summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc8045.txt
blob: 27440ff1a823486c271a30f0a0750a80af961ab0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
Internet Engineering Task Force (IETF)                          D. Cheng
Request for Comments: 8045                                        Huawei
Category: Standards Track                                    J. Korhonen
ISSN: 2070-1721                                     Broadcom Corporation
                                                            M. Boucadair
                                                                  Orange
                                                            S. Sivakumar
                                                           Cisco Systems
                                                            January 2017


       RADIUS Extensions for IP Port Configuration and Reporting

Abstract

   This document defines three new RADIUS attributes.  For devices that
   implement IP port ranges, these attributes are used to communicate
   with a RADIUS server in order to configure and report IP transport
   ports as well as mapping behavior for specific hosts.  This mechanism
   can be used in various deployment scenarios such as Carrier-Grade
   NAT, IPv4/IPv6 translators, Provider WLAN gateway, etc.  This
   document defines a mapping between some RADIUS attributes and IP Flow
   Information Export (IPFIX) Information Element identifiers.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc8045.














Cheng, et al.                Standards Track                    [Page 1]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.





































Cheng, et al.                Standards Track                    [Page 2]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


Table of Contents

   1. Introduction ....................................................4
   2. Terminology .....................................................5
      2.1. Requirements Language ......................................6
   3. Extensions of RADIUS Attributes and TLVs ........................7
      3.1. Extended Attributes for IP Ports ...........................7
           3.1.1. IP-Port-Limit-Info Attribute ........................7
           3.1.2. IP-Port-Range Attribute .............................9
           3.1.3. IP-Port-Forwarding-Map Attribute ...................12
      3.2. RADIUS TLVs for IP Ports ..................................15
           3.2.1. IP-Port-Type TLV ...................................16
           3.2.2. IP-Port-Limit TLV ..................................17
           3.2.3. IP-Port-Ext-IPv4-Addr TLV ..........................18
           3.2.4. IP-Port-Int-IPv4-Addr TLV ..........................19
           3.2.5. IP-Port-Int-IPv6-Addr TLV ..........................20
           3.2.6. IP-Port-Int-Port TLV ...............................21
           3.2.7. IP-Port-Ext-Port TLV ...............................22
           3.2.8. IP-Port-Alloc TLV ..................................23
           3.2.9. IP-Port-Range-Start TLV ............................24
           3.2.10. IP-Port-Range-End TLV .............................25
           3.2.11. IP-Port-Local-Id TLV ..............................25
   4. Applications, Use Cases, and Examples ..........................27
      4.1. Managing CGN Port Behavior Using RADIUS ...................27
           4.1.1. Configure IP Port Limit for a User .................27
           4.1.2. Report IP Port Allocation/Deallocation .............29
           4.1.3. Configure Port Forwarding Mapping ..................31
           4.1.4. An Example .........................................33
      4.2. Report Assigned Port Set for a Visiting UE ................35
   5. Table of Attributes ............................................36
   6. Security Considerations ........................................36
   7. IANA Considerations ............................................37
      7.1. New IPFIX Information Elements ............................37
      7.2. New RADIUS Attributes .....................................38
      7.3. New RADIUS TLVs ...........................................38
   8. References .....................................................39
      8.1. Normative References ......................................39
      8.2. Informative References ....................................40
   Acknowledgments ...................................................43
   Authors' Addresses ................................................43











Cheng, et al.                Standards Track                    [Page 3]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


1.  Introduction

   In a broadband network, customer information is usually stored on a
   RADIUS server [RFC2865].  At the time when a user initiates an IP
   connection request, if this request is authorized, the RADIUS server
   will populate the user's configuration information to the Network
   Access Server (NAS), which is often referred to as a Broadband
   Network Gateway (BNG) in broadband access networks.  The Carrier-
   Grade NAT (CGN) function may also be implemented on the BNG.  Within
   this document, the CGN may perform Network Address Translation from
   IPv4 Clients to IPv4 Servers (NAT44) [RFC3022], NAT from IPv6 Clients
   to IPv4 Servers (NAT64) [RFC6146], or Dual-Stack Lite Address Family
   Transition Router (AFTR) [RFC6333] function.  In such case, the CGN
   IP transport port (e.g., TCP/UDP port) mapping behaviors can be part
   of the configuration information sent from the RADIUS server to the
   NAS/BNG.  As part of the accounting information sent from the NAS/BNG
   to a RADIUS server, the NAS/BNG may also report the IP port mapping
   behavior applied by the CGN to a user session.

   When IP packets traverse the CGN, it performs mapping on the IP
   transport (e.g., TCP/UDP) source port as required.  An IP transport
   source port, along with a source IP address, destination IP address,
   destination port, and protocol identifier, if applicable, uniquely
   identify a mapping.  Since the number space of IP transport ports in
   the CGN's external realm is shared among multiple users assigned with
   the same IPv4 address, the total number of a user's simultaneous IP
   mappings is likely to be subject to a port quota (see Section 5 of
   [RFC6269]).

   The attributes defined in this document may also be used to report
   the assigned port range in some deployments, such as Provider WLAN
   [WIFI-SERVICES].  For example, a visiting host can be managed by
   Customer Premises Equipment (CPE), which will need to report the
   assigned port range to the service platform.  This is required for
   identification purposes (see TR-146 [TR-146] for more details).

   This document proposes three new attributes as RADIUS protocol
   extensions; they are used for separate purposes, as follows:

   1.  IP-Port-Limit-Info: This attribute may be carried in a RADIUS
       Access-Accept, Access-Request, Accounting-Request, or CoA-Request
       packet.  The purpose of this attribute is to limit the total
       number of IP source transport ports allocated to a user and
       associated with one or more IPv4 or IPv6 addresses.

   2.  IP-Port-Range: This attribute may be carried in a RADIUS
       Accounting-Request packet.  The purpose of this attribute is for
       an address-sharing device (e.g., a CGN) to report to the RADIUS



Cheng, et al.                Standards Track                    [Page 4]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


       server the range of IP source transport ports that have been
       allocated or deallocated for a user.  The port range is bound to
       an external IPv4 address.

   3.  IP-Port-Forwarding-Map: This attribute may be carried in RADIUS
       Access-Accept, Access-Request, Accounting-Request, or CoA-Request
       packet.  The purpose of this attribute is to specify how an IP
       internal source transport port, together with its internal IPv4
       or IPv6 address, are mapped to an external source transport port
       along with the external IPv4 address.

   IPFIX Information Elements [RFC7012] can be used for IP flow
   identification and representation over RADIUS.  This document
   provides a mapping between some RADIUS TLVs and IPFIX Information
   Element identifiers.  A new IPFIX Information Element is defined by
   this document (see Section 3.2.2).

   IP protocol numbers (refer to [ProtocolNumbers]) can be used for
   identification of IP transport protocols (e.g., TCP [RFC793], UDP
   [RFC768], Datagram Congestion Control Protocol (DCCP) [RFC4340], and
   Stream Control Transmission Protocol (SCTP) [RFC4960]) that are
   associated with some RADIUS attributes.

   This document focuses on IPv4 address sharing.  Mechanisms for IPv6
   prefix sharing (e.g., IPv6-to-IPv6 Network Prefix Translation
   (NPTv6)) are out of scope.

2.  Terminology

   This document makes use of the following terms:

   o  IP Port: This refers to an IP transport port (e.g., a TCP port
      number or UDP port number).

   o  IP Port Type: This refers to the IP transport protocol as
      indicated by the IP transport protocol number.  Refer to
      [ProtocolNumbers].

   o  IP Port Limit: This denotes the maximum number of IP ports for a
      specific (or all) IP transport protocol(s) that a device
      supporting port ranges can use when performing port number
      mappings for a specific user/host.  Note that this limit is
      usually associated with one or more IPv4/IPv6 addresses.

   o  IP Port Range: This specifies a set of contiguous IP ports
      indicated by the lowest numerical number and the highest numerical
      number, inclusively.




