summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc8225.txt
blob: ec0ffd3a49897051846b8c41b504a6a2a5e8bbf2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
Internet Engineering Task Force (IETF)                          C. Wendt
Request for Comments: 8225                                       Comcast
Category: Standards Track                                    J. Peterson
ISSN: 2070-1721                                             Neustar Inc.
                                                           February 2018


                   PASSporT: Personal Assertion Token

Abstract

   This document defines a method for creating and validating a token
   that cryptographically verifies an originating identity or, more
   generally, a URI or telephone number representing the originator of
   personal communications.  The Personal Assertion Token, PASSporT, is
   cryptographically signed to protect the integrity of the identity of
   the originator and to verify the assertion of the identity
   information at the destination.  The cryptographic signature is
   defined with the intention that it can confidently verify the
   originating persona even when the signature is sent to the
   destination party over an insecure channel.  PASSporT is particularly
   useful for many personal-communications applications over IP networks
   and other multi-hop interconnection scenarios where the originating
   and destination parties may not have a direct trusted relationship.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/rfc8225.













Wendt & Peterson             Standards Track                    [Page 1]
^L
RFC 8225                        PASSporT                   February 2018


Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.





































Wendt & Peterson             Standards Track                    [Page 2]
^L
RFC 8225                        PASSporT                   February 2018


Table of Contents

   1. Introduction ....................................................4
   2. Terminology .....................................................4
   3. PASSporT Overview ...............................................5
   4. PASSporT Header .................................................6
      4.1. "typ" (Type) Header Parameter ..............................6
      4.2. "alg" (Algorithm) Header Parameter .........................6
      4.3. "x5u" (X.509 URL) Header Parameter .........................6
      4.4. Example PASSporT Header ....................................7
   5. PASSporT Payload ................................................7
      5.1. JWT-Defined Claims .........................................7
           5.1.1. "iat" (Issued At) Claim .............................7
      5.2. PASSporT-Specific Claims ...................................8
           5.2.1. Originating and Destination Identity Claims .........8
           5.2.2. "mky" (Media Key) Claim ............................10
   6. PASSporT Signature .............................................11
   7. Compact Form of PASSporT .......................................12
      7.1. Example Compact Form of PASSporT ..........................13
   8. Extending PASSporT .............................................13
      8.1. "ppt" (PASSporT) Header Parameter .........................13
      8.2. Example Extended PASSporT Header ..........................14
      8.3. Extended PASSporT Claims ..................................14
   9. Deterministic JSON Serialization ...............................15
      9.1. Example PASSporT Deterministic JSON Form ..................16
   10. Security Considerations .......................................17
      10.1. Avoidance of Replay and Cut-and-Paste Attacks ............17
      10.2. Solution Considerations ..................................18
   11. IANA Considerations ...........................................18
      11.1. Media Type Registration ..................................18
      11.2. Registrations in "JSON Web Token Claims" .................19
      11.3. Registration in "JSON Web Signature and
            Encryption Header Parameters" ............................20
      11.4. PASSporT Extensions Registry .............................20
   12. References ....................................................20
      12.1. Normative References .....................................20
      12.2. Informative References ...................................22
   Appendix A. Example ES256-Based PASSporT JWS Serialization and
               Signature .............................................23
     A.1. X.509 Private Key in PKCS #8 Format for ES256 Example ......24
     A.2. X.509 Public Key for ES256 Example .........................25
   Acknowledgments ...................................................25
   Authors' Addresses ................................................25








Wendt & Peterson             Standards Track                    [Page 3]
^L
RFC 8225                        PASSporT                   February 2018


1.  Introduction

   In today's IP-enabled telecommunications world, there is a growing
   concern about the ability to trust incoming invitations for
   communications sessions, including video, voice, and messaging
   [RFC7340].  As an example, modern telephone networks provide the
   ability to spoof the calling party's telephone number for many
   legitimate purposes, including providing network features and
   services on behalf of a legitimate telephone number.  However, as we
   have seen, bad actors have taken advantage of this ability for
   illegitimate and fraudulent purposes meant to trick telephone users
   into believing that they are someone they are not.  This problem can
   be extended to many emerging forms of personal communications.

   This document defines a method for creating and validating a token
   that cryptographically verifies an originating identity or, more
   generally, a URI or telephone number representing the originator of
   personal communications.  Through the extensions defined in Section 8
   of this document, other information relevant to the personal
   communications can also be added to the token.  The goal of PASSporT
   is to provide a common framework for signing information related to
   the originating identity in an extensible way.  Additionally, this
   functionality is independent of any specific call logic for
   personal-communications signaling, so that the assertion of
   information related to the originating identity can be implemented in
   a flexible way and can be used in such applications as end-to-end
   applications that require different signaling protocols or gateways
   between different communications systems.  It is anticipated that
   guidance specific to the signaling protocol will be provided in other
   related documents and specifications to specify how to use and
   transport PASSporTs; however, this is intentionally out of scope for
   this document.

   [RFC8224] provides details of the use of PASSporT within the SIP
   [RFC3261] signaling protocol for the signing and verification of
   telephone numbers and SIP URIs.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.







