1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
|
Internet Engineering Task Force (IETF) K. Moriarty, Ed.
Request for Comments: 8017 EMC Corporation
Obsoletes: 3447 B. Kaliski
Category: Informational Verisign
ISSN: 2070-1721 J. Jonsson
Subset AB
A. Rusch
RSA
November 2016
PKCS #1: RSA Cryptography Specifications Version 2.2
Abstract
This document provides recommendations for the implementation of
public-key cryptography based on the RSA algorithm, covering
cryptographic primitives, encryption schemes, signature schemes with
appendix, and ASN.1 syntax for representing keys and for identifying
the schemes.
This document represents a republication of PKCS #1 v2.2 from RSA
Laboratories' Public-Key Cryptography Standards (PKCS) series. By
publishing this RFC, change control is transferred to the IETF.
This document also obsoletes RFC 3447.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are a candidate for any level of Internet
Standard; see Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc8017.
Moriarty, et al. Informational [Page 1]
^L
RFC 8017 PKCS #1 v2.2 November 2016
Copyright Notice
Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Moriarty, et al. Informational [Page 2]
^L
RFC 8017 PKCS #1 v2.2 November 2016
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1. Requirements Language . . . . . . . . . . . . . . . . . . 5
2. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3. Key Types . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1. RSA Public Key . . . . . . . . . . . . . . . . . . . . . 8
3.2. RSA Private Key . . . . . . . . . . . . . . . . . . . . . 9
4. Data Conversion Primitives . . . . . . . . . . . . . . . . . 11
4.1. I2OSP . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2. OS2IP . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5. Cryptographic Primitives . . . . . . . . . . . . . . . . . . 12
5.1. Encryption and Decryption Primitives . . . . . . . . . . 12
5.1.1. RSAEP . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1.2. RSADP . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2. Signature and Verification Primitives . . . . . . . . . . 15
5.2.1. RSASP1 . . . . . . . . . . . . . . . . . . . . . . . 15
5.2.2. RSAVP1 . . . . . . . . . . . . . . . . . . . . . . . 16
6. Overview of Schemes . . . . . . . . . . . . . . . . . . . . . 17
7. Encryption Schemes . . . . . . . . . . . . . . . . . . . . . 18
7.1. RSAES-OAEP . . . . . . . . . . . . . . . . . . . . . . . 19
7.1.1. Encryption Operation . . . . . . . . . . . . . . . . 22
7.1.2. Decryption Operation . . . . . . . . . . . . . . . . 25
7.2. RSAES-PKCS1-v1_5 . . . . . . . . . . . . . . . . . . . . 27
7.2.1. Encryption Operation . . . . . . . . . . . . . . . . 28
7.2.2. Decryption Operation . . . . . . . . . . . . . . . . 29
8. Signature Scheme with Appendix . . . . . . . . . . . . . . . 31
8.1. RSASSA-PSS . . . . . . . . . . . . . . . . . . . . . . . 32
8.1.1. Signature Generation Operation . . . . . . . . . . . 33
8.1.2. Signature Verification Operation . . . . . . . . . . 34
8.2. RSASSA-PKCS1-v1_5 . . . . . . . . . . . . . . . . . . . . 35
8.2.1. Signature Generation Operation . . . . . . . . . . . 36
8.2.2. Signature Verification Operation . . . . . . . . . . 37
9. Encoding Methods for Signatures with Appendix . . . . . . . . 39
9.1. EMSA-PSS . . . . . . . . . . . . . . . . . . . . . . . . 40
9.1.1. Encoding Operation . . . . . . . . . . . . . . . . . 42
9.1.2. Verification Operation . . . . . . . . . . . . . . . 44
9.2. EMSA-PKCS1-v1_5 . . . . . . . . . . . . . . . . . . . . . 45
10. Security Considerations . . . . . . . . . . . . . . . . . . . 47
11. References . . . . . . . . . . . . . . . . . . . . . . . . . 48
11.1. Normative References . . . . . . . . . . . . . . . . . . 48
11.2. Informative References . . . . . . . . . . . . . . . . . 48
Moriarty, et al. Informational [Page 3]
^L
RFC 8017 PKCS #1 v2.2 November 2016
Appendix A. ASN.1 Syntax . . . . . . . . . . . . . . . . . . . . 54
A.1. RSA Key Representation . . . . . . . . . . . . . . . . . 54
A.1.1. RSA Public Key Syntax . . . . . . . . . . . . . . . . 54
A.1.2. RSA Private Key Syntax . . . . . . . . . . . . . . . 55
A.2. Scheme Identification . . . . . . . . . . . . . . . . . . 57
A.2.1. RSAES-OAEP . . . . . . . . . . . . . . . . . . . . . 57
A.2.2. RSAES-PKCS-v1_5 . . . . . . . . . . . . . . . . . . . 60
A.2.3. RSASSA-PSS . . . . . . . . . . . . . . . . . . . . . 60
A.2.4. RSASSA-PKCS-v1_5 . . . . . . . . . . . . . . . . . . 62
Appendix B. Supporting Techniques . . . . . . . . . . . . . . . 63
B.1. Hash Functions . . . . . . . . . . . . . . . . . . . . . 63
B.2. Mask Generation Functions . . . . . . . . . . . . . . . . 66
B.2.1. MGF1 . . . . . . . . . . . . . . . . . . . . . . . . 67
Appendix C. ASN.1 Module . . . . . . . . . . . . . . . . . . . . 68
Appendix D. Revision History of PKCS #1 . . . . . . . . . . . . 76
Appendix E. About PKCS . . . . . . . . . . . . . . . . . . . . . 77
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 78
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 78
1. Introduction
This document provides recommendations for the implementation of
public-key cryptography based on the RSA algorithm [RSA], covering
the following aspects:
o Cryptographic primitives
o Encryption schemes
o Signature schemes with appendix
o ASN.1 syntax for representing keys and for identifying the schemes
The recommendations are intended for general application within
computer and communications systems and as such include a fair amount
of flexibility. It is expected that application standards based on
these specifications may include additional constraints. The
recommendations are intended to be compatible with the standards IEEE
1363 [IEEE1363], IEEE 1363a [IEEE1363A], and ANSI X9.44 [ANSIX944].
This document supersedes PKCS #1 version 2.1 [RFC3447] but includes
compatible techniques.
The organization of this document is as follows:
o Section 1 is an introduction.
o Section 2 defines some notation used in this document.
Moriarty, et al. Informational [Page 4]
^L
RFC 8017 PKCS #1 v2.2 November 2016
o Section 3 defines the RSA public and private key types.
o Sections 4 and 5 define several primitives, or basic mathematical
operations. Data conversion primitives are in Section 4, and
cryptographic primitives (encryption-decryption and signature-
verification) are in Section 5.
o Sections 6, 7, and 8 deal with the encryption and signature
schemes in this document. Section 6 gives an overview. Along
with the methods found in PKCS #1 v1.5, Section 7 defines an
encryption scheme based on Optimal Asymmetric Encryption Padding
(OAEP) [OAEP], and Section 8 defines a signature scheme with
appendix based on the Probabilistic Signature Scheme (PSS)
[RSARABIN] [PSS].
o Section 9 defines the encoding methods for the signature schemes
in Section 8.
o Appendix A defines the ASN.1 syntax for the keys defined in
Section 3 and the schemes in Sections 7 and 8.
o Appendix B defines the hash functions and the mask generation
function (MGF) used in this document, including ASN.1 syntax for
the techniques.
o Appendix C gives an ASN.1 module.
o Appendices D and E outline the revision history of PKCS #1 and
provide general information about the Public-Key Cryptography
Standards.
This document represents a republication of PKCS #1 v2.2 [PKCS1_22]
from RSA Laboratories' Public-Key Cryptography Standards (PKCS)
series.
1.1. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
Moriarty, et al. Informational [Page 5]
^L
RFC 8017 PKCS #1 v2.2 November 2016
2. Notation
The notation in this document includes:
c ciphertext representative, an integer between 0 and
n-1
C ciphertext, an octet string
d RSA private exponent
d_i additional factor r_i's CRT exponent,
a positive integer such that
e * d_i == 1 (mod (r_i-1)), i = 3, ..., u
dP p's CRT exponent, a positive integer such that
e * dP == 1 (mod (p-1))
dQ q's CRT exponent, a positive integer such that
e * dQ == 1 (mod (q-1))
e RSA public exponent
EM encoded message, an octet string
emBits (intended) length in bits of an encoded message EM
emLen (intended) length in octets of an encoded message
EM
GCD(. , .) greatest common divisor of two nonnegative integers
Hash hash function
hLen output length in octets of hash function Hash
k length in octets of the RSA modulus n
K RSA private key
L optional RSAES-OAEP label, an octet string
LCM(., ..., .) least common multiple of a list of nonnegative
integers
Moriarty, et al. Informational [Page 6]
^L
RFC 8017 PKCS #1 v2.2 November 2016
m message representative, an integer between 0 and
n-1
M message, an octet string
mask MGF output, an octet string
maskLen (intended) length of the octet string mask
MGF mask generation function
mgfSeed seed from which mask is generated, an octet string
mLen length in octets of a message M
n RSA modulus, n = r_1 * r_2 * ... * r_u , u >= 2
(n, e) RSA public key
p, q first two prime factors of the RSA modulus n
qInv CRT coefficient, a positive integer less than
p such that q * qInv == 1 (mod p)
r_i prime factors of the RSA modulus n, including
r_1 = p, r_2 = q, and additional factors if any
s signature representative, an integer between 0 and
n-1
S signature, an octet string
sLen length in octets of the EMSA-PSS salt
t_i additional prime factor r_i's CRT coefficient, a
positive integer less than r_i such that
r_1 * r_2 * ... * r_(i-1) * t_i == 1 (mod r_i) ,
i = 3, ... , u
u number of prime factors of the RSA modulus, u >= 2
x a nonnegative integer
X an octet string corresponding to x
xLen (intended) length of the octet string X
Moriarty, et al. Informational [Page 7]
^L
RFC 8017 PKCS #1 v2.2 November 2016
0x indicator of hexadecimal representation of an octet
or an octet string: "0x48" denotes the octet with
hexadecimal value 48; "(0x)48 09 0e" denotes the
string of three consecutive octets with hexadecimal
values 48, 09, and 0e, respectively
\lambda(n) LCM(r_1-1, r_2-1, ... , r_u-1)
\xor bit-wise exclusive-or of two octet strings
\ceil(.) ceiling function; \ceil(x) is the smallest integer
larger than or equal to the real number x
|| concatenation operator
== congruence symbol; a == b (mod n) means that the
integer n divides the integer a - b
Note: The Chinese Remainder Theorem (CRT) can be applied in a non-
recursive as well as a recursive way. In this document, a recursive
approach following Garner's algorithm [GARNER] is used. See also
Note 1 in Section 3.2.
3. Key Types
Two key types are employed in the primitives and schemes defined in
this document: RSA public key and RSA private key. Together, an RSA
public key and an RSA private key form an RSA key pair.
This specification supports so-called "multi-prime" RSA where the
modulus may have more than two prime factors. The benefit of multi-
prime RSA is lower computational cost for the decryption and
signature primitives, provided that the CRT is used. Better
performance can be achieved on single processor platforms, but to a
greater extent on multiprocessor platforms, where the modular
exponentiations involved can be done in parallel.
For a discussion on how multi-prime affects the security of the RSA
cryptosystem, the reader is referred to [SILVERMAN].
3.1. RSA Public Key
For the purposes of this document, an RSA public key consists of two
components:
n the RSA modulus, a positive integer
e the RSA public exponent, a positive integer
Moriarty, et al. Informational [Page 8]
^L
RFC 8017 PKCS #1 v2.2 November 2016
In a valid RSA public key, the RSA modulus n is a product of u
distinct odd primes r_i, i = 1, 2, ..., u, where u >= 2, and the RSA
public exponent e is an integer between 3 and n - 1 satisfying
GCD(e,\lambda(n)) = 1, where \lambda(n) = LCM(r_1 - 1, ..., r_u - 1).
By convention, the first two primes r_1 and r_2 may also be denoted p
and q, respectively.
A recommended syntax for interchanging RSA public keys between
implementations is given in Appendix A.1.1; an implementation's
internal representation may differ.
3.2. RSA Private Key
For the purposes of this document, an RSA private key may have either
of two representations.
1. The first representation consists of the pair (n, d), where the
components have the following meanings:
n the RSA modulus, a positive integer
d the RSA private exponent, a positive integer
2. The second representation consists of a quintuple (p, q, dP, dQ,
qInv) and a (possibly empty) sequence of triplets (r_i, d_i,
t_i), i = 3, ..., u, one for each prime not in the quintuple,
where the components have the following meanings:
p the first factor, a positive integer
q the second factor, a positive integer
dP the first factor's CRT exponent, a positive integer
dQ the second factor's CRT exponent, a positive integer
qInv the (first) CRT coefficient, a positive integer
r_i the i-th factor, a positive integer
d_i the i-th factor's CRT exponent, a positive integer
t_i the i-th factor's CRT coefficient, a positive integer
In a valid RSA private key with the first representation, the RSA
modulus n is the same as in the corresponding RSA public key and is
the product of u distinct odd primes r_i, i = 1, 2, ..., u, where u
>= 2. The RSA private exponent d is a positive integer less than n
satisfying
e * d == 1 (mod \lambda(n)),
where e is the corresponding RSA public exponent and \lambda(n) is
defined as in Section 3.1.
Moriarty, et al. Informational [Page 9]
^L
RFC 8017 PKCS #1 v2.2 November 2016
In a valid RSA private key with the second representation, the two
factors p and q are the first two prime factors of the RSA modulus n
(i.e., r_1 and r_2); the CRT exponents dP and dQ are positive
integers less than p and q, respectively, satisfying
e * dP == 1 (mod (p-1))
e * dQ == 1 (mod (q-1)) ,
and the CRT coefficient qInv is a positive integer less than p
satisfying
q * qInv == 1 (mod p).
If u > 2, the representation will include one or more triplets (r_i,
d_i, t_i), i = 3, ..., u. The factors r_i are the additional prime
factors of the RSA modulus n. Each CRT exponent d_i (i = 3, ..., u)
satisfies
e * d_i == 1 (mod (r_i - 1)).
Each CRT coefficient t_i (i = 3, ..., u) is a positive integer less
than r_i satisfying
R_i * t_i == 1 (mod r_i) ,
where R_i = r_1 * r_2 * ... * r_(i-1).
A recommended syntax for interchanging RSA private keys between
implementations, which includes components from both representations,
is given in Appendix A.1.2; an implementation's internal
representation may differ.
Notes:
1. The definition of the CRT coefficients here and the formulas that
use them in the primitives in Section 5 generally follow Garner's
algorithm [GARNER] (see also Algorithm 14.71 in [HANDBOOK]).
However, for compatibility with the representations of RSA
private keys in PKCS #1 v2.0 and previous versions, the roles of
p and q are reversed compared to the rest of the primes. Thus,
the first CRT coefficient, qInv, is defined as the inverse of q
mod p, rather than as the inverse of R_1 mod r_2, i.e., of
p mod q.
2. Quisquater and Couvreur [FASTDEC] observed the benefit of
applying the CRT to RSA operations.
Moriarty, et al. Informational [Page 10]
^L
RFC 8017 PKCS #1 v2.2 November 2016
4. Data Conversion Primitives
Two data conversion primitives are employed in the schemes defined in
this document:
o I2OSP - Integer-to-Octet-String primitive
o OS2IP - Octet-String-to-Integer primitive
For the purposes of this document, and consistent with ASN.1 syntax,
an octet string is an ordered sequence of octets (eight-bit bytes).
The sequence is indexed from first (conventionally, leftmost) to last
(rightmost). For purposes of conversion to and from integers, the
first octet is considered the most significant in the following
conversion primitives.
4.1. I2OSP
I2OSP converts a nonnegative integer to an octet string of a
specified length.
I2OSP (x, xLen)
Input:
x nonnegative integer to be converted
xLen intended length of the resulting octet string
Output:
X corresponding octet string of length xLen
Error: "integer too large"
Steps:
1. If x >= 256^xLen, output "integer too large" and stop.
2. Write the integer x in its unique xLen-digit representation in
base 256:
x = x_(xLen-1) 256^(xLen-1) + x_(xLen-2) 256^(xLen-2) + ...
+ x_1 256 + x_0,
where 0 <= x_i < 256 (note that one or more leading digits
will be zero if x is less than 256^(xLen-1)).
