1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
|
INDRA Note 1185 INDRA
Feb. 1982 Working
Paper
RFC 809
UCL FACSIMILE SYSTEM
Tawei Chang
ABSTRACT: This note describes the features of
the computerised facsimile system
developed in the Department of
Computer Science at UCL. First its
functions are considered and the
related experimental work are
reported. Then the disciplines for
system design are discussed.
Finally, the implementation of the
system are described, while detailed
description are given as appendices.
Department of Computer Science
University College, London
^L
NOTE: Figures 5 and 6 may be obtained by sending a request to
Ann Westine at USC-Information Sciences Institute, 4676 Admiralty
Way, Marina del Rey, California, 90291 (or WESTINE@ISIF) including
your name and postal mailing address. Please mention that you are
requesting figures 5 and 6 from RFC 809.
OR: You can obtain these two figures online from the files
<NETINFO>RFC809a.FAX and <NETINFO>RFC809b.FAX
from the SRI-NIC online library. These files are in the format
described in RFC 769.
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
Contents
1. INTRODUCTION...........................................1
2. SYSTEM FUNCTIONS.......................................2
2.1 Communication......................................4
2.2 Interworking with Other Equipment..................8
2.2.1 Facsimile machines............................8
2.2.2 Output Devices................................9
2.3 Image Enhancement..................................11
2.4 Image Editing......................................15
2.5 Integration with Other Data Types..................16
3. SYSTEM ARCHITECTURE....................................17
3.1 System Requirements................................17
3.2 Hierarchical Model.................................19
3.3 Clean and Simple Interface.........................20
3.3.1 Principles....................................21
3.3.2 Synchronisation and Desynchronisation.........21
3.3.3 Data Transfer.................................22
3.4 Control and Organisation of the Tasks..............22
3.4.1 Command Language..............................23
3.4.2 Task Controller...............................23
3.5 Interface Routines.................................26
3.5.1 Sharable Control Structure....................26
3.5.2 Buffer Management.............................27
4. UCL FACSIMILE SYSTEM...................................28
4.1 Multi-Task Structure...............................29
4.2 The Devices........................................29
4.3 The Networks.......................................30
4.4 File System........................................31
4.5 Data Structure.....................................32
4.6 Data Conversion....................................34
4.7 Image Manipulation.................................35
4.8 Data Transmission..................................39
5. CONCLUSION.............................................41
5.1 Summary............................................41
5.2 Problems...........................................42
5.3 Future Study.......................................46
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
Appendix I: Devices
Appendix II: Task Controller and Task Processes
Appendix III: Utility and Data Formats
Reference
^L
1. INTRODUCTION
The object of a facsimile system is to reproduce
faithfully a document or image from one piece of paper
onto another piece of paper sited remotely from the
first one. Up to now, the main method of facsimile
communication has been via the telephone network. Most
facsimile machines permit neither the storage of image
page nor their modification before transmission. With
such machines, it is almost impossible to communicate
between different makes of facsimile machines. In this
respect, facsimile machines fall behind other
electronic communication services.
Integration of a facsimile service with computer
communication techniques can bring great improvements
in service. Not only is the reliability and efficiency
improved but, more important, the system can be
integrated with other forms of data communication.
Moreover, the computer enables the facsimile machine to
fit into a complete message and information processing
environment. The storage facilities provided by the
computer system make it possible to store large amounts
of facsimile data and retrieve them rapidly. Data
conversion allows facsimile machines of different types
to communicate with each other. Furthermore, the
facsimile image is edited and/or combined with other
forms of data, such as text, voice and graphics, to
construct a multi-media message, which can be widely
distributed over computer networks.
In the Department of Computer Science at UCL, a
computerised facsimile system has been developed in
order to fully apply computer technology, especially
communication, to the facsimile field. Some work has
been done to improve the facsimile service in several
areas.
(1) Adaptation of the facsimile machine for use with
computer networks. This permits more reliable and
accurate document transmission, as well as
improving the normal point-to-point transfers.
(2) Storage of facsimile pages. This permits the
queueing of pages, so saving operator time. Also,
standard documents can be kept permanently and
transmitted at any time.
(3) Interworking with other facsimile machines. This
permits different makes of facsimile machines to
- 1 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
exchange images.
(4) Compression of the facsimile images. This allows
more efficient transmission to be achieved.
Different compression schemes are investigated.
(5) Display of images on other devices. A colour
display is used so that the result of image
processing can be shown very vividly.
(6) Improvement of the images. The ability to 'clean'
the facsimile images not only allows for even
higher compression ratio, but also provide a
better result at the destination.
(7) Editing of facsimile pages. This includes the
ability to change pictures, alter the size of
images and merge two or more images, all
electronically.
(8) Integration of the facsimile service with other
data types. For the time being, coded character
text can be converted into facsimile format and
mixed pages containing pictures and text can be
manipulated.
This note first considers the functions of the
facsimile system, the related experimental work being
reported. Then the discipline for the system design is
discussed. Finally, the implementation of the UCL
facsimile system is described. As appendices, detailed
description of the system are given, namely
I. Devices
II. Task controller and task processes
III. Utility routines and Data format
2. SYSTEM FUNCTIONS
The computerised facsimile system we have developed
is composed of an LSI-11 micro-computer running the MOS
operating system [14] with two AED62 floppy disk drives
[17], a Grinnell colour display [18], a DACOM facsimile
machine [16], and a VDU as the system console. This
LSI-11 is also attached to several networks, including
the ARPANET/SATNET [21], [22] and the UCL Cambridge
Ring. A schematic of the system is shown in Fig. 1.
- 2 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
facsimile machine bit-map display
+------+ +------+
! ! ! !
+------+ +------+
+------+ \ / VDU
! disk ! +----------+ +-----+
+------+ ---- ! LSI-11 ! -- ! !
! disk ! +----------+ +-----+
+------+ |
+------+
! NI !
+------+
Network Interface
Fig. 1 Schematic of UCL facsimile system
In this system, a page is read on the facsimile
machine and the image data produced is stored on the
floppy disk. This data can be processed locally in the
micro-computer and then sent to a file store of a
remote computer across the computer network. At the
remote site, the image data may be processed and
printed on a facsimile machine.
On the other hand, we can receive image data which is
sent by a remote host on the network. This data can be
manipulated in the same way, including being printed on
the local machine.
Section 2.1 dicusses the problems concerned with
transmission of facsimile image data over a network,
while the following sections deal with those of local
manipulation of image data.
In order to interwork with other facsimile machine,
we have to convert the image data from one
representation format to another. Interworking with
other output devices requires that the image be scaled
to fit the dimension of the destination device. These
are described in section 2.2.
Being able to process the image by computer opens the
door to many possibilities. First, as considered in
section 2.3, an image can be enhanced, so that the
quality of the image may be improved and more efficient
storage and transmission can be achieved. Secondly, a
facsimile editing system can be supported whereby a
picture can be changed and/or combined with other
- 3 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
pictures. This is described in section 2.4.
In our system, coded character text can be converted
into its bit-map representation format so that it can
be handled as a facsimile image and merged with
pictures. This provides an environment where multi-type
information can be dealt with. This is discussed in
section 2.5.
2.1 Communication
The first goal of our computerised facsimile system
is to use a computer network to transmit data between
facsimile machines which are geographically separated.
Normally, facsimile machines are used in association
with telephone equipment, the data being sent along
telephone lines. Placing the facsimile machines on a
computer network presents a problem as the facsimile
machine does not have the ability to use a computer
network directly. To perform the network tasks a
computer is required, and so the first phase was to
attach the facsimile machine to a computer.
The facsimile machine is not like a standard piece of
computer equipment. We required a special hardware
interface to enable communication between the facsimile
machine and a small computer. This interface was made
to appear exactly like the telephone system to the
facsimile machine. Furthermore, the computer was
programmed to act exactly as if it were another
facsimile machine on the end of a telephone line. Thus
the local facsimile machine could transmit data to the
computer quite happily, believing that it was actually
talking to a remote facsimile machine on the other end
of a telephone wire. Because of the property of the
DACOM 6450 used in the experiment [16], the interface
could be identical to one developed for connecting to
an X25 network. The binary synchronous mode of the chip
used (SMC COM5025) was appropriate to drive the DACOM
machine.
At the other side of the computer network there was a
similar computer with an identical facsimile machine.
The problem of transmitting a facsimile picture now
appeared simple: data was taken from the facsimile
machine into the computer, transmitted over the network
as if it was normal computer data, and then sent from
the computer to the facsimile machine at the remote
end. The data being sent over the network appears
- 4 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
exactly as any other computer data; there is nothing
special about it to signify that it came from a
facsimile machine. The schematic of such facsimile
transfer system is shown in Fig. 2.
facsimile
machine
+---+ interface
! ! +--+ +-----+
! ! == ! ! == ! ! computer
+---+ +--+ +-----+
|
- - - - - - computer
/ \ network
\ / facsimile
- - - - - - machine
| interface +---+
+-----+ +--+ ! !
computer ! ! == ! ! == ! !
+-----+ +--+ +---+
Fig. 2 Facsimile transfer system
The experimental system was used to perform a joint
experiment between UCL and two groups in the United
States. Pictures were exchanged via the ARPANET/SATNET
[21], [22] between UCL in London, ISI in Los Angeles,
and COMSAT in Washington D.C. (Fig. 3). This
environment was chosen because no equivalent group was
available in the UK.
One problem concerned with such image data
transmission is the quantity of data. Even with data
compression, a single page of facsimile data can
produce as much computer data as would normally be
sufficient for sending over 20,000 alphabetic
characters - or over a dozen typed pages. Thus for a
given number of pages put into the system, an immense
amount of computer data is produced. This means that
the transmission will be slower than for sending text,
and that far more storage will be required to hold the
data.
Another problem was encountered which became only too
apparent when we implemented this system. The network
we were using was often unable to keep up with the
speed of the facsimile machine. When this happened the
- 5 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
US UK
satellite
COMSAT __
+---+ +--+ / \
! ! -- ! ! / \
+---+ +--+ / \
| \ / \
+---+ \ / \ UCL
!fax! \+--+/ \+--+ +---+
+---+ ARPANET ! ! SATNET ! ! -- ! !
/+--+ +--+ +---+
/ |
ISI / +---+
+---+ +--+ !fax!
! ! -- ! ! +---+
+---+ +--+
|
+---+
!fax!
+---+
Fig. 3. The three participants of the facsimile experiments
computer tried to slow down the facsimile machine. The
facsimile machine would detect this 'slowness' as a
communication problem (as a telephone line would never
act in this manner), and would abandon the transfer
mid-way through the page.
This is because the the facsimile machine we were
using was never intended for use on a computer; it was
designed and built for use on telephone lines. Indeed,
being unaware that it was connected to a computer, the
facsimile machine transmitted data at a constant rate,
which exceeded the limit that the network could accept.
In other words, the computer network we were using was
not designed for the transfer rate that we were trying
to use over it.
Both these problems are surmountable. Facsimile
machines are coming on the market that are designed for
direct communication with a computer. These machines do
not mind the delays on the computer interface and are
tolerant of the stops and re-starts. On the other hand,
if there were a serious use of facsimile machines on a
computer network, the network could be designed for the
high data rate required. Our problem was aggravated by
- 6 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
using a network that was never designed for the data
rates required in our mode of usage.
Despite the problems we encountered being a result of
the experimental equipment we were working with, we
still had to improve the situation to permit more
extensive communications to take place. The easiest way
to do this was to introduce a local storage area in our
computer where the data could be held prior to
transmission. The transfer of a page is now done in
three stages. First, the facsimile data is read from
the facsimile machine and stored on a local disk. This
takes place at high speed as this is just a local
operation. When this is complete, the data is sent
over the network to a disk on the remote computer.
Finally, the data from that disk is output to the
remote facsimile machine. This improved system is
shown in Fig. 4.
computer network
fax computer - - - - computer fax
+---+ +-----+ / \ +-----+ +---+
! ! = ! ! = ==> = ! ! = ! !
+---+ +-----+ \ / +-----+ +---+
- - - + | - - - - | + - - >
| | + - - - - - - - - - + | |
| | | | | |
V | | V | |
+---+ +---+
! ! ! !
! ! ! !
+---+ +---+
disk disk
Fig. 4. The improved facsimile transfer system
The idea behind this method is to decouple the
facsimile machine from the network communications. The
data is read from the facsimile machine at full speed,
without the delays caused by the computer network.
This also has the effect of being more acceptable to
the human operators: each page is now read in less than
a minute. The transmission over the network then takes
place at whatever speed the network can sustain. This
does not affect the facsimile machines at all; they are
not involved in the sending or receiving. Only when all
the data has been received at the remote disk is the
remote facsimile machine told that the data is ready.
- 7 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
The facsimile machine is then given the data as fast as
it will accept it.
The disadvantage of such a system is that the person
sending the pages does not know how long it will be
before they are actually printed at the other side. If
several pages are input in quick succession by the
operator, they will be stored on disk; it may then be
some time before the last page is actually delivered to
the destination. This is not always a disadvantage;
where many operators are sending data to the same
destination, it is a definite advantage to be able to
input the pages and have the system deliver them when
the destination becomes free. Such a system is
preferable to use of the current telephone system where
the operator has to keep re-dialing the remote
facsimile machine until the call is answered.
2.2 Interworking with Other Equipment
2.2.1 Facsimile machines
As was mentioned earlier, facsimile machines produce
a large amount of data per page due to the way in which
the pages are encoded. To reduce the data that has to
be transmitted, various compression techniques are
employed. The manufacturers of facsimile machines have
developed proprietary ways in which the data is
compressed and encoded. Unfortunately this has meant
that interworking of different facsimile machines has
been impossible. In the system described in the last
section, exchange of pictures was only possible between
sites that had identical facsimile machines. The new
set of CCITT recommendations will reduce the extent to
which differences in equipment persist.
