1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
|
Internet Engineering Task Force (IETF) D. Singer
Request for Comments: 8285 Apple, Inc.
Obsoletes: 5285 H. Desineni
Category: Standards Track Qualcomm
ISSN: 2070-1721 R. Even, Ed.
Huawei Technologies
October 2017
A General Mechanism for RTP Header Extensions
Abstract
This document provides a general mechanism to use the header
extension feature of RTP (the Real-time Transport Protocol). It
provides the option to use a small number of small extensions in each
RTP packet, where the universe of possible extensions is large and
registration is decentralized. The actual extensions in use in a
session are signaled in the setup information for that session. This
document obsoletes RFC 5285.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8285.
Singer, et al. Standards Track [Page 1]
^L
RFC 8285 RTP Header Extensions October 2017
Copyright Notice
Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction ....................................................3
2. Requirements Notation ...........................................3
3. Design Goals ....................................................3
4. Packet Design ...................................................4
4.1. General ....................................................4
4.1.1. Transmission Considerations .........................5
4.1.2. Header Extension Type Considerations ................6
4.2. One-Byte Header ............................................8
4.3. Two-Byte Header ............................................9
5. SDP Signaling Design ...........................................10
6. SDP Signaling for Support of Mixed One-Byte and Two-Byte
Header Extensions ..........................................12
7. SDP Offer/Answer ...............................................13
8. BNF Syntax .....................................................17
9. Security Considerations ........................................17
10. IANA Considerations ...........................................18
10.1. Identifier Space for IANA to Manage ......................18
10.2. Registration of the SDP "extmap" Attribute ...............20
10.3. Registration of the SDP "extmap-allow-mixed" Attribute ...20
11. Changes from RFC 5285 .........................................21
12. References ....................................................21
12.1. Normative References .....................................21
12.2. Informative References ...................................23
Acknowledgments ...................................................24
Authors' Addresses ................................................25
Singer, et al. Standards Track [Page 2]
^L
RFC 8285 RTP Header Extensions October 2017
1. Introduction
The RTP specification [RFC3550] provides a capability to extend the
RTP header. Section 5.3.1 of [RFC3550] defines the header extension
format and rules for its use. The existing header extension method
permits at most one extension per RTP packet, identified by a 16-bit
identifier and a 16-bit length field specifying the length of the
header extension in 32-bit words.
This mechanism has two conspicuous drawbacks. First, it permits only
one header extension in a single RTP packet. Second, the
specification gives no guidance as to how the 16-bit header extension
identifiers are allocated to avoid collisions.
This specification removes the first drawback by defining a backward-
compatible and extensible means to carry multiple header extension
elements in a single RTP packet. It removes the second drawback by
defining that these extension elements are named by URIs, defining an
IANA registry for extension elements defined in IETF specifications,
and providing a Session Description Protocol (SDP) method for mapping
between the naming URIs and the identifier values carried in the RTP
packets.
This header extension applies to RTP/AVP (the Audio/Visual Profile)
and its extensions.
This document obsoletes [RFC5285] and removes a limitation from
RFC 5285 that did not allow sending both one-byte and two-byte header
extensions in the same RTP stream.
2. Requirements Notation
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
3. Design Goals
The goal of this design is to provide a simple mechanism whereby
multiple identified extensions can be used in RTP packets, without
the need for formal registration of those extensions but nonetheless
avoiding collisions.
This mechanism provides an alternative to the practice of burying
associated metadata into the media format bitstream. This has often
been done in media data sent over fixed-bandwidth channels. Once
Singer, et al. Standards Track [Page 3]
^L
RFC 8285 RTP Header Extensions October 2017
this is done, a decoder for the specific media format needs to
extract the metadata. Also, depending on the media format, the
metadata can be added at the time of encoding the media so that the
bit-rate used for the metadata is taken into account. But the
metadata can be unknown at that time. Inserting metadata at a later
time can cause a decode and re-encode to meet bit-rate requirements.
In some cases, a more appropriate and higher-level mechanism may be
available, and if so, it can be used. For cases where a higher-level
mechanism is not available, it is better to provide a mechanism at
the RTP level than to have the metadata be tied to a specific form of
media data.
4. Packet Design
4.1. General
The following design is fit into the "header extension" of the RTP
extension, as described above.
The presence and format of this header extension and its contents are
negotiated or defined out of band, such as through signaling (see
below for SDP signaling). The 16-bit identifier for the two forms of
the RTP extension defined here is only an architectural constant
(e.g., for use by network analyzers); it is the negotiation/
definition (e.g., in SDP) that is the definitive indication that this
header extension is present.