Cheng, et al.                Standards Track                    [Page 5]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


   o  Internal IP Address: This refers to the IP address that is used by
      a host as a source IP address in an outbound IP packet sent
      towards a device supporting port ranges in the internal realm.
      The internal IP address may be IPv4 or IPv6.

   o  External IP Address: This refers to the IP address that is used as
      a source IP address in an outbound IP packet after traversing a
      device supporting port ranges in the external realm.  This
      document assumes that the external IP address is an IPv4 address.

   o  Internal Port: This is an IP transport port that is allocated by a
      host or application behind an address-sharing device for an
      outbound IP packet in the internal realm.

   o  External Port: This is an IP transport port that is allocated by
      an address-sharing device upon receiving an outbound IP packet in
      the internal realm and is used to replace the internal port that
      is allocated by a user or application.

   o  External Realm: This refers to the networking segment where
      external IP addresses are used as source addresses of outbound
      packets forwarded by an address-sharing device.

   o  Internal Realm: This refers to the networking segment that is
      behind an address-sharing device and where internal IP addresses
      are used.

   o  Mapping: This denotes a relationship between an internal IP
      address, internal port, and protocol, as well as an external IP
      address, external port, and protocol.

   o  Address-Sharing Device: This is a device that is capable of
      sharing an IPv4 address among multiple users.  A typical example
      of this device is a CGN, CPE, Provider WLAN gateway, etc.

2.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].











Cheng, et al.                Standards Track                    [Page 6]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


3.  Extensions of RADIUS Attributes and TLVs

   These three new attributes are defined in the following subsections:

   1.  IP-Port-Limit-Info Attribute

   2.  IP-Port-Range Attribute

   3.  IP-Port-Forwarding-Map Attribute

   All these attributes are allocated from the RADIUS "Extended Type"
   code space per [RFC6929].

   These attributes and their embedded TLVs (refer to Section 3.2) are
   defined with globally unique names and follow the guidelines in
   Section 2.7.1 of [RFC6929].

   In all the figures describing the RADIUS attributes and TLV formats
   in the following subsections, the fields are transmitted from left to
   right.

3.1.  Extended Attributes for IP Ports

3.1.1.  IP-Port-Limit-Info Attribute

   This attribute is of type "tlv" as defined in the RADIUS Protocol
   Extensions [RFC6929].  It contains some sub-attributes, and the
   requirements are as follows:

   o  The IP-Port-Limit-Info Attribute MAY contain the IP-Port-Type TLV
      (see Section 3.2.1).

   o  The IP-Port-Limit-Info Attribute MUST contain the
      IP-Port-Limit TLV (see Section 3.2.2).

   o  The IP-Port-Limit-Info Attribute MAY contain the
      IP-Port-Ext-IPv4-Addr TLV (see Section 3.2.3).

   The IP-Port-Limit-Info Attribute specifies the maximum number of IP
   ports, as indicated in IP-Port-Limit TLV, of a specific IP transport
   protocol, as indicated in IP-Port-Type TLV, and associated with a
   given IPv4 address, as indicated in IP-Port-Ext-IPv4-Addr TLV, for an
   end user.

   Note that when IP-Port-Type TLV is not included as part of the
   IP-Port-Limit-Info Attribute, the port limit applies to all IP
   transport protocols.




Cheng, et al.                Standards Track                    [Page 7]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


   Note also that when IP-Port-Ext-IPv4-Addr TLV is not included as part
   of the IP-Port-Limit-Info Attribute, the port limit applies to all
   the IPv4 addresses managed by the address-sharing device, e.g., a CGN
   or NAT64 device.

   The IP-Port-Limit-Info Attribute MAY appear in an Access-Accept
   packet.  It MAY also appear in an Access-Request packet as a
   preferred maximum number of IP ports indicated by the device
   supporting port ranges co-located with the NAS, e.g., a CGN or NAT64.

   The IP-Port-Limit-Info Attribute MAY appear in a CoA-Request packet.

   The IP-Port-Limit-Info Attribute MAY appear in an Accounting-Request
   packet.

   The IP-Port-Limit-Info Attribute MUST NOT appear in any other RADIUS
   packet.

   The format of the IP-Port-Limit-Info Attribute is shown in Figure 1.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Type     |     Length    | Extended-Type |    Value ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                                 Figure 1

   Type

      241

   Length

      This field indicates the total length in octets of all fields of
      this attribute, including the Type, Length, Extended-Type, and the
      entire length of the embedded TLVs.

   Extended-Type

      5










Cheng, et al.                Standards Track                    [Page 8]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


   Value

      This field contains a set of TLVs as follows:

      IP-Port-Type TLV

         This TLV contains a value that indicates the IP port type.
         Refer to Section 3.2.1.

      IP-Port-Limit TLV

         This TLV contains the maximum number of IP ports of a specific
         IP port type and associated with a given IPv4 address for an
         end user.  This TLV MUST be included in the IP-Port-Limit-Info
         Attribute.  Refer to Section 3.2.2.  This limit applies to all
         mappings that can be instantiated by an underlying address-
         sharing device without soliciting any external entity.  In
         particular, this limit does not include the ports that are
         instructed by an Authentication, Authorization, and Accounting
         (AAA) server.

      IP-Port-Ext-IPv4-Addr TLV

         This TLV contains the IPv4 address that is associated with the
         IP port limit contained in the IP-Port-Limit TLV.  This TLV is
         optionally included as part of the IP-Port-Limit-Info
         Attribute.  Refer to Section 3.2.3.

   IP-Port-Limit-Info Attribute is associated with the following
   identifier: 241.5.

3.1.2.  IP-Port-Range Attribute

   This attribute is of type "tlv" as defined in the RADIUS Protocol
   Extensions [RFC6929].  It contains some sub-attributes and the
   requirement is as follows:

   o  The IP-Port-Range Attribute MAY contain the IP-Port-Type TLV (see
      Section 3.2.1).

   o  The IP-Port-Range Attribute MUST contain the IP-Port-Alloc TLV
      (see Section 3.2.8).









Cheng, et al.                Standards Track                    [Page 9]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


   o  For port allocation, the IP-Port-Range Attribute MUST contain both
      the IP-Port-Range-Start TLV (see Section 3.2.9) and the
      IP-Port-Range-End TLV (see Section 3.2.10).  For port
      deallocation, the IP-Port-Range Attribute MAY contain both of
      these two TLVs; if the two TLVs are not included, it implies that
      all ports that were previously allocated are now all deallocated.

   o  The IP-Port-Range Attribute MAY contain the
      IP-Port-Ext-IPv4-Addr TLV (see Section 3.2.3).

   o  The IP-Port-Range Attribute MAY contain the IP-Port-Local-Id TLV
      (see Section 3.2.11).

   The IP-Port-Range Attribute contains a range of contiguous IP ports.
   These ports are either to be allocated or deallocated depending on
   the Value carried by the IP-Port-Alloc TLV.

   If the IP-Port-Type TLV is included as part of the IP-Port-Range
   Attribute, then the port range is associated with the specific IP
   transport protocol as specified in the IP-Port-Type TLV, but
   otherwise it is for all IP transport protocols.

   If the IP-Port-Ext-IPv4-Addr TLV is included as part of the
   IP-Port-Range Attribute, then the port range as specified is
   associated with the IPv4 address as indicated, but otherwise it is
   for all IPv4 addresses by the address-sharing device (e.g., a CGN
   device) for the end user.

   This attribute can be used to convey a single IP transport port
   number: in such case, the Value of the IP-Port-Range-Start TLV and
   the IP-Port-Range-End TLV, respectively, contain the same port
   number.

   The information contained in the IP-Port-Range Attribute is sent to
   RADIUS server.

   The IP-Port-Range Attribute MAY appear in an Accounting-Request
   packet.

   The IP-Port-Range Attribute MUST NOT appear in any other RADIUS
   packet.










Cheng, et al.                Standards Track                   [Page 10]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


   The format of the IP-Port-Range Attribute is shown in Figure 2.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Type     |     Length    | Extended-Type |    Value ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                                 Figure 2

   Type

      241

   Length

      This field indicates the total length in octets of all fields of
      this attribute, including the Type, Length, Extended-Type, and the
      entire length of the embedded TLVs.

   Extended-Type

      6

   Value

      This field contains a set of TLVs as follows:

      IP-Port-Type TLV

         This TLV contains a value that indicates the IP port type.
         Refer to Section 3.2.1.

      IP-Port-Alloc TLV

         This TLV contains a flag to indicate the range of the specified
         IP ports for either allocation or deallocation.  This TLV MUST
         be included as part of the IP-Port-Range Attribute.  Refer to
         Section 3.2.8.

      IP-Port-Range-Start TLV

         This TLV contains the smallest port number of a range of
         contiguous IP ports.  To report the port allocation, this TLV
         MUST be included together with IP-Port-Range-End TLV as part of
         the IP-Port-Range Attribute.  Refer to Section 3.2.9.