Moriarty, et al. Informational [Page 11]
^L
RFC 8017 PKCS #1 v2.2 November 2016
3. Let the octet X_i have the integer value x_(xLen-i) for 1 <= i
<= xLen. Output the octet string
X = X_1 X_2 ... X_xLen.
4.2. OS2IP
OS2IP converts an octet string to a nonnegative integer.
OS2IP (X)
Input: X octet string to be converted
Output: x corresponding nonnegative integer
Steps:
1. Let X_1 X_2 ... X_xLen be the octets of X from first to last,
and let x_(xLen-i) be the integer value of the octet X_i for 1
<= i <= xLen.
2. Let x = x_(xLen-1) 256^(xLen-1) + x_(xLen-2) 256^(xLen-2) +
... + x_1 256 + x_0.
3. Output x.
5. Cryptographic Primitives
Cryptographic primitives are basic mathematical operations on which
cryptographic schemes can be built. They are intended for
implementation in hardware or as software modules and are not
intended to provide security apart from a scheme.
Four types of primitive are specified in this document, organized in
pairs: encryption and decryption; and signature and verification.
The specifications of the primitives assume that certain conditions
are met by the inputs, in particular that RSA public and private keys
are valid.
5.1. Encryption and Decryption Primitives
An encryption primitive produces a ciphertext representative from a
message representative under the control of a public key, and a
decryption primitive recovers the message representative from the
ciphertext representative under the control of the corresponding
private key.
Moriarty, et al. Informational [Page 12]
^L
RFC 8017 PKCS #1 v2.2 November 2016
One pair of encryption and decryption primitives is employed in the
encryption schemes defined in this document and is specified here:
RSA Encryption Primitive (RSAEP) / RSA Decryption Primitive (RSADP).
RSAEP and RSADP involve the same mathematical operation, with
different keys as input. The primitives defined here are the same as
Integer Factorization Encryption Primitive using RSA (IFEP-RSA) /
Integer Factorization Decryption Primitive using RSA (IFDP-RSA) in
IEEE 1363 [IEEE1363] (except that support for multi-prime RSA has
been added) and are compatible with PKCS #1 v1.5.
The main mathematical operation in each primitive is exponentiation.
5.1.1. RSAEP
RSAEP ((n, e), m)
Input:
(n, e) RSA public key
m message representative, an integer between 0 and n - 1
Output: c ciphertext representative, an integer between 0 and n - 1
Error: "message representative out of range"
Assumption: RSA public key (n, e) is valid
Steps:
1. If the message representative m is not between 0 and n - 1,
output "message representative out of range" and stop.
2. Let c = m^e mod n.
3. Output c.
5.1.2. RSADP
RSADP (K, c)
Input:
K RSA private key, where K has one of the following forms:
+ a pair (n, d)
Moriarty, et al. Informational [Page 13]
^L
RFC 8017 PKCS #1 v2.2 November 2016
+ a quintuple (p, q, dP, dQ, qInv) and a possibly empty
sequence of triplets (r_i, d_i, t_i), i = 3, ..., u
c ciphertext representative, an integer between 0 and n - 1
Output: m message representative, an integer between 0 and n - 1
Error: "ciphertext representative out of range"
Assumption: RSA private key K is valid
Steps:
1. If the ciphertext representative c is not between 0 and n - 1,
output "ciphertext representative out of range" and stop.
2. The message representative m is computed as follows.
a. If the first form (n, d) of K is used, let m = c^d mod n.
b. If the second form (p, q, dP, dQ, qInv) and (r_i, d_i,
t_i) of K is used, proceed as follows:
i. Let m_1 = c^dP mod p and m_2 = c^dQ mod q.
ii. If u > 2, let m_i = c^(d_i) mod r_i, i = 3, ..., u.
iii. Let h = (m_1 - m_2) * qInv mod p.
iv. Let m = m_2 + q * h.
v. If u > 2, let R = r_1 and for i = 3 to u do
1. Let R = R * r_(i-1).
2. Let h = (m_i - m) * t_i mod r_i.
3. Let m = m + R * h.
3. Output m.
Note: Step 2.b can be rewritten as a single loop, provided that one
reverses the order of p and q. For consistency with PKCS #1 v2.0,
however, the first two primes p and q are treated separately from the
additional primes.
Moriarty, et al. Informational [Page 14]
^L
RFC 8017 PKCS #1 v2.2 November 2016
5.2. Signature and Verification Primitives
A signature primitive produces a signature representative from a
message representative under the control of a private key, and a
verification primitive recovers the message representative from the
signature representative under the control of the corresponding
public key. One pair of signature and verification primitives is
employed in the signature schemes defined in this document and is
specified here: RSA Signature Primitive, version 1 (RSASP1) / RSA
Verification Primitive, version 1 (RSAVP1).
The primitives defined here are the same as Integer Factorization
Signature Primitive using RSA, version 1 (IFSP-RSA1) / Integer
Factorization Verification Primitive using RSA, version 1 (IFVP-RSA1)
in IEEE 1363 [IEEE1363] (except that support for multi-prime RSA has
been added) and are compatible with PKCS #1 v1.5.
The main mathematical operation in each primitive is exponentiation,
as in the encryption and decryption primitives of Section 5.1.
RSASP1 and RSAVP1 are the same as RSADP and RSAEP except for the
names of their input and output arguments; they are distinguished as
they are intended for different purposes.
5.2.1. RSASP1
RSASP1 (K, m)
Input:
K RSA private key, where K has one of the following forms:
- a pair (n, d)
- a quintuple (p, q, dP, dQ, qInv) and a (possibly empty)
sequence of triplets (r_i, d_i, t_i), i = 3, ..., u
m message representative, an integer between 0 and n - 1
Output:
s signature representative, an integer between 0 and n - 1
Error: "message representative out of range"
Assumption: RSA private key K is valid
Moriarty, et al. Informational [Page 15]
^L
RFC 8017 PKCS #1 v2.2 November 2016
Steps:
1. If the message representative m is not between 0 and n - 1,
output "message representative out of range" and stop.
2. The signature representative s is computed as follows.
a. If the first form (n, d) of K is used, let s = m^d mod n.
b. If the second form (p, q, dP, dQ, qInv) and (r_i, d_i,
t_i) of K is used, proceed as follows:
1. Let s_1 = m^dP mod p and s_2 = m^dQ mod q.
2. If u > 2, let s_i = m^(d_i) mod r_i, i = 3, ..., u.
3. Let h = (s_1 - s_2) * qInv mod p.
4. Let s = s_2 + q * h.
5. If u > 2, let R = r_1 and for i = 3 to u do
a. Let R = R * r_(i-1).
b. Let h = (s_i - s) * t_i mod r_i.
c. Let s = s + R * h.
3. Output s.
Note: Step 2.b can be rewritten as a single loop, provided that one
reverses the order of p and q. For consistency with PKCS #1 v2.0,
however, the first two primes p and q are treated separately from the
additional primes.
5.2.2. RSAVP1
RSAVP1 ((n, e), s)
Input:
(n, e) RSA public key
s signature representative, an integer between 0 and n - 1
Moriarty, et al. Informational [Page 16]
^L
RFC 8017 PKCS #1 v2.2 November 2016
Output:
m message representative, an integer between 0 and n - 1
Error: "signature representative out of range"
Assumption: RSA public key (n, e) is valid
Steps:
1. If the signature representative s is not between 0 and n - 1,
output "signature representative out of range" and stop.
2. Let m = s^e mod n.
3. Output m.
6. Overview of Schemes
A scheme combines cryptographic primitives and other techniques to
achieve a particular security goal. Two types of scheme are
specified in this document: encryption schemes and signature schemes
with appendix.
The schemes specified in this document are limited in scope in that
their operations consist only of steps to process data with an RSA
public or private key, and they do not include steps for obtaining or
validating the key. Thus, in addition to the scheme operations, an
application will typically include key management operations by which
parties may select RSA public and private keys for a scheme
operation. The specific additional operations and other details are
outside the scope of this document.
As was the case for the cryptographic primitives (Section 5), the
specifications of scheme operations assume that certain conditions
are met by the inputs, in particular that RSA public and private keys
are valid. The behavior of an implementation is thus unspecified
when a key is invalid. The impact of such unspecified behavior
depends on the application. Possible means of addressing key
validation include explicit key validation by the application; key
validation within the public-key infrastructure; and assignment of
liability for operations performed with an invalid key to the party
who generated the key.
A generally good cryptographic practice is to employ a given RSA key
pair in only one scheme. This avoids the risk that vulnerability in
one scheme may compromise the security of the other and may be
essential to maintain provable security. While RSAES-PKCS1-v1_5
Moriarty, et al. Informational [Page 17]
^L
RFC 8017 PKCS #1 v2.2 November 2016
(Section 7.2) and RSASSA-PKCS1-v1_5 (Section 8.2) have traditionally
been employed together without any known bad interactions (indeed,
this is the model introduced by PKCS #1 v1.5), such a combined use of
an RSA key pair is NOT RECOMMENDED for new applications.
To illustrate the risks related to the employment of an RSA key pair
in more than one scheme, suppose an RSA key pair is employed in both
RSAES-OAEP (Section 7.1) and RSAES-PKCS1-v1_5. Although RSAES-OAEP
by itself would resist attack, an opponent might be able to exploit a
weakness in the implementation of RSAES-PKCS1-v1_5 to recover
messages encrypted with either scheme. As another example, suppose
an RSA key pair is employed in both RSASSA-PSS (Section 8.1) and
RSASSA-PKCS1-v1_5. Then the security proof for RSASSA-PSS would no
longer be sufficient since the proof does not account for the
possibility that signatures might be generated with a second scheme.
Similar considerations may apply if an RSA key pair is employed in
one of the schemes defined here and in a variant defined elsewhere.
7. Encryption Schemes
For the purposes of this document, an encryption scheme consists of
an encryption operation and a decryption operation, where the
encryption operation produces a ciphertext from a message with a
recipient's RSA public key, and the decryption operation recovers the
message from the ciphertext with the recipient's corresponding RSA
private key.
An encryption scheme can be employed in a variety of applications. A
typical application is a key establishment protocol, where the
message contains key material to be delivered confidentially from one
party to another. For instance, PKCS #7 [RFC2315] employs such a
protocol to deliver a content-encryption key from a sender to a
recipient; the encryption schemes defined here would be suitable key-
encryption algorithms in that context.
Two encryption schemes are specified in this document: RSAES-OAEP and
RSAES-PKCS1-v1_5. RSAES-OAEP is REQUIRED to be supported for new
applications; RSAES-PKCS1-v1_5 is included only for compatibility
with existing applications.
The encryption schemes given here follow a general model similar to
that employed in IEEE 1363 [IEEE1363], combining encryption and
decryption primitives with an encoding method for encryption. The
encryption operations apply a message encoding operation to a message
to produce an encoded message, which is then converted to an integer
message representative. An encryption primitive is applied to the
message representative to produce the ciphertext. Reversing this,
the decryption operations apply a decryption primitive to the
Moriarty, et al. Informational [Page 18]
^L
RFC 8017 PKCS #1 v2.2 November 2016
ciphertext to recover a message representative, which is then
converted to an octet-string-encoded message. A message decoding
operation is applied to the encoded message to recover the message
and verify the correctness of the decryption.
To avoid implementation weaknesses related to the way errors are
handled within the decoding operation (see [BLEICHENBACHER] and
[MANGER]), the encoding and decoding operations for RSAES-OAEP and
RSAES-PKCS1-v1_5 are embedded in the specifications of the respective
encryption schemes rather than defined in separate specifications.
Both encryption schemes are compatible with the corresponding schemes
in PKCS #1 v2.1.
7.1. RSAES-OAEP
RSAES-OAEP combines the RSAEP and RSADP primitives (Sections 5.1.1
and 5.1.2) with the EME-OAEP encoding method (Step 2 in
Section 7.1.1, and Step 3 in Section 7.1.2). EME-OAEP is based on
Bellare and Rogaway's Optimal Asymmetric Encryption scheme [OAEP].
It is compatible with the Integer Factorization Encryption Scheme
(IFES) defined in IEEE 1363 [IEEE1363], where the encryption and
decryption primitives are IFEP-RSA and IFDP-RSA and the message
encoding method is EME-OAEP. RSAES-OAEP can operate on messages of
length up to k - 2hLen -2 octets, where hLen is the length of the
output from the underlying hash function and k is the length in
octets of the recipient's RSA modulus.
Assuming that computing e-th roots modulo n is infeasible and the
mask generation function in RSAES-OAEP has appropriate properties,
RSAES-OAEP is semantically secure against adaptive chosen-ciphertext
attacks. This assurance is provable in the sense that the difficulty
of breaking RSAES-OAEP can be directly related to the difficulty of
inverting the RSA function, provided that the mask generation
function is viewed as a black box or random oracle; see [FOPS] and
the note below for further discussion.
Both the encryption and the decryption operations of RSAES-OAEP take
the value of a label L as input. In this version of PKCS #1, L is
the empty string; other uses of the label are outside the scope of
this document. See Appendix A.2.1 for the relevant ASN.1 syntax.
RSAES-OAEP is parameterized by the choice of hash function and mask
generation function. This choice should be fixed for a given RSA
key. Suggested hash and mask generation functions are given in
Appendix B.
Moriarty, et al. Informational [Page 19]
^L
RFC 8017 PKCS #1 v2.2 November 2016
Note: Past results have helpfully clarified the security properties
of the OAEP encoding method [OAEP] (roughly the procedure described
in Step 2 in Section 7.1.1). The background is as follows. In 1994,
Bellare and Rogaway [OAEP] introduced a security concept that they
denoted plaintext awareness (PA94). They proved that if a
deterministic public-key encryption primitive (e.g., RSAEP) is hard
to invert without the private key, then the corresponding OAEP-based
encryption scheme is plaintext aware (in the random oracle model),
meaning roughly that an adversary cannot produce a valid ciphertext
without actually "knowing" the underlying plaintext. Plaintext
awareness of an encryption scheme is closely related to the
resistance of the scheme against chosen-ciphertext attacks. In such
attacks, an adversary is given the opportunity to send queries to an
oracle simulating the decryption primitive. Using the results of
these queries, the adversary attempts to decrypt a challenge
ciphertext.
However, there are two flavors of chosen-ciphertext attacks, and PA94
implies security against only one of them. The difference relies on
what the adversary is allowed to do after she is given the challenge
ciphertext. The indifferent attack scenario (denoted CCA1) does not
admit any queries to the decryption oracle after the adversary is
given the challenge ciphertext, whereas the adaptive scenario
(denoted CCA2) does (except that the decryption oracle refuses to
decrypt the challenge ciphertext once it is published). In 1998,
Bellare and Rogaway, together with Desai and Pointcheval [PA98], came
up with a new, stronger notion of plaintext awareness (PA98) that
does imply security against CCA2.
To summarize, there have been two potential sources for
misconception: that PA94 and PA98 are equivalent concepts, or that
CCA1 and CCA2 are equivalent concepts. Either assumption leads to
the conclusion that the Bellare-Rogaway paper implies security of
OAEP against CCA2, which it does not.
(Footnote: It might be fair to mention that PKCS #1 v2.0 cites [OAEP]
and claims that "a chosen ciphertext attack is ineffective against a
plaintext-aware encryption scheme such as RSAES-OAEP" without
specifying the kind of plaintext awareness or chosen ciphertext
attack considered.)
OAEP has never been proven secure against CCA2; in fact, Victor Shoup
[SHOUP] has demonstrated that such a proof does not exist in the
general case. Put briefly, Shoup showed that an adversary in the
CCA2 scenario who knows how to partially invert the encryption
primitive but does not know how to invert it completely may well be
able to break the scheme. For example, one may imagine an attacker
who is able to break RSAES-OAEP if she knows how to recover all but
Moriarty, et al. Informational [Page 20]
^L
RFC 8017 PKCS #1 v2.2 November 2016
the first 20 bytes of a random integer encrypted with RSAEP. Such an
attacker does not need to be able to fully invert RSAEP, because she
does not use the first 20 octets in her attack.
Still, RSAES-OAEP is secure against CCA2, which was proved by
Fujisaki, Okamoto, Pointcheval, and Stern [FOPS] shortly after the
announcement of Shoup's result. Using clever lattice reduction
techniques, they managed to show how to invert RSAEP completely given
a sufficiently large part of the pre-image. This observation,
combined with a proof that OAEP is secure against CCA2 if the
underlying encryption primitive is hard to partially invert, fills
the gap between what Bellare and Rogaway proved about RSAES-OAEP and
what some may have believed that they proved. Somewhat
paradoxically, we are hence saved by an ostensible weakness in RSAEP
(i.e., the whole inverse can be deduced from parts of it).