Wendt & Peterson             Standards Track                    [Page 4]
^L
RFC 8225                        PASSporT                   February 2018


3.  PASSporT Overview

   "JSON Web Token (JWT)" [RFC7519], "JSON Web Signature (JWS)"
   [RFC7515], and other related specifications define a standard token
   format that can be used as a way of encapsulating claimed or asserted
   information with an associated digital signature using X.509-based
   certificates.  JWT provides a set of claims in JSON format that can
   conveniently accommodate asserted originating-identity information
   and that are easily extensible for use in the extension mechanisms
   defined below.  Additionally, JWS provides a path for updating
   methods and cryptographic algorithms used for the associated digital
   signatures.

   JWS defines the use of JSON data structures in a specified canonical
   format for signing data corresponding to the JSON Object Signing and
   Encryption (JOSE) Header, JWS Payload, and JWS Signature.  JWT
   defines a set of claims that are represented by specified JSON
   objects that can be extended with custom keys for specific
   applications.  The next sections define the header and claims that
   MUST be minimally used with JWT and JWS for PASSporT.

   PASSporT specifically uses this token format and defines claims that
   convey the identity of the origination and destination of personal
   communications.  The primary value asserted in a PASSporT object is
   the originating identity representing the identity of the calling
   party or the initiator of a personal-communications session.  The
   signer of a PASSporT object may or may not correspond to the
   originating identity.  For a given application's use or using
   protocol of PASSporT, the creation of the PASSporT object is
   performed by an entity that is authoritative to assert the caller's
   identity.  This authority is represented by the certificate
   credentials and the signature, and the PASSporT object is created and
   initiated to the destination(s) per the application's choice of
   authoritative point(s) in the network.  For example, the PASSporT
   object could be created at a device that has authenticated with a
   user or at a network entity with an authenticated trust relationship
   with that device and its user.  Destination identities represent the
   intended destination of the personal communications, i.e., the
   identity(s) being called by the caller.  The destination point or
   points determined by the application need to have the capability to
   verify the PASSporT and the digital signature.  The PASSporT-
   associated certificate is used to validate the authority of the
   originating signer, generally via a certificate chain to the trust
   anchor for that application.







Wendt & Peterson             Standards Track                    [Page 5]
^L
RFC 8225                        PASSporT                   February 2018


4.  PASSporT Header

   The JWS token header is a JOSE Header ([RFC7515], Section 4) that
   defines the type and encryption algorithm used in the token.

   The PASSporT header should include, at a minimum, the Header
   Parameters defined in the next three subsections.

4.1.  "typ" (Type) Header Parameter

   The "typ" (Type) Header Parameter is defined in JWS ([RFC7515],
   Section 4.1.9) to declare the media type of the complete JWS.

   For the PASSporT, the "typ" header MUST be the string "passport".
   This signifies that the encoded token is a JWT of type "passport".

4.2.  "alg" (Algorithm) Header Parameter

   The "alg" (Algorithm) Header Parameter is defined in JWS ([RFC7515],
   Section 4.1.1).  This definition includes the ability to specify the
   use of a cryptographic algorithm for the signature part of the JWS.
   It also refers to a list of defined "alg" values as part of a
   registry established by JSON Web Algorithms (JWA) ([RFC7518],
   Section 3.1).

   For the creation and verification of PASSporTs and their digital
   signatures, implementations MUST support ES256 as defined in JWA
   ([RFC7518], Section 3.4).  Implementations MAY support other
   algorithms registered in the "JSON Web Signature and Encryption
   Algorithms" registry created by [RFC7518].  The contents of that
   registry may be updated in the future, depending on cryptographic
   strength requirements guided by current security best practices.  The
   mandatory-to-support algorithm for PASSporTs may likewise be updated
   in future updates to this document.

   Implementations of PASSporT digital signatures using ES256 as defined
   above SHOULD use the deterministic Elliptic Curve Digital Signature
   Algorithm (ECDSA) if or when supported for the reasons stated in
   [RFC6979].

4.3.  "x5u" (X.509 URL) Header Parameter

   As defined in JWS ([RFC7515], Section 4.1.5), the "x5u" Header
   Parameter defines a URI [RFC3986] referring to the resource for the
   X.509 public key certificate or certificate chain [RFC5280]
   corresponding to the key used to digitally sign the JWS.  Generally,
   as defined in JWS ([RFC7515], Section 4.1.5), this would correspond
   to an HTTPS or DNSSEC resource using integrity protection.



Wendt & Peterson             Standards Track                    [Page 6]
^L
RFC 8225                        PASSporT                   February 2018


4.4.  Example PASSporT Header

   An example of the header would be the following, including the
   specified passport type, ES256 algorithm, and a URI referencing the
   network location of the certificate needed to validate the PASSporT
   signature.

   {
     "typ":"passport",
     "alg":"ES256",
     "x5u":"https://cert.example.org/passport.cer"
   }

5.  PASSporT Payload

   The token claims consist of the information that needs to be verified
   at the destination party.  These claims follow the definition of a
   JWT claim ([RFC7519], Section 4) and are encoded as defined by the
   JWS Payload ([RFC7515], Section 3).

   PASSporT defines the use of a standard JWT-defined claim as well as
   custom claims corresponding to the two parties associated with
   personal communications -- the originator and destination, as
   detailed below.

   For PASSporT, any claim names MUST use the ASCII character set.  Any
   claim values can contain characters that are outside the ASCII range,
   consistent with the rules of creating a JWT Claims Set as defined in
   [RFC7519], Section 7.1.

