1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
|
Internet Engineering Task Force (IETF) E. Voit
Request for Comments: 7923 A. Clemm
Category: Informational A. Gonzalez Prieto
ISSN: 2070-1721 Cisco Systems
June 2016
Requirements for Subscription to YANG Datastores
Abstract
This document provides requirements for a service that allows client
applications to subscribe to updates of a YANG datastore. Based on
criteria negotiated as part of a subscription, updates will be pushed
to targeted recipients. Such a capability eliminates the need for
periodic polling of YANG datastores by applications and fills a
functional gap in existing YANG transports (i.e., Network
Configuration Protocol (NETCONF) and RESTCONF). Such a service can
be summarized as a "pub/sub" service for YANG datastore updates.
Beyond a set of basic requirements for the service, various
refinements are addressed. These refinements include: periodicity of
object updates, filtering out of objects underneath a requested a
subtree, and delivery QoS guarantees.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are a candidate for any level of Internet
Standard; see Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7923.
Voit, et al. Informational [Page 1]
^L
RFC 7923 YANG Subscription Requirements June 2016
Copyright Notice
Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction ....................................................3
2. Business Drivers ................................................3
2.1. Pub/Sub in the Interface to the Routing System (I2RS) ......4
2.2. Pub/Sub Variants on Network Elements .......................5
2.3. Existing Generalized Pub/Sub Implementations ...............6
3. Terminology .....................................................6
4. Requirements ....................................................7
4.1. Assumptions for Subscriber Behavior ........................7
4.2. Subscription Service Requirements ..........................8
4.2.1. General .............................................8
4.2.2. Negotiation .........................................9
4.2.3. Update Distribution ................................10
4.2.4. Transport ..........................................11
4.2.5. Security Requirements ..............................11
4.2.6. Subscription QoS ...................................13
4.2.7. Filtering ..........................................14
4.2.8. Assurance and Monitoring ...........................15
5. Security Considerations ........................................15
6. References .....................................................16
6.1. Normative References ......................................16
6.2. Informative References ....................................16
Acknowledgments ...................................................17
Authors' Addresses ................................................18
Voit, et al. Informational [Page 2]
^L
RFC 7923 YANG Subscription Requirements June 2016
1. Introduction
Applications interacting with YANG datastores require capabilities
beyond the traditional client-server configuration of network
elements. One class of such applications are service-assurance
applications, which must maintain a continuous view of operational
data and state. Another class of applications are security
applications, which must continuously track changes made upon network
elements to ensure compliance with corporate policy.
Periodic fetching of data is not an adequate solution for
applications requiring frequent or prompt updates of remote object
state. Applying polling-based solutions here imposes a load on
networks, devices, and applications. Additionally, polling solutions
are brittle in the face of communication glitches, and have
limitations in their ability to synchronize and calibrate retrieval
intervals across a network. These limitations can be addressed by
including generic object subscription mechanisms within network
elements, and allowing these mechanisms to be applied in the context
of data that is conceptually contained in YANG datastores.
This document aggregates requirements for such subscription from a
variety of deployment scenarios.
2. Business Drivers
For decades, information delivery of current network state has been
accomplished either by fetching from operations interfaces, or via
dedicated, customized networking protocols. With the growth of
centralized orchestration infrastructures, imperative policy
distribution, and YANG's ascent as the dominant data modeling
language for use in programmatic interfaces to network elements, this
mixture of fetch plus custom networking protocols is no longer
sufficient. What is needed is a push mechanism that is able to
deliver object changes as they happen.
These push distribution mechanisms will not replace existing
networking protocols. Instead they will supplement these protocols,
providing different response time, peering, scale, and security
characteristics.
Push solutions will not displace all existing operations
infrastructure needs. And SNMP and MIBs will remain widely deployed
and the de facto choice for many monitoring solutions. But some
functions could be displaced. Arguably the biggest shortcoming of
SNMP for those applications concerns the need to rely on periodic
polling, because it introduces an additional load on the network and
devices, because it is brittle if polling cycles are missed, and
Voit, et al. Informational [Page 3]
^L
RFC 7923 YANG Subscription Requirements June 2016
because it is hard to synchronize and calibrate across a network. If
applications can only use polling type interaction patterns with YANG
datastores, similar issues can be expected.