Having the data on a computer gives us the
opportunity to manipulate data in any way we wish. In
particular we could convert the data from the form used
in one facsimile machine to that required by another.
This means that interworking between different types of
facsimile machines can be achieved.
The development of this system took place in two
stages: the decompression of the facsimile data from
the coded form used in our machine into an internal
data form and the recompression of the data in the
internal form into the encoded form required for the
destination machine. Two programs were developed to
perform these two operations.
- 8 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
At the same time we were developing compression and
decompression programs for machines that use other
techniques. In particular, we developed programs to
handle the recently approved CCITT recommendation for
facsimile compression [15]. The CCITT came up with two
varieties of compression, depending upon the resolution
being used.
Unfortunately there were no facsimile machines on the
network that use the CCITT compression technique.
However, the programming of the new methods achieved
two goals: it proved that the data could be converted
inside a small computer, so that machines of different
types could be supported on the network, and it enabled
us to compare the compression results. These are
described in more detail in [13]. Essentially, these
show that the DACOM technique used by our facsimile
machine is comparatively poor, and that considerably
less data need be transmitted if some other method is
used. This brings up another possibility: we could
change the compression of the data to reduce the volume
for transmission and then change the data back again at
the destination. This may save considerable
transmission time, especially if fast computers or
special hardware was easily available. This has not
been tried yet in our system, as none of the other
users on the network have the capability of changing
the data format back into that required by their
machines.
There are many other more efficient compression
schemes, e.g. block compression [7] and predictive
compression [8], but we have not yet incorporated them
into our system.
2.2.2 Output Devices
One area that we have explored is the use of devices
other than facsimile machines for outputting the data.
Facsimile machines are both expensive to buy and
relatively slow to operate. We have investigated the
use of a TV-like screen to display the data, just as
character VDUs are commonly used to display text. This
activity requires bit-map displays, with an address in
memory for each postion on the screen. Full colour and
multiple shades can be used with appropriately large
bit-map storage. Although simple in principle, the
implementation of the relevant techniques took
considerable effort.
- 9 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
The problems arise in the way that the facsimile
image is encoded. Raw facsimile images consist of rows
of small dots, each dot recorded as a black or white
space. When these dots are arranged together they build
up a picture in a similar manner to the way in which a
newspaper picture is made up. Unfortunately the number
of dots used in a facsimile page is not the same as the
number used on most screens. For instance, the DACOM
facsimile machine uses 1726 dots across each page, but
across a screen there are usually just 512 dots. Thus
to show the picture on the screen the 1726 dots must be
'squeezed' into just 512 dots; stated another way, 1214
dots must be thrown away without losing the picture!
It is in reducing the number of picture elements that
the problem arises. We could just every third dot or
so from the facsimile page and just display those.
Alternatively, we could take three or more at a time
and try to convert the group of them into a single
black or white dot. Unfortunately, in both these
cases, data can get lost that is necessary to the
picture. For instance, a facsimile encoding of an
architect drawing could easily end up with a complete
line removed, radically changing the presentation of
the image.
After much experimentation, we developed a method of
reducing the number of dots without destroying the
picture. This is a thinning technique, whereby key
elements of the picture are thinned, but not removed.
Occasionally, when the detail gets too fine, some
elements are merged, but under these circumstances the
eye would not have been able to see the detail anyway.
The details of this technique are described in [3] and
[4].
It may also be required that a picture be enlarged.
This enlargement can be done by simply duplicating each
pixel in the picture. For a non-integral ratio, the
picture can be expanded up to the nearest integer and
then shrunk to the correct size. However, this method
may degrade the image quality, e.g. the oblique contour
may become stepped, especially when the picture is
enlarged too much. This problem can be solved by using
an iterative enlargement algorithm. Each time a pixel
is replaced with a 2x2 array of pixels, whose pattern
depends on the original pixel and the pixels
surrounding it. This procedure is repeated until the
requested ratio is reached. If the ration is not a
power of 2's, the same method as that for non-integral
ratios is used.
- 10 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
As a side effect of developing this technique, we
could freely change the size and shape of an image.
The picture can be expanded or shrunk, or it can be
distorted. Distortion, whereby the horizontal and
vertical dimensions of the image may be changed by
different amounts, is often useful in image editing.
The immediate consequence of this ability to change
the image size meant that we could display the image on
a screen as well as output the image on a facsimile
machine. To a user of a computerised facsimile system
this could be a very useful feature: images can be
displayed on screen much faster than on a facsimile
machine, and displays are significantly cheaper than
the facsimile machines as well. It is possible that an
installation could have many screen displays where the
image could be viewed, but perhaps only one facsimile
machine would be available for hard copy. This would be
similar to many computer configurations today where the
number of printers is limited due to their cost, and
display screens are far more numerous.
2.3 Image Enhancement
One aspect of computer processing that we wanted to
investigate was that of image enhancement. Enhancing
the image is a very tricky operation; as the name
implies it means that the image is improved in some
sense. Under program control this is difficult to
achieve: what the program thinks is an improvement, the
human might judge to be distinctly worse.
Our enhancement attempts were aimed particularly at
printed documents and other forms of typed text. The
experiment was double pronged: we hoped to make the
image easier to read by humans while also making the
image easier for the computer to handle.
In our earlier experiments we had noticed that the
encoding of printed matter was often very poor. This
was especially noticeable when we enlarged an image.
Rather than each character having smooth edges as on
the original document, the edges were very rough,
unexpected notches and excrescences being caused by the
facsimile scanner. They not only degrade the image
quality but also decrease the compression efficiency. A
typical enlargement of several characters is shown in
Fig. 5.
- 11 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
Fig 5. An enlargement of an typed text
The enhancement method we adopted was first employed
at Loughborough University [5]. This method has the
effect of smoothing the edges of the dark areas on the
image. The technique consists of considering each dot
in the image in turn. The dot is either left as it is
- 12 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
or changed to the opposite colour (white to black or
black to white) depending upon the eight dots that
surround it. The particular pattern of surrounding dots
that are required to change the inner dot's colour is
used to control the harshness of the algorithm [6],
[8].
In our first set of experiments the result was
definitely worse than the original. Although square-
like characters such as H, L, and T came out very well,
anything with slope (M, V, W, or S) became so bad that
the oblique contours were stepped. The method was
subsequently modified to produce a result that was far
more acceptable; the image looked a lot cleaner than
the original. Fig. 6 shows the same text as that in
Fig. 5, but after it has been cleaned.
- 13 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
Fig. 6 A cleaned text
The effect of these can be difficult to see clearly.
We have used the colour on our Grinnell display to show
the original picture and the outcome of various picture
processing operations superposed in different colours.
This brings out the effect of the operations very
- 14 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
vividly.
It was mentioned above that the enhancement was done
not only to improve the image for reading but also for
easier processing by the computer. As described
earlier, the image from the facsimile machine is
compressed in order to reduce the amount of data. The
cleaning allows a higher compression rate so that more
efficient transmission and/or storage can be achieved.
We learned some important lessons from the
enhancement exercise. Originally we thought that the
main attraction in enhancement would be to improve the
readability. In the end, we found that improving the
readability was very difficult, especially because the
facsimile image was so poor. Instead we found that the
effect of reducing the compressed output was more
important. By reducing the data to be transmitted by a
quarter, significant savings could be made. But before
such a technique could be used in a live system, the
time it takes to produce the enhancement must be
weighed against the time that would be saved in
transmission.
2.4 Image Editing
By editing we mean that the facsimile picture can be
changed, or combined with other pictures, while it is
stored inside the computer. In previous sections it
was mentioned that we could change the size and shape
of a facsimile image. This technique was later combined
with an overlaying method that enabled one picture to
be combined with another [12].
In order to perform any editing it is necessary to
have the picture displayed for the user to see. In our
case we displayed the picture on the bit-map screen.
The image took up the left-hand side of the screen, the
right side being reserved for the picture that was
being built. The user could select an area of the
left-hand screen and move it to a position on the
right-hand screen. Several images could be displayed
in succession on the left, and areas selected and moved
to the right. Finally, the right-hand screen could be
printed on the facsimile machine.
The selection of an area of the picture was done by
the use of a coloured rectangular subsection,
controlled by a program in the computer, that could be
moved around on the screen. The rectangular subsection
- 15 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
was moved with instructions typed in by the operator;
it could be moved up or down, and increased or
decreased in size. When the appropriate area of the
screen had been selected, the program remembered the
coordinates and moved the coloured rectangular
subsection to the right-hand side of the screen. The
user then selected an area again, in a similar manner.
When the user finished the editing, the program removed
the part of the picture selected from the left-hand
screen and converted it to fit the shape of the
rectangular subsection on the right-hand screen. The
result was then displayed for the user to see.
When an image was being edited, the editor had to
keep another scaled copy for display. This is due to
the fact that the screen had a different dimension to
that of the facsimile machine. The editing operations,
e.g. chopping and merging, were performed on the
original image data files with the full resolution
available on the facsimile machine.
2.5 Integration with Other Data Types
The facsimile machine can be viewed in a wider
context than merely a facsimile input/output device. It
can work as a printer for other data representation
types, such as coded character text and geometric
graphics. At present, text can be converted into
facsimile format and printed on the facsimile machine.
Moreover, mixed pages containing pictures and text can
be manipulated by our system. The integration of
facsimile images with geometric graphics is a topic of
future research.
In order to convert a character string into its
facsimile format, the system maintains a translation
table whereby the patterns of the characters available
in the system can be retrieved. The input character
string is translated into a set of scan lines, each of
which is created by concatenating the corresponding
patterns of the characters in the string.
The translation table is in fact a software font,
which can be edited and modified. Even though only one
font is available in our system for the time being, it
is quite easy to introduce other character fonts.
Furthermore, it is also possible for a font to be
remotely loaded from a database via the communication
network.
- 16 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
This allows for more interesting applications of the
facsimile machine. For example, it could serve as a
Teletex printer, provided that the Teletex character
font is included in our system. In this case, the text
images may be distorted to fit the presentation format
requested by the Teletex service. Similarly, Prestel
viewdata pages could be displayed on the Grinnell
screen.
Moreover, pictures can be mixed with text by
combining this text conversion with the editing
described in the previous section. This should be
regarded as a notable step towards multi-type
processing.
Not only does this support a local multi-type
environment but multi-type information can be
transmitted over a network. So far as this facsimile
system is concerned, a mixed page containing text and
pictures can be sent only when it has been represented
in a bit-map format. However, much more efficient
transmission would be achieved if one could transmit
the text and pictures separately and reproduce the page
at the destination site. This requires that a multi-
type data structure be designed which is understood by
the two communication sites.
3. SYSTEM ARCHITECTURE
Now let us discuss the general disciplines for design
and implementation of a computerised facsimile system
which carries out the functions described in the
previous sections. Having discussed the requirements
of the system, a hierarchical model is introduced in
which the modules of different layers are implemented
as separate processes. The Clean and Simple interface,
which is adopted for inter-process communication, is
then described. The task controller, which is
responsible for organising the tasks involved in a
requested job, is discussed in detail. Some efforts
have been made in our experimental work to provide a
more convenient user programming environment and a more
efficient data transfer method. This is finally
described.
3.1 System Requirements
In a computerised facsimile system, the images are
represented in a digital form. To carry out this
- 17 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
conversion, a page is scanned by the optical scanner of
the facsimile machine, a digital number being produced
to represent the darkness of each pixel. As high
resolution has to be adopted to keep the detail of the
image, the facsimile data files are usually rather
large. In order to achieve efficient storage and
transmission, the facsimile data must be compressed as
much as possible.
Currently, the facsimile machines made by different
manufacturers h different properties, such as
different compression methods and different resolution.
There are also some international standards for
facsimile data compression, which are employed for the
facsimile data to be transferred over the public data
network. These require that the facsimile data be
converted from one representation form to another, so
that users who are separated geographically and use
different machines can communicate with each other.
More sophisticated applications, e.g. image editing,
request processing facilities of the system as well.
When being processed, the facsimile image should be
represented in a common format or internal data
structure, which is used to pass the information
between different processing routines. For the sake of
convenience and efficiency, the internal data structure
should be fairly well compressed and its format should
be easy for the computer to manipulate. In our
experimental work, the line vector is chosen as a
standard unit, a simple run-length compression being
employed [3]. Some processing routines may use other
data formats, e.g. bit-map, but it is the
responsibility of such routines to perform the
conversion between those formats and the standard one.
The system should contain several processing
routines, each of which performs one primitive task,
such as chopping, merging, and scale-changing. An
immense variety of processing operations can be carried
out as long as those task modules can be organised
flexibly. The capability for flexible task organisation
should be thought of as one of the most important
requirements of the system.
One possibility is for the processing routines
involved to be executed separately, temporary files
being used as communication media. Though very simple,
this method is far too inefficient.
- 18 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
As described above, the information unit for the
communication between the processing routines is the
line vector, so that the routines can be organised as
embedded loops, where a processing routine takes the
input line from its source routine located in the inner
loop, and passes the output line to the destination
routine located in the outer loop [3]. Obviously this
method is quite efficient. But it is not realistic for
our system, because it is very difficult to build up
different processing loops at run-time and flexible
task organisation is impossible.
In a real-time operating system environment, the
primitive tasks can be implemented as separate
processes. This method, which is discussed in detail in
the following sections, provides the required
flexibility.
3.2 Hierarchical Model
As shown in Fig. 7, the modules in a single computer
fall into three layers.