5.1.  JWT-Defined Claims

5.1.1.  "iat" (Issued At) Claim

   The JSON claim MUST include the "iat" (Issued At) claim ([RFC7519],
   Section 4.1.6).  As defined, the "iat" claim should be set to the
   date and time of issuance of the JWT and MUST indicate the date and
   time of the origination of the personal communications.  The time
   value should be of the NumericDate format as defined in [RFC7519],
   Section 2.  This is included for securing the token against replay
   and cut-and-paste attacks, as explained further in Section 10
   ("Security Considerations").









Wendt & Peterson             Standards Track                    [Page 7]
^L
RFC 8225                        PASSporT                   February 2018


5.2.  PASSporT-Specific Claims

5.2.1.  Originating and Destination Identity Claims

   The originating identity and the destination identity are represented
   by two claims that are required for PASSporT -- the "orig" and "dest"
   claims.  Both "orig" and "dest" MUST contain claim values that are
   identity claim JSON objects where the child claim name represents an
   identity type and the claim value is the identity string, both
   defined in subsequent subsections.  Currently, these identities can
   be represented as either telephone numbers or Uniform Resource
   Indicators (URIs).

   The "orig" claim is a JSON object with the claim name of "orig" and a
   claim value that is a JSON object representing the asserted identity
   of any type (currently either "tn" or "uri") of the originator of the
   personal-communications signaling.  There MUST be exactly one "orig"
   claim with exactly one identity claim object in a PASSporT object.

   Note: As explained in Section 3, the originating identity represents
   the calling party and may or may not correspond to the authoritative
   signer of the token.

   The "dest" claim is a JSON object with the claim name of "dest" and
   MUST have at least one identity claim object.  The "dest" claim value
   is an array containing one or more identity claim JSON objects
   representing the destination identities of any type (currently "tn"
   or "uri").  If the "dest" claim value array contains both "tn" and
   "uri" claim names, the JSON object should list the "tn" array first
   and the "uri" array second.  Within the "tn" and "uri" arrays, the
   identity strings should be put in lexicographical order, including
   the scheme-specific portion of the URI characters.

   Note: As explained in Section 3, the destination identity represents
   the called party and may or may not correspond to the authoritative
   party verifying the token signature.

5.2.1.1.  "tn" (Telephone Number) Identity

   If the originating or destination identity is a telephone number, the
   claim name representing the identity MUST be "tn".

   The claim value for the "tn" claim is the telephone number and MUST
   be canonicalized according to the procedures specified in [RFC8224],
   Section 8.3.






Wendt & Peterson             Standards Track                    [Page 8]
^L
RFC 8225                        PASSporT                   February 2018


5.2.1.2.  "uri" (URI) Identity

   If any of the originating or destination identities is in the form of
   a URI as defined in [RFC3986], the claim name representing the
   identity MUST be "uri", and the claim value is the URI form of the
   identity.

5.2.1.3.  Future Identity Forms

   We recognize that in the future there may be other standard
   mechanisms for representing identities.  The "orig" and "dest" claims
   currently support "tn" and "uri" but could be extended in the future
   to allow for other identity types with new IANA-registered unique
   types to represent these forms.

5.2.1.4.  Examples

   The following is an example of a single originator with telephone
   number identity +12155551212, to a single destination with URI
   identity "sip:alice@example.com":

   {
     "dest":{"uri":["sip:alice@example.com"]},
     "iat":1443208345,
     "orig":{"tn":"12155551212"}
   }

   The following is an example of a single originator with telephone
   number identity +12155551212, to multiple destination identities with
   telephone number identity +12125551212 and two URI identities --
   "sip:alice@example.com" and "sip:bob@example.com":

   {
     "dest":{
       "tn":["12125551212"],
       "uri":["sip:alice@example.com",
         "sip:bob@example.net"]
     },
     "iat":1443208345,
     "orig":{"tn":"12155551212"}
   }










Wendt & Peterson             Standards Track                    [Page 9]
^L
RFC 8225                        PASSporT                   February 2018


5.2.2.  "mky" (Media Key) Claim

   Some protocols that use PASSporT may also want to protect media
   security keys delivered within their signaling in order to bind those
   keys to the identities established in the signaling layers.  The
   "mky" claim is an optional PASSporT claim defining the assertion of
   media key fingerprints carried in the Session Description Protocol
   (SDP) [RFC4566] via the "a=fingerprint" attribute ([RFC4572],
   Section 5).  This claim can support either a single fingerprint or
   multiple fingerprints appearing in a single SDP body corresponding to
   one or more media streams offered as defined in [RFC8122].

   The "mky" claim MUST be formatted as a JSON object with an array that
   includes the "alg" and "dig" claims with the corresponding algorithm
   and hexadecimal values.  If there is more than one fingerprint value
   associated with different media streams in SDP, the fingerprint
   values MUST be constructed as a JSON array denoted by square brackets
   ("[" and "]").  For the "dig" claim, the claim value MUST be the hash
   of the hexadecimal value without any colons.

   The "mky" claim is a JSON object with a claim name of "mky" and a
   claim value of a JSON array denoted by brackets.  The "mky" claim
   value JSON array MUST be constructed as follows:

   1.  Take each "a=fingerprint" line carried in the SDP.

   2.  Sort the lines based on the UTF-8 [RFC3629] encoding of the
       concatenation of the "alg" and "dig" claim value strings.