2.1. Pub/Sub in the Interface to the Routing System (I2RS)
Various documents about the Interface to the Routing System (I2RS)
highlight the need to provide pub/sub capabilities between network
elements. From [RFC7921], there are references throughout the
document beginning in Section 6.2. Some specific examples include:
o Section 7.6 of [RFC7921] provides high-level pub/sub
(notification) guidance.
o Section 6.4.2 of [RFC7921] identifies "subscribing to an
information stream of route changes" and "receiving notifications
about peers coming up or going down".
o Section 6.3 of [RFC7921] notes that when Local Configuration
preempts I2RS, external notification might be necessary.
In addition, [USECASE] has relevant requirements. A small subset
includes:
o L-Data-REQ-12: The I2RS interface should support user
subscriptions to data with the following parameters: push of data
synchronously or asynchronously via registered subscriptions...
o L-DATA-REQ-07: The I2RS interface (protocol and instant messages
(IMs)) should allow a subscriber to select portions of the data
model.
o PI-REQ01: Monitor the available routes installed in the Routing
Information Base (RIB) of each forwarding device, including near
real-time notification of route installation and removal.
o BGP-REQ10: The I2RS client SHOULD be able to instruct the I2RS
agent(s) to notify the I2RS client when the BGP processes on an
associated routing system observe a route change to a specific set
of IP Prefixes and associated prefixes.... The I2RS agent should
be able to notify the client via the publish or subscribe
mechanism.
o IGP-REQ-07: The I2RS interface (protocol and IMs) should support a
mechanism where the I2RS Clients can subscribe to the I2RS Agent's
notification of critical node IGP events.
Voit, et al. Informational [Page 4]
^L
RFC 7923 YANG Subscription Requirements June 2016
o MPLS-LDP-REQ-03: The I2RS Agent notifications should allow an I2RS
client to subscribe to a stream of state changes regarding the LDP
sessions or LDP Label Switched Paths (LSPs) from the I2RS Agent.
o L-Data-REQ-01: I2RS must be able to collect large data sets from
the network with high frequency and resolution, and with minimal
impact to the device's CPU and memory.
Also, Section 7.4.3 of [RFC7922] includes this pub/sub requirement:
o I2RS agents MUST support publishing I2RS trace log information to
that feed as described in [this document]. Subscribers would then
receive a live stream of I2RS interactions in trace log format and
could flexibly choose to do a number of things with the log
messages.
2.2. Pub/Sub Variants on Network Elements
This document is intended to cover requirements beyond I2RS. Looking
at history, there are many examples of switching and routing
protocols that have done explicit or implicit pub/sub in the past.
In addition, new policy notification mechanisms that operate on
switches and routers are being specified now. A small subset of
current and past subscription mechanisms includes:
o Multicast topology establishment is accomplished before any
content delivery is made to endpoints (IGMP, PIM, etc.).
o Secure Automation and Continuous Monitoring (SACM) allows
subscription into devices, which may then push spontaneous changes
in their configured hardware and software [SACMREQ].
o In MPLS VPNs [RFC6513], a Customer Edge router exchanges PIM
control messages before Provider Edge (PE) Routing Adjacencies are
passed [RFC6513].
o After OSPF establishes its adjacencies, Link State Advertisement
will then commence [RFC2328].
Worthy of note in the examples above is the wide variety of
underlying transports. A generalized pub/sub mechanism, therefore
should be structured to support alternative transports. Based on
current I2RS requirements, NETCONF should be the initially supported
transport due to the need for connection-oriented/unicast
communication. Eventual support for multicast and broadcast
subscription update distribution will be needed as well.