The RTP specification [RFC3550] states that RTP "is designed so that
the header extension may be ignored by other interoperating
implementations that have not been extended." The intent of this
restriction is that RTP header extensions MUST NOT be used to extend
RTP itself in a manner that is backward incompatible with
non-extended implementations. For example, a header extension is not
allowed to change the meaning or interpretation of the standard RTP
header fields or of the RTP Control Protocol (RTCP). Header
extensions MAY carry metadata in addition to the usual RTP header
information, provided the RTP layer can function if that metadata is
missing. For example, RTP header extensions can be used to carry
data that's also sent in RTCP, as an optimization to lower latency,
since they'll fall back to the original non-optimized behavior if the
header extension is not present. The use of header extensions to
convey information that will, if missing, disrupt the behavior of a
higher-layer application that builds on top of RTP is only acceptable
if this doesn't affect interoperability at the RTP layer. For
example, applications that use the SDP BUNDLE extension with the
Media Identification (MID) RTP header extension [SDP-BUNDLE] to
correlate RTP streams with SDP "m=" lines likely won't work with full
Singer, et al. Standards Track [Page 4]
^L
RFC 8285 RTP Header Extensions October 2017
functionality if the MID is missing, but the operation of the RTP
layer of those applications will be unaffected. Support for RTP
header extensions based on this memo is negotiated using, for
example, SDP Offer/Answer [RFC3264]; intermediaries aware of the RTP
header extensions are advised to be cautious when removing or
generating RTP header extensions. See Section 4.7 of [RFC7667].
The RTP header extension is formed as a sequence of extension
elements, with possible padding. Each extension element has a local
identifier and a length. The local identifiers MAY be mapped to a
larger namespace in the negotiation (e.g., session signaling).
4.1.1. Transmission Considerations
As is good network practice, data should only be transmitted when
needed. The RTP header extension SHOULD only be present in a packet
if that packet also contains one or more extension elements, as
defined here. An extension element SHOULD only be present in a
packet when needed; the signaling setup of extension elements
indicates only that those elements can be present in some packets,
not that they are in fact present in all (or indeed, any) packets.
Some general considerations for getting the header extensions
delivered to the receiver are as follows:
1. The probability for packet loss and burst loss determines how
many repetitions of the header extensions will be required to
reach a targeted delivery probability, and if burst loss is
likely, what distribution would be needed to avoid losing all
repetitions of the header extensions in a single burst.
2. If a set of packets are all needed to enable decoding, there is
commonly no reason for including the header extension in all of
these packets, as they share fate. Instead, at most one instance
of the header extension per independently decodable set of media
data would be a more efficient use of the bandwidth.
3. How early the header extension item information is needed, from
the first received RTP data or only after some set of packets are
received, can guide whether the header extension(s) should be
(1) in all of the first N packets or (2) included only once per
set of packets -- for example, once per video frame.
Singer, et al. Standards Track [Page 5]
^L
RFC 8285 RTP Header Extensions October 2017
4. The use of RTP-level robustness mechanisms, such as RTP
retransmission [RFC4588] or Forward Error Correction (e.g.,
[RFC5109]) may treat packets differently from a robustness
perspective, and header extensions should be added to packets
that get a treatment corresponding to the relative importance of
receiving the information.
As a summary, the number of header extension transmissions should be
tailored to a desired probability of delivery, taking the receiver
population size into account. For the very basic case, N repetitions
of the header extensions should be sufficient but may not be optimal.
N is selected so that the header extension target delivery
probability reaches 1-P^N, where P is the probability of packet loss.
For point-to-point or small receiver populations, it might also be
possible to use feedback, such as RTCP, to determine when the
information in the header extensions has reached all receivers and
stop further repetitions. Feedback that can be used includes the
RTCP Extended Report (XR) Loss RLE Report Block [RFC3611], which will
indicate successful delivery of particular packets. If the RTP/AVPF
transport-layer feedback messages for generic NACK [RFC4585] are
used, they can indicate failure to deliver an RTP packet with the
header extension, thus indicating the need for further repetitions.
The normal RTCP report blocks can also provide an indicator of
successful delivery, if no losses are indicated for a reporting
interval covering the RTP packets with the header extension. Note
that loss of an RTCP packet reporting on an interval where RTP header
extension packets were sent does not necessarily mean that the RTP
header extension packets themselves were lost.
4.1.2. Header Extension Type Considerations
Each extension element in a packet has a local identifier (ID) and a
length. The local identifiers present in the stream MUST have been
negotiated or defined out of band. There are no static allocations
of local identifiers. Each distinct extension MUST have a unique ID.
The ID value 0 is reserved for padding and MUST NOT be used as a
local identifier.
An extension element with an ID value equal to 0 MUST NOT have an
associated length field greater than 0. If such an extension element
is encountered, its length field MUST be ignored, processing of the
entire extension MUST terminate at that point, and only the extension
elements present prior to the element with ID 0 and a length field
greater than 0 SHOULD be considered.
There are two variants of the extension: one-byte and two-byte
headers. Since it is expected that (a) the number of extensions in
any given RTP session is small and (b) the extensions themselves are
Singer, et al. Standards Track [Page 6]
^L
RFC 8285 RTP Header Extensions October 2017
small, the one-byte header form is preferred and MUST be supported by
all receivers. A stream MUST contain only one-byte headers or only
two-byte headers unless it is known that all recipients support
mixing, by either SDP Offer/Answer [RFC3264] negotiation (see
Section 6) or out-of-band knowledge. Each RTP packet with an RTP
header extension following this specification will indicate whether
it contains one-byte or two-byte header extensions through the use of
the "defined by profile" field. Extension element types that do not
match the header extension format, i.e., one-byte or two-byte,
MUST NOT be used in that RTP packet. Transmitters SHOULD NOT use the
two-byte header form when all extensions are small enough for the
one-byte header form. Transmitters that intend to send the two-byte
form SHOULD negotiate the use of IDs above 14 if they want to let the
receivers know that they intend to use the two-byte form -- for
example, if the RTP header extension is longer than 16 bytes. A
transmitter may be aware that an intermediary may add RTP header
extensions; in this case, the transmitter SHOULD use the two-byte
form.