Cheng, et al.                Standards Track                   [Page 11]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


      IP-Port-Range-End TLV

         This TLV contains the largest port number of a range of
         contiguous IP ports.  To report the port allocation, this TLV
         MUST be included together with IP-Port-Range-Start TLV as part
         of the IP-Port-Range Attribute.  Refer to Section 3.2.10.

      IP-Port-Ext-IPv4-Addr TLV

         This TLV contains the IPv4 address that is associated with the
         IP port range, as is collectively indicated in the
         IP-Port-Range-Start TLV and the IP-Port-Range-End TLV.  This
         TLV is optionally included as part of the IP-Port-Range
         Attribute.  Refer to Section 3.2.3.

      IP-Port-Local-Id TLV

         This TLV contains a local significant identifier at the
         customer premise, such as the Media Access Control (MAC)
         address, interface ID, VLAN ID, PPP sessions ID, VPN Routing
         and Forwarding (VRF) ID, IP address/prefix, etc.  This TLV is
         optionally included as part of the IP-Port-Range Attribute.
         Refer to Section 3.2.11.

   The IP-Port-Range Attribute is associated with the following
   identifier: 241.6.

3.1.3.  IP-Port-Forwarding-Map Attribute

   This attribute is of type "tlv" as defined in the RADIUS Protocol
   Extensions [RFC6929].  It contains some sub-attributes and the
   requirement is as follows:

   o  The IP-Port-Forwarding-Map Attribute MAY contain the
      IP-Port-Type TLV (see Section 3.2.1).

   o  The IP-Port-Forwarding-Map Attribute MUST contain both
      IP-Port-Int-Port TLV (see Section 3.2.6) and the
      IP-Port-Ext-Port TLV (see Section 3.2.7).

   o  If the internal realm is with an IPv4 address family, the
      IP-Port-Forwarding-Map Attribute MUST contain the
      IP-Port-Int-IPv4-Addr TLV (see Section 3.2.4); if the internal
      realm is with an IPv6 address family, the IP-Port-Forwarding-Map
      Attribute MUST contain the IP-Port-Int-IPv6-Addr TLV (see
      Section 3.2.5).





Cheng, et al.                Standards Track                   [Page 12]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


   o  The IP-Port-Forwarding-Map Attribute MAY contain the
      IP-Port-Ext-IPv4-Addr TLV (see Section 3.2.3).

   o  The IP-Port-Forwarding-Map Attribute MAY contain the
      IP-Port-Local-Id TLV (see Section 3.2.11).

   The attribute contains a two-octet IP internal port number and a
   two-octet IP external port number.  The internal port number is
   associated with an internal IPv4 or IPv6 address that MUST always be
   included.  The external port number is associated with a specific
   external IPv4 address if included, but otherwise it is associated
   with all external IPv4 addresses for the end user.

   If the IP-Port-Type TLV is included as part of the
   IP-Port-Forwarding-Map Attribute, then the port mapping is associated
   with the specific IP transport protocol as specified in the
   IP-Port-Type TLV, but otherwise it is for all IP transport protocols.

   The IP-Port-Forwarding-Map Attribute MAY appear in an Access-Accept
   packet.  It MAY also appear in an Access-Request packet to indicate a
   preferred port mapping by the device co-located with NAS.  However,
   the server is not required to honor such a preference.

   The IP-Port-Forwarding-Map Attribute MAY appear in a CoA-Request
   packet.

   The IP-Port-Forwarding-Map Attribute MAY also appear in an
   Accounting-Request packet.

   The IP-Port-Forwarding-Map Attribute MUST NOT appear in any other
   RADIUS packet.




















Cheng, et al.                Standards Track                   [Page 13]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


   The format of the IP-Port-Forwarding-Map Attribute is shown in
   Figure 3.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Type     |     Length    | Extended-Type |    Value ....
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                                 Figure 3

   Type

      241

   Length

      This field indicates the total length in octets of all fields of
      this attribute, including the Type, Length, Extended-Type, and the
      entire length of the embedded TLVs.

   Extended-Type

      7

   Value

      This field contains a set of TLVs as follows:

      IP-Port-Type TLV

         This TLV contains a value that indicates the IP port type.
         Refer to Section 3.2.1.

      IP-Port-Int-Port TLV

         This TLV contains an internal IP port number associated with an
         internal IPv4 or IPv6 address.  This TLV MUST be included
         together with IP-Port-Ext-Port TLV as part of the
         IP-Port-Forwarding-Map Attribute.  Refer to Section 3.2.6.

      IP-Port-Ext-Port TLV

         This TLV contains an external IP port number associated with an
         external IPv4 address.  This TLV MUST be included together with
         IP-Port-Int-Port TLV as part of the IP-Port-Forwarding-Map
         Attribute.  Refer to Section 3.2.7.




Cheng, et al.                Standards Track                   [Page 14]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


      IP-Port-Int-IPv4-Addr TLV

         This TLV contains an IPv4 address that is associated with the
         internal IP port number contained in the IP-Port-Int-Port TLV.
         For the internal realm with an IPv4 address family, this TLV
         MUST be included as part of the IP-Port-Forwarding-Map
         Attribute.  Refer to Section 3.2.4.

      IP-Port-Int-IPv6-Addr TLV

         This TLV contains an IPv6 address that is associated with the
         internal IP port number contained in the IP-Port-Int-Port TLV.
         For the internal realm with an IPv6 address family, this TLV
         MUST be included as part of the IP-Port-Forwarding-Map
         Attribute.  Refer to Section 3.2.5.

      IP-Port-Ext-IPv4-Addr TLV

         This TLV contains an IPv4 address that is associated with the
         external IP port number contained in the IP-Port-Ext-Port TLV.
         This TLV MAY be included as part of the IP-Port-Forwarding-Map
         Attribute.  Refer to Section 3.2.3.

      IP-Port-Local-Id TLV

         This TLV contains a local significant identifier at the
         customer premise, such as MAC address, interface ID, VLAN ID,
         PPP sessions ID, VRF ID, IP address/prefix, etc.  This TLV is
         optionally included as part of the IP-Port-Forwarding-Map
         Attribute.  Refer to Section 3.2.11.

   The IP-Port-Forwarding-Map Attribute is associated with the following
   identifier: 241.7.

3.2.  RADIUS TLVs for IP Ports

   The TLVs that are included in the three attributes (see Section 3.1)
   are defined in the following subsections.  These TLVs use the format
   defined in [RFC6929].  As the three attributes carry similar data, we
   have defined a common set of TLVs that are used for all three
   attributes.  That is, the TLVs have the same name and number when
   encapsulated in any one of the three parent attributes.  See
   Sections 3.1.1, 3.1.2, and 3.1.3 for a list of which TLV is permitted
   within which parent attribute.







Cheng, et al.                Standards Track                   [Page 15]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


   The encoding of the Value field of these TLVs follows the
   recommendation of [RFC6158].  In particular, IP-Port-Type,
   IP-Port-Limit, IP-Port-Int-Port, IP-Port-Ext-Port, IP-Port-Alloc,
   IP-Port-Range-Start, and IP-Port-Range-End TLVs are encoded in
   32 bits as per the recommendation in Appendix A.2.1 of [RFC6158].

3.2.1.  IP-Port-Type TLV

   The format of IP-Port-Type TLV is shown in Figure 4.  This attribute
   carries the IP transport protocol number defined by IANA (refer to
   [ProtocolNumbers]).

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   TLV-Type    |     Length    |        Protocol-Number
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           Protocol-Number         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                                 Figure 4

   TLV-Type

      1

   Length

      Six octets

   Protocol-Number

      Integer.  This field contains the data (unsigned8) of the protocol
      number defined in [ProtocolNumbers], right justified, and the
      unused bits in this field MUST be set to zero.  Protocols that do
      not use a port number (e.g., the Resource Reservation Protocol
      (RSVP) or IP Encapsulating Security Payload (ESP)) MUST NOT be
      included in the IP-Port-Type TLV.

   IP-Port-Type TLV MAY be included in the following attributes:

   o  IP-Port-Limit-Info Attribute, identified as 241.5.1 (see
      Section 3.1.1)

   o  IP-Port-Range Attribute, identified as 241.6.1 (see Section 3.1.2)

   o  IP-Port-Forwarding-Map Attribute, identified as 241.7.1 (see
      Section 3.1.3)



Cheng, et al.                Standards Track                   [Page 16]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


   When the IP-Port-Type TLV is included within a RADIUS attribute, the
   associated attribute is applied to the IP transport protocol as
   indicated by the Protocol-Number only, such as TCP, UDP, SCTP,
   DCCP, etc.