+---------+
! ! task controller
+---------+
tasks
+---+ +---+ +---+ +---+ +---+
! ! ! ! ! ! ! ! !
+---+ +---+ +---+ +---+ +---+
| | |
+---+ +---+ +---+
! ! ! ! device drivers ! !
+---+ +---+ +---+
- - - | - - | - - - - - - - - - | - - - -
+---+ +---+ +---+
! ! ! ! physical | !
! ! ! ! devices ! !
+---+ +---+ +---+
Fig. 7 The hierarchical model
These are:
(1) Device Drivers, which constitute the lowest layer
in the model. The modules in this layer deal with
I/O activities of the physical devices, such as
- 19 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
facsimile machine, display and floppy disk. This
layer frees the task modules of upper layer from
the burden of I/O programming.
(2) Tasks, which perform all processing primitives and
handle different data structures. Above the driver
of each physical device, there are one or more
such device-independent modules, which work as
information source or sink in the task chain (see
below). A file system module allows other modules
to store and retrieve information on the secondary
storage device such as floppy disk. Decompression
and recompression routines convert data structures
of facsimile image information so that the
facsimile machines can communicate with the rest
of the system. Processing primitives, e.g.
chopping, merging, scaling, are implemented as
task modules in this layer. They are designed such
that they can be concatenated to carry out more
complex jobs. So far as the system is concerned,
the protocols for data transmission over computer
networks are also regarded as task modules in this
layer.
(3) Task Controller, which organises the task
processes to perform the specified job. It
provides the users of the application layer with a
procedure-oriented language whereby the requested
job can be defined as a chain of task modules.
Literally, the chain is represented by a character
string:
<source_task>|{<processing_task>|}<sink_task>
According to such a command, the task controller
selects the relevant task modules and concatenates
them in proper order by means of logical links.
Then the tasks on the chain are executed under its
control, so that the data taken from the source
are processed and the result is put into the sink.
3.3 Clean and Simple Interface
It is important, in this application, to develop the
software in a modular way. It is desirable to put
together a set of modules to carry out the different
image processing tasks. Another set of transport
modules must be developed for shipping data over the
- 20 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
different networks to which the UCL system is attached.
In our computerised facsimile system, these task
modules are implemented as separate processes. The
operation of the system relies on the communication
between these processes. The interface which is used
for such communication has been designed to be
universal; it is independent of these modules, and has
been termed the Clean and Simple interface [20]. This
interface is discussed in this section.
3.3.1 Principles
The Clean and Simple interface is concerned with the
synchronisation and transfer of full-duplex data
streams between two communicating processes. Thus the
interface has three major components: connection
synchronisation, data transfer and connection
desynchronisation. These components are discussed
below.
The connection between two processes is initiated by
one of them, which, generally speaking, belongs to a
higher layer. For example, the interface between
protocols of different layers is always initiated by
the higher layer, though, sometimes, the connection is
initiated passively by the primitive 'listen'. It will
be seen in the next section that task processes can
communicate with each other via the connections to the
higher layer (task controller) and this makes it
possible to achieve flexible task organisation.
The process initiating the connection is called the
'master' process, while the other is called the 'slave'
process. The 'master' process is also responsible for
resource allocation for the two communicating
processes. Here 'resource' refers mainly to the memory
areas for the message structure and data buffer. This
asymmetric definition of the interface eliminates any
possible confusion in resource allocation.
The interface is implemented by using the signal-wait
mechanism provided by the operating system. A data
structure called CSB (Clean and Simple Block), which
contains function, data buffer, and other information,
is sent as the event message, when one process signals
another [20].
- 21 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
3.3.2 Synchronisation and Desynchronisation
The procedure for connection synchronisation is
composed of two steps. First, the two processes
exchange their identifiers for the specific connection
by means of a getcid primitive. Usually, the pointer
to the task control structure of the process is used as
the connection identifier.
Then, the 'master' sends an open CSB with appropriate
parameter string passing the initialisation
information. This information, which can also be called
open parameter, is process dependent, or more
accurately, task dependent. For example, the parameters
for the file system should be the file name and the
access mode. Provided the 'slave' accepts the request,
the connection is established successfully and data can
be transferred via the interface.
In order to desynchronise the connection, the
'master' initiates a 'close' action. On the other hand,
an error state or EOF (end of file) state can be
reported by the 'slave' to request a connection
desynchronisation.
The listen primitive in our system is reserved for
the processes that receive a request from the remote
hosts on the networks.
3.3.3 Data Transfer
While the Clean and Simple interface is asymmetric in
relation to connection synchronisation, data transfer
is completely symmetric so long as the connection has
been established. Data flows in both directions are
permitted, though the operations are quite different.
The interface provides two primitives for data
transfer -- read and write. To transfer some data to
the 'slave', the 'master' signals it with a CSB
containing the write function and a buffer filled with
the data to be transferred. Having consumed the data,
the 'slave' returns the CSB to report the result status
of the transmission.
On the other hand, in order to receive some data from
the 'slave', the 'master' uses a read CSB with an empty
buffer. Having received the CSB, the 'slave' fills the
buffer with the data requested and, then, returns the
CSB.
- 22 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
3.4 Control and Organisation of the Tasks
Another important aspect of the multi-process
architecture of the UCL facsimile system, is the need
to systematise the control and organisation of the
tasks. This activity is the function of the task
controller, whose operations are discussed in this
section.
3.4.1 Command Language
As mentioned earlier, the task controller supports a
procedure-oriented language by means of which the user
or the routines of the upper layers can define the jobs
requested. A command should contain the following
information:
1. the names of the task processes which are involved
in the job.
2. the open parameters for these task processes.
3. the order in which the tasks are to be linked.
The last item is quite important, though, usually,
the same order as that given in the command is used.
A command in this language is presented as a zero-
ended character string. In the task name strings and
the attribute strings of the open parameters, '|', '"',
and ',' must be excluded as they will be treated as
separators. The definition is shown below, where '|',
which is the separator of the command strings in the
language, does not mean 'OR'.
<command_string> ::= <task_string>
<command_string> ::= <task_string>|<command_string>
<task_string> ::= <task_name>
<task_string> ::= <task_name>"<open_parameter>
<open_parameter> ::= <attribute>
<open_parameter> ::= <attribute>,<open_parameter>
3.4.2 Task Controller
In our experimental work, the task controller module
is called fitter. This name which is borrowed from
UNIX hints how the module works. According to the
command string, it links the specified tasks into a
chain, along which the data is processed to fulfil the
- 23 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
job requested (Fig. 8).
tasks
+-----+ +-----+ +-----+
! a ! -> ! b ! -> ! c !
+-----+ +-----+ +-----+
Fig. 8 The task chain
Since all modules, including fitter itself, are
implemented as processes, the connections between
modules should be via the Clean and Simple interfaces.
Upon receiving the command string, the fitter parses
the string to find each task process involved and opens
a connection to it. Formally, the task processes are
chained directly, but, logically, there is no direct
connection between them. All of them are connected to
the fitter (Fig. 9).
fitter
+-------------+
+-- ! ! --+
| +-------------+ |
| | |
V V V
+-----+ +-----+ +-----+
! a ! ! b ! ! c !
+-----+ +-----+ +-----+
Fig. 9 The connection initiated by the fitter
For each of the processes it connects, the fitter
keeps a table called pipe. When the command string is
parsed, the pipe tables are double-linked to represent
the specified order of data flow. So far as one process
is concerned, its pipe table contains two pointers: a
forward one pointing to its destination and a backward
one pointing to its sources. Besides the pointers, it
also maintains the information to identify the task
process and the corresponding connection.
- 24 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
Fig. 10 illustrates the chain of the pipe tables for
the job "a|b|c". Note that the forward (output) chain
ends at the sink, while the backward (input) chain ends
at the source. In this sense, the task processes are
chained in the specified order via the fitter (Fig.
11). The data transfer along the chain is initiated and
controlled by the fitter, each process getting the
input from its source and putting the output to its
destination.
+-----+ +-----+ +-----+
! * -+--> ! * -+--> ! 0 !
+-----+ +-----+ +-----+
! 0 ! <--+- * ! <--+- * !
+-----+ +-----+ +-----+
! a ! ! b ! ! c !
+-----+ +-----+ +-----+
! ! ! ! ! !
! ! ! ! ! !
+-----+ +-----+ +-----+
Fig. 10 The pipe chain
fitter
+-------------+
+-> ! * -> * -> * ! --+
| +-------------+ |
| | A |
| V | V
+-----+ +-----+ +-----+
! a ! ! b ! ! c !
+-----+ +-----+ +-----+
Fig. 11 The data flow
This strategy makes the task organisation so flexible
that only the links have to be changed when a new task
chain is to be built up. In such an environment, each
task process can be implemented independently, provided
the Clean and Simple interface is supported. This also
makes the system extension quite easy.
- 25 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
The fitter manipulates one job at a time. But it must
maintain a command queue to cope with the requests,
which come simultaneously from either the upper level
processes or other hosts on the network.
3.5 Interface Routines
In a modular, multi-process system such as the UCL
facsimile system, the structure of the interface
routines is very important. The CSI of section 3.3 is
fundamental to the modular interface; a common control
structure is also essential. This section gives some
details both about the sharable control structure and
the buffer management.
3.5.1 Sharable Control Structure
Though the CSI specification is straightforward, the
implementation of the inter-process communication
interface may be rather tedious, especially in our
system, where there are many task processes to be
written. Not only does each process have to implement
the same control structure for signal handling, but
also the buffer management routines must be included in
all the processes.
For the sake of simplicity and efficiency, a package
of standard interface routines is provided which are
shared by the task processes in the system. These
routines are re-entrant, so that they can be shared by
all processes.
The 'csinit' primitive is called for a task process
to check in. An information table is allocated and the
pointer to the table is returned to the caller as the
task identifier, which is to be used for each call of
these interface routines.
Then, each task process waits by invoking the
'csopen' primitive which does not return until the
calling process is scheduled. When the connection
between the process and the fitter is established, the
call returns the pointer to the open parameter string
of the task, the corresponding task being started. A
typical structure of the task process (written in c) is
shown below. After the task program is executed, the
process calls the 'csopen' and waits again. It can be
seen that the portability of the task routines is
improved to a great extent. Only the interface routines
- 26 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
should be changed if the system were to run in a
different operating environment.
static int mytid; /* task identifier */
task()
{
char *op; /* open parameter */
mytid = csinit();
for(;;) {
op = csopen(mytid);
... /* the body of the task */
}
}
3.5.2 Buffer Management
The package of the interface routines also provides a
universal buffer management, so that the task processes
are freed from this burden. The allocation of the data
buffers is the responsibility of the higher level
process, the fitter. If the task processes allocated
their own buffers, some redundant copying would have to
be done. Thus, the primitives for data transfer,
'csread' and 'cswrite', are designed as:
char *csread(tid, need);
char *cswrite(tid, need);
where 'tid' is the identifier of the task and 'need' is
the number of data bytes to be transferred. The
primitives return the pointer to the area satisfying
the caller's requirement. The 'csread' returns an area
containing the data required by the caller. The
'cswrite' returns an area into which the caller can
copy the data to be transferred. The copied data will
be written to its destination at a proper time without
the caller's interference. Obviously the unnecessary
copy operations can be avoided. It is recommended that
the data buffer returned by the primitives be used
directly to attain higher performance.
- 27 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
In order to implement this strategy, each time a
piece of data is required, the size of the buffer
needed is compared with that of the unused buffer area
in the current CSB. If the latter is not less than the
former, the current buffer pointer is returned.
Otherwise, a temporary buffer has to be employed. The
data is copied into the buffer until the requested size
is reached. In this case, instead of a part of the
current buffer, the temporary buffer will be returned.
A 'cswrite' call with the 'need' field set to zero
tells the interface routine that no more data will be
sent. It causes a 'close' CSB to be sent to the
destination routine.
If there is not enough data available, 'csread'
returns zero to indicate the end of data.
4. UCL FACSIMILE SYSTEM
Now we discuss the implementation of the computerised
facsimile system developed in the Department of
Computer Science at UCL.
This system has several components. Since the total
system is a modular and multi-process one, a specific
system must be built up for a specific application. The
way that this is done is discussed in section 4.1. The
specific devices and their drivers are described in
section 4.2. The system can be attached to a number of
networks. In the UCL configuration, the network
interface can be direct to SATNET [22], SERC NET [23],
PSS [24], and the Cambridge Ring. The form of network
connection is discussed further in section 4.3. The
system must transfer data between the facsimile devices
and the disks, and between the networks and the disks.
For this a filing system is required which is discussed
in section 4.4.
A key aspect of the UCL system is flexibility of
devices, networks, and data formats. The flexibility of
device is achieved by the modular nature of the device
drivers (section 4.2). The flexibility of network is
discussed in section 4.8. The additional flexibility of
data structure is described in section 4.5. The
flexibility can be utilised by incorporating conversion
routines as in section 4.6. An important aspect of the
UCL system is the ability to provide local manipulation
facilities for the graphics files. The facilities
implemented for the local manipulation are discussed in
- 28 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
section 4.7. In order to transfer files over the
different networks of section 4.3. a high level data
transmission protocol must be defined. The procedures
used in the UCL system are discussed in section 4.8.
4.1 Multi-Task Structure
The task controller and processing tasks are
implemented as MOS processes. A number of utility
routines are provided for users to build new task
processes and modules at application level.
In the environment of MOS, a process is included in a
system by specifying a Process Control Table when the
system is built up. The macro 'setpcte' is used for
this purpose, the meaning of its parameters being
defined in [14].
