summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc8406.txt
blob: 4b3693b82b6821b13eb02a2101fe6794523c31a2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
Internet Research Task Force (IRTF)                           B. Adamson
Request for Comments: 8406                                           NRL
Category: Informational                                         C. Adjih
ISSN: 2070-1721                                                    INRIA
                                                               J. Bilbao
                                                                 Ikerlan
                                                               V. Firoiu
                                                             BAE Systems
                                                               F. Fitzek
                                                              TU Dresden
                                                               S. Ghanem
                                                             Independent
                                                               E. Lochin
                                                          ISAE - Supaero
                                                              A. Masucci
                                                                  Orange
                                                          M-J. Montpetit
                                                             Independent
                                                             M. Pedersen
                                                      Aalborg University
                                                              G. Peralta
                                                                 Ikerlan
                                                            V. Roca, Ed.
                                                                   INRIA
                                                               P. Saxena
                                                      AnsuR Technologies
                                                            S. Sivakumar
                                                                   Cisco
                                                               June 2018


   Taxonomy of Coding Techniques for Efficient Network Communications

Abstract

   This document summarizes recommended terminology for Network Coding
   concepts and constructs.  It provides a comprehensive set of terms in
   order to avoid ambiguities in future IRTF and IETF documents on
   Network Coding.  This document is the product of the Coding for
   Efficient Network Communications Research Group (NWCRG), and it is in
   line with the terminology used by the RFCs produced by the Reliable
   Multicast Transport (RMT) and FEC Framework (FECFRAME) IETF working
   groups.








Adamson, et al.               Informational                     [Page 1]
^L
RFC 8406              Taxonomy of Coding Techniques            June 2018


Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for informational purposes.

   This document is a product of the Internet Research Task Force
   (IRTF).  The IRTF publishes the results of Internet-related research
   and development activities.  These results might not be suitable for
   deployment.  This RFC represents the consensus of the Coding for
   Efficient Network Communications Research Group of the Internet
   Research Task Force (IRTF).  Documents approved for publication by
   the IRSG are not candidates for any level of Internet Standard; see
   Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/rfc8406.

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
   2.  General Definitions and Concepts  . . . . . . . . . . . . . .   4
   3.  Taxonomy of Code Uses . . . . . . . . . . . . . . . . . . . .   7
   4.  Coding Details  . . . . . . . . . . . . . . . . . . . . . . .   8
     4.1.  Coding Types  . . . . . . . . . . . . . . . . . . . . . .   8
     4.2.  Coding Basics . . . . . . . . . . . . . . . . . . . . . .   9
     4.3.  Coding in Practice  . . . . . . . . . . . . . . . . . . .  12
   5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  12
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .  13
   7.  Informative References  . . . . . . . . . . . . . . . . . . .  13
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  14








Adamson, et al.               Informational                     [Page 2]
^L
RFC 8406              Taxonomy of Coding Techniques            June 2018


1.  Introduction

   This document is the product of and represents the collaborative work
   and consensus of the Coding for Efficient Network Communications
   Research Group (NWCRG); it is not an IETF product and is not a
   standard.  In 2017, the document was discussed during three audio
   conferences, each of them gathering 6 to 8 key experts; it was
   co-edited and subjected to an RG Last Call.  The general feeling was
   that the document was ready.  Additional information about Network
   Coding may be found on these NWCRG pages: <https://irtf.org/nwcrg>
   and <https://datatracker.ietf.org/rg/nwcrg/about/>.

   The literature on Network Coding research and system design,
   including IETF documentation, led to a rich set of concepts and
   constructs.  This document collects terminology used in the domain,
   both outside and inside IETF, provides concise definitions, and
   introduces a high-level taxonomy.  Its primary goal is to be useful
   to IETF and IRTF activities.  It is also in line with the terminology
   already used by the RFCs produced by the Reliable Multicast Transport
   (RMT) and FEC Framework (FECFRAME) IETF working groups, in particular
   [RFC5052], [RFC5740], [RFC5775], [RFC6363], and [RFC6726].  This
   document is also related to IETF work being done in the PAYLOAD and
   TSVWG WGs (in particular, the extension of FECFRAME to support
   Sliding Window Codes and the Random Linear Coding (RLC) sliding
   window FEC scheme) and past work in the AVTCORE and MMUSIC WGs.  Note
   that in the definitions, the "(IETF)" tag indicates that the
   associated term is already used in IETF documents (Internet-Drafts
   and RFCs).

