1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
|
Internet Engineering Task Force (IETF) D. Gillmor
Request for Comments: 7919 ACLU
Updates: 2246, 4346, 4492, 5246 August 2016
Category: Standards Track
ISSN: 2070-1721
Negotiated Finite Field Diffie-Hellman Ephemeral Parameters
for Transport Layer Security (TLS)
Abstract
Traditional finite-field-based Diffie-Hellman (DH) key exchange
during the Transport Layer Security (TLS) handshake suffers from a
number of security, interoperability, and efficiency shortcomings.
These shortcomings arise from lack of clarity about which DH group
parameters TLS servers should offer and clients should accept. This
document offers a solution to these shortcomings for compatible peers
by using a section of the TLS "Supported Groups Registry" (renamed
from "EC Named Curve Registry" by this document) to establish common
finite field DH parameters with known structure and a mechanism for
peers to negotiate support for these groups.
This document updates TLS versions 1.0 (RFC 2246), 1.1 (RFC 4346),
and 1.2 (RFC 5246), as well as the TLS Elliptic Curve Cryptography
(ECC) extensions (RFC 4492).
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7919.
Gillmor Standards Track [Page 1]
^L
RFC 7919 Negotiated FFDHE for TLS August 2016
Copyright Notice
Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Gillmor Standards Track [Page 2]
^L
RFC 7919 Negotiated FFDHE for TLS August 2016
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1. Requirements Language . . . . . . . . . . . . . . . . . . 5
1.2. Vocabulary . . . . . . . . . . . . . . . . . . . . . . . 5
2. Named Group Overview . . . . . . . . . . . . . . . . . . . . 5
3. Client Behavior . . . . . . . . . . . . . . . . . . . . . . . 6
3.1. Client Local Policy on Custom Groups . . . . . . . . . . 7
4. Server Behavior . . . . . . . . . . . . . . . . . . . . . . . 8
5. Optimizations . . . . . . . . . . . . . . . . . . . . . . . . 9
5.1. Checking the Peer's Public Key . . . . . . . . . . . . . 9
5.2. Short Exponents . . . . . . . . . . . . . . . . . . . . . 9
5.3. Table Acceleration . . . . . . . . . . . . . . . . . . . 10
6. Operational Considerations . . . . . . . . . . . . . . . . . 10
6.1. Preference Ordering . . . . . . . . . . . . . . . . . . . 10
7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 11
8. Security Considerations . . . . . . . . . . . . . . . . . . . 12
8.1. Negotiation Resistance to Active Attacks . . . . . . . . 12
8.2. Group Strength Considerations . . . . . . . . . . . . . . 13
8.3. Finite Field DHE Only . . . . . . . . . . . . . . . . . . 13
8.4. Deprecating Weak Groups . . . . . . . . . . . . . . . . . 14
8.5. Choice of Groups . . . . . . . . . . . . . . . . . . . . 14
8.6. Timing Attacks . . . . . . . . . . . . . . . . . . . . . 14
8.7. Replay Attacks from Non-negotiated FFDHE . . . . . . . . 15
8.8. Forward Secrecy . . . . . . . . . . . . . . . . . . . . . 15
8.9. False Start . . . . . . . . . . . . . . . . . . . . . . . 15
9. Privacy Considerations . . . . . . . . . . . . . . . . . . . 16
9.1. Client Fingerprinting . . . . . . . . . . . . . . . . . . 16
10. References . . . . . . . . . . . . . . . . . . . . . . . . . 16
10.1. Normative References . . . . . . . . . . . . . . . . . . 16
10.2. Informative References . . . . . . . . . . . . . . . . . 17
Appendix A. Supported Groups Registry (Formerly "EC Named Curve
Registry") . . . . . . . . . . . . . . . . . . . . . 19
A.1. ffdhe2048 . . . . . . . . . . . . . . . . . . . . . . . . 19
A.2. ffdhe3072 . . . . . . . . . . . . . . . . . . . . . . . . 20
A.3. ffdhe4096 . . . . . . . . . . . . . . . . . . . . . . . . 22
A.4. ffdhe6144 . . . . . . . . . . . . . . . . . . . . . . . . 23
A.5. ffdhe8192 . . . . . . . . . . . . . . . . . . . . . . . . 26
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 29
Author's Address . . . . . . . . . . . . . . . . . . . . . . . . 29
Gillmor Standards Track [Page 3]
^L
RFC 7919 Negotiated FFDHE for TLS August 2016
1. Introduction
Traditional TLS [RFC5246] offers a Diffie-Hellman Ephemeral (DHE) key
exchange mode that provides forward secrecy for the connection. The
client offers a cipher suite in the ClientHello that includes DHE,
and the server offers the client group parameters generator g and
modulus p. If the client does not consider the group strong enough
(e.g., p is too small, p is not prime, or there are small subgroups
that cannot be easily avoided) or if it is unable to process the
group for other reasons, the client has no recourse but to terminate
the connection.
Conversely, when a TLS server receives a suggestion for a DHE cipher
suite from a client, it has no way of knowing what kinds of DH groups
the client is capable of handling or what the client's security
requirements are for this key exchange session. For example, some
widely distributed TLS clients are not capable of DH groups where p >
1024 bits. Other TLS clients may, by policy, wish to use DHE only if
the server can offer a stronger group (and are willing to use a non-
PFS (Perfect Forward Secrecy) key exchange mechanism otherwise). The
server has no way of knowing which type of client is connecting but
must select DH parameters with insufficient knowledge.
Additionally, the DH parameters selected by the server may have a
known structure that renders them secure against a small subgroup
attack, but a client receiving an arbitrary p and g has no efficient
way to verify that the structure of a new group is reasonable for
use.
This modification to TLS solves these problems by using a section of
the "Supported Groups Registry" (renamed from "EC Named Curve
Registry" by this document) to select common DH groups with known
structure and defining the use of the "elliptic_curves(10)" extension
(described here as the Supported Groups extension) for clients
advertising support for DHE with these groups. This document also
provides guidance for compatible peers to take advantage of the
additional security, availability, and efficiency offered.
The use of this mechanism by one compatible peer when interacting
with a non-compatible peer should have no detrimental effects.
This document updates TLS versions 1.0 [RFC2246], 1.1 [RFC4346], and
1.2 [RFC5246], as well as the TLS ECC extensions [RFC4492].
Gillmor Standards Track [Page 4]
^L
RFC 7919 Negotiated FFDHE for TLS August 2016
1.1. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
1.2. Vocabulary
The terms "DHE" or "FFDHE" are used in this document to refer to the
finite-field-based Diffie-Hellman ephemeral key exchange mechanism in
TLS. TLS also supports Elliptic Curve Diffie-Hellman Ephemeral
(ECDHE) key exchanges [RFC4492], but this document does not document
their use. A registry previously used only by ECDHE-capable
implementations is expanded in this document to cover FFDHE groups as
well. "FFDHE cipher suites" is used in this document to refer
exclusively to cipher suites with FFDHE key exchange mechanisms, but
note that these suites are typically labeled with a TLS_DHE_ prefix.
2. Named Group Overview
We use previously unallocated codepoints within the extension
currently known as "elliptic_curves" (Section 5.1.1. of [RFC4492]) to
indicate known finite field groups. The extension's semantics are
expanded from "Supported Elliptic Curves" to "Supported Groups". The
enum datatype used in the extension has been renamed from NamedCurve
to NamedGroup. Its semantics are likewise expanded from "named
curve" to "named group".
Additionally, we explicitly relax the requirement about when the
Supported Groups extension can be sent. This extension MAY be sent
by the client when either FFDHE or ECDHE cipher suites are listed.