#define setpcte(name,entry,pridev,prodev,stklen,
relpid,relopc)
{0,name,entry,pridev,prodev,stklen,relpid,relopc}
A Device Control Table (DCT) has to be specified for
each device when the system is built up. A DCT can be
defined anywhere as devices are referenced by the DCT
address. The macro 'setdcte' is designed to declare
devices, the meanings of its parameters being specified
in [14]. This method is used in the device
descriptions.
#define setdcte(name,intvec,devcsr,devbuf,devinit,
ioinit,intrpt,mate)
{04037,intrpt,0,0,name,mate,intvec,devinit,
devcsr,devbuf,ioinit}
4.2 The Devices
As mentioned in section 2, apart from the general
purpose system console, there are three devices in the
system to support the facsimile service. These are:
(1) AED62 Floppy Disk, which is used as the secondary
memory storing the facsimile image data. Above its
driver, a file system is implemented to manage the
data stored on the disks, so that an image data
- 29 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
file can be accessed through the Clean and Simple
interface. This file system is dicussed in detail
in the next section. For some processing jobs, the
image data has to buffered on a temporary file
lest time-out occurs on the facsimile machine.
(2) DACOM Facsimile Machine, which is used to input
and output image data. It reads an image and
creates the corresponding data stream. On other
hand, it accepts the image data and reproduces the
corresponding image. Above its driver, there is a
interface task to fit the facsimile machine into
the system, the Clean and Simple interface being
supported. The encoding algorithm for the DACOM
machine is described in [19].
(3) Grinnell Colour Display, which is used as the
monitor of the system. Above its driver, an
interface task is implemented so that the image
data in standard format can be accepted through
the Clean and Simple interface.
The detailed description of these devices can be
found in Appendix 1. The interface task and the
description for each device are listed in the following
table. The interface tasks can be directly used as data
source or sink in a task string.
Device Interface Task Description
AED62 Floppy Disk fs() aed62(device)
DACOM fax Machine fax() dacom(device)
Grinnell Display grinnell() grinnell(device)
Note that the DCTs for the facsimile machine and
Grinnell display have been included in the
corresponding interface tasks, so that there is no need
to declare them if these tasks are used.
4.3 The Networks
There are three relevant wide-area networks
terminating in the Department of Computer Science at
the end of 1981. These are:
(1) A British Telecom X25 network (PSS, [24]).
(2) A private X25 network (SERC NET, [23])
- 30 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
(3) A Defence network (ARPANET/SATNET, [21], [22])
In addition there is a Cambridge Ring as a local
network.
For the time being, the UCL facsimile system is
directly attached to the various networks at the point
NI (Network Interface) of Fig. 1.
As mentioned earlier, pictures can be exchanged via
the SATNET/ARPANET, between UCL in London, ISI in Los
Angeles, and COMSAT in Washington D.C.. The Network
Independent File Transfer Protocol (NIFTP, [9]) is used
to transfer the image data. This protocol has been
implemented on LSI under MOS [10]. In addition, we at
UCL have put NIFTP on an ARPANET TOPS-20 host, which
can act as an Internet File Forwader (IFF). In this
case, TCP/IP ([28], [29]) is employed as the underlying
transport service. Since TCP provides reliable
communication channels, the provision of checkpoints
and error-recovery procedures are not included in our
NIFTP implementations.
In the X25 network, the transport procedure is
NITS/X25 ([25], [26]). Though pictures can be
transferred to the X25 networks, no experimental work
has been done, because:
(1) There is at present no collaborative partner on
these networks.
(2) The LSI-11, on which our system is implemented,
has no direct connection to these networks.
Locally, image data can be transmitted to the
PDP11-44s running the UNIX time-sharing operating
system. At present, the SCP ring-driver software uses
permanent virtual circuits (PVCs) to connect the
various computers on the ring.
4.4 File System
A file system has been designed, based on the AED62
double density floppy disk, for use under MOS. It is
itself implemented as a MOS process supporting the
Clean and Simple interface. The description of this
task, fs(fax), can be found in Appendix 2.
- 31 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
In a command string, the file system task can only
serve as either data source or data sink. In other
words, it can only appear at the first or last position
on a command string. In the former case, the file
specified is to be read, while the file is to be
written in the latter case.
Three access modes are allowed which are:
* Read a file
* Create a file
* Append a file
The file name and access mode are specified as the
open parameters.
Let us consider an example. If a document is to be
read on the facsimile machine and the data stream
created is to be stored on the file system, the command
string required is:
fax"r|fs"c,doc
where: fax - interface task for facsimile machine
r - read from facsimile machine
fs - file system task
c - create a new file
doc - the name of the file to be created.
In order to dump a file, a task process od() is
provided which works as a data sink in a command
string.
4.5 Data Structure
Facsimile image data is created using a high-
resolution raster scanner, so that the original picture
can be reproduced faithfully. The facsimile data
represents binary images, in monochrome, with two
levels of intensity, belonging to the data type of
bit-mapped graphics.
The simplest representation is the bit-map itself.
The bits, each of which corresponds to a single picture
element, are arranged in the same order as that in
which the original picture is scanned, 1s standing for
- 32 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
black pixels and 0s for white ones. Operations on the
picture are easily carried out. For example, two images
represented in the bit-map format can be merged
together by using a simple logic OR operation. Any
specific pixel can be retrieved by a simple
calculation. However, its size is usually large because
of the high resolution. This makes it almost
unrealistic for storage or transmission.
Facsimile image data should therefore be compressed
to reduce its redundancy, so that the efficient storage
and transmission can be achieved.
Run-length encoding is a useful compression scheme.
Instead of the pattern, the counts of consecutive black
and white runs are used to represent the image.
Vector representation, in which the run-lengths are
coded as integers or bytes, is a useful internal
representation of images. Not only is it reasonably
compressed, but it is also quite easy for processing.
Chopping, scaling and mask-scanning are examples of the
processing operations which may be performed.
Furthermore, a conversion between different compression
schemes may have to be carried out in such a way that
the data is first decompressed into the vector format
and then recompressed. The difficulty in retrieval can
be overcome by means of line index, which gives the
pointers to each lines of the image.
A higher compression rate leads to a more efficient
transmission. But this is at the expense of ease of
processing. An example of this is the use of Huffman
Code in the CCITT 1-dimensional compression scheme.
While the data can be compressed more efficiently, it
is rather difficult to manipulate the data direcltly.
Taking the correlation between adjacent lines into
account, 2-dimensional compression can achieve an even
higher compression rate. CCITT 2-dimensional
compression and the DACOM facsimile machine use this
method.
It is desirable to integrate facsimile images with
other data types, such as text and geometric graphics;
the structure of these other types must then be
incorporated in the system. At present, only text
structure is available, while the structure for
geometric graphics is a topic for the further study.
- 33 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
In the facsimile system, the following data
structures are supported. The corresponding
descriptions, if any, are listed as well and they can
be found in Appendix 3 (except of dacom(device)).
type structure compression description
bit-map bit-map - -
vector 1D run-length vector(fax)
dacom block 2D run-length dacom(device)
CCITT T4 1D run-length t4(fax)
2D run-length t4(fax)
text text - text(fax)
As an internal data structure, vector format is
widely used for data transfer between task processes.
The set of interface routines has been extended by
introducing two subroutines, namely getl() and putl(),
which read and write line vectors directly through the
Clean and Simple interface. These two routines can be
found in Appendix 3 (getl(fax) and putl(fax))
In order to check the validity of a vector file, a
check task process check() is provided which works as a
data sink in a command string. It can also dump the
vector elements of the specific lines.
4.6 Data Conversion
In order to convert one data structure into another,
several conversion modules are provided in this system.
These modules fall into two categories, task processes
and subroutines. The task processes are MOS processes
which can only be used in the environment described in
this note, while the subroutines which are written in c
and compatible under UNIX are more generally usable.
Character strings or text can be converted into
vector format, so that an integrated image combining
picture and text can be formed.
The following table lists these conversion modules,
including their functions and descriptions (which can
be found in Appendix 3).
- 34 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
module type from to description
decomp process dacom vector decomp(fax)
recomp process vector dacom recomp(fax)
ccitt process vector t4 ccitt(fax)
t4 vector
bitmap subroutine vector bitmap bit-map(fax)
tovec subroutine bitmap vector tovec(fax)
ts subroutine ASCII string vector ts(fax)
string process ASCII string vector string(fax)
tf process text vector tf(fax)
Since each DACOM block contains a Cyclic Redundancy
Check (CRC) field, the system supplies a subroutine
crc() to calculate or check the CRC code. (see
crc(fax))
If a vector file is to be printed on the DACOM
facsimile machine, the image data should be re-
compressed into the DACOM-block format, the required
command string being shown below.
fs"e,pic|recomp|fax"w
where fs - file system task
e - read an existing file
ic - file name
recomp - re-compression task
fax - interface task for facsimile machine
w - print an image on facsimile machine
4.7 Image Manipulation
Four processing task processes are provided in the
system. These are:
(1) Chop, which applies a defined window to the input
image.
(2) Scale, which enlarges or shrinks the input image
to the defined dimensions.
(3) Merge, which puts the input image on the specified
area of a background image.
- 35 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
(4) Clean, which removes the noise on the input image.
The Clean and Simple interfaces are supported in
these processing tasks so that the tasks can be used in
command strings. However, these tasks can be neither
source nor sink in a command string. The data format
of their input and output is vector.
For example, a facsimile page can be cleaned and then
printed on the facsimile machine. Note that the image
data must be recompressed before being sent to the
facsimile machine. If the original data is the form of
DACOM block, it has to be decompressed as the
processing tasks only accept line vectors. The
required command string is shown below.
fs"e,page|clean|recomp|fax"w
where fs - file system task
e - read an existing file
page - file name
clean - cleaning task
recomp - re-compression task
fax - interface task for facsimile machine
w - print an image on facsimile machine
The descriptions of these processing tasks can be
found in Appendix 2 (chop(fax), scale(fax), merge(fax),
and clean(fax)).
In tasks 'chop' and 'merge', a window is set by
giving the coordinates of its vertices. However, it is
usually rather difficult for a human user to decide the
exact coordinates. The system supplies a subroutine
choice() which specifies a rectangular subsection of an
image by interactive manipulations of a rectangular
subsection on the screen of the Grinnell display
displaying the image. It provides a set of interactive
commands whereby a user can intuitively choose an area
he is interested in. Note that this subroutine must be
called by a MOS process and the Grinnell display must
be included in the system.
By means of these image processing modules, the image
editing described in section 2.4 can be carried out.
Let us consider an example. An image abstracted from a
picture 'a' is to be merged onto a specified area of
another picture 'b'. First of all, the two pictures 'a'
- 36 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
and 'b' should be displayed on the left half and right
half of the screen, respectively. Assume that the two
pictures are standard DACOM pages whose dimensions are
1726x1200. They have to be shrunk to fit the dimension
of the half screen (256x512). Note that if the data
format is not vector, conversion should be carried out
first. the required command strings are:
e,a|scale"1726,1200,256,512|grinnell"0,511,255,0,z,g
fs"e,b|scale"1726,1200,256,512|grinnell"256,511,511,0,z,b
where fs - file system task
e - read an existing file
a - file name
b - file name
scale - scale task
1726,1200 - old dimension
256,512 - new dimension
grinnell - grinnell display interface task
0,511,255,0 - presentation area (the left half)
256,511,511,0 - presentation area (the right half)
z - zero write mode
g - green
b - blue
In an application process, the subroutine choice() is
called in the following ways for the user to choose the
areas on both pictures.
- 37 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
choice(r, 1726, 1200, 1, 0, 0);
/* choice the area on 'a' */
/* r - red
1726 - width of the original picture
1200 - height of the original picture
1 - left half of the screen
0 - the subsection can be of any width
0 - the subsection can be of any height
*/
choice(r, 1726, 1200, 2, 0, 0);
/* choice the area on 'b' */
/* r - red
1726 - width of the original picture
1200 - height of the original picture
2 - right half of the screen
0 - the subsection can be of any width
0 - the subsection can be of any height
*/
When the user finishes editing, the coordinates of
the chosen rectangular areas are returned. An example
is given in the table below. The widths and heights
listed in the table are actually calculated from the
coordinates returned and they indicate that the source
image has to be enlarged to fit its destination.
(0, 0)
+-------------------------------> x
|
| (x0, y0) w
| +--------------------+
| ! !
| ! !
| ! ! h
| ! !
| ! !
| +--------------------+
| (x1, y1)
V
y
original x0 y0 x1 y1 w h
a 30 40 100 120 70 80
b 100 100 1100 1100 1000 1000
- 38 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
At this stage, our final goal can be achieved by
performing a job specified below. It is assumed that
the result image is to be stored as a new file 'c'.
fs"e,a|chop"30,40,100,120|scale"70,80,1000,1000
|merge"b,0,100,100,1100,1100|fs"c,c
where fs - file system task
e - read an existing file
a - file name
chop - chop task
30,40,100,120 - the area to be abstracted
scale - scale task
70,80 - old dimension
1000,1000 - new dimension
merge - merge task
b - file name of the background image
0 - to be overlaid
100,100,1100,1100 - the area to be overlaid
fs - file system task
c - create a new file
c - the name of the file to be
created
4.8 Data Transmission
In order to transmit facsimile image data over
computer networks, using the configuration of Fig. 1,
the Network Independent File Transfer Protocol [9] is
implemented as a MOS task process, the Clean and Simple
interface of section 3.3 being supported [10]. Thus
this module can be used in a command string directly.
In this case, the module always works in the initiator
mode, though the server mode is supported as well. Its
description can be found in Appendix 2 (ftp(fax)).
As a network-independent protocol, it employs a
transport service to communicate across the networks.