Voit, et al. Informational [Page 5]
^L
RFC 7923 YANG Subscription Requirements June 2016
2.3. Existing Generalized Pub/Sub Implementations
TIBCO, RSS, Common Object Request Broker Architecture (CORBA), and
other technologies all show precursor pub/sub technologies. However,
there are new needs (described in Section 4 below) that these
technologies do not serve. We need a new pub/sub technology.
There are at least two widely deployed generalized pub/sub
implementations that come close to current needs: Extensible
Messaging and Presence Protocol (XMPP) [XEP-0060] and Data
Distribution Service (DDS) [OMG-DDS]. Both serve as proof-points
that a highly scalable distributed datastore implementation
connecting millions of edge devices is possible.
Because of these proof-points, we can be comfortable that the
underlying technologies can enable reusable generalized YANG object
distribution. Analysis will need to fully dimension the speed and
scale of such object distribution for various subtree sizes and
transport types.
3. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119]. Although
this document is not a protocol specification, the use of this
language clarifies the instructions to protocol designers producing
solutions that satisfy the requirements set out in this document.
A Subscriber makes requests for set(s) of YANG object data.
A Publisher is responsible for distributing subscribed YANG object
data per the terms of a subscription. In general, a Publisher is the
owner of the YANG datastore that is subjected to the subscription.
A Receiver is the target to which a Publisher pushes updates. In
general, the Receiver and Subscriber will be the same entity. A
Subscription Service provides subscriptions to Subscribers of YANG
data.
A Subscription Service interacts with the Publisher of the YANG data
as needed to provide the data per the terms of the subscription.
A subscription request for one or more YANG subtrees (including
single leafs) is made by the Subscriber of a Publisher and is
targeted to a Receiver. A subscription may include constraints that
dictate how often or under what conditions YANG information updates
might be sent.
Voit, et al. Informational [Page 6]
^L
RFC 7923 YANG Subscription Requirements June 2016
A subscription is a contract between a Subscription Service and a
Subscriber that stipulates the data to be pushed and the associated
terms.
A datastore is defined in [RFC6241].
An Update provides object changes that have occurred within
subscribed YANG subtree(s). An Update must include the current
status of (data) node instances for which filtering has indicated
they have different status than previously provided. An Update may
include a bundled set of ordered/sequential changes for a given
object that have been made since the last update.
A Filter contains evaluation criteria, which are evaluated against
YANG object(s) within a subscription. There are two types of
Filters: Subtree Filters, which identify selected objects/nodes
published under a target data node, and object element and attribute
Filters where an object should only be published if it has properties
meeting specified Filter criteria.
4. Requirements
Many of the requirements within this section have been adapted from
the XMPP [XEP-0060] and DDS [OMG-DDS] requirements specifications.
4.1. Assumptions for Subscriber Behavior
This document provides requirements for the Subscription Service. It
does not define all the requirements for the Subscriber/Receiver.
However in order to frame the desired behavior of the Subscription
Service, it is important to specify key input constraints.
A Subscriber SHOULD avoid attempting to establish multiple
subscriptions pertaining to the same information, i.e., referring to
the same datastore YANG subtrees.
A Subscriber MAY provide subscription QoS criteria to the
Subscription Service; if the Subscription Service is unable to meet
those criteria, the subscription SHOULD NOT be established.
When a Subscriber and Receiver are the same entity and the transport
session is lost/terminated, the Subscriber MUST re-establish any
subscriptions it previously created via signaling over the transport
session. That is, there is no requirement for the life span of such
signaled subscriptions to extend beyond the life span of the
transport session.
Voit, et al. Informational [Page 7]
^L
RFC 7923 YANG Subscription Requirements June 2016
A Subscriber MUST be able to infer when a Subscription Service is no
longer active and when no more updates are being sent.
A Subscriber MAY check with a Subscription Service to validate the
existence and monitored subtrees of a subscription.
A Subscriber MUST be able to periodically lease and extend the lease
of a subscription from a Subscription Service.
4.2. Subscription Service Requirements
4.2.1. General
A Subscription Service MUST support the ability to create, renew,
time out, and terminate a subscription.