Codepoints in the "Supported Groups Registry" with a high byte of
0x01 (that is, between 256 and 511, inclusive) are set aside for
FFDHE groups, though only a small number of them are initially
defined and we do not expect many other FFDHE groups to be added to
this range. No codepoints outside of this range will be allocated to
FFDHE groups. The new codepoints for the "Supported Groups Registry"
are:
enum {
// other already defined elliptic curves (see RFC 4492)
ffdhe2048(256), ffdhe3072(257), ffdhe4096(258),
ffdhe6144(259), ffdhe8192(260),
//
} NamedGroup;
Gillmor Standards Track [Page 5]
^L
RFC 7919 Negotiated FFDHE for TLS August 2016
These additions to the "Supported Groups Registry" are described in
detail in Appendix A. They are all safe primes derived from the base
of the natural logarithm ("e"), with the high and low 64 bits set to
1 for efficient Montgomery or Barrett reduction.
The use of the base of the natural logarithm here is as a "nothing-
up-my-sleeve" number. The goal is to guarantee that the bits in the
middle of the modulus are effectively random, while avoiding any
suspicion that the primes have secretly been selected to be weak
according to some secret criteria. [RFC3526] used pi for this value.
See Section 8.5 for reasons that this document does not reuse pi.
3. Client Behavior
A TLS client that is capable of using strong finite field Diffie-
Hellman groups can advertise its capabilities and its preferences for
stronger key exchange by using this mechanism.
The compatible client that wants to be able to negotiate strong FFDHE
sends a Supported Groups extension (identified by type
elliptic_curves(10) in [RFC4492]) in the ClientHello and includes a
list of known FFDHE groups in the extension data, ordered from most
preferred to least preferred. If the client also supports and wants
to offer ECDHE key exchange, it MUST use a single Supported Groups
extension to include all supported groups (both ECDHE and FFDHE
groups). The ordering SHOULD be based on client preference, but see
Section 6.1 for more nuance.
A client that offers a Supported Groups extension containing an FFDHE
group SHOULD also include at least one FFDHE cipher suite in the
ClientHello.
A client that offers a group MUST be able and willing to perform a DH
key exchange using that group.
A client that offers one or more FFDHE groups in the Supported Groups
extension and an FFDHE cipher suite and that receives an FFDHE cipher
suite from the server SHOULD take the following steps upon receiving
the ServerKeyExchange:
o For non-anonymous cipher suites where the offered certificate is
valid and appropriate for the peer, validate the signature over
the ServerDHParams. If not valid, terminate the connection.
Gillmor Standards Track [Page 6]
^L
RFC 7919 Negotiated FFDHE for TLS August 2016
o If the signature over ServerDHParams is valid, compare the
selected dh_p and dh_g with the FFDHE groups offered by the
client. If none of the offered groups match, the server is not
compatible with this document. The client MAY decide to continue
the connection if the selected group is acceptable under local
policy, or it MAY decide to terminate the connection with a fatal
insufficient_security(71) alert.
o If the client continues (either because the server offered a
matching group or because local policy permits the offered custom
group), the client MUST verify that dh_Ys is in the range 1 <
dh_Ys < dh_p - 1. If dh_Ys is not in this range, the client MUST
terminate the connection with a fatal handshake_failure(40) alert.
o If dh_Ys is in range, then the client SHOULD continue with the
connection as usual.
3.1. Client Local Policy on Custom Groups
Compatible clients that are willing to accept FFDHE cipher suites
from non-compatible servers may have local policy about what custom
FFDHE groups they are willing to accept. This local policy presents
a risk to clients, who may accept weakly protected communications
from misconfigured servers.
This document cannot enumerate all possible safe local policy (the
safest may be to simply reject all custom groups), but compatible
clients that accept some custom groups from the server MUST do at
least cursory checks on group size and may take other properties into
consideration as well.
A compatible client that accepts FFDHE cipher suites using custom
groups from non-compatible servers MUST reject any group with |dh_p|
< 768 bits and SHOULD reject any group with |dh_p| < 1024 bits.
A compatible client that rejects a non-compatible server's custom
group may decide to retry the connection while omitting all FFDHE
cipher suites from the ClientHello. A client SHOULD only use this
approach if it successfully verified the server's expected signature
over the ServerDHParams, to avoid being forced by an active attacker
into a non-preferred cipher suite.
Gillmor Standards Track [Page 7]
^L
RFC 7919 Negotiated FFDHE for TLS August 2016
4. Server Behavior
If a compatible TLS server receives a Supported Groups extension from
a client that includes any FFDHE group (i.e., any codepoint between
256 and 511, inclusive, even if unknown to the server), and if none
of the client-proposed FFDHE groups are known and acceptable to the
server, then the server MUST NOT select an FFDHE cipher suite. In
this case, the server SHOULD select an acceptable non-FFDHE cipher
suite from the client's offered list. If the extension is present
with FFDHE groups, none of the client's offered groups are acceptable
by the server, and none of the client's proposed non-FFDHE cipher
suites are acceptable to the server, the server MUST end the
connection with a fatal TLS alert of type insufficient_security(71).
If at least one FFDHE cipher suite is present in the client cipher
suite list and the Supported Groups extension is either absent from
the ClientHello entirely or contains no FFDHE groups (i.e., no
codepoints between 256 and 511, inclusive), then the server knows
that the client is not compatible with this document. In this
scenario, a server MAY select a non-FFDHE cipher suite, or it MAY
select an FFDHE cipher suite and offer an FFDHE group of its choice
to the client as part of a traditional ServerKeyExchange.
A compatible TLS server that receives the Supported Groups extension
with FFDHE codepoints in it and that selects an FFDHE cipher suite
MUST select one of the client's offered groups. The server indicates
the choice of group to the client by sending the group's parameters
as usual in the ServerKeyExchange as described in Section 7.4.3 of
[RFC5246].
A TLS server MUST NOT select a named FFDHE group that was not offered
by a compatible client.
A TLS server MUST NOT select an FFDHE cipher suite if the client did
not offer one, even if the client offered an FFDHE group in the
Supported Groups extension.
If a non-anonymous FFDHE cipher suite is selected and the TLS client
has used this extension to offer an FFDHE group of comparable or
greater strength than the server's public key, the server SHOULD
select an FFDHE group at least as strong as the server's public key.
For example, if the server has a 3072-bit RSA key and the client
offers only ffdhe2048 and ffdhe4096, the server SHOULD select
ffdhe4096.
Gillmor Standards Track [Page 8]
^L
RFC 7919 Negotiated FFDHE for TLS August 2016
When an FFDHE cipher suite is selected and the client sends a
ClientKeyExchange, the server MUST verify that 1 < dh_Yc < dh_p - 1.
If dh_Yc is out of range, the server MUST terminate the connection
with a fatal handshake_failure(40) alert.
5. Optimizations
In a key exchange with a successfully negotiated known FFDHE group,
both peers know that the group in question uses a safe prime as a
modulus and that the group in use is of size p-1 or (p-1)/2. This
allows at least three optimizations that can be used to improve
performance.
5.1. Checking the Peer's Public Key
Peers MUST validate each other's public key Y (dh_Ys offered by the
server or dh_Yc offered by the client) by ensuring that 1 < Y < p-1.
This simple check ensures that the remote peer is properly behaved
and isn't forcing the local system into the 2-element subgroup.
To reach the same assurance with an unknown group, the client would
need to verify the primality of the modulus, learn the factors of
p-1, and test both the generator g and Y against each factor to avoid
small subgroup attacks.
5.2. Short Exponents
Traditional finite field Diffie-Hellman has each peer choose their
secret exponent from the range [2, p-2]. Using exponentiation by
squaring, this means each peer must do roughly 2*log_2(p)
multiplications, twice (once for the generator and once for the
peer's public key).
Peers concerned with performance may also prefer to choose their
secret exponent from a smaller range, doing fewer multiplications,
while retaining the same level of overall security. Each named group
indicates its approximate security level and provides a lower bound
on the range of secret exponents that should preserve it. For
example, rather than doing 2*2*3072 multiplications for an ffdhe3072
handshake, each peer can choose to do 2*2*275 multiplications by
choosing their secret exponent from the range [2^274, 2^275] (that
is, an m-bit integer where m is at least 275) and still keep the same
approximate security level.