The Clean and Simple interface is also used for the
communication between the module and transport service
processes.
Suppose that an image file stored in a remote file
system is to be printed on the local facsimile machine.
Assume that the data is transmitted via the ARPANET
[21], Transport Control Protocol (TCP) [28] being used
as the underlying transport service. As was described
- 39 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
before, since the delay caused by the network may
result in a time-out on the local facsimile machine,
the job should be divided into two subjobs.
(1) The remote file is transmitted by using NIFTP
module. However, instead of being put on the
facsimile machine directly, the received data is
store in a temporary file.
ftp"r,b,ucl,fax,pic;tcp:1234,10,3,3,42,4521|fs"c,tmp
where ftp - NIFTP task
t - receive
b - binary
ucl - remote user name
fax - remote password
pic - remote file name
tcp - transport service process
parameters for the transport service:
1234 - local channel number
10,3,3,42 - remote address
4521 - channel reserved for the
remote server
fs - local file system task
c - create a new file
tmp - the name of the file to be created
(2) The temporary file is read and the image is sent
to the facsimile machine for printing. Here it is
assumed the data received is in the form of DACOM
block so that no conversion is needed.
fs"e,tmp|fax"w
where fs - file system task
e - read an existing file
tmp - file name
fax - interface task for facsimile machine
w - print an image on facsimile machine
We are able to exchange image data with ISI and
COMSAT. At present DACOM block is the only format that
can be used as all the three participants in this
experiment possess DACOM facsimile machines and no
- 40 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
other data format is available in both ISI and COMSAT.
However, it is the intention of the ARPA-Facsimile
community to adopt the CCITT standard for future work.
As mentioned earlier, UCL already has this facility.
Above NIFTP, a simple protocol was used to control
the transmission of facsimile data. In this protocol,
the format of a facsimile data file was defined as
follows: Each DACOM block was recorded with a 2-byte
header at the front. This header was composed of a
length-byte indicating the length of the block
(including the header) and a code-byte indicating the
type of the block. This is shown in the following
diagram.
|<--- header ---->|<------ 74 bytes ------->|
+--------+--------+-------------------------+
! length ! code ! DACOM block !
+--------+--------+-------------------------+
The Length-byte is 76 (decimal) for all DACOM blocks.
The code-byte for a setup block is 071 (octal) and 072
for a data block. A special EOP block was used to
indicate the end of a page. This block had only the
header with the length-byte set to 2 and the code-byte
undefined. A facsimile data file could contain several
pages, which were separated by EOP blocks.
5. CONCLUSION
5.1 Summary
Though techniques for facsimile transmission were
invented in 1843, it was not until the recent years
that integration with computer communication systems
gave rise to "great expectation". The system described
in this note incarnates the compatibility and
flexibility of computerised facsimile systems.
In this system, facsimile no longer refers simply to
the transmission device, but rather to the function of
transferring hard copy from one place to another. Not
only does the system allow for more reliable and
accurate document transmission over computer networks
but images can also be manipulated electronically.
Image is converted from one representation format to
another, so that different makes of facsimile machines
can communicate with each other. It is possible for a
- 41 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
picture to be presented on different bit-map devices,
e.g. TV-like screen, as it can be scaled to overcome
the incompatibilities. Moreover, the system provides
windowing and overlaying facilities whereby a
sophisticated editor can be supported.
One of the most important aspects of this system is
that text can be converted into its bit-mapped
representation format and integrated with pictures.
Geometric graphics could also be included in the
system. Thus, the facsimile machine may serve as a
printer for multi-type documents. It is clear that
facsimile will play an important role in future
information processing system.
As far as the system per se is concerned, the
following advantages can be recognised. Though our
discussion is concentrated on the facsimile system,
many features developed here apply equally well to
other information-processing systems.
(1) Flexibility: The user jobs can be easily
organised. The only thing to be done for this
purpose is to make the logical links for the
appropriate task processes.
(2) Simplicity: The interface routines are responsible
for the operations such as signal handling and
buffer management. By avoiding this burden, the
implementation of the task processes becomes very
"clean and simple".
(3) Portability: The interface routines also makes the
task processes totally independent of the
operating environment. Only these routines should
be modified if the environment were changed.
(4) Ease of extension: The power of the system can be
simply and infinitely extended by adding new task
processes.
(5) Distributed Environment: This approach can be
easily extended to a distributed environment,
where limitless hardware and software resources
can be provided.
5.2 Problems
As discussed earlier, the network we were using for
the experimental work was not designed for image data
- 42 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
transmission. The data transfer is so slow that a
time-out may be caused on the facsimile machine. Though
this problem was solved by means of local buffering and
pictures were successfully exchanged over the network,
the slowness is rather disappointing because of the
quantity of image data. The measurement showed that the
throughput was around 500 bits/sec. In other words, it
took at least 5 minutes to transfer a page. This was
caused by the network but not our system. The situation
has been improved recently. However, It is nevertheless
required that more efficient compression schemes be
developed.
At present, the system must be directly attached to
the network to be accessed. However, the network ports
are much demanded, so that frequent reconfiguration is
required.
The facsimile system can be connected only to the
local network, the Cambridge Ring, while the foreign
networks are connected via gateways to the ring. This
is shown in Fig. 12. Now the X25 network is attached to
the Ring via an X25 gateway, XG [25], while SATNET is
connected by another gateway, SG [25]. Both network are
at the transport level; XG and SG support the relevant
transport procedures. In the case of XG, this is
NITS/X25 ([26], [27]); in the case of SATNET, it is
TCP/IP ([28], [29]).
UCL facsimile
system - - - - - - - -
+--------+ / \ +------+
! ! ---- Cambridge Ring ---- ! PE !
+--------+ \ / +------+
- - - - - - - - |
/ \ |
+------+ +------+ |
! XG ! ! SG ! --- SATNET
+------+ +------+
/ \
PSS SERC NET
Fig. 12 Schematic of UCL network connection
When the network software runs in the same machine as
the application software, the Clean and Simple
interface of section 3.5 was used as an interface
between the modules. When the gateway software was
removed to a separate machine, an Inter-Processor Clean
- 43 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
and Simple [30] was required. The appropriate
transport process is transferred to the relevant
gateway, and appropriate facilities are implemented for
addressing the relevant gateway. Otherwise, the
software has to be little altered to cater for the
distributed case.
In our experimental work, the following problems were
also encountered.
(1) The primary memory of the LSI-11 is so small that
we cannot build up a system to include all the
modules we have developed. In order to transfer
an edited picture using the NIFTP module, we have
to first load an editor system to input and
process the picture, and then an NIFTP system is
then loaded to transmit it.
(2) The execution of an image processing procedure
becomes very slow. For example, it takes several
minutes to shrink a picture to fit the screen of
the Grinnell display. This prevents the system
from being widely used in its present form.
(3) As secondary storage, floppy disks are far from
adequate to keep image data files. At present, we
have two double-density floppy disk drives, the
capacity of each disk being about 630K bytes.
However, an image page contains at least 50K bytes
and, sometimes, this number may be doubled for a
rather complex picture. Only a limited number of
pages can be stored.
On the other hand, in our department, we have two
PDP11-44s running UNIX together with large disks
supplying abundant file storage. Their processing speed
is much higher than that of the LSIs. The UNIX file
system supports a very convenient information-
management environment. This inspired the idea that the
UNIX file system could pretend to be a file server
responsible for storing and managing the image data, so
that all the processing tasks may be carried out on
UNIX. Not only does this immediately solve the problems
listed above, but the following additional advantages
immediately accrue.
(1) UNIX provides a far better software-development
environment than LSI MOS ever can or will.
(2) The facsimile service can be enhanced to be able
- 44 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
to support many users at a time.
(3) The UNIX file system is so sophisticated that more
complex data entities can be handled.
In fact the 44s and the LSI-11, to which the
facsimile machine and Grinnell display are attached,
are all connected to the UCL Cambridge Ring. A
distributed processing environment can be built up
where a job in one computer can be initiated by another
and then the job will be carried out by cooperation of
both computers.
In such a distributed system, the LSI-11 micro-
computer, together with the facsimile machine,
constitutes a totally passive facsimile server
controlled by a UNIX user. A page is read on the
facsimile machine and the image data stream produced is
transmitted to the UNIX via the ring. The image data is
stored as a UNIX file and may be processed if
necessary. It can also be sent via the ring to the
facsimile server where it will be reprinted on the
facsimile machine.
In order to build up such a distributed environment,
IPCS [30] is far from adequate for this purpose, as it
does not provide any facility for a remote job to be
organised. In our system, the task controller can be
modified so that the command strings can be supplied
from a remote host on the network. Having accepted the
request, the task controller organises the relevant
task chain and the requested job is executed under its
control. The execution of the distributed job may
require synchronisation between the two computers.
These problems are discussed in detail in [31].
Generally speaking, a distributed system based on a
local network, which supplies cheap, fast, and reliable
communication, could be the ultimate solution of the
operational problems discussed in this section. In such
a system, different system operations are carried out
in the most suitable places.
For the time being, only a procedure-oriented task-
control language is available in this system. The
command string of the fitter can be typed from the
system console directly, the corresponding job being
organised and executed. Theoretically, this is quite
enough to cope with any requirement of a user.
However, when the job is complex, command typing
becomes very tedious and prone to error.
- 45 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
Above the task-controller, a job-controller layer is
required which provides a problem-oriented language
whereby the user can easily put forward his requirement
to the system. On receipt of such a command, the job
controller translates it into a command string of the
task controller and passes the string to the task
controller so that operation request can be done.
Sometimes, one job has to be divided into several
subjobs, which are to be dealt with separately. The
job controller should be also responsible for high
level calculation and management, so that the user need
not be concerned with system details.
In the system supporting facsimile service under
UNIX, a set of high-level command is provided, while
the command strings for the facsimile station are
arranged automatically and they are totally hidden from
a UNIX user.
5.3 Future Study
At the next stage, our attention should be moved to a
higher-level, more sophisticated system which supports
a multi-type environment. In such a system, not only
does the facsimile machine work as an facsimile
input/output device, but it should also play the role
of a printer for the multi-type document. This is
because other data types, e.g. coded character text and
geometric graphics can be easily converted into bit-
mapped graphics format which the facsimile machine is
able to accept.
First of all, a data structure should be designed to
represent multi-type information. In a distributed
environment, such a structure should be understood all
over the system, so that multi-media message can be
exchanged.
In a future system, different services should be
supported, including viewdata, Teletex, facsimile,
graphics, slow-scan TV and speech. The techniques
developed for facsimile will be generalised for use of
other bit-mapped image representations, such as slow-
scan TV.
To improve the performance of the facsimile system,
we are investigating how we could use an auxiliary
special purpose processor to perform some of the image
processing operations. Such a processor will be
essential for the higher data rate involved in slow-
- 46 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
scan TV.
- 47 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
Reference
[1] P. T. Kirstein, "The Role of Facsimile in Business
Communication", INDRA Note 1047, Jan. 1981.
[2] T. Chang, "A Proposed Configuration of the
Facsimile station", INDRA Note 922, May, 1980.
[3] T. Chang, "Data Structure and Procedures for
Facsimile Signal Processing", INDRA Note 923, May,
1980.
[4] S. Treadwell, "On Distorting Facsimile Image",
INDRA Note No 762, June, 1979.
[5] M. G. B. Ismail and R. J. Clarke, "A New Pre-
Processing Techniques for Digital Facsimile
Transmission", Dept. of Electronic Engineering,
University of Technology, Loughborough.
[6] T. Chang, "Mask Scanning Algorithm and Its
Application", INDRA Note 924, June, 1980.
[7] M. Kunt and O. Johnsen, "Block Coding of Graphics:
A Tutorial Review", Proceedings of the IEEE,
special issue on digital encoding of graphics,
Vol. 68, No 7, July, 1980.
[8] T. Chang, "Facsimile Data Compression by
Predictive Encoding", INDRA Note No 978, May.
1980.
[9] High Level Protocol Group, "A Network Independent
File Transfer Protocol", HLP/CP(78)1, alos INWG
Protocol Note 86, Dec. 1978.
[10] T. Chang, "The Implementation of NIFTP on LSI-11",
INDRA Note 1056, Mar. 1981.
[11] T. Chang, "The Design and Implementation of a
Computerised Facsimile System", INDRA Note No.
1184, Apr. 1981.
[12] T. Chang, "The Facsimile Editor", INDRA Note 1085,
Apr. 1981.
[13] K. Jackson, "Facsimile Compression", Project
Report, Dept. of Computer Science, UCL, June,
1981.
- 48 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
[14] R. Cole and S. Treadwell, "MOS User Guide", INDRA
Note 1042, Jan. 1981.
[15] CCITT, "Recommendation T.4, Standardisation of
Group 3 Facsimile Apparatus for Document
Transmission", Geneva, 1980.
[16] "DACOM 6450 Computerfax Transceiver Operator
Instructions", DACOM, Mar. 1977.
[17] "AED 6200LP Floppy Disk Storage System", Technical
Manual, 105499-01A, Advanced Electronics Design,
Inc. Feb. 1977.
[18] "The User Manual for Grinnelll Colour Display".
[19] D. R. Weber, "An Adaptive Run Length Encoding
Algorithm", ICC-75.
[20] R. Braden and P. L. Higginson, "Clean and Simple
Interface under MOS", INDRA Note No. 1054, Feb.
1981.
[21] L. G. Roberts et al, "The ARPA Computer Network",
Computer Communication Networks, Prentice Hall,
Englewood, pp485-500, 1973.
[22] I. M. Jacobs et al: "General Purpose Satellite
Network", Proc. IEEE, Vol. 66, No. 11,
pp1448-1467, 1978.