Unfortunately, however, the security reduction is not efficient for
concrete parameters. While the proof successfully relates an
adversary A against the CCA2 security of RSAES-OAEP to an algorithm I
inverting RSA, the probability of success for I is only approximately
\epsilon^2 / 2^18, where \epsilon is the probability of success for
A.
(Footnote: In [FOPS], the probability of success for the inverter was
\epsilon^2 / 4. The additional factor 1 / 2^16 is due to the eight
fixed zero bits at the beginning of the encoded message EM, which are
not present in the variant of OAEP considered in [FOPS]. (A must be
applied twice to invert RSA, and each application corresponds to a
factor 1 / 2^8.))
In addition, the running time for I is approximately t^2, where t is
the running time of the adversary. The consequence is that we cannot
exclude the possibility that attacking RSAES-OAEP is considerably
easier than inverting RSA for concrete parameters. Still, the
existence of a security proof provides some assurance that the
RSAES-OAEP construction is sounder than ad hoc constructions such as
RSAES-PKCS1-v1_5.
Hybrid encryption schemes based on the RSA Key Encapsulation
Mechanism (RSA-KEM) paradigm offer tight proofs of security directly
applicable to concrete parameters; see [ISO18033] for discussion.
Future versions of PKCS #1 may specify schemes based on this
paradigm.
Moriarty, et al. Informational [Page 21]
^L
RFC 8017 PKCS #1 v2.2 November 2016
7.1.1. Encryption Operation
RSAES-OAEP-ENCRYPT ((n, e), M, L)
Options:
Hash hash function (hLen denotes the length in octets of
the hash function output)
MGF mask generation function
Input:
(n, e) recipient's RSA public key (k denotes the length in
octets of the RSA modulus n)
M message to be encrypted, an octet string of length mLen,
where mLen <= k - 2hLen - 2
L optional label to be associated with the message; the
default value for L, if L is not provided, is the empty
string
Output:
C ciphertext, an octet string of length k
Errors: "message too long"; "label too long"
Assumption: RSA public key (n, e) is valid
Steps:
1. Length checking:
a. If the length of L is greater than the input limitation
for the hash function (2^61 - 1 octets for SHA-1), output
"label too long" and stop.
b. If mLen > k - 2hLen - 2, output "message too long" and
stop.
2. EME-OAEP encoding (see Figure 1 below):
a. If the label L is not provided, let L be the empty string.
Let lHash = Hash(L), an octet string of length hLen (see
the note below).
b. Generate a padding string PS consisting of k - mLen -
2hLen - 2 zero octets. The length of PS may be zero.
Moriarty, et al. Informational [Page 22]
^L
RFC 8017 PKCS #1 v2.2 November 2016
c. Concatenate lHash, PS, a single octet with hexadecimal
value 0x01, and the message M to form a data block DB of
length k - hLen - 1 octets as
DB = lHash || PS || 0x01 || M.
d. Generate a random octet string seed of length hLen.
e. Let dbMask = MGF(seed, k - hLen - 1).
f. Let maskedDB = DB \xor dbMask.
g. Let seedMask = MGF(maskedDB, hLen).
h. Let maskedSeed = seed \xor seedMask.
i. Concatenate a single octet with hexadecimal value 0x00,
maskedSeed, and maskedDB to form an encoded message EM of
length k octets as
EM = 0x00 || maskedSeed || maskedDB.
3. RSA encryption:
a. Convert the encoded message EM to an integer message
representative m (see Section 4.2):
m = OS2IP (EM).
b. Apply the RSAEP encryption primitive (Section 5.1.1) to
the RSA public key (n, e) and the message representative m
to produce an integer ciphertext representative c:
c = RSAEP ((n, e), m).
c. Convert the ciphertext representative c to a ciphertext C
of length k octets (see Section 4.1):
C = I2OSP (c, k).
Moriarty, et al. Informational [Page 23]
^L
RFC 8017 PKCS #1 v2.2 November 2016
4. Output the ciphertext C.
_________________________________________________________________
+----------+------+--+-------+
DB = | lHash | PS |01| M |
+----------+------+--+-------+
|
+----------+ |
| seed | |
+----------+ |
| |
|-------> MGF ---> xor
| |
+--+ V |
|00| xor <----- MGF <-----|
+--+ | |
| | |
V V V
+--+----------+----------------------------+
EM = |00|maskedSeed| maskedDB |
+--+----------+----------------------------+
_________________________________________________________________
Figure 1: EME-OAEP Encoding Operation
Notes:
- lHash is the hash of the optional label L.
- The decoding operation follows reverse steps to recover M and
verify lHash and PS.
- If L is the empty string, the corresponding hash value lHash has
the following hexadecimal representation for different choices of
Hash:
SHA-1: (0x)da39a3ee 5e6b4b0d 3255bfef 95601890 afd80709
SHA-256: (0x)e3b0c442 98fc1c14 9afbf4c8 996fb924 27ae41e4 649b934c
a495991b 7852b855
SHA-384: (0x)38b060a7 51ac9638 4cd9327e b1b1e36a 21fdb711 14be0743
4c0cc7bf 63f6e1da 274edebf e76f65fb d51ad2f1 4898b95b
SHA-512: (0x)cf83e135 7eefb8bd f1542850 d66d8007 d620e405 0b5715dc
83f4a921 d36ce9ce 47d0d13c 5d85f2b0 ff8318d2 877eec2f
63b931bd 47417a81 a538327a f927da3e
Moriarty, et al. Informational [Page 24]
^L
RFC 8017 PKCS #1 v2.2 November 2016
7.1.2. Decryption Operation
RSAES-OAEP-DECRYPT (K, C, L)
Options:
Hash hash function (hLen denotes the length in octets of
the hash function output)
MGF mask generation function
Input:
K recipient's RSA private key (k denotes the length in
octets of the RSA modulus n), where k >= 2hLen + 2
C ciphertext to be decrypted, an octet string of length k
L optional label whose association with the message is to
be verified; the default value for L, if L is not
provided, is the empty string
Output:
M message, an octet string of length mLen, where
mLen <= k - 2hLen - 2
Error: "decryption error"
Steps:
1. Length checking:
a. If the length of L is greater than the input limitation
for the hash function (2^61 - 1 octets for SHA-1), output
"decryption error" and stop.
b. If the length of the ciphertext C is not k octets, output
"decryption error" and stop.
c. If k < 2hLen + 2, output "decryption error" and stop.
2. RSA decryption:
a. Convert the ciphertext C to an integer ciphertext
representative c (see Section 4.2):
c = OS2IP (C).
Moriarty, et al. Informational [Page 25]
^L
RFC 8017 PKCS #1 v2.2 November 2016
b. Apply the RSADP decryption primitive (Section 5.1.2) to
the RSA private key K and the ciphertext representative c
to produce an integer message representative m:
m = RSADP (K, c).
If RSADP outputs "ciphertext representative out of range"
(meaning that c >= n), output "decryption error" and stop.
c. Convert the message representative m to an encoded message
EM of length k octets (see Section 4.1):
EM = I2OSP (m, k).
3. EME-OAEP decoding:
a. If the label L is not provided, let L be the empty string.
Let lHash = Hash(L), an octet string of length hLen (see
the note in Section 7.1.1).
b. Separate the encoded message EM into a single octet Y, an
octet string maskedSeed of length hLen, and an octet
string maskedDB of length k - hLen - 1 as
EM = Y || maskedSeed || maskedDB.
c. Let seedMask = MGF(maskedDB, hLen).
d. Let seed = maskedSeed \xor seedMask.
e. Let dbMask = MGF(seed, k - hLen - 1).
f. Let DB = maskedDB \xor dbMask.
g. Separate DB into an octet string lHash' of length hLen, a
(possibly empty) padding string PS consisting of octets
with hexadecimal value 0x00, and a message M as
DB = lHash' || PS || 0x01 || M.
If there is no octet with hexadecimal value 0x01 to
separate PS from M, if lHash does not equal lHash', or if
Y is nonzero, output "decryption error" and stop. (See
the note below.)
Moriarty, et al. Informational [Page 26]
^L
RFC 8017 PKCS #1 v2.2 November 2016
4. Output the message M.
Note: Care must be taken to ensure that an opponent cannot
distinguish the different error conditions in Step 3.g, whether by
error message or timing, and, more generally, that an opponent
cannot learn partial information about the encoded message EM.
Otherwise, an opponent may be able to obtain useful information
about the decryption of the ciphertext C, leading to a chosen-
ciphertext attack such as the one observed by Manger [MANGER].
7.2. RSAES-PKCS1-v1_5
RSAES-PKCS1-v1_5 combines the RSAEP and RSADP primitives (Sections
5.1.1 and 5.1.2) with the EME-PKCS1-v1_5 encoding method (Step 2 in
Section 7.2.1, and Step 3 in Section 7.2.2). It is mathematically
equivalent to the encryption scheme in PKCS #1 v1.5.
RSAES-PKCS1-v1_5 can operate on messages of length up to k - 11
octets (k is the octet length of the RSA modulus), although care
should be taken to avoid certain attacks on low-exponent RSA due to
Coppersmith, Franklin, Patarin, and Reiter when long messages are
encrypted (see the third bullet in the notes below and [LOWEXP];
[NEWATTACK] contains an improved attack). As a general rule, the use
of this scheme for encrypting an arbitrary message, as opposed to a
randomly generated key, is NOT RECOMMENDED.
It is possible to generate valid RSAES-PKCS1-v1_5 ciphertexts without
knowing the corresponding plaintexts, with a reasonable probability
of success. This ability can be exploited in a chosen-ciphertext
attack as shown in [BLEICHENBACHER]. Therefore, if RSAES-PKCS1-v1_5
is to be used, certain easily implemented countermeasures should be
taken to thwart the attack found in [BLEICHENBACHER]. Typical
examples include the addition of structure to the data to be encoded,
rigorous checking of PKCS #1 v1.5 conformance (and other redundancy)
in decrypted messages, and the consolidation of error messages in a
client-server protocol based on PKCS #1 v1.5. These can all be
effective countermeasures and do not involve changes to a protocol
based on PKCS #1 v1.5. See [BKS] for a further discussion of these
and other countermeasures. It has recently been shown that the
security of the SSL/TLS handshake protocol [RFC5246], which uses
RSAES-PKCS1-v1_5 and certain countermeasures, can be related to a
variant of the RSA problem; see [RSATLS] for discussion.
Note: The following passages describe some security recommendations
pertaining to the use of RSAES-PKCS1-v1_5. Recommendations from PKCS
#1 v1.5 are included as well as new recommendations motivated by
cryptanalytic advances made in the intervening years.
Moriarty, et al. Informational [Page 27]
^L
RFC 8017 PKCS #1 v2.2 November 2016
o It is RECOMMENDED that the pseudorandom octets in Step 2 in
Section 7.2.1 be generated independently for each encryption
process, especially if the same data is input to more than one
encryption process. Haastad's results [HAASTAD] are one
motivation for this recommendation.
o The padding string PS in Step 2 in Section 7.2.1 is at least eight
octets long, which is a security condition for public-key
operations that makes it difficult for an attacker to recover data
by trying all possible encryption blocks.
o The pseudorandom octets can also help thwart an attack due to
Coppersmith et al. [LOWEXP] (see [NEWATTACK] for an improvement
of the attack) when the size of the message to be encrypted is
kept small. The attack works on low-exponent RSA when similar
messages are encrypted with the same RSA public key. More
specifically, in one flavor of the attack, when two inputs to
RSAEP agree on a large fraction of bits (8/9) and low-exponent RSA
(e = 3) is used to encrypt both of them, it may be possible to
recover both inputs with the attack. Another flavor of the attack
is successful in decrypting a single ciphertext when a large
fraction (2/3) of the input to RSAEP is already known. For
typical applications, the message to be encrypted is short (e.g.,
a 128-bit symmetric key), so not enough information will be known
or common between two messages to enable the attack. However, if
a long message is encrypted, or if part of a message is known,
then the attack may be a concern. In any case, the RSAES-OAEP
scheme overcomes the attack.
7.2.1. Encryption Operation
RSAES-PKCS1-V1_5-ENCRYPT ((n, e), M)
Input:
(n, e) recipient's RSA public key (k denotes the length in
octets of the modulus n)
M message to be encrypted, an octet string of length
mLen, where mLen <= k - 11
Output:
C ciphertext, an octet string of length k
Error: "message too long"
Moriarty, et al. Informational [Page 28]
^L
RFC 8017 PKCS #1 v2.2 November 2016
Steps:
1. Length checking: If mLen > k - 11, output "message too long"
and stop.
2. EME-PKCS1-v1_5 encoding:
a. Generate an octet string PS of length k - mLen - 3
consisting of pseudo-randomly generated nonzero octets.
The length of PS will be at least eight octets.
b. Concatenate PS, the message M, and other padding to form
an encoded message EM of length k octets as
EM = 0x00 || 0x02 || PS || 0x00 || M.
3. RSA encryption:
a. Convert the encoded message EM to an integer message
representative m (see Section 4.2):
m = OS2IP (EM).
b. Apply the RSAEP encryption primitive (Section 5.1.1) to
the RSA public key (n, e) and the message representative m
to produce an integer ciphertext representative c:
c = RSAEP ((n, e), m).
c. Convert the ciphertext representative c to a ciphertext C
of length k octets (see Section 4.1):
C = I2OSP (c, k).
4. Output the ciphertext C.
7.2.2. Decryption Operation
RSAES-PKCS1-V1_5-DECRYPT (K, C)
Input:
K recipient's RSA private key
C ciphertext to be decrypted, an octet string of length k,
where k is the length in octets of the RSA modulus n
Moriarty, et al. Informational [Page 29]
^L
RFC 8017 PKCS #1 v2.2 November 2016
Output:
M message, an octet string of length at most k - 11
Error: "decryption error"
Steps:
1. Length checking: If the length of the ciphertext C is not k
octets (or if k < 11), output "decryption error" and stop.
2. RSA decryption:
a. Convert the ciphertext C to an integer ciphertext
representative c (see Section 4.2):
c = OS2IP (C).
b. Apply the RSADP decryption primitive (Section 5.1.2) to
the RSA private key (n, d) and the ciphertext
representative c to produce an integer message
representative m:
m = RSADP ((n, d), c).
If RSADP outputs "ciphertext representative out of range"
(meaning that c >= n), output "decryption error" and stop.
c. Convert the message representative m to an encoded message
EM of length k octets (see Section 4.1):
EM = I2OSP (m, k).
3. EME-PKCS1-v1_5 decoding: Separate the encoded message EM into
an octet string PS consisting of nonzero octets and a message
M as
EM = 0x00 || 0x02 || PS || 0x00 || M.
If the first octet of EM does not have hexadecimal value 0x00,
if the second octet of EM does not have hexadecimal value
0x02, if there is no octet with hexadecimal value 0x00 to
separate PS from M, or if the length of PS is less than 8
octets, output "decryption error" and stop. (See the note
below.)
4. Output M.
Moriarty, et al. Informational [Page 30]
^L
RFC 8017 PKCS #1 v2.2 November 2016
Note: Care shall be taken to ensure that an opponent cannot
distinguish the different error conditions in Step 3, whether by
error message or timing. Otherwise, an opponent may be able to
obtain useful information about the decryption of the ciphertext
C, leading to a strengthened version of Bleichenbacher's attack
[BLEICHENBACHER]; compare to Manger's attack [MANGER].
8. Signature Scheme with Appendix
For the purposes of this document, a signature scheme with appendix
consists of a signature generation operation and a signature
verification operation, where the signature generation operation
produces a signature from a message with a signer's RSA private key,
and the signature verification operation verifies the signature on
the message with the signer's corresponding RSA public key. To
verify a signature constructed with this type of scheme, it is
necessary to have the message itself. In this way, signature schemes
with appendix are distinguished from signature schemes with message
recovery, which are not supported in this document.
A signature scheme with appendix can be employed in a variety of
applications. For instance, the signature schemes with appendix
defined here would be suitable signature algorithms for X.509
certificates [ISO9594]. Related signature schemes could be employed
in PKCS #7 [RFC2315], although for technical reasons the current
version of PKCS #7 separates a hash function from a signature scheme,
which is different than what is done here; see the note in
Appendix A.2.3 for more discussion.