A similar short-exponent approach is suggested in a Secure SHell
(SSH) Diffie-Hellman key exchange (see Section 6.2 of [RFC4419]).
Gillmor Standards Track [Page 9]
^L
RFC 7919 Negotiated FFDHE for TLS August 2016
5.3. Table Acceleration
Peers wishing to further accelerate FFDHE key exchange can also pre-
compute a table of powers of the generator of a known group. This is
a memory vs. time trade-off, and it only accelerates the first
exponentiation of the ephemeral DH exchange (the fixed-base
exponentiation). The variable-base exponentiation (using the peer's
public exponent as a base) still needs to be calculated as normal.
6. Operational Considerations
6.1. Preference Ordering
The ordering of named groups in the Supported Groups extension may
contain some ECDHE groups and some FFDHE groups. These SHOULD be
ranked in the order preferred by the client.
However, the ClientHello also contains a list of desired cipher
suites, also ranked in preference order. This presents the
possibility of conflicted preferences. For example, if the
ClientHello contains a cipher_suite field with two choices in order
<TLS_DHE_RSA_WITH_AES_128_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA> and the Supported Groups
extension contains two choices in order <secp256r1,ffdhe3072>, then
there is a clear contradiction. Clients SHOULD NOT present such a
contradiction since it does not represent a sensible ordering. A
server that encounters such a contradiction when selecting between an
ECDHE or FFDHE key exchange mechanism while trying to respect client
preferences SHOULD give priority to the Supported Groups extension
(in the example case, it should select
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA with secp256r1) but MAY resolve
the contradiction any way it sees fit.
More subtly, clients MAY interleave preferences between ECDHE and
FFDHE groups; for example, if stronger groups are preferred
regardless of cost, but weaker groups are acceptable, the Supported
Groups extension could consist of
<ffdhe8192,secp384p1,ffdhe3072,secp256r1>. In this example, with the
same cipher_suite field offered as the previous example, a server
configured to respect client preferences and with support for all
listed groups SHOULD select TLS_DHE_RSA_WITH_AES_128_CBC_SHA with
ffdhe8192. A server configured to respect client preferences and
with support for only secp384p1 and ffdhe3072 SHOULD select
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA with secp384p1.
Gillmor Standards Track [Page 10]
^L
RFC 7919 Negotiated FFDHE for TLS August 2016
7. IANA Considerations
This document renames the "EC Named Curve Registry" (originally
defined in [RFC4492] and updated by [RFC7027]) to the "Supported
Groups Registry". See
<https://www.iana.org/assignments/tls-parameters>.
This document expands the semantics of this registry to include
groups based on finite fields in addition to groups based on elliptic
curves. IANA has added a range designation to the registry,
indicating that values from 256-511 (inclusive) are set aside for
"Finite Field Diffie-Hellman groups" and that all other entries in
the registry are "Elliptic curve groups".
This document allocates five well-defined codepoints in the registry
for specific finite field Diffie-Hellman groups defined in
Appendix A.
In addition, the four highest codepoints in the range 508-511,
inclusive, are designated for Private Use [RFC5226] by peers who have
privately developed finite field Diffie-Hellman groups that they wish
to signal internally.
The updated registry section is as follows:
+---------+-------------+---------+-----------+
| Value | Description | DTLS-OK | Reference |
+---------+-------------+---------+-----------+
| 256 | ffdhe2048 | Y | RFC 7919 |
| 257 | ffdhe3072 | Y | RFC 7919 |
| 258 | ffdhe4096 | Y | RFC 7919 |
| 259 | ffdhe6144 | Y | RFC 7919 |
| 260 | ffdhe8192 | Y | RFC 7919 |
| 508-511 | Private Use | - | RFC 7919 |
+---------+-------------+---------+-----------+
IANA has also renamed the "elliptic_curves" extension as
"supported_groups" and added a reference to this document in the
"ExtensionType Values" registry. See
<http://www.iana.org/assignments/tls-extensiontype-values>.
Gillmor Standards Track [Page 11]
^L
RFC 7919 Negotiated FFDHE for TLS August 2016
8. Security Considerations
8.1. Negotiation Resistance to Active Attacks
Because the contents of the Supported Groups extension are hashed in
the Finished message, an active Man in the Middle (MITM) that tries
to filter or omit groups will cause the handshake to fail, but
possibly not before getting the peer to do something it would not
otherwise have done.
An attacker who impersonates the server can try to do any of the
following:
o Pretend that a non-compatible server is actually capable of this
extension and select a group from the client's list, causing the
client to select a group it is willing to negotiate. It is
unclear how this would be an effective attack.
o Pretend that a compatible server is actually non-compatible by
negotiating a non-FFDHE cipher suite. This is no different than
MITM cipher suite filtering.
o Pretend that a compatible server is actually non-compatible by
negotiating a DHE cipher suite with a custom (perhaps weak) group
selected by the attacker. This is no worse than the current
scenario and would require the attacker to be able to sign the
ServerDHParams, which should not be possible without access to the
server's secret key.
An attacker who impersonates the client can try to do the following:
o Pretend that a compatible client is not compatible (e.g., by not
offering the Supported Groups extension or by replacing the
Supported Groups extension with one that includes no FFDHE
groups). This could cause the server to negotiate a weaker DHE
group during the handshake or to select a non-FFDHE cipher suite,
but it would fail to complete during the final check of the
Finished message.
o Pretend that a non-compatible client is compatible (e.g., by
adding the Supported Groups extension or by adding FFDHE groups to
the extension). This could cause the server to select a
particular named group in the ServerKeyExchange or to avoid
selecting an FFDHE cipher suite. The peers would fail to compute
the final check of the Finished message.
Gillmor Standards Track [Page 12]
^L
RFC 7919 Negotiated FFDHE for TLS August 2016
o Change the list of groups offered by the client (e.g., by removing
the stronger of the set of groups offered). This could cause the
server to negotiate a weaker group than desired, but again, should
be caught by the check in the Finished message.
8.2. Group Strength Considerations
TLS implementations using FFDHE key exchange should consider the
strength of the group they negotiate. The strength of the selected
group is one of the factors that define the connection's resilience
against attacks on the session's confidentiality and integrity, since
the session keys are derived from the DHE handshake.
While attacks on integrity must generally happen while the session is
in progress, attacks against session confidentiality can happen
significantly later if the entire TLS session is stored for offline
analysis. Therefore, FFDHE groups should be selected by clients and
servers based on confidentiality guarantees they need. Sessions that
need extremely long-term confidentiality should prefer stronger
groups.
[ENISA] provides rough estimates of group resistance to attack and
recommends that forward-looking implementations ("future systems")
should use FFDHE group sizes of at least 3072 bits. ffdhe3072 is
intended for use in these implementations.
Other sources (e.g., [NIST]) estimate the security levels of the
Discrete Log (DLOG) problem to be slightly more difficult than
[ENISA]. This document's suggested minimum exponent sizes in
Appendix A for implementations that use the short-exponent
optimization (Section 5.2) are deliberately conservative to account
for the range of these estimates.
8.3. Finite Field DHE Only
Note that this document specifically targets only finite field
Diffie-Hellman ephemeral key exchange mechanisms. It does not cover
the non-ephemeral DH key exchange mechanisms, nor does it address
ECDHE key exchange, which is defined in [RFC4492].
Measured by computational cost to the TLS peers, ECDHE appears today
to offer a much stronger key exchange mechanism than FFDHE.
Gillmor Standards Track [Page 13]
^L
RFC 7919 Negotiated FFDHE for TLS August 2016
8.4. Deprecating Weak Groups
Advances in hardware or in finite field cryptanalysis may cause some
of the negotiated groups to not provide the desired security margins,
as indicated by the estimated work factor of an adversary to discover
the premaster secret (and may therefore compromise the
confidentiality and integrity of the TLS session).