[23] J. W. Burren et al, "Design fo an SRC/NERC
Computer Network", RL 77-0371A, Rutherford
Laboratory, 1977.
[24] P. T. F. Kelly, "Non-Voice Network Services -
Future Plans", Proc. Conf. Business
Telecommunications, Online, pp62-82, 1980.
[25] P. T. Kirstein, "UK-US Collaborative Computing",
INDRA Note No. 972, Aug. 1980.
[26] "A Network Independent Transport Service", PSS
User Forum, Study Group 3, British Telecom,
London, 1980.
[27] CCITT, Recommendation X3, X25, X28 and X29 on
Packet Switched Data Services", Geneva 1978.
[28] "DoD Standard Transmission Control Protocol",
RFC761, Information Sciences Inst., Marina del
- 49 -
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
Rey, 1979.
[29] "DoD Standard Internet Protocol", RFC760,
Information Sciences Inst., Marina del Rey, 1979.
[30] P. L. Higginson, "The Orgainisation of the Current
IPCS System", INDRA Note No. 1163, Oct. 1981.
[31] T. Chang, "Distributed Processing for LSIs under
MOS", INDRA Note No. 1199, Jan. 1982.
- 50 -
UCL FACSIMILE SYSTEM INDRA Note 1185
Appendix I: Devices
^L
AED62(DEV) AED62(DEV)
NAME
aed62 - double density floppy disk
SYNOPSIS
DCT aed62
setdct("aed62", 0170, 0170450, 0170450,
aedini, aedsio, aedint, 0);
DESCRIPTION
The Double Density disks contain 77 tracks numbered from 0
to 76. There are 16 sectors (sometimes called blocks) per
track, for a total of 1232 sectors on each side of the disk.
These are numbered 0 to 1231. Each sector contains 512
bytes, for a total of 630,784 bytes on each side of the
floppy.
Only one side of the floppy can be accessed at a time. There
is only one head per drive, and it is located on the under-
side of the disk. To access the other side, the disk must be
manually removed and inserted the other way up.
Each block is actually two blocks on the disk: an adddress
ID block and the data block. The address ID block is used
by the hardware and contains the track number, the block
number and the size of the data block that follows. When an
operation is to take place, the seek mechanism first locates
the block by reading the address ID blocks and literally
'hunting' for the correct one. It will hunt for up to 2
seconds before reporting a failure.
Both the address ID and the data blocks are followed by a
checksum word that is maintained by the hardware and is hid-
den from the user. On writing, the checksum is calculated
and appended to the block. On reading it is verified (both
on reading the ID and data blocks) and any error is reported
as a Data Check. No checking on the data block takes place
on a write, and the hardware has no idea if it was written
correctly. The only way to verify it is to read it.
Although there are two drives in the unit, they cannot be
used simultaneously. If an operation is in progress on one,
no access can be made to the other until the first operation
is complete. The driver will queue requests for both drives
however, and ensure that are performed in order.
The MOS driver is called aed62.obj. It operates on the fol-
lowing IORB entries:
^L
AED62(DEV) AED62(DEV)
irfnc
The operation to be performed, as follows:
0 - Read
1 - Write
2 - Verify
3 - Seek
Read and Write cause data to be transferred to and from
disk. Verify does a hardware read without transferring
the data to memory and is used for verifying that the
data can be successfully read. The checksum at the end
of the block of each sector is verified by the
hardware. The seek command is used to move the disk
heads to a specified track.
irusr1
The drive number. Only Zero or One is accepted. This is
matched against the number dialed on the drive. If the
number is specified on both drives, or neither, a
hardware error will be reported.
irusr2
The Sector or Block Number. Must be in the range 0 to
1231 inclusive. irusr2 specifies the block number that
the transfer is to begin at for Read and Write, the be-
ginning of the verified area for the Verify command,
and the position of the head for the Seek command. In
the latter case the head will be positioned to the
track that contains the block.
iruva
This specifies the data adress, which must be even
(word boundary). If an odd address is given, the low
order bit is set to zero to make it even. Not required
for the Seek or Verify commands.
irbr
Transfer length as a positive number of bytes. Not re-
quired for the seek command, bit IS used by Verify com-
mand so that the correct number of blocks may be veri-
fied. The disk is only capable of transferring an even
number of bytes. If an odd length is given the low ord-
er bit is made zero to reduce the length to the lower
even value. The length is NOT restricted to the sector
size of 512 bytes. If the length is greater than 512,
successive blocks are read/written until the required
transfer
^LAED62(DEV) AED62(DEV)
length has been satisfied. If the length is not an ex-
act multiple of 512 bytes, only the specified length
will be read/written. Note that the hardware always
reads and writes a complete sector, so specifying a
shorter length on a read will cause the remainder of
the block to be skipped. On a write, the hardware will
repeat the last specified word until the sector is
full.
The driver will attempt to recover from all soft errors.
There is no automatic write/read verify as on mag tapes, so
that data that is incorrectly written will not be detected
as such until a read is attempted. For this reason, the ver-
ify feature can be used (see above) to force the checking of
written data. When an error is detected while performing a
read, the offending block will be re-read up to 16 times and
disk resets will be attempted during this time too. If all
fails a hardware error indication is returned to the user.
Other errors possible are Protection Error (attempt to write
to a read-only disk) and User Error, which indicates that
the parameters in the IORB were incorrect. Errors such as
there being no disk loaded, or the drive door being open are
NOT detectable by the program. The interface sees these as
Seek Errors (i.e. soft errors), and thus the driver will re-
try several times before returning a Hardware Error indica-
tion to the user. It should be noted that error recovery can
take a long time. As mentioned above, there is a 2 second
delay before a seek error is reported by the hardware, for
instance.
^L
GRINNELL(DEV) GRINNELL(DEV)
NAME
grinnell - colour display
SYNOPSIS
DCT grndout
setdct("grndout", 03000, 0172520, 0172522,
grnoi, grnot, grnoti, &grndin);
DCT grndin
setdct("grndin", 03000, 0172524, 0172526,
grnoi, grnot, grnoti, &grndout);
DESCRIPTION
The Grinnell colour display has a screen of 512x512 pels.
Three colours (red, green and blue) can be used, but no grey
scale is supported. Three graphics modes are available.
These are:
(1) Alphanumeric: The input ASCII characters are displayed
at the selected positions on the screen.
(2) Graphic: Basic geometric elements, such as line and
rectangle, are drawn by means of graphics commands.
(3) Image: The input data is interpreted as bit patterns,
the corresponding images being illustrated.
The values used to construct commands are described in the
Grinnell User Manual. They are also listed below.
#define LDC 0100000 /* Load Display Channels */
#define LSM 0010000 /* Load Subchannel Mask */
#define RED 0000010 /* Read Subchannel */
#define GREEN 0000020 /* Green subchannel */
#define BLUE 0000040 /* Blue subchannel */
#define WID 0000000 /* Write Image Data */
#define WGD 0020000 /* Write Graphic Data */
#define WAC 0022000 /* Write AlphanumCh */
#define LWM 0024000 /* Load Write Mode */
#define REVERSE 0200 /* Reverse Background */
#define ADDITIVE 0100 /* Additive (not Replace) */
#define ZEROWRITE 040 /* Dark Write */
#define VECTOR 020 /* Select Vector Graph */
#define DBLEHITE 010 /* Double Height write */
#define DBLEWIDTH 004 /* Double Width write */
#define CURSORAB 002 /* Cursor (La+Lb,Ea+Eb) */
^L
GRINNELL(DEV) GRINNELL(DEV)
#define CURSORON 001 /* Cursor On */
#define LUM 0026000 /* Load Update Mode */
#define Ec 001 /* Load Ea with Ec */
#define Ea_Eb 002 /* Load Ea with Ea + Eb */
#define Ea_Ec 003 /* load Ea with Ea + Ec */
#define Lc 004 /* Load La with Lc */
#define La_Lb 010 /* Load La with La + Lb */
#define La_Lc 014 /* Load La with La + Lc */
#define SRCL_HOME 020 /* Scroll dsiplay to HOME */
#define SRCL_DOWN 040 /* Scroll down one line */
#define SCRL_UP 060 /* Scroll up one line */
#define ERS 0030000 /* Erase */
#define ERL 0032000 /* Erase Line */
#define SLU 0034000 /* Special Location Update */
#define SCRL_ZAP 0100 /* unlimited scroll speed */
#define EGW 0036000 /* Execute Graphic Write */
#define LER 0040000 /* Load Ea relative */
#define LEA 0044000 /* Load Ea */
#define LEB 0050000 /* Load Eb */
#define LEC 0054000 /* Load Ec */
#define LLR 0060000 /* Load La Relative */
#define LLA 0064000 /* Load La */
#define LLB 0070000 /* Load Lb */
#define LLC 0074000 /* Load Lc */
#define LGW 02000 /* perform write */
#define NOP 0110000 /* No-Operation */
#define SPD 0120000 /* Select Special Device */
#define LPA 0130000 /* Load Peripheral Address */
#define LPR 0140000 /* Load Peripheral Register */
#define LPD 0150000 /* Load Peripheral Data */
#define RPD 0160000 /* ReadBack Peripheral Data */
#define MEMRB 00400 /* SPD - Memory Read-Back */
#define DATA 01000 /* SPD - Byte Unpacking */
#define ALPHA 06000 /* LPR - Alphanumeric data */
#define GRAPH 04000 /* LPR - Graphic data */
#define IMAGE 02000 /* LPR - Image data */
#define LTHENH 01000 /* take lo byte then hi byte */
#define DROPBYTE 0400 /* drop last byte */
#define INTERR 02000 /* SPD - Interrupt Enable */
#define TEST 04000 /* SPD - Diagnostic Test */
The MOS driver is called grin.obj. It operates on the fol-
lowing IORB entries.
iruva
This is a pointer to the buffer where the data is
stored.
^L
GRINNELL(DEV) GRINNELL(DEV)
This data must be ready formtatted for the Grinnell,
since no conversion is performed by the driver.
irbr
This transfer length as a positive number of bytes.
Addressing the grinnell. Rows consist of elments numbered 0
to 511 running left to right. The lines are number from 0 to
511 running from bottom to top. It is thus addressed as a
conventional X-Y coordinate system. Note that this coordi-
e system is different the one used for the image.
X A
|
| (511, 511)
511 +-------------------------------+
| |
| |
| |
| |
| (x, y) |
| + |
| |
| |
| |
| |
| |
+-------------------------------+----->
0 511 Y
SEE ALSO
grinnell(fax)
^L
DACOM(DEV) DACOM(DEV)
NAME
dacom - facsimile machine
SYNOPSIS
DCT faxinput
setdct("faxin", 0350, 0174750, 0174740,
faxii, faxin, faxini, &faxoutput);
DCT faxoutput
setdct("faxout", 0354, 0174752, 0174742,
faxoi, faxot, faxoti, &faxinput);
DESCRIPTION
The DACOM facsimile machine can read a document, creating
the corresponding image data blocks. It can also accept the
data of relevant format, printing the correponding image.
Each data block consists of 585 bits, and is stored in a
block of 74 bytes starting on a byte boundary. The final 7
bits of the last byte are not used and they are undefined.
The 585 bits in each block need to be read as a bit stream:
the bits in each byte run from the high orger end of the
byte to the low order end. The last 12 bits of the 585 bits
in each block consistute the CRC field whereby the block can
be validated.
There are two kinds of blocks: SETUP blocks and DATA blocks.
The first of block of an image data file should be a single
SETUP block. All following blocks in the file must be DATA
blocks. Note that the second block is a DATA block that con-
tains ZERO samples, i.e. a dummy data blocks. Form the third
block, the DATA blocks store the reall image data.
A standard dacom page contains about 1200 scan lines, each
of which has 1726 pels. One can choose
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
Appendix II: Task Controller and Task Processes
^L
CCITT(FAX) CCITT(FAX)
NAME
ccitt - conversion between vector and CCITT T4 format
SYNOPSIS
ccitt() - a MOS task
command string (task name is defined as ccitt):
ccitt"<function>
DESCRIPTION
This routine operates as a MOS pipe task to convert the vec-
tors to CCITT T4 format or inversely.
The parameter function specifies what the task is to do.
value function
1c one-dimensional compression
1d one-dimensional decompression
2c[<k>] two-dimensional compression
2d two-dimensional decompression
Note k is the maximun number of lines to be coded two-
dimensionally before a one-dimensionally coded line is in-
serted. If k is omitted, the default value 2 is adopted.
SEE ALSO
vector(fax), t4(fax), fitter(fax)
^L
CHECK(FAX) CHECK(FAX)
NAME
check - check the validity of a vector file.
SYNOPSIS
check() - a MOS task
command string (the task name is defined as check):
check"<function>,<width>,<height>,[<from>,<to>]
DESCRIPTION
This routine operates as a MOS pipe task checking the vali-
dity of the input vector file.
The number of lines to be checked is specified by the param-
eter height. If the height of the image is less than the
parameter, the actual height is printed. Thus, one can set
the parameter height to a big number in order to count the
number of lines of the input image.
The run lengths in each of these lines are accumulated and
the sum is compared with the parameter width.
These are the basic functions which are performed whenever
the task is invoked. However, there are several options one
can choose by setting the one-character parameter function.
value function
'n' basic function only
'c' print the count of each line
'l' print all lines
's' print the lines in the interval
specified by parameter from and to
DIAGNOSTICS
A bad line will be reported and it will cause the job abort-
ed.