Two signature schemes with appendix are specified in this document:
RSASSA-PSS and RSASSA-PKCS1-v1_5. Although no attacks are known
against RSASSA-PKCS1-v1_5, in the interest of increased robustness,
RSASSA-PSS is REQUIRED in new applications. RSASSA-PKCS1-v1_5 is
included only for compatibility with existing applications.
The signature schemes with appendix given here follow a general model
similar to that employed in IEEE 1363 [IEEE1363], combining signature
and verification primitives with an encoding method for signatures.
The signature generation operations apply a message encoding
operation to a message to produce an encoded message, which is then
converted to an integer message representative. A signature
primitive is applied to the message representative to produce the
signature. Reversing this, the signature verification operations
apply a signature verification primitive to the signature to recover
a message representative, which is then converted to an octet-string-
encoded message. A verification operation is applied to the message
and the encoded message to determine whether they are consistent.
Moriarty, et al. Informational [Page 31]
^L
RFC 8017 PKCS #1 v2.2 November 2016
If the encoding method is deterministic (e.g., EMSA-PKCS1-v1_5), the
verification operation may apply the message encoding operation to
the message and compare the resulting encoded message to the
previously derived encoded message. If there is a match, the
signature is considered valid. If the method is randomized (e.g.,
EMSA-PSS), the verification operation is typically more complicated.
For example, the verification operation in EMSA-PSS extracts the
random salt and a hash output from the encoded message and checks
whether the hash output, the salt, and the message are consistent;
the hash output is a deterministic function in terms of the message
and the salt. For both signature schemes with appendix defined in
this document, the signature generation and signature verification
operations are readily implemented as "single-pass" operations if the
signature is placed after the message. See PKCS #7 [RFC2315] for an
example format in the case of RSASSA-PKCS1-v1_5.
8.1. RSASSA-PSS
RSASSA-PSS combines the RSASP1 and RSAVP1 primitives with the
EMSA-PSS encoding method. It is compatible with the Integer
Factorization Signature Scheme with Appendix (IFSSA) as amended in
IEEE 1363a [IEEE1363A], where the signature and verification
primitives are IFSP-RSA1 and IFVP-RSA1 as defined in IEEE 1363
[IEEE1363], and the message encoding method is EMSA4. EMSA4 is
slightly more general than EMSA-PSS as it acts on bit strings rather
than on octet strings. EMSA-PSS is equivalent to EMSA4 restricted to
the case that the operands as well as the hash and salt values are
octet strings.
The length of messages on which RSASSA-PSS can operate is either
unrestricted or constrained by a very large number, depending on the
hash function underlying the EMSA-PSS encoding method.
Assuming that computing e-th roots modulo n is infeasible and the
hash and mask generation functions in EMSA-PSS have appropriate
properties, RSASSA-PSS provides secure signatures. This assurance is
provable in the sense that the difficulty of forging signatures can
be directly related to the difficulty of inverting the RSA function,
provided that the hash and mask generation functions are viewed as
black boxes or random oracles. The bounds in the security proof are
essentially "tight", meaning that the success probability and running
time for the best forger against RSASSA-PSS are very close to the
corresponding parameters for the best RSA inversion algorithm; see
[RSARABIN] [PSSPROOF] [JONSSON] for further discussion.
In contrast to the RSASSA-PKCS1-v1_5 signature scheme, a hash
function identifier is not embedded in the EMSA-PSS encoded message,
so in theory it is possible for an adversary to substitute a
Moriarty, et al. Informational [Page 32]
^L
RFC 8017 PKCS #1 v2.2 November 2016
different (and potentially weaker) hash function than the one
selected by the signer. Therefore, it is RECOMMENDED that the
EMSA-PSS mask generation function be based on the same hash function.
In this manner, the entire encoded message will be dependent on the
hash function, and it will be difficult for an opponent to substitute
a different hash function than the one intended by the signer. This
matching of hash functions is only for the purpose of preventing hash
function substitution and is not necessary if hash function
substitution is addressed by other means (e.g., the verifier accepts
only a designated hash function). See [HASHID] for further
discussion of these points. The provable security of RSASSA-PSS does
not rely on the hash function in the mask generation function being
the same as the hash function applied to the message.
RSASSA-PSS is different from other RSA-based signature schemes in
that it is probabilistic rather than deterministic, incorporating a
randomly generated salt value. The salt value enhances the security
of the scheme by affording a "tighter" security proof than
deterministic alternatives such as Full Domain Hashing (FDH); see
[RSARABIN] for discussion. However, the randomness is not critical
to security. In situations where random generation is not possible,
a fixed value or a sequence number could be employed instead, with
the resulting provable security similar to that of FDH [FDH].
8.1.1. Signature Generation Operation
RSASSA-PSS-SIGN (K, M)
Input:
K signer's RSA private key
M message to be signed, an octet string
Output:
S signature, an octet string of length k, where k is the
length in octets of the RSA modulus n
Errors: "message too long;" "encoding error"
Steps:
1. EMSA-PSS encoding: Apply the EMSA-PSS encoding operation
(Section 9.1.1) to the message M to produce an encoded message
EM of length \ceil ((modBits - 1)/8) octets such that the bit
length of the integer OS2IP (EM) (see Section 4.2) is at most
modBits - 1, where modBits is the length in bits of the RSA
modulus n:
Moriarty, et al. Informational [Page 33]
^L
RFC 8017 PKCS #1 v2.2 November 2016
EM = EMSA-PSS-ENCODE (M, modBits - 1).
Note that the octet length of EM will be one less than k if
modBits - 1 is divisible by 8 and equal to k otherwise. If
the encoding operation outputs "message too long", output
"message too long" and stop. If the encoding operation
outputs "encoding error", output "encoding error" and stop.
2. RSA signature:
a. Convert the encoded message EM to an integer message
representative m (see Section 4.2):
m = OS2IP (EM).
b. Apply the RSASP1 signature primitive (Section 5.2.1) to
the RSA private key K and the message representative m to
produce an integer signature representative s:
s = RSASP1 (K, m).
c. Convert the signature representative s to a signature S of
length k octets (see Section 4.1):
S = I2OSP (s, k).
3. Output the signature S.
8.1.2. Signature Verification Operation
RSASSA-PSS-VERIFY ((n, e), M, S)
Input:
(n, e) signer's RSA public key
M message whose signature is to be verified, an octet string
S signature to be verified, an octet string of length k,
where k is the length in octets of the RSA modulus n
Output: "valid signature" or "invalid signature"
Steps:
1. Length checking: If the length of the signature S is not k
octets, output "invalid signature" and stop.
Moriarty, et al. Informational [Page 34]
^L
RFC 8017 PKCS #1 v2.2 November 2016
2. RSA verification:
a. Convert the signature S to an integer signature
representative s (see Section 4.2):
s = OS2IP (S).
b. Apply the RSAVP1 verification primitive (Section 5.2.2) to
the RSA public key (n, e) and the signature representative
s to produce an integer message representative m:
m = RSAVP1 ((n, e), s).
If RSAVP1 output "signature representative out of range",
output "invalid signature" and stop.
c. Convert the message representative m to an encoded message
EM of length emLen = \ceil ((modBits - 1)/8) octets, where
modBits is the length in bits of the RSA modulus n (see
Section 4.1):
EM = I2OSP (m, emLen).
Note that emLen will be one less than k if modBits - 1 is
divisible by 8 and equal to k otherwise. If I2OSP outputs
"integer too large", output "invalid signature" and stop.
3. EMSA-PSS verification: Apply the EMSA-PSS verification
operation (Section 9.1.2) to the message M and the encoded
message EM to determine whether they are consistent:
Result = EMSA-PSS-VERIFY (M, EM, modBits - 1).
4. If Result = "consistent", output "valid signature".
Otherwise, output "invalid signature".
8.2. RSASSA-PKCS1-v1_5
RSASSA-PKCS1-v1_5 combines the RSASP1 and RSAVP1 primitives with the
EMSA-PKCS1-v1_5 encoding method. It is compatible with the IFSSA
scheme defined in IEEE 1363 [IEEE1363], where the signature and
verification primitives are IFSP-RSA1 and IFVP-RSA1, and the message
encoding method is EMSA-PKCS1-v1_5 (which is not defined in IEEE 1363
but is in IEEE 1363a [IEEE1363A]).
The length of messages on which RSASSA-PKCS1-v1_5 can operate is
either unrestricted or constrained by a very large number, depending
on the hash function underlying the EMSA-PKCS1-v1_5 method.
Moriarty, et al. Informational [Page 35]
^L
RFC 8017 PKCS #1 v2.2 November 2016
Assuming that computing e-th roots modulo n is infeasible and the
hash function in EMSA-PKCS1-v1_5 has appropriate properties,
RSASSA-PKCS1-v1_5 is conjectured to provide secure signatures. More
precisely, forging signatures without knowing the RSA private key is
conjectured to be computationally infeasible. Also, in the encoding
method EMSA-PKCS1-v1_5, a hash function identifier is embedded in the
encoding. Because of this feature, an adversary trying to find a
message with the same signature as a previously signed message must
find collisions of the particular hash function being used; attacking
a different hash function than the one selected by the signer is not
useful to the adversary. See [HASHID] for further discussion.
Note: As noted in PKCS #1 v1.5, the EMSA-PKCS1-v1_5 encoding method
has the property that the encoded message, converted to an integer
message representative, is guaranteed to be large and at least
somewhat "random". This prevents attacks of the kind proposed by
Desmedt and Odlyzko [CHOSEN] where multiplicative relationships
between message representatives are developed by factoring the
message representatives into a set of small values (e.g., a set of
small primes). Coron, Naccache, and Stern [PADDING] showed that a
stronger form of this type of attack could be quite effective against
some instances of the ISO/IEC 9796-2 signature scheme. They also
analyzed the complexity of this type of attack against the
EMSA-PKCS1-v1_5 encoding method and concluded that an attack would be
impractical, requiring more operations than a collision search on the
underlying hash function (i.e., more than 2^80 operations).
Coppersmith, Halevi, and Jutla [FORGERY] subsequently extended Coron
et al.'s attack to break the ISO/IEC 9796-1 signature scheme with
message recovery. The various attacks illustrate the importance of
carefully constructing the input to the RSA signature primitive,
particularly in a signature scheme with message recovery.
Accordingly, the EMSA-PKCS-v1_5 encoding method explicitly includes a
hash operation and is not intended for signature schemes with message
recovery. Moreover, while no attack is known against the
EMSA-PKCS-v1_5 encoding method, a gradual transition to EMSA-PSS is
recommended as a precaution against future developments.
8.2.1. Signature Generation Operation
RSASSA-PKCS1-V1_5-SIGN (K, M)
Input:
K signer's RSA private key
M message to be signed, an octet string
Moriarty, et al. Informational [Page 36]
^L
RFC 8017 PKCS #1 v2.2 November 2016
Output:
S signature, an octet string of length k, where k is the
length in octets of the RSA modulus n
Errors: "message too long"; "RSA modulus too short"
Steps:
1. EMSA-PKCS1-v1_5 encoding: Apply the EMSA-PKCS1-v1_5 encoding
operation (Section 9.2) to the message M to produce an encoded
message EM of length k octets:
EM = EMSA-PKCS1-V1_5-ENCODE (M, k).
If the encoding operation outputs "message too long", output
"message too long" and stop. If the encoding operation
outputs "intended encoded message length too short", output
"RSA modulus too short" and stop.
2. RSA signature:
a. Convert the encoded message EM to an integer message
representative m (see Section 4.2):
m = OS2IP (EM).
b. Apply the RSASP1 signature primitive (Section 5.2.1) to
the RSA private key K and the message representative m to
produce an integer signature representative s:
s = RSASP1 (K, m).
c. Convert the signature representative s to a signature S of
length k octets (see Section 4.1):
S = I2OSP (s, k).
3. Output the signature S.
8.2.2. Signature Verification Operation
RSASSA-PKCS1-V1_5-VERIFY ((n, e), M, S)
Input:
(n, e) signer's RSA public key
M message whose signature is to be verified, an octet string
Moriarty, et al. Informational [Page 37]
^L
RFC 8017 PKCS #1 v2.2 November 2016
S signature to be verified, an octet string of length k,
where k is the length in octets of the RSA modulus n
Output "valid signature" or "invalid signature"
Errors: "message too long"; "RSA modulus too short"
Steps:
1. Length checking: If the length of the signature S is not k
octets, output "invalid signature" and stop.
2. RSA verification:
a. Convert the signature S to an integer signature
representative s (see Section 4.2):
s = OS2IP (S).
b. Apply the RSAVP1 verification primitive (Section 5.2.2) to
the RSA public key (n, e) and the signature representative
s to produce an integer message representative m:
m = RSAVP1 ((n, e), s).
If RSAVP1 outputs "signature representative out of range",
output "invalid signature" and stop.
c. Convert the message representative m to an encoded message
EM of length k octets (see Section 4.1):
EM = I2OSP (m, k).
If I2OSP outputs "integer too large", output "invalid
signature" and stop.
3. EMSA-PKCS1-v1_5 encoding: Apply the EMSA-PKCS1-v1_5 encoding
operation (Section 9.2) to the message M to produce a second
encoded message EM' of length k octets:
EM' = EMSA-PKCS1-V1_5-ENCODE (M, k).
If the encoding operation outputs "message too long", output
"message too long" and stop. If the encoding operation
outputs "intended encoded message length too short", output
"RSA modulus too short" and stop.
Moriarty, et al. Informational [Page 38]
^L
RFC 8017 PKCS #1 v2.2 November 2016
4. Compare the encoded message EM and the second encoded message
EM'. If they are the same, output "valid signature";
otherwise, output "invalid signature".
Note: Another way to implement the signature verification
operation is to apply a "decoding" operation (not specified in
this document) to the encoded message to recover the underlying
hash value, and then compare it to a newly computed hash value.
This has the advantage that it requires less intermediate storage
(two hash values rather than two encoded messages), but the
disadvantage that it requires additional code.
9. Encoding Methods for Signatures with Appendix
Encoding methods consist of operations that map between octet string
messages and octet-string-encoded messages, which are converted to
and from integer message representatives in the schemes. The integer
message representatives are processed via the primitives. The
encoding methods thus provide the connection between the schemes,
which process messages, and the primitives.
An encoding method for signatures with appendix, for the purposes of
this document, consists of an encoding operation and optionally a
verification operation. An encoding operation maps a message M to an
encoded message EM of a specified length. A verification operation
determines whether a message M and an encoded message EM are
consistent, i.e., whether the encoded message EM is a valid encoding
of the message M.
The encoding operation may introduce some randomness, so that
different applications of the encoding operation to the same message
will produce different encoded messages, which has benefits for
provable security. For such an encoding method, both an encoding and
a verification operation are needed unless the verifier can reproduce
the randomness (e.g., by obtaining the salt value from the signer).
For a deterministic encoding method, only an encoding operation is
needed.
Two encoding methods for signatures with appendix are employed in the
signature schemes and are specified here: EMSA-PSS and
EMSA-PKCS1-v1_5.
Moriarty, et al. Informational [Page 39]
^L
RFC 8017 PKCS #1 v2.2 November 2016
9.1. EMSA-PSS
This encoding method is parameterized by the choice of hash function,
mask generation function, and salt length. These options should be
fixed for a given RSA key, except that the salt length can be
variable (see [JONSSON] for discussion). Suggested hash and mask
generation functions are given in Appendix B. The encoding method is
based on Bellare and Rogaway's Probabilistic Signature Scheme (PSS)
[RSARABIN][PSS]. It is randomized and has an encoding operation and
a verification operation.
Figure 2 illustrates the encoding operation.
__________________________________________________________________
+-----------+
| M |
+-----------+
|
V
Hash
|
V
+--------+----------+----------+
M' = |Padding1| mHash | salt |
+--------+----------+----------+
|
+--------+----------+ V
DB = |Padding2| salt | Hash
+--------+----------+ |
| |
V |
xor <--- MGF <---|
| |
| |
V V
+-------------------+----------+--+
EM = | maskedDB | H |bc|
+-------------------+----------+--+
__________________________________________________________________
Figure 2: EMSA-PSS Encoding Operation
Note that the verification operation follows reverse steps to recover
salt and then forward steps to recompute and compare H.
Moriarty, et al. Informational [Page 40]
^L
RFC 8017 PKCS #1 v2.2 November 2016
Notes:
1. The encoding method defined here differs from the one in Bellare
and Rogaway's submission to IEEE 1363a [PSS] in three respects:
* It applies a hash function rather than a mask generation
function to the message. Even though the mask generation
function is based on a hash function, it seems more natural to
apply a hash function directly.