Revisions of this document should mark known weak groups as
explicitly deprecated for use in TLS and should update the estimated
work factor needed to break the group if the cryptanalysis has
changed. Implementations that require strong confidentiality and
integrity guarantees should avoid using deprecated groups and should
be updated when the estimated security margins are updated.
8.5. Choice of Groups
Other lists of named finite field Diffie-Hellman groups
[STRONGSWAN-IKE] exist. This document chooses to not reuse them for
several reasons:
o Using the same groups in multiple protocols increases the value
for an attacker with the resources to crack any single group.
o The Internet Key Exchange Protocol (IKE) groups include weak
groups like MODP768 that are unacceptable for secure TLS traffic.
o Mixing group parameters across multiple implementations leaves
open the possibility of some sort of cross-protocol attack. This
shouldn't be relevant for ephemeral scenarios, and even with non-
ephemeral keying, services shouldn't share keys; however, using
different groups avoids these failure modes entirely.
8.6. Timing Attacks
Any implementation of finite field Diffie-Hellman key exchange should
use constant-time modular-exponentiation implementations. This is
particularly true for those implementations that ever reuse DHE
secret keys (so-called "semi-static" ephemeral keying) or share DHE
secret keys across a multiple machines (e.g., in a load-balancer
situation).
Gillmor Standards Track [Page 14]
^L
RFC 7919 Negotiated FFDHE for TLS August 2016
8.7. Replay Attacks from Non-negotiated FFDHE
[SECURE-RESUMPTION], [CROSS-PROTOCOL], and [SSL3-ANALYSIS] all show a
malicious peer using a bad FFDHE group to maneuver a client into
selecting a premaster secret of the peer's choice, which can be
replayed to another server using a non-FFDHE key exchange and can
then be bootstrapped to replay client authentication.
To prevent this attack (barring the session hash fix documented in
[RFC7627]), a client would need not only to implement this document,
but also to reject non-negotiated FFDHE cipher suites whose group
structure it cannot afford to verify. Such a client would need to
abort the initial handshake and reconnect to the server in question
without listing any FFDHE cipher suites on the subsequent connection.
This trade-off may be too costly for most TLS clients today but may
be a reasonable choice for clients performing client certificate
authentication or for clients who have other reasons to be concerned
about server-controlled premaster secrets.
8.8. Forward Secrecy
One of the main reasons to prefer FFDHE ciphersuites is forward
secrecy, the ability to resist decryption even if the endpoint's
long-term secret key (usually RSA) is revealed in the future.
This property depends on both sides of the connection discarding
their ephemeral keys promptly. Implementations should wipe their
FFDHE secret key material from memory as soon as it is no longer
needed and should never store it in persistent storage.
Forward secrecy also depends on the strength of the Diffie-Hellman
group; using a very strong symmetric cipher like AES256 with a
forward-secret cipher suite but generating the keys with a much
weaker group like dhe2048 simply moves the adversary's cost from
attacking the symmetric cipher to attacking the dh_Ys or dh_Yc
ephemeral key shares.
If the goal is to provide forward secrecy, attention should be paid
to all parts of the cipher suite selection process, both key exchange
and symmetric cipher choice.
8.9. False Start
Clients capable of TLS False Start [RFC7918] may receive a proposed
FFDHE group from a server that is attacker controlled. In
particular, the attacker can modify the ClientHello to strip the
proposed FFDHE groups, which may cause the server to offer a weaker
Gillmor Standards Track [Page 15]
^L
RFC 7919 Negotiated FFDHE for TLS August 2016
FFDHE group than it should, and this will not be detected until
receipt of the server's Finished message. This could cause a client
using the False Start protocol modification to send data encrypted
under a weak key agreement.
Clients should have their own classification of FFDHE groups that are
"cryptographically strong" in the same sense described in the
description of symmetric ciphers in [RFC7918] and SHOULD offer at
least one of these in the initial handshake if they contemplate using
the False Start protocol modification with an FFDHE cipher suite.
Compatible clients performing a full handshake MUST NOT use the False
Start protocol modification if the server selects an FFDHE cipher
suite but sends a group that is not cryptographically strong from the
client's perspective.
9. Privacy Considerations
9.1. Client Fingerprinting
This extension provides a few additional bits of information to
distinguish between classes of TLS clients (e.g., see
[PANOPTICLICK]). To minimize this sort of fingerprinting, clients
SHOULD support all named groups at or above their minimum security
threshold. New groups SHOULD NOT be added to the "Supported Groups
Registry" without consideration of the cost of browser
fingerprinting.
10. References
10.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<http://www.rfc-editor.org/info/rfc2119>.
[RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
for Transport Layer Security (TLS)", RFC 4492,
DOI 10.17487/RFC4492, May 2006,
<http://www.rfc-editor.org/info/rfc4492>.
[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", BCP 26, RFC 5226,
DOI 10.17487/RFC5226, May 2008,
<http://www.rfc-editor.org/info/rfc5226>.
Gillmor Standards Track [Page 16]
^L
RFC 7919 Negotiated FFDHE for TLS August 2016
[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246,
DOI 10.17487/RFC5246, August 2008,
<http://www.rfc-editor.org/info/rfc5246>.
[RFC7918] Langley, A., Modadugu, N., and B. Moeller, "Transport
Layer Security (TLS) False Start", DOI 10.17487/RFC7918,
June 2016, <http://www.rfc-editor.org/info/rfc7918>.
10.2. Informative References
[CROSS-PROTOCOL]
Mavrogiannopolous, N., Vercauteren, F., Velichkov, V., and
B. Preneel, "A Cross-Protocol Attack on the TLS Protocol",
In Proceedings of the 2012 ACM Conference on Computer and
Communications Security, DOI 10.1145/2382196.2382206,
October 2012, <http://www.cosic.esat.kuleuven.be/
publications/article-2216.pdf>.
[ECRYPTII]
European Network of Excellence in Cryptology II, "ECRYPT
II Yearly Report on Algorithms and Keysizes (2011-2012)",
Revision 1.0, September 2012,
<http://www.ecrypt.eu.org/ecrypt2/documents/D.SPA.20.pdf>.
[ENISA] European Union Agency for Network and Information Security
(ENISA), "Algorithms, Key Sizes and Parameters Report -
2014", November 2014,
<https://www.enisa.europa.eu/publications/
algorithms-key-size-and-parameters-report-2014>.
[NIST] National Institute of Standards and Technology,
"Recommendation for Key Management - Part 1: General",
NIST Special Publication 800-57, Revision 4,
DOI 10.6028/NIST.SP.800-57pt1r4, January 2016,
<http://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-57pt1r4.pdf>.
[PANOPTICLICK]
Electronic Frontier Foundation, "Panopticlick: Is your
browser safe against tracking?",
<https://panopticlick.eff.org/>.
[RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, DOI 10.17487/RFC2246, January 1999,
<http://www.rfc-editor.org/info/rfc2246>.
Gillmor Standards Track [Page 17]
^L
RFC 7919 Negotiated FFDHE for TLS August 2016
[RFC3526] Kivinen, T. and M. Kojo, "More Modular Exponential (MODP)
Diffie-Hellman groups for Internet Key Exchange (IKE)",
RFC 3526, DOI 10.17487/RFC3526, May 2003,
<http://www.rfc-editor.org/info/rfc3526>.
[RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.1", RFC 4346,
DOI 10.17487/RFC4346, April 2006,
<http://www.rfc-editor.org/info/rfc4346>.
[RFC4419] Friedl, M., Provos, N., and W. Simpson, "Diffie-Hellman
Group Exchange for the Secure Shell (SSH) Transport Layer
Protocol", RFC 4419, DOI 10.17487/RFC4419, March 2006,
<http://www.rfc-editor.org/info/rfc4419>.