SEE ALSO
vector(fax), getl(fax), fitter(fax)
^L
CHOP(FAX) CHOP(FAX)
NAME
chop - extract a designated rectangular area from an image
SYNOPSIS
chop() - a MOS task
command string (task name is defined as chop):
chop"<x0>,<y0>,<x1>,<y1>
DESCRIPTION
This routine operates as a MOS pipe task extracting a desig-
nated rectangular area from an input image. Input and out-
put are image data files in the form of vectors.
The following diagram shows the coordinate system being
used. Note that the lengths are measured in number of pels.
(0, 0) width X
+-------------------------+---->
| |
| |
| (x0, y0) |
| +---------+ |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| +---------+ |
| (x1, y1) |
| |
| |
| |
| |
height +-------------------------+
|
|
Y V
As can be seen in the diagram, the rectangular area to be
extracted is specified by the parameters x0, x1, y0, y1,
which are decimal strings.
BUGS
One has to make sure that
^L
CHOP(FAX) CHOP(FAX)
0 < x0 < width
0 < y0 < height
0 < x1 < width
0 < y1 < height
SEE ALSO
vector(fax), getl(fax), putl(fax), fitter(fax)
^L
CLEAN(FAX) CLEAN(FAX)
NAME
clean - clean an image.
SYNOPSIS
clean() - a MOS task
command string (task name is defined as clean):
clean"<width>,<height>
DESCRIPTION
This routine operates as a MOS pipe task cleaning an image
by means of mask scanning. Input and output are image data
files in the form of vectors.
The width and height should be given as the parameters.
SEE ALSO
vector(fax), getl(fax), putl(fax), fitter(fax)
^L
DECOMP(FAX) DECOMP(FAX)
NAME
decomp - decompress DACOM blocks
SYNOPSIS
decomp() - a MOS task
command string (task name is defined as decomp):
decomp
DESCRIPTION
This task takes DACOM blocks from the Clean and Simple in-
terface, and decompresses them into vector format. Then it
writes the vectors to the Clean and Simple interface.
SEE ALSO
dacom(dev), vector(fax), fitter(fax)
^L
FAX(FAX) FAX(FAX)
NAME
fax - interface process for DACOM facsimile machine
SYNOPSIS
fax() - a MOS task
command string (task name is defined as fax):
fax"<function>
DESCRIPTION
This task uses the Clean and Simple interface to read or
write facsimile image data.
The one character parameter function specifies whether the
data is to be read or written. Character w is for writing.
In this case, 74 byte DACOM blocks contaning correct CRC
fields are expected. On the other hand, character r is for
reading. In this case, a document is read on the facsimile
machine, the DACOM blocks being created.
SEE ALSO
dacom(dev), fitter(fax)
^L
FITTER(FAX) FITTER(FAX)
NAME
fitter - fit processes together to form a data pipe
SYNOPSIS
fitter() - the MOS task controller
DESCRIPTION
According to the command string typed on the console, fitter
links the specified processes together to form a task chain.
The name of the processes is the name given in the PCB. The
processes must communicate using the C+S interface. Only one
C+S interface is opened per process - data is pushed in with
a cswrite and pulled out with a csread. The fitter does not
inspect the data in any way but merely passes it from one
process to another.
The format of command string is:
A | B | C.
The fitter takes data from the process called A, write it to
the process called B, reads data from the process B and
write that data to the process C. Note that all middle
processes are both read and written, while the first one in
the list is only read from and the last in the list is only
written to.
A double quote is used as the separator between the task
name and the open parameter string, e.g.
A"500 | B"n,xyz | C,
where the strings '500' and 'n,xyz' are the open parameter
stings for tasks A and B, respectively. The parameter
stirng is passed to the corresponding task routine when the
csopen call returns.
DIAGNOSTICS
The command string containing undefined task will be reject-
ed.
SEE ALSO
csinit(fax), csopen(fax), csread(fax), cswrite(fax)
^L
FS(FAX) FS(FAX)
NAME
fs - file system for use under MOS
SYNOPSIS
fs() - a MOS task
command string (task name is defined as fs):
fs"<funciton>,<file_name>
DESCRIPTION
This is a file system, based on the Double Density floppy
disk, for use under MOS. The fs task is used for manipulate
the files, managed by the file system. This task can only
appear at the first or last position on a command string. In
the former case, the file specified is to be read, while the
file is to be written in the latter case.
The <function> field contains only one character indicating
the function to be performed. The possible values are:
e - open an existing file (for reading).
c - open an existing file, and set the length
to zero (for rewriting).
a - append to an existing file.
If the capitals A, C, and E are used, the functions are the
same as described above but the specified file is created if
it does not exist.
BUGS
This task is for reading and writing only. As for the other
facilities, e.g. seek, delete, status and sync, one has to
use C+S interface directly.
Note that only 15 files are permitted per disk, only drive 0
is supported at present, and no hierarchical directory is
allowed.
SEE ALSO
aed62(dev), fitter(fax)
^L
FTP(FAX) FTP(FAX)
NAME
ftp, pftp - NIFTP task processes
SYNOPSIS
ftp(), pftp() - MOS tasks
command string (task name is defined as ftp):
ftp"<function>,<code>,<user_name>,<password>,<file_name>;
<trasport_service_process>:<transport_service_parameters>
DESCRIPTION
These tasks are implementation of Network Independent File
Transfer Protocol (NIFTP) for LSIs under MOS. They employ a
transport service for communication with a remote host on
the network, where the same protocol must be supported. They
communicate with the user process and transport service
processes thourgh the Clean and Simple interface, so that
they can be used in a fitter command chain directly.
The code is available in two versions: ftp which is a P+Q
version supporting both server and intitiator and pftp which
is a P version working only as an initiator. Both of them
are capable of sending and receiving.
This implementation of NIFTP is just a subset of the proto-
col as its main purpose is to provided the facsimile system
with a data transmission mechanism. For the sake of simpli-
city, only the necessary facilities are included in the
module, while more complex facilities, such as data compres-
sion and error recovery are not implemented. The following
table shows the transfer control parameters being used.
Attribute Value Mod. Remarks
Mode of access 0001 EQ Creating a new file
8002 EQ Retrieving file
Codes - - Text file, any parity
1002 EQ Binary file
Format effector 0000 EQ No interpretation
Binary mapping 0008 EQ Default byte size
Max record size 00FC EQ Default record size
Transfer size 0400 LE Default transfer size
Facilities 0000 EQ Minimum service
The meanings of the parameters in the command string are
listed below:
function is the NIFTP function of our site. Any ASCII string
beginning
^L
FTP(FAX) FTP(FAX)
beginning with 't' means the file is to be transmitted to
the remote site. Otherwise, the file will be retrieved from
the remote site.
code specifies the type of the file to be transferred. Any
ASCII string beginning with 'b' means it is a binary file,
while others mean text file.
user_name is the login name of the server site.
password is the password of the server site.
file_name is the name of the file to be transmitted.
transport_service_process is the process name of the tran-
sport service to be used.
transport_service_parameters are the parameter string re-
quired by the transport service. They are network dependent
and specified by the corresponding transport service.
SEE ALSO
fitter(fax)
^L
GRINNELL(FAX) GRINNELL(FAX)
NAME
grinnell - task to convert and display fax vector data
SYNOPSIS
grinnell() - a MOS task
command string (task name is defined as string):
grinnell"<x0>,<y0>,<x1>,<y1>,<mode>,<colour>
DESCRIPTION
This task takes the vector data from a Clean and Simple in-
terface and displays it on the Grinnell screen. The Grinnell
screen is viewed as an X-Y plane with (0,0) being the lower
left hand corner, (512, 0) being the lower right hand
corner, etc.
The parameters x0, y0, x1, y1 are decimal strings defining
the rectangular space on the screen where the image is to be
displayed. If the image is smaller than this area, it is ar-
tificially expanded to the size of this area. If the image
is larger than this area it is truncated to the size of the
area.
The colour field consists of any combination of the charac-
ters r,g or b to define the colours red, green and blue
respectively. For instance "gb" would write the image as
yellow.
The mode defines how the image is to be displayed. Any com-
bination of the characters r,a and z may be used, to the
following effect:
r = reverse image
a = additive image
z = zerowrite image.
There are three bit planes to define the three colours. Nor-
mally the bit planes corresponding to the selected colours
have either zero bits or one bits written to them depending
upon whether the image or the background is being written.
For zerowrite, all non-selected bit planes (i.e. colours)
are always set to zero, thus erasing any unselected colours
in the area. Additive mode means that in the selected colour
planes the new bits are ORed in, rather than just written.
Thus the image is added to. In reverse mode, the image writ-
ten as one bits is written as zero bits and the bits written
as zero bits are written as one bits, i.e. the bits are
flipped before being used.
^L
GRINNELL(FAX) GRINNELL(FAX)
SEE ALSO
grinnell(dev), vector(fax), fitter(fax)
^L
MERGE(FAX) MERGE(FAX)
NAME
merge - merge two images together
SYNOPSIS
merge() - a MOS task
command string (task name is defined as merge):
merge"<file_name>,<action>,<x0>,<y0>,<x1>,<y1>
DESCRIPTION
This routine operates as a MOS pipe task merging two images
together to form the result image. Input and output are im-
age data files in the form of vectors.
One of the two input images is called background which is to
be copied directly. This is specified by the parameter
file_name. The image data of the back ground is read via a
'tunnel', maintained by this task. Another input image is
taken form the Clean and Simple interface managed by the
fitter. As shown in the following diagram, the position
where it is to be put on the background image is specified
by the parameters x0, y0, x1, y1, which are decimal strings.
This implies that the dimension of the image is x1 - x0 and
y1 -y0.
(0, 0) width X
+-------------------------+---->
| |
| (x0, y0) |
| +---------+ |
| | | |
| | | |
| | | |
| | | |
| | | |
| +---------+ |
| (x1, y1) |
| |
| |
| (back ground) |
height +-------------------------+
|
|
Y V
The parameter action indicates how the two images are
merged. If it set to 0, The second image is simply overlaid
on the back ground image. On the other hand any non-zero
value
^L
MERGE(FAX) MERGE(FAX)
causes the second image to replace the specified area of the
back ground image.
BUGS
One has to make sure that
0 < x0 < width_of_back_ground
0 < y0 < height_of_back_ground
0 < x1 < width_of_back_ground
0 < y1 < height_of_back_ground
In addition, x0, y0, x1, y1 must be consistent with the di-
mension of the image
SEE ALSO
vector(fax), getl(fax), putl(fax), chop(fax), fitter(fax)
^L
OD(FAX) OD(FAX)
NAME
od - dump the input data
SYNOPSIS
od() - a MOS task
command string (task name is defined as od):
od"<format>
DESCRIPTION
This routine operates as a MOS pipe task dumping the input
data in a selected format. The input data is taken from the
Clean and Simple interface.
The meanings of the one character parameter format are:
value format
'd' words in decimal
'o' words in octal
'c' bytes in ASCII
'b' bytes in octal
SEE ALSO
fitter(fax)
^L
RECOMP(FAX) RECOMP(FAX)
NAME
recomp - compress the vectors to form the DACOM blocks
SYNOPSIS
recomp() - a MOS task
command string (task name is defined as recomp):
recomp
DESCRIPTION
This task takes vectors from the Clean and Simple interface,
and recompresses them into DACOM blocks. Then it writes the
blocks to the Clean and Simple interface.
SEE ALSO
dacom(dev), vector(fax), fitter(fax)
^L
SCALE(FAX) SCALE(FAX)
NAME
scale - scale an image to a specified dimension
SYNOPSIS
scale() - a MOS task
command string (task name is defined as scale):
scale"<old_width>,<old_height>,<new_width>,<new_height>
DESCRIPTION
This routine operates as a MOS pipe task scaling the input
image to the specified dimension. Input and output are im-
age data files in the form of vectors.
The dimension of the input image is given by the parameters
old_width and old_height, while the dimension of the output
is specified by the parameters new_width and new_height.
SEE ALSO
vector(fax), getl(fax), putl(fax), fitter(fax)
^L
STRING(FAX) STRING(FAX)
NAME
string - convert an ASCII string to the vector format
SYNOPSIS
string() - a MOS task
command string (task name is defined as string):
string"<s>
DESCRIPTION
This routine operates as a MOS pipe task converting the
parameter string s to the corresponding vectors.
SEE ALSO
vector(fax), ts(fax)
^L
TF(FAX) TF(FAX)
NAME
tf - convert a text to the vector format.
SYNOPSIS
tf() - a MOS task
command string (task name is defined as tf):
tf"<width>,<line_sp>,<upper>,<left>
DESCRIPTION
This routine operates as a MOS pipe task converting the in-
put text to the corresponding vectors. The input text, taken
from the Clean and Simple interface should be in the format
defined in text(fax).
+-------------------------+
| |
| upper |
| |
| XXXXXXXXXXXX |
| XXXXXXXXXXXX |
| XXXXXXXXXXXX |
| XXXXXXXXXXXX |
| left XXXXXXXXXXXX |
| XXXXXXXXXXXX |
| XXXXXXXXXXXX |
| XXXXXXXXXXXX |
| XXXXXXXXXXXX |
| width |
| |
+-------------------------+
As shown in the diagram, the parameters give the information
for the formating. The parameter width is the maximum width
of the text lines.
Every vector will be padded to fit this width. White pels
may be padded to the left of each vectors, and the number of
pel to be padded is specified by the parameter left.
Empty lines may also be inserted. They are defined by param-
eters upper and line_sp, the number of pels being used as
the unit.