* The value that is hashed together with the salt value is the
string (0x)00 00 00 00 00 00 00 00 || mHash rather than the
message M itself. Here, mHash is the hash of M. Note that
the hash function is the same in both steps. See Note 3 below
for further discussion. (Also, the name "salt" is used
instead of "seed", as it is more reflective of the value's
role.)
* The encoded message in EMSA-PSS has nine fixed bits; the first
bit is 0 and the last eight bits form a "trailer field", the
octet 0xbc. In the original scheme, only the first bit is
fixed. The rationale for the trailer field is for
compatibility with the Integer Factorization Signature
Primitive using Rabin-Williams (IFSP-RW) in IEEE 1363
[IEEE1363] and the corresponding primitive in ISO/IEC
9796-2:2010 [ISO9796].
2. Assuming that the mask generation function is based on a hash
function, it is RECOMMENDED that the hash function be the same as
the one that is applied to the message; see Section 8.1 for
further discussion.
3. Without compromising the security proof for RSASSA-PSS, one may
perform Steps 1 and 2 of EMSA-PSS-ENCODE and EMSA-PSS-VERIFY (the
application of the hash function to the message) outside the
module that computes the rest of the signature operation, so that
mHash rather than the message M itself is input to the module.
In other words, the security proof for RSASSA-PSS still holds
even if an opponent can control the value of mHash. This is
convenient if the module has limited I/O bandwidth, e.g., a smart
card. Note that previous versions of PSS [RSARABIN][PSS] did not
have this property. Of course, it may be desirable for other
security reasons to have the module process the full message.
For instance, the module may need to "see" what it is signing if
it does not trust the component that computes the hash value.
Moriarty, et al. Informational [Page 41]
^L
RFC 8017 PKCS #1 v2.2 November 2016
4. Typical salt lengths in octets are hLen (the length of the output
of the hash function Hash) and 0. In both cases, the security of
RSASSA-PSS can be closely related to the hardness of inverting
RSAVP1. Bellare and Rogaway [RSARABIN] give a tight lower bound
for the security of the original RSA-PSS scheme, which
corresponds roughly to the former case, while Coron [FDH] gives a
lower bound for the related Full Domain Hashing scheme, which
corresponds roughly to the latter case. In [PSSPROOF], Coron
provides a general treatment with various salt lengths ranging
from 0 to hLen; see [IEEE1363A] for discussion. See also
[JONSSON], which adapts the security proofs in [RSARABIN]
[PSSPROOF] to address the differences between the original and
the present version of RSA-PSS as listed in Note 1 above.
5. As noted in IEEE 1363a [IEEE1363A], the use of randomization in
signature schemes -- such as the salt value in EMSA-PSS -- may
provide a "covert channel" for transmitting information other
than the message being signed. For more on covert channels, see
[SIMMONS].
9.1.1. Encoding Operation
EMSA-PSS-ENCODE (M, emBits)
Options:
Hash hash function (hLen denotes the length in octets of
the hash function output)
MGF mask generation function
sLen intended length in octets of the salt
Input:
M message to be encoded, an octet string
emBits maximal bit length of the integer OS2IP (EM) (see Section
4.2), at least 8hLen + 8sLen + 9
Output:
EM encoded message, an octet string of length emLen = \ceil
(emBits/8)
Errors: "Encoding error"; "message too long"
Moriarty, et al. Informational [Page 42]
^L
RFC 8017 PKCS #1 v2.2 November 2016
Steps:
1. If the length of M is greater than the input limitation for
the hash function (2^61 - 1 octets for SHA-1), output
"message too long" and stop.
2. Let mHash = Hash(M), an octet string of length hLen.
3. If emLen < hLen + sLen + 2, output "encoding error" and stop.
4. Generate a random octet string salt of length sLen; if sLen =
0, then salt is the empty string.
5. Let
M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt;
M' is an octet string of length 8 + hLen + sLen with eight
initial zero octets.
6. Let H = Hash(M'), an octet string of length hLen.
7. Generate an octet string PS consisting of emLen - sLen - hLen
- 2 zero octets. The length of PS may be 0.
8. Let DB = PS || 0x01 || salt; DB is an octet string of length
emLen - hLen - 1.
9. Let dbMask = MGF(H, emLen - hLen - 1).
10. Let maskedDB = DB \xor dbMask.
11. Set the leftmost 8emLen - emBits bits of the leftmost octet
in maskedDB to zero.
12. Let EM = maskedDB || H || 0xbc.
13. Output EM.
Moriarty, et al. Informational [Page 43]
^L
RFC 8017 PKCS #1 v2.2 November 2016
9.1.2. Verification Operation
EMSA-PSS-VERIFY (M, EM, emBits)
Options:
Hash hash function (hLen denotes the length in octets of
the hash function output)
MGF mask generation function
sLen intended length in octets of the salt
Input:
M message to be verified, an octet string
EM encoded message, an octet string of length emLen = \ceil
(emBits/8)
emBits maximal bit length of the integer OS2IP (EM) (see Section
4.2), at least 8hLen + 8sLen + 9
Output: "consistent" or "inconsistent"
Steps:
1. If the length of M is greater than the input limitation for
the hash function (2^61 - 1 octets for SHA-1), output
"inconsistent" and stop.
2. Let mHash = Hash(M), an octet string of length hLen.
3. If emLen < hLen + sLen + 2, output "inconsistent" and stop.
4. If the rightmost octet of EM does not have hexadecimal value
0xbc, output "inconsistent" and stop.
5. Let maskedDB be the leftmost emLen - hLen - 1 octets of EM,
and let H be the next hLen octets.
6. If the leftmost 8emLen - emBits bits of the leftmost octet in
maskedDB are not all equal to zero, output "inconsistent" and
stop.
7. Let dbMask = MGF(H, emLen - hLen - 1).
8. Let DB = maskedDB \xor dbMask.
9. Set the leftmost 8emLen - emBits bits of the leftmost octet
in DB to zero.
Moriarty, et al. Informational [Page 44]
^L
RFC 8017 PKCS #1 v2.2 November 2016
10. If the emLen - hLen - sLen - 2 leftmost octets of DB are not
zero or if the octet at position emLen - hLen - sLen - 1 (the
leftmost position is "position 1") does not have hexadecimal
value 0x01, output "inconsistent" and stop.
11. Let salt be the last sLen octets of DB.
12. Let
M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt ;
M' is an octet string of length 8 + hLen + sLen with eight
initial zero octets.
13. Let H' = Hash(M'), an octet string of length hLen.
14. If H = H', output "consistent". Otherwise, output
"inconsistent".
9.2. EMSA-PKCS1-v1_5
This encoding method is deterministic and only has an encoding
operation.
EMSA-PKCS1-v1_5-ENCODE (M, emLen)
Option:
Hash hash function (hLen denotes the length in octets of
the hash function output)
Input:
M message to be encoded
emLen intended length in octets of the encoded message, at
least tLen + 11, where tLen is the octet length of the
Distinguished Encoding Rules (DER) encoding T of
a certain value computed during the encoding operation
Output:
EM encoded message, an octet string of length emLen
Errors: "message too long"; "intended encoded message length too
short"
Moriarty, et al. Informational [Page 45]
^L
RFC 8017 PKCS #1 v2.2 November 2016
Steps:
1. Apply the hash function to the message M to produce a hash
value H:
H = Hash(M).
If the hash function outputs "message too long", output
"message too long" and stop.
2. Encode the algorithm ID for the hash function and the hash
value into an ASN.1 value of type DigestInfo (see
Appendix A.2.4) with the DER, where the type DigestInfo has
the syntax
DigestInfo ::= SEQUENCE {
digestAlgorithm AlgorithmIdentifier,
digest OCTET STRING
}
The first field identifies the hash function and the second
contains the hash value. Let T be the DER encoding of the
DigestInfo value (see the notes below), and let tLen be the
length in octets of T.
3. If emLen < tLen + 11, output "intended encoded message length
too short" and stop.
4. Generate an octet string PS consisting of emLen - tLen - 3
octets with hexadecimal value 0xff. The length of PS will be
at least 8 octets.
5. Concatenate PS, the DER encoding T, and other padding to form
the encoded message EM as
EM = 0x00 || 0x01 || PS || 0x00 || T.
6. Output EM.
Moriarty, et al. Informational [Page 46]
^L
RFC 8017 PKCS #1 v2.2 November 2016
Notes:
1. For the nine hash functions mentioned in Appendix B.1, the DER
encoding T of the DigestInfo value is equal to the following:
MD2: (0x)30 20 30 0c 06 08 2a 86 48 86 f7 0d 02 02 05 00 04
10 || H.
MD5: (0x)30 20 30 0c 06 08 2a 86 48 86 f7 0d 02 05 05 00 04
10 || H.
SHA-1: (0x)30 21 30 09 06 05 2b 0e 03 02 1a 05 00 04 14 || H.
SHA-224: (0x)30 2d 30 0d 06 09 60 86 48 01 65 03 04 02 04
05 00 04 1c || H.
SHA-256: (0x)30 31 30 0d 06 09 60 86 48 01 65 03 04 02 01 05 00
04 20 || H.
SHA-384: (0x)30 41 30 0d 06 09 60 86 48 01 65 03 04 02 02 05 00
04 30 || H.
SHA-512: (0x)30 51 30 0d 06 09 60 86 48 01 65 03 04 02 03 05 00
04 40 || H.
SHA-512/224: (0x)30 2d 30 0d 06 09 60 86 48 01 65 03 04 02 05
05 00 04 1c || H.
SHA-512/256: (0x)30 31 30 0d 06 09 60 86 48 01 65 03 04 02 06
05 00 04 20 || H.
2. In version 1.5 of this document, T was defined as the BER
encoding, rather than the DER encoding, of the DigestInfo value.
In particular, it is possible -- at least in theory -- that the
verification operation defined in this document (as well as in
version 2.0) rejects a signature that is valid with respect to
the specification given in PKCS #1 v1.5. This occurs if other
rules than DER are applied to DigestInfo (e.g., an indefinite
length encoding of the underlying SEQUENCE type). While this is
unlikely to be a concern in practice, a cautious implementor may
choose to employ a verification operation based on a BER decoding
operation as specified in PKCS #1 v1.5. In this manner,
compatibility with any valid implementation based on PKCS #1 v1.5
is obtained. Such a verification operation should indicate
whether the underlying BER encoding is a DER encoding and hence
whether the signature is valid with respect to the specification
given in this document.
10. Security Considerations
Security considerations are discussed throughout this memo.
Moriarty, et al. Informational [Page 47]
^L
RFC 8017 PKCS #1 v2.2 November 2016
11. References
11.1. Normative References
[GARNER] Garner, H., "The Residue Number System", IRE Transactions
on Electronic Computers, Volume EC-8, Issue 2, pp.
140-147, DOI 10.1109/TEC.1959.5219515, June 1959.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<http://www.rfc-editor.org/info/rfc2119>.
[RSA] Rivest, R., Shamir, A., and L. Adleman, "A Method for
Obtaining Digital Signatures and Public-Key
Cryptosystems", Communications of the ACM, Volume 21,
Issue 2, pp. 120-126, DOI 10.1145/359340.359342, February
1978.
11.2. Informative References
[ANSIX944] ANSI, "Key Establishment Using Integer Factorization
Cryptography", ANSI X9.44-2007, August 2007.
[BKS] Bleichenbacher, D., Kaliski, B., and J. Staddon, "Recent
Results on PKCS #1: RSA Encryption Standard", RSA
Laboratories, Bulletin No. 7, June 1998.
[BLEICHENBACHER]
Bleichenbacher, D., "Chosen Ciphertext Attacks Against
Protocols Based on the RSA Encryption Standard PKCS #1",
Lecture Notes in Computer Science, Volume 1462, pp. 1-12,
1998.
[CHOSEN] Desmedt, Y. and A. Odlyzko, "A Chosen Text Attack on the
RSA Cryptosystem and Some Discrete Logarithm Schemes",
Lecture Notes in Computer Science, Volume 218, pp.
516-522, 1985.
[COCHRAN] Cochran, M., "Notes on the Wang et al. 2^63 SHA-1
Differential Path", Cryptology ePrint Archive: Report
2007/474, August 2008, <http://eprint.iacr.org/2007/474>.
[FASTDEC] Quisquater, J. and C. Couvreur, "Fast Decipherment
Algorithm for RSA Public-Key Cryptosystem", Electronic
Letters, Volume 18, Issue 21, pp. 905-907,
DOI 10.1049/el:19820617, October 1982.
Moriarty, et al. Informational [Page 48]
^L
RFC 8017 PKCS #1 v2.2 November 2016
[FDH] Coron, J., "On the Exact Security of Full Domain Hash",
Lecture Notes in Computer Science, Volume 1880, pp.
229-235, 2000.
[FOPS] Fujisaki, E., Okamoto, T., Pointcheval, D., and J. Stern,
"RSA-OAEP is Secure under the RSA Assumption", Lecture
Notes in Computer Science, Volume 2139, pp. 260-274,
August 2001.
[FORGERY] Coppersmith, D., Halevi, S., and C. Jutla, "ISO 9796-1 and
the new forgery strategy", rump session of Crypto, August
1999.
[HAASTAD] Haastad, J., "Solving Simultaneous Modular Equations of
Low Degree", SIAM Journal on Computing, Volume 17,
Issue 2, pp. 336-341, DOI 10.1137/0217019, April 1988.
[HANDBOOK] Menezes, A., van Oorschot, P., and S. Vanstone, "Handbook
of Applied Cryptography", CRC Press, ISBN: 0849385237,
1996.
[HASHID] Kaliski, B., "On Hash Function Firewalls in Signature
Schemes", Lecture Notes in Computer Science, Volume 2271,
pp. 1-16, DOI 10.1007/3-540-45760-7_1, February 2002.
[IEEE1363] IEEE, "Standard Specifications for Public Key
Cryptography", IEEE Std 1363-2000,
DOI 10.1109/IEEESTD.2000.92292, August 2000,
<http://ieeexplore.ieee.org/document/891000/>.
[IEEE1363A]
IEEE, "Standard Specifications for Public Key Cryptography
- Amendment 1: Additional Techniques", IEEE Std 1363a-
2004, DOI 10.1109/IEEESTD.2004.94612, September 2004,
<http://ieeexplore.ieee.org/document/1335427/>.
[ISO18033] International Organization for Standardization,
"Information technology -- Security techniques --
Encryption algorithms - Part 2: Asymmetric ciphers", ISO/
IEC 18033-2:2006, May 2006.
[ISO9594] International Organization for Standardization,
"Information technology - Open Systems Interconnection -
The Directory: Public-key and attribute certificate
frameworks", ISO/IEC 9594-8:2008, December 2008.
Moriarty, et al. Informational [Page 49]
^L
RFC 8017 PKCS #1 v2.2 November 2016
[ISO9796] International Organization for Standardization,
"Information technology - Security techniques - Digital
signature schemes giving message recovery - Part 2:
Integer factorization based mechanisms",
ISO/IEC 9796-2:2010, December 2010.
[JONSSON] Jonsson, J., "Security Proofs for the RSA-PSS Signature
Scheme and Its Variants", Cryptology ePrint
Archive: Report 2001/053, March 2002,
<http://eprint.iacr.org/2001/053>.
[LOWEXP] Coppersmith, D., Franklin, M., Patarin, J., and M. Reiter,
"Low-Exponent RSA with Related Messages", Lecture Notes in
Computer Science, Volume 1070, pp. 1-9, 1996.
[MANGER] Manger, J., "A Chosen Ciphertext Attack on RSA Optimal
Asymmetric Encryption Padding (OAEP) as Standardized in
PKCS #1 v2.0", Lecture Notes in Computer Science, Volume
2139, pp. 230-238, DOI 10.1007/3-540-44647-8_14, 2001.
[MD4] Dobbertin, H., "Cryptanalysis of MD4", Lecture Notes in
Computer Science, Volume 1039, pp. 53-69,
DOI 10.1007/3-540-60865-6_43, 1996.
[MD4FIRST] Dobbertin, H., "The First Two Rounds of MD4 are Not One-
Way", Lecture Notes in Computer Science, Volume 1372, pp.
284-292, DOI 10.1007/3-540-69710-1_19, March 1998.
[MD4LAST] den Boer, B. and A. Bosselaers, "An Attack on the Last Two
Rounds of MD4", Lecture Notes in Computer Science, Volume
576, pp. 194-203, DOI 10.1007/3-540-46766-1_14, 1992.