   3.  Encode the array in the order of the sorted lines, where each
       "mky" array element is a JSON object with two elements
       corresponding to the "alg" and "dig" objects, with "alg" first
       and "dig" second.


















Wendt & Peterson             Standards Track                   [Page 10]
^L
RFC 8225                        PASSporT                   February 2018


   An example claim with the "mky" claim is as follows:

   For an SDP offer that includes the following fingerprint values,

   a=fingerprint:sha-256 4A:AD:B9:B1:3F:82:18:3B:54:02:12:DF:3E:
   5D:49:6B:19:E5:7C:AB:3E:4B:65:2E:7D:46:3F:54:42:CD:54:F1
   a=fingerprint:sha-256 02:1A:CC:54:27:AB:EB:9C:53:3F:3E:4B:65
   :2E:7D:46:3F:54:42:CD:54:F1:7A:03:A2:7D:F9:B0:7F:46:19:B2

   the PASSporT Payload object would be:

   {
     "dest":{"uri":["sip:alice@example.com"]},
     "iat":1443208345,
     "mky":[
       {
         "alg":"sha-256",
         "dig":"021ACC5427ABEB9C533F3E4B652E7D463F5442CD54
           F17A03A27DF9B07F4619B2"
       },
       {
         "alg":"sha-256",
         "dig":"4AADB9B13F82183B540212DF3E5D496B19E57C
           AB3E4B652E7D463F5442CD54F1"
       }
     ],
     "orig":{"tn":"12155551212"}
   }

6.  PASSporT Signature

   The signature of the PASSporT is created as specified by JWS
   ([RFC7515], Section 5.1, Steps 1 through 6).  PASSporT MUST use the
   JWS Protected Header.  For the JWS Payload and the JWS Protected
   Header, however, the lexicographic ordering and whitespace rules
   described in Sections 4 and 5 of this document, and the JSON
   serialization rules in Section 9 of this document, MUST be followed.

   Appendix A of this document has a detailed example of how to follow
   the steps to create the JWS Signature.

   Step 7 of the JSON serialization procedure in [RFC7515], Section 5.1
   is not supported for PASSporT.

   [RFC7515], Section 5.1, Step 8 describes the method to create the
   final JWS Compact Serialization form of the PASSporT.





Wendt & Peterson             Standards Track                   [Page 11]
^L
RFC 8225                        PASSporT                   February 2018


7.  Compact Form of PASSporT

   For a using protocol of PASSporT, the PASSporT claims as well as the
   PASSporT header may include redundant or default information that
   could be reconstructed at the destination based on information
   provided in the signaling protocol transporting the PASSporT object.
   In this case, it may be advantageous to have a more compact form of
   PASSporT to save the transmission of the bytes needed to represent
   the header and claims.

   This specification defines the compact form of the PASSporT, in the
   spirit of the form defined in [RFC7515], Appendix F, with the use of
   two periods ("..") to represent the header and claim objects being
   removed, followed by the PASSporT signature as defined in Section 6,
   and the need for the destination to reconstruct the header and claim
   objects in order to verify the signature.

   In order to construct the compact form of the PASSporT string, the
   procedure described in Section 6 MUST be used, with the exception of
   [RFC7515], Section 5.1, Step 8.  This step would be replaced by the
   following construction of the compact form of PASSporT, ".." ||
   BASE64URL(JWS Signature).

   The using protocol of the compact form of PASSporT MUST be
   accompanied by a specification for how the header and claims objects
   can be reconstructed from information in the signaling protocol being
   used.

   Note that the full form of the PASSporT, containing the entire
   header, payload, and signature, should also use the lexicographic
   ordering and whitespace serialization rules, particularly in the case
   where some using protocols or interworking between protocols may
   require switching between full and compact forms and maintaining the
   integrity of the signature.

















Wendt & Peterson             Standards Track                   [Page 12]
^L
RFC 8225                        PASSporT                   February 2018


7.1.  Example Compact Form of PASSporT

   The compact form of the following example token (with line breaks
   between periods used for readability purposes only)

   eyJhbGciOiJFUzI1NiIsInR5cCI6InBhc3Nwb3J0IiwieDV1IjoiaHR0cHM6Ly9j
   ZXJ0LmV4YW1wbGUub3JnL3Bhc3Nwb3J0LmNlciJ9
   .
   eyJkZXN0Ijp7InVyaSI6WyJzaXA6YWxpY2VAZXhhbXBsZS5jb20iXX0sImlhdCI
   6IjE0NDMyMDgzNDUiLCJvcmlnIjp7InRuIjoiMTIxNTU1NTEyMTIifX0
   .
   rq3pjT1hoRwakEGjHCnWSwUnshd0-zJ6F1VOgFWSjHBr8Qjpjlk-cpFYpFYsojN
   CpTzO3QfPOlckGaS6hEck7w

   would be as follows:

   ..rq3pjT1hoRwakEGjHCnWSwUnshd0-zJ6F1VOgFWSjHBr8Qjpjlk-cpFYpFYsojN
   CpTzO3QfPOlckGaS6hEck7w

8.  Extending PASSporT

   PASSporT includes the bare-minimum set of claims needed to securely
   assert the originating identity and support the secure properties
   discussed in various parts of this document.  JWT supports a
   straightforward way to add additional asserted or signed information
   by simply adding new claims.  PASSporT can be extended beyond the
   defined base set of claims to represent other information requiring
   assertion or validation beyond the originating identity itself as
   needed.