SEE ALSO
vector(fax), text(fax), ts(fax), fitter(fax)
^L
UCL FACSIMILE SYSTEM INDRA Note 1185
Appendix III: Utility Routines and Data Formats
^L
BITMAP(FAX) BITMAP(FAX)
NAME
bitmap - convert vector format to core bit map
SYNOPSIS
int bitmap(ivec, cnt, buff);
int *ivec;
int cnt;
char *buff;
DESCRIPTION
Bitmap converts the fax vector format into a bit map, using
each bit of the area pointed to by buff. The number of ele-
ments in ivec is given by cnt, and the first element of ivec
is taken as a white pel count, the second as a black pel
count, etc. The resultant bit map is placed in the area
pointed to by buff. The actual number of bits stored is re-
turned from the function. The bits in buff are stored in
byte order, with the highest value bit of the byte taken as
the first bit of the byte.
BUGS
You have to make sure that buff is big enough for all the
bits.
SEE ALSO
vector(fax), tovec(fax)
^L
TOVEC(FAX) TOVEC(FAX)
NAME
tovec - convert bitmap to vector format
SYNOPSIS
int *tovec(buff, nbits);
char *buff;
int nbits;
DESCRIPTION
The bitmap in the buffer pointed to by buff is converted to
vector format. The length of the bitmap in bits is passed in
nbits. As the caller would normally not know how many vec-
tor elements are going to be needed, the tovec routine allo-
cates this area for the user.
Buff is assumed to be organised in byte order with the
highest value bit of each byte being the first bit of the
byte. The counts of white and black pels are placed into an
integer vector, the first element of which is the length of
the rest of the vector. The vector information proper starts
in the second element which is the count of the number of
leading white pels. This is followed by the count of the
numbr of black pels, etc.
The routine goes to great lengths to make sure only enough
vector storage is allocated. Temporary storage is allocated
in small chunks and then, when the length of the whole vec-
tor is known, the chunks are contacenated into a contiguous
vector. The pointer to this vector is returned to the user.
SEE ALSO
vector(fax), bitmap(fax)
^L
CHOICE(FAX) CHOICE(FAX)
NAME
choice - specify a rectangular area on Grinnell
SYNOPSIS
struct square {
int x0, y0;
int x1, y1;
};
struct square *choice(colour, height, width, area, fw, fh)
char colour;
int height, width, area, fw, fh;
DESCRIPTION
This subroutine is called by a MOS task. to specify a rec-
tangular area of an image by manipulating a square on the
Grinnel display being illustrating the image. The dimension
of the original image is defined as height and width. The
area on which the original image is shown is specified by
the parameter area.
value area dimension coordinates
0 the whole screen 512x512 0,511,511,0
1 the left half 256x512 0,511,255,0
2 the right half 256x512 256,511,511,0
The square will be drwan in a colour defined by the parame-
ter colour, which can only be:
value colour
'r' red
'g' green
'b' blue
There are two modes being supported:
(1) Fixed: The square will have a fixed dimension specified
by the parameters fw and fh. The operator can move the
square around as a whole within the predetermined area
by using following commands, each of which is invoked
by typing the corresponding characer on the keyboard of
the system console.
^L
CHOICE(FAX) CHOICE(FAX)
command function
'u' move the square up one step
'd' move the square down one step
'l' move the square one step left
'r' move the square one step right
'f' move fast - set the step to 8 pel
'o' move slowly - set the step to 1 pel
<CR> ok - the area has been chosen, and
return its coordinates
(2) Arbitrary: This mode is set up when the subroutine is
called with the parameters fw and fh set to 0. Any
edge of the square can be selected to be moved on its
own by using the same commands described above. The
following commands are required to select the relevant
edge as well as switching the operation mode.
command function
'e' select the right ('east') edge.
'w' select the left ('west') edge.
'n' select the upper ('north') edge.
's' select the lower ('south') edge.
'a' move the square as a whole
As soon as the user types <CR>, the coordinates of the
current square, which are accommodated in a square struc-
ture, are returned. Note these are concerned with the coor-
dinate system defined for the image but not for the grin-
nell.
BUGS
Currently, only three working areas can be used.
SEE ALSO
vector(fax), grinnell(dev), grinnell(fax)
^L
CRC(FAX) CRC(FAX)
NAME
crc - calculate or check the DACOM CRC code
SYNOPSIS
int crc(buff, insert);
char *buff;
int insert;
DESCRIPTION
This routine will check/insert the 12-bit CRC code for a
DACOM block, pointed to by buff. The block contains 585
bits, the last 12 bits being the CRC code. The block is
checked only when the parameter insert is set to 0, other-
wise the CRC code is created and inserted into the block.
When the block is checked, the routine returns the result: 0
means OK and any non-zero value means the block is bad. On
the other hand, when the CRC code is inserted, the routine
returns the CRC code it has created.
This routine uses a tabular approach to determine the CRC
code, processing a whole byte at a time and resulting in a
high throughput.
BUGS
Do not forget to supply enough space when the 12-bit CRC
code is to be inserted.
SEE ALSO
dacom(dev)
^L
CSINIT(FAX) CSINIT(FAX)
NAME
csinit - initiate the Clean and Simple interface
SYNOPSIS
int csinit();
DESCRIPTION
This routine is called to initiate the Clean and Simple in-
terface for the calling process. Its code is re-entrant, so
that only one copy is needed for all processes in a system.
This routine returns the task identifier, which must be used
on all subsequent interface calls.
SEE ALSO
csopen(fax), csread(fax), cswrite(fax), fitter(fax)
^L
CSOPEN(FAX) CSOPEN(FAX)
NAME
csopen - establish the Clean and Simple connection
SYNOPSIS
char *csopen(tid);
int tid;
DESCRIPTION
A process calls this routine, waiting to be scheduled. Its
code is re-entrant, so that only one copy is needed for all
processes in a system.
The task identifier tid is the word returned from the csinit
call. When the fitter process has established the Clean and
Simple connection for the process, this routine returns the
pointer to the parameter string of the corresponding task
command.
SEE ALSO
csinit(fax), csread(fax), cswrite(fax), fitter(fax)
^L
CSREAD(FAX) CSREAD(FAX)
NAME
csread - read data from the Clean and Simple interface
SYNOPSIS
char *csread(tid, need);
int tid, need;
DESCRIPTION
This routine is called to read data from the Clean and Sim-
ple interface. Its code is re-entrant, so that only one copy
is needed for all processes in a system.
The task identifier tid is the word returned from the csinit
call. The need parameter indicates the number of bytes that
are required. This routine returns a pointer to a buffer
with this much data in it. This is usually more efficient as
it means that the data does not have to be reblocked.
DIAGNOSTICS
If the returned value is 0, the end of data is reached.
BUGS
Funnies happen at the end of data to be read. The csread()
call has no way of saying that the final buffer is partly
filled. Thus if you ask for more data, you hang forever.
But if the data structures are working correctly, this
should never happen.
SEE ALSO
csinit(fax), cswrite(fax), fitter(fax)
^L
CSWRITE(FAX) CSWRITE(FAX)
NAME
cswrite - write data to the Clean and Simple interface
SYNOPSIS
char *cswrite(tid, need);
int tid, need;
DESCRIPTION
This routine is call to write data to the Clean and Simple
interface. Its code is re-entrant, so that only one copy is
needed for all processes in a system.
The task identifier tid is the word returned from the csinit
call. The need parameter indicates the number of bytes that
are to be written. This routine returns a write buffer of
the required length, to which the user data can be copied.
The subsequent cswrite() call automatically releases the
previous write buffer.
The cswrite() call with need set to 0 indicates the end of
data, closing the current Clean and Simple connection.
BUGS
As indicated, the write buffer must be filled up before the
next cswrite() call.
SEE ALSO
csinit(fax), csread(fax), fitter(fax)
^L
GETL(FAX) GETL(FAX)
NAME
getl - get a line vector from the Clean and Simple interface
SYNOPSIS
int *getl(tid);
int tid, need;
DESCRIPTION
This routine is called to read a line vector from the Clean
and Simple interface. Its code is re-entrant, so that only
one copy is needed for all processes in a system.
The task identifier tid is the word returned from the csinit
call. The routine returns the pointer to the buffer where
the line vector is stored.
DIAGNOSTICS
0 will be returned when end of file is reached.
BUGS
Any memory violation causes the whole task chain to be
aborted.
SEE ALSO
vector(fax), putl(fax), fitter(fax)
^L
PUTL(FAX) PUTL(FAX)
NAME
putl - put a line vector to the Clean and Simple Interface
SYNOPSIS
putl(tid, buf);
int tid, *buf;
DESCRIPTION
This routine is called to write a line vector to the Clean
and Simple interface. Its code is re-entrant, so that only
one copy is needed for all processes in a system.
The task identifier tid is the word returned from the csinit
call. The line vector is stored in a buffer pointed by buf.
SEE ALSO
vector(fax), getl(fax), fitter(fax)
^L
T4(FAX) T4(FAX)
NAME
t4 - the data format defined in CCITT recommendation T4
DESCRIPTION
Dimension and Resolution: In vertical direction the resolu-
tion is defined below.
Standard resolution: 3.85 line/mm
Optional higher resolution: 7.70 line/mm
In horizontal direction, the standard resolution is defined
as 1728 black and white picture elements along the standard
line length of 215 mm. Optionally, there can be 2048 or
2432 picture elements along a scan line length of 255 or 303
mm, respectively. The input documents up to a minimum of ISO
A4 size should be accepted.
One-Dimensional Coding: The one-dimensional run length data
compression is accomplished by the popular modified Huffman
coding scheme. In this scheme, black and white runs are re-
placed by a base 64 codes representation. Compression is
achieved since the code word lengths are invertly related to
the probability of the occurrence of a particular run. A
special code (000000000001), known as EOL (End of Line),
follows each line of data. This code starts the facsimile
message phase, while the control phase is restored by a com-
bination of six contiguous EOLs (RTC). The data format of a
facsimile message is shown below.
start of the facsimile data
|
v
+---+------+---+------+-/
!EOL! DATA !EOL! DATA !
+---+------+---+------+-/
end of the facsimile data
|
v
/-+---+------+---+---+---+---+---+---+
!EOL! DATA !EOL!EOL!EOL!EOL!EOL!EOL!
/-+---+------+---+---+---+---+---+---+
|<------ RTC ------->|
Two-Dimensional Coding: The two-dimensional coding scheme is
labeled as the Modified READ Code. It codes one line with
reference to the line above,correlation between adja-
cent lines allowing for more efficient compression. In order
to limit the disturbed area in the event of transmission er-
rors,
^L
T4(FAX) T4(FAX)
a one-dimensionally coded line is transmitted after one or
more two-dimensionally coded lines. A bit, following the
EOL, indicates whether one- or two-dimensional coding is
used for the next line:
EOL1: one-dimensional coding;
EOL0: two-dimensional coding.
start of the facsimile data
|
v
+----+--------+----+--------+-/
!EOL1!DATA(1D)!EOL0!DATA(2D)!
+----+--------+----+--------+-/
end of the facsimile data
|
v
/-+----+--------+----+----+----+----+----+----+
!EOL0!DATA(2D)!EOL1!EOL1!EOL1!EOL1!EOL1!EOL1!
/-+----+--------+----+----+----+----+----+----+
|<--------- RTC --------->|
^L
TEXT(FAX) TEXT(FAX)
NAME
text - the text format for use in the facsimile system
DESCRIPTION
This is the representation structure for coded character
text. It is used in the facsimile system.
The text structure consists of a series of character
strings, each of which represents a text line. However no
control characters, e.g. <CR> and <LF>, are used in the
structure. Each text line is proeeded by a count byte, indi-
cating the number of characters on the line. The character
sting follows after the the count byte. A zero count indi-
cates the end of file.
EXAMPLES
Here is an example text shown below:
This is a text.
This is a picture.
It can be represented as:
<017> T h i s <040> i s <040> a <040> t e x t .
<022> T h i s <040> i s <040> a <040> p i c t u
r e . <0>
^L
TS(FAX) TS(FAX)
NAME
ts - translate an ASCII string into vector format
SYNOPSIS
ts(ar_in, left, right, tid)
char *ar_in;
int left, right, tid;
DESCRIPTION
This routine will convert a zero-ended ASCII string pointed
to by ar_in into the corresponding vecter format. As the
character font being used is a set of 12x20 matrices, there
will be 20 line vectors created. These vectors are written
to the Cleans and Simple interface by calling cswrite. The
callers task identifier tid has to be provided.
At the two ends of the text line, blanks can be padded that
are specified as left and right. Note that they are meas-
ured in pels.
Consequently, the result should be a image, whose dimension
is:
width = left + 12*length + right;
height = 20;
where length is the number of characters in the input
string.
As an intermediate result the bitmap is first created which
is then converted into the vector format, by calling tovec.
BUGS
The input string must be ended with a zero field.
SEE ALSO
vector(fax), tovec(fax), csinit(fax), cswrite(fax),
fitter(fax)
^L
VECTOR(FAX) VECTOR(FAX)
NAME
vector - the internal data structure for a facsimile image
DESCRIPTION
This is the representation structure for binary images, a
simple run length compression algorithm being used. Most of
the image files are kept in vector format for ease of pro-
cessing.
The vector format consists of a series of integer vectors,
one vector for each row of pels in the image. Each vector is
proceeded by a count word which indicates the number of in-
teger words in the vector. The next element of the vector
after the count field is the number of white pels in the
first run of the line. The second word then gives the
number of pels that follow the initial white run, and so on
t the end of the vector. Note the first run length element
must refer to a white run. It should be set to 0 if the
first run is black.
EXAMPLES
A line consists of 20 pels as follows:
00011111111011100000
It can be represented as:
5, 3, 8, 1, 3, 5
The inverse of the line:
11100000000100011111
should be represented as:
6, 0, 3, 8, 1, 3, 5
^L
|