3.2.2.  IP-Port-Limit TLV

   The format of IP-Port-Limit TLV is shown in Figure 5.  This attribute
   carries IPFIX Information Element 458, "sourceTransportPortsLimit",
   which indicates the maximum number of IP transport ports as a limit
   for an end user to use that is associated with one or more IPv4 or
   IPv6 addresses.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   TLV-Type    |     Length    |    sourceTransportPortsLimit
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        sourceTransportPortsLimit  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                                 Figure 5

   TLV-Type

      2

   Length

      Six octets

   sourceTransportPortsLimit

      Integer.  This field contains the data (unsigned16) of
      sourceTransportPortsLimit (458) defined in IPFIX, right justified,
      and the unused bits in this field MUST be set to zero.

   IP-Port-Limit TLV MUST be included as part of the IP-Port-Limit-Info
   Attribute (refer to Section 3.1.1), identified as 241.5.2.












Cheng, et al.                Standards Track                   [Page 17]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


3.2.3.  IP-Port-Ext-IPv4-Addr TLV

   The format of IP-Port-Ext-IPv4-Addr TLV is shown in Figure 6.  This
   attribute carries IPFIX Information Element 225,
   "postNATSourceIPv4Address", which is the IPv4 source address after
   NAT operation (refer to [IPFIX]).

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   TLV-Type    |    Length     |    postNATSourceIPv4Address
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        postNATSourceIPv4Address   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                                 Figure 6

   TLV-Type

      3

   Length

      Six octets

   postNATSourceIPv4Address

      Integer.  This field contains the data (ipv4Address) of
      postNATSourceIPv4Address (225) defined in IPFIX.

   IP-Port-Ext-IPv4-Addr TLV MAY be included in the following
   attributes:

   o  IP-Port-Limit-Info Attribute, identified as 241.5.3 (see
      Section 3.1.1)

   o  IP-Port-Range Attribute, identified as 241.6.3 (see Section 3.1.2)

   o  IP-Port-Forwarding-Mapping Attribute, identified as 241.7.3 (see
      Section 3.1.3)











Cheng, et al.                Standards Track                   [Page 18]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


3.2.4.  IP-Port-Int-IPv4-Addr TLV

   The format of IP-Port-Int-IPv4 TLV is shown in Figure 7.  This
   attribute carries IPFIX Information Element 8, "sourceIPv4Address",
   which is the IPv4 source address before NAT operation (refer to
   [IPFIX]).

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   TLV-Type    |     Length    |       sourceIPv4Address
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
         sourceIPv4Address         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                                 Figure 7

   TLV-Type

      4

   Length

      Six octets

   sourceIPv4Address

      Integer.  This field contains the data (ipv4Address) of
      sourceIPv4Address (8) defined in IPFIX.

   If the internal realm is with an IPv4 address family, the
   IP-Port-Int-IPv4-Addr TLV MUST be included as part of the
   IP-Port-Forwarding-Map Attribute (refer to Section 3.1.3),
   identified as 241.7.4.

















Cheng, et al.                Standards Track                   [Page 19]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


3.2.5.  IP-Port-Int-IPv6-Addr TLV

   The format of IP-Port-Int-IPv6-Addr TLV is shown in Figure 8.  This
   attribute carries IPFIX Information Element 27, "sourceIPv6Address",
   which is the IPv6 source address before NAT operation (refer to
   [IPFIX]).

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   TLV-Type    |     Length    |        sourceIPv6Address
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                             sourceIPv6Address
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                             sourceIPv6Address
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                             sourceIPv6Address
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           sourceIPv6Address       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                                 Figure 8

   TLV-Type

      5

   Length

      Eighteen octets

   sourceIPv6Address

      IPv6 address (128 bits).  This field contains the data
      (ipv6Address) of sourceIPv6Address (27) defined in IPFIX.

   If the internal realm is with an IPv6 address family, the
   IP-Port-Int-IPv6-Addr TLV MUST be included as part of the
   IP-Port-Forwarding-Map Attribute (refer to Section 3.1.3),
   identified as 241.7.5.











Cheng, et al.                Standards Track                   [Page 20]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


3.2.6.  IP-Port-Int-Port TLV

   The format of IP-Port-Int-Port TLV is shown in Figure 9.  This
   attribute carries IPFIX Information Element 7, "sourceTransportPort",
   which is the source transport number associated with an internal IPv4
   or IPv6 address (refer to [IPFIX]).

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    TLV-Type   |     Length    |      sourceTransportPort
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           sourceTransportPort     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                                 Figure 9

   TLV-Type

      6

   Length

      Six octets

   sourceTransportPort

      Integer.  This field contains the data (unsigned16) of
      sourceTransportPort (7) defined in IPFIX, right justified, and
      unused bits MUST be set to zero.

   IP-Port-Int-Port TLV MUST be included as part of the
   IP-Port-Forwarding-Map Attribute (refer to Section 3.1.3),
   identified as 241.7.6.

















Cheng, et al.                Standards Track                   [Page 21]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


3.2.7.  IP-Port-Ext-Port TLV

   The format of IP-Port-Ext-Port TLV is shown in Figure 10.  This
   attribute carries IPFIX Information Element 227,
   "postNAPTSourceTransportPort", which is the transport number
   associated with an external IPv4 address (refer to [IPFIX]).

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    TLV-Type   |     Length    |  postNAPTSourceTransportPort
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      postNAPTSourceTransportPort  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                                 Figure 10

   TLV-Type

      7

   Length

      Six octets

   postNAPTSourceTransportPort

      Integer.  This field contains the data (unsigned16) of
      postNAPTSourceTransportPort (227) defined in IPFIX, right
      justified, and unused bits MUST be set to zero.

   IP-Port-Ext-Port TLV MUST be included as part of the
   IP-Port-Forwarding-Map Attribute (refer to Section 3.1.3),
   identified as 241.7.7.

















Cheng, et al.                Standards Track                   [Page 22]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


3.2.8.  IP-Port-Alloc TLV

   The format of IP-Port-Alloc TLV is shown in Figure 11.  This
   attribute carries IPFIX Information Element 230, "natEvent", which is
   a flag to indicate an action of NAT operation (refer to [IPFIX]).

   When the value of natEvent is "1" (Create event), it means to
   allocate a range of transport ports; when the value is "2", it means
   to deallocate a range of transports ports.  For the purpose of this
   TLV, no other value is used.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    TLV-Type   |     Length    |            natEvent
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
               natEvent            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                                 Figure 11

   TLV-Type

      8

   Length

      Six octets

   natEvent

      Integer.  This field contains the data (unsigned8) of natEvent
      (230) defined in IPFIX, right justified, and unused bits MUST be
      set to zero.  It indicates the allocation or deallocation of a
      range of IP ports as follows:

         0: Reserved
         1: Allocation
         2: Deallocation

   IP-Port-Alloc TLV MUST be included as part of the IP-Port-Range
   Attribute (refer to Section 3.1.2), identified as 241.6.8.









Cheng, et al.                Standards Track                   [Page 23]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


3.2.9.  IP-Port-Range-Start TLV

   The format of IP-Port-Range-Start TLV is shown in Figure 12.  This
   attribute carries IPFIX Information Element 361, "portRangeStart",
   which is the smallest port number of a range of contiguous transport
   ports (refer to [IPFIX]).

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    TLV-Type   |     Length    |         portRangeStart
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             portRangeStart        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                                 Figure 12

   TLV-Type

      9

   Length

      Six octets

   portRangeStart

      Integer.  This field contains the data (unsigned16) of
      portRangeStart (361) defined in IPFIX, right justified, and unused
      bits MUST be set to zero.

   IP-Port-Range-Start TLV is included as part of the IP-Port-Range
   Attribute (refer to Section 3.1.2), identified as 241.6.9.


















Cheng, et al.                Standards Track                   [Page 24]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


3.2.10.  IP-Port-Range-End TLV

   The format of IP-Port-Range-End TLV is shown in Figure 13.  This
   attribute carries IPFIX Information Element 362, "portRangeEnd",
   which is the largest port number of a range of contiguous transport
   ports (refer to [IPFIX]).