[RFC7027] Merkle, J. and M. Lochter, "Elliptic Curve Cryptography
(ECC) Brainpool Curves for Transport Layer Security
(TLS)", RFC 7027, DOI 10.17487/RFC7027, October 2013,
<http://www.rfc-editor.org/info/rfc7027>.
[RFC7627] Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,
Langley, A., and M. Ray, "Transport Layer Security (TLS)
Session Hash and Extended Master Secret Extension",
RFC 7627, DOI 10.17487/RFC7627, September 2015,
<http://www.rfc-editor.org/info/rfc7627>.
[SECURE-RESUMPTION]
Delignat-Lavaud, A., Bhargavan, K., and A. Pironti,
"Triple Handshakes Considered Harmful: Breaking and Fixing
Authentication over TLS", 2014 IEEE Symposium on
Security and Privacy, DOI 10.1109/SP.2014.14, March 2014,
<https://secure-resumption.com/>.
[SSL3-ANALYSIS]
Schneier, B. and D. Wagner, "Analysis of the SSL 3.0
protocol", In Proceedings of the Second UNIX Workshop
on Electronic Commerce, 1996,
<https://www.schneier.com/paper-ssl.pdf>.
[STRONGSWAN-IKE]
Brunner, T. and A. Steffen, "IKEv2 Cipher Suites: Diffie
Hellman Groups", October 2013,
<https://wiki.strongswan.org/projects/strongswan/wiki/
IKEv2CipherSuites#Diffie-Hellman-Groups>.
Gillmor Standards Track [Page 18]
^L
RFC 7919 Negotiated FFDHE for TLS August 2016
Appendix A. Supported Groups Registry (Formerly "EC Named Curve
Registry")
Each description below indicates the group itself, its derivation,
its expected strength (estimated roughly from guidelines in
[ECRYPTII]), and whether it is recommended for use in TLS key
exchange at the given security level. It is not recommended to add
further finite field groups to the "Supported Groups Registry"; any
attempt to do so should consider Section 9.1.
The primes in these finite field groups are all safe primes; that is,
a prime p is a safe prime when q = (p-1)/2 is also prime. Where e is
the base of the natural logarithm and square brackets denote the
floor operation, the groups that initially populate this registry are
derived for a given bit length b by finding the lowest positive
integer X that creates a safe prime p where:
p = 2^b - 2^{b-64} + {[2^{b-130} e] + X } * 2^64 - 1
New additions of FFDHE groups to this registry may use this same
derivation (e.g., with different bit lengths) or may choose their
parameters in a different way, but they must be clear about how the
parameters were derived.
New additions of FFDHE groups MUST use a safe prime as the modulus to
enable the inexpensive peer verification described in Section 5.1.
A.1. ffdhe2048
The 2048-bit group has registry value 256 and is calculated from the
following formula:
The modulus is:
p = 2^2048 - 2^1984 + {[2^1918 * e] + 560316 } * 2^64 - 1
Gillmor Standards Track [Page 19]
^L
RFC 7919 Negotiated FFDHE for TLS August 2016
The hexadecimal representation of p is:
FFFFFFFF FFFFFFFF ADF85458 A2BB4A9A AFDC5620 273D3CF1
D8B9C583 CE2D3695 A9E13641 146433FB CC939DCE 249B3EF9
7D2FE363 630C75D8 F681B202 AEC4617A D3DF1ED5 D5FD6561
2433F51F 5F066ED0 85636555 3DED1AF3 B557135E 7F57C935
984F0C70 E0E68B77 E2A689DA F3EFE872 1DF158A1 36ADE735
30ACCA4F 483A797A BC0AB182 B324FB61 D108A94B B2C8E3FB
B96ADAB7 60D7F468 1D4F42A3 DE394DF4 AE56EDE7 6372BB19
0B07A7C8 EE0A6D70 9E02FCE1 CDF7E2EC C03404CD 28342F61
9172FE9C E98583FF 8E4F1232 EEF28183 C3FE3B1B 4C6FAD73
3BB5FCBC 2EC22005 C58EF183 7D1683B2 C6F34A26 C1B2EFFA
886B4238 61285C97 FFFFFFFF FFFFFFFF
The generator is: g = 2
The group size is: q = (p-1)/2
The hexadecimal representation of q is:
7FFFFFFF FFFFFFFF D6FC2A2C 515DA54D 57EE2B10 139E9E78
EC5CE2C1 E7169B4A D4F09B20 8A3219FD E649CEE7 124D9F7C
BE97F1B1 B1863AEC 7B40D901 576230BD 69EF8F6A EAFEB2B0
9219FA8F AF833768 42B1B2AA 9EF68D79 DAAB89AF 3FABE49A
CC278638 707345BB F15344ED 79F7F439 0EF8AC50 9B56F39A
98566527 A41D3CBD 5E0558C1 59927DB0 E88454A5 D96471FD
DCB56D5B B06BFA34 0EA7A151 EF1CA6FA 572B76F3 B1B95D8C
8583D3E4 770536B8 4F017E70 E6FBF176 601A0266 941A17B0
C8B97F4E 74C2C1FF C7278919 777940C1 E1FF1D8D A637D6B9
9DDAFE5E 17611002 E2C778C1 BE8B41D9 6379A513 60D977FD
4435A11C 30942E4B FFFFFFFF FFFFFFFF
The estimated symmetric-equivalent strength of this group is 103
bits.
Peers using ffdhe2048 that want to optimize their key exchange with a
short exponent (Section 5.2) should choose a secret key of at least
225 bits.
A.2. ffdhe3072
The 3072-bit prime has registry value 257 and is calculated from the
following formula:
The modulus is:
p = 2^3072 - 2^3008 + {[2^2942 * e] + 2625351} * 2^64 - 1
Gillmor Standards Track [Page 20]
^L
RFC 7919 Negotiated FFDHE for TLS August 2016
The hexadecimal representation of p is:
FFFFFFFF FFFFFFFF ADF85458 A2BB4A9A AFDC5620 273D3CF1
D8B9C583 CE2D3695 A9E13641 146433FB CC939DCE 249B3EF9
7D2FE363 630C75D8 F681B202 AEC4617A D3DF1ED5 D5FD6561
2433F51F 5F066ED0 85636555 3DED1AF3 B557135E 7F57C935
984F0C70 E0E68B77 E2A689DA F3EFE872 1DF158A1 36ADE735
30ACCA4F 483A797A BC0AB182 B324FB61 D108A94B B2C8E3FB
B96ADAB7 60D7F468 1D4F42A3 DE394DF4 AE56EDE7 6372BB19
0B07A7C8 EE0A6D70 9E02FCE1 CDF7E2EC C03404CD 28342F61
9172FE9C E98583FF 8E4F1232 EEF28183 C3FE3B1B 4C6FAD73
3BB5FCBC 2EC22005 C58EF183 7D1683B2 C6F34A26 C1B2EFFA
886B4238 611FCFDC DE355B3B 6519035B BC34F4DE F99C0238
61B46FC9 D6E6C907 7AD91D26 91F7F7EE 598CB0FA C186D91C
AEFE1309 85139270 B4130C93 BC437944 F4FD4452 E2D74DD3
64F2E21E 71F54BFF 5CAE82AB 9C9DF69E E86D2BC5 22363A0D
ABC52197 9B0DEADA 1DBF9A42 D5C4484E 0ABCD06B FA53DDEF
3C1B20EE 3FD59D7C 25E41D2B 66C62E37 FFFFFFFF FFFFFFFF
The generator is: g = 2
The group size is: q = (p-1)/2
The hexadecimal representation of q is:
7FFFFFFF FFFFFFFF D6FC2A2C 515DA54D 57EE2B10 139E9E78
EC5CE2C1 E7169B4A D4F09B20 8A3219FD E649CEE7 124D9F7C
BE97F1B1 B1863AEC 7B40D901 576230BD 69EF8F6A EAFEB2B0
9219FA8F AF833768 42B1B2AA 9EF68D79 DAAB89AF 3FABE49A
CC278638 707345BB F15344ED 79F7F439 0EF8AC50 9B56F39A
98566527 A41D3CBD 5E0558C1 59927DB0 E88454A5 D96471FD
DCB56D5B B06BFA34 0EA7A151 EF1CA6FA 572B76F3 B1B95D8C
8583D3E4 770536B8 4F017E70 E6FBF176 601A0266 941A17B0
C8B97F4E 74C2C1FF C7278919 777940C1 E1FF1D8D A637D6B9
9DDAFE5E 17611002 E2C778C1 BE8B41D9 6379A513 60D977FD
4435A11C 308FE7EE 6F1AAD9D B28C81AD DE1A7A6F 7CCE011C
30DA37E4 EB736483 BD6C8E93 48FBFBF7 2CC6587D 60C36C8E
577F0984 C289C938 5A098649 DE21BCA2 7A7EA229 716BA6E9
B279710F 38FAA5FF AE574155 CE4EFB4F 743695E2 911B1D06
D5E290CB CD86F56D 0EDFCD21 6AE22427 055E6835 FD29EEF7
9E0D9077 1FEACEBE 12F20E95 B363171B FFFFFFFF FFFFFFFF
The estimated symmetric-equivalent strength of this group is 125
bits.