[NEWATTACK]
Coron, J., Joye, M., Naccache, D., and P. Paillier, "New
Attacks on PKCS #1 v1.5 Encryption", Lecture Notes in
Computer Science, Volume 1807, pp. 369-381,
DOI 10.1007/3-540-45539-6_25, May 2000.
[OAEP] Bellare, M. and P. Rogaway, "Optimal Asymmetric Encryption
- How to Encrypt with RSA", Lecture Notes in Computer
Science, Volume 950, pp. 92-111, November 1995.
[PA98] Bellare, M., Desai, A., Pointcheval, D., and P. Rogaway,
"Relations Among Notions of Security for Public-Key
Encryption Schemes", Lecture Notes in Computer
Science, Volume 1462, pp. 26-45, DOI 10.1007/BFb0055718,
1998.
Moriarty, et al. Informational [Page 50]
^L
RFC 8017 PKCS #1 v2.2 November 2016
[PADDING] Coron, J., Naccache, D., and J. Stern, "On the Security of
RSA Padding", Lecture Notes in Computer Science, Volume
1666, pp. 1-18, DOI 10.1007/3-540-48405-1_1, December
1999.
[PKCS1_22] RSA Laboratories, "PKCS #1: RSA Cryptography Standard
Version 2.2", October 2012.
[PREFIX] Stevens, M., Lenstra, A., and B. de Weger, "Chosen-prefix
collisions for MD5 and applications", International
Journal of Applied Cryptography, Volume 2, No. 4, pp.
322-359, July 2012.
[PSS] Bellare, M. and P. Rogaway, "PSS: Provably Secure Encoding
Method for Digital Signatures", Submission to IEEE P1363a,
August 1998, <http://grouper.ieee.org/groups/1363/
P1363a/contributions/pss-submission.pdf>.
[PSSPROOF] Coron, J., "Optimal Security Proofs for PSS and Other
Signature Schemes", Lecture Notes in Computer
Science, Volume 2332, pp. 272-287,
DOI 10.1007/3-540-46035-7_18, 2002.
[RFC1319] Kaliski, B., "The MD2 Message-Digest Algorithm", RFC 1319,
DOI 10.17487/RFC1319, April 1992,
<http://www.rfc-editor.org/info/rfc1319>.
[RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
DOI 10.17487/RFC1321, April 1992,
<http://www.rfc-editor.org/info/rfc1321>.
[RFC2313] Kaliski, B., "PKCS #1: RSA Encryption Version 1.5",
RFC 2313, DOI 10.17487/RFC2313, March 1998,
<http://www.rfc-editor.org/info/rfc2313>.
[RFC2315] Kaliski, B., "PKCS #7: Cryptographic Message Syntax
Version 1.5", RFC 2315, DOI 10.17487/RFC2315, March 1998,
<http://www.rfc-editor.org/info/rfc2315>.
[RFC2437] Kaliski, B. and J. Staddon, "PKCS #1: RSA Cryptography
Specifications Version 2.0", RFC 2437,
DOI 10.17487/RFC2437, October 1998,
<http://www.rfc-editor.org/info/rfc2437>.
[RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
Standards (PKCS) #1: RSA Cryptography Specifications
Version 2.1", RFC 3447, DOI 10.17487/RFC3447, February
2003, <http://www.rfc-editor.org/info/rfc3447>.
Moriarty, et al. Informational [Page 51]
^L
RFC 8017 PKCS #1 v2.2 November 2016
[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246,
DOI 10.17487/RFC5246, August 2008,
<http://www.rfc-editor.org/info/rfc5246>.
[RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, DOI 10.17487/RFC5652, September 2009,
<http://www.rfc-editor.org/info/rfc5652>.
[RFC5958] Turner, S., "Asymmetric Key Packages", RFC 5958,
DOI 10.17487/RFC5958, August 2010,
<http://www.rfc-editor.org/info/rfc5958>.
[RFC6149] Turner, S. and L. Chen, "MD2 to Historic Status",
RFC 6149, DOI 10.17487/RFC6149, March 2011,
<http://www.rfc-editor.org/info/rfc6149>.
[RFC7292] Moriarty, K., Ed., Nystrom, M., Parkinson, S., Rusch, A.,
and M. Scott, "PKCS #12: Personal Information Exchange
Syntax v1.1", RFC 7292, DOI 10.17487/RFC7292, July 2014,
<http://www.rfc-editor.org/info/rfc7292>.
[RSARABIN] Bellare, M. and P. Rogaway, "The Exact Security of Digital
Signatures - How to Sign with RSA and Rabin", Lecture
Notes in Computer Science, Volume 1070, pp. 399-416,
DOI 10.1007/3-540-68339-9_34, 1996.
[RSATLS] Jonsson, J. and B. Kaliski, "On the Security of RSA
Encryption in TLS", Lecture Notes in Computer
Science, Volume 2442, pp. 127-142,
DOI 10.1007/3-540-45708-9_9, 2002.
[SHA1CRYPT]
Wang, X., Yao, A., and F. Yao, "Cryptanalysis on SHA-1",
Lecture Notes in Computer Science, Volume 2442, pp.
127-142, February 2005,
<http://csrc.nist.gov/groups/ST/hash/documents/
Wang_SHA1-New-Result.pdf>.
[SHOUP] Shoup, V., "OAEP Reconsidered (Extended Abstract)",
Lecture Notes in Computer Science, Volume 2139, pp.
239-259, DOI 10.1007/3-540-44647-8_15, 2001.
[SHS] National Institute of Standards and Technology, "Secure
Hash Standard (SHS)", FIPS PUB 180-4, August 2015,
<http://dx.doi.org/10.6028/NIST.FIPS.180-4>.
Moriarty, et al. Informational [Page 52]
^L
RFC 8017 PKCS #1 v2.2 November 2016
[SILVERMAN]
Silverman, R., "A Cost-Based Security Analysis of
Symmetric and Asymmetric Key Lengths", RSA
Laboratories, Bulletin No. 13, 2000.
[SIMMONS] Simmons, G., "Subliminal Communication is Easy Using the
DSA", Lecture Notes in Computer Science, Volume 765, pp.
218-232, DOI 10.1007/3-540-48285-7_18, 1994.
Moriarty, et al. Informational [Page 53]
^L
RFC 8017 PKCS #1 v2.2 November 2016
Appendix A. ASN.1 Syntax
A.1. RSA Key Representation
This section defines ASN.1 object identifiers for RSA public and
private keys and defines the types RSAPublicKey and RSAPrivateKey.
The intended application of these definitions includes X.509
certificates, PKCS #8 [RFC5958], and PKCS #12 [RFC7292].
The object identifier rsaEncryption identifies RSA public and private
keys as defined in Appendices A.1.1 and A.1.2. The parameters field
has associated with this OID in a value of type AlgorithmIdentifier
SHALL have a value of type NULL.
rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 }
The definitions in this section have been extended to support multi-
prime RSA, but they are backward compatible with previous versions.
A.1.1. RSA Public Key Syntax
An RSA public key should be represented with the ASN.1 type
RSAPublicKey:
RSAPublicKey ::= SEQUENCE {
modulus INTEGER, -- n
publicExponent INTEGER -- e
}
The fields of type RSAPublicKey have the following meanings:
o modulus is the RSA modulus n.
o publicExponent is the RSA public exponent e.
Moriarty, et al. Informational [Page 54]
^L
RFC 8017 PKCS #1 v2.2 November 2016
A.1.2. RSA Private Key Syntax
An RSA private key should be represented with the ASN.1 type
RSAPrivateKey:
RSAPrivateKey ::= SEQUENCE {
version Version,
modulus INTEGER, -- n
publicExponent INTEGER, -- e
privateExponent INTEGER, -- d
prime1 INTEGER, -- p
prime2 INTEGER, -- q
exponent1 INTEGER, -- d mod (p-1)
exponent2 INTEGER, -- d mod (q-1)
coefficient INTEGER, -- (inverse of q) mod p
otherPrimeInfos OtherPrimeInfos OPTIONAL
}
The fields of type RSAPrivateKey have the following meanings:
o version is the version number, for compatibility with future
revisions of this document. It SHALL be 0 for this version of the
document, unless multi-prime is used; in which case, it SHALL be
1.
Version ::= INTEGER { two-prime(0), multi(1) }
(CONSTRAINED BY
{-- version must be multi if otherPrimeInfos present --})
o modulus is the RSA modulus n.
o publicExponent is the RSA public exponent e.
o privateExponent is the RSA private exponent d.
o prime1 is the prime factor p of n.
o prime2 is the prime factor q of n.
o exponent1 is d mod (p - 1).
o exponent2 is d mod (q - 1).
o coefficient is the CRT coefficient q^(-1) mod p.
Moriarty, et al. Informational [Page 55]
^L
RFC 8017 PKCS #1 v2.2 November 2016
o otherPrimeInfos contains the information for the additional primes
r_3, ..., r_u, in order. It SHALL be omitted if version is 0 and
SHALL contain at least one instance of OtherPrimeInfo if version
is 1.
OtherPrimeInfos ::= SEQUENCE SIZE(1..MAX) OF OtherPrimeInfo
OtherPrimeInfo ::= SEQUENCE {
prime INTEGER, -- ri
exponent INTEGER, -- di
coefficient INTEGER -- ti
}
The fields of type OtherPrimeInfo have the following meanings:
o prime is a prime factor r_i of n, where i >= 3.
o exponent is d_i = d mod (r_i - 1).
o coefficient is the CRT coefficient t_i = (r_1 * r_2 * ... *
r_(i-1))^(-1) mod r_i.
Note: It is important to protect the RSA private key against both
disclosure and modification. Techniques for such protection are
outside the scope of this document. Methods for storing and
distributing private keys and other cryptographic data are described
in PKCS #12 and #15.
Moriarty, et al. Informational [Page 56]
^L
RFC 8017 PKCS #1 v2.2 November 2016
A.2. Scheme Identification
This section defines object identifiers for the encryption and
signature schemes. The schemes compatible with PKCS #1 v1.5 have the
same definitions as in PKCS #1 v1.5. The intended application of
these definitions includes X.509 certificates and PKCS #7.
Here are type identifier definitions for the PKCS #1 OIDs:
PKCS1Algorithms ALGORITHM-IDENTIFIER ::= {
{ OID rsaEncryption PARAMETERS NULL } |
{ OID md2WithRSAEncryption PARAMETERS NULL } |
{ OID md5WithRSAEncryption PARAMETERS NULL } |
{ OID sha1WithRSAEncryption PARAMETERS NULL } |
{ OID sha224WithRSAEncryption PARAMETERS NULL } |
{ OID sha256WithRSAEncryption PARAMETERS NULL } |
{ OID sha384WithRSAEncryption PARAMETERS NULL } |
{ OID sha512WithRSAEncryption PARAMETERS NULL } |
{ OID sha512-224WithRSAEncryption PARAMETERS NULL } |
{ OID sha512-256WithRSAEncryption PARAMETERS NULL } |
{ OID id-RSAES-OAEP PARAMETERS RSAES-OAEP-params } |
PKCS1PSourceAlgorithms |
{ OID id-RSASSA-PSS PARAMETERS RSASSA-PSS-params },
... -- Allows for future expansion --
}
A.2.1. RSAES-OAEP
The object identifier id-RSAES-OAEP identifies the RSAES-OAEP
encryption scheme.
id-RSAES-OAEP OBJECT IDENTIFIER ::= { pkcs-1 7 }
The parameters field associated with this OID in a value of type
AlgorithmIdentifier SHALL have a value of type RSAES-OAEP-params:
RSAES-OAEP-params ::= SEQUENCE {
hashAlgorithm [0] HashAlgorithm DEFAULT sha1,
maskGenAlgorithm [1] MaskGenAlgorithm DEFAULT mgf1SHA1,
pSourceAlgorithm [2] PSourceAlgorithm DEFAULT pSpecifiedEmpty
}
The fields of type RSAES-OAEP-params have the following meanings:
o hashAlgorithm identifies the hash function. It SHALL be an
algorithm ID with an OID in the set OAEP-PSSDigestAlgorithms. For
a discussion of supported hash functions, see Appendix B.1.
Moriarty, et al. Informational [Page 57]
^L
RFC 8017 PKCS #1 v2.2 November 2016
HashAlgorithm ::= AlgorithmIdentifier {
{OAEP-PSSDigestAlgorithms}
}
OAEP-PSSDigestAlgorithms ALGORITHM-IDENTIFIER ::= {
{ OID id-sha1 PARAMETERS NULL }|
{ OID id-sha224 PARAMETERS NULL }|
{ OID id-sha256 PARAMETERS NULL }|
{ OID id-sha384 PARAMETERS NULL }|
{ OID id-sha512 PARAMETERS NULL }|
{ OID id-sha512-224 PARAMETERS NULL }|
{ OID id-sha512-256 PARAMETERS NULL },
... -- Allows for future expansion --
}
The default hash function is SHA-1:
sha1 HashAlgorithm ::= {
algorithm id-sha1,
parameters SHA1Parameters : NULL
}
SHA1Parameters ::= NULL
o maskGenAlgorithm identifies the mask generation function. It
SHALL be an algorithm ID with an OID in the set
PKCS1MGFAlgorithms, which for this version SHALL consist of
id-mgf1, identifying the MGF1 mask generation function (see
Appendix B.2.1). The parameters field associated with id-mgf1
SHALL be an algorithm ID with an OID in the set
OAEP-PSSDigestAlgorithms, identifying the hash function on which
MGF1 is based.
MaskGenAlgorithm ::= AlgorithmIdentifier { {PKCS1MGFAlgorithms} }
PKCS1MGFAlgorithms ALGORITHM-IDENTIFIER ::= {
{ OID id-mgf1 PARAMETERS HashAlgorithm },
... -- Allows for future expansion --
}
o The default mask generation function is MGF1 with SHA-1:
mgf1SHA1 MaskGenAlgorithm ::= {
algorithm id-mgf1,
parameters HashAlgorithm : sha1
}
Moriarty, et al. Informational [Page 58]
^L
RFC 8017 PKCS #1 v2.2 November 2016
o pSourceAlgorithm identifies the source (and possibly the value) of
the label L. It SHALL be an algorithm ID with an OID in the set
PKCS1PSourceAlgorithms, which for this version SHALL consist of
id-pSpecified, indicating that the label is specified explicitly.
The parameters field associated with id-pSpecified SHALL have a
value of type OCTET STRING, containing the label. In previous
versions of this specification, the term "encoding parameters" was
used rather than "label", hence the name of the type below.
PSourceAlgorithm ::= AlgorithmIdentifier {
{PKCS1PSourceAlgorithms}
}
PKCS1PSourceAlgorithms ALGORITHM-IDENTIFIER ::= {
{ OID id-pSpecified PARAMETERS EncodingParameters },
... -- Allows for future expansion --
}
id-pSpecified OBJECT IDENTIFIER ::= { pkcs-1 9 }
EncodingParameters ::= OCTET STRING(SIZE(0..MAX))
o The default label is an empty string (so that lHash will contain
the hash of the empty string):
pSpecifiedEmpty PSourceAlgorithm ::= {
algorithm id-pSpecified,
parameters EncodingParameters : emptyString
}
emptyString EncodingParameters ::= ''H
If all of the default values of the fields in RSAES-OAEP-params are
used, then the algorithm identifier will have the following value:
rSAES-OAEP-Default-Identifier RSAES-AlgorithmIdentifier ::= {
algorithm id-RSAES-OAEP,
parameters RSAES-OAEP-params : {
hashAlgorithm sha1,
maskGenAlgorithm mgf1SHA1,
pSourceAlgorithm pSpecifiedEmpty
}
}
RSAES-AlgorithmIdentifier ::= AlgorithmIdentifier {
{PKCS1Algorithms}
}
Moriarty, et al. Informational [Page 59]
^L
RFC 8017 PKCS #1 v2.2 November 2016
A.2.2. RSAES-PKCS-v1_5
The object identifier rsaEncryption (see Appendix A.1) identifies the
RSAES-PKCS1-v1_5 encryption scheme. The parameters field associated
with this OID in a value of type AlgorithmIdentifier SHALL have a
value of type NULL. This is the same as in PKCS #1 v1.5.
rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 }
A.2.3. RSASSA-PSS
The object identifier id-RSASSA-PSS identifies the RSASSA-PSS
encryption scheme.
id-RSASSA-PSS OBJECT IDENTIFIER ::= { pkcs-1 10 }
The parameters field associated with this OID in a value of type
AlgorithmIdentifier SHALL have a value of type RSASSA-PSS-params:
RSASSA-PSS-params ::= SEQUENCE {
hashAlgorithm [0] HashAlgorithm DEFAULT sha1,
maskGenAlgorithm [1] MaskGenAlgorithm DEFAULT mgf1SHA1,
saltLength [2] INTEGER DEFAULT 20,
trailerField [3] TrailerField DEFAULT trailerFieldBC
}
The fields of type RSASSA-PSS-params have the following meanings:
o hashAlgorithm identifies the hash function. It SHALL be an
algorithm ID with an OID in the set OAEP-PSSDigestAlgorithms (see
Appendix A.2.1). The default hash function is SHA-1.
o maskGenAlgorithm identifies the mask generation function. It
SHALL be an algorithm ID with an OID in the set PKCS1MGFAlgorithms
(see Appendix A.2.1). The default mask generation function is
MGF1 with SHA-1. For MGF1 (and more generally, for other mask
generation functions based on a hash function), it is RECOMMENDED
that the underlying hash function be the same as the one
identified by hashAlgorithm; see Note 2 in Section 9.1 for further
comments.
o saltLength is the octet length of the salt. It SHALL be an
integer. For a given hashAlgorithm, the default value of
saltLength is the octet length of the hash value. Unlike the
other fields of type RSASSA-PSS-params, saltLength does not need
to be fixed for a given RSA key pair.