A sequence of extension elements, possibly with padding, forms the
header extension defined in the RTP specification. There are as many
extension elements as will fit in the RTP header extension, as
indicated by the RTP header extension length. Since this length is
signaled in full 32-bit words, padding bytes are used to pad to a
32-bit boundary. The entire extension is parsed byte by byte to find
each extension element (no alignment is needed), and parsing stops
(1) at the end of the entire header extension or (2) in the "one-byte
headers only" case, on encountering an identifier with the reserved
value of 15 -- whichever happens earlier.
In both forms, padding bytes have the value of 0 (zero). They MAY be
placed between extension elements, if desired for alignment, or after
the last extension element, if needed for padding. A padding byte
does not supply the ID of an element, nor does it supply the length
field. When a padding byte is found, it is ignored, and the parser
moves on to interpreting the next byte.
Note carefully that the one-byte header form allows for data lengths
between 1 and 16 bytes, by adding 1 to the signaled length value
(thus, 0 in the length field indicates that one byte of data
follows). This allows for the important case of 16-byte payloads.
This addition is not performed for the two-byte headers, where the
length field signals data lengths between 0 and 255 bytes.
Use of RTP header extensions will reduce the efficiency of RTP header
compression, since the header extension will be sent uncompressed
unless the RTP header compression module is updated to recognize the
extension header. If header extensions are present in some packets
Singer, et al. Standards Track [Page 7]
^L
RFC 8285 RTP Header Extensions October 2017
but not in others, this can also reduce compression efficiency by
requiring an update to the fixed header to be conveyed when header
extensions start or stop being sent. The interactions of the RTP
header extension and header compression are explored further in
[RFC2508] and [RFC3095].
4.2. One-Byte Header
In the one-byte header form of extensions, the 16-bit value required
by the RTP specification for a header extension, labeled in the RTP
specification as "defined by profile", MUST have the fixed bit
pattern 0xBEDE (the pattern was picked for the trivial reason that
the first version of this specification was written on May 25th --
the feast day of the Venerable Bede).
Each extension element MUST start with a byte containing an ID and a
length:
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| ID | len |
+-+-+-+-+-+-+-+-+
The 4-bit ID is the local identifier of this element in the range
1-14 inclusive. In the signaling section, this is referred to as the
valid range.
The local identifier value 15 is reserved for a future extension and
MUST NOT be used as an identifier. If the ID value 15 is
encountered, its length field MUST be ignored, processing of the
entire extension MUST terminate at that point, and only the extension
elements present prior to the element with ID 15 SHOULD be
considered.
The 4-bit length is the number, minus one, of data bytes of this
header extension element following the one-byte header. Therefore,
the value zero (0) in this field indicates that one byte of data
follows, and a value of 15 (the maximum) indicates element data of
16 bytes. (This permits carriage of 16-byte values, which is a
common length of labels and identifiers, while losing the possibility
of zero-length values, which would often be padded anyway.)
Singer, et al. Standards Track [Page 8]
^L
RFC 8285 RTP Header Extensions October 2017
An example header extension, with three extension elements and some
padding, follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0xBE | 0xDE | length=3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ID | L=0 | data | ID | L=1 | data...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
...data | 0 (pad) | 0 (pad) | ID | L=3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| data |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
4.3. Two-Byte Header
In the two-byte header form, the 16-bit value defined by the RTP
specification for a header extension, labeled in the RTP
specification as "defined by profile", is defined as shown below.
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0x100 |appbits|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The appbits field is 4 bits that are application dependent and MAY be
defined to be any value or meaning; this topic is outside the scope
of this specification. For the purposes of signaling, this field is
treated as a special extension value assigned to the local identifier
256. If no extension has been specified through configuration or
signaling for this local identifier value (256), the appbits field
SHOULD be set to all 0s (zeros) by the sender and MUST be ignored by
the receiver.
Each extension element starts with a byte containing an ID and a byte
containing a length:
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ID | length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The 8-bit ID is the local identifier of this element in the range
1-255 inclusive. In the signaling section, the range 1-256 is
referred to as the valid range, with the values 1-255 referring to
Singer, et al. Standards Track [Page 9]
^L
RFC 8285 RTP Header Extensions October 2017
extension elements and the value 256 referring to the 4-bit appbits
field (above). Note that there is one ID space for both the one-byte
form and the two-byte form. This means that the lower values (1-14)
can be used in the 4-bit ID field in the one-byte header format with
the same meanings.
The 8-bit length field is the length of extension data in bytes, not
including the ID and length fields. The value zero (0) indicates
that there is no subsequent data.