   This document focuses on packet transmissions and losses.  These
   losses will typically be triggered by various types of networking
   issues and/or impairments (e.g., congested routers or intermittent
   wireless connectivity).  The notion of "packet" itself is multiform,
   depending on the target use case and the notion of network (e.g., in
   which layer of the protocol stack does the coding middleware
   operate?).  For instance, a "packet" may be a data unit to be carried
   as a UDP payload because the coding middleware is located between the
   application and UDP.  In another configuration, coding may be applied
   within an overlay network and the notion of "packet" will be totally
   different.  In any case, the goals of Network Coding can be to
   improve the network throughput, efficiency, latency, and scalability,
   as well as to provide resilience to partition, attacks, and
   eavesdropping (NWCRG charter).  Both End-to-End Coding and systems
   that also perform recoding within intermediate forwarding nodes are
   considered in this document.






Adamson, et al.               Informational                     [Page 3]
^L
RFC 8406              Taxonomy of Coding Techniques            June 2018


   This document does not consider physical-layer transmission issues,
   physical-layer codes, or error detection: if low-layer error codes
   detect but fail to correct bit errors, or if an upper-layer checksum
   (e.g., within IP or UDP) identifies a corrupted packet, then the
   packet is supposed to be dropped.

2.  General Definitions and Concepts

   This section provides general definitions and concepts that are used
   throughout this document.

   Packet Erasure Channel:
      A communication path where packets are either dropped or received
      without any error.  This type of packet drop is referred to as an
      "erasure" or "loss".  The term "channel" must be understood as a
      generic term for any type of communication technology (e.g., an
      Ethernet link, a WiFi network, or a full path between two nodes
      over the Internet).  As opposed to the "Erasure" channels, "Error"
      channels are where one or multiple bit errors may happen during a
      packet transmission.  These "Error" channels are out of scope.

   Erasure Correcting Code (ECC) or (IETF) Forward Erasure Correction
      (FEC):
      A code for the Packet Erasure Channel (only).  These codes are
      also called "Application-Level FECs" to highlight that they have
      been designed for use within the higher layers of the protocol
      stack to protect against packet losses.  As opposed to ECCs/FECs,
      "Error" correction codes are capable of identifying the presence
      of bit errors and perhaps correcting them.  The "Error" correction
      codes are out of scope.

   End-to-End Coding:
      A system where coding is performed at the source or (coding)
      middlebox, and decoding is performed at the destination(s) or
      (decoding) middlebox.  There is no recoding operation at
      intermediate nodes.  This is the approach followed in the
      FLUTE/ALC [RFC6726] [RFC5775], NORM [RFC5740], and FECFRAME
      [RFC6363] protocols.

   Network Coding:
      A system where coding can be performed at the source as well as at
      intermediate forwarding nodes (all or a subset of them).  End-to-
      End Coding is regarded as a special case of Network Coding.
      Depending on the use case, additional assumptions can be made: for
      instance, the destination knowing the Coding Nodes' topology and
      coding operations can help during decoding operations.





Adamson, et al.               Informational                     [Page 4]
^L
RFC 8406              Taxonomy of Coding Techniques            June 2018


   Packet versus Symbol:
      Generally speaking, a Packet is the unit of data that is sent in
      the Packet Erasure Channel, while a Symbol is the unit of data
      that is manipulated during the encoding and decoding operations.

   Original Payload, Uncoded Payload, Systematic Symbol, or (IETF)
      Source Symbol:
      A unit of data originating from the source that is used as input
      to encoding operations.

   Coded Payload, Coded Symbol, or (IETF) Repair Symbol:
      A unit of data that is the result of a coding operation, applied
      either to Source Symbols or (in case of recoding) Source and/or
      Repair Symbols.  When there is a single Repair Symbol per Repair
      Packet, a Repair Symbol corresponds to a Repair Packet.

   Input Symbol and Output Symbol:
      A unit of data that is used as input to an encoding operation or
      that is generated as output of an encoding operation.  At a
      recoding node, Repair Symbols are also part of the Input Symbols.
      With Systematic Coding, Source Symbols are also part of the Output
      Symbols.

   (IETF) Encoding Symbol:
      A Source or a Repair Symbol.

   (En)coding versus Recoding versus Decoding:
      (En)coding is an operation that takes Source Symbols as input and
      produces Encoding Symbols as output.  Recoding is an operation
      that takes Encoding Symbols as input and produces Encoding Symbols
      as output.  Decoding is an operation takes Encoding Symbols as
      input and produces Source Symbols as output.