A Subscription Service MUST be able to support and independently
track multiple subscription requests by the same Subscriber.
A Subscription Service MUST be able to support an add/change/delete
of subscriptions to multiple YANG subtrees as part of the same
subscription request.
A Subscription Service MUST support subscriptions against operational
datastores, configuration datastores, or both.
A Subscription Service MUST be able support filtering so that the
subscribed updates under a target node might publish only operational
data, only configuration data, or both.
A subscription MAY include Filters as defined within a subscription
request, therefore the Subscription Service MUST publish only data
nodes that meet the Filter criteria within a subscription.
A Subscription Service MUST support the ability to subscribe to
periodic updates. The subscription period MUST be configurable as
part of the subscription request.
A Subscription Service SHOULD support the ability to subscribe to
updates on-change, i.e., whenever values of subscribed data objects
change.
For on-change updates, the Subscription Service MUST support a
dampening period that needs to be passed before the first or
subsequent on-change updates are sent. The dampening period SHOULD
be configurable as part of the subscription request.
Voit, et al. Informational [Page 8]
^L
RFC 7923 YANG Subscription Requirements June 2016
A Subscription Service MUST allow subscriptions to be monitored.
Specifically, a Subscription Service MUST at a minimum maintain
information about which subscriptions are being serviced, the terms
of those subscriptions (e.g., what data is being subscribed,
associated Filters, update policy -- on change, periodic), and the
overall status of the subscription -- e.g., active or suspended.
A Subscription Service MUST support the termination of a subscription
when requested by the Subscriber.
A Subscription Service SHOULD support the ability to suspend and to
resume a subscription on request of a client.
A Subscription Service MAY at its discretion revoke or suspend an
existing subscription. Reasons may include transitory resource
limitation, credential expiry, failure to reconfirm a subscription,
loss of connectivity with the Receiver, operator command-line
interface (CLI), and/or others. When this occurs, the Subscription
Service MUST notify the Subscriber and update the subscription
status.
A Subscription Service MAY offer the ability to modify a subscription
Filter. If such an ability is offered, the service MUST provide
subscribers with an indication telling at what point the modified
subscription goes into effect.
4.2.2. Negotiation
A Subscription Service MUST be able to negotiate the following terms
of a subscription:
o The policy, i.e., whether updates are on-change or periodic
o The interval, for periodic publication policy
o The on-change policy dampening period (if the on-change policy is
supported)
o Any Filters associated with a subtree subscription
A Subscription Service SHOULD be able to negotiate QoS criteria for a
subscription. Examples of subscription QoS criteria may include
reliability of the Subscription Service, reaction time between a
monitored YANG subtree/object change and a corresponding notification
push, and the Subscription Service's ability to support certain
levels of object liveliness.
Voit, et al. Informational [Page 9]
^L
RFC 7923 YANG Subscription Requirements June 2016
In cases where a subscription request cannot be fulfilled due to
insufficient platform resources, the Subscription Service SHOULD
include within its decline hints on criteria that would have been
acceptable when the subscription request was made. For example, if
periodic updates were requested with update intervals that were too
short for the specified data set, an alternative acceptable interval
period might be returned from the Publisher. If on-change updates
were requested with too aggressive a dampening period, then an
acceptable dampening period may be returned, or alternatively an
indication that only periodic updates are supported for the requested
object(s).
4.2.3. Update Distribution
For on-change updates, the Subscription Service MUST only send deltas
to the object data for which a change occurred. (Otherwise the
subscriber might not know what has actually undergone change.) The
updates for each object MUST include an indication of whether it was
removed, added, or changed.
When a Subscription Service is not able to send updates per its
subscription contract, the subscription MUST notify subscribers and
put the subscription into a state indicating that the subscription
was suspended by the service. When able to resume service,
subscribers need to be notified as well. If unable to resume
service, the Subscription Service MAY terminate the subscription and
notify Subscribers accordingly.