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    TLV-Type   |     Length    |          portRangeEnd
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
              portRangeEnd         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                                 Figure 13

   TLV-Type

      10

   Length

      Six octets

   portRangeEnd

      Integer.  This field contains the data (unsigned16) of
      portRangeEnd (362) defined in IPFIX, right justified, and unused
      bits MUST be set to zero.

   IP-Port-Range-End TLV is included as part of the IP-Port-Range
   Attribute (refer to Section 3.1.2), identified as 241.6.10.

3.2.11.  IP-Port-Local-Id TLV

   The format of IP-Port-Local-Id TLV is shown in Figure 14.  This
   attribute carries a string called "localID", which is a local
   significant identifier as explained below.

   The primary issue addressed by this TLV is that there are CGN
   deployments that do not distinguish internal hosts by their internal
   IP address alone but use further identifiers for unique subscriber
   identification.  For example, this is the case if a CGN supports
   overlapping private or shared IP address spaces (as described in
   [RFC1918] and [RFC6598]) for internal hosts of different subscribers.
   In such cases, different internal hosts are identified and mapped at
   the CGN by their IP address and/or another identifier, for example,



Cheng, et al.                Standards Track                   [Page 25]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


   the identifier of a tunnel between the CGN and the subscriber.  In
   these scenarios (and similar ones), the internal IP address is not
   sufficient to demultiplex connections from internal hosts.  An
   additional identifier needs to be present in the IP-Port-Range
   Attribute and IP-Port-Forwarding-Mapping Attribute in order to
   uniquely identify an internal host.  The IP-Port-Local-Id TLV is used
   to carry this identifier.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    TLV-Type   |     Length    |        localID ....
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                                 Figure 14

   TLV-Type

      11

   Length

      Variable number of octets

   localID

      String.  The data type of this field is string (refer to
      [RFC8044]).  This field contains the data that is a local
      significant identifier at the customer premise, such as MAC
      address, interface ID, VLAN ID, PPP sessions ID, VRF ID, IP
      address/prefix, or another local significant identifier.

   IP-Port-Local-Id TLV MAY be included in the following Attributes if
   it is necessary to identify the subscriber:

   o  IP-Port-Range Attribute, identified as 241.6.11 (see
      Section 3.1.2)

   o  IP-Port-Forwarding-Mapping Attribute, identified as 241.7.11 (see
      Section 3.1.3)











Cheng, et al.                Standards Track                   [Page 26]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


4.  Applications, Use Cases, and Examples

   This section describes some applications and use cases to illustrate
   the use of the attributes proposed in this document.

4.1.  Managing CGN Port Behavior Using RADIUS

   In a broadband network, customer information is usually stored on a
   RADIUS server, and the BNG acts as a NAS.  The communication between
   the NAS and the RADIUS server is triggered by a user when it signs in
   to the Internet service where either PPP or DHCP/DHCPv6 is used.
   When a user signs in, the NAS sends a RADIUS Access-Request message
   to the RADIUS server.  The RADIUS server validates the request, and
   if the validation succeeds, it in turn sends back a RADIUS
   Access-Accept message.  The Access-Accept message carries
   configuration information specific to that user back to the NAS,
   where some of the information would be passed on to the requesting
   user via PPP or DHCP/DHCPv6.

   A CGN function in a broadband network is most likely to be co-located
   on a BNG.  In that case, parameters for CGN port mapping behavior for
   users can be configured on the RADIUS server.  When a user signs in
   to the Internet service, the associated parameters can be conveyed to
   the NAS, and proper configuration is accomplished on the CGN device
   for that user.

   Also, a CGN operation status such as CGN port allocation and
   deallocation for a specific user on the BNG can also be transmitted
   back to the RADIUS server for accounting purposes using the RADIUS
   protocol.

   The RADIUS protocol has already been widely deployed in broadband
   networks to manage BNG, thus the functionality described in this
   specification introduces little overhead to the existing network
   operation.

   In the following subsections, we describe how to manage CGN behavior
   using the RADIUS protocol, with required RADIUS extensions proposed
   in Section 3.

4.1.1.  Configure IP Port Limit for a User

   In the face of an IPv4 address shortage, there are currently
   proposals to multiplex multiple users' connections over a number of
   shared IPv4 addresses, such as Carrier Grade NAT [RFC6888],
   Dual-Stack Lite [RFC6333], NAT64 [RFC6146], etc.  As a result, a
   single IPv4 public address may be shared by hundreds or even
   thousands of users.  As indicated in [RFC6269], it is therefore



Cheng, et al.                Standards Track                   [Page 27]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


   necessary to impose limits on the total number of ports available to
   an individual user to ensure that the shared resource, i.e., the
   IPv4 address, remains available in some capacity to all the users
   using it.  The support of an IP port limit is also documented in
   [RFC6888] as a requirement for CGN.

   The IP port limit imposed on an end user may be on the total number
   of IP source transport ports or a specific IP transport protocol as
   defined in Section 3.1.1.

   The per-user IP port limit is configured on a RADIUS server, along
   with other user information such as credentials.

   When a user signs in to the Internet service successfully, the IP
   port limit for the subscriber is passed by the RADIUS server to the
   BNG, which is acting as a NAS and is co-located with the CGN using
   the IP-Port-Limit-Info RADIUS attribute (defined in Section 3.1.1)
   along with other configuration parameters.  While some parameters are
   passed to the user, the IP port limit is recorded on the CGN device
   for imposing the usage of IP transport ports for that user.

   Figure 15 illustrates how the RADIUS protocol is used to configure
   the maximum number of TCP/UDP ports for a given user on a CGN device.

   User                     CGN/NAS                        AAA
    |                         BNG                         Server
    |                          |                             |
    |                          |                             |
    |----Service Request------>|                             |
    |                          |                             |
    |                          |-----Access-Request -------->|
    |                          |                             |
    |                          |<----Access-Accept-----------|
    |                          |     (IP-Port-Limit-Info)    |
    |                          |     (for TCP/UDP ports)     |
    |<---Service Granted ------|                             |
    |    (other parameters)    |                             |
    |                          |                             |
    |                  (CGN external port                    |
    |                   allocation and                       |
    |                   IPv4 address assignment)             |
    |                          |                             |

       Figure 15: RADIUS Message Flow for Configuring CGN Port Limit







Cheng, et al.                Standards Track                   [Page 28]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


   The IP port limit created on a CGN device for a specific user using a
   RADIUS extension may be changed using a RADIUS CoA message [RFC5176]
   that carries the same RADIUS attribute.  The CoA message may be sent
   from the RADIUS server directly to the NAS, and once a RADIUS CoA ACK
   message is accepted and sent back, the new IP port limit replaces the
   previous one.

   Figure 16 illustrates how the RADIUS protocol is used to increase the
   TCP/UDP port limit from 1024 to 2048 on a CGN device for a specific
   user.


   User                     CGN/NAS                           AAA
    |                         BNG                            Server
    |                          |                               |
    |              TCP/UDP Port Limit (1024)                   |
    |                          |                               |
    |                          |<---------CoA Request----------|
    |                          |       (IP-Port-Limit-Info)    |
    |                          |       (for TCP/UDP ports)     |
    |                          |                               |
    |              TCP/UDP Port Limit (2048)                   |
    |                          |                               |
    |                          |---------CoA Response--------->|
    |                          |                               |

    Figure 16: RADIUS Message Flow for Changing a User's CGN Port Limit

4.1.2.  Report IP Port Allocation/Deallocation

   Upon obtaining the IP port limit for a user, the CGN device needs to
   allocate an IP transport port for the user when receiving a new IP
   flow sent from that user.

   As one practice, a CGN may allocate a block of IP ports for a
   specific user, instead of one port at a time, and within each port
   block the ports may be randomly distributed or in consecutive
   fashion.  When a CGN device allocates a block of transport ports, the
   information can be easily conveyed to the RADIUS server by a new
   RADIUS attribute called the IP-Port-Range (defined in Section 3.1.2).
   The CGN device may allocate one or more IP port ranges, where each
   range contains a set of numbers representing IP transport ports and
   the total number of ports MUST be less or equal to the associated IP
   port limit imposed for that user.  A CGN device may choose to
   allocate a small port range and allocate more at a later time as
   needed; such practice is good because of its randomization in nature.