Moriarty, et al. Informational [Page 60]
^L
RFC 8017 PKCS #1 v2.2 November 2016
o trailerField is the trailer field number, for compatibility with
IEEE 1363a [IEEE1363A]. It SHALL be 1 for this version of the
document, which represents the trailer field with hexadecimal
value 0xbc. Other trailer fields (including the trailer field
HashID || 0xcc in IEEE 1363a) are not supported in this document.
TrailerField ::= INTEGER { trailerFieldBC(1) }
If the default values of the hashAlgorithm, maskGenAlgorithm, and
trailerField fields of RSASSA-PSS-params are used, then the algorithm
identifier will have the following value:
rSASSA-PSS-Default-Identifier RSASSA-AlgorithmIdentifier ::= {
algorithm id-RSASSA-PSS,
parameters RSASSA-PSS-params : {
hashAlgorithm sha1,
maskGenAlgorithm mgf1SHA1,
saltLength 20,
trailerField trailerFieldBC
}
}
RSASSA-AlgorithmIdentifier ::= AlgorithmIdentifier {
{PKCS1Algorithms}
}
Note: In some applications, the hash function underlying a signature
scheme is identified separately from the rest of the operations in
the signature scheme. For instance, in PKCS #7 [RFC2315], a hash
function identifier is placed before the message and a "digest
encryption" algorithm identifier (indicating the rest of the
operations) is carried with the signature. In order for PKCS #7 to
support the RSASSA-PSS signature scheme, an object identifier would
need to be defined for the operations in RSASSA-PSS after the hash
function (analogous to the RSAEncryption OID for the
RSASSA-PKCS1-v1_5 scheme). S/MIME Cryptographic Message Syntax (CMS)
[RFC5652] takes a different approach. Although a hash function
identifier is placed before the message, an algorithm identifier for
the full signature scheme may be carried with a CMS signature (this
is done for DSA signatures). Following this convention, the
id-RSASSA-PSS OID can be used to identify RSASSA-PSS signatures in
CMS. Since CMS is considered the successor to PKCS #7 and new
developments such as the addition of support for RSASSA-PSS will be
pursued with respect to CMS rather than PKCS #7, an OID for the "rest
of" RSASSA-PSS is not defined in this version of PKCS #1.
Moriarty, et al. Informational [Page 61]
^L
RFC 8017 PKCS #1 v2.2 November 2016
A.2.4. RSASSA-PKCS-v1_5
The object identifier for RSASSA-PKCS1-v1_5 SHALL be one of the
following. The choice of OID depends on the choice of hash
algorithm: MD2, MD5, SHA-1, SHA-224, SHA-256, SHA-384, SHA-512,
SHA-512/224, or SHA-512/256. Note that if either MD2 or MD5 is used,
then the OID is just as in PKCS #1 v1.5. For each OID, the
parameters field associated with this OID in a value of type
AlgorithmIdentifier SHALL have a value of type NULL. The OID should
be chosen in accordance with the following table:
Hash algorithm OID
------------------------------------------------------------
MD2 md2WithRSAEncryption ::= {pkcs-1 2}
MD5 md5WithRSAEncryption ::= {pkcs-1 4}
SHA-1 sha1WithRSAEncryption ::= {pkcs-1 5}
SHA-256 sha224WithRSAEncryption ::= {pkcs-1 14}
SHA-256 sha256WithRSAEncryption ::= {pkcs-1 11}
SHA-384 sha384WithRSAEncryption ::= {pkcs-1 12}
SHA-512 sha512WithRSAEncryption ::= {pkcs-1 13}
SHA-512/224 sha512-224WithRSAEncryption ::= {pkcs-1 15}
SHA-512/256 sha512-256WithRSAEncryption ::= {pkcs-1 16}
The EMSA-PKCS1-v1_5 encoding method includes an ASN.1 value of type
DigestInfo, where the type DigestInfo has the syntax
DigestInfo ::= SEQUENCE {
digestAlgorithm DigestAlgorithm,
digest OCTET STRING
}
digestAlgorithm identifies the hash function and SHALL be an
algorithm ID with an OID in the set PKCS1-v1-5DigestAlgorithms. For
a discussion of supported hash functions, see Appendix B.1.
Moriarty, et al. Informational [Page 62]
^L
RFC 8017 PKCS #1 v2.2 November 2016
DigestAlgorithm ::= AlgorithmIdentifier {
{PKCS1-v1-5DigestAlgorithms}
}
PKCS1-v1-5DigestAlgorithms ALGORITHM-IDENTIFIER ::= {
{ OID id-md2 PARAMETERS NULL }|
{ OID id-md5 PARAMETERS NULL }|
{ OID id-sha1 PARAMETERS NULL }|
{ OID id-sha224 PARAMETERS NULL }|
{ OID id-sha256 PARAMETERS NULL }|
{ OID id-sha384 PARAMETERS NULL }|
{ OID id-sha512 PARAMETERS NULL }|
{ OID id-sha512-224 PARAMETERS NULL }|
{ OID id-sha512-256 PARAMETERS NULL }
}
Appendix B. Supporting Techniques
This section gives several examples of underlying functions
supporting the encryption schemes in Section 7 and the encoding
methods in Section 9. A range of techniques is given here to allow
compatibility with existing applications as well as migration to new
techniques. While these supporting techniques are appropriate for
applications to implement, none of them is required to be
implemented. It is expected that profiles for PKCS #1 v2.2 will be
developed that specify particular supporting techniques.
This section also gives object identifiers for the supporting
techniques.
B.1. Hash Functions
Hash functions are used in the operations contained in Sections 7 and
9. Hash functions are deterministic, meaning that the output is
completely determined by the input. Hash functions take octet
strings of variable length and generate fixed-length octet strings.
The hash functions used in the operations contained in Sections 7 and
9 should generally be collision-resistant. This means that it is
infeasible to find two distinct inputs to the hash function that
produce the same output. A collision-resistant hash function also
has the desirable property of being one-way; this means that given an
output, it is infeasible to find an input whose hash is the specified
output. In addition to the requirements, the hash function should
yield a mask generation function (Appendix B.2) with pseudorandom
output.
Moriarty, et al. Informational [Page 63]
^L
RFC 8017 PKCS #1 v2.2 November 2016
Nine hash functions are given as examples for the encoding methods in
this document: MD2 [RFC1319] (which was retired by [RFC6149]), MD5
[RFC1321], SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224,
and SHA-512/256 [SHS]. For the RSAES-OAEP encryption scheme and
EMSA-PSS encoding method, only SHA-1, SHA-224, SHA-256, SHA-384, SHA-
512, SHA-512/224, and SHA-512/256 are RECOMMENDED. For the EMSA-
PKCS1-v1_5 encoding method, SHA-224, SHA-256, SHA-384, SHA-512, SHA-
512/224, and SHA-512/256 are RECOMMENDED for new applications. MD2,
MD5, and SHA-1 are recommended only for compatibility with existing
applications based on PKCS #1 v1.5.
The object identifiers id-md2, id-md5, id-sha1, id-sha224, id-sha256,
id-sha384, id-sha512, id-sha512/224, and id-sha512/256 identify the
respective hash functions:
id-md2 OBJECT IDENTIFIER ::= {
iso (1) member-body (2) us (840) rsadsi (113549)
digestAlgorithm (2) 2
}
id-md5 OBJECT IDENTIFIER ::= {
iso (1) member-body (2) us (840) rsadsi (113549)
digestAlgorithm (2) 5
}
id-sha1 OBJECT IDENTIFIER ::= {
iso(1) identified-organization(3) oiw(14) secsig(3)
algorithms(2) 26
}
id-sha224 OBJECT IDENTIFIER ::= {
joint-iso-itu-t (2) country (16) us (840) organization (1)
gov (101) csor (3) nistalgorithm (4) hashalgs (2) 4
}
id-sha256 OBJECT IDENTIFIER ::= {
joint-iso-itu-t (2) country (16) us (840) organization (1)
gov (101) csor (3) nistalgorithm (4) hashalgs (2) 1
}
id-sha384 OBJECT IDENTIFIER ::= {
joint-iso-itu-t (2) country (16) us (840) organization (1)
gov (101) csor (3) nistalgorithm (4) hashalgs (2) 2
}
Moriarty, et al. Informational [Page 64]
^L
RFC 8017 PKCS #1 v2.2 November 2016
id-sha512 OBJECT IDENTIFIER ::= {
joint-iso-itu-t (2) country (16) us (840) organization (1)
gov (101) csor (3) nistalgorithm (4) hashalgs (2) 3
}
id-sha512-224 OBJECT IDENTIFIER ::= {
joint-iso-itu-t (2) country (16) us (840) organization (1)
gov (101) csor (3) nistalgorithm (4) hashalgs (2) 5
}
id-sha512-256 OBJECT IDENTIFIER ::= {
joint-iso-itu-t (2) country (16) us (840) organization (1)
gov (101) csor (3) nistalgorithm (4) hashalgs (2) 6
}
The parameters field associated with these OIDs in a value of type
AlgorithmIdentifier SHALL have a value of type NULL.
The parameters field associated with id-md2 and id-md5 in a value of
type AlgorithmIdentifier shall have a value of type NULL.
The parameters field associated with id-sha1, id-sha224, id-sha256,
id-sha384, id-sha512, id-sha512/224, and id-sha512/256 should
generally be omitted, but if present, it shall have a value of type
NULL.
This is to align with the definitions originally promulgated by NIST.
For the SHA algorithms, implementations MUST accept
AlgorithmIdentifier values both without parameters and with NULL
parameters.
Exception: When formatting the DigestInfoValue in EMSA-PKCS1-v1_5
(see Section 9.2), the parameters field associated with id-sha1,
id-sha224, id-sha256, id-sha384, id-sha512, id-sha512/224, and
id-sha512/256 shall have a value of type NULL. This is to maintain
compatibility with existing implementations and with the numeric
information values already published for EMSA-PKCS1-v1_5, which are
also reflected in IEEE 1363a [IEEE1363A].
Note: Version 1.5 of PKCS #1 also allowed for the use of MD4 in
signature schemes. The cryptanalysis of MD4 has progressed
significantly in the intervening years. For example, Dobbertin [MD4]
demonstrated how to find collisions for MD4 and that the first two
rounds of MD4 are not one-way [MD4FIRST]. Because of these results
and others (e.g., [MD4LAST]), MD4 is NOT RECOMMENDED.
Further advances have been made in the cryptanalysis of MD2 and MD5,
especially after the findings of Stevens et al. [PREFIX] on chosen-
Moriarty, et al. Informational [Page 65]
^L
RFC 8017 PKCS #1 v2.2 November 2016
prefix collisions on MD5. MD2 and MD5 should be considered
cryptographically broken and removed from existing applications.
This version of the standard supports MD2 and MD5 just for backwards-
compatibility reasons.
There have also been advances in the cryptanalysis of SHA-1.
Particularly, the results of Wang et al. [SHA1CRYPT] (which have
been independently verified by M. Cochran in his analysis [COCHRAN])
on using a differential path to find collisions in SHA-1, which
conclude that the security strength of the SHA-1 hashing algorithm is
significantly reduced. However, this reduction is not significant
enough to warrant the removal of SHA-1 from existing applications,
but its usage is only recommended for backwards-compatibility
reasons.
To address these concerns, only SHA-224, SHA-256, SHA-384, SHA-512,
SHA-512/224, and SHA-512/256 are RECOMMENDED for new applications.
As of today, the best (known) collision attacks against these hash
functions are generic attacks with complexity 2L/2, where L is the
bit length of the hash output. For the signature schemes in this
document, a collision attack is easily translated into a signature
forgery. Therefore, the value L / 2 should be at least equal to the
desired security level in bits of the signature scheme (a security
level of B bits means that the best attack has complexity 2B). The
same rule of thumb can be applied to RSAES-OAEP; it is RECOMMENDED
that the bit length of the seed (which is equal to the bit length of
the hash output) be twice the desired security level in bits.
B.2. Mask Generation Functions
A mask generation function takes an octet string of variable length
and a desired output length as input and outputs an octet string of
the desired length. There may be restrictions on the length of the
input and output octet strings, but such bounds are generally very
large. Mask generation functions are deterministic; the octet string
output is completely determined by the input octet string. The
output of a mask generation function should be pseudorandom: Given
one part of the output but not the input, it should be infeasible to
predict another part of the output. The provable security of
RSAES-OAEP and RSASSA-PSS relies on the random nature of the output
of the mask generation function, which in turn relies on the random
nature of the underlying hash.
One mask generation function is given here: MGF1, which is based on a
hash function. MGF1 coincides with the mask generation functions
defined in IEEE 1363 [IEEE1363] and ANSI X9.44 [ANSIX944]. Future
versions of this document may define other mask generation functions.
Moriarty, et al. Informational [Page 66]
^L
RFC 8017 PKCS #1 v2.2 November 2016
B.2.1. MGF1
MGF1 is a mask generation function based on a hash function.
MGF1 (mgfSeed, maskLen)
Options:
Hash hash function (hLen denotes the length in octets of
the hash function output)
Input:
mgfSeed seed from which mask is generated, an octet string
maskLen intended length in octets of the mask, at most 2^32 hLen
Output:
mask mask, an octet string of length maskLen
Error: "mask too long"
Steps:
1. If maskLen > 2^32 hLen, output "mask too long" and stop.
2. Let T be the empty octet string.
3. For counter from 0 to \ceil (maskLen / hLen) - 1, do the
following:
A. Convert counter to an octet string C of length 4 octets (see
Section 4.1):
C = I2OSP (counter, 4) .
B. Concatenate the hash of the seed mgfSeed and C to the octet
string T:
T = T || Hash(mgfSeed || C) .
4. Output the leading maskLen octets of T as the octet string mask.
The object identifier id-mgf1 identifies the MGF1 mask generation
function:
id-mgf1 OBJECT IDENTIFIER ::= { pkcs-1 8 }
Moriarty, et al. Informational [Page 67]
^L
RFC 8017 PKCS #1 v2.2 November 2016
The parameters field associated with this OID in a value of type
AlgorithmIdentifier shall have a value of type hashAlgorithm,
identifying the hash function on which MGF1 is based.
Appendix C. ASN.1 Module
-- PKCS #1 v2.2 ASN.1 Module
-- Revised October 27, 2012
-- This module has been checked for conformance with the
-- ASN.1 standard by the OSS ASN.1 Tools
PKCS-1 {
iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1)
modules(0) pkcs-1(1)
}
DEFINITIONS EXPLICIT TAGS ::=
BEGIN
-- EXPORTS ALL
-- All types and values defined in this module are exported for use
-- in other ASN.1 modules.
IMPORTS
id-sha224, id-sha256, id-sha384, id-sha512, id-sha512-224,
id-sha512-256
FROM NIST-SHA2 {
joint-iso-itu-t(2) country(16) us(840) organization(1)
gov(101) csor(3) nistalgorithm(4) hashAlgs(2)
};
-- ============================
-- Basic object identifiers
-- ============================
-- The DER encoding of this in hexadecimal is:
-- (0x)06 08
-- 2A 86 48 86 F7 0D 01 01
--
pkcs-1 OBJECT IDENTIFIER ::= {
iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1
}
--
-- When rsaEncryption is used in an AlgorithmIdentifier,
Moriarty, et al. Informational [Page 68]
^L
RFC 8017 PKCS #1 v2.2 November 2016
-- the parameters MUST be present and MUST be NULL.