Peers using ffdhe3072 that want to optimize their key exchange with a
short exponent (Section 5.2) should choose a secret key of at least
275 bits.
Gillmor Standards Track [Page 21]
^L
RFC 7919 Negotiated FFDHE for TLS August 2016
A.3. ffdhe4096
The 4096-bit group has registry value 258 and is calculated from the
following formula:
The modulus is:
p = 2^4096 - 2^4032 + {[2^3966 * e] + 5736041} * 2^64 - 1
The hexadecimal representation of p is:
FFFFFFFF FFFFFFFF ADF85458 A2BB4A9A AFDC5620 273D3CF1
D8B9C583 CE2D3695 A9E13641 146433FB CC939DCE 249B3EF9
7D2FE363 630C75D8 F681B202 AEC4617A D3DF1ED5 D5FD6561
2433F51F 5F066ED0 85636555 3DED1AF3 B557135E 7F57C935
984F0C70 E0E68B77 E2A689DA F3EFE872 1DF158A1 36ADE735
30ACCA4F 483A797A BC0AB182 B324FB61 D108A94B B2C8E3FB
B96ADAB7 60D7F468 1D4F42A3 DE394DF4 AE56EDE7 6372BB19
0B07A7C8 EE0A6D70 9E02FCE1 CDF7E2EC C03404CD 28342F61
9172FE9C E98583FF 8E4F1232 EEF28183 C3FE3B1B 4C6FAD73
3BB5FCBC 2EC22005 C58EF183 7D1683B2 C6F34A26 C1B2EFFA
886B4238 611FCFDC DE355B3B 6519035B BC34F4DE F99C0238
61B46FC9 D6E6C907 7AD91D26 91F7F7EE 598CB0FA C186D91C
AEFE1309 85139270 B4130C93 BC437944 F4FD4452 E2D74DD3
64F2E21E 71F54BFF 5CAE82AB 9C9DF69E E86D2BC5 22363A0D
ABC52197 9B0DEADA 1DBF9A42 D5C4484E 0ABCD06B FA53DDEF
3C1B20EE 3FD59D7C 25E41D2B 669E1EF1 6E6F52C3 164DF4FB
7930E9E4 E58857B6 AC7D5F42 D69F6D18 7763CF1D 55034004
87F55BA5 7E31CC7A 7135C886 EFB4318A ED6A1E01 2D9E6832
A907600A 918130C4 6DC778F9 71AD0038 092999A3 33CB8B7A
1A1DB93D 7140003C 2A4ECEA9 F98D0ACC 0A8291CD CEC97DCF
8EC9B55A 7F88A46B 4DB5A851 F44182E1 C68A007E 5E655F6A
FFFFFFFF FFFFFFFF
The generator is: g = 2
The group size is: q = (p-1)/2
Gillmor Standards Track [Page 22]
^L
RFC 7919 Negotiated FFDHE for TLS August 2016
The hexadecimal representation of q is:
7FFFFFFF FFFFFFFF D6FC2A2C 515DA54D 57EE2B10 139E9E78
EC5CE2C1 E7169B4A D4F09B20 8A3219FD E649CEE7 124D9F7C
BE97F1B1 B1863AEC 7B40D901 576230BD 69EF8F6A EAFEB2B0
9219FA8F AF833768 42B1B2AA 9EF68D79 DAAB89AF 3FABE49A
CC278638 707345BB F15344ED 79F7F439 0EF8AC50 9B56F39A
98566527 A41D3CBD 5E0558C1 59927DB0 E88454A5 D96471FD
DCB56D5B B06BFA34 0EA7A151 EF1CA6FA 572B76F3 B1B95D8C
8583D3E4 770536B8 4F017E70 E6FBF176 601A0266 941A17B0
C8B97F4E 74C2C1FF C7278919 777940C1 E1FF1D8D A637D6B9
9DDAFE5E 17611002 E2C778C1 BE8B41D9 6379A513 60D977FD
4435A11C 308FE7EE 6F1AAD9D B28C81AD DE1A7A6F 7CCE011C
30DA37E4 EB736483 BD6C8E93 48FBFBF7 2CC6587D 60C36C8E
577F0984 C289C938 5A098649 DE21BCA2 7A7EA229 716BA6E9
B279710F 38FAA5FF AE574155 CE4EFB4F 743695E2 911B1D06
D5E290CB CD86F56D 0EDFCD21 6AE22427 055E6835 FD29EEF7
9E0D9077 1FEACEBE 12F20E95 B34F0F78 B737A961 8B26FA7D
BC9874F2 72C42BDB 563EAFA1 6B4FB68C 3BB1E78E AA81A002
43FAADD2 BF18E63D 389AE443 77DA18C5 76B50F00 96CF3419
5483B005 48C09862 36E3BC7C B8D6801C 0494CCD1 99E5C5BD
0D0EDC9E B8A0001E 15276754 FCC68566 054148E6 E764BEE7
C764DAAD 3FC45235 A6DAD428 FA20C170 E345003F 2F32AFB5
7FFFFFFF FFFFFFFF
The estimated symmetric-equivalent strength of this group is 150
bits.
Peers using ffdhe4096 that want to optimize their key exchange with a
short exponent (Section 5.2) should choose a secret key of at least
325 bits.