An example header extension, with three extension elements and some
padding, follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0x10 | 0x00 | length=3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ID | L=0 | ID | L=1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| data | 0 (pad) | ID | L=4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| data |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
5. SDP Signaling Design
The indication of the presence of this extension, and the mapping of
local identifiers used in the header extension to a larger namespace,
MUST be performed out of band -- for example, as part of an SDP
Offer/Answer [RFC3264]. This section defines such signaling in SDP.
A usable mapping MUST use IDs in the valid range, and each ID in this
range MUST be used only once for each media section (or only once if
the mappings are session level). Mappings that do not conform to
these rules MAY be presented, for instance, during SDP Offer/Answer
[RFC3264] negotiation as described in the next section, but remapping
to conformant values is necessary before they can be applied.
Each extension is named by a URI. That URI MUST be absolute; it
precisely identifies the format and meaning of the extension. URIs
that contain a domain name SHOULD also contain a month-date in the
form mmyyyy. The definition of the element and assignment of the URI
MUST have been authorized by the owner of the domain name on or very
close to that date. (This avoids problems when domain names change
ownership.) If the resource or document defines several extensions,
Singer, et al. Standards Track [Page 10]
^L
RFC 8285 RTP Header Extensions October 2017
then the URI MUST identify the actual extension in use, e.g., using a
fragment or query identifier (characters after a "#" or "?" in
the URI).
Rationale: The use of URIs provides for a large, unallocated space
and gives documentation on the extension. The URIs do not have to be
dereferencable, in order to permit confidential or experimental use,
or to cover the case when extensions continue to be used after the
organization that defined them ceases to exist.
An extension URI with the same attributes MUST NOT appear more than
once applying to the same stream, i.e., at session level or in the
declarations for a single stream at media level. (The same extension
can, of course, be used for several streams and can appear with
different <extensionattributes> for the same stream.)
For extensions defined in RFCs, the URI used SHOULD be a URN starting
with "urn:ietf:params:rtp-hdrext:" followed by a registered,
descriptive name.
The registration requirements are detailed in Section 10 ("IANA
Considerations").
An example where "avt-example-metadata" is the hypothetical name of a
header extension might be:
urn:ietf:params:rtp-hdrext:avt-example-metadata
An example name not from the IETF might be:
http://example.com/082005/ext.htm#example-metadata
The mapping MAY be provided per media stream (in the media-level
section(s) of SDP, i.e., after an "m=" line) or globally for all
streams (i.e., before the first "m=" line, at session level). The
definitions MUST be either all session level or all media level; it
is not permitted to mix the two styles. In addition, as noted above,
the IDs used MUST be unique in each media section of the SDP or
unique in the session for session-level SDP declarations.
Singer, et al. Standards Track [Page 11]
^L
RFC 8285 RTP Header Extensions October 2017
Each local identifier potentially used in the stream is mapped to an
extension identified by a URI using an attribute of the form:
a=extmap:<value>["/"<direction>] <URI> <extensionattributes>
where
o <value> is the local identifier (ID) of this extension and is an
integer in the valid range (0 is reserved for padding in both
forms, and 15 is reserved in the one-byte header form, as noted
above).
o <direction> is one of "sendonly", "recvonly", "sendrecv", or
"inactive" (without the quotes) with relation to the device being
configured.
o <URI> is a URI, as above.
The formal BNF syntax is presented in Section 8 of this
specification.
Example:
a=extmap:1 http://example.com/082005/ext.htm#ttime
a=extmap:2/sendrecv http://example.com/082005/ext.htm#xmeta short
When SDP signaling is used for the RTP session, it is the presence of
the "extmap" attribute(s) that is diagnostic that this style of
header extensions is used, not the magic number ("BEDE" or "100")
indicated above.
6. SDP Signaling for Support of Mixed One-Byte and Two-Byte Header
Extensions
In order to allow for backward interoperability with systems that
do not support the mixing of one-byte and two-byte header extensions,
this document defines the "a=extmap-allow-mixed" Session Description
Protocol (SDP) [RFC4566] attribute to indicate if the participant is
capable of supporting this new mode. The attribute takes no value.
This attribute can be used at the session level or the media level.
A participant that proposes the use of this mode SHALL itself support
the reception of mixed one-byte and two-byte header extensions.
If SDP Offer/Answer [RFC3264] is supported and used, the negotiation
for mixed one-byte and two-byte extensions MUST be negotiated using
SDP Offer/Answer per [RFC3264]. In the absence of negotiations using
Singer, et al. Standards Track [Page 12]
^L
RFC 8285 RTP Header Extensions October 2017
SDP Offer/Answer -- for example, when declarative SDP is used --
mixed headers MUST NOT occur unless the transmitter has some
(out-of-band) knowledge that all potential recipients support
this mode.
The formal definition of this attribute is:
Name: extmap-allow-mixed
Value: None
Usage Level: session, media
Charset Dependent: No
Example:
a=extmap-allow-mixed
When doing SDP Offer/Answer [RFC3264], an offering client that wishes
to use both one-byte and two-byte extensions MUST include the
attribute "a=extmap-allow-mixed" in the SDP offer. If
"a=extmap-allow-mixed" is present in the SDP offer, the answerer that
supports this mode and wishes to use it SHALL include the
"a=extmap-allow-mixed" attribute in the answer. In the cases where
the attribute has been excluded, both clients SHALL NOT use mixed
one-byte and two-byte extensions in the same RTP stream but MAY use
the one-byte or two-byte form exclusively (see Section 4.1.2).