When a subscription with on-change updates is suspended and then
resumed, the first update SHOULD include updates of any changes that
occurred while the subscription was suspended, with the current
value. The Subscription Service MUST provide a clear indication when
this capability is not supported (because in this case, a client
application may have to synchronize state separately).
Multiple objects being pushed to a Subscriber, perhaps from different
subscriptions, SHOULD be bundled together into a single Update.
The sending of an Update MUST NOT be delayed beyond the Push Latency
of any enclosed object changes.
The sending of an Update MUST NOT be delayed beyond the dampening
period of any enclosed object changes.
The sending of an Update MUST NOT occur before the dampening period
expires for any enclosed object changes.
Voit, et al. Informational [Page 10]
^L
RFC 7923 YANG Subscription Requirements June 2016
A Subscription Service MAY, as an option, support a replay capability
so that a set of updates generated during a previous time internal
can be sent to a Receiver.
4.2.4. Transport
It is possible for updates coming from a Subscription Service to be
pushed over different types of transports such as NETCONF, RESTCONF,
and HTTP. Beyond existing transports, this Subscription Service will
be applicable for emerging protocols such as those being defined in
[USECASE]. The need for such transport flexibility drives the
following requirements:
o A Subscription Service SHOULD support different transports.
o A Subscription Service SHOULD support different encodings of a
payload.
o It MUST be possible for Receivers to associate the update with a
specific subscription.
o In the case of connection-oriented transport, when a transport
connection drops, the associated subscription SHOULD be
terminated. It is up the Subscriber to request a new
subscription.
4.2.5. Security Requirements
Some uses of this Subscription Service will push privacy-sensitive
updates and metadata. For privacy-sensitive deployments,
subscription information MUST be bound within secure, encrypted
transport-layer mechanisms. For example, if NETCONF is used as
transport, then [RFC7589] would be a valid option to secure the
transported information. The Subscription Service can also be used
with emerging privacy-sensitive deployment contexts as well. As an
example, deployments based on [USECASE] would apply these
requirements in conjunction with those documented within
[I2RS-ENV-SEC] and [I2RS-PROT-SEC] to secure ephemeral state
information being pushed from a network element.
As part of the subscription establishment, mutual authentication MUST
be used between the Subscriber and the Subscription Service.
Subscribers MUST NOT be able to pose as the original Subscription
Service.
Voit, et al. Informational [Page 11]
^L
RFC 7923 YANG Subscription Requirements June 2016
Versioning of any subscription protocols MUST be supported so that
the capabilities and behaviors expected of specific technology
implementations can be exposed.
A subscription could be used to attempt to retrieve information to
which a client has no authorized access. Therefore, it is important
that data being pushed based on subscriptions is authorized in the
same way that regular data retrieval operations are authorized. Data
being pushed to a client MUST be filtered accordingly, just like if
the data were being retrieved on demand. For Unicast transports, the
NETCONF Authorization Control Model applies.
Additions or changes within a subscribed subtree structure MUST be
validated against authorization methods before subscription updates,
including new subtree information, are pushed.
A loss of authenticated access to the target subtree or node SHOULD
be communicated to the Subscriber.
For any encrypted information exchanges, commensurate strength
security mechanisms MUST be available and SHOULD be used. This
includes all stages of the subscription and update push process.
Subscription requests, including requests to create, terminate,
suspend, and resume subscriptions MUST be properly authorized.
When the Subscriber and Receiver are different, the Receiver MUST be
able to terminate any subscription to it where objects are being
delivered over a Unicast transport.
A Subscription Service SHOULD decline a subscription request if it is
likely to deplete its resources. It is preferable to decline a
subscription when originally requested, rather than having to
terminate it prematurely later.
When the Subscriber and Receiver are different, and when the
underlying transport connection passes credentials as part of
transport establishment, then potentially pushed objects MUST be
excluded from a push update if that object doesn't have read access
visibility for that Receiver.