A.4. ffdhe6144
The 6144-bit group has registry value 259 and is calculated from the
following formula:
The modulus is:
p = 2^6144 - 2^6080 + {[2^6014 * e] + 15705020} * 2^64 - 1
Gillmor Standards Track [Page 23]
^L
RFC 7919 Negotiated FFDHE for TLS August 2016
The hexadecimal representation of p is:
FFFFFFFF FFFFFFFF ADF85458 A2BB4A9A AFDC5620 273D3CF1
D8B9C583 CE2D3695 A9E13641 146433FB CC939DCE 249B3EF9
7D2FE363 630C75D8 F681B202 AEC4617A D3DF1ED5 D5FD6561
2433F51F 5F066ED0 85636555 3DED1AF3 B557135E 7F57C935
984F0C70 E0E68B77 E2A689DA F3EFE872 1DF158A1 36ADE735
30ACCA4F 483A797A BC0AB182 B324FB61 D108A94B B2C8E3FB
B96ADAB7 60D7F468 1D4F42A3 DE394DF4 AE56EDE7 6372BB19
0B07A7C8 EE0A6D70 9E02FCE1 CDF7E2EC C03404CD 28342F61
9172FE9C E98583FF 8E4F1232 EEF28183 C3FE3B1B 4C6FAD73
3BB5FCBC 2EC22005 C58EF183 7D1683B2 C6F34A26 C1B2EFFA
886B4238 611FCFDC DE355B3B 6519035B BC34F4DE F99C0238
61B46FC9 D6E6C907 7AD91D26 91F7F7EE 598CB0FA C186D91C
AEFE1309 85139270 B4130C93 BC437944 F4FD4452 E2D74DD3
64F2E21E 71F54BFF 5CAE82AB 9C9DF69E E86D2BC5 22363A0D
ABC52197 9B0DEADA 1DBF9A42 D5C4484E 0ABCD06B FA53DDEF
3C1B20EE 3FD59D7C 25E41D2B 669E1EF1 6E6F52C3 164DF4FB
7930E9E4 E58857B6 AC7D5F42 D69F6D18 7763CF1D 55034004
87F55BA5 7E31CC7A 7135C886 EFB4318A ED6A1E01 2D9E6832
A907600A 918130C4 6DC778F9 71AD0038 092999A3 33CB8B7A
1A1DB93D 7140003C 2A4ECEA9 F98D0ACC 0A8291CD CEC97DCF
8EC9B55A 7F88A46B 4DB5A851 F44182E1 C68A007E 5E0DD902
0BFD64B6 45036C7A 4E677D2C 38532A3A 23BA4442 CAF53EA6
3BB45432 9B7624C8 917BDD64 B1C0FD4C B38E8C33 4C701C3A
CDAD0657 FCCFEC71 9B1F5C3E 4E46041F 388147FB 4CFDB477
A52471F7 A9A96910 B855322E DB6340D8 A00EF092 350511E3
0ABEC1FF F9E3A26E 7FB29F8C 183023C3 587E38DA 0077D9B4
763E4E4B 94B2BBC1 94C6651E 77CAF992 EEAAC023 2A281BF6
B3A739C1 22611682 0AE8DB58 47A67CBE F9C9091B 462D538C
D72B0374 6AE77F5E 62292C31 1562A846 505DC82D B854338A
E49F5235 C95B9117 8CCF2DD5 CACEF403 EC9D1810 C6272B04
5B3B71F9 DC6B80D6 3FDD4A8E 9ADB1E69 62A69526 D43161C1
A41D570D 7938DAD4 A40E329C D0E40E65 FFFFFFFF FFFFFFFF
The generator is: g = 2
The group size is: q = (p-1)/2
Gillmor Standards Track [Page 24]
^L
RFC 7919 Negotiated FFDHE for TLS August 2016
The hexadecimal representation of q is:
7FFFFFFF FFFFFFFF D6FC2A2C 515DA54D 57EE2B10 139E9E78
EC5CE2C1 E7169B4A D4F09B20 8A3219FD E649CEE7 124D9F7C
BE97F1B1 B1863AEC 7B40D901 576230BD 69EF8F6A EAFEB2B0
9219FA8F AF833768 42B1B2AA 9EF68D79 DAAB89AF 3FABE49A
CC278638 707345BB F15344ED 79F7F439 0EF8AC50 9B56F39A
98566527 A41D3CBD 5E0558C1 59927DB0 E88454A5 D96471FD
DCB56D5B B06BFA34 0EA7A151 EF1CA6FA 572B76F3 B1B95D8C
8583D3E4 770536B8 4F017E70 E6FBF176 601A0266 941A17B0
C8B97F4E 74C2C1FF C7278919 777940C1 E1FF1D8D A637D6B9
9DDAFE5E 17611002 E2C778C1 BE8B41D9 6379A513 60D977FD
4435A11C 308FE7EE 6F1AAD9D B28C81AD DE1A7A6F 7CCE011C
30DA37E4 EB736483 BD6C8E93 48FBFBF7 2CC6587D 60C36C8E
577F0984 C289C938 5A098649 DE21BCA2 7A7EA229 716BA6E9
B279710F 38FAA5FF AE574155 CE4EFB4F 743695E2 911B1D06
D5E290CB CD86F56D 0EDFCD21 6AE22427 055E6835 FD29EEF7
9E0D9077 1FEACEBE 12F20E95 B34F0F78 B737A961 8B26FA7D
BC9874F2 72C42BDB 563EAFA1 6B4FB68C 3BB1E78E AA81A002
43FAADD2 BF18E63D 389AE443 77DA18C5 76B50F00 96CF3419
5483B005 48C09862 36E3BC7C B8D6801C 0494CCD1 99E5C5BD
0D0EDC9E B8A0001E 15276754 FCC68566 054148E6 E764BEE7
C764DAAD 3FC45235 A6DAD428 FA20C170 E345003F 2F06EC81
05FEB25B 2281B63D 2733BE96 1C29951D 11DD2221 657A9F53
1DDA2A19 4DBB1264 48BDEEB2 58E07EA6 59C74619 A6380E1D
66D6832B FE67F638 CD8FAE1F 2723020F 9C40A3FD A67EDA3B
D29238FB D4D4B488 5C2A9917 6DB1A06C 50077849 1A8288F1
855F60FF FCF1D137 3FD94FC6 0C1811E1 AC3F1C6D 003BECDA
3B1F2725 CA595DE0 CA63328F 3BE57CC9 77556011 95140DFB
59D39CE0 91308B41 05746DAC 23D33E5F 7CE4848D A316A9C6
6B9581BA 3573BFAF 31149618 8AB15423 282EE416 DC2A19C5
724FA91A E4ADC88B C66796EA E5677A01 F64E8C08 63139582
2D9DB8FC EE35C06B 1FEEA547 4D6D8F34 B1534A93 6A18B0E0
D20EAB86 BC9C6D6A 5207194E 68720732 FFFFFFFF FFFFFFFF
The estimated symmetric-equivalent strength of this group is 175
bits.
Peers using ffdhe6144 that want to optimize their key exchange with a
short exponent (Section 5.2) should choose a secret key of at least
375 bits.