When used per [SDP-BUNDLE], this attribute is specified as the
IDENTICAL category [SDP-MUX].
7. SDP Offer/Answer
The simple signaling described above for the "extmap" attribute MAY
be enhanced in an SDP Offer/Answer [RFC3264] context, to permit:
o asymmetric behavior (extensions sent in only one direction),
o the offer of mutually exclusive alternatives, or
o the offer of more extensions than can be sent in a single session.
A direction attribute MAY be included in an "extmap"; without it, the
direction implicitly inherits, of course, from the stream direction
or is "sendrecv" for session-level attributes or extensions of
"inactive" streams. The direction MUST be one of "sendonly",
"recvonly", "sendrecv", or "inactive" as specified in [RFC3264].
Singer, et al. Standards Track [Page 13]
^L
RFC 8285 RTP Header Extensions October 2017
Extensions, with their directions, MAY be signaled for an "inactive"
stream. It is an error to use an extension direction incompatible
with the stream direction (e.g., a "sendonly" attribute for a
"recvonly" stream).
If an offer or answer contains session-level mappings (and hence no
media-level mappings) and different behavior is desired for each
stream, then the entire set of extension map declarations MAY be
moved into the media-level section(s) of the SDP. (Note that this
specification does not permit mixing global and local declarations,
to make identifier management easier.)
If an extension map is offered as "sendrecv", explicitly or
implicitly, and asymmetric behavior is desired, the SDP answer MAY be
changed to modify or add direction qualifiers for that extension.
If an extension is marked as "sendonly" and the answerer desires to
receive it, the extension MUST be marked as "recvonly" in the SDP
answer. An answerer that has no desire to receive the extension or
does not understand the extension SHOULD remove it from the SDP
answer. An answerer MAY want to respond that he supports the
extension and does not want to receive it at the moment, but he may
indicate a desire to receive it in a future offer and will mark the
extension as "inactive".
If an extension is marked as "recvonly" and the answerer desires to
send it, the extension MUST be marked as "sendonly" in the SDP
answer. An answerer that has no desire to, or is unable to, send the
extension SHOULD remove it from the SDP answer. An answerer MAY want
to respond that he supports this extension but has no intention of
sending it now; he may indicate a desire to send it in a future offer
by marking the extension as "inactive".
Local identifiers in the valid range inclusive in an offer or answer
must not be used more than once per media section (including the
session-level section). The local identifiers MUST be unique in an
RTP session, and the same identifier MUST be used for the same
offered extension in the answer. A session update MAY change the
direction qualifiers of extensions being used. A session update MAY
add or remove extension(s). Identifier values in the valid range
MUST NOT be altered (remapped).
Note that, under this rule, the same local identifier cannot be used
for two extensions for the same media, even when one is "sendonly"
and the other "recvonly", as it would then be impossible to make
either of them "sendrecv" (since renumbering is not permitted
either).
Singer, et al. Standards Track [Page 14]
^L
RFC 8285 RTP Header Extensions October 2017
If a party wishes to offer mutually exclusive alternatives, then
multiple extensions with the same identifier in the extended range
4096-4351 MAY be offered. The answerer SHOULD select, at most, one
of the offered extensions with the same identifier and remap it to a
free identifier in the valid range for that extension to be usable.
Similarly, if more extensions are offered than can be fit in the
valid range, identifiers in the range 4096-4351 MAY be offered; the
answerer SHOULD choose those that are desired and remap them to a
free identifier in the valid range.
An answerer may copy an "extmap" for an identifier in the extended
range into the answer to indicate to the offerer that it supports
that extension. Of course, such an extension cannot be used, since
there is no way to specify it in an extension header. If needed, the
offerer or answerer can update the session to assign a valid
identifier to that extension URI.
Rationale: The range 4096-4351 for these negotiation identifiers is
deliberately restricted to allow expansion of the range of valid
identifiers in the future.
Either party MAY include extensions in the stream other than those
negotiated, or those negotiated as "inactive" (for example, for the
benefit of intermediate nodes). Only extensions that appeared with
an identifier in the valid range in SDP originated by the sender can
be sent.