   (IETF) Source Packet:
      A packet originating from the source that contributes to one or
      more Source Symbols.  For instance, an RTP packet as a whole can
      constitute a Source Symbol.  In other situations (e.g., to address
      variable size packets), a single RTP packet may contribute to
      various Source Symbols.

   (IETF) Repair Packet:
      A packet containing one or more Repair Symbols.

   Figure 1 illustrates the relationships between packets (what is sent
   in the Packet Erasure Channel) and symbols (what is manipulated
   during encoding and decoding operations) in case of a Systematic





Adamson, et al.               Informational                     [Page 5]
^L
RFC 8406              Taxonomy of Coding Techniques            June 2018


   Coding at a Coding Node that performs Encoding (rather than
   Recoding).  FEC decoding procedures are similarly performed in the
   reverse order.

           Source Packet
                 |
                 | Source Packet to Source Symbols transform
                 | (one or more symbols per packet)
                 v
           Source Symbols
                 |
                 v Input Symbols
      +----------------------+
      |     FEC encoding     |
      +----------------------+
         | Output Symbols |
         v                v
   Source Symbols   Repair Symbols
         |                |
         |                | symbol-to-packet transform
         |                | (one or more symbols per packet)
         v                v
   Source Packet    Repair Packet

      Figure 1: Packet and Symbol Relationships at a Coding Node
                That Performs Encoding (Rather Than Recoding)

   Source Node:
      A node that generates one or more Source Flows.

   Coding Node:
      A node that performs FEC Encoding or Recoding operations.  It may
      be an end host or a middlebox (Encoding case), or a forwarding
      node (Recoding case).

   (IETF) Flow:
      A stream of packets logically grouped.

   (IETF) Source Flow:
      A flow of Source Packets coming from an application on a given
      host and to which FEC encoding is to be applied, potentially along
      with other Source Flows.  Depending on the use case, Source Flows
      may come from the same application, from different applications on
      the same host, or from different applications on different hosts.

   (IETF) Repair Flow:
      A flow containing Repair Packets after FEC encoding.




Adamson, et al.               Informational                     [Page 6]
^L
RFC 8406              Taxonomy of Coding Techniques            June 2018


3.  Taxonomy of Code Uses

   This section discusses the various ways of using coding, without
   going into coding details.

   Source Coding versus Channel Coding:
      (see Figure 2) When both terms are used, "Source Coding" usually
      refers to compression techniques (e.g., audio and video
      compression) within the upper application that generates the
      Source Flow.  "Channel Coding" refers to FEC encoding in order to
      improve transmission robustness, for instance, within the lower
      physical layer (out of scope of this document) or as part of
      Network Coding.  These terms should not be confused with "FEC
      coding within the Source Node" and "FEC recoding within an
      intermediate Coding Node", respectively.

   raw data flow from camera     ^              video flow display
               |                 |                      ^
               v                 | upper                |
   +------------------------+    |           +-------------------------+
   |     source coding      |    | applica-  |  source (de)coding      |
   |(e.g., mpeg compression)|    | tion      |(e.g., mpg decompression)|
   +------------------------+    v           +-------------------------+
               |                                        ^
               v                                        |
   +------------------------+    ^           +-------------------------+
   | network/AL-FEC coding  |    | middle-   | network/AL-FEC coding   |
   |  (e.g., RLC encoding)  |    | ware      |  (e.g., RLC decoding)   |
   +------------------------+    v           +-------------------------+
               |                                        ^
               v                                        |
   +------------------------+    ^           +-------------------------+
   |     packetization      |    |           |    depacketization      |
   |     (e.g., UDP/IP)     |    | communi-  |     (e.g., UDP/IP)      |
   +------------------------+    | cation    +-------------------------+
               |                 |                      ^
               v                 | layers               |
   +-----------------------+     |           +-------------------------+
   |       PHY layer       |     |           |       PHY layer         |
   |    (channel coding)   |     |           |   (channel decoding)    |
   +-----------------------+     v           +-------------------------+
               |                                         ^
               |          source + repair traffic        |
               +-----------------------------------------+

   Figure 2: Example of End-to-End Flow Manipulation with Network Coding





Adamson, et al.               Informational                     [Page 7]
^L
RFC 8406              Taxonomy of Coding Techniques            June 2018


      Figure 2 shows Network Coding between the application and UDP
      layers (as with RMT or FECFRAME architectures).  Other
      architectures are possible, for instance, with Network Coding
      below the transport layer to allow recoding within the network.