Voit, et al. Informational [Page 12]
^L
RFC 7923 YANG Subscription Requirements June 2016
4.2.6. Subscription QoS
A Subscription Service SHOULD be able to negotiate the following
subscription QoS parameters with a Subscriber: Dampening,
Reliability, Deadline, and Bundling.
A Subscription Service SHOULD be able to interpret subscription QoS
parameters, and only establish a subscription if it is possible to
meet the QoS needs of the provided QoS parameters.
4.2.6.1. Liveliness
A Subscription Service MUST be able to respond to requests to verify
the Liveliness of a subscription.
A Subscription Service MUST be able to report the currently monitored
Nodes of a subscription.
4.2.6.2. Dampening
A Subscription Service MUST be able to negotiate the minimum time
separation since the previous update before transmitting a subsequent
update for subscription. (Note: this is intended to confine the
visibility of volatility into something digestible by the receiver.)
4.2.6.3. Reliability
A Subscription Service MAY send Updates over Best Effort and Reliable
transports.
4.2.6.4. Coherence
For a particular subscription, every update to a subscribed object
MUST be sent to the Receiver in sequential order.
4.2.6.5. Presentation
The Subscription Service MAY have the ability to bundle a set of
discrete object notifications into a single publishable update for a
subscription. A bundle MAY include information on different Data
Nodes and/or multiple updates about a single Data Node.
For any bundled updates, the Subscription Service MUST provide
information for a Receiver to reconstruct the order and timing of
updates.
Voit, et al. Informational [Page 13]
^L
RFC 7923 YANG Subscription Requirements June 2016
4.2.6.6. Deadline
The Subscription Service MUST be able to push updates at a regular
cadence that corresponds with the Subscriber's specified start and
end timestamps. (Note: the regular cadence can drive one update, a
discrete quantity of updates, or an unbounded set of periodic
updates.)
4.2.6.7. Push Latency
The Subscription Service SHOULD be able to delay Updates on object
push for a configurable period per Subscriber.
It MUST be possible for an administrative entity to determine the
Push latency between object change in a monitored subtree and the
Subscription Service Push of the update transmission.
4.2.6.8. Relative Priority
The Subscription Service SHOULD support the relative prioritization
of subscriptions so that the dequeuing and discarding of push updates
can consider this if there is insufficient bandwidth between the
Publisher and the Receiver.
4.2.7. Filtering
If no filtering criteria are provided, or if filtering criteria are
met, updates for a subscribed object MUST be pushed, subject to the
QoS limits established for the subscription.
It MUST be possible for the Subscription Service to receive Filter(s)
from a Subscriber and apply them to the corresponding object(s)
within a subscription.
It MUST be possible to attach one or more Subtree and/or object
element and attribute Filters to a subscription. Mandatory Filter
types include:
o For character-based object properties, Filter values that are
exactly equal to a provided string, not equal to the string, or
containing a string.
o For numeric object properties, Filter values that are =, !=, <,
<=, >, or >= a provided number.
It SHOULD be possible for Filtering criteria to evaluate more than
one property of a particular subscribed object as well as apply
multiple Filters against a single object.
Voit, et al. Informational [Page 14]
^L
RFC 7923 YANG Subscription Requirements June 2016
It SHOULD be possible to establish query match criteria on additional
objects to be used in conjunction with Filtering criteria on a
subscribed object. (For example, if A has changed and B=1, then Push
A.) Query match capability may be done on objects within the
datastore even if those objects are not included within the
subscription. This of course assumes that the subscriber has read
access to those objects.
For on-change subscription updates, an object MUST pass a Filter
through a Filter if it has changed since the previous update. This
includes if the object has changed multiple times since the last
update, and if the value happens to be the exact same value as the
last one sent.
4.2.8. Assurance and Monitoring
It MUST be possible to fetch the state of a single subscription from
a Subscription Service.
It MUST be possible to fetch the state of all subscriptions of a
particular Subscriber.