8.1.  "ppt" (PASSporT) Header Parameter

   Any using protocol can extend the payload of PASSporT with additional
   JWT claims.  JWT claims are managed by the "JSON Web Token Claims"
   IANA registry as defined in [RFC7519], Section 10.1.  Implementations
   of PASSporT MUST support the baseline claims defined in Section 5.2
   and MAY support extended claims.  If it is necessary for an extension
   to PASSporT to require that a relying party support a particular
   extended claim or set of claims in the PASSporT object, it can do so
   by specifying a "ppt" element for the PASSporT JOSE Header.  All
   values of "ppt" need to be defined in a specification that associates
   the new value of the "ppt" element with the required claims and
   behaviors.  Relying parties MUST fail to validate PASSporT objects
   containing an unsupported "ppt".







Wendt & Peterson             Standards Track                   [Page 13]
^L
RFC 8225                        PASSporT                   February 2018


   Using protocols MUST explicitly define how they carry each claim and
   the rules for how the header and payload objects are constructed
   beyond the lexicographical and serialization rules defined in this
   document.

   Using protocols that carry the compact form of PASSporT (Section 7)
   instead of the full form MUST use only mandatory extensions signaled
   with "ppt" -- if a using protocol were to add additional optional
   claims to a PASSporT object it carried in compact form, relying
   parties would have no way to reconstruct the token.  Moreover, using
   protocols that support the compact form of PASSporT MUST have some
   field to signal "ppt" to relying parties, as the compact form of
   PASSporT omits the JOSE Header.

8.2.  Example Extended PASSporT Header

   An example header with a PASSporT extension type of "foo" is as
   follows:

   {
     "alg":"ES256",
     "ppt":"foo",
     "typ":"passport",
     "x5u":"https://tel.example.org/passport.cer"
   }

8.3.  Extended PASSporT Claims

   Specifications that define extensions to the PASSporT mechanism MUST
   explicitly specify what claims they include beyond the base set of
   claims from this document, the order in which they will appear, and
   any further information necessary to implement the extension.  All
   extensions MUST include the baseline PASSporT claim elements
   specified in Section 5; claims may only be appended to the claims
   object specified; they can never be removed or reordered.  Specifying
   new claims follows the baseline JWT procedures ([RFC7519],
   Section 10.1).  Understanding an extension or new claims defined by
   the extension on the destination verification of the PASSporT is
   optional.  The creator of a PASSporT object cannot assume that
   destination systems will understand any given extension.
   Verification of PASSporTs by destination systems that do support an
   extension may then trigger appropriate application-level behavior in
   the presence of an extension; authors of extensions should provide
   appropriate extension-specific guidance to application developers on
   this point.






Wendt & Peterson             Standards Track                   [Page 14]
^L
RFC 8225                        PASSporT                   February 2018


   An example set of extended claims, extending the first example in
   Section 5.2.1.4 using "bar" as the newly defined claim, would be as
   follows:

   {
     "bar":"beyond all recognition"
     "dest":{"uri":["sip:alice@example.com"]},
     "iat":1443208345,
     "orig":{"tn":"12155551212"}
   }

9.  Deterministic JSON Serialization

   JSON objects can include spaces and line breaks, and key value pairs
   can occur in any order.  It is therefore a non-deterministic string
   format.  In order to make the digital signature verification work
   deterministically, the JSON representation of the JWS Protected
   Header object and JWS Payload object MUST be computed as follows.

   The JSON object MUST follow the following rules.  These rules are
   based on the thumbprint of a JSON Web Key (JWK) as defined in
   Section 3 Step 1 of [RFC7638].

   1.  The JSON object MUST contain no whitespace or line breaks before
       or after any syntactic elements.

   2.  JSON objects MUST have the keys ordered lexicographically by the
       Unicode [UNICODE] code points of the member names.

   3.  JSON value literals MUST be lowercase.

   4.  JSON numbers are to be encoded as integers unless the field is
       defined to be encoded otherwise.

   5.  Encoding rules MUST be applied recursively to member values and
       array values.

   Note: For any PASSporT extension claims, member names within the
   scope of a JSON object MUST NOT be equal to other member names;
   otherwise, serialization will not be deterministic.











Wendt & Peterson             Standards Track                   [Page 15]
^L
RFC 8225                        PASSporT                   February 2018


9.1.  Example PASSporT Deterministic JSON Form

   This section demonstrates the deterministic JSON serialization for
   the example PASSporT Payload shown in Section 5.2.1.4.