   Intra-Flow Coding or Single-Source Network Coding:
      Process where incoming packets to the Coding Node belong to the
      same flow.

   Inter-Flow Coding or Multi-Source Network Coding:
      Process where incoming packets to the Coding Node belong to
      different flows.

   Single-Path Coding:
      Network Coding over a route that has a single path from the source
      to each destination(s).  In case of multicast or broadcast
      traffic, this route is a tree.  Coding may be done end to end
      and/or at intermediate forwarding nodes.

   Multi-Path Coding:
      Network Coding over a route that has multiple (at least partially)
      disjoint paths from the source to each given destination.  Coding
      may be done end to end and/or at intermediate forwarding nodes.

4.  Coding Details

4.1.  Coding Types

   This section provides a high-level taxonomy of coding techniques.
   Technical details are discussed in subsequent sections.

   Linear Coding:
      Linear combination of a set of Input Symbols (i.e., Source and/or
      Repair Symbols) using a given set of coefficients and resulting in
      a Repair Symbol.  Many linear codes exist that differ from the way
      coding coefficients are drawn from a Finite Field of a given size.

   Random Linear Coding (RLC):
      Particular case of Linear Coding using a set of random coding
      coefficients.

   Adaptive Linear Coding:
      Linear Coding that utilizes cross-layer adaptation.  For instance,
      an adaptive coding scheme may adapt the generation and
      transmission of Repair Packets according to the channel variations
      over time, accounting for the predictive loss of degrees of
      freedom due to erasures.




Adamson, et al.               Informational                     [Page 8]
^L
RFC 8406              Taxonomy of Coding Techniques            June 2018


   Block Coding:
      Coding technique where the input Flow(s) must first be segmented
      into a sequence of blocks; FEC encoding and decoding are performed
      independently on a per-block basis.  The term "Chunk Coding" is
      sometimes used, where a "Chunk" denotes a block.

   Sliding Window Coding or Convolutional Coding:
      General class of coding techniques that rely on a sliding encoding
      window.  This is an alternative solution to Block Coding.

   Fixed or Elastic Sliding Window Coding:
      Coding technique that generates Repair Symbol(s) on the fly, from
      the set of Source Symbols present in the sliding encoding window
      at that time, usually by using Linear Coding.  The sliding window
      may be either of fixed size or of variable size over the time
      (also known as "Elastic Sliding Window").  For instance, the size
      may depend on acknowledgments sent by the receiver(s) for a
      particular Source Symbol or Source Packet (received, decoded, or
      decodable).

   Systematic Coding:
      A coding technique where Source Symbols are part of the output
      Flow generated by a Coding Node.

   Rateless and Non-rateless Coding:
      Rateless Coding can generate an unlimited number of Repair Symbols
      (in practice, this number can be limited by practical
      considerations or because of use-case requirements) from a given
      set of Source Symbols, meaning that the code rate is null.  RLC
      codes are an example of Rateless Codes.  Alternately, Non-rateless
      Coding usually has a predefined maximum number of Repair Symbols
      that can be generated from a given set of Source Symbols.

4.2.  Coding Basics

   This section discusses and defines low-level coding aspects.

   Code Rate:
      In case of a Block Code, the Code Rate is the k/n ratio between
      the number of Source Symbols, k, and the number of Source plus
      Repair Symbols, n.  With a Sliding Window Code, the Code Rate is
      defined similarly over a certain time interval, since the Code
      Rate may change dynamically.  By definition, the Code Rate is such
      that: 0 < Code Rate <= 1.  A Code Rate close to 1 indicates that a
      small number of Repair Symbols have been produced during the
      encoding process and vice versa.





Adamson, et al.               Informational                     [Page 9]
^L
RFC 8406              Taxonomy of Coding Techniques            June 2018


   (En)coding Window:
      A set of Source (and Repair in the case of recoding) Symbols used
      as input to the coding operations.  The set of symbols will
      typically change over time, as the Coding Window slides over the
      input Flow(s).

   (En)coding Window Size:
      The number of Source (and Repair in case of recoding) Symbols in
      the current Encoding Window.  This size may change over the time.

   Payload Set:
      The set of Source and Repair Symbols available (i.e., received or
      previously decoded) at the receiver and used during FEC decoding
      operations.

   Decoding Window:
      The set of Source Symbols (only) that are considered in the
      current linear system of a receiver, independently of the fact
      these Source Symbols have been received, decoded, or lost.  The
      Decoding Window will typically change over time, as transmissions
      and decoding progress, and may be different for different
      receivers of a session where content is multicast or broadcast.