Cheng, et al.                Standards Track                   [Page 29]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


   At the same time, the CGN device also needs to decide on the shared
   IPv4 address for that user.  The shared IPv4 address and the
   pre-allocated IP port range are both passed to the RADIUS server.

   When a user initiates an IP flow, the CGN device randomly selects a
   transport port number from the associated and pre-allocated IP port
   range for that user to replace the original source port number along
   with the replacement of the source IP address by the shared IPv4
   address.

   A CGN device may decide to "free" a previously assigned set of IP
   ports that have been allocated for a specific user but are not
   currently in use, and with that, the CGN device must send the
   information of the deallocated IP port range along with the shared
   IPv4 address to the RADIUS server.

   Figure 17 illustrates how the RADIUS protocol is used to report a set
   of ports allocated and deallocated, respectively, by a NAT64 device
   for a specific user to the RADIUS server.  2001:db8:100:200::/56 is
   the IPv6 prefix allocated to this user.  In order to limit the usage
   of the NAT64 resources on a per-user basis for fairness of resource
   usage (see REQ-4 of [RFC6888]), port range allocations are bound to
   the /56 prefix, not to the source IPv6 address of the request.  The
   NAT64 device is configured with the per-user port limit policy by
   some means (e.g., subscriber-mask [RFC7785]).


























Cheng, et al.                Standards Track                   [Page 30]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


   Host                      NAT64/NAS                     AAA
    |                         BNG                         Server
    |                          |                             |
    |                          |                             |
    |----Service Request------>|                             |
    |                          |                             |
    |                          |-----Access-Request -------->|
    |                          |                             |
    |                          |<----Access-Accept-----------|
    |<---Service Granted ------|                             |
    |    (other parameters)    |                             |
   ...                        ...                           ...
    |                          |                             |
    |                          |                             |
    |                (NAT64 decides to allocate              |
    |                 a TCP/UDP port range for the user)     |
    |                          |                             |
    |                          |-----Accounting-Request----->|
    |                          |    (IP-Port-Range           |
    |                          |     for allocation)         |
   ...                        ...                           ...
    |                          |                             |
    |                (NAT64 decides to deallocate            |
    |                 a TCP/UDP port range for the user)     |
    |                          |                             |
    |                          |-----Accounting-Request----->|
    |                          |    (IP-Port-Range           |
    |                          |     for deallocation)       |
    |                          |                             |

            Figure 17: RADIUS Message Flow for Reporting NAT64
                   Allocation/Deallocation of a Port Set

4.1.3.  Configure Port Forwarding Mapping

   In most scenarios, the port mapping on a NAT device is dynamically
   created when the IP packets of an IP connection initiated by a user
   arrives.  For some applications, the port mapping needs to be
   pre-defined and allow IP packets of applications from outside a CGN
   device to pass through and be "port forwarded" to the correct user
   located behind the CGN device.

   The Port Control Protocol (PCP) [RFC6887], provides a mechanism to
   create a mapping from an external IP address and port to an internal
   IP address and port on a CGN device just to achieve the "port
   forwarding" purpose.  PCP is a server-client protocol capable of
   creating or deleting a mapping along with a rich set of features on a
   CGN device in dynamic fashion.  In some deployments, all users need



Cheng, et al.                Standards Track                   [Page 31]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


   is a few (typically just one) pre-configured port mappings for
   applications at home, such as a web cam; the lifetime of such a port
   mapping remains valid throughout the duration of the customer's
   Internet service connection time.  In such an environment, it is
   possible to statically configure a port mapping on the RADIUS server
   for a user and let the RADIUS protocol propagate the information to
   the associated CGN device.

   Note that this document targets deployments where a AAA server is
   responsible for instructing NAT mappings for a given subscriber and
   does not make any assumption about the host's capabilities with
   regards to port forwarding control.  This deployment is complementary
   to PCP given that PCP targets a different deployment model where an
   application (on the host) controls its mappings in an upstream CPE,
   CGN, firewall, etc.

   Figure 18 illustrates how the RADIUS protocol is used to configure a
   port forwarding mapping on a NAT44 device.

   Host                     CGN/NAS                           AAA
    |                         BNG                            Server
    |                          |                               |
    |----Service Request------>|                               |
    |                          |                               |
    |                          |---------Access-Request------->|
    |                          |                               |
    |                          |<--------Access-Accept---------|
    |                          |   (IP-Port-Forwarding-Map)    |
    |<---Service Granted ------|                               |
    |    (other parameters)    |                               |
    |                          |                               |
    |                 (Create a port mapping                   |
    |                  for the user, and                       |
    |                  associate it with the                   |
    |                  internal IP address                     |
    |                  and external IP address)                |
    |                          |                               |
    |                          |                               |
    |                          |------Accounting-Request------>|
    |                          |    (IP-Port-Forwarding-Map)   |

              Figure 18: RADIUS Message Flow for Configuring
                         a Port Forwarding Mapping








Cheng, et al.                Standards Track                   [Page 32]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


   A port forwarding mapping that is created on a CGN device using the
   RADIUS extension as described above may also be changed using a
   RADIUS CoA message [RFC5176] that carries the same RADIUS
   association.  The CoA message may be sent from the RADIUS server
   directly to the NAS, and once the RADIUS CoA ACK message is accepted
   and sent back, the new port forwarding mapping then replaces the
   previous one.

   Figure 19 illustrates how the RADIUS protocol is used to change an
   existing port mapping from (a:X) to (a:Y), where "a" is an internal
   port, and "X" and "Y" are external ports, respectively, for a
   specific user with a specific IP address

   Host                     CGN/NAS                           AAA
    |                         BNG                            Server
    |                          |                               |
    |                    Internal IP Address                   |
    |                    Port Map (a:X)                        |
    |                          |                               |
    |                          |<---------CoA Request----------|
    |                          |    (IP-Port-Forwarding-Map)   |
    |                          |                               |
    |                    Internal IP Address                   |
    |                    Port Map (a:Y)                        |
    |                          |                               |
    |                          |---------CoA Response--------->|
    |                          |    (IP-Port-Forwarding-Map)   |

                Figure 19: RADIUS Message Flow for Changing
                     a User's Port Forwarding Mapping

4.1.4.  An Example

   An Internet Service Provider (ISP) assigns TCP/UDP 500 ports for the
   user Joe.  This number is the limit that can be used for TCP/UDP
   ports on a CGN device for Joe and it is configured on a RADIUS
   server.  Also, Joe asks for a pre-defined port forwarding mapping on
   the CGN device for his web cam applications (external port 5000 maps
   to internal port 1234).

   When Joe successfully connects to the Internet service, the RADIUS
   server conveys the TCP/UDP port limit (500) and the port forwarding
   mapping (external port 5000 to internal port 1234) to the CGN device
   using the IP-Port-Limit-Info Attribute and IP-Port-Forwarding-Map
   Attribute, respectively, carried by an Access-Accept message to the
   BNG where NAS and CGN are co-located.





Cheng, et al.                Standards Track                   [Page 33]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


   Upon receiving the first outbound IP packet sent from Joe's laptop,
   the CGN device decides to allocate a small port pool that contains 40
   consecutive ports, from 3500 to 3540, inclusively, and also assigns a
   shared IPv4 address 192.0.2.15 for Joe.  The CGN device also randomly
   selects one port from the allocated range (say, 3519) and uses that
   port to replace the original source port in outbound IP packets.

   For accounting purposes, the CGN device passes this port range
   (3500-3540) and the shared IPv4 address 192.0.2.15 together to the
   RADIUS server using IP-Port-Range Attribute carried by an
   Accounting-Request message.

   When Joe works on more applications with more outbound IP mappings
   and the port pool (3500-3540) is close to exhaust, the CGN device
   allocates a second port pool (8500-8800) in a similar fashion and
   also passes the new port range (8500-8800) and IPv4 address
   192.0.2.15 together to the RADIUS server using IP-Port-Range
   Attribute carried by an Accounting-Request message.  Note when the
   CGN allocates more ports, it needs to assure that the total number of
   ports allocated for Joe is within the limit.

   Joe decides to upgrade his service agreement with more TCP/UDP ports
   allowed (up to 1000 ports).  The ISP updates the information in Joe's
   profile on the RADIUS server, which then sends a CoA-Request message
   that carries the IP-Port-Limit-Info Attribute with 1000 ports to the
   CGN device; the CGN device in turn sends back a CoA-ACK message.
   With that, Joe enjoys more available TCP/UDP ports for his
   applications.