Example (port numbers, RTP profiles, payload IDs, rtpmaps, etc. all
omitted for brevity):
The offer:
a=extmap:1 URI-toffset
a=extmap:14 URI-obscure
a=extmap:4096 URI-gps-string
a=extmap:4096 URI-gps-binary
a=extmap:4097 URI-frametype
m=video
a=sendrecv
m=audio
a=sendrecv
Singer, et al. Standards Track [Page 15]
^L
RFC 8285 RTP Header Extensions October 2017
The answerer is interested in receiving GPS in string format only on
video but cannot send GPS at all. It is not interested in
transmission offsets on audio and does not understand the URI-obscure
extension. It therefore moves the extensions from session level to
media level and adjusts the declarations:
m=video
a=sendrecv
a=extmap:1 URI-toffset
a=extmap:2/recvonly URI-gps-string
a=extmap:3 URI-frametype
m=audio
a=sendrecv
a=extmap:1/sendonly URI-toffset
When using [SDP-BUNDLE] to bundle multiple "m=" lines, the "extmap"
attribute falls under the SPECIAL category of [SDP-MUX]. All the
"m=" lines in a BUNDLE group are considered to be part of the same
local identifier (ID) space. If an RTP header extension, i.e., a
particular extension URI and configuration using
<extensionattributes>, is offered in multiple "m=" lines that are
part of the same BUNDLE group, it MUST use the same ID in all of
these "m=" lines. Each "m=" line in a BUNDLE group can include
different RTP header extensions allowing, for example, audio and
video sources to use different sets of RTP header extensions. A
difference in configuration using any of the <extensionattributes> is
important. Unless an RTP header extension explicitly states
otherwise, any such difference SHALL be communicated to all receivers
and SHALL cause assignment of different IDs. An RTP header extension
that does not follow this rule MUST explicitly define what would
constitute compatible configurations that can be sent with the
same ID. The directionality of the RTP header extensions in each
"m=" line of the BUNDLE group is handled in the same way as handling
for non-bundled "m=" lines. This allows for specifying different
directionality for each of the repeated extension URIs in a BUNDLE
group.
Singer, et al. Standards Track [Page 16]
^L
RFC 8285 RTP Header Extensions October 2017
8. BNF Syntax
The syntax definition below uses ABNF according to [RFC5234]. The
syntax element "URI" is defined in [RFC3986] (only absolute URIs are
permitted here). The syntax element "extmap" is an attribute as
defined in [RFC4566], i.e., "a=" precedes the "extmap" definition.
Specific <extensionattributes> are defined by the specification that
defines a specific extension name; there can be several.
Name: extmap
Value: extmap-value
Syntax:
extmap-value = mapentry SP extensionname
[SP extensionattributes]
mapentry = "extmap:" 1*5DIGIT ["/" direction]
extensionname = URI
extensionattributes = byte-string
direction = "sendonly" / "recvonly" / "sendrecv" / "inactive"
URI = <Defined in RFC 3986>
byte-string = <Defined in RFC 4566>
SP = <Defined in RFC 5234>
DIGIT = <Defined in RFC 5234>
9. Security Considerations
This document defines only a place to transmit information; the
security implications of each of the extensions must be discussed
with those extensions.
Extension usage is negotiated using [RFC3264], so integrity
protection and end-to-end authentication MUST be implemented. The
security considerations of [RFC3264] MUST be followed to prevent, for
example, extension-usage blocking.
Header extensions have the same security coverage as the RTP header
itself. When the Secure Real-time Transport Protocol (SRTP)
[RFC3711] is used to protect RTP sessions, the RTP payload can be
Singer, et al. Standards Track [Page 17]
^L
RFC 8285 RTP Header Extensions October 2017
both encrypted and integrity protected, while the RTP header is
either unprotected or integrity protected. In order to prevent DoS
attacks (for example, by changing the header extension) integrity
protection SHOULD be used. Lower-layer security protection such as
Datagram Transport Layer Security (DTLS) [RFC6347] MAY be used. RTP
header extensions can carry sensitive information for which
participants in multimedia sessions want confidentiality. RFC 6904
[RFC6904] provides a mechanism that extends the mechanisms of SRTP to
selectively encrypt RTP header extensions in SRTP.
The RTP application designer needs to consider their security needs,
that includes cipher strength for SRTP packets in general and what
that means for the integrity and confidentiality of the RTP header
extensions. As defined by RFC 6904 [RFC6904], the encryption stream
cipher for the header extension is dependent on the chosen SRTP
cipher.
Other options for securing RTP are discussed in [RFC7201].
10. IANA Considerations
This document updates the references in three IANA registries to
point to this document instead of RFC 5285, and updates and adds new
SDP attributes in Sections 10.2 and 10.3, respectively.
10.1. Identifier Space for IANA to Manage
The mapping from the naming URI form to a reference to a
specification is managed by IANA. Insertion into this registry is
under the requirements of "Expert Review" as defined in [RFC8126].
IANA will also maintain a server that contains all of the registered
elements in a publicly accessible space.
Here is the formal declaration to comply with the IETF URN
sub-namespace specification [RFC3553].
o Registry name: RTP Compact Header Extensions
o Specification: RFC 5285 and RFCs updating RFC 5285
o Information required:
A. The desired extension naming URI
B. A formal reference to the publicly available specification
Singer, et al. Standards Track [Page 18]
^L
RFC 8285 RTP Header Extensions October 2017
C. A short phrase describing the function of the extension
D. Contact information for the organization or person making the
registration
For extensions defined in RFCs, the URI SHOULD be of the form
urn:ietf:params:rtp-hdrext:, and the formal reference is the RFC
number of the RFC documenting the extension.