   The initial JSON object is shown here:

   {
     "dest":{"uri":["sip:alice@example.com"]},
     "orig":{"tn":"12155551212"}
     "iat":1443208345,
     "mky":[
       {
         "alg":"sha-256",
         "dig":"021ACC5427ABEB9C533F3E4B652E7D463F5442CD54
           F17A03A27DF9B07F4619B2"
       },
       {
         "alg":"sha-256",
         "dig":"4AADB9B13F82183B540212DF3E5D496B19E57C
           AB3E4B652E7D463F5442CD54F1"
       }
     ],
   }

   The parent members of the JSON object are as follows:

   o  "dest"

   o  "orig"

   o  "iat"

   o  "mky"

   Their lexicographic order is:

   o  "dest"

   o  "iat"

   o  "mky"

   o  "orig"







Wendt & Peterson             Standards Track                   [Page 16]
^L
RFC 8225                        PASSporT                   February 2018


   The final constructed deterministic JSON serialization
   representation, with whitespace and line breaks removed (with line
   breaks used for display purposes only), is:

   {"dest":{"uri":["sip:alice@example.com"],"iat":1443208345,"mky":
   [{"alg":"sha-256","dig":"021ACC5427ABEB9C533F3E4B652E7D463F5442CD5
   4F17A03A27DF9B07F4619B2"},{"alg":"sha-256","dig":"4AADB9B13F82183B5
   40212DF3E5D496B19E57CAB3E4B652E7D463F5442CD54F1"}],
   "orig":{"tn":"12155551212"}}

10.  Security Considerations

10.1.  Avoidance of Replay and Cut-and-Paste Attacks

   There are a number of security considerations regarding the use of
   the token for the avoidance of replay and cut-and-paste attacks.
   PASSporTs SHOULD only be sent with application-level protocol
   information (e.g., for SIP, an INVITE as defined in [RFC3261])
   corresponding to the required fields in the token.  A unique set of
   token claims and token signature is constructed using the originating
   identity being asserted with the "orig" claim along with the
   following two claims:

   o  The "iat" claim should correspond to a date/time that the message
      was originated.  It should also be within a relative time that is
      reasonable for clock drift and transmission time characteristics
      associated with the application using the PASSporT.  Therefore,
      validation of the token should consider date and time correlation,
      which could be influenced by usage specific to the signaling
      protocol and by network time differences.

   o  The "dest" claim is included to further restrict the use of a
      valid PASSporT being sent as a replay attack to other destination
      parties.  The verification of the PASSporT at the destination
      should verify that the "dest" claim matches the destination party
      as the intended recipient of the message.















Wendt & Peterson             Standards Track                   [Page 17]
^L
RFC 8225                        PASSporT                   February 2018


10.2.  Solution Considerations

   The use of PASSporTs based on the validation of the digital signature
   and the associated certificate requires consideration of the
   authentication and authority or reputation of the signer to attest to
   the identity being asserted.  The following considerations should be
   recognized when using PASSporT:

   o  The use of this token should not, in its own right, be considered
      a full solution for absolute non-repudiation of the identity being
      asserted.

   o  In many applications, the signer and the end user represented by
      the asserted identity may not be one and the same.  For example,
      when a service provider signs and validates the token on behalf of
      the user consuming the service, the provider MUST have an
      authenticated and secure relationship with the end user or the
      device initiating and terminating the communications signaling.

   o  Applications that use PASSporT should ensure that the verification
      of the signature includes a means for verifying that the signer is
      authoritative through the use of an application-specific or
      service-specific set of common trust anchors for the application.

11.  IANA Considerations

11.1.  Media Type Registration

   This section registers the "application/passport" media type (see
   [RFC2046] for the definition of "media type") in the "Media Types"
   registry in the manner described in [RFC6838], to indicate that the
   content is a PASSporT-defined JWT.

   o  Type name: application

   o  Subtype name: passport

   o  Required parameters: N/A

   o  Optional parameters: N/A

   o  Encoding considerations: 8bit; application/passport values are
      encoded as a series of base64url-encoded values (some of which may
      be the empty string) separated by period (".") characters.

   o  Security considerations: See the Security Considerations section
      of [RFC7515].




Wendt & Peterson             Standards Track                   [Page 18]
^L
RFC 8225                        PASSporT                   February 2018


   o  Interoperability considerations: N/A

   o  Published specification: RFC 8225

   o  Applications that use this media type: Secure Telephone Identity
      Revisited (STIR) and other applications that require
      identity-related assertion

   o  Fragment identifier considerations: N/A

   o  Additional information:

         Magic number(s): N/A

         File extension(s): N/A

         Macintosh file type code(s): N/A

   o  Person & email address to contact for further information: Chris
      Wendt, chris-ietf@chriswendt.net

   o  Intended usage: COMMON

   o  Restrictions on usage: none

   o  Author: Chris Wendt <chris-ietf@chriswendt.net>

   o  Change Controller: IESG

   o  Provisional registration?  No

11.2.  Registrations in "JSON Web Token Claims"

   Claim Name: "orig"
   Claim Description: Originating Identity String
   Change Controller: IESG
   Reference: Section 5.2.1 of RFC 8225

   Claim Name: "dest"
   Claim Description: Destination Identity String
   Change Controller: IESG
   Reference: Section 5.2.1 of RFC 8225

   Claim Name: "mky"
   Claim Description: Media Key Fingerprint String
   Change Controller: IESG
   Reference: Section 5.2.2 of RFC 8225




Wendt & Peterson             Standards Track                   [Page 19]
^L
RFC 8225                        PASSporT                   February 2018


11.3.  Registration in "JSON Web Signature and Encryption Header
       Parameters"

   Header Parameter Name: "ppt"
   Header Parameter Description: PASSporT extension identifier
   Header Parameter Usage Location(s): JWS
   Change Controller: IESG
   Reference: Section 8.1 of RFC 8225

11.4.  PASSporT Extensions Registry

   The IANA has created a new PASSporT Type registry for "ppt" parameter
   values.  That parameter and its values are defined in Section 8.1.
   New registry entries must contain the name of the "ppt" parameter
   value and the specification in which the value is described.  The
   policy for this registry is Specification Required [RFC8126].