Gillmor Standards Track [Page 25]
^L
RFC 7919 Negotiated FFDHE for TLS August 2016
A.5. ffdhe8192
The 8192-bit group has registry value 260 and is calculated from the
following formula:
The modulus is:
p = 2^8192 - 2^8128 + {[2^8062 * e] + 10965728} * 2^64 - 1
Gillmor Standards Track [Page 26]
^L
RFC 7919 Negotiated FFDHE for TLS August 2016
The hexadecimal representation of p is:
FFFFFFFF FFFFFFFF ADF85458 A2BB4A9A AFDC5620 273D3CF1
D8B9C583 CE2D3695 A9E13641 146433FB CC939DCE 249B3EF9
7D2FE363 630C75D8 F681B202 AEC4617A D3DF1ED5 D5FD6561
2433F51F 5F066ED0 85636555 3DED1AF3 B557135E 7F57C935
984F0C70 E0E68B77 E2A689DA F3EFE872 1DF158A1 36ADE735
30ACCA4F 483A797A BC0AB182 B324FB61 D108A94B B2C8E3FB
B96ADAB7 60D7F468 1D4F42A3 DE394DF4 AE56EDE7 6372BB19
0B07A7C8 EE0A6D70 9E02FCE1 CDF7E2EC C03404CD 28342F61
9172FE9C E98583FF 8E4F1232 EEF28183 C3FE3B1B 4C6FAD73
3BB5FCBC 2EC22005 C58EF183 7D1683B2 C6F34A26 C1B2EFFA
886B4238 611FCFDC DE355B3B 6519035B BC34F4DE F99C0238
61B46FC9 D6E6C907 7AD91D26 91F7F7EE 598CB0FA C186D91C
AEFE1309 85139270 B4130C93 BC437944 F4FD4452 E2D74DD3
64F2E21E 71F54BFF 5CAE82AB 9C9DF69E E86D2BC5 22363A0D
ABC52197 9B0DEADA 1DBF9A42 D5C4484E 0ABCD06B FA53DDEF
3C1B20EE 3FD59D7C 25E41D2B 669E1EF1 6E6F52C3 164DF4FB
7930E9E4 E58857B6 AC7D5F42 D69F6D18 7763CF1D 55034004
87F55BA5 7E31CC7A 7135C886 EFB4318A ED6A1E01 2D9E6832
A907600A 918130C4 6DC778F9 71AD0038 092999A3 33CB8B7A
1A1DB93D 7140003C 2A4ECEA9 F98D0ACC 0A8291CD CEC97DCF
8EC9B55A 7F88A46B 4DB5A851 F44182E1 C68A007E 5E0DD902
0BFD64B6 45036C7A 4E677D2C 38532A3A 23BA4442 CAF53EA6
3BB45432 9B7624C8 917BDD64 B1C0FD4C B38E8C33 4C701C3A
CDAD0657 FCCFEC71 9B1F5C3E 4E46041F 388147FB 4CFDB477
A52471F7 A9A96910 B855322E DB6340D8 A00EF092 350511E3
0ABEC1FF F9E3A26E 7FB29F8C 183023C3 587E38DA 0077D9B4
763E4E4B 94B2BBC1 94C6651E 77CAF992 EEAAC023 2A281BF6
B3A739C1 22611682 0AE8DB58 47A67CBE F9C9091B 462D538C
D72B0374 6AE77F5E 62292C31 1562A846 505DC82D B854338A
E49F5235 C95B9117 8CCF2DD5 CACEF403 EC9D1810 C6272B04
5B3B71F9 DC6B80D6 3FDD4A8E 9ADB1E69 62A69526 D43161C1
A41D570D 7938DAD4 A40E329C CFF46AAA 36AD004C F600C838
1E425A31 D951AE64 FDB23FCE C9509D43 687FEB69 EDD1CC5E
0B8CC3BD F64B10EF 86B63142 A3AB8829 555B2F74 7C932665
CB2C0F1C C01BD702 29388839 D2AF05E4 54504AC7 8B758282
2846C0BA 35C35F5C 59160CC0 46FD8251 541FC68C 9C86B022
BB709987 6A460E74 51A8A931 09703FEE 1C217E6C 3826E52C
51AA691E 0E423CFC 99E9E316 50C1217B 624816CD AD9A95F9
D5B80194 88D9C0A0 A1FE3075 A577E231 83F81D4A 3F2FA457
1EFC8CE0 BA8A4FE8 B6855DFE 72B0A66E DED2FBAB FBE58A30
FAFABE1C 5D71A87E 2F741EF8 C1FE86FE A6BBFDE5 30677F0D
97D11D49 F7A8443D 0822E506 A9F4614E 011E2A94 838FF88C
D68C8BB7 C5C6424C FFFFFFFF FFFFFFFF
The generator is: g = 2
Gillmor Standards Track [Page 27]
^L
RFC 7919 Negotiated FFDHE for TLS August 2016
The group size is: q = (p-1)/2
The hexadecimal representation of q is:
7FFFFFFF FFFFFFFF D6FC2A2C 515DA54D 57EE2B10 139E9E78
EC5CE2C1 E7169B4A D4F09B20 8A3219FD E649CEE7 124D9F7C
BE97F1B1 B1863AEC 7B40D901 576230BD 69EF8F6A EAFEB2B0
9219FA8F AF833768 42B1B2AA 9EF68D79 DAAB89AF 3FABE49A
CC278638 707345BB F15344ED 79F7F439 0EF8AC50 9B56F39A
98566527 A41D3CBD 5E0558C1 59927DB0 E88454A5 D96471FD
DCB56D5B B06BFA34 0EA7A151 EF1CA6FA 572B76F3 B1B95D8C
8583D3E4 770536B8 4F017E70 E6FBF176 601A0266 941A17B0
C8B97F4E 74C2C1FF C7278919 777940C1 E1FF1D8D A637D6B9
9DDAFE5E 17611002 E2C778C1 BE8B41D9 6379A513 60D977FD
4435A11C 308FE7EE 6F1AAD9D B28C81AD DE1A7A6F 7CCE011C
30DA37E4 EB736483 BD6C8E93 48FBFBF7 2CC6587D 60C36C8E
577F0984 C289C938 5A098649 DE21BCA2 7A7EA229 716BA6E9
B279710F 38FAA5FF AE574155 CE4EFB4F 743695E2 911B1D06
D5E290CB CD86F56D 0EDFCD21 6AE22427 055E6835 FD29EEF7
9E0D9077 1FEACEBE 12F20E95 B34F0F78 B737A961 8B26FA7D
BC9874F2 72C42BDB 563EAFA1 6B4FB68C 3BB1E78E AA81A002
43FAADD2 BF18E63D 389AE443 77DA18C5 76B50F00 96CF3419
5483B005 48C09862 36E3BC7C B8D6801C 0494CCD1 99E5C5BD
0D0EDC9E B8A0001E 15276754 FCC68566 054148E6 E764BEE7
C764DAAD 3FC45235 A6DAD428 FA20C170 E345003F 2F06EC81
05FEB25B 2281B63D 2733BE96 1C29951D 11DD2221 657A9F53
1DDA2A19 4DBB1264 48BDEEB2 58E07EA6 59C74619 A6380E1D
66D6832B FE67F638 CD8FAE1F 2723020F 9C40A3FD A67EDA3B
D29238FB D4D4B488 5C2A9917 6DB1A06C 50077849 1A8288F1
855F60FF FCF1D137 3FD94FC6 0C1811E1 AC3F1C6D 003BECDA
3B1F2725 CA595DE0 CA63328F 3BE57CC9 77556011 95140DFB
59D39CE0 91308B41 05746DAC 23D33E5F 7CE4848D A316A9C6
6B9581BA 3573BFAF 31149618 8AB15423 282EE416 DC2A19C5
724FA91A E4ADC88B C66796EA E5677A01 F64E8C08 63139582
2D9DB8FC EE35C06B 1FEEA547 4D6D8F34 B1534A93 6A18B0E0
D20EAB86 BC9C6D6A 5207194E 67FA3555 1B568026 7B00641C
0F212D18 ECA8D732 7ED91FE7 64A84EA1 B43FF5B4 F6E8E62F
05C661DE FB258877 C35B18A1 51D5C414 AAAD97BA 3E499332
E596078E 600DEB81 149C441C E95782F2 2A282563 C5BAC141
1423605D 1AE1AFAE 2C8B0660 237EC128 AA0FE346 4E435811
5DB84CC3 B523073A 28D45498 84B81FF7 0E10BF36 1C137296
28D5348F 07211E7E 4CF4F18B 286090BD B1240B66 D6CD4AFC
EADC00CA 446CE050 50FF183A D2BBF118 C1FC0EA5 1F97D22B
8F7E4670 5D4527F4 5B42AEFF 39585337 6F697DD5 FDF2C518
7D7D5F0E 2EB8D43F 17BA0F7C 60FF437F 535DFEF2 9833BF86
CBE88EA4 FBD4221E 84117283 54FA30A7 008F154A 41C7FC46
6B4645DB E2E32126 7FFFFFFF FFFFFFFF
Gillmor Standards Track [Page 28]
^L
RFC 7919 Negotiated FFDHE for TLS August 2016
The estimated symmetric-equivalent strength of this group is 192
bits.
Peers using ffdhe8192 that want to optimize their key exchange with a
short exponent (Section 5.2) should choose a secret key of at least
400 bits.
Acknowledgements
Thanks to Fedor Brunner, Dave Fergemann, Niels Ferguson, Sandy
Harris, Tero Kivinen, Watson Ladd, Nikos Mavrogiannopolous, Niels
Moeller, Bodo Moeller, Kenny Paterson, Eric Rescorla, Tom Ritter,
Rene Struik, Martin Thomson, Sean Turner, and other members of the
TLS Working Group for their comments and suggestions on this
document. Any mistakes here are not theirs.
Author's Address
Daniel Kahn Gillmor
ACLU
125 Broad Street, 18th Floor
New York, NY 10004
United States of America
Email: dkg@fifthhorseman.net
Gillmor Standards Track [Page 29]
^L
|