o Review process: Expert Review is REQUIRED. The expert reviewer
SHOULD check the following requirements:
1. that the specification is publicly available;
2. that the extension complies with the requirements of RTP, and
this specification, for header extensions (specifically, that
the header extension can be ignored or discarded without
breaking the RTP layer);
3. that the extension specification is technically consistent (in
itself and with RTP), complete, and comprehensible;
4. that the extension does not duplicate functionality in
existing IETF specifications (including RTP itself) or other
extensions already registered;
5. that the specification contains a security analysis regarding
the content of the header extension;
6. that the extension is generally applicable -- for example,
point-to-multipoint safe -- and the specification correctly
describes limitations if they exist;
7. that the suggested naming URI form is appropriately chosen and
unique; and
8. that for multiplexed "m=" lines [SDP-BUNDLE], any RTP header
extension with differences in configurations of
<extensionattributes> that do not require assignment of
different IDs MUST explicitly indicate this and provide rules
for what would constitute compatible configurations that can
be sent with the same ID.
o Size and format of entries: A mapping from a naming URI string to
a formal reference to a publicly available specification, with a
descriptive phrase and contact information.
o Initial assignments: None
Singer, et al. Standards Track [Page 19]
^L
RFC 8285 RTP Header Extensions October 2017
10.2. Registration of the SDP "extmap" Attribute
IANA has updated the registration of the "extmap" SDP attribute
[RFC4566] in the "att-field (both session and media level)"
subregistry of the "Session Description Protocol (SDP) Parameters"
registry.
o Contact Name and email address: IETF, contacted via
<mmusic@ietf.org> (or a successor address designated by the IESG)
o Attribute Name: extmap
o Attribute Syntax: See Section 8 of RFC 8285.
o Attribute Semantics: The details of appropriate values are given
in RFC 8285.
o Usage Level: Media or session level
o Charset Dependent: No
o Purpose: Defines the mapping from the extension numbers used in
packet headers into extension names.
o Offer/Answer (O/A) Procedures: See Section 7 of RFC 8285.
o MUX Category: SPECIAL
o Reference: RFC 8285
10.3. Registration of the SDP "extmap-allow-mixed" Attribute
IANA has registered one new SDP attribute in the "att-field (both
session and media level)" subregistry of the "Session Description
Protocol (SDP) Parameters" registry:
o Contact Name and email address: IETF, contacted via
<mmusic@ietf.org> (or a successor address designated by the IESG)
o Attribute Name: extmap-allow-mixed
o Attribute Syntax: See Section 6 of RFC 8285.
o Attribute Semantics: See Section 6 of RFC 8285.
o Attribute Value: None
o Usage Level: Media or session level
Singer, et al. Standards Track [Page 20]
^L
RFC 8285 RTP Header Extensions October 2017
o Charset Dependent: No
o Purpose: Negotiate the use of one byte and two bytes in the same
RTP stream.
o O/A Procedures: See Section 6 of RFC 8285.
o MUX Category: IDENTICAL
o Reference: RFC 8285
11. Changes from RFC 5285
The major motivation for updating [RFC5285] was to allow having
one-byte and two-byte RTP header extensions in the same RTP stream
(but not in the same RTP packet). The support for this case is
negotiated using a new SDP attribute, "extmap-allow-mixed", specified
in this document.
The other major change is to update the requirement from the RTP
specifications [RFC3550] and [RFC5285] that the header extension "is
designed so that the header extension may be ignored." This is
described in Section 4.1.
More text was added to Section 4.1.1 ("Transmission Considerations")
to clarify when and how many times to send the RTP header extension
to provide a higher probability of delivery.
The Security Considerations section was expanded.
The rest of the changes are editorial.
12. References
12.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC2508] Casner, S. and V. Jacobson, "Compressing IP/UDP/RTP
Headers for Low-Speed Serial Links", RFC 2508,
DOI 10.17487/RFC2508, February 1999,
<https://www.rfc-editor.org/info/rfc2508>.
Singer, et al. Standards Track [Page 21]
^L
RFC 8285 RTP Header Extensions October 2017
[RFC3095] Bormann, C., Burmeister, C., Degermark, M., Fukushima, H.,
Hannu, H., Jonsson, L-E., Hakenberg, R., Koren, T., Le,
K., Liu, Z., Martensson, A., Miyazaki, A., Svanbro, K.,
Wiebke, T., Yoshimura, T., and H. Zheng, "RObust Header
Compression (ROHC): Framework and four profiles: RTP, UDP,
ESP, and uncompressed", RFC 3095, DOI 10.17487/RFC3095,
July 2001, <https://www.rfc-editor.org/info/rfc3095>.
[RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
with Session Description Protocol (SDP)", RFC 3264,
DOI 10.17487/RFC3264, June 2002,
<https://www.rfc-editor.org/info/rfc3264>.
[RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
Norrman, "The Secure Real-time Transport Protocol (SRTP)",
RFC 3711, DOI 10.17487/RFC3711, March 2004,
<https://www.rfc-editor.org/info/rfc3711>.
[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", STD 66,
RFC 3986, DOI 10.17487/RFC3986, January 2005,
<https://www.rfc-editor.org/info/rfc3986>.
[RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
Description Protocol", RFC 4566, DOI 10.17487/RFC4566,
July 2006, <https://www.rfc-editor.org/info/rfc4566>.