12.  References

12.1.  Normative References

   [RFC2046]  Freed, N. and N. Borenstein, "Multipurpose Internet Mail
              Extensions (MIME) Part Two: Media Types", RFC 2046,
              DOI 10.17487/RFC2046, November 1996,
              <https://www.rfc-editor.org/info/rfc2046>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC3629]  Yergeau, F., "UTF-8, a transformation format of
              ISO 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629,
              November 2003, <https://www.rfc-editor.org/info/rfc3629>.

   [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
              Resource Identifier (URI): Generic Syntax", STD 66,
              RFC 3986, DOI 10.17487/RFC3986, January 2005,
              <https://www.rfc-editor.org/info/rfc3986>.

   [RFC4566]  Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
              Description Protocol", RFC 4566, DOI 10.17487/RFC4566,
              July 2006, <https://www.rfc-editor.org/info/rfc4566>.








Wendt & Peterson             Standards Track                   [Page 20]
^L
RFC 8225                        PASSporT                   February 2018


   [RFC4572]  Lennox, J., "Connection-Oriented Media Transport over the
              Transport Layer Security (TLS) Protocol in the Session
              Description Protocol (SDP)", RFC 4572,
              DOI 10.17487/RFC4572, July 2006,
              <https://www.rfc-editor.org/info/rfc4572>.

   [RFC6838]  Freed, N., Klensin, J., and T. Hansen, "Media Type
              Specifications and Registration Procedures", BCP 13,
              RFC 6838, DOI 10.17487/RFC6838, January 2013,
              <https://www.rfc-editor.org/info/rfc6838>.

   [RFC6979]  Pornin, T., "Deterministic Usage of the Digital Signature
              Algorithm (DSA) and Elliptic Curve Digital Signature
              Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979,
              August 2013, <https://www.rfc-editor.org/info/rfc6979>.

   [RFC7515]  Jones, M., Bradley, J., and N. Sakimura, "JSON Web
              Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515,
              May 2015, <https://www.rfc-editor.org/info/rfc7515>.

   [RFC7518]  Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
              DOI 10.17487/RFC7518, May 2015,
              <https://www.rfc-editor.org/info/rfc7518>.

   [RFC7519]  Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
              (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
              <https://www.rfc-editor.org/info/rfc7519>.

   [RFC7638]  Jones, M. and N. Sakimura, "JSON Web Key (JWK)
              Thumbprint", RFC 7638, DOI 10.17487/RFC7638,
              September 2015, <https://www.rfc-editor.org/info/rfc7638>.

   [RFC8122]  Lennox, J. and C. Holmberg, "Connection-Oriented Media
              Transport over the Transport Layer Security (TLS) Protocol
              in the Session Description Protocol (SDP)", RFC 8122,
              DOI 10.17487/RFC8122, March 2017,
              <https://www.rfc-editor.org/info/rfc8122>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in
              RFC 2119 Key Words", BCP 14, RFC 8174,
              DOI 10.17487/RFC8174, May 2017,
              <https://www.rfc-editor.org/info/rfc8174>.









Wendt & Peterson             Standards Track                   [Page 21]
^L
RFC 8225                        PASSporT                   February 2018


   [RFC8224]  Peterson, J., Jennings, C., Rescorla, E., and C. Wendt,
              "Authenticated Identity Management in the Session
              Initiation Protocol (SIP)", RFC 8224,
              DOI 10.17487/RFC8224, February 2018,
              <https://www.rfc-editor.org/info/rfc8224>.

   [UNICODE]  The Unicode Consortium, "The Unicode Standard",
              <http://www.unicode.org/versions/latest/>.

12.2.  Informative References

   [RFC3261]  Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
              A., Peterson, J., Sparks, R., Handley, M., and E.
              Schooler, "SIP: Session Initiation Protocol", RFC 3261,
              DOI 10.17487/RFC3261, June 2002,
              <https://www.rfc-editor.org/info/rfc3261>.

   [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
              Housley, R., and W. Polk, "Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation List
              (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
              <https://www.rfc-editor.org/info/rfc5280>.

   [RFC7340]  Peterson, J., Schulzrinne, H., and H. Tschofenig, "Secure
              Telephone Identity Problem Statement and Requirements",
              RFC 7340, DOI 10.17487/RFC7340, September 2014,
              <https://www.rfc-editor.org/info/rfc7340>.

   [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
              Writing an IANA Considerations Section in RFCs", BCP 26,
              RFC 8126, DOI 10.17487/RFC8126, June 2017,
              <https://www.rfc-editor.org/info/rfc8126>.



















Wendt & Peterson             Standards Track                   [Page 22]
^L
RFC 8225                        PASSporT                   February 2018


Appendix A.  Example ES256-Based PASSporT JWS Serialization and
             Signature

   For PASSporT, there will always be a JWS with the following members:

   o  "protected", with the value BASE64URL(UTF8(JWS Protected Header))

   o  "payload", with the value BASE64URL(JWS Payload)

   o  "signature", with the value BASE64URL(JWS Signature)

   This example will follow the steps in JWS ([RFC7515], Section 5.1,
   Steps 1-6 and 8); it incorporates the additional serialization steps
   required for PASSporT.