It MUST be possible to fetch a list and status of all subscription
requests over a period of time. If there is a failure, some failure
reasons might include:
o Improper security credentials provided to access the target node;
o Target node referenced does not exist;
o Subscription type requested is not available upon the target node;
o Out of resources, or resources not available;
o Incomplete negotiations with the Subscriber.
5. Security Considerations
There are no additional security considerations beyond the
requirements listed in Section 4.2.5.
Voit, et al. Informational [Page 15]
^L
RFC 7923 YANG Subscription Requirements June 2016
6. References
6.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<http://www.rfc-editor.org/info/rfc2119>.
[RFC2328] Moy, J., "OSPF Version 2", STD 54, RFC 2328,
DOI 10.17487/RFC2328, April 1998,
<http://www.rfc-editor.org/info/rfc2328>.
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
<http://www.rfc-editor.org/info/rfc6241>.
[RFC6513] Rosen, E., Ed. and R. Aggarwal, Ed., "Multicast in MPLS/
BGP IP VPNs", RFC 6513, DOI 10.17487/RFC6513, February
2012, <http://www.rfc-editor.org/info/rfc6513>.
[RFC7589] Badra, M., Luchuk, A., and J. Schoenwaelder, "Using the
NETCONF Protocol over Transport Layer Security (TLS) with
Mutual X.509 Authentication", RFC 7589,
DOI 10.17487/RFC7589, June 2015,
<http://www.rfc-editor.org/info/rfc7589>.
[RFC7921] Atlas, A., Halpern, J., Hares, S., Ward, D., and T.
Nadeau, "An Architecture for the Interface to the Routing
System", RFC 7921, DOI 10.17487/RFC7921, June 2016,
<http://www.rfc-editor.org/info/rfc7921>.
[RFC7922] Clarke, J., Salgueiro, G., and C. Pignataro, "Interface to
the Routing System (I2RS) Traceability: Framework and
Information Model", RFC 7922, DOI 10.17487/RFC7922, June
2016, <http://www.rfc-editor.org/info/rfc7922>.
Voit, et al. Informational [Page 16]
^L
RFC 7923 YANG Subscription Requirements June 2016
6.2. Informative References
[I2RS-ENV-SEC]
Migault, D., Ed., Halpern, J., and S. Hares, "I2RS
Environment Security Requirements", Work in Progress,
draft-ietf-i2rs-security-environment-reqs-01, April 2016.
[I2RS-PROT-SEC]
Hares, S., Migault, D., and J. Halpern, "I2RS Security
Related Requirements", Work in Progress, draft-ietf-i2rs-
protocol-security-requirements-06, May 2016.
[OMG-DDS] Object Management Group (OMG), "Data Distribution Service
for Real-time Systems, Version 1.2", January 2007,
<http://www.omg.org/spec/DDS/1.2/>.
[SACMREQ] Nancy, N. and L. Lorenzin, "Security Automation and
Continuous Monitoring (SACM) Requirements", Work in
Progress, draft-ietf-sacm-requirements-13, March 2016.
[USECASE] Hares, S. and M. Chen, "Summary of I2RS Use Case
Requirements", Work in Progress, draft-ietf-i2rs-usecase-
reqs-summary-02, March 2016.
[XEP-0060] Millard, P., Saint-Andre, P., and R. Meijer, "Publish-
Subscribe", XSF XEP-0060, July 2010,
<http://xmpp.org/extensions/xep-0060.html>.
Voit, et al. Informational [Page 17]
^L
RFC 7923 YANG Subscription Requirements June 2016
Acknowledgments
We wish to acknowledge the helpful contributions, comments, and
suggestions that were received from Ambika Tripathy and Prabhakara
Yellai as well as the helpfulness of related end-to-end system
context info from Nancy Cam Winget, Ken Beck, and David McGrew.
Authors' Addresses
Eric Voit
Cisco Systems
Email: evoit@cisco.com
Alexander Clemm
Cisco Systems
Email: alex@cisco.com
Alberto Gonzalez Prieto
Cisco Systems
Email: albertgo@cisco.com
Voit, et al. Informational [Page 18]
^L
|