[RFC5234] Crocker, D., Ed., and P. Overell, "Augmented BNF for
Syntax Specifications: ABNF", STD 68, RFC 5234,
DOI 10.17487/RFC5234, January 2008,
<https://www.rfc-editor.org/info/rfc5234>.
[RFC6904] Lennox, J., "Encryption of Header Extensions in the Secure
Real-time Transport Protocol (SRTP)", RFC 6904,
DOI 10.17487/RFC6904, April 2013,
<https://www.rfc-editor.org/info/rfc6904>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in
RFC 2119 Key Words", BCP 14, RFC 8174,
DOI 10.17487/RFC8174, May 2017,
<https://www.rfc-editor.org/info/rfc8174>.
Singer, et al. Standards Track [Page 22]
^L
RFC 8285 RTP Header Extensions October 2017
12.2. Informative References
[RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
Jacobson, "RTP: A Transport Protocol for Real-Time
Applications", STD 64, RFC 3550, DOI 10.17487/RFC3550,
July 2003, <https://www.rfc-editor.org/info/rfc3550>.
[RFC3553] Mealling, M., Masinter, L., Hardie, T., and G. Klyne, "An
IETF URN Sub-namespace for Registered Protocol
Parameters", BCP 73, RFC 3553, DOI 10.17487/RFC3553,
June 2003, <https://www.rfc-editor.org/info/rfc3553>.
[RFC3611] Friedman, T., Ed., Caceres, R., Ed., and A. Clark, Ed.,
"RTP Control Protocol Extended Reports (RTCP XR)",
RFC 3611, DOI 10.17487/RFC3611, November 2003,
<https://www.rfc-editor.org/info/rfc3611>.
[RFC4585] Ott, J., Wenger, S., Sato, N., Burmeister, C., and J. Rey,
"Extended RTP Profile for Real-time Transport Control
Protocol (RTCP)-Based Feedback (RTP/AVPF)", RFC 4585,
DOI 10.17487/RFC4585, July 2006,
<https://www.rfc-editor.org/info/rfc4585>.
[RFC4588] Rey, J., Leon, D., Miyazaki, A., Varsa, V., and R.
Hakenberg, "RTP Retransmission Payload Format", RFC 4588,
DOI 10.17487/RFC4588, July 2006,
<https://www.rfc-editor.org/info/rfc4588>.
[RFC5109] Li, A., Ed., "RTP Payload Format for Generic Forward Error
Correction", RFC 5109, DOI 10.17487/RFC5109,
December 2007, <https://www.rfc-editor.org/info/rfc5109>.
[RFC5285] Singer, D. and H. Desineni, "A General Mechanism for RTP
Header Extensions", RFC 5285, DOI 10.17487/RFC5285,
July 2008, <https://www.rfc-editor.org/info/rfc5285>.
[RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
January 2012, <https://www.rfc-editor.org/info/rfc6347>.
[RFC7201] Westerlund, M. and C. Perkins, "Options for Securing RTP
Sessions", RFC 7201, DOI 10.17487/RFC7201, April 2014,
<https://www.rfc-editor.org/info/rfc7201>.
[RFC7667] Westerlund, M. and S. Wenger, "RTP Topologies", RFC 7667,
DOI 10.17487/RFC7667, November 2015,
<https://www.rfc-editor.org/info/rfc7667>.
Singer, et al. Standards Track [Page 23]
^L
RFC 8285 RTP Header Extensions October 2017
[RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
Writing an IANA Considerations Section in RFCs", BCP 26,
RFC 8126, DOI 10.17487/RFC8126, June 2017,
<https://www.rfc-editor.org/info/rfc8126>.
[SDP-BUNDLE]
Holmberg, C., Alvestrand, H., and C. Jennings,
"Negotiating Media Multiplexing Using the Session
Description Protocol (SDP)", Work in Progress,
draft-ietf-mmusic-sdp-bundle-negotiation-39, August 2017.
[SDP-MUX] Nandakumar, S., "A Framework for SDP Attributes when
Multiplexing", Work in Progress, draft-ietf-mmusic-sdp-
mux-attributes-16, December 2016.
Acknowledgments
Both Brian Link and John Lazzaro provided helpful comments on an
initial draft of this document. Colin Perkins was helpful in
reviewing and dealing with the details. The use of URNs for
IETF-defined extensions was suggested by Jonathan Lennox, and Pete
Cordell was instrumental in improving the padding wording. Dave Oran
provided feedback and text in the review. Mike Dolan contributed the
two-byte header form. Magnus Westerlund and Tom Taylor were
instrumental in managing the registration text.
Singer, et al. Standards Track [Page 24]
^L
RFC 8285 RTP Header Extensions October 2017
Authors' Addresses
David Singer
Apple, Inc.
1 Infinite Loop
Cupertino, CA 95014
United States of America
Phone: +1 408 996 1010
Email: singer@apple.com
URI: https://support.apple.com/quicktime
Harikishan Desineni
Qualcomm
10001 Pacific Heights Blvd.
San Diego, CA 92121
United States of America
Phone: +1 858 845 8996
Email: h3dnvb@gmail.com
Roni Even (editor)
Huawei Technologies
Tel Aviv
Israel
Email: Roni.even@huawei.com
Singer, et al. Standards Track [Page 25]
^L
|