   Decoding Window Size:
      The number of Source Symbols (only) in the current Decoding
      Window.  This size may change over time.

   Rank of a Payload Set or Rank of the Linear System:
      At a receiver, number of linearly independent members of a Payload
      Set, or equivalently the number of linearly independent equations
      of the linear system.  It is also known as "Degrees of Freedom".
      The system may be of "full rank" where decoding is possible or
      "partial rank" where only partial decoding is possible.

   Seen Payload or Seen Symbol:
      A Source Symbol is Seen when the receiver can compute a linear
      combination with this symbol and Source Symbols that are strictly
      more recent (i.e., with logically higher Encoding Symbol
      Identifiers).  Otherwise, the Source Symbol is considered as
      "Unseen".

   Generation or (IETF) Block:
      With Block Codes, the set of Source Symbols of the input Flow(s)
      that are logically grouped into a Block, before doing encoding.

   Generation Size, Code Dimension, or (IETF) Block Size:
      With Block Codes, the number of Source Symbols, k, belonging to a
      Block.



Adamson, et al.               Informational                    [Page 10]
^L
RFC 8406              Taxonomy of Coding Techniques            June 2018


   Coding Matrix or Generator Matrix:
      A matrix G that transforms the set of Input Symbols X into a set
      of Repair Symbols: Y = X * G.  Defining a Generator Matrix is
      typical with Block Codes.  The set of Input Symbols X can consist
      only of Source Symbols (e.g., with End-to-End Coding) or can
      consist of Source and Repair Symbols (e.g., with recoding in an
      intermediate node).

   Coding Coefficient:
      With Linear Coding, this is a coefficient in a certain Finite
      Field.  This coefficient may be chosen in different ways: for
      instance, randomly, in a predefined table, or using a predefined
      algorithm plus a seed.

   Coding Vector:
      A set of Coding Coefficients used to generate a certain Repair
      Symbol through Linear Coding.  The number of nonzero coefficients
      in the Coding Vector defines its density.

   Finite Field, Galois Field, or Coding Field:
      Finite Fields, used in Linear Codes, have the desired property of
      having all elements (except zero) invertible for the + and *
      operators, and all operations over any elements do not result in
      an overflow or underflow.  Examples of Finite Fields are prime
      fields {0..p^m-1}, where p is prime.  The most used fields use p=2
      and are called binary extension fields {0..2^m-1}, where m often
      equals 1, 4, or 8 for practical reasons.

   Finite Field size or Coding Field size:
      The number of elements in a Finite Field.  For example, the binary
      extension field {0..2^m-1} has size q=2^m.

   Feedback:
      Feedback information sent by a decoding node to a Coding Node (or
      from a receiver to a source in case of End-to-End Coding).  The
      nature of information contained in a feedback packet varies,
      depending on the use case.  It can provide reception and/or FEC
      decoding statistics, the list of available Source Packets received
      or decoded (acknowledgement), the list of lost Source Packets that
      should be retransmitted (negative acknowledgement), or a number of
      additional Repair Symbols needed to have a Full Rank Linear
      System.









Adamson, et al.               Informational                    [Page 11]
^L
RFC 8406              Taxonomy of Coding Techniques            June 2018


4.3.  Coding in Practice

   This section discusses practical aspects.  Indeed, a practical
   solution must specify the exact manner in which encoding and decoding
   are performed but also detail all the peripheral aspects, for
   instance, how an encoder informs a decoder about the parameters used
   to generate a certain Repair Packet (signaling).

   (IETF) FEC Scheme:
      A specification that defines a particular FEC code as well as the
      additional protocol aspects required to use this FEC code.  In
      particular, the FEC Scheme defines in-band (e.g., information
      contained in Source and Repair Packet header or trailers) and out-
      of-band (e.g., information contained in an SDP description)
      signaling needed to synchronize encoders and decoders.

   Payload Index or (IETF) Encoding Symbol Identifier (ESI):
      An identifier of a Source or Repair Symbol.  With Block Coding,
      each symbol of a given block is identified by a unique ESI value.
      With Sliding Window Coding, a continuous Source Flow and a limited
      field size to hold the ESI, wrapping to zero is unavoidable and
      the same integer value will be reused several times.

   (IETF) FEC Payload ID:
      Information that identifies the contents of a packet with respect
      to the FEC Scheme.  The FEC Payload ID of a packet containing
      Source Symbol(s) is usually different from that of a packet
      containing Repair Symbol(s).  The FEC Payload ID typically
      contains at least an ESI.