   When Joe is not using his service, most of the IP mappings are closed
   with their associated TCP/UDP ports released on the CGN device, which
   then sends the relevant information back to the RADIUS server using
   the IP-Port-Range Attribute carried by the Accounting-Request
   message.

   Throughout Joe's connection with his ISP, applications can
   communicate with his web cam at home from the external realm, thus
   directly traversing the pre-configured mapping on the CGN device.

   When Joe disconnects from his Internet service, the CGN device will
   deallocate all TCP/UDP ports as well as the port forwarding mapping
   and send the relevant information to the RADIUS server.









Cheng, et al.                Standards Track                   [Page 34]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


4.2.  Report Assigned Port Set for a Visiting UE

   Figure 20 illustrates an example of the flow exchange that occurs
   when the visiting User Equipment (UE) connects to a CPE offering WLAN
   service.

   For identification purposes (see [RFC6967]), once the CPE assigns a
   port set, it issues a RADIUS message to report the assigned port set.

   UE         CPE             CGN                          AAA
    |                         BNG                         Server
    |                          |                             |
    |                          |                             |
    |----Service Request------>|                             |
    |                          |                             |
    |                          |-----Access-Request -------->|
    |                          |                             |
    |                          |<----Access-Accept-----------|
    |<---Service Granted ------|                             |
    |    (other parameters)    |                             |
   ...          |             ...                           ...
    |<---IP@----|              |                             |
    |           |              |                             |
    |   (CPE assigns a TCP/UDP port                          |
    |   range for this visiting UE)                          |
    |           |                                            |
    |           |--Accounting-Request-...------------------->|
    |           |    (IP-Port-Range                          |
    |           |     for allocation)                        |
   ...          |             ...                           ...
    |           |              |                             |
    |           |              |                             |
    |   (CPE withdraws a TCP/UDP port                        |
    |   range for a visiting UE)                             |
    |           |                                            |
    |           |--Accounting-Request-...------------------->|
    |           |    (IP-Port-Range                          |
    |           |     for deallocation)                      |
    |           |                                            |

             Figure 20: RADIUS Message Flow for Reporting CPE
          Allocation/Deallocation of a Port Set to a Visiting UE









Cheng, et al.                Standards Track                   [Page 35]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


5.  Table of Attributes

   This document proposes three new RADIUS attributes, and their formats
   are as follows:

   o  IP-Port-Limit-Info: 241.5

   o  IP-Port-Range: 241.6

   o  IP-Port-Forwarding-Map: 241.7

   The following table provides a guide as to what type of RADIUS
   packets may contain these attributes and in what quantity.

   Request Accept Reject Challenge Acct.    #     Attribute
                                   Request
   0+      0+     0      0         0+       241.5 IP-Port-Limit-Info
   0       0      0      0         0+       241.6 IP-Port-Range
   0+      0+     0      0         0+       241.7 IP-Port-Forwarding-Map

   The following table defines the meaning of the above table entries.

   0  This attribute MUST NOT be present in packet.
   0+ Zero or more instances of this attribute MAY be present in packet.

6.  Security Considerations

   This document does not introduce any security issue other than the
   ones already identified in RADIUS documents [RFC2865] and [RFC5176]
   for CoA messages.  Known RADIUS vulnerabilities apply to this
   specification.  For example, if RADIUS packets are sent in the clear,
   an attacker in the communication path between the RADIUS client and
   server may glean information that it will use to prevent a legitimate
   user from accessing the service by appropriately setting the maximum
   number of IP ports conveyed in an IP-Port-Limit-Info Attribute;
   exhaust the port quota of a user by installing many mapping entries
   (IP-Port-Forwarding-Map Attribute); prevent incoming traffic from
   being delivered to its legitimate destination by manipulating the
   mapping entries installed by means of an IP-Port-Forwarding-Map
   Attribute; discover the IP address and port range that are assigned
   to a given user and reported in an IP-Port-Range Attribute; and so
   on.  The root cause of these attack vectors is the communication
   between the RADIUS client and server.








Cheng, et al.                Standards Track                   [Page 36]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


   The IP-Port-Local-Id TLV includes an identifier of which the type and
   length is deployment and implementation dependent.  This identifier
   might carry privacy-sensitive information.  It is therefore
   RECOMMENDED to utilize identifiers that do not have such privacy
   concerns.

   If there is any error in a RADIUS Accounting-Request packet sent
   from a RADIUS client to the server, the RADIUS server MUST NOT send
   a response to the client (refer to [RFC2866]).  Examples of the
   errors include the erroneous port range in the
   IP-Port-Range Attribute, inconsistent port mapping in the
   IP-Port-Forwarding-Map Attribute, etc.

   This document targets deployments where a trusted relationship is in
   place between the RADIUS client and server with communication
   optionally secured by IPsec or Transport Layer Security (TLS)
   [RFC6614].

7.  IANA Considerations

   Per this document, IANA has made new code point assignments for both
   IPFIX Information Elements and RADIUS attributes as explained in the
   following subsections.

7.1.  New IPFIX Information Elements

   The following IPFIX Information Element has been registered (refer to
   Section 3.2.2):

   o  sourceTransportPortsLimit:

      *  Name: sourceTransportPortsLimit

      *  Element ID: 458

      *  Description: This Information Element contains the maximum
         number of IP source transport ports that can be used by an end
         user when sending IP packets; each user is associated with one
         or more (source) IPv4 or IPv6 addresses.  This Information
         Element is particularly useful in address-sharing deployments
         that adhere to REQ-4 of [RFC6888].  Limiting the number of
         ports assigned to each user ensures fairness among users and
         mitigates the denial-of-service attack that a user could launch
         against other users through the address-sharing device in order
         to grab more ports.

      *  Data type: unsigned16




Cheng, et al.                Standards Track                   [Page 37]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


      *  Data type semantics: totalCounter

      *  Data type unit: ports

      *  Data value range: from 1 to 65535

7.2.  New RADIUS Attributes

   The Attribute Types defined in this document have been registered by
   IANA from the RADIUS namespace as described in the "IANA
   Considerations" section of [RFC3575], in accordance with BCP 26
   [RFC5226].  For RADIUS packets, attributes, and registries created by
   this document, IANA has placed them at
   <http://www.iana.org/assignments/radius-types>.

   In particular, this document defines three new RADIUS attributes, as
   follows, from the Short Extended Space of [RFC6929]:

   Type      Description             Data Type   Reference
   ----      -----------             ---------   ---------
   241.5     IP-Port-Limit-Info      tlv         Section 3.1.1
   241.6     IP-Port-Range           tlv         Section 3.1.2
   241.7     IP-Port-Forwarding-Map  tlv         Section 3.1.3

7.3.  New RADIUS TLVs

   IANA has created a new registry called "RADIUS IP Port Configuration
   and Reporting TLVs".  All TLVs in this registry have one or more
   parent RADIUS attributes in nesting (refer to [RFC6929]).  This
   registry contains the following TLVs:

      Value  Description           Data Type    Reference
      -----  -----------           ---------    ---------
      0      Reserved
      1      IP-Port-Type          integer      Section 3.2.1
      2      IP-Port-Limit         integer      Section 3.2.2
      3      IP-Port-Ext-IPv4-Addr ipv4addr     Section 3.2.3
      4      IP-Port-Int-IPv4-Addr ipv4addr     Section 3.2.4
      5      IP-Port-Int-IPv6-Addr ipv4addr     Section 3.2.5
      6      IP-Port-Int-Port      integer      Section 3.2.6
      7      IP-Port-Ext-Port      integer      Section 3.2.7
      8      IP-Port-Alloc         integer      Section 3.2.8
      9      IP-Port-Range-Start   integer      Section 3.2.9
      10     IP-Port-Range-End     integer      Section 3.2.10
      11     IP-Port-Local-Id      string       Section 3.2.11
      12-255 Unassigned





Cheng, et al.                Standards Track                   [Page 38]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


   The registration procedure for this registry is Standards Action as
   defined in [RFC5226].

8.  References

8.1.  Normative References

   [IPFIX]    IANA, "IP Flow Information Export (IPFIX) Entities",
              <http://www.iana.org/assignments/ipfix/>.

   [ProtocolNumbers]
              IANA, "Protocol Numbers",
              <http://www.iana.org/assignments/protocol-numbers/>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <http://www.rfc-editor.org/info/rfc2119>.