--
rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 }
--
-- When id-RSAES-OAEP is used in an AlgorithmIdentifier, the
-- parameters MUST be present and MUST be RSAES-OAEP-params.
--
id-RSAES-OAEP OBJECT IDENTIFIER ::= { pkcs-1 7 }
--
-- When id-pSpecified is used in an AlgorithmIdentifier, the
-- parameters MUST be an OCTET STRING.
--
id-pSpecified OBJECT IDENTIFIER ::= { pkcs-1 9 }
--
-- When id-RSASSA-PSS is used in an AlgorithmIdentifier, the
-- parameters MUST be present and MUST be RSASSA-PSS-params.
--
id-RSASSA-PSS OBJECT IDENTIFIER ::= { pkcs-1 10 }
--
-- When the following OIDs are used in an AlgorithmIdentifier,
-- the parameters MUST be present and MUST be NULL.
--
md2WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 2 }
md5WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 4 }
sha1WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 5 }
sha224WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 14 }
sha256WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 11 }
sha384WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 12 }
sha512WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 13 }
sha512-224WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 15 }
sha512-256WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 16 }
--
-- This OID really belongs in a module with the secsig OIDs.
--
id-sha1 OBJECT IDENTIFIER ::= {
iso(1) identified-organization(3) oiw(14) secsig(3) algorithms(2)
26
}
--
-- OIDs for MD2 and MD5, allowed only in EMSA-PKCS1-v1_5.
--
id-md2 OBJECT IDENTIFIER ::= {
Moriarty, et al. Informational [Page 69]
^L
RFC 8017 PKCS #1 v2.2 November 2016
iso(1) member-body(2) us(840) rsadsi(113549) digestAlgorithm(2) 2
}
id-md5 OBJECT IDENTIFIER ::= {
iso(1) member-body(2) us(840) rsadsi(113549) digestAlgorithm(2) 5
}
--
-- When id-mgf1 is used in an AlgorithmIdentifier, the parameters
-- MUST be present and MUST be a HashAlgorithm, for example, sha1.
--
id-mgf1 OBJECT IDENTIFIER ::= { pkcs-1 8 }
-- ================
-- Useful types
-- ================
ALGORITHM-IDENTIFIER ::= CLASS {
&id OBJECT IDENTIFIER UNIQUE,
&Type OPTIONAL
}
WITH SYNTAX { OID &id [PARAMETERS &Type] }
-- Note: the parameter InfoObjectSet in the following definitions
-- allows a distinct information object set to be specified for sets
-- of algorithms such as:
-- DigestAlgorithms ALGORITHM-IDENTIFIER ::= {
-- { OID id-md2 PARAMETERS NULL }|
-- { OID id-md5 PARAMETERS NULL }|
-- { OID id-sha1 PARAMETERS NULL }
-- }
--
AlgorithmIdentifier { ALGORITHM-IDENTIFIER:InfoObjectSet } ::=
SEQUENCE {
algorithm
ALGORITHM-IDENTIFIER.&id({InfoObjectSet}),
parameters
ALGORITHM-IDENTIFIER.&Type({InfoObjectSet}{@.algorithm})
OPTIONAL
}
-- ==============
-- Algorithms
-- ==============
--
-- Allowed EME-OAEP and EMSA-PSS digest algorithms.
Moriarty, et al. Informational [Page 70]
^L
RFC 8017 PKCS #1 v2.2 November 2016
--
OAEP-PSSDigestAlgorithms ALGORITHM-IDENTIFIER ::= {
{ OID id-sha1 PARAMETERS NULL }|
{ OID id-sha224 PARAMETERS NULL }|
{ OID id-sha256 PARAMETERS NULL }|
{ OID id-sha384 PARAMETERS NULL }|
{ OID id-sha512 PARAMETERS NULL }|
{ OID id-sha512-224 PARAMETERS NULL }|
{ OID id-sha512-256 PARAMETERS NULL },
... -- Allows for future expansion --
}
--
-- Allowed EMSA-PKCS1-v1_5 digest algorithms.
--
PKCS1-v1-5DigestAlgorithms ALGORITHM-IDENTIFIER ::= {
{ OID id-md2 PARAMETERS NULL }|
{ OID id-md5 PARAMETERS NULL }|
{ OID id-sha1 PARAMETERS NULL }|
{ OID id-sha224 PARAMETERS NULL }|
{ OID id-sha256 PARAMETERS NULL }|
{ OID id-sha384 PARAMETERS NULL }|
{ OID id-sha512 PARAMETERS NULL }|
{ OID id-sha512-224 PARAMETERS NULL }|
{ OID id-sha512-256 PARAMETERS NULL }
}
-- When id-md2 and id-md5 are used in an AlgorithmIdentifier, the
-- parameters field shall have a value of type NULL.
-- When id-sha1, id-sha224, id-sha256, id-sha384, id-sha512,
-- id-sha512-224, and id-sha512-256 are used in an
-- AlgorithmIdentifier, the parameters (which are optional) SHOULD be
-- omitted, but if present, they SHALL have a value of type NULL.
-- However, implementations MUST accept AlgorithmIdentifier values
-- both without parameters and with NULL parameters.
-- Exception: When formatting the DigestInfoValue in EMSA-PKCS1-v1_5
-- (see Section 9.2), the parameters field associated with id-sha1,
-- id-sha224, id-sha256, id-sha384, id-sha512, id-sha512-224, and
-- id-sha512-256 SHALL have a value of type NULL. This is to
-- maintain compatibility with existing implementations and with the
-- numeric information values already published for EMSA-PKCS1-v1_5,
-- which are also reflected in IEEE 1363a.
sha1 HashAlgorithm ::= {
algorithm id-sha1,
parameters SHA1Parameters : NULL
Moriarty, et al. Informational [Page 71]
^L
RFC 8017 PKCS #1 v2.2 November 2016
}
HashAlgorithm ::= AlgorithmIdentifier { {OAEP-PSSDigestAlgorithms} }
SHA1Parameters ::= NULL
--
-- Allowed mask generation function algorithms.
-- If the identifier is id-mgf1, the parameters are a HashAlgorithm.
--
PKCS1MGFAlgorithms ALGORITHM-IDENTIFIER ::= {
{ OID id-mgf1 PARAMETERS HashAlgorithm },
... -- Allows for future expansion --
}
--
-- Default AlgorithmIdentifier for id-RSAES-OAEP.maskGenAlgorithm and
-- id-RSASSA-PSS.maskGenAlgorithm.
--
mgf1SHA1 MaskGenAlgorithm ::= {
algorithm id-mgf1,
parameters HashAlgorithm : sha1
}
MaskGenAlgorithm ::= AlgorithmIdentifier { {PKCS1MGFAlgorithms} }
--
-- Allowed algorithms for pSourceAlgorithm.
--
PKCS1PSourceAlgorithms ALGORITHM-IDENTIFIER ::= {
{ OID id-pSpecified PARAMETERS EncodingParameters },
... -- Allows for future expansion --
}
EncodingParameters ::= OCTET STRING(SIZE(0..MAX))
--
-- This identifier means that the label L is an empty string, so the
-- digest of the empty string appears in the RSA block before
-- masking.
--
pSpecifiedEmpty PSourceAlgorithm ::= {
algorithm id-pSpecified,
parameters EncodingParameters : emptyString
}
PSourceAlgorithm ::= AlgorithmIdentifier { {PKCS1PSourceAlgorithms} }
Moriarty, et al. Informational [Page 72]
^L
RFC 8017 PKCS #1 v2.2 November 2016
emptyString EncodingParameters ::= ''H
--
-- Type identifier definitions for the PKCS #1 OIDs.
--
PKCS1Algorithms ALGORITHM-IDENTIFIER ::= {
{ OID rsaEncryption PARAMETERS NULL } |
{ OID md2WithRSAEncryption PARAMETERS NULL } |
{ OID md5WithRSAEncryption PARAMETERS NULL } |
{ OID sha1WithRSAEncryption PARAMETERS NULL } |
{ OID sha224WithRSAEncryption PARAMETERS NULL } |
{ OID sha256WithRSAEncryption PARAMETERS NULL } |
{ OID sha384WithRSAEncryption PARAMETERS NULL } |
{ OID sha512WithRSAEncryption PARAMETERS NULL } |
{ OID sha512-224WithRSAEncryption PARAMETERS NULL } |
{ OID sha512-256WithRSAEncryption PARAMETERS NULL } |
{ OID id-RSAES-OAEP PARAMETERS RSAES-OAEP-params } |
PKCS1PSourceAlgorithms |
{ OID id-RSASSA-PSS PARAMETERS RSASSA-PSS-params },
... -- Allows for future expansion --
}
-- ===================
-- Main structures
-- ===================
RSAPublicKey ::= SEQUENCE {
modulus INTEGER, -- n
publicExponent INTEGER -- e
}
--
-- Representation of RSA private key with information for the CRT
-- algorithm.
--
RSAPrivateKey ::= SEQUENCE {
version Version,
modulus INTEGER, -- n
publicExponent INTEGER, -- e
privateExponent INTEGER, -- d
prime1 INTEGER, -- p
prime2 INTEGER, -- q
exponent1 INTEGER, -- d mod (p-1)
exponent2 INTEGER, -- d mod (q-1)
coefficient INTEGER, -- (inverse of q) mod p
otherPrimeInfos OtherPrimeInfos OPTIONAL
}
Moriarty, et al. Informational [Page 73]
^L
RFC 8017 PKCS #1 v2.2 November 2016
Version ::= INTEGER { two-prime(0), multi(1) }
(CONSTRAINED BY
{-- version MUST
be multi if otherPrimeInfos present --})
OtherPrimeInfos ::= SEQUENCE SIZE(1..MAX) OF OtherPrimeInfo
OtherPrimeInfo ::= SEQUENCE {
prime INTEGER, -- ri
exponent INTEGER, -- di
coefficient INTEGER -- ti
}
--
-- AlgorithmIdentifier.parameters for id-RSAES-OAEP.
-- Note that the tags in this Sequence are explicit.
--
RSAES-OAEP-params ::= SEQUENCE {
hashAlgorithm [0] HashAlgorithm DEFAULT sha1,
maskGenAlgorithm [1] MaskGenAlgorithm DEFAULT mgf1SHA1,
pSourceAlgorithm [2] PSourceAlgorithm DEFAULT pSpecifiedEmpty
}
--
-- Identifier for default RSAES-OAEP algorithm identifier.
-- The DER encoding of this is in hexadecimal:
-- (0x)30 0D
-- 06 09
-- 2A 86 48 86 F7 0D 01 01 07
-- 30 00
-- Notice that the DER encoding of default values is "empty".
--
rSAES-OAEP-Default-Identifier RSAES-AlgorithmIdentifier ::= {
algorithm id-RSAES-OAEP,
parameters RSAES-OAEP-params : {
hashAlgorithm sha1,
maskGenAlgorithm mgf1SHA1,
pSourceAlgorithm pSpecifiedEmpty
}
}
RSAES-AlgorithmIdentifier ::= AlgorithmIdentifier {
{PKCS1Algorithms}
}
--
Moriarty, et al. Informational [Page 74]
^L
RFC 8017 PKCS #1 v2.2 November 2016
-- AlgorithmIdentifier.parameters for id-RSASSA-PSS.
-- Note that the tags in this Sequence are explicit.
--
RSASSA-PSS-params ::= SEQUENCE {
hashAlgorithm [0] HashAlgorithm DEFAULT sha1,
maskGenAlgorithm [1] MaskGenAlgorithm DEFAULT mgf1SHA1,
saltLength [2] INTEGER DEFAULT 20,
trailerField [3] TrailerField DEFAULT trailerFieldBC
}
TrailerField ::= INTEGER { trailerFieldBC(1) }
--
-- Identifier for default RSASSA-PSS algorithm identifier
-- The DER encoding of this is in hexadecimal:
-- (0x)30 0D
-- 06 09
-- 2A 86 48 86 F7 0D 01 01 0A
-- 30 00
-- Notice that the DER encoding of default values is "empty".
--
rSASSA-PSS-Default-Identifier RSASSA-AlgorithmIdentifier ::= {
algorithm id-RSASSA-PSS,
parameters RSASSA-PSS-params : {
hashAlgorithm sha1,
maskGenAlgorithm mgf1SHA1,
saltLength 20,
trailerField trailerFieldBC
}
}
RSASSA-AlgorithmIdentifier ::= AlgorithmIdentifier {
{PKCS1Algorithms}
}
--
-- Syntax for the EMSA-PKCS1-v1_5 hash identifier.
--
DigestInfo ::= SEQUENCE {
digestAlgorithm DigestAlgorithm,
digest OCTET STRING
}
DigestAlgorithm ::= AlgorithmIdentifier {
{PKCS1-v1-5DigestAlgorithms}
}
END
Moriarty, et al. Informational [Page 75]
^L
RFC 8017 PKCS #1 v2.2 November 2016
Appendix D. Revision History of PKCS #1
Versions 1.0 - 1.5:
Versions 1.0 - 1.3 were distributed to participants in RSA Data
Security, Inc.'s Public-Key Cryptography Standards meetings in
February and March 1991.
Version 1.4 was part of the June 3, 1991 initial public release of
PKCS. Version 1.4 was published as NIST/OSI Implementors'
Workshop document SEC-SIG-91-18.
Version 1.5 incorporated several editorial changes, including
updates to the references and the addition of a revision history.
The following substantive changes were made:
* Section 10: "MD4 with RSA" signature and verification processes
were added.
* Section 11: md4WithRSAEncryption object identifier was added.
Version 1.5 was republished as [RFC2313] (which was later
obsoleted by [RFC2437]).
Version 2.0:
Version 2.0 incorporated major editorial changes in terms of the
document structure and introduced the RSAES-OAEP encryption
scheme. This version continued to support the encryption and
signature processes in version 1.5, although the hash algorithm
MD4 was no longer allowed due to cryptanalytic advances in the
intervening years. Version 2.0 was republished as [RFC2437]
(which was later obsoleted by [RFC3447]).
Version 2.1:
Version 2.1 introduced multi-prime RSA and the RSASSA-PSS
signature scheme with appendix along with several editorial
improvements. This version continued to support the schemes in
version 2.0. Version 2.1 was republished as [RFC3447].
Moriarty, et al. Informational [Page 76]
^L
RFC 8017 PKCS #1 v2.2 November 2016
Version 2.2:
Version 2.2 updates the list of allowed hashing algorithms to
align them with FIPS 180-4 [SHS], therefore adding SHA-224,
SHA-512/224, and SHA-512/256. The following substantive changes
were made:
* Object identifiers for sha224WithRSAEncryption,
sha512-224WithRSAEncryption, and sha512-256WithRSAEncryption
were added.
* This version continues to support the schemes in version 2.1.
Appendix E. About PKCS
The Public-Key Cryptography Standards are specifications produced by
RSA Laboratories in cooperation with secure systems developers
worldwide for the purpose of accelerating the deployment of public-
key cryptography. First published in 1991 as a result of meetings
with a small group of early adopters of public-key technology, the
PKCS documents have become widely referenced and implemented.
Contributions from the PKCS series have become part of many formal
and de facto standards, including ANSI X9 and IEEE P1363 documents,
PKIX, Secure Electronic Transaction (SET), S/MIME, SSL/TLS, and
Wireless Application Protocol (WAP) / WAP Transport Layer Security
(WTLS).
Further development of most PKCS documents occurs through the IETF.
Suggestions for improvement are welcome.
Moriarty, et al. Informational [Page 77]
^L
RFC 8017 PKCS #1 v2.2 November 2016
Acknowledgements
This document is based on a contribution of RSA Laboratories, the
research center of RSA Security Inc.
Authors' Addresses
Kathleen M. Moriarty (editor)
EMC Corporation
176 South Street
Hopkinton, MA 01748
United States of America
Email: kathleen.moriarty@emc.com
Burt Kaliski
Verisign
12061 Bluemont Way
Reston, VA 20190
United States of America
Email: bkaliski@verisign.com
URI: http://verisignlabs.com
Jakob Jonsson
Subset AB
Munkbrogtan 4
Stockholm SE-11127
Sweden
Phone: +46 8 428 687 43
Email: jakob.jonsson@subset.se
Andreas Rusch
RSA
345 Queen Street
Brisbane, QLD 4000
Australia
Email: andreas.rusch@rsa.com
Moriarty, et al. Informational [Page 78]
^L
|