   Coding Vector and Encoding Window Signaling:
      With Sliding Window Codes, the FEC Payload ID of a Repair Packet
      contains information needed and sufficient to identify the Coding
      Vector and Coding Window.  Concerning the Coding Vector, this may
      consist of a full list of Coding Coefficients (that may or may not
      be compressed), or a piece of information (e.g., a seed) that can
      be used to generate the list of Coding Coefficients thanks to a
      predefined algorithm known by encoders and decoders (e.g., a
      Pseudorandom Number Generator, or PRNG) or an ESI that points to a
      given entry in a Generator Matrix in case of a Block Code.
      Concerning the Coding Window, this may consist of the full list of
      ESI of symbols in the Coding Window (that may or may not be
      compressed) or the ESI of the first Source Symbol along with their
      number (assuming there is no gap).

5.  IANA Considerations

   This document has no IANA actions.



Adamson, et al.               Informational                    [Page 12]
^L
RFC 8406              Taxonomy of Coding Techniques            June 2018


6.  Security Considerations

   This document introduces a recommended terminology for Network Coding
   and therefore does not contain any security considerations.  This
   does not mean that Network Coding systems do not have any security
   implication.

7.  Informative References

   [RFC5052]  Watson, M., Luby, M., and L. Vicisano, "Forward Error
              Correction (FEC) Building Block", RFC 5052,
              DOI 10.17487/RFC5052, August 2007,
              <https://www.rfc-editor.org/info/rfc5052>.

   [RFC5740]  Adamson, B., Bormann, C., Handley, M., and J. Macker,
              "NACK-Oriented Reliable Multicast (NORM) Transport
              Protocol", RFC 5740, DOI 10.17487/RFC5740, November 2009,
              <https://www.rfc-editor.org/info/rfc5740>.

   [RFC5775]  Luby, M., Watson, M., and L. Vicisano, "Asynchronous
              Layered Coding (ALC) Protocol Instantiation", RFC 5775,
              DOI 10.17487/RFC5775, April 2010,
              <https://www.rfc-editor.org/info/rfc5775>.

   [RFC6363]  Watson, M., Begen, A., and V. Roca, "Forward Error
              Correction (FEC) Framework", RFC 6363,
              DOI 10.17487/RFC6363, October 2011,
              <https://www.rfc-editor.org/info/rfc6363>.

   [RFC6726]  Paila, T., Walsh, R., Luby, M., Roca, V., and R. Lehtonen,
              "FLUTE - File Delivery over Unidirectional Transport",
              RFC 6726, DOI 10.17487/RFC6726, November 2012,
              <https://www.rfc-editor.org/info/rfc6726>.


















Adamson, et al.               Informational                    [Page 13]
^L
RFC 8406              Taxonomy of Coding Techniques            June 2018


Authors' Addresses

   Brian Adamson
   NRL
   United States of America

   Email: brian.adamson@nrl.navy.mil


   Cedric Adjih
   INRIA
   France

   Email: cedric.adjih@inria.fr


   Josu Bilbao
   Ikerlan
   Spain

   Email: jbilbao@ikerlan.es


   Victor Firoiu
   BAE Systems
   United States of America

   Email: victor.firoiu@baesystems.com


   Frank Fitzek
   TU Dresden
   Germany

   Email: frank.fitzek@tu-dresden.de


   Samah A. M. Ghanem
   Independent

   Email: samah.ghanem@gmail.com


   Emmanuel Lochin
   ISAE - Supaero
   France

   Email: emmanuel.lochin@isae-supaero.fr



Adamson, et al.               Informational                    [Page 14]
^L
RFC 8406              Taxonomy of Coding Techniques            June 2018


   Antonia Masucci
   Orange
   France

   Email: antoniamaria.masucci@orange.com


   Marie-Jose Montpetit
   Independent
   United States of America

   Email: marie@mjmontpetit.com


   Morten V. Pedersen
   Aalborg University
   Denmark

   Email: mvp@es.aau.dk


   Goiuri Peralta
   Ikerlan
   Spain

   Email: gperalta@ikerlan.es


   Vincent Roca (editor)
   INRIA
   France

   Email: vincent.roca@inria.fr


   Paresh Saxena
   AnsuR Technologies
   Norway

   Email: paresh.saxena@ansur.es


   Senthil Sivakumar
   Cisco
   United States of America

   Email: ssenthil@cisco.com




Adamson, et al.               Informational                    [Page 15]
^L