   Step 1 for JWS references the JWS Payload.  An example PASSporT
   Payload is as follows:

   {
     "dest":{"uri":["sip:alice@example.com"]}
     "iat":1471375418,
     "orig":{"tn":"12155551212"}
   }

   This would be serialized to the following form (with line break used
   for display purposes only):

   {"dest":{"uri":["sip:alice@example.com"]},"iat":1471375418,
   "orig":{"tn":"12155551212"}}

   Step 2 computes the BASE64URL(JWS Payload), producing this value
   (with line break used for display purposes only):

   eyJkZXN0Ijp7InVyaSI6WyJzaXA6YWxpY2VAZXhhbXBsZS5jb20iXX0sImlhdCI
   6MTQ3MTM3NTQxOCwib3JpZyI6eyJ0biI6IjEyMTU1NTUxMjEyIn19

   For Step 3, an example PASSporT Protected Header constructed as a
   JOSE Header is as follows:

   {
     "alg":"ES256",
     "typ":"passport",
     "x5u":"https://cert.example.org/passport.cer"
   }







Wendt & Peterson             Standards Track                   [Page 23]
^L
RFC 8225                        PASSporT                   February 2018


   This would be serialized to the following form (with line break used
   for display purposes only):

   {"alg":"ES256","typ":"passport","x5u":"https://cert.example.org
     /passport.cer"}

   Step 4 performs the BASE64URL(UTF8(JWS Protected Header)) operation
   and encoding, producing this value (with line break used for display
   purposes only):

   eyJhbGciOiJFUzI1NiIsInR5cCI6InBhc3Nwb3J0IiwieDV1IjoiaHR0cHM6Ly9j
   ZXJ0LmV4YW1wbGUub3JnL3Bhc3Nwb3J0LmNlciJ9

   Steps 5 and 6 perform the computation of the digital signature of the
   PASSporT Signing Input ASCII(BASE64URL(UTF8(JWS Protected Header)) ||
   "." || BASE64URL(JWS Payload)), using ES256 as the algorithm and the
   BASE64URL(JWS Signature).

   VLBCIVDCaeK6M4hLJb6SHQvacAQVvoiiEOWQ_iUkqk79UD81fHQ0E1b3_GluIkb
   a7UWYRM47ZbNFdOJquE35cw

   Step 8 describes how to create the final PASSporT, concatenating the
   values in the order Header.Payload.Signature with period (".")
   characters.  For the above example values, this would produce the
   following (with line breaks between periods used for readability
   purposes only):

   eyJhbGciOiJFUzI1NiIsInR5cCI6InBhc3Nwb3J0IiwieDV1IjoiaHR0cHM6Ly9j
   ZXJ0LmV4YW1wbGUub3JnL3Bhc3Nwb3J0LmNlciJ9
   .
   eyJkZXN0Ijp7InVyaSI6WyJzaXA6YWxpY2VAZXhhbXBsZS5jb20iXX0sImlhdCI
   6MTQ3MTM3NTQxOCwib3JpZyI6eyJ0biI6IjEyMTU1NTUxMjEyIn19
   .
   VLBCIVDCaeK6M4hLJb6SHQvacAQVvoiiEOWQ_iUkqk79UD81fHQ0E1b3_GluIkb
   a7UWYRM47ZbNFdOJquE35cw

A.1.  X.509 Private Key in PKCS #8 Format for ES256 Example

   -----BEGIN PRIVATE KEY-----
   MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgi7q2TZvN9VDFg8Vy
   qCP06bETrR2v8MRvr89rn4i+UAahRANCAAQWfaj1HUETpoNCrOtp9KA8o0V79IuW
   ARKt9C1cFPkyd3FBP4SeiNZxQhDrD0tdBHls3/wFe8++K2FrPyQF9vuh
   -----END PRIVATE KEY-----








Wendt & Peterson             Standards Track                   [Page 24]
^L
RFC 8225                        PASSporT                   February 2018


A.2.  X.509 Public Key for ES256 Example

   -----BEGIN PUBLIC KEY-----
   MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE8HNbQd/TmvCKwPKHkMF9fScavGeH
   78YTU8qLS8I5HLHSSmlATLcslQMhNC/OhlWBYC626nIlo7XeebYS7Sb37g==
   -----END PUBLIC KEY-----

Acknowledgments

   Particular thanks to members of the ATIS and SIP Forum NNI Task
   Group, including Jim McEachern, Martin Dolly, Richard Shockey, John
   Barnhill, Christer Holmberg, Victor Pascual Avila, Mary Barnes, and
   Eric Burger, for their review, ideas, and contributions.  Thanks also
   to Henning Schulzrinne, Russ Housley, Alan Johnston, Richard Barnes,
   Mark Miller, Ted Hardie, Dave Crocker, Robert Sparks, and Jim Schaad
   for valuable feedback on the technical and security aspects of the
   document.  Additional thanks to Harsha Bellur for assistance in
   coding the example tokens.

Authors' Addresses

   Chris Wendt
   Comcast
   One Comcast Center
   Philadelphia, PA  19103
   United States of America

   Email: chris-ietf@chriswendt.net


   Jon Peterson
   Neustar Inc.
   1800 Sutter St. Suite 570
   Concord, CA  94520
   United States of America

   Email: jon.peterson@neustar.biz














Wendt & Peterson             Standards Track                   [Page 25]
^L