   [RFC2865]  Rigney, C., Willens, S., Rubens, A., and W. Simpson,
              "Remote Authentication Dial In User Service (RADIUS)",
              RFC 2865, DOI 10.17487/RFC2865, June 2000,
              <http://www.rfc-editor.org/info/rfc2865>.

   [RFC3575]  Aboba, B., "IANA Considerations for RADIUS (Remote
              Authentication Dial In User Service)", RFC 3575,
              DOI 10.17487/RFC3575, July 2003,
              <http://www.rfc-editor.org/info/rfc3575>.

   [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
              IANA Considerations Section in RFCs", BCP 26, RFC 5226,
              DOI 10.17487/RFC5226, May 2008,
              <http://www.rfc-editor.org/info/rfc5226>.

   [RFC6929]  DeKok, A. and A. Lior, "Remote Authentication Dial In User
              Service (RADIUS) Protocol Extensions", RFC 6929,
              DOI 10.17487/RFC6929, April 2013,
              <http://www.rfc-editor.org/info/rfc6929>.

   [RFC7012]  Claise, B., Ed., and B. Trammell, Ed., "Information Model
              for IP Flow Information Export (IPFIX)", RFC 7012,
              DOI 10.17487/RFC7012, September 2013,
              <http://www.rfc-editor.org/info/rfc7012>.

   [RFC8044]  DeKok, A., "Data Types in RADIUS", RFC 8044,
              DOI 10.17487/RFC8044, January 2017,
              <http://www.rfc-editor.org/info/rfc8044>.




Cheng, et al.                Standards Track                   [Page 39]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


8.2.  Informative References

   [RFC768]  Postel, J., "User Datagram Protocol", STD 6, RFC 768,
              DOI 10.17487/RFC0768, August 1980,
              <http://www.rfc-editor.org/info/rfc768>.

   [RFC793]  Postel, J., "Transmission Control Protocol", STD 7,
              RFC 793, DOI 10.17487/RFC0793, September 1981,
              <http://www.rfc-editor.org/info/rfc793>.

   [RFC1918]  Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
              and E. Lear, "Address Allocation for Private Internets",
              BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
              <http://www.rfc-editor.org/info/rfc1918>.

   [RFC2866]  Rigney, C., "RADIUS Accounting", RFC 2866,
              DOI 10.17487/RFC2866, June 2000,
              <http://www.rfc-editor.org/info/rfc2866>.

   [RFC3022]  Srisuresh, P. and K. Egevang, "Traditional IP Network
              Address Translator (Traditional NAT)", RFC 3022,
              DOI 10.17487/RFC3022, January 2001,
              <http://www.rfc-editor.org/info/rfc3022>.

   [RFC4340]  Kohler, E., Handley, M., and S. Floyd, "Datagram
              Congestion Control Protocol (DCCP)", RFC 4340,
              DOI 10.17487/RFC4340, March 2006,
              <http://www.rfc-editor.org/info/rfc4340>.

   [RFC4960]  Stewart, R., Ed., "Stream Control Transmission Protocol",
              RFC 4960, DOI 10.17487/RFC4960, September 2007,
              <http://www.rfc-editor.org/info/rfc4960>.

   [RFC5176]  Chiba, M., Dommety, G., Eklund, M., Mitton, D., and B.
              Aboba, "Dynamic Authorization Extensions to Remote
              Authentication Dial In User Service (RADIUS)", RFC 5176,
              DOI 10.17487/RFC5176, January 2008,
              <http://www.rfc-editor.org/info/rfc5176>.

   [RFC6146]  Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
              NAT64: Network Address and Protocol Translation from IPv6
              Clients to IPv4 Servers", RFC 6146, DOI 10.17487/RFC6146,
              April 2011, <http://www.rfc-editor.org/info/rfc6146>.

   [RFC6158]  DeKok, A., Ed., and G. Weber, "RADIUS Design Guidelines",
              BCP 158, RFC 6158, DOI 10.17487/RFC6158, March 2011,
              <http://www.rfc-editor.org/info/rfc6158>.




Cheng, et al.                Standards Track                   [Page 40]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


   [RFC6269]  Ford, M., Ed., Boucadair, M., Durand, A., Levis, P., and
              P. Roberts, "Issues with IP Address Sharing", RFC 6269,
              DOI 10.17487/RFC6269, June 2011,
              <http://www.rfc-editor.org/info/rfc6269>.

   [RFC6333]  Durand, A., Droms, R., Woodyatt, J., and Y. Lee,
              "Dual-Stack Lite Broadband Deployments Following IPv4
              Exhaustion", RFC 6333, DOI 10.17487/RFC6333, August 2011,
              <http://www.rfc-editor.org/info/rfc6333>.

   [RFC6598]  Weil, J., Kuarsingh, V., Donley, C., Liljenstolpe, C., and
              M. Azinger, "IANA-Reserved IPv4 Prefix for Shared Address
              Space", BCP 153, RFC 6598, DOI 10.17487/RFC6598,
              April 2012, <http://www.rfc-editor.org/info/rfc6598>.

   [RFC6614]  Winter, S., McCauley, M., Venaas, S., and K. Wierenga,
              "Transport Layer Security (TLS) Encryption for RADIUS",
              RFC 6614, DOI 10.17487/RFC6614, May 2012,
              <http://www.rfc-editor.org/info/rfc6614>.

   [RFC6887]  Wing, D., Ed., Cheshire, S., Boucadair, M., Penno, R., and
              P. Selkirk, "Port Control Protocol (PCP)", RFC 6887,
              DOI 10.17487/RFC6887, April 2013,
              <http://www.rfc-editor.org/info/rfc6887>.

   [RFC6888]  Perreault, S., Ed., Yamagata, I., Miyakawa, S., Nakagawa,
              A., and H. Ashida, "Common Requirements for Carrier-Grade
              NATs (CGNs)", BCP 127, RFC 6888, DOI 10.17487/RFC6888,
              April 2013, <http://www.rfc-editor.org/info/rfc6888>.

   [RFC6967]  Boucadair, M., Touch, J., Levis, P., and R. Penno,
              "Analysis of Potential Solutions for Revealing a Host
              Identifier (HOST_ID) in Shared Address Deployments",
              RFC 6967, DOI 10.17487/RFC6967, June 2013,
              <http://www.rfc-editor.org/info/rfc6967>.

   [RFC7785]  Vinapamula, S. and M. Boucadair, "Recommendations for
              Prefix Binding in the Context of Softwire Dual-Stack
              Lite", RFC 7785, DOI 10.17487/RFC7785, February 2016,
              <http://www.rfc-editor.org/info/rfc7785>.











Cheng, et al.                Standards Track                   [Page 41]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


   [TR-146]   Broadband Forum, "TR-146: Subscriber Sessions", Broadband
              Forum Technical Report 146, Issue 1, May 2013,
              <http://www.broadband-forum.org/technical/
              download/TR-146.pdf>.

   [WIFI-SERVICES]
              Gundavelli, S., Grayson, M., Seite, P., and Y. Lee,
              "Service Provider Wi-Fi Services Over Residential
              Architectures", Work in Progress,
              draft-gundavelli-v6ops-community-wifi-svcs-06, April 2013.









































Cheng, et al.                Standards Track                   [Page 42]
^L
RFC 8045              RADIUS Extensions for IP Port         January 2017


Acknowledgments

   Many thanks to Dan Wing, Roberta Maglione, Daniel Derksen, David
   Thaler, Alan DeKok, Lionel Morand, and Peter Deacon for their useful
   comments and suggestions.

   Special thanks to Lionel Morand for the Shepherd review and to
   Kathleen Moriarty for the AD review.

   Thanks to Carl Wallace, Tim Chown, and Ben Campbell for the detailed
   review.

Authors' Addresses

   Dean Cheng
   Huawei
   2330 Central Expressway
   Santa Clara, California  95050
   United States of America

   Email: dean.cheng@huawei.com


   Jouni Korhonen
   Broadcom Corporation
   3151 Zanker Road
   San Jose, California  95134
   United States of America

   Email: jouni.nospam@gmail.com


   Mohamed Boucadair
   Orange
   Rennes
   France

   Email: mohamed.boucadair@orange.com


   Senthil Sivakumar
   Cisco Systems
   7100-8 Kit Creek Road
   Research Triangle Park, North Carolina
   United States of America

   Email: ssenthil@cisco.com




Cheng, et al.                Standards Track                   [Page 43]
^L