-Bit-Rate/Aggregate-Max-UL-Bit-
Rate for the flow. The reserved bandwidth for flows is
calculated separately from the non-reserved session bandwidth.
(3) If there are sufficient resources to satisfy the request, the AP/
MAG sends an ADDTS Reserve Request (IEEE 802.11aa) specifying the
QoS reserved for the traffic stream, including the TSPEC and
TCLAS elements mapped from the PMIPv6 QoS Traffic Selector to
identify the flow.
PMIPv6 parameters are mapped to TCLAS (Table 1) and TSPEC
(Table 4). If there are insufficient resources at the AP/WLC,
the MAG will not send an ADDTS message and will continue the
processing of step 5.
The higher-level stream identifier in IEEE 802.11aa should be
encoded as discussed in Section 3.2.2.
(4) MN accepts the QoS reserved in the network and replies with ADDTS
Reserve Response.
(5) The MAG (AP/WLC) replies with a UPA confirming the acceptance of
QoS options and Operational Code set to RESPONSE. The AP/WLC
polices flows based on the new QoS.
If there are insufficient resources at the AP in step 3, the MAG
sends a response with UPA status code set to
CANNOT_MEET_QOS_SERVICE_REQUEST (130).
Kaippallimalil, et al. Informational [Page 22]
^L
RFC 7561 Wi-Fi PMIPv6 QoS June 2015
Acknowledgements
The authors thank the NETEXT Working Group for the valuable feedback
to different versions of this specification. In particular, the
authors wish to thank Sri Gundavelli, Georgios Karagianis, Rajeev
Koodli, Kent Leung, Marco Liebsch, Basavaraj Patil, Pierrick Seite,
and Hidetoshi Yokota for their suggestions and valuable input. The
authors also thank George Calcev, Mirko Schramm, Mazin Shalash, and
Marco Spini for detailed input on parameters and scheduling in IEEE
802.11 and 3GPP radio networks.
Authors' Addresses
John Kaippallimalil
Huawei
5340 Legacy Dr., Suite 175
Plano, TX 75024
United States
EMail: john.kaippallimalil@huawei.com
Rajesh Pazhyannur
Cisco
170 West Tasman Drive
San Jose, CA 95134
United States
EMail: rpazhyan@cisco.com
Parviz Yegani
Juniper
1194 North Mathilda Ave.
Sunnyvale, CA 94089-1206
United States
EMail: pyegani@juniper.net
Kaippallimalil, et al. Informational [Page 